
Dredd
Release 5.2.0

Nov 16, 2018

Contents

1 Features 3

2 Contents 5

3 Useful Links 85

4 Example Applications 87

i

ii

Dredd, Release 5.2.0

Dredd is a language-agnostic command-line tool for validating API description document against
backend implementation of the API.

Dredd reads your API description and step by step validates whether your API implementation replies with responses
as they are described in the documentation.

Contents 1

https://www.npmjs.com/package/dredd
https://travis-ci.org/apiaryio/dredd
https://ci.appveyor.com/project/Apiary/dredd/branch/master
https://david-dm.org/apiaryio/dredd
https://david-dm.org/apiaryio/dredd?type=dev
https://dredd.readthedocs.io/en/latest/
https://coveralls.io/github/apiaryio/dredd
https://snyk.io/test/npm/dredd

Dredd, Release 5.2.0

2 Contents

CHAPTER 1

Features

1.1 Supported API Description Formats

• API Blueprint

• Swagger

1.2 Supported Hooks Languages

Dredd supports writing hooks — a glue code for each test setup and teardown. Following languages are supported:

• Go

• Node.js (JavaScript)

• Perl

• PHP

• Python

• Ruby

• Rust

• Didn’t find your favorite language? Add a new one!

1.3 Supported Systems

• Linux, macOS, Windows, . . .

• Travis CI, CircleCI, Jenkins, AppVeyor, . . .

3

https://apiblueprint.org/
https://swagger.io/
https://travis-ci.org/
https://circleci.com/
https://jenkins.io/
https://www.appveyor.com/

Dredd, Release 5.2.0

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Installation

Dredd is a command-line application written in JavaScript. To run it on your machine or in your Continuous Integration
server, you first need to have Node.js installed.

2.1.1 Install Node.js

macOS

1. Install Node.js.

• If you’re using Homebrew, run brew install node.

• Otherwise download Node.js from the official website and install Node.js using the downloaded installer.

2. Make sure both node --version and npm --version work in your Terminal.

Windows

1. Download Node.js from the official website and install Node.js using the downloaded installer.

2. Make sure both node --version and npm --version work in your Command Prompt.

Linux

1. Install Node.js as system package.

2. Make sure both node --version and npm --version work in your Terminal.

5

https://nodejs.org/en/
https://brew.sh/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

Dredd, Release 5.2.0

Pro Tips

• Continuous Integration section in the How-To Guides can help you to install Dredd on CI server.

• To maintain multiple Node.js versions on your computer, check out nvm.

2.1.2 Install Dredd

1. npm install -g dredd

2. dredd --version

If the second command works, you’re done!

Globally vs locally

The -g ensures Dredd will be installed “globally”. That means you’ll be able to access it from any directory just by
typing dredd.

If you work on projects installable by npm, i.e. projects containing package.json, you might want to have Dredd
installed as a development dependency instead. Just install Dredd by npm install dredd --save-dev. See
package.json of the Dredd Example repository for inspiration.

Which Version?

• For development, always go with the latest version.

• For testing in CI (what’s CI?), always pin your Dredd version to a specific number and upgrade to newer
releases manually (but often!).

Why Am I Seeing Network Errors?

In a restricted network (VPN, firewall, proxy) you can see errors similar to the following ones:

npmERR! Cannot read property 'path' of null
npmERR!code ECONNRESET
npmERR!network socket hang up

Error: Command failed: git config --get remote.origin.url
ssh: connect to host github.com port 22: Operation timed out
fatal: Could not read from remote repository.

To solve these issues, you need to set your proxy settings for both npm and git:

$ npm config set proxy "http://proxy.company.com:8080"
$ npm config set https-proxy "https://proxy.company.com:8080"

$ git config --global http.proxy "http://proxy.company.com:8080"
$ git config --global https.proxy "https://proxy.company.com:8080"

When using git config, make sure you have the port specified even when it’s the standard :80. Also check out
how to set up Dredd to correctly work with proxies.

6 Chapter 2. Contents

https://github.com/creationix/nvm
https://github.com/apiaryio/dredd-example/

Dredd, Release 5.2.0

Why I’m Seeing node-gyp or python Errors?

The installation process features compilation of some C++ components, which may not be successful. In that case,
errors related to node-gyp or python are printed. However, if dredd --version works for you when the
installation is done, feel free to ignore the errors.

In case of compilation errors, Dredd automatically uses a less performant solution written in pure JavaScript. Next
time when installing Dredd, you can use npm install -g dredd --no-optional to skip the compilation
step (learn more about this).

Why Is the Installation So Slow?

The installation process features compilation of some C++ components, which may take some time (learn more about
this). You can simplify and speed up the process using npm install -g dredd --no-optional if you are:

• using Dredd exclusively with Swagger,

• using Dredd with small API Blueprint files,

• using Dredd on Windows or other environments with complicated C++11 compiler setup.

The --no-optional option avoids any compilation attempts when installing Dredd, but causes slower reading of
the API Blueprint files, especially the large ones.

2.2 Quickstart

In following tutorial you can quickly learn how to test a simple HTTP API application with Dredd. The tested
application will be very simple backend written in Express.js.

2.2.1 Install Dredd

$ npm install -g dredd

If you’re not familiar with the Node.js ecosystem or you bump into any issues, follow the installation guide.

2.2.2 Document Your API

First, let’s design the API we are about to build and test. That means you will need to create an API description file,
which will document how your API should look like. Dredd supports two formats of API description documents:

• API Blueprint

• Swagger

If you choose API Blueprint, create a file called api-description.apib in the root of your project and save it
with following content:

FORMAT: 1A

GET /
+ Response 200 (application/json; charset=utf-8)

{"message": "Hello World!"}

2.2. Quickstart 7

https://swagger.io/
https://apiblueprint.org/
http://expressjs.com/starter/hello-world.html
https://apiblueprint.org/
https://swagger.io/

Dredd, Release 5.2.0

If you choose Swagger, create a file called api-description.yml:

swagger: "2.0"
info:

version: "1.0"
title: Example API
license:
name: MIT

host: www.example.com
basePath: /
schemes:

- http
paths:

/:
get:

produces:
- application/json; charset=utf-8

responses:
200:
description: ""
schema:
type: object
properties:
message:
type: string

required:
- message

2.2.3 Implement Your API

As we mentioned in the beginning, we’ll use Express.js to implement the API. Install the framework by npm:

$ npm init
$ npm install express --save

Now let’s code the thing! Create a file called app.js with following contents:

var app = require('express')();

app.get('/', function(req, res) {
res.json({message: 'Hello World!'});

})

app.listen(3000);

2.2.4 Test Your API

At this moment, the implementation is ready to be tested. Let’s run the server as a background process and let’s test it:

$ node app.js &

Finally, let Dredd validate whether your freshly implemented API complies with the description you have:

$ dredd api-description.apib http://127.0.0.1:3000 # API Blueprint
$ dredd api-description.yml http://127.0.0.1:3000 # Swagger

8 Chapter 2. Contents

http://expressjs.com/starter/hello-world.html

Dredd, Release 5.2.0

2.2.5 Configure Dredd

Dredd can be configured by many CLI options. It’s recommended to save your Dredd configuration alongside your
project, so it’s easier to repeatedly execute always the same test run. Use interactive configuration wizard to create
dredd.yml file in the root of your project:

$ dredd init
? Location of the API description document: api-description.apib
? Command to start API backend server e.g. (bundle exec rails server)
? URL of tested API endpoint: http://127.0.0.1:3000
? Programming language of hooks:
nodejs
python
ruby
...

? Dredd is best served with Continuous Integration. Create CircleCI config for Dredd?
→˓Yes

Now you can start test run just by typing dredd!

$ dredd

2.2.6 Use Hooks

Dredd’s hooks enable you to write some glue code in your favorite language to support enhanced scenarios in your
API tests. Read the documentation about hooks to learn more on how to write them. Choose your language and install
corresponding hook handler library.

2.2.7 Advanced Examples

For more complex example applications, please refer to:

• Express.js example application

• Ruby on Rails example application

• Laravel example application

2.3 How It Works

In a nutshell, Dredd does following:

1. Takes your API description document,

2. creates expectations based on requests and responses documented in the document,

3. makes requests to tested API,

4. checks whether API responses match the documented responses,

5. reports the results.

2.3. How It Works 9

https://github.com/apiaryio/dredd-example
https://github.com/theodorton/dredd-test-rails
https://github.com/ddelnano/dredd-hooks-php/wiki/Laravel-Example

Dredd, Release 5.2.0

2.3.1 Versioning

Dredd follows Semantic Versioning. To ensure certain stability of your Dredd installation (e.g. in CI), pin the version
accordingly. You can also use release tags:

• npm install dredd - Installs the latest published version including experimental pre-release versions.

• npm install dredd@stable - Skips experimental pre-release versions. Recommended for CI installa-
tions.

If the User-Agent header isn’t overridden in the API description document, Dredd uses it for sending information
about its version number along with every HTTP request it does.

2.3.2 Execution Life Cycle

Following execution life cycle documentation should help you to understand how Dredd works internally and which
action goes after which.

1. Load and parse API description documents

• Report parse errors and warnings

2. Pre-run API description check

• Missing example values for URI template parameters

• Required parameters present in URI

• Report non-parseable JSON bodies

• Report invalid URI parameters

• Report invalid URI templates

3. Compile HTTP transactions from API description documents

• Inherit headers

• Inherit parameters

• Expand URI templates with parameters

4. Load hooks

5. Test run

• Report test run start

• Run beforeAll hooks

• For each compiled transaction:

– Report test start

– Run beforeEach hook

– Run before hook

– Send HTTP request

– Receive HTTP response

– Run beforeEachValidation hook

– Run beforeValidation hook

– Perform validation

10 Chapter 2. Contents

https://semver.org/

Dredd, Release 5.2.0

– Run after hook

– Run afterEach hook

– Report test end with result for in-progress reporting

• Run afterAll hooks

6. Report test run end with result statistics

2.3.3 Automatic Expectations

Dredd automatically generates expectations on HTTP responses based on examples in the API description with use of
Gavel.js library. Please refer to Gavel rules if you want know more.

Response Headers Expectations

• All headers specified in the API description must be present in the response.

• Names of headers are validated in the case-insensitive way.

• Only values of headers significant for content negotiation are validated.

• All other headers values can differ.

When using Swagger, headers are taken from response.headers (docs). HTTP headers significant for content
negotiation are inferred according to following rules:

• produces (docs) is propagated as response’s Content-Type header.

• Response’s Content-Type header overrides any produces.

Response Body Expectations

If the HTTP response body is JSON, Dredd validates only its structure. Bodies in any other format are validated as
plain text.

To validate the structure Dredd uses JSON Schema inferred from the API description under test. The effective JSON
Schema is taken from following places (the order goes from the highest priority to the lowest):

API Blueprint

1. Schema section - provided custom JSON Schema (Draft v4 and v3) will be used.

2. Attributes section with data structure description in MSON - API Blueprint parser automatically generates JSON
Schema from MSON.

3. Body section with sample JSON payload - Gavel.js, which is responsible for validation in Dredd, automatically
infers some basic expectations described below.

This order exactly follows the API Blueprint specification.

2.3. How It Works 11

https://github.com/apiaryio/gavel.js
https://relishapp.com/apiary/gavel/docs
https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseheaders
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces
http://json-schema.org/
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-03
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://github.com/apiaryio/mson
https://apiblueprint.org/documentation/specification.html#def-body-section
https://github.com/apiaryio/gavel.js
https://apiblueprint.org/documentation/specification.html#relation-of-body-schema-and-attributes-sections

Dredd, Release 5.2.0

Swagger

1. response.schema (docs) - provided JSON Schema will be used.

2. response.examples (docs) with sample JSON payload - Gavel.js, which is responsible for validation in
Dredd, automatically infers some basic expectations described below.

Gavel’s Expectations

• All JSON keys on any level given in the sample must be present in the response’s JSON.

• Response’s JSON values must be of the same JSON primitive type.

• All JSON values can differ.

• Arrays can have additional items, type or structure of the items is not validated.

• Plain text must match perfectly.

Custom Expectations

You can make your own custom expectations in hooks. For instance, check out how to employ Chai.js assertions.

2.3.4 Making Your API Description Ready for Testing

It’s very likely that your API description document will not be testable as is. This section should help you to learn
how to solve the most common issues.

URI Parameters

Both API Blueprint and Swagger allow usage of URI templates (API Blueprint fully implements RFC6570, Swagger
templates are much simpler). In order to have an API description which is testable, you need to describe all required
parameters used in URI (path or query) and provide sample values to make Dredd able to expand URI templates
with given sample values. Following rules apply when Dredd interpolates variables in a templated URI, ordered by
precedence:

1. Sample value, in Swagger available as the x-example vendor extension property (docs).

2. Value of default.

3. First value from enum.

If Dredd isn’t able to infer any value for a required parameter, it will terminate the test run and complain that the
parameter is ambiguous.

Note: The implementation of API Blueprint’s request-specific parameters is still in progress and there’s only experi-
mental support for it in Dredd as of now.

Request Headers

In Swagger documents, HTTP headers are inferred from "in": "header" parameters (docs). HTTP headers
significant for content negotiation are inferred according to following rules:

12 Chapter 2. Contents

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseschema
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseexamples
https://github.com/apiaryio/gavel.js
https://apiblueprint.org/
https://swagger.io/
https://tools.ietf.org/html/rfc6570
https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterobject

Dredd, Release 5.2.0

• consumes (docs) is propagated as request’s Content-Type header.

• produces (docs) is propagated as request’s Accept header.

• If request body parameters are specified as "in": "formData", request’s Content-Type header is set
to application/x-www-form-urlencoded.

Note: Processing "in": "header" parameters and inferring application/x-www-form-urlencoded
from "in": "formData" parameters is not implemented yet (apiaryio/fury-adapter-swagger#68, apiaryio/fury-
adapter-swagger#67).

Request Body

API Blueprint

The effective request body is taken from following places (the order goes from the highest priority to the lowest):

1. Body section with sample JSON payload.

2. Attributes section with data structure description in MSON - API Blueprint parser automatically generates sam-
ple JSON payload from MSON.

This order exactly follows the API Blueprint specification.

Swagger

The effective request body is inferred from "in": "body" and "in": "formData" parameters (docs).

If body parameter has schema.example (docs), it is used as a raw JSON sample for the request body. If it’s not
present, Dredd’s Swagger Adapter generates sample values from the JSON Schema provided in the schema (docs)
property. Following rules apply when the adapter fills values of the properties, ordered by precedence:

1. Value of default.

2. First value from enum.

3. Dummy, generated value.

Empty Response Body

If there is no body example or schema specified for the response in your API description document, Dredd won’t imply
any assertions. Any server response will be considered as valid.

If you want to enforce the incoming body is empty, you can use hooks:

const hooks = require('hooks');

hooks.beforeEachValidation((transaction, done) => {
if (transaction.real.body) {
transaction.fail = 'The response body must be empty';

}
done();

});

In case of responses with 204 or 205 status codes Dredd still behaves the same way, but it warns about violating the
RFC7231 when the responses have non-empty bodies.

