
UTAH Documentation
Release dev

Canonical Ltd

November 14, 2013

Contents

1 Getting Started 3

2 Table of Contents 5
2.1 Test Definition Format . 5
2.2 Creating Testsuite and Testcase Skeletons . 8
2.3 Running Tests . 9
2.4 UTAH and autopilot . 10
2.5 Frequently Asked Questions . 11
2.6 Provisioning . 12
2.7 Developing UTAH . 15

3 Indices and tables 17

i

ii

UTAH Documentation, Release dev

The Ubuntu Test Automation Harness project serves two purposes:

1. A test runner that can take a UTAH test definition, execute the tests, and provide test results. This is most
commonly referred to as the “utah client”.

2. A mechanism to provision pristine systems which can then execute a UTAH test definition using the runner.
There is provisioning support for:

• Physical x86 servers and desktops using cobbler

• Virtualized x86 servers and desktops using libvirt and KVM

• Ubuntu Touch devices using phablet-tools

Contents 1

https://launchpad.net/utah

UTAH Documentation, Release dev

2 Contents

CHAPTER 1

Getting Started

Most user’s of UTAH will be interested in creating a test suite. This requires learning about:

• How tests are defined

• How to run tests locally

Once a test works in local setting, a user might be interested in running their test end-to-end by incorporating the
provisioning component.

3

UTAH Documentation, Release dev

4 Chapter 1. Getting Started

CHAPTER 2

Table of Contents

2.1 Test Definition Format

Any binary that can run on Ubuntu, can be considered a Test Case as far as UTAH is concerned. If the right control
files are added and the test suite is structured in directories neatly, UTAH will run it.

2.1.1 Directory Structure

This is what a UTAH test suite looks like:

testsuite1/
tslist.run (or tslist.auto)
ts_control
testcase1/
tc_control
Makefile
test.c

testcase2/
tc_control
test.py

The utah-client package includes a utility called phoenix that helps create a skeleton layout.

2.1.2 master.run

A runlist is a collection of test cases that we want to run in one go. The syntax for runlists is:

- testsuites:
- name: testsuite1
fetch_method: git
fetch_location: repo

- name: testsuite2
fetch_method: bzr
fetch_location: lp:utah/dev/
include_tests: # optionally include specific tests

- t1

5

UTAH Documentation, Release dev

- t2
- t3...

exclude_tests: # optionally exclude specific tests
- st4
- st5

The only required fields are name, fetch_method and fetch_location. name must correspond to the
name of the top-level testsuite directory. fetch_method should be one of bzr, bzr-export, or git.
fetch_location should be a valid location for the supplied fetch_method. If bzr is selected as the fetch
method then fetch_location should point to a repository that is a valid testsuite, i.e. has a tslist.run, ts_control
(if needed), and test case directories. While bzr does a bzr branch in the implementation, bzr-export does
a bzr export and accepts a bzr location that can point to a sub-directory within a repository that is a valid test-
suite. If dev is selected as the fetch method then fetch_location should point to a valid testsuite directory.
The utah client will run cp -r <fetch_location> <testsuite_name>. This method is provided to al-
low testsuite/testcase authors to run the client on a development tree without needing to push changes each time to a
repository.

One caveat to note is that a fetch_method of bzr will get the revision information from the local copy of the
branched repository but bzr-export will have a small race condition between the get and revision calls since
the actual bzr repository must be queried for the revision.

include_tests will limit the testcases that are run to only those listed by this option. exclude_tests will run
all the tests in the testsuite’s tslist.run file except those listed by this option.

Test suites can be divided in categories (for our internal use, or for test cases submitted to our test case base) or they
can be in a repository anywhere.

repeating a runlist:

Sometimes a runlist may need to be executed more than once. For example, in the case you want to determine statistical
accuracy of results. A runlist supports an optional field:

repeat_count: <integer>

This value defaults to 0 which means execute the runlist once. If non-zero the runlist will be repeated that many times.
eg, a repeat_count of 2 means the runlist will be executed 3 times.