2.3. How It Works 13

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerconsumes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces
https://github.com/apiaryio/fury-adapter-swagger/issues/68
https://github.com/apiaryio/fury-adapter-swagger/issues/67
https://github.com/apiaryio/fury-adapter-swagger/issues/67
https://apiblueprint.org/documentation/specification.html#def-body-section
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://github.com/apiaryio/mson
https://apiblueprint.org/documentation/specification.html#relation-of-body-schema-and-attributes-sections
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterobject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-schemaexample
https://github.com/apiaryio/fury-adapter-swagger/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-parameterschema
https://tools.ietf.org/html/rfc7231

Dredd, Release 5.2.0

2.3.5 Choosing HTTP Transactions

API Blueprint

While API Blueprint allows specifying multiple requests and responses in any combination (see specification for the
action section), Dredd currently supports just separated HTTP transaction pairs like this:

+ Request
+ Response

+ Request
+ Response

In other words, Dredd always selects just the first response for each request.

Note: Improving the support for multiple requests and responses is under development. Refer to issues #25 and #78
for details. Support for URI parameters specific to a single request within one action is also limited. Solving #227
should unblock many related problems. Also see Multiple Requests and Responses guide for workarounds.

Swagger

The Swagger format allows to specify multiple responses for a single operation. By default Dredd tests only responses
with 2xx status codes. Responses with other codes are marked as skipped and can be activated in hooks - see the
Multiple Requests and Responses how-to guide.

In produces (docs) and consumes (docs), only JSON media types are supported. Only the first JSON media type
in produces is effective, others are skipped. Other media types are respected only when provided with explicit
examples.

Default response is ignored by Dredd unless it is the only available response. In that case, the default response is
assumed to have HTTP 200 status code.

2.3.6 Security

Depending on what you test and how, output of Dredd may contain sensitive data.

Mind that if you run Dredd in a CI server provided as a service (such as CircleCI, Travis CI, etc.), you are disclosing
the CLI output of Dredd to third parties.

When using Apiary Reporter and Apiary Tests, you are sending your testing data to Apiary (Dredd creators and
maintainers). See their Terms of Service and Privacy Policy. Which data exactly is being sent to Apiary?

• Complete API description under test. This means your API Blueprint or Swagger files. The API description
is stored encrypted in Apiary.

• Complete testing results. Those can contain details of all requests made to the server under test and their
responses. Apiary stores this data unencrypted, even if the original communication between Dredd and the API
server under test happens to be over HTTPS. See Apiary Reporter Test Data for detailed description of what is
sent. You can sanitize it before it gets sent.

• Little meta data about your environment. Contents of environment variables TRAVIS, CIRCLE, CI, DRONE,
BUILD_ID, DREDD_AGENT, USER, and DREDD_HOSTNAME can be sent to Apiary. Your hostname, version
of your Dredd installation, and type, release and architecture of your OS can be sent as well. Apiary stores this
data unencrypted.

14 Chapter 2. Contents

https://apiblueprint.org/
https://apiblueprint.org/documentation/specification.html#def-action-section
https://github.com/apiaryio/dredd/issues/25
https://github.com/apiaryio/dredd/issues/78
https://github.com/apiaryio/dredd/issues/227
https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerproduces
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-swaggerconsumes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseexamples
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responseexamples
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-responsesdefault
https://circleci.com/
https://travis-ci.org/
https://apiary.io/
https://apiary.io/tos
https://apiary.io/privacy
https://en.wikipedia.org/wiki/Hostname
https://nodejs.org/api/os.html#os_os_type
https://nodejs.org/api/os.html#os_os_release
https://nodejs.org/api/os.html#os_os_arch

Dredd, Release 5.2.0

See also guidelines on how to develop Apiary Reporter.

2.3.7 Using HTTP(S) Proxy

You can tell Dredd to use HTTP(S) proxy for:

• downloading API description documents (the positional argument api-description-document or the
--path option accepts also URL)

• reporting to Apiary

Dredd respects HTTP_PROXY, HTTPS_PROXY, NO_PROXY, http_proxy, https_proxy, and no_proxy en-
vironment variables. For more information on how those work see relevant section of the underlying library’s docu-
mentation.

Dredd intentionally does not support HTTP(S) proxies for testing. Proxy can deliberately modify requests and
responses or to behave in a very different way then the server under test. Testing over a proxy is, in the first place,
testing of the proxy itself. That makes the test results irrelevant (and hard to debug).

2.4 How-To Guides

In the following guides you can find tips and best practices how to cope with some common tasks. While searching
this page for particular keywords can give you quick results, reading the whole section should help you to learn some
of the Dredd’s core concepts and usual ways how to approach problems when testing with Dredd.

2.4.1 Isolation of HTTP Transactions

Requests in the API description usually aren’t sorted in order to comply with logical workflow of the tested application.
To get the best results from testing with Dredd, you should ensure each resource action (API Blueprint) or operation
(Swagger) is executed in isolated context. This can be easily achieved using hooks, where you can provide your own
setup and teardown code for each HTTP transaction.

You should understand that testing with Dredd is an analogy to unit tests of your application code. In unit tests, each
unit should be testable without any dependency on other units or previous tests.

Example

Common case is to solve a situation where we want to test deleting of a resource. Obviously, to test deleting of a
resource, we first need to create one. However, the order of HTTP transactions can be pretty much random in the API
description.

To solve the situation, it’s recommended to isolate the deletion test by hooks. Providing before hook, we can ensure
the database fixture will be present every time Dredd will try to send the request to delete a category item.

API Blueprint

FORMAT: 1A

Categories API

Categories [/categories]

(continues on next page)

2.4. How-To Guides 15

https://github.com/request/request#user-content-proxies
https://apiblueprint.org/
https://swagger.io/

Dredd, Release 5.2.0

(continued from previous page)

Create a Category [POST]
+ Response 201

Category [/category/{id}]
+ Parameters

+ id: 42 (required)

Delete a Category [DELETE]
+ Response 204

Category Items [/category/{id}/items]
+ Parameters

+ id: 42 (required)

Create an Item [POST]
+ Response 201

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.apib http://127.0.0.1:3000 --names
info: Categories > Create a category
info: Category > Delete a category
info: Category Items > Create an item

Now we can create a hooks.js file. The file will contain setup and teardown of the database fixture:

hooks = require('hooks');
db = require('./src/db');

beforeAll(function() {
db.cleanUp();

});

afterEach(function(transaction) {
db.cleanUp();

});

before('Category > Delete a Category', function() {
db.createCategory({id: 42});

});

before('Category Items > Create an Item', function() {
db.createCategory({id: 42});

});

Swagger

swagger: "2.0"
info:

version: "0.0.0"
title: Categories API
license:
name: MIT

(continues on next page)

16 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

host: www.example.com
basePath: /
schemes:

- http
consumes:

- application/json
produces:

- application/json
paths:

/categories:
post:

responses:
200:
description: ""

/category/{id}:
delete:

parameters:
- name: id
in: path
required: true
type: string
enum:
- "42"

responses:
200:
description: ""

/category/{id}/items:
post:

parameters:
- name: id
in: path
required: true
type: string
enum:
- "42"

responses:
200:
description: ""

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.yml http://127.0.0.1:3000 --names
info: /categories > POST > 200 > application/json
info: /category/{id} > DELETE > 200 > application/json
info: /category/{id}/items > POST > 200 > application/json

Now we can create a hooks.js file. The file will contain setup and teardown of the database fixture:

hooks = require('hooks');
db = require('./src/db');

beforeAll(function() {
db.cleanUp();

});

afterEach(function(transaction) {
db.cleanUp();

(continues on next page)

2.4. How-To Guides 17

Dredd, Release 5.2.0

(continued from previous page)

});

before('/category/{id}', function() {
db.createCategory({id: 42});

});

before('/category/{id}/items', function() {
db.createCategory({id: 42});

});

2.4.2 Testing API Workflows

Often you want to test a sequence of steps, a scenario, rather than just one request-response pair in isolation. Since
the API description formats are quite limited in their support of documenting scenarios, Dredd probably isn’t the best
tool to provide you with this kind of testing. There are some tricks though, which can help you to work around some
of the limitations.

Note: API Blueprint prepares direct support for testing and scenarios. Interested? Check out apiaryio/api-
blueprint#21!

To test various scenarios, you will want to write each of them into a separate API description document. To load them
during a single test run, use the --path option.

For workflows to work properly, you’ll also need to keep shared context between individual HTTP transactions. You
can use hooks in order to achieve that. See tips on how to pass data between transactions.

API Blueprint Example

Imagine we have a simple workflow described:

FORMAT: 1A

My Scenario

POST /login

+ Request (application/json)

{"username": "john", "password": "d0e"}

+ Response 200 (application/json)

{"token": "s3cr3t"}

GET /cars

+ Response 200 (application/json)

[
{"id": "42", "color": "red"}

]

(continues on next page)

18 Chapter 2. Contents

https://apiblueprint.org/
https://github.com/apiaryio/api-blueprint/issues/21
https://github.com/apiaryio/api-blueprint/issues/21

Dredd, Release 5.2.0

(continued from previous page)

PATCH /cars/{id}
+ Parameters

+ id: 42 (string, required)

+ Request (application/json)

{"color": "yellow"}

+ Response 200 (application/json)

{"id": 42, "color": "yellow"}

Writing Hooks

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.apib http://127.0.0.1:3000 --names
info: /login > POST
info: /cars > GET
info: /cars/{id} > PATCH

Now we can create a hooks.js file. The code of the file will use global stash variable to share data between
requests:

hooks = require('hooks');
db = require('./src/db');

stash = {}

// Stash the token we've got
after('/login > POST', function (transaction) {

stash.token = JSON.parse(transaction.real.body).token;
});

// Add the token to all HTTP transactions
beforeEach(function (transaction) {

if (stash.token) {
transaction.request.headers['X-Api-Key'] = stash.token

};
});

// Stash the car ID we've got
after('/cars > GET', function (transaction) {

stash.carId = JSON.parse(transaction.real.body).id;
});

// Replace car ID in request with the one we've stashed
before('/cars/{id} > PATCH', function (transaction) {

transaction.fullPath = transaction.fullPath.replace('42', stash.carId)
transaction.request.uri = transaction.fullPath

})

2.4. How-To Guides 19

Dredd, Release 5.2.0

Swagger Example

Imagine we have a simple workflow described:

swagger: "2.0"
info:

version: "0.0.0"
title: Categories API
license:
name: MIT

host: www.example.com
basePath: /
schemes:

- http
consumes:

- application/json
produces:

- application/json
paths:

/login:
post:

parameters:
- name: body
in: body
required: true
schema:
type: object
properties:
username:
type: string

password:
type: string

responses:
200:
description: ""
schema:

type: object
properties:
token:
type: string

/cars:
get:

responses:
200:
description: ""
schema:
type: array
items:
type: object
properties:
id:
type: string

color:
type: string

/cars/{id}:
patch:

parameters:
- name: id

(continues on next page)

20 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

in: path
required: true
type: string
enum:

- "42"
- name: body
in: body
required: true
schema:
type: object
properties:
color:
type: string

responses:
200:
description: ""
schema:

type: object
properties:
id:
type: string

color:
type: string

Writing Hooks

To have an idea where we can hook our arbitrary code, we should first ask Dredd to list all available transaction names:

$ dredd api-description.yml http://127.0.0.1:3000 --names
info: /login > POST > 200 > application/json
info: /cars > GET > 200 > application/json
info: /cars/{id} > PATCH > 200 > application/json

Now we can create a hooks.js file. The code of the file will use global stash variable to share data between
requests:

hooks = require('hooks');
db = require('./src/db');

stash = {}

// Stash the token we've got
after('/login > POST > 200 > application/json', function (transaction) {

stash.token = JSON.parse(transaction.real.body).token;
});

// Add the token to all HTTP transactions
beforeEach(function (transaction) {

if (stash.token) {
transaction.request.headers['X-Api-Key'] = stash.token

};
});

// Stash the car ID we've got
after('/cars > GET > 200 > application/json', function (transaction) {

(continues on next page)

2.4. How-To Guides 21

Dredd, Release 5.2.0

(continued from previous page)

stash.carId = JSON.parse(transaction.real.body).id;
});

// Replace car ID in request with the one we've stashed
before('/cars/{id} > PATCH > 200 > application/json', function (transaction) {

transaction.fullPath = transaction.fullPath.replace('42', stash.carId)
transaction.request.uri = transaction.fullPath

})

2.4.3 Making Dredd Validation Stricter

API Blueprint or Swagger files are usually created primarily with documentation in mind. But what’s enough for
documentation doesn’t need to be enough for testing.

That applies to both MSON (a language powering API Blueprint’s Attributes sections) and JSON Schema (a language
powering the Swagger format and API Blueprint’s Schema sections).

In following sections you can learn about how to deal with common scenarios.

Avoiding Additional Properties

If you describe a JSON body which has attributes name and size, the following payload will be considered as
correct:

{"name": "Sparta", "size": 300, "luck": false}

It’s because in both MSON and JSON Schema additional properties are not forbidden by default.

• In API Blueprint’s Attributes sections you can mark your object with `fixed-type <https://apiblueprint.org/
documentation/mson/specification.html#353-type-attribute>‘__, which doesn’t allow additional properties.

• In API Blueprint’s Schema sections and in Swagger you can use additionalProperties: false
(docs) on the objects.

Requiring Properties

If you describe a JSON body which has attributes name and size, the following payload will be considered as
correct:

{"name": "Sparta"}

It’s because properties are optional by default in both MSON and JSON Schema and you need to explicitly specify
them as required.

• In API Blueprint’s Attributes section, you can use `required <https://apiblueprint.org/documentation/mson/
specification.html#353-type-attribute>‘__.

• In API Blueprint’s Schema sections and in Swagger you can use required (docs), where you list the required
properties. (Note this is true only for the Draft v4 JSON Schema, in older versions the required functionality
was done differently.)

22 Chapter 2. Contents

https://apiblueprint.org/documentation/mson/specification.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
http://json-schema.org/
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://apiblueprint.org/documentation/mson/specification.html
http://json-schema.org/
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/object.html#properties
https://apiblueprint.org/documentation/mson/specification.html
http://json-schema.org/
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/object.html#required-properties
https://tools.ietf.org/html/draft-zyp-json-schema-04

Dredd, Release 5.2.0

Validating Structure of Array Items

If you describe an array of items, where each of the items should have a name property, the following payload will be
considered as correct:

[{"name": "Sparta"}, {"title": "Athens"}, "Thebes"]

That’s because in MSON, the default behavior is that you are specifying what may appear in the array.

• In API Blueprint’s Attributes sections you can mark your array with fixed-type (docs), which doesn’t allow
array items of a different structure then specified.

• In API Blueprint’s Schema sections and in Swagger make sure to learn about how validation of arrays exactly
works.

Validating Specific Values

If you describe a JSON body which has attributes name and size, the following payload will be considered as
correct:

{"name": "Sparta", "size": 42}

If the size should be always equal to 300, you need to specify the fact in your API description.

• In API Blueprint’s Attributes sections you can mark your property with fixed (docs), which turns the sample
value into a required value. You can also use enum (docs) to provide a set of possible values.

• In API Blueprint’s Schema sections and in Swagger you can use enum (docs) with one or more possible values.

2.4.4 Integrating Dredd with Your Test Suite

Generally, if you want to add Dredd to your existing test suite, you can just save Dredd configuration in the dredd.
yml file and add call for dredd command to your task runner.

There are also some packages which make the integration a piece of cake:

• grunt-dredd

• dredd-rack

• meteor-dredd

To find more, search for dredd in your favorite language’s package index.

2.4.5 Continuous Integration

It’s a good practice to make Dredd part of your continuous integration workflow. Only that way you can ensure that
application code you’ll produce won’t break the contract you provide in your API documentation.

Dredd’s interactive configuration wizard, dredd init, can help you with setting up dredd.yml configuration file
and with modifying or generating CI configuration files for Travis CI or CircleCI.

If you prefer to add Dredd yourself or you look for inspiration on how to add Dredd to other continuous integration
services, see examples below. When testing in CI, always pin your Dredd version to a specific number and upgrade to
newer releases manually.

2.4. How-To Guides 23

https://apiblueprint.org/documentation/mson/specification.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/array.html
https://apiblueprint.org/documentation/specification.html#def-attributes-section
https://apiblueprint.org/documentation/mson/specification.html#353-type-attribute
https://apiblueprint.org/documentation/mson/specification.html#212-structure-types
https://apiblueprint.org/documentation/specification.html#def-schema-section
https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values
https://github.com/mfgea/grunt-dredd
https://github.com/gonzalo-bulnes/dredd-rack
https://github.com/storeness/meteor-dredd
https://travis-ci.org/
https://circleci.com/

Dredd, Release 5.2.0

.circleci/config.yml Configuration File for CircleCI

version: 2
jobs:

build:
docker:

- image: circleci/node:latest
steps:

- checkout
- run: npm install dredd@x.x.x --no-optional --global
- run: dredd apiary.apib http://127.0.0.1:3000

.travis.yml Configuration File for Travis CI

before_install:
- npm install dredd@x.x.x --no-optional --global

before_script:
- dredd apiary.apib http://127.0.0.1:3000

2.4.6 Authenticated APIs

Dredd supports all common authentication schemes:

• Basic access authentication

• Digest access authentication

• OAuth (any version)

• CSRF tokens

• . . .

Use user setting in your configuration file or the --user option to provide HTTP basic authentication:

--user=user:password

Most of the authentication schemes use HTTP header for carrying the authentication data. If you don’t want to add
authentication HTTP header to every request in the API description, you can instruct Dredd to do it for you by the
--header option:

--header="Authorization: Basic YmVuOnBhc3M="

2.4.7 Sending Multipart Requests

FORMAT: 1A

Testing 'multipart/form-data' Request API

POST /data

+ Request (multipart/form-data; boundary=CUSTOM-BOUNDARY)

+ Body

(continues on next page)

24 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

--CUSTOM-BOUNDARY
Content-Disposition: form-data; name="text"
Content-Type: text/plain

test equals to 42
--CUSTOM-BOUNDARY
Content-Disposition: form-data; name="json"
Content-Type: application/json

{"test": 42}

--CUSTOM-BOUNDARY--

+ Response 200 (application/json; charset=utf-8)

+ Body

{"test": "OK"}

swagger: '2.0'
info:

title: "Testing 'multipart/form-data' Request API"
version: '1.0'

consumes:
- multipart/form-data; boundary=CUSTOM-BOUNDARY

produces:
- application/json; charset=utf-8

paths:
'/data':
post:

parameters:
- name: text
in: formData
type: string
required: true
x-example: "test equals to 42"

- name: json
in: formData
type: string
required: true
x-example: '{"test": 42}'

responses:
200:
description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

2.4.8 Sending Form Data

FORMAT: 1A

Testing 'application/x-www-form-urlencoded' Request API

(continues on next page)

2.4. How-To Guides 25

Dredd, Release 5.2.0

(continued from previous page)

POST /data

+ Request (application/x-www-form-urlencoded)

+ Body

test=42

+ Response 200 (application/json; charset=utf-8)

+ Body

{"test": "OK"}

swagger: '2.0'
info:

title: "Testing 'application/x-www-form-urlencoded' Request API"
version: '1.0'

consumes:
- application/x-www-form-urlencoded

produces:
- application/json; charset=utf-8

paths:
'/data':
post:

parameters:
- name: test
in: formData
type: string
required: true
x-example: "42"

responses:
200:
description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

2.4.9 Working with Images and other Binary Bodies

The API description formats generally do not provide a way to describe binary content. The easiest solution is to
describe only the media type, to leave out the body, and to handle the rest using Hook Scripts.

Binary Request Body

API Blueprint

FORMAT: 1A

Images API

(continues on next page)

26 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

Resource [/image.png]

Send an Image [PUT]

+ Request (image/png)

+ Response 200 (application/json; charset=utf-8)
+ Body

{"test": "OK"}

Swagger

swagger: "2.0"
info:

version: "1.0"
title: Images API

schemes:
- http

consumes:
- image/png

produces:
- application/json

paths:
/image.png:
put:

parameters:
- name: binary
in: body
required: true
schema:

type: string
format: binary

responses:
200:
description: 'Test OK'
examples:
application/json; charset=utf-8:
test: 'OK'

Hooks

In hooks, you can populate the request body with real binary data. The data must be in a form of a Base64-encoded
string.

const hooks = require('hooks');
const fs = require('fs');
const path = require('path');

hooks.beforeEach((transaction, done) => {
const buffer = fs.readFileSync(path.join(__dirname, '../image.png'));
transaction.request.body = buffer.toString('base64');

(continues on next page)

2.4. How-To Guides 27

https://en.wikipedia.org/wiki/Base64

Dredd, Release 5.2.0

(continued from previous page)

transaction.request.bodyEncoding = 'base64';
done();

});

Binary Response Body

API Blueprint

FORMAT: 1A

Images API

Resource [/image.png]

Retrieve Representation [GET]

+ Response 200 (image/png)

Swagger

swagger: "2.0"
info:

version: "1.0"
title: Images API

schemes:
- http

produces:
- image/png

paths:
/image.png:
get:

responses:
200:
description: Representation
examples:

"image/png": ""

Note: Do not use the explicit binary or bytes formats with response bodies, as Dredd is not able to properly work
with those (fury-adapter-swagger#193).

Hooks

In hooks, you can either assert the body:

const hooks = require('hooks');
const fs = require('fs');
const path = require('path');

(continues on next page)

28 Chapter 2. Contents

https://github.com/apiaryio/fury-adapter-swagger/issues/193

Dredd, Release 5.2.0

(continued from previous page)

hooks.beforeEachValidation((transaction, done) => {
const bytes = fs.readFileSync(path.join(__dirname, '../image.png'));
transaction.expected.body = bytes.toString('base64');
done();

});

Or you can ignore it:

const hooks = require('hooks');

hooks.beforeEachValidation((transaction, done) => {
transaction.real.body = '';
done();

});

2.4.10 Multiple Requests and Responses

Note: For details on this topic see also How Dredd Works With HTTP Transactions.

API Blueprint

To test multiple requests and responses within one action in Dredd, you need to cluster them into pairs:

FORMAT: 1A

My API

Resource [/resource/{id}]

+ Parameters
+ id: 42 (required)

Update Resource [PATCH]

+ Request (application/json)

{"color": "yellow"}

+ Response 200 (application/json)

{"color": "yellow", "id": 1}

+ Request Edge Case (application/json)

{"weight": 1}

+ Response 400 (application/vnd.error+json)

{"message": "Validation failed"}

2.4. How-To Guides 29

Dredd, Release 5.2.0

Dredd will detect two HTTP transaction examples and will compile following transaction names:

$ dredd api-description.apib http://127.0.0.1 --names
info: Beginning Dredd testing...
info: Resource > Update Resource > Example 1
info: Resource > Update Resource > Example 2

In case you need to perform particular request with different URI parameters and standard inheritance of URI param-
eters isn’t working for you, try modifying transaction before its execution in hooks.

Swagger

When using Swagger format, by default Dredd tests only responses with 2xx status codes. Responses with other
codes are marked as skipped and can be activated in hooks:

var hooks = require('hooks');

hooks.before('/resource > GET > 500 > application/json', function (transaction, done)
→˓{
transaction.skip = false;
done();

});

2.4.11 Using Apiary Reporter and Apiary Tests

Command-line output of complex HTTP responses and expectations can be hard to read. To tackle the problem, you
can use Dredd to send test reports to Apiary. Apiary provides a comfortable interface for browsing complex test
reports:

$ dredd apiary.apib http://127.0.0.1 --reporter=apiary
warn: Apiary API Key or API Project Subdomain were not provided. Configure Dredd to
→˓be able to save test reports alongside your Apiary API project: http://dredd.
→˓readthedocs.io/en/latest/how-to-guides/#using-apiary-reporter-and-apiary-tests
info: Beginning Dredd testing...
pass: DELETE /honey duration: 884ms
complete: 1 passing, 0 failing, 0 errors, 0 skipped, 1 total
complete: Tests took 1631ms
complete: See results in Apiary at: https://app.apiary.io/public/tests/run/74d20a82-
→˓55c5-49bb-aac9-a3a5a7450f06

Saving Test Reports under Your Account in Apiary

As you can see on the screenshot, the test reports are anonymous by default and will expire after some time. However,
if you provide Apiary credentials, your test reports will appear on the Tests page of your API Project. This is great
especially for introspection of test reports from Continuous Integration.

To get and setup credentials, just follow the tutorial in Apiary:

As you can see, the parameters go like this:

$ dredd -c apiaryApiKey:<Apiary API Key> -c apiaryApiName:<API Project Subdomain>

In addition to using parameters and dredd.yml, you can also use environment variables:

• APIARY_API_KEY=<Apiary API Key> - Alternative way to pass credentials to Apiary Reporter.

30 Chapter 2. Contents

https://swagger.io/
https://apiary.io/

Dredd, Release 5.2.0

Fig. 1: Apiary Tests

2.4. How-To Guides 31

Dredd, Release 5.2.0

Fig. 2: Apiary Tests Tutorial

• APIARY_API_NAME=<API Project Subdomain> - Alternative way to pass credentials to Apiary Re-
porter.

When sending test reports to Apiary, Dredd inspects the environment where it was executed and sends some infor-
mation about it alongside test results. Those are used mainly for detection whether the environment is Continuous
Integration and also, they help you to identify individual test reports on the Tests page. You can use the following
variables to tell Dredd what to send:

• agent (string) - DREDD_AGENT or current user in the OS

• hostname (string) - DREDD_HOSTNAME or hostname of the OS

• CI (boolean) - looks for TRAVIS, CIRCLE, CI, DRONE, BUILD_ID, . . .

2.4.12 Example Values for Request Parameters

While example values are natural part of the API Blueprint format, the Swagger specification allows them only for
body request parameters (schema.example).

However, Dredd needs to know what values to use when testing described API, so it supports x-example vendor
extension property to overcome the Swagger limitation:

...
paths:

/cars:
get:

parameters:

(continues on next page)

32 Chapter 2. Contents

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-vendorextensions
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#user-content-vendorextensions

Dredd, Release 5.2.0

(continued from previous page)

- name: limit
in: query
type: number
x-example: 42

The x-example property is respected for all kinds of request parameters except of body parameters, where native
schema.example should be used.

2.4.13 Removing Sensitive Data from Test Reports

Sometimes your API sends back sensitive information you don’t want to get disclosed in Apiary Tests or in your CI
log. In that case you can use Hooks to do sanitation. Before diving into examples below, do not forget to consider
following:

• Be sure to read section about security first.

• Only the transaction.test (docs) object will make it to reporters. You don’t have to care about sanitation
of the rest of the transaction (docs) object.

• The transaction.test.message and all the transaction.test.results.body.results.
rawData.*.message properties contain validation error messages. While they’re very useful for learning
about what’s wrong on command line, they can contain direct mentions of header names, header values, body
properties, body structure, body values, etc., thus it’s recommended their contents are completely removed to
prevent unintended leaks of sensitive information.

• Without the transaction.test.results.body.results.rawData property Apiary reporter won’t
be able to render green/red difference between payloads.

• You can use Ultimate ‘afterEach’ Guard to make sure you won’t leak any sensitive data by mistake.

• If your hooks crash, Dredd will send an error to reporters, alongside with current contents of the
transaction.test (docs) object. See the Sanitation of Test Data of Transaction With Secured Erroring
Hooks example to learn how to prevent this.

Sanitation of the Entire Request Body

• API Blueprint

• Hooks

Sanitation of the Entire Response Body

• API Blueprint

• Hooks

Sanitation of a Request Body Attribute

• API Blueprint

• Hooks

2.4. How-To Guides 33

https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/entire-request-body.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/entire-request-body.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/entire-response-body.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/entire-response-body.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/request-body-attribute.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/request-body-attribute.js

Dredd, Release 5.2.0

Sanitation of a Response Body Attribute

• API Blueprint

• Hooks

Sanitation of Plain Text Response Body by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Request Headers

• API Blueprint

• Hooks

Sanitation of Response Headers

• API Blueprint

• Hooks

Sanitation of URI Parameters by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Any Content by Pattern Matching

• API Blueprint

• Hooks

Sanitation of Test Data of Passing Transaction

• API Blueprint

• Hooks

Sanitation of Test Data When Transaction Is Marked as Failed in ‘before’ Hook

• API Blueprint

• Hooks

Sanitation of Test Data When Transaction Is Marked as Failed in ‘after’ Hook

• API Blueprint

• Hooks

34 Chapter 2. Contents

https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/response-body-attribute.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/response-body-attribute.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/plain-text-response-body.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/plain-text-response-body.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/request-headers.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/request-headers.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/response-headers.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/response-headers.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/uri-parameters.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/uri-parameters.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/any-content-pattern-matching.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/any-content-pattern-matching.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-passing.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-passing.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-failed-before.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-failed-before.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-failed-after.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-failed-after.js

Dredd, Release 5.2.0

Sanitation of Test Data When Transaction Is Marked as Skipped

• API Blueprint

• Hooks

Ultimate ‘afterEach’ Guard Using Pattern Matching

You can use this guard to make sure you won’t leak any sensitive data by mistake.

• API Blueprint

• Hooks

Sanitation of Test Data of Transaction With Secured Erroring Hooks

If your hooks crash, Dredd will send an error to reporters, alongside with current contents of the transaction.
test (docs) object. If you want to prevent this, you need to add try/catch to your hooks, sanitize the test object,
and gracefully fail the transaction.

• API Blueprint

• Hooks

2.5 Command-line Interface

2.5.1 Usage

$ dredd '<api-description-document>' '<api-location>' [OPTIONS]

Example:

$ dredd ./apiary.md http://127.0.0.1:3000

2.5.2 Arguments

api-description-document
URL or path to the API description document (API Blueprint, Swagger). Sample values: ./
api-blueprint.apib, ./swagger.yml, ./swagger.json, http://example.com/
api-blueprint.apib

api-location
URL, the root address of your API. Sample values: http://127.0.0.1:3000, http://api.
example.com

2.5.3 Configuration File

If you use Dredd repeatedly within a single project, the preferred way to run it is to first persist your configuration in
a dredd.yml file. With the file in place you can then run Dredd every time simply just by:

2.5. Command-line Interface 35

https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-skipped.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-marked-skipped.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/any-content-guard-pattern-matching.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/any-content-guard-pattern-matching.js
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-secured-erroring-hooks.apib
https://github.com/apiaryio/dredd/blob/master/test/fixtures/sanitation/transaction-secured-erroring-hooks.js

Dredd, Release 5.2.0

$ dredd

Dredd offers interactive wizard to setup your dredd.yml file:

$ dredd init

See below how sample configuration file could look like. The structure is the same as of the Dredd Class configuration
object.

reporter: apiary
custom:

- "apiaryApiKey:yourSecretApiaryAPiKey"
- "apiaryApiName:apiName"

dry-run: null
hookfiles: "dreddhooks.js"
sandbox: false
server: rails server
server-wait: 3
init: false
names: false
only: []
output: []
header: []
sorted: false
user: null
inline-errors: false
details: false
method: []
level: info
timestamp: false
silent: false
path: []
blueprint: api-description.apib
endpoint: "http://127.0.0.1:3000"

Note: Do not get confused by Dredd using a keyword blueprint also for paths to Swagger documents. This is for
historical reasons and will be changed in the future.