Each test suite has a default runlist and a control file that contain as follows:

2.1.3 tslist.run

- test: t1 # directory
overrides:
- run_as: nobody # user that runs the test

- test: t2 # directory/binary
overrides: # array of control properties to override
- timeout: 200 # timeout in seconds

test is the only required field in this file and must match a directory name in the testsuite tree. run_as utilizes
sudo to run the testcase as the given user. NOTE: this requires that the user running the utah client either has cached
credentials or is allowed to run commands without a password. The overrides array accepts any option from the
tc_control file. Overrides should be used sparingly since it makes more sense to adjust the options in the tc_control
file rather than here.

6 Chapter 2. Table of Contents

UTAH Documentation, Release dev

2.1.4 tslist.auto

tslist.auto is an alternative to the static nature of tslist.run. When trying to add an existing test suite to UTAH, this
option may work better.:

the contents of this file help dynamically construct the names of each
existing test case and how to run it.
utah execute’s the discovery command, and then pass each line of the output
as a cli parameter(s) to the test_cmd
-

this will result in testcases name "1", "2" and "3". The output will be
will just be "1", "2", and "3"
discovery_cmd: seq 3
the ’{}’ in test-cmd will be replaced with the output of the discovery
command.
test_cmd: echo {}

-
a more complex example that breaks up unity test for autopilot
discovery_cmd: "autopilot list unity | grep unity.tests | sed -e ’s/^[[:space:]]*//’ | cut -d. -f1,3 | sort | uniq"
test_cmd: autopilot run -v {}

2.1.5 ts_control

build_cmd: make
timeout: 300
ts_setup: tsetup/setup.sh # tsetup/setup.sh is the set up for

the whole test suite
ts_cleanup: tcleanup/cleanup.sh # clean up test suite

There are no required fields in this file.

To avoid excessive typing and repetition in runlists and control files the following rules apply:

• tslist.run‘s test is relative to the test suite. So if the suite is called sample_tests and the entry in
tslist.run for test is test_one then the path to the test folder will be sample_tests/test_one.

• tslist.run‘s overrides are the same options available in the tc_control file and take precedence over
those found in tc_control.

• ts_control is optional.

• if build_cmd, or ts_setup fails no tests in the suite will be run.

• if build_cmd, or tc_setup fails the test will not be run.

• ts_cleanup will be run whether or not ts_setup, build_cmd, or any tests fail.

• tc_cleanup will be run whether or not tc_setup, build_cmd, or the test fails.

Each test case, with all the code required for it to compile or run, lives in a directory, and contains also a control file
that includes its documentation amongst other things:

2.1.6 tc_control

build_cmd: make # or scons or build.sh
command: python test1.py a1 a2 a3 # command to run the test from within t1
description:

2.1. Test Definition Format 7

UTAH Documentation, Release dev

dependencies: coreutils
actions: |
1. Action 1
2. Action 2

expected_results: |
1. Expected result 1
2. Expected result 2

type: userland/kernel # currently unimplemented
timeout: 100
tc_setup: t1/t1 setup # in case the test case has a setup
tc_cleanup: t1/t1 cleanup # in case the test has a cleanup

In this file command, description, dependencies, actions, expected_results, and timeout are
required. command is the command to actually run the test. description is a textual description of the
test. dependencies is a list of items the test depends on. action is a list of actions the test executes and
expected_results is a list of what those actions should result in. timeout is the ammount of time the test
should complete within and is used to avoid tests that might loop indefinitely.

type currently defaults to userland and may in the future have other options as the need arises.

build_cmd can be used to build any binary test cases. tc_setup can be used to setup any needed data or files for
the test and tc_cleanup can be used to remove the data or files added by tc_setup. build_cmd, tc_setup,
and tc_cleanup are all simple shell commands similar to command.