2.5.4 CLI Options Reference

Remember you can always list all available arguments by dredd --help.

--color, -c
Determines whether console output should include colors. Default value: true

--config
Path to dredd.yml config file. Default value: "./dredd.yml"

--custom, -j
Pass custom key-value configuration data delimited by a colon. E.g. -j ‘a:b’ Default value: []

--details, -d
Determines whether request/response details are included in passing tests. Default value: false

36 Chapter 2. Contents

Dredd, Release 5.2.0

--dry-run, -y
Do not run any real HTTP transaction, only parse API description document and compile transactions. Default
value: null

--header, -h
Extra header to include in every request. This option can be used multiple times to add multiple headers. Default
value: []

--help
Show usage information.

--hookfiles, -f
Specifies a pattern to match files with before/after hooks for running tests. Files are executed in alphabetical
order. Default value: null

--hooks-worker-after-connect-wait
How long to wait between connecting to hooks worker and start of testing. [ms] Default value: 100

--hooks-worker-connect-retry
How long to wait between attempts to connect to hooks worker. [ms] Default value: 500

--hooks-worker-connect-timeout
Total hook worker connection timeout (includes all retries). [ms] Default value: 1500

--hooks-worker-handler-host
Host of the hook worker. Default value: "127.0.0.1"

--hooks-worker-handler-port
Port of the hook worker. Default value: 61321

--hooks-worker-term-retry
How long to wait between attempts to terminate hooks worker. [ms] Default value: 500

--hooks-worker-term-timeout
How long to wait between trying to terminate hooks worker and killing it. [ms] Default value: 5000

--hooks-worker-timeout
How long to wait for hooks worker to start. [ms] Default value: 5000

--init, -i
Run interactive configuration. Creates dredd.yml configuration file. Default value: false

--inline-errors, -e
Determines whether failures and errors are displayed as they occur (true) or aggregated and displayed at the end
(false). Default value: false

--language, -a
Language of hookfiles. Possible options are: nodejs, ruby, python, php, perl, go, rust Default value: "nodejs"

--level, -l
The level of logging to output. Options: silly, debug, verbose, info, warn, error. Default value: "info"

--method, -m
Restrict tests to a particular HTTP method (GET, PUT, POST, DELETE, PATCH). This option can be used
multiple times to allow multiple methods. Default value: []

--names, -n
Only list names of requests (for use in a hookfile). No requests are made. Default value: false

--only, -x
Run only specified transaction name. Can be used multiple times Default value: []

2.5. Command-line Interface 37

Dredd, Release 5.2.0

--output, -o
Specifies output file when using additional file-based reporter. This option can be used multiple times if multiple
file-based reporters are used. Default value: []

--path, -p
Additional API description paths or URLs. Can be used multiple times with glob pattern for paths. Default
value: []

--reporter, -r
Output additional report format. This option can be used multiple times to add multiple reporters. Options:
xunit, nyan, dot, markdown, html, apiary. Default value: []

--sandbox, -b
Load and run non trusted hooks code in sandboxed container Default value: false

--server, -g
Run API backend server command and kill it after Dredd execution. E.g. rails server Default value: null

--server-wait
Set delay time in seconds between running a server and test run. Default value: 3

--silent, -q
Silences commandline output. Default value: false

--sorted, -s
Sorts requests in a sensible way so that objects are not modified before they are created. Order: CONNECT,
OPTIONS, POST, GET, HEAD, PUT, PATCH, DELETE, TRACE. Default value: false

--timestamp, -t
Determines whether console output should include timestamps. Default value: false

--user, -u
Basic Auth credentials in the form username:password. Default value: null

--version
Show version number.

2.6 Using Dredd as a JavaScript Library

Dredd can be used directly from your JavaScript code. First, import and configure Dredd:

var Dredd = require('dredd');
var dredd = new Dredd(configuration);

Then you need to run the Dredd testing:

dredd.run(function (err, stats) {
// err is present if anything went wrong
// otherwise stats is an object with useful statistics

});

As you can see, dredd.run is a function receiving another function as a callback. Received arguments are err
(error if any) and stats (testing statistics) with numbers accumulated throughout the Dredd run.

38 Chapter 2. Contents

Dredd, Release 5.2.0

2.6.1 Configuration Object for Dredd Class

Let’s have a look at an example configuration first. (Please also see the CLI options to read detailed information about
the options attributes).

{
server: 'http://127.0.0.1:3000/api', // your URL to API endpoint the tests will run

→˓against
options: {

'path': [], // Required Array if Strings; filepaths to API description
→˓documents, can use glob wildcards

'dry-run': false, // Boolean, do not run any real HTTP transaction
'names': false, // Boolean, Print Transaction names and finish, similar to dry-

→˓run

'level': 'info', // String, log-level (info, silly, debug, verbose, ...)
'silent': false, // Boolean, Silences all logging output

'only': [], // Array of Strings, run only transaction that match these names

'header': [], // Array of Strings, these strings are then added as headers
→˓(key:value) to every transaction

'user': null, // String, Basic Auth credentials in the form username:password

'hookfiles': [], // Array of Strings, filepaths to files containing hooks (can
→˓use glob wildcards)

'reporter': ['dot', 'html'], // Array of possible reporters, see folder src/
→˓reporters

'output': [], // Array of Strings, filepaths to files used for output of file-
→˓based reporters

'inline-errors': false, // Boolean, If failures/errors are display immediately in
→˓Dredd run

'color': true,
'timestamp': false

},

'emitter': EventEmitterInstance, // optional - listen to test progress, your own
→˓instance of EventEmitter

'hooksData': {
'pathToHook' : '...'

}

'data': {
'path/to/file': '...'

}
}

2.6. Using Dredd as a JavaScript Library 39

Dredd, Release 5.2.0

2.6.2 Properties

server (string)

Your choice of the API endpoint to test the API description against. It must be a valid URL (you can specify port,
path and http or https protocol).

options (object)

Because options.path array is required, you must specify options. You’ll end with errors otherwise.

options.path (object)

Required Array of filepaths to API description documents. Or it can also be an URL to download the API description
from internet via http(s) protocol.

data (object)

Optional Object with keys as filename and value as blueprint-code.

Useful when you don’t want to operate on top of filesystem and want to pass code of your API description as a string.
You get the point.

hooksData (object)

Optional Object with keys as filename and strings with JavaScript hooks code.

Load hooks file code from string. Must be used together with sandboxed mode.

{
'data': {
'./api-description.apib': 'FORMAT: 1A\n\n# My String API\n\nGET /url\n+ Response

→˓200\n\n Some content',
'./directory/another-api-description.apib': '# Another API\n\n## Group

→˓Machines\n\n### Machine [/machine]\n\n#### Read machine [GET]\n\n...'
}

}

2.7 Hook Scripts

Similar to any other testing framework, Dredd supports executing code around each test step. Hooks are code blocks
executed in defined stage of execution lifecycle. In the hooks code you have an access to compiled HTTP transaction
object which you can modify.

Hooks are usually used for:

• loading db fixtures

• cleanup after test step or steps

• handling authentication and sessions

40 Chapter 2. Contents

Dredd, Release 5.2.0

• passing data between transactions (saving state from responses to stash)

• modifying request generated from API description

• changing generated expectations

• setting custom expectations

• debugging via logging stuff

2.7.1 Languages

You can interact with your server implementation in following languages:

• Go

• JavaScript (Sandboxed)

• Node.js

• Perl

• PHP

• Python

• Ruby

• Rust

Dredd doesn’t speak your language? It’s very easy to write support for your language. Your contribution is more than
welcome!

2.7.2 Using Hook Files

To use a hook file with Dredd, use the --hookfiles flag in the command line. You can use this flag multiple times
or use a glob expression for loading multiple hook files. Dredd executes hook files in alphabetical order.

Example:

$ dredd single-get.apib http://machines.apiary.io --hookfiles=*_hooks.*

2.7.3 Getting Transaction Names

For addressing specific test steps is used the transaction names of the compiled HTTP transactions (actions) from the
API description.

In order to retrieve transaction names please run Dredd with the --names option last and it will print all available
names of transactions.

For example, given an API Blueprint file api-description.apib as following:

FORMAT: 1A

Machines API

Group Machines

Machines collection [/machines]

(continues on next page)

2.7. Hook Scripts 41

https://www.npmjs.com/package/glob

Dredd, Release 5.2.0

(continued from previous page)

Get Machines [GET]

- Response 200 (application/json; charset=utf-8)

[{"type": "bulldozer", "name": "willy"}]

Run this command to retrieve all transaction names:

$ dredd single-get.apib http://machines.apiary.io --names
info: Machines > Machines collection > Get Machines

The Machines > Machines collection > Get Machines is the name of a transaction which you can
use in your hooks. The same approach works also for Swagger documents.

2.7.4 Types of Hooks

Dredd supports following types of hooks:

• beforeAll called at the beginning of the whole test run

• beforeEach called before each HTTP transaction

• before called before some specific HTTP transaction

• beforeEachValidation called before each HTTP transaction is validated

• beforeValidation called before some specific HTTP transaction is validated

• after called after some specific HTTP transaction regardless its result

• afterEach called after each HTTP transaction

• afterAll called after whole test run

Refer to Dredd execution lifecycle when is each hook executed.

Transaction Object Structure

The main purpose of hooks is to work with the transaction object they get as the first argument, in order to inspect or
modify Dredd’s behavior. See transaction object reference to learn more about its contents.

2.8 Writing Dredd Hooks In Go

GitHub repository

Go hooks are using Dredd’s hooks handler socket interface. For using Go hooks in Dredd you have to have Dredd
already installed. The Go library is called goodman.

2.8.1 Installation

$ go get github.com/snikch/goodman/cmd/goodman

42 Chapter 2. Contents

https://godoc.org/github.com/snikch/goodman
https://github.com/snikch/goodman

Dredd, Release 5.2.0

2.8.2 Usage

Using Dredd with Go is slightly different to other languages, as a binary needs to be compiled for execution. The
–hookfiles flags should point to compiled hook binaries. See below for an example hooks.go file to get an idea of what
the source file behind the go binary would look like.

$ dredd apiary.apib http://127.0.0.1:3000 --server=./go-lang-web-server-to-test --
→˓language=go --hookfiles=./hook-file-binary

2.8.3 API Reference

In order to get a general idea of how the Go Hooks work, the main executable from the package
$GOPATH/bin/goodman is an HTTP Server that Dredd communicates with and an RPC client. Each hookfile then
acts as a corresponding RPC server. So when Dredd notifies the Hooks server what transaction event is occuring the
hooks server will execute all registered hooks on each of the hookfiles RPC servers.

You’ll need to know a few things about the Server type in the hooks package.

1. The hooks.Server type is how you can define event callbacks such as beforeEach, afterAll, etc.

2. To get a hooks.Server struct you must do the following

package main

import (
"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))

// Define all your event callbacks here

// server.Serve() will block and allow the goodman server to run your defined
// event callbacks
server.Serve()
// You must close the listener at end of main()
defer server.Listener.Close()

}

2. Callbacks receive a Transaction instance, or an array of them

3. A Server will run your Runner and handle receiving events on the dredd socket.

Runner Callback Events

The Runner type has the following callback methods.

1. BeforeEach, BeforeEachValidation, AfterEach

• accepts a function as a first argument passing a Transaction object as a first argument

2. Before, BeforeValidation, After

• accepts transaction name as a first argument

2.8. Writing Dredd Hooks In Go 43

Dredd, Release 5.2.0

• accepts a function as a second argument passing a Transaction object as a first argument of it

3. BeforeAll, AfterAll

• accepts a function as a first argument passing a Slice of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when each hook callback is executed.

Using the Go API

Example usage of all methods.

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.BeforeAll(func(t []*trans.Transaction) {

fmt.Println("before all modification")
})
h.BeforeEach(func(t *trans.Transaction) {

fmt.Println("before each modification")
})
h.Before("/message > GET", func(t *trans.Transaction) {

fmt.Println("before modification")
})
h.BeforeEachValidation(func(t *trans.Transaction) {

fmt.Println("before each validation modification")
})
h.BeforeValidation("/message > GET", func(t *trans.Transaction) {

fmt.Println("before validation modification")
})
h.After("/message > GET", func(t *trans.Transaction) {

fmt.Println("after modification")
})
h.AfterEach(func(t *trans.Transaction) {

fmt.Println("after each modification")
})
h.AfterAll(func(t []*trans.Transaction) {

fmt.Println("after all modification")
})
server.Serve()
defer server.Listener.Close()

}

2.8.4 Examples

How to Skip Tests

Any test step can be skipped by setting the Skip property of the Transaction instance to true.

44 Chapter 2. Contents

Dredd, Release 5.2.0

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.

→˓Transaction) {
t.Skip = true

})
server.Serve()
defer server.Listener.Close()

}

Failing Tests Programmatically

You can fail any step by setting the Fail field of the Transaction instance to true or any string with a descriptive
message.

package main

import (
"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.

→˓Transaction) {
t.Fail = true

})
h.Before("Machines > Machines collection > Post Machines", func(t *trans.

→˓Transaction) {
t.Fail = "POST is broken"

})
server.Serve()
defer server.Listener.Close()

}

Modifying the Request Body Prior to Execution

package main

import (

(continues on next page)

2.8. Writing Dredd Hooks In Go 45

Dredd, Release 5.2.0

(continued from previous page)

"fmt"

"github.com/snikch/goodman/hooks"
trans "github.com/snikch/goodman/transaction"

)

func main() {
h := hooks.NewHooks()
server := hooks.NewServer(hooks.NewHooksRunner(h))
h.Before("Machines > Machines collection > Get Machines", func(t *trans.

→˓Transaction) {
body := map[string]interface{}{}
json.Unmarshal([]byte(t.Request.Body), &body)

body["someKey"] = "new value"

newBody, _ := json.Marshal(body)
t.Request.body = string(newBody)

})
server.Serve()
defer server.Listener.Close()

}

2.9 JavaScript Hooks In Sandbox Mode

2.9.1 Usage

$ dredd apiary.apib http://127.0.0.1:3000 --sandbox --hookfiles=./hooks*.js

Dredd JS API Option

Sandbox mode can be enabled in Dredd JavaScript API

var Dredd = require('dredd');
var configuration = {

server: "http://127.0.0.1",
options: {
path: "./test/fixtures/single-get.apib",
sandbox: true,
hookfiles: ['./test/fixtures/sandboxed-hook.js']

}
};
var dredd = new Dredd(configuration);

dredd.run(function (error, stats) {
// your callback code here

});

46 Chapter 2. Contents

Dredd, Release 5.2.0

2.9.2 Sandboxed JavaScript Hooks API reference

The Sandbox mode can be used for running untrusted hook code. It can be activated with a CLI switch or with the JS
API. In each hook file you can use following functions:

beforeAll(function)

beforeEach(function)

before(transactionName, function)

beforeEachValidation(function)

beforeValidation(transactionName, function)

after(transactionName, function)

afterEach(function)

afterAll(function)

log(string)

• A Transaction Object is passed as a first argument to the hook function for before, after, beforeEach,
afterEach, beforeValidation and beforeEachValidation.

• An array of Transaction Objects is passed to beforeAll and afterAll.

• Sandboxed hooks don’t have an asynchronous API. Loading and running of each hook happens in it’s own
isolated, sandboxed context.

• Hook maximum execution time is 500ms.

• Memory limit is 1M

• You can access global stash object variables in each separate hook file. stash is passed between contexts of
each hook function execution. This stash object purpose is to allow transportation of user defined values of
type String, Number, Boolean, null or Object and Array (no Functions or callbacks).

• Hook code is evaluated with "use strict" directive - details at MDN

• Sandboxed mode does not support hooks written in CoffeScript language

• You can print to console (via Dredd’s logger) with log function, taking into account the used logging level
--level option (levels: error > warn > hook > info)

Request Stash in Sandbox Mode

after('First action', function (transaction) {
stash['id'] = JSON.parse(transaction.real.response);

});

before('Second action', function (transaction) {
newBody = JSON.parse(transaction.request.body);
newBody['id'] = stash['id'];
transaction.request.body = JSON.stringify(newBody);

});

2.9. JavaScript Hooks In Sandbox Mode 47

https://mdn.io/use+strict

Dredd, Release 5.2.0

Hook function context is not shared

When sandboxed, hook function context is not shared between even the same step hook functions.

Note: This is wrong. It throws an exception.

var myObject = {};

after('First action', function (transaction) {
myObject['id'] = JSON.parse(transaction.real.response);

});

before('Second action', function (transaction) {
newBody = JSON.parse(transaction.request.body);
newBody['id'] = myObject['id'];
transaction.request.body = JSON.stringify(newBody);

});

This will explode with: ReferenceError: myObject is not defined

2.10 Writing Dredd Hooks In Node.js

2.10.1 Usage

$ dredd apiary.apib http://127.0.0.1:30000 --hookfiles=./hooks*.js

2.10.2 API Reference

• For before, after, beforeValidation, beforeEach, afterEach and
beforeEachValidation a Transaction Object is passed as the first argument to the hook function.

• An array of Transaction Objects is passed to beforeAll and afterAll.

• The second argument is an optional callback function for async execution.

• Any modifications on the transaction object are propagated to the actual HTTP transactions.

• You can use hooks.log function inside the hook function to print yours debug messages and other informa-
tion.

• configuration (docs) object is populated on the hooks object

Sync API

var hooks = require('hooks');

hooks.beforeAll(function (transactions) {
hooks.log('before all');

});

hooks.beforeEach(function (transaction) {

(continues on next page)

48 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

hooks.log('before each');
});

hooks.before("Machines > Machines collection > Get Machines", function (transaction) {
hooks.log("before");

});

hooks.beforeEachValidation(function (transaction) {
hooks.log('before each validation');

});

hooks.beforeValidation("Machines > Machines collection > Get Machines", function
→˓(transaction) {
hooks.log("before validation");

});

hooks.after("Machines > Machines collection > Get Machines", function (transaction) {
hooks.log("after");

});

hooks.afterEach(function (transaction) {
hooks.log('after each');

});

hooks.afterAll(function (transactions) {
hooks.log('after all');

})

Async API

When the callback is used in the hook function, callbacks can handle asynchronous function calls.

var hooks = require('hooks');

hooks.beforeAll(function (transactions, done) {
hooks.log('before all');
done();

});

hooks.beforeEach(function (transaction, done) {
hooks.log('before each');
done();

});

hooks.before("Machines > Machines collection > Get Machines", function (transaction,
→˓done) {
hooks.log("before");
done();

});

hooks.beforeEachValidation(function (transaction, done) {
hooks.log('before each validation');
done();

});

(continues on next page)

2.10. Writing Dredd Hooks In Node.js 49

Dredd, Release 5.2.0

(continued from previous page)

hooks.beforeValidation("Machines > Machines collection > Get Machines", function
→˓(transaction, done) {
hooks.log("before validation");
done();

});

hooks.after("Machines > Machines collection > Get Machines", function (transaction,
→˓done) {
hooks.log("after");
done();

});

hooks.afterEach(function (transaction, done) {
hooks.log('after each');
done();

});

hooks.afterAll(function (transactions, done) {
hooks.log('after all');
done();

})

2.10.3 Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

var before = require('hooks').before;

before("Machines > Machines collection > Get Machines", function (transaction) {
transaction.skip = true;

});

Sharing Data Between Steps in Request Stash

You may pass data between test steps using the response stash.

var hooks = require('hooks');
var before = hooks.before;
var after = hooks.after;

var responseStash = {};

after("Machines > Machines collection > Create Machine", function (transaction) {

// saving HTTP response to the stash
responseStash[transaction.name] = transaction.real;

});

before("Machines > Machine > Delete a machine", function (transaction) {
//reusing data from previous response here

(continues on next page)

50 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

var machineId = JSON.parse(responseStash['Machines > Machines collection > Create
→˓Machine'])['id'];

//replacing id in URL with stashed id from previous response
var url = transaction.fullPath;
transaction.fullPath = url.replace('42', machineId);

});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive
message.

var before = require('hooks').before;

before("Machines > Machines collection > Get Machines", function (transaction) {
transaction.fail = "Some failing message";

});

Using Chai Assertions

Inside hook files, you can require Chai and use its assert, should or expect interface in hooks and write your
custom expectations. Dredd catches Chai’s expectation error in hooks and makes transaction to fail.

var hooks = require('hooks');
var before = hooks.before;
var assert = require('chai').assert;

after("Machines > Machines collection > Get Machines", function (transaction) {
assert.isBelow(transaction.real.body.length, 100);

});

Modifying Transaction Request Body Prior to Execution

var hooks = require('hooks');
var before = hooks.before;

before("Machines > Machines collection > Get Machines", function (transaction) {
// parse request body from API description
var requestBody = JSON.parse(transaction.request.body);

// modify request body here
requestBody['someKey'] = 'someNewValue';

// stringify the new body to request
transaction.request.body = JSON.stringify(requestBody);

});

Modifying Multipart Transaction Request Body Prior to Execution

Dependencies:

2.10. Writing Dredd Hooks In Node.js 51

https://www.chaijs.com/

Dredd, Release 5.2.0

• multi-part

• stream-to-string

const hooks = require('hooks');
const fs = require('fs');
const Multipart = require('multi-part');
const streamToString = require('stream-to-string');

var before = hooks.before;

before("Machines > Machines collection > Create Machines", async function
→˓(transaction, done) {

const form = new Multipart();
form.append('title', 'Foo');
form.append('photo', fs.createReadStream('./bar.jpg'));
transaction.request.body = await streamToString(form.getStream());
transaction.request.headers['Content-Type'] = form.getHeaders()['content-type'];
done();

});

Adding or Changing URI Query Parameters to All Requests

var hooks = require('hooks');

hooks.beforeEach(function (transaction) {
// add query parameter to each transaction here
var paramToAdd = "api-key=23456"
if(transaction.fullPath.indexOf('?') > -1){
transaction.fullPath += "&" + paramToAdd;

} else{
transaction.fullPath += "?" + paramToAdd;

}
});

Handling sessions

var hooks = require('hooks');
var stash = {};

// hook to retrieve session on a login
hooks.after('Auth > /remoteauth/userpass > POST', function (transaction) {

stash['token'] = JSON.parse(transaction.real.body)['sessionId'];
});

// hook to set the session cookie in all following requests
hooks.beforeEach(function (transaction) {

if(stash['token'] != undefined){
transaction.request['headers']['Cookie'] = "id=" + stash['token'];

};
});

52 Chapter 2. Contents

https://www.npmjs.com/package/multi-part
https://www.npmjs.com/package/stream-to-string

Dredd, Release 5.2.0

Remove trailing newline character in expected plain text bodies

var hooks = require('hooks');

hooks.beforeEach(function(transaction) {
if (transaction.expected.headers['Content-Type'] === 'text/plain') {
transaction.expected.body = transaction.expected.body.replace(/^\s+|\s+$/g, "");

}
});

Using Babel

With this workaround you can use Babel for support of all the latest JS syntactic coolness in Dredd hooks:

npm install -g babel-cli babel-preset-es2015
echo '{ "presets": ["es2015"] }' > .babelrc
babel-node `which dredd` test/fixtures/single-get.apib http://127.0.0.1:3000 --
→˓hookfiles=./es2015.js

2.11 Writing Dredd Hooks In Perl

GitHub repository

Perl hooks are using Dredd’s hooks handler socket interface. For using Perl hooks in Dredd you have to have Dredd
already installed

2.11.1 Installation

$ cpanm Dredd::Hooks

2.11.2 Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=dredd-hooks-perl --hookfiles=./
→˓hooks*.pl

2.11.3 API Reference

Module Dredd::Hooks::Methods imports following decorators:

1. beforeEach, beforeEachValidation, afterEach

• wraps a function and passes Transaction object as a first argument to it

2. before, beforeValidation, after

• accepts transaction name as a first argument

• wraps a function and sends a Transaction object as a first argument to it

3. beforeAll, afterAll

2.11. Writing Dredd Hooks In Perl 53

https://babeljs.io/
https://api.travis-ci.org/ungrim97/Dredd-Hooks.svg?branch=master
https://github.com/ungrim97/Dredd-Hooks

Dredd, Release 5.2.0

• wraps a function and passes an Array of Transaction objects as a first argument to it

Refer to Dredd execution life-cycle to find when is each hook function executed.

Using Perl API

Example usage of all methods in

use Dredd::Hooks::Methods;

beforeAll(sub {
print 'before all'

});

beforeEach(sub {
print 'before each'

})

before("Machines > Machines collection > Get Machines" => sub {
print 'before'

});

beforeEachValidation(sub {
print 'before each validation'

});

beforeValidation("Machines > Machines collection > Get Machines" => sub {
print 'before validations'

});

after("Machines > Machines collection > Get Machines" => sub {
print 'after'

});

afterEach(sub {
print 'after_each'

});

afterAll(sub {
print 'after_all'

});

2.11.4 Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

use Dredd::Hooks::Methods;
use Types::Serialiser;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;

$transaction->{skip} = Types::Serialiser::true;
});

54 Chapter 2. Contents

Dredd, Release 5.2.0

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

use JSON;
use Dredd::Hooks::Methods;

my $response_stash = {};

after("Machines > Machines collection > Create Machine" => sub {
my ($transaction) = @_;

saving HTTP response to the stash
$response_stash->{$transaction->{name}} = $transaction->{real}

});

before("Machines > Machine > Delete a machine" => sub {
my ($transaction) = @_;
#reusing data from previous response here
my $parsed_body = JSON->decode_json(

$response_stash->{'Machines > Machines collection > Create Machine'}
);
my $machine_id = $parsed_body->{id};
#replacing id in URL with stashed id from previous response
$transaction->{fullPath} =~ s/42/$machine_id/;

});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive
message.

use Dredd::Hooks::Methods;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;
$transaction->{fail} = "Some failing message";

});

Modifying Transaction Request Body Prior to Execution

use JSON;
use Dredd::Hooks::Methods;

before("Machines > Machines collection > Get Machines" => sub {
my ($transaction) = @_;

parse request body from API description
my $request_body = JSON->decode_json($transaction->{request}{body});

modify request body here
$request_body->{someKey} = 'some new value';

stringify the new body to request

(continues on next page)

2.11. Writing Dredd Hooks In Perl 55

Dredd, Release 5.2.0

(continued from previous page)

$transaction->{request}{body} = JSON->encode_json($request_body);
});

Adding or Changing URI Query Parameters to All Requests

use Dredd::Hooks::Methods;

beforeEach(sub {
my ($transaction) = @_;
add query parameter to each transaction here
my $param_to_add = "api-key=23456";

if ($transaction->{fullPath} =~ m/?/){
$transaction->{fullPath} .= "&$param_to_add";

} else {
$transaction->{fullPath} .= "?$param_to_add";

}
});

Handling sessions

use JSON;
use Dredd::Hooks::Methods;

my $stash = {}

hook to retrieve session on a login
after('Auth > /remoteauth/userpass > POST' => sub {

my ($transaction) = @_;

my $parsed_body = JSON->decode_json($transaction->{real}{body});
my $stash->{token} = $parsed_body->{sessionId};

)};

hook to set the session cookie in all following requests
beforeEach(sub {

my ($transaction) = @_;

if (exists $stash->{token}){
$transaction->{request}{headers}{Cookie} = "id=".$stash{token};

}
});

Remove trailing newline character in expected plain text bodies

use Dredd::Hooks::Methods;

beforeEach(
my ($transaction) = @_;

if($transaction->{expected}{headers}{Content-Type} eq 'text/plain'){

(continues on next page)

56 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

$transaction->{expected}{body} = chomp($transaction->{expected}{body});
}

});

2.12 Writing Dredd Hooks In PHP

GitHub repository

PHP hooks are using Dredd’s hooks handler socket interface. For using PHP hooks in Dredd you have to have Dredd
already installed

2.12.1 Installation

Requirements

• php version >= 5.4

Installing dredd-hooks-php can be easily installed through the package manager, composer.

$ composer require ddelnano/dredd-hooks-php --dev

2.12.2 Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=vendor/bin/dredd-hooks-php --
→˓hookfiles=./hooks*.php

2.12.3 API Reference

The Dredd\Hooks class provides the static methods listed below to create hooks

1. beforeEach, beforeEachValidation, afterEach

• accepts a closure as a first argument passing a Transaction object as a first argument

2. before, beforeValidation, after

• accepts transaction name as a first argument

• accepts a block as a second argument passing a Transaction object as a first argument of it

3. beforeAll, afterAll

• accepts a block as a first argument passing an Array of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when is each hook function executed.

2.12. Writing Dredd Hooks In PHP 57

https://travis-ci.org/ddelnano/dredd-hooks-php
https://github.com/ddelnano/dredd-hooks-php

Dredd, Release 5.2.0

Using PHP API

Example usage of all methods. Very Important The $transaction variable passed to the closure MUST be a
reference. Otherwise the $transaction variable will be passed by value when the closure is executed and the
changes will not be reflected.

<?php

use Dredd\Hooks;

Hooks::beforeAll(function(&$transaction) {

echo "before all";
});

Hooks::beforeEach(function(&$transaction) {

echo "before each";
});

Hooks::before("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

echo "before";
});

Hooks::beforeEachValidation(function(&$transaction) {

echo "before each validation";
});

Hooks::beforeValidation("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

echo "before validation";
});

Hooks::after("Machines > Machines collection > Get Machines", function(&$transaction)
→˓{

echo "after";
});

Hooks::afterEach(function(&$transaction) {

echo "after each";
});

Hooks::afterAll(function(&$transaction) {

echo "after all";
});

2.12.4 Examples

In the dredd-hooks-php repository there is an example laravel application with instructions in the wiki

58 Chapter 2. Contents

https://github.com/ddelnano/dredd-hooks-php/
https://github.com/ddelnano/dredd-hooks-php/wiki/Laravel-Example

Dredd, Release 5.2.0

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

$transaction->skip = true;
});

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive
message.

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

$transaction->fail = true;
});

Modifying Transaction Request Body Prior to Execution

<?php

use Dredd\Hooks;

Hooks::before("Machines > Machines collection > Get Machines", function(&
→˓$transaction) {

$requestBody = $transaction->request->body;

$requestBody['someKey'] = 'new value';

$transaction->request->body = json_encode($requestBody);
});

Adding or Changing URI Query Parameters to All Requests

<?php

use Dredd\Hooks;

(continues on next page)

2.12. Writing Dredd Hooks In PHP 59

Dredd, Release 5.2.0

(continued from previous page)

Hooks::beforeEach(function(&$transaction) {

// add query parameter to each transaction here

$paramToAdd = 'api-key=23456';

if (strpos($transaction->fullPath, "?") {

$transaction->fullPath .= "&{$paramToAdd}";
}

else {

$transaction->fullPath .= "?{$paramToAdd}";
}

});

Handling sessions

<?php

use Dredd\Hooks;

$stash = [];

Hooks::after("Auth > /remoteauto/userpass", function(&$transaction) use (&$stash) {

$parsedBody = json_decode($transaction->real->body);

$stash['token'] = $parseBody->sessionId;
});

Hooks::beforeEach(function(&$transaction) use (&$stash) {

if ($transaction->token) {

$transaction->request->headers->Cookie = "id={$stash['token']}s";
}

});

2.13 Writing Dredd Hooks In Python

GitHub repository

Python hooks are using Dredd’s hooks handler socket interface. For using Python hooks in Dredd you have to have
Dredd already installed

60 Chapter 2. Contents

https://travis-ci.org/apiaryio/dredd-hooks-python
https://github.com/apiaryio/dredd-hooks-python

Dredd, Release 5.2.0

2.13.1 Installation

$ pip install dredd_hooks

2.13.2 Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=python --hookfiles=./hooks*.py

2.13.3 API Reference

Module dredd_hooks imports following decorators:

1. before_each, before_each_validation, after_each

• wraps a function and passes Transaction object as a first argument to it

2. before, before_validation, after

• accepts transaction name as a first argument

• wraps a function and sends a Transaction object as a first argument to it

3. before_all, after_all

• wraps a function and passes an Array of Transaction objects as a first argument to it

Refer to Dredd execution life-cycle to find when is each hook function executed.

Using Python API

Example usage of all methods in

import dredd_hooks as hooks

@hooks.before_all
def my_before_all_hook(transactions):

print('before all')

@hooks.before_each
def my_before_each_hook(transaction):

print('before each')

@hooks.before
def my_before_hook(transaction):

print('before')

@hooks.before_each_validation
def my_before_each_validation_hook(transaction):

print('before each validation')

@hooks.before_validation
def my_before_validation_hook(transaction):

print('before validations')

@hooks.after

(continues on next page)

2.13. Writing Dredd Hooks In Python 61

Dredd, Release 5.2.0

(continued from previous page)

def my_after_hook(transaction):
print('after')

@hooks.after_each
def my_after_each(transaction):

print('after_each')

@hooks.after_all
def my_after_all_hook(transactions):

print('after_all')

2.13.4 Examples

More complex examples are to be found in the Github repository under the examples directory. If you want to share
your own, don’t hesitate and sumbit a PR.

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def skip_test(transaction):

transaction['skip'] = True

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

import json
import dredd_hooks as hooks

response_stash = {}

@hooks.after("Machines > Machines collection > Create Machine")
def save_response_to_stash(transaction):

saving HTTP response to the stash
response_stash[transaction['name']] = transaction['real']

@hooks.before("Machines > Machine > Delete a machine")
def add_machine_id_to_request(transaction):

#reusing data from previous response here
parsed_body = json.loads(response_stash['Machines > Machines collection > Create

→˓Machine'])
machine_id = parsed_body['id']
#replacing id in URL with stashed id from previous response
transaction['fullPath'] = transaction['fullPath'].replace('42', machine_id)

62 Chapter 2. Contents

https://github.com/apiaryio/dredd-hooks-python/tree/master/examples

Dredd, Release 5.2.0

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive
message.

import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def fail_transaction(transaction):

transaction['fail'] = "Some failing message"

Modifying Transaction Request Body Prior to Execution

import json
import dredd_hooks as hooks

@hooks.before("Machines > Machines collection > Get Machines")
def add_value_to_body(transaction):

parse request body from API description
request_body = json.loads(transaction['request']['body'])

modify request body here
request_body['someKey'] = 'some new value'

stringify the new body to request
transaction['request']['body'] = json.dumps(request_body)

Adding or Changing URI Query Parameters to All Requests

import dredd_hooks as hooks

@hooks.before_each
def add_api_key(transaction):

add query parameter to each transaction here
param_to_add = "api-key=23456"

if '?' in transaction['fullPath']:
transaction['fullPath'] = ''.join((transaction['fullPath'], "&", param_to_add))

else:
transaction['fullPath'] = ''.join((transaction['fullPath'], "?", param_to_add))

Handling sessions

import json
import dredd_hooks as hooks

stash = {}

hook to retrieve session on a login
@hooks.after('Auth > /remoteauth/userpass > POST')
def stash_session_id(transaction):

parsed_body = json.loads(transaction['real']['body'])

(continues on next page)

2.13. Writing Dredd Hooks In Python 63

Dredd, Release 5.2.0

(continued from previous page)

stash['token'] = parsed_body['sessionId']

hook to set the session cookie in all following requests
@hooks.before_each
def add_session_cookie(transaction):

if 'token' in stash:
transaction['request']['headers']['Cookie'] = "id=" + stash['token']

Remove trailing newline character in expected plain text bodies

import dredd_hooks as hooks

@hooks.before_each
def remove_trailing_newline(transaction):

if transaction['expected']['headers']['Content-Type'] == 'text/plain':
transaction['expected']['body'] = transaction['expected']['body'].rstrip()

2.14 Writing Dredd Hooks In Ruby

GitHub repository

Ruby hooks are using Dredd’s hooks handler socket interface. For using Ruby hooks in Dredd you have to have Dredd
already installed

2.14.1 Installation

$ gem install dredd_hooks

2.14.2 Usage

$ dredd apiary.apib http://127.0.0.1:3000 --language=ruby --hookfiles=./hooks*.rb

2.14.3 API Reference

Including module Dredd::Hooks:Methods expands current scope with methods

1. @before_each, before_each_validation, after_each

• accepts a block as a first argument passing a Transaction object as a first argument

2. before, before_validation, after

• accepts transaction name as a first argument

• accepts a block as a second argument passing a Transaction object as a first argument of it

3. before_all, after_all

• accepts a block as a first argument passing an Array of Transaction objects as a first argument

64 Chapter 2. Contents

https://travis-ci.org/apiaryio/dredd-hooks-ruby
https://github.com/apiaryio/dredd-hooks-ruby

Dredd, Release 5.2.0

Refer to Dredd execution lifecycle to find when is each hook function executed.

Using Ruby API

Example usage of all methods in

include DreddHooks::Methods

before_all do |transactions|
puts 'before all'

end

before_each do |transaction|
puts 'before each'

end

before "Machines > Machines collection > Get Machines" do |transaction|
puts 'before'

end

before_each_validation do |transaction|
puts 'before each validation'

end

before_validation "Machines > Machines collection > Get Machines" do |transaction|
puts 'before validations'

end

after "Machines > Machines collection > Get Machines" do |transaction|
puts 'after'

end

after_each do |transaction|
puts 'after_each'

end

after_all do |transactions|
puts 'after_all'

end

2.14.4 Examples

How to Skip Tests

Any test step can be skipped by setting skip property of the transaction object to true.

include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
transaction['skip'] = true

end

2.14. Writing Dredd Hooks In Ruby 65

Dredd, Release 5.2.0

Sharing Data Between Steps in Request Stash

If you want to test some API workflow, you may pass data between test steps using the response stash.

require 'json'
include DreddHooks::Methods

response_stash = {}

after "Machines > Machines collection > Create Machine" do |transaction|
saving HTTP response to the stash
response_stash[transaction['name']] = transaction['real']

do

before "Machines > Machine > Delete a machine" do |transaction|
#reusing data from previous response here
parsed_body = JSON.parse response_stash['Machines > Machines collection > Create

→˓Machine']
machine_id = parsed_body['id']

#replacing id in URL with stashed id from previous response
transaction['fullPath'].gsub! '42', machine_id

end

Failing Tests Programmatically

You can fail any step by setting fail property on transaction object to true or any string with descriptive
message.

include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
transaction['fail'] = "Some failing message"

end

Modifying Transaction Request Body Prior to Execution

require 'json'
include DreddHooks::Methods

before "Machines > Machines collection > Get Machines" do |transaction|
parse request body from API description
request_body = JSON.parse transaction['request']['body']

modify request body here
request_body['someKey'] = 'some new value'

stringify the new body to request
transaction['request']['body'] = request_body.to_json

end

66 Chapter 2. Contents

Dredd, Release 5.2.0

Adding or Changing URI Query Parameters to All Requests

include DreddHooks::Methods

hooks.before_each do |transaction|

add query parameter to each transaction here
param_to_add = "api-key=23456"

if transaction['fullPath'].include('?')
transaction['fullPath'] += "&" + param_to_add

else
transaction['fullPath'] += "?" + param_to_add

end
end

Handling sessions

require 'json'
include DreddHooks::Methods

stash = {}

hook to retrieve session on a login
hooks.after 'Auth > /remoteauth/userpass > POST' do |transaction|

parsed_body = JSON.parse transaction['real']['body']
stash['token'] = parsed_body['sessionId']

end

hook to set the session cookie in all following requests
hooks.beforeEach do |transaction|

unless stash['token'].nil?
transaction['request']['headers']['Cookie'] = "id=" + stash['token']

end
end

Remove trailing newline character for in expected plain text bodies

include DreddHooks::Methods

before_each do |transaction|
if transaction['expected']['headers']['Content-Type'] == 'text/plain'
transaction['expected']['body'] = transaction['expected']['body'].gsub(/^\s+|\s+$/

→˓g, "")
end

end

2.15 Writing Dredd Hooks In Rust

GitHub repository

2.15. Writing Dredd Hooks In Rust 67

https://crates.io/crates/dredd-hooks
https://github.com/hobofan/dredd-hooks-rust

Dredd, Release 5.2.0

Rust hooks are using Dredd’s hooks handler socket interface. For using Rust hooks in Dredd you have to have Dredd
already installed. The Rust library is called dredd-hooks and the correspondig binary dredd-hooks-rust.

2.15.1 Installation

$ cargo install dredd-hooks

2.15.2 Usage

Using Dredd with Rust is slightly different to other languages, as a binary needs to be compiled for execution. The
–hookfiles flags should point to compiled hook binaries. See below for an example hooks.rs file to get an idea of what
the source file behind the Rust binary would look like.

$ dredd apiary.apib http://127.0.0.1:3000 --server=./rust-web-server-to-test --
→˓language=rust --hookfiles=./hook-file-binary

2.15.3 API Reference

In order to get a general idea of how the Rust Hooks work, the main executable from the package dredd-hooks is
an HTTP Server that Dredd communicates with and an RPC client. Each hookfile then acts as a corresponding RPC
server. So when Dredd notifies the Hooks server what transaction event is occuring the hooks server will execute all
registered hooks on each of the hookfiles RPC servers.

You’ll need to know a few things about the HooksServer type in the dredd-hooks package.

1. The HooksServer type is how you can define event callbacks such as beforeEach, afterAll, etc..

2. To get a HooksServer struct you must do the following;

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();

// Define all your event callbacks here

// HooksServer::start_from_env will block and allow the RPC server
// to receive messages from the main `dredd-hooks-rust` process.
HooksServer::start_from_env(hooks);

}

3. Callbacks receive a Transaction instance, or an array of them.

Runner Callback Events

The HooksServer type has the following callback methods.

1. before_each, before_each_validation, after_each

• accepts a function as a first argument passing a Transaction object as a first argument

2. before, before_validation, after

68 Chapter 2. Contents

Dredd, Release 5.2.0

• accepts transaction name as a first argument

• accepts a function as a second argument passing a Transaction object as a first argument of it

3. before_all, after_all

• accepts a function as a first argument passing a Vec of Transaction objects as a first argument

Refer to Dredd execution lifecycle to find when each hook callback is executed.

Using the Rust API

Example usage of all methods.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(move |tr| {

println!("before hook handled");
tr

}));
hooks.after("/message > GET", Box::new(move |tr| {

println!("after hook handled");
tr

}));
hooks.before_validation("/message > GET", Box::new(move |tr| {

println!("before validation hook handled");
tr

}));
hooks.before_all(Box::new(move |tr| {

println!("before all hook handled");
tr

}));
hooks.after_all(Box::new(move |tr| {

println!("after all hook handled");
tr

}));
hooks.before_each(Box::new(move |tr| {

println!("before each hook handled");
tr

}));
hooks.before_each_validation(Box::new(move |tr| {

println!("before each validation hook handled");
tr

}));
hooks.after_each(Box::new(move |tr| {

println!("after each hook handled");
tr

}));
HooksServer::start_from_env(hooks);

}

2.15. Writing Dredd Hooks In Rust 69

Dredd, Release 5.2.0

2.15.4 Examples

How to Skip Tests

Any test step can be skipped by setting the value of the skip field of the Transaction instance to true.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();

// Runs only before the "/message > GET" test.
hooks.before("/message > GET", Box::new(|mut tr| {

// Set the skip flag on this test.
tr.insert("skip".to_owned(), true.into());
// Hooks must always return the (modified) Transaction(s) that were passed in.
tr

}));
HooksServer::start_from_env(hooks);

}

Failing Tests Programmatically

You can fail any step by setting the value of the fail field of the Transaction instance to true or any string with
a descriptive message.

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(|mut tr| {

// .into() can be used as an easy way to convert
// your value into the desired Json type.
tr.insert("fail".to_owned(), "Yay! Failed!".into());
tr

}));
HooksServer::start_from_env(hooks);

}

Modifying the Request Body Prior to Execution

extern crate dredd_hooks;

use dredd_hooks::{HooksServer};

fn main() {
let mut hooks = HooksServer::new();
hooks.before("/message > GET", Box::new(|mut tr| {

// Try to access the "request" key as an object.
// (This will panic should the "request" key not be present.)

(continues on next page)

70 Chapter 2. Contents

Dredd, Release 5.2.0

(continued from previous page)

tr["request"].as_object_mut().unwrap()
.insert("body".to_owned(), "Hello World!".into());

tr
}));
HooksServer::start_from_env(hooks);

}

2.16 Writing Dredd hook handler for new language

2.16.1 Dredd hooks handler client

Dredd comes with concept of hooks language abstraction bridge via simple TCP socket.

When you run Dredd with --language option, it runs the given command and tries to connect to http://127.
0.0.1:61321. If connection to the hook handling server wasn’t successful, it exits with exit code 3.

Dredd internally registers a function for each type of hooks and when this function is executed it assigns execution
uuid to that event, serializes received function parameters (a Transaction object or an Array of it), sends it to the TCP
socket to be handled (executed) in other language and waits until message with same uuid is received. After data
reception it assigns received data back to the transaction, so other language can interact with transactions same way
like native Node.js hooks.

2.16.2 Language agnostic test suite

Dredd hooks language abstraction bridge comes with the language agnostic test suite. It’s written in Gherkin - language
for writing Cucumber scenarios and Aruba CLI testing framework and it tests your new language handler integration
with CLI Dredd and expected behavior from user’s perspective.

2.16.3 What to implement

If you want to write a hook handler for your language you will have to implement:

• CLI Command runnning TCP socket server

– Must return message ‘‘Starting‘ to stdout <https://github.com/apiaryio/dredd-hooks-template/blob/master/
features/tcp_server.feature#L5>‘__

• Hooks API in your language for registering code being executed during the Dredd lifecycle:

– before all transactions

– before each transaction

– before transaction

– before each transaction validation

– before transaction validation

– after transaction

– after each transaction

– after all transactions

2.16. Writing Dredd hook handler for new language 71

https://github.com/apiaryio/dredd-hooks-template
https://github.com/cucumber/cucumber/wiki/A-Table-Of-Content
https://github.com/cucumber/aruba
https://github.com/apiaryio/dredd-hooks-template/blob/master/features/tcp_server.feature#L5
https://github.com/apiaryio/dredd-hooks-template/blob/master/features/tcp_server.feature#L5

Dredd, Release 5.2.0

• When CLI command is executed

– It loads files passed in alphabetical order with paths resolved to absolute form

* It exposes API similar to those in Ruby, Python and Node.js to each loaded file

* It registers functions declared in files for later execution

– starts a TCP socket server and starts listening on http://127.0.0.1:61321.

• When any data is received by the server

– Adds every received character to a buffer

– When delimiting newline (\n) character is received

* It parses the message in the buffer as JSON

* It looks for event key in received object and executes appropriate registered hooks functions

– When the hook function is being executed

* It passes value of data key from received object to the executed function

* Hook function is able to modify data

– When function was executed

* It should serialize message to JSON

* Send the serialized message back to the socket with same uuid as received

* Send a newline character as message delimiter

2.16.4 Termination

When the testing is done, Dredd signals the hook handler process to terminate. This is done repeatedly with delays.
When termination timeout is over, Dredd loses its patience and kills the process forcefully.

• retry delays can be configured by --hooks-worker-term-retry

• timeout can be configured by --hooks-worker-term-timeout

On Linux or macOS, Dredd uses the SIGTERM signal to tell the hook handler process it should terminate. On Win-
dows, where signals do not exist, Dredd sends the END OF TEXT character (\u0003, which is ASCII representation
of Ctrl+C) to standard input of the process.

2.16.5 TCP Socket Message format

• transaction (object)

– uuid: 234567-asdfghjkl (string) - Id used for event unique identification on both server and client
sides

– event: event (enum) - Event type

* beforeAll (string) - Signals the hook handler to run the beforeAll hooks

* beforeEach (string) - Signals the hook handler to run the beforeEach and before hooks

* beforeEachValidation (string) - Signals the hook handler to run the beforeEachValidation and
beforeValidation hooks

* afterEach (string) - Signals the hook handler to run the after and afterEach hooks

72 Chapter 2. Contents

Dredd, Release 5.2.0

* afterAll (string) - Signals the hook handler to run the afterAll hooks

– data (enum) - Data passed as a argument to the function

* (object) - Single Transaction object

* (array) - An array of Transaction objects, containing all transactions in the API description. Sent for
beforeAll and afterAll events

2.16.6 Configuration Options

There are several configuration options, which can help you during development:

• --hooks-worker-timeout

• --hooks-worker-connect-timeout

• --hooks-worker-connect-retry

• --hooks-worker-after-connect-wait

• --hooks-worker-term-timeout

• --hooks-worker-term-retry

• --hooks-worker-handler-host

• --hooks-worker-handler-port

2.16.7 Need help? No problem!

If you have any questions, please:

• Have a look at the Ruby, Python, Perl, and PHP hook handlers codebase for inspiration

• If you’re writing a hook handler for a compiled language, check out the Go implementation

• File an issue in Dredd repository

2.17 Data Structures

Documentation of various data structures in both Gavel.js and Dredd. MSON notation is used to describe the data
structures.

2.17.1 Transaction (object)

Transaction object is passed as a first argument to hook functions and is one of the main public interfaces in Dredd.

• id: GET (200) /greetings - identifier for this transaction

• name: ./api-description.apib > My API > Greetings > Hello, world! >
Retrieve Message > Example 2 (string) - reference to the transaction definition in the original
API description document (see also Dredd Transactions)

• origin (object) - reference to the transaction definition in the original API description document (see also Dredd
Transactions)

– filename: ./api-description.apib (string)

2.17. Data Structures 73

https://github.com/apiaryio/dredd-hooks-ruby
https://github.com/apiaryio/dredd-hooks-python
https://github.com/ungrim97/Dredd-Hooks
https://github.com/ddelnano/dredd-hooks-php
https://github.com/snikch/goodman
https://github.com/apiaryio/dredd/issues/new
https://github.com/apiaryio/gavel.js
https://github.com/apiaryio/mson
https://github.com/apiaryio/dredd-transactions#user-content-data-structures
https://github.com/apiaryio/dredd-transactions#user-content-data-structures
https://github.com/apiaryio/dredd-transactions#user-content-data-structures

Dredd, Release 5.2.0

– apiName: My Api (string)

– resourceGroupName: Greetings (string)

– resourceName: Hello, world! (string)

– actionName: Retrieve Message (string)

– exampleName: Example 2 (string)

• host: 127.0.0.1 (string) - server hostname without port number

• port: 3000 (number) - server port number

• protocol: https: (enum[string]) - server protocol

– https: (string)

– http: (string)

• fullPath: /message (string) - expanded URI Template with parameters (if any) used for the HTTP request
Dredd performs to the tested server

• request (object) - the HTTP request Dredd performs to the tested server, taken from the API description

– body: Hello world!\n (string)

– bodyEncoding (enum) - can be manually set in hooks

* utf-8 (string) - indicates body contains a textual content encoded in UTF-8

* base64 (string) - indicates body contains a binary content encoded in Base64

– headers (object) - keys are HTTP header names, values are HTTP header contents

– uri: /message (string) - request URI as it was written in API description

– method: POST (string)

• expected (object) - the HTTP response Dredd expects to get from the tested server

– statusCode: 200 (string)

– headers (object) - keys are HTTP header names, values are HTTP header contents

– body (string)

– bodySchema (object) - JSON Schema of the response body

• real (object) - the HTTP response Dredd gets from the tested server (present only in after hooks)

– statusCode: 200 (string)

– headers (object) - keys are HTTP header names, values are HTTP header contents

– body (string)

– bodyEncoding (enum)

* utf-8 (string) - indicates body contains a textual content encoded in UTF-8

* base64 (string) - indicates body contains a binary content encoded in Base64

• skip: false (boolean) - can be set to true and the transaction will be skipped

• fail: false (enum) - can be set to true or string and the transaction will fail

– (string) - failure message with details why the transaction failed

– (boolean)

74 Chapter 2. Contents

https://tools.ietf.org/html/rfc6570

Dredd, Release 5.2.0

• test (Transaction Test (object)) - test data passed to Dredd’s reporters

• results (Transaction Results (object)) - testing results

2.17.2 Transaction Test (object)

• start (Date) - start of the test

• end (Date) - end of the test

• duration (number) - duration of the test in milliseconds

• startedAt (number) - unix timestamp, transaction.startedAt

• title (string) - transaction.id

• request (object) - transaction.request

• actual (object) - transaction.real

• expected (object) - transaction.expected

• status (enum) - whether the validation passed or not, defaults to empty string

– pass (string)

– fail (string)

– skip (string)

• message (string) - concatenation of all messages from all Gavel Error (object) in results or Dredd’s custom
message (e.g. “failed in before hook”)

• results (Dredd’s transaction.results)

• valid (boolean)

• origin (object) - transaction.origin

2.17.3 Transaction Results (object)

This is a cousin of the Gavel Validation Result (object).

• general (object) - contains Dredd’s custom messages (e.g. “test was skipped”), formatted the same way like
those from Gavel

– results (array[Gavel Error (object)])

• statusCode (Gavel Validator Output (object))

• headers (Gavel Validator Output (object))

• body (Gavel Validator Output (object))

2.17.4 Gavel Validation Result (object)

Can be seen also here.

• statusCode (Gavel Validator Output (object))

• headers (Gavel Validator Output (object))

• body (Gavel Validator Output (object))

2.17. Data Structures 75

https://relishapp.com/apiary/gavel/docs/javascript/request-async-api#validate

Dredd, Release 5.2.0

• version (string) - version number of the Gavel Validation Result structure

2.17.5 Gavel Validator Output (object)

Can be seen also here.

• results (array[Gavel Error (object)])

• realType (string) - media type

• expectedType (string) - media type

• validator (string) - validator class name

• rawData (enum) - raw output of the validator, has different structure for every validator and is saved and used in
Apiary to render graphical diff by gavel2html

– (JsonSchema Validation Result (object))

– (TextDiff Validation Result (string))

2.17.6 JsonSchema Validation Result (object)

The validation error is based on format provided by Amanda and is also “documented” here. Although for validation
of draft4 JSON Schema Gavel uses tv4 library, the output then gets reshaped into the structure of Amanda’s errors.

This validation result is returned not only when validating against JSON Schema, but also when validating against
JSON example or when validating HTTP headers.

• length: 0 (number, default) - number of error properties

• errorMessages (object) - doesn’t seem to ever contain anything or be used for anything

• 0 (object) - validation error details, property is always a string containing a number (0, 1, 2, . . .)

– property (array[string]) - path to the problematic property in format of json-pointer’s ‘‘parse()‘ output
<https://github.com/manuelstofer/json-pointer#user-content-parsestr>‘__

– propertyValue (mixed) - real value of the problematic property (can be also undefined etc.)

– attributeName: enum, required (string) - name of the relevant JSON Schema attribute, which triggered
the error

– attributeValue (mixed) - value of the relevant JSON Schema attribute, which triggered the error

– message (string) - error message (in case of tv4 it contains JSON Pointer to the problematic property and
for both Amanda and tv4 it can directly mention property names and/or values)

– validator: enum (string) - the same as attributeName

– validatorName: error, enum (string) - the same as attributeName

– validatorValue (mixed) - the same as attributeValue

2.17.7 TextDiff Validation Result (string)

Block of text which looks extremely similar to the standard GNU diff/patch format. Result of the patch_toText()
function of the google-diff-match-patch library (docs).

76 Chapter 2. Contents

https://relishapp.com/apiary/gavel/docs/data-validators-and-output-format#validators-output-format
https://github.com/apiaryio/gavel2html/
https://github.com/apiaryio/Amanda
https://github.com/apiaryio/Amanda/blob/master/docs/json/objects/error.md
https://github.com/geraintluff/tv4
http://json-schema.org/
https://github.com/manuelstofer/json-pointer#user-content-parsestr
https://tools.ietf.org/html/rfc6901
https://github.com/google/diff-match-patch/wiki/API#user-content-patch_totextpatches--text

Dredd, Release 5.2.0

2.17.8 Gavel Error (object)

Can also be seen as part of Gavel Validator Output here.

• pointer (string) - JSON Pointer path

• severity (string) - severity of the error

• message (string) - error message

2.17.9 Apiary Reporter Test Data (object)

• testRunId (string) - ID of the test run, recieved from Apiary

• origin (object) - test.origin

• duration (number) - duration of the test in milliseconds

• result (string) - test.status

• startedAt (number) - test.startedAt

• resultData (object)

– request (object) - test.request

– realResponse (object) - test.actual

– expectedResponse (object) - test.expected

– result (Transaction Results (object)) - test.results

2.17.10 Internal Apiary Data Structures

These are private data structures used in Apiary internally and they are documented incompletely. They’re present in
this document just to provide better insight on what and how Apiary internally saves. It is closely related to what you
can see in documentation for Apiary Tests API for anonymous test reports and Apiary Tests API for authenticated test
reports.

Apiary Test Run (object)

Also known as stats in Dredd’s code.

• result

– tests: 0 (number, default) - total number of tests

– failures: 0 (number, default)

– errors: 0 (number, default)

– passes: 0 (number, default)

– skipped: 0 (number, default)

– start: 0 (number, default)

– end: 0 (number, default)

– duration: 0 (number, default)

2.17. Data Structures 77

https://relishapp.com/apiary/gavel/docs/data-validators-and-output-format#validators-output-format
https://tools.ietf.org/html/rfc6901
https://github.com/apiaryio/dredd/blob/master/ApiaryReportingApiAnonymous.apib
https://github.com/apiaryio/dredd/blob/master/ApiaryReportingApi.apib
https://github.com/apiaryio/dredd/blob/master/ApiaryReportingApi.apib

Dredd, Release 5.2.0

Apiary Test Step (object)

• resultData

– request (object) - test.request

– realResponse (object) - test.actual

– expectedResponse (object) - test.expected

– result (Transaction Results (object)) - test.results

2.18 Contributing Guidelines

2.18.1 Quick Start

Ideas

• File an issue.

• Explain why you want the feature. How does it help you? What for do you want the feature?

Bugs

• File an issue.

• Ideally, write a failing test and send it as a Pull Request.

Coding

• Dredd is written in JavaScript ES2015+.

• Dredd uses Semantic Release and Conventional Changelog.

Recommended Workflow

1. Fork Dredd.

2. Create a feature branch.

3. Write tests.

4. Write code.

5. Lint what you created: npm run lint

6. Send a Pull Request.

7. Make sure test coverage didn’t drop and all CI builds are passing.

78 Chapter 2. Contents

https://github.com/apiaryio/dredd/issues
https://github.com/apiaryio/dredd/issues
https://tc39.github.io/ecma262/
https://coveralls.io/github/apiaryio/dredd

Dredd, Release 5.2.0

Semantic Release and Conventional Changelog

Releasing of new Dredd versions to npm is automatically managed by Semantic Release. Semantic Release makes
sure correct version numbers get bumped according to the meaning of your changes once your PR gets merged to
master.

To make it work, it’s necessary to follow Conventional Changelog. That basically means all commit messages in the
project should follow a particular format:

<type>: <subject>

Where <type> is:

• feat - New functionality added

• fix - Broken functionality fixed

• perf - Performance improved

• docs - Documentation added/removed/improved/. . .

• chore - Package setup, CI setup, . . .

• refactor - Changes in code, but no changes in behavior

• test - Tests added/removed/improved/. . .

In the rare cases when your changes break backwards compatibility, the message must include string BREAKING
CHANGE:. That will result in bumping the major version.

Seems hard?

• See existing commits as a reference

• Commitizen CLI can help you to create correct commit messages

• npm run lint validates format of your messages

2.18.2 Handbook for Contributors and Maintainers

Maintainers

Apiary is the main author and maintainer of Dredd’s upstream repository. Currently responsible people are:

• [@netmilk](https://github.com/netmilk) - product decisions, feature requests

• [@honzajavorek](https://github.com/honzajavorek) - lead of development

• [@michalholasek](https://github.com/michalholasek) - team member

Programming Language

Dredd is written in JavaScript (ES2015+) and is meant to be ran on server using Node.js. Before publishing to the
npm registry, it is compiled to plain ES5 JavaScript code (throwaway lib directory).

Tests need pre-compiled every time because some integration tests use code linked from lib. This is certainly a
flaw and it slows down day-to-day development, but until we streamline our build pipeline, the lib dependency is
necessary.

Also mind that CoffeeScript is production dependency (not dev dependency), because it’s needed for running user-
provided hooks written in CoffeeScript.

2.18. Contributing Guidelines 79

https://github.com/semantic-release/semantic-release
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#user-content--git-commit-guidelines
https://github.com/apiaryio/dredd/commits/master
https://github.com/commitizen/cz-cli
https://apiary.io/
https://github.com/apiaryio/dredd
https://github.com/netmilk
https://github.com/honzajavorek
https://github.com/michalholasek
https://tc39.github.io/ecma262/
https://coffeescript.org

Dredd, Release 5.2.0

Compiled vs pure JavaScript

Dredd uses Drafter for parsing API Blueprint documents. Drafter is written in C++11 and needs to be compiled during
installation. Because that can cause a lot of problems in some environments, there’s also pure JavaScript version of
the parser, drafter.js. Drafter.js is fully equivalent, but it can have slower performance. Therefore there’s drafter-npm
package, which tries to compile the C++11 version of the parser and uses the JavaScript equivalent in case of failure.

Dredd depends on the drafter-npm package. That’s the reason why you can see node-gyp errors and failures during
the installation process, even though when it’s done, Dredd seems to normally work and correctly parses API Blueprint
documents.

Forcing the JavaScript version

The --no-optional option forces the JavaScript version of Drafter and avoids any compilation attempts when
installing Dredd:

$ npm install -g dredd --no-optional

Troubleshooting the compilation

If you need the performance of the C++11 parser, but you are struggling to get it installed, it’s usually because of the
following problems:

• Your machine is missing a C++11 compiler. See how to fix this on Windows or Travis CI.

• npm was used with Python 3. node-gyp, which performs the compilation, doesn’t support Python 3. If your
default Python is 3 (see python --version), tell npm to use an older version.

Supported Node.js Versions

Given the table with LTS schedule, only versions marked as Maintenance or Active are supported, until their Mainte-
nance End. The testing matrix of Dredd’s CI builds must contain all currently supported versions and must not contain
any unsupported versions. The same applies for the underlying libraries, such as Dredd Transactions or Gavel.js.

In following files the latest supported Node.js version should be used:

• appveyor.yml - Windows CI builds

• docs/install-node.sh - ReadTheDocs docs builds

Dependencies

New versions of dependencies are monitored by David and/or Greenkeeper. Security issues are monitored by Snyk.

Dependencies should not be specified in a loose way - only exact versions are allowed. Any changes to dependencies
(version upgrades included) must be approved by Oracle before merged to master. Dredd maintainers take care of
the approval. For transparency, PRs with pending dependency approval are labeled respectively.

The internal Oracle policies about dependencies pay attention mainly to licenses. Before adding a new dependency or
upgrading an existing one try to make sure the project and all its transitive dependencies feature standard permissive
licenses, including correct copyright holders and license texts.

80 Chapter 2. Contents

https://github.com/apiaryio/drafter
https://apiblueprint.org/
https://github.com/apiaryio/drafter.js
https://github.com/apiaryio/drafter-npm/
https://github.com/apiaryio/drafter-npm/
https://github.com/apiaryio/drafter/wiki/Building-on-Windows
https://github.com/apiaryio/protagonist/blob/master/.travis.yml
http://stackoverflow.com/a/22433804/325365
https://github.com/nodejs/Release
https://github.com/apiaryio/dredd-transactions
https://github.com/apiaryio/gavel.js/
https://david-dm.org/apiaryio/dredd
https://greenkeeper.io/
https://snyk.io/test/npm/dredd
https://github.com/davglass/license-checker

Dredd, Release 5.2.0

Versioning

Dredd follows Semantic Versioning. To ensure certain stability of Dredd installations (e.g. in CI builds), users can pin
their version. They can also use release tags:

• npm install dredd - Installs the latest published version including experimental pre-release versions.

• npm install dredd@stable - Skips experimental pre-release versions.

When releasing, make sure you respect the tagging:

• To release pre-release, e.g. 42.1.0-pre.7, use just npm publish.

• To release any other version, e.g. 42.1.0, use npm publish && npm dist-tag add dredd@42.
1.0 stable.

Releasing process for standard versions is currently automated by Semantic Release. Releasing process for pre-
releases is not automated and needs to be done manually, ideally from a special git branch.

Testing

Use npm test to run all tests. Dredd uses Mocha as a test framework. It’s default options are in the test/mocha.
opts file.

Windows

Dredd is tested on the AppVeyor, a Windows-based CI. There are still several known limitations when using Dredd on
Windows, but the intention is to support it without any compromises. Any help with fixing problems on Windows is
greatly appreciated!

Linting

Dredd uses eslint to lint the JavaScript codebase. We are using Airbnb’s styleguide rules as a baseline with several
rules disabled to allow us to have dirty post-decaffeinate code temporarily.

Linter is optional for local development to make easy prototyping and work with unpolished code, but it’s enforced
on CI level. It is recommended you integrate eslint with your favorite editor so you see violations immediately during
coding.

Changelog

Changelog is in form of GitHub Releases. Currently it’s automatically generated by Semantic Release. See above to
learn about how it works.

Documentation

Dredd’s documentation is written in Markdown using Sphinx. ReadTheDocs is used to build and publish the docu-
mentation:

• https://dredd.readthedocs.io - preferred long URL

• https://dredd.rtfd.io - preferred short URL

Source of the documentation can be found in the docs directory. To render Dredd’s documentation on your computer,
you need Python 3 and Node.js installed.

2.18. Contributing Guidelines 81

https://semver.org/
https://github.com/semantic-release/semantic-release
https://mochajs.org/
https://www.appveyor.com/
https://github.com/apiaryio/dredd/issues?utf8=%E2%9C%93&q=is%3Aissue%20is%3Aopen%20label%3AWindows%20
https://eslint.org/
https://github.com/airbnb/javascript
https://eslint.org/
https://github.com/apiaryio/dredd/releases
https://github.com/semantic-release/semantic-release
https://en.wikipedia.org/wiki/Markdown
http://www.sphinx-doc.org/
https://readthedocs.org/
https://dredd.readthedocs.io
https://dredd.rtfd.io
https://github.com/apiaryio/dredd/tree/master/docs

Dredd, Release 5.2.0

Installation and Development

1. Make sure node is an executable and npm install has been done for the Dredd directory. Extensions to the
docs are written in Node.js and Sphinx needs to have a way to execute them.

2. Get Python 3. On macOS, run brew install python3. ReadTheDocs build the docs with Python 3.5, so
make sure you have that or higher.

3. Create a virtual environment and activate it:

python3 -m venv ./venv
. ./env/bin/activate

4. Install dependencies for the docs: pip install -r docs/requirements.txt

Once installed, you may use following commands:

• npm run docs:build - Builds the documentation

• npm run docs:serve - Runs live preview of the documentation on http://127.0.0.1:8000

Installation on ReadTheDocs

The final documentation gets deployed on the ReadTheDocs. The service, however, does not support Node.js. There-
fore on ReadTheDocs, the conf.py configuration file for Sphinx runs docs/install-node.sh, which installs
Node.js locally, using nvm.

ToC and Markdown

Traditionally, Sphinx only supported the reStructuredText format. Thanks to the recommonmark project it’s possible
to use also Markdown, almost as a format native to Sphinx. Dredd’s docs are using the AutoStructify extension to be
able to specify toctree and other stuff specific to reStructuredText. The ToC is generated from the Contents section in
the docs/index.md file.

Node.js Extensions

There are some extensions hooked into the build process of Sphinx, modifying how the documents are processed.
They’re written in Node.js, because:

• It’s better to have them in the same language as Dredd.

• This way they’re able to import source files (e.g. src/options.js).

By default, Hercule is attached as an extension, which means you can use the :[Title](link.md) syntax for
including other Markdown files. All other extensions are custom and are automatically loaded from the docs/
_extensions directory.

The extension is expected to be a .js or .coffee script file, which takes docname as an argument, reads the
Markdown document from stdin, modifies it, and then prints it to stdout. When in need of templating, extensions
are expected to use the bundled ect templating engine.

82 Chapter 2. Contents

https://www.python.org/downloads/
https://readthedocs.org/
https://docs.python.org/3/library/venv.html
https://readthedocs.org/
https://github.com/creationix/nvm
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/rtfd/recommonmark
https://en.wikipedia.org/wiki/Markdown
https://recommonmark.readthedocs.io/en/latest/auto_structify.html
http://www.sphinx-doc.org/
https://www.npmjs.com/package/hercule

Dredd, Release 5.2.0

Local References

Currently the recommonmark project has still some limitations in how references to local files work. That’s why
Dredd’s docs have a custom implementation, which also checks whether the destination exists and fails the build in
case of broken link. You can use following syntax:

• [Title](link.md) to link to other documents

• [Title](link.md#section) to link to sections of other documents

Any id HTML attributes generated for headings or manual anchors are considered
as valid targets. While this feels very natural for a seasoned writer of Markdown, mind that it is much more error
prone then reStructuredText’s references.

Redirects

Redirects are documented in the docs/redirects.yml file. They need to be manually set in the ReadTheDocs
administration. It’s up to Dredd maintainers to keep the list in sync with reality.

You can use the rtd-redirects tool to programmatically upload the redirects from docs/redirects.yml to
ReadTheDocs admin interface.

Symlinked Contributing Docs

The docs/contributing.md file is a symbolic link to the .github/CONTRIBUTING.md file, where the
actual content lives. This is to be able to serve the same content also as GitHub contributing guidelines when someone
opens a Pull Request.

Coverage

Dredd strives for as much test coverage as possible. Coveralls help us to monitor how successful we are in achieving
the goal. If a Pull Request introduces drop in coverage, it won’t be accepted unless the author or reviewer provides a
good reason why an exception should be made.

The Travis CI build uses following commands to deliver coverage reports:

• npm run test:coverage - Tests Dredd and creates the ./coverage/lcov.info file

• npm run coveralls - Uploads the ./coverage/lcov.info file to Coveralls

The first mentioned command goes like this:

1. istanbul is used to instrument and cover the JavaScript code.

2. We run the tests on the instrumented code using Mocha with a special lcov reporter, which gives us information
about which lines were executed in a standard lcov format.

3. Because some integration tests execute the bin/dredd script in a subprocess, we collect the coverage stats
also in this file. The results are appended to a dedicated lcov file.

4. All lcov files are then merged into one using lcov-result-merger and sent to Coveralls.

Notes

• Hand-made combined Mocha reporter is used to achieve running tests and collecting coverage at the same time.

2.18. Contributing Guidelines 83

https://github.com/rtfd/recommonmark
http://www.sphinx-doc.org/en/stable/rest.html
https://readthedocs.org/dashboard/dredd/redirects/
https://readthedocs.org/dashboard/dredd/redirects/
https://github.com/honzajavorek/rtd-redirects
https://en.wikipedia.org/wiki/Symbolic_link
https://blog.github.com/2012-09-17-contributing-guidelines/
https://coveralls.io/github/apiaryio/dredd
https://github.com/gotwarlost/istanbul
https://github.com/mweibel/lcov-result-merger

Dredd, Release 5.2.0

• Both Dredd code and the combined reporter decide whether to collect coverage or not according to contents of
the COVERAGE_DIR environment variable, which sets the directory for temporary LCOV files created during
coverage collection. (If set, collecting takes place.)

Hacking Apiary Reporter

If you want to build something on top of the Apiary Reporter, note that it uses a public API described in following
documents:

• Apiary Tests API for anonymous test reports

• Apiary Tests API for authenticated test reports

Following data are sent over the wire to Apiary:

• Apiary Reporter Test Data

There is also one environment variable you could find useful:

• APIARY_API_URL='https://api.apiary.io' - Allows to override host of the Apiary Tests API.

Misc Tips

• When using long CLI options in tests or documentation, please always use the notation with =wherever possible.
For example, use --path=/dev/null, not --path /dev/null. While both should work, the version
with = feels more like standard GNU-style long options and it makes arrays of arguments for spawn more
readable.

• Using 127.0.0.1 (in code, tests, documentation) is preferred over localhost (see #586).

• Prefer explicit
 tags instead of two spaces at the end of the line when writing documentation in Markdown.

84 Chapter 2. Contents

https://github.com/apiaryio/dredd/blob/master/ApiaryReportingApiAnonymous.apib
https://github.com/apiaryio/dredd/blob/master/ApiaryReportingApi.apib
https://github.com/apiaryio/dredd/issues/586
https://daringfireball.net/projects/markdown/syntax#p

CHAPTER 3

Useful Links

• GitHub Repository

• Bug Tracker

• Changelog

85

https://github.com/apiaryio/dredd
https://github.com/apiaryio/dredd/issues?q=is%3Aopen
https://github.com/apiaryio/dredd/releases

Dredd, Release 5.2.0

86 Chapter 3. Useful Links

CHAPTER 4

Example Applications

• Express.js

• Ruby on Rails

87

https://github.com/apiaryio/dredd-example
https://gitlab.com/theodorton/dredd-test-rails/

Dredd, Release 5.2.0

88 Chapter 4. Example Applications

Index

Symbols
–color, -c

command line option, 36
–config

command line option, 36
–custom, -j

command line option, 36
–details, -d

command line option, 36
–dry-run, -y

command line option, 36
–header, -h

command line option, 37
–help

command line option, 37
–hookfiles, -f

command line option, 37
–hooks-worker-after-connect-wait

command line option, 37
–hooks-worker-connect-retry

command line option, 37
–hooks-worker-connect-timeout

command line option, 37
–hooks-worker-handler-host

command line option, 37
–hooks-worker-handler-port

command line option, 37
–hooks-worker-term-retry

command line option, 37
–hooks-worker-term-timeout

command line option, 37
–hooks-worker-timeout

command line option, 37
–init, -i

command line option, 37
–inline-errors, -e

command line option, 37
–language, -a

command line option, 37

–level, -l
command line option, 37

–method, -m
command line option, 37

–names, -n
command line option, 37

–only, -x
command line option, 37

–output, -o
command line option, 37

–path, -p
command line option, 38

–reporter, -r
command line option, 38

–sandbox, -b
command line option, 38

–server, -g
command line option, 38

–server-wait
command line option, 38

–silent, -q
command line option, 38

–sorted, -s
command line option, 38

–timestamp, -t
command line option, 38

–user, -u
command line option, 38

–version
command line option, 38

A
after() (built-in function), 47
afterAll() (built-in function), 47
afterEach() (built-in function), 47
api-description-document

command line option, 35
api-location

command line option, 35

89

Dredd, Release 5.2.0

B
before() (built-in function), 47
beforeAll() (built-in function), 47
beforeEach() (built-in function), 47
beforeEachValidation() (built-in function), 47
beforeValidation() (built-in function), 47

C
command line option

–color, -c, 36
–config, 36
–custom, -j, 36
–details, -d, 36
–dry-run, -y, 36
–header, -h, 37
–help, 37
–hookfiles, -f, 37
–hooks-worker-after-connect-wait, 37
–hooks-worker-connect-retry, 37
–hooks-worker-connect-timeout, 37
–hooks-worker-handler-host, 37
–hooks-worker-handler-port, 37
–hooks-worker-term-retry, 37
–hooks-worker-term-timeout, 37
–hooks-worker-timeout, 37
–init, -i, 37
–inline-errors, -e, 37
–language, -a, 37
–level, -l, 37
–method, -m, 37
–names, -n, 37
–only, -x, 37
–output, -o, 37
–path, -p, 38
–reporter, -r, 38
–sandbox, -b, 38
–server, -g, 38
–server-wait, 38
–silent, -q, 38
–sorted, -s, 38
–timestamp, -t, 38
–user, -u, 38
–version, 38
api-description-document, 35
api-location, 35

L
log() (built-in function), 47

90 Index

	Features
	Contents
	Useful Links
	Example Applications