For each test case that is a binary or a script, there will be an option to define a setup and a cleanup function if they
wish so, and it is the test code developer’s responsibility to add the right parameters to their code so that the harness
can run their setup and clean up functions.

In terms of settings precedence: The test case control file (tc_control) provides the default values for the options
available for the testcase. The overrides in tslist.run take precedence over those options in the tc_control
file.

Tests That Need Reboots

In a situation where a reboot is required. This is handled in UTAH by marking a testcase (in the tc_control file)
with:

reboot: <always, pass, never>

This will make the utah client reboot the system under test at the end of the testcase after any tc_cleanup command
has finished. Any thing that needs to be tested after the reboot should be in the testcase immediately following the
testcase marked for reboot.

The possible choices are always, pass, and never. never is the default and simply means the system under test
will not reboot. pass means the reboot will only happen if the testcase passes. always, means just that, the reboot
will happen even if the test fails.

Some things to keep in mind. The utah-client resumes by replacing /etc/rc.local with a file that will resume
the current run and will resume with the testcase following the one that triggered the reboot. Also note that in order to
have both pre- and post-reboot logging the -o flag should be used so that post-reboot output will be appended to the
pre-reboot output.

2.2 Creating Testsuite and Testcase Skeletons

The utah-client package includes a utility called phoenix that helps create a skeleton layout. It can be used like this:

8 Chapter 2. Table of Contents

UTAH Documentation, Release dev

phoenix example_testsuite example1 example2

This creates a testsuite directory example_testsuite in the current directory with two testcase directories
example1 and example2 inside. In addition a tslist.run, ts_control, and tc_control files for each testcase. A
master.run file is created as well to aid in development. NOTE: the master.run file will generally be written by a person
wishing to run a set of testsuites and/or testcases and will not be a part of a testsuite.

To add a testcase to an existing testsuite:

phoenix example_testsuite example3

This will add an example3 testcase directory to the example_testsuite testsuite as well as adding an entry to the
testsuite’s tslist.run. From within a testsuite directory this can be shortened to:

phoenix . example3

2.3 Running Tests

2.3.1 Traditional Test Execution

Executing a runlist on your local system is quite simple. The utah command is the mechanism for doing this. Its
most simple usage is done with:

NOTE: the test runner needs root support things like "reboot" or
allowing a testcase to install packages
sudo utah -r <runlist>

Where runlist can be a path to a local file or a BZR branch:

sudo utah -r /usr/share/utah/cliet/examples/pass.run
sudo utah -r lp:utah/utah/client/examples/pass.run

2.3.2 Touch Testing

The utah-client can be run directly on a touch device. If this is desired the previous section’s instructions are correct.
However, test development for Touch seems to now be more focused on writing tests that run on a host PC and then
talk the target device over adb or phablet-tools. Its even possible to write tests that can detect which mode its being
run under and then execute its steps accordingly.

Testing From Host

The run_utah_phablet.py script includes an option “–from-host” that basically launches utah on the host with AN-
DROID_SERIAL and TARGET_PREFIX exported into the tests environment. TARGET_PREFIX will be the path
to the “adb-shell” command. While ANDROID_SERIAL is the serial of the device under test. A simple tc_control
example that can work from host or target would look like:

description: uname shows an ubuntu-phablet image installed
dependencies: none
action: run uname
expected_results: command succeeds
type: userland
timeout: 60
command: $TARGET_PREFIX uname -a | grep ubuntu-phablet

2.3. Running Tests 9

UTAH Documentation, Release dev

The default touch tests should serve as an example of how to create a test suite that can run from host or target.

2.4 UTAH and autopilot

2.4.1 How do I run autopilot test cases through UTAH in a touch image?

To run autopilot test cases in a touch image through UTAH the following steps would be needed:

• Write UTAH a test suite that includes the autopilot test cases

The easiest way to write the test suite, is to use a dynamic runlist as was described in the tslist.auto section. The
reason for this is that it isn’t needed to update the test suite if some test case is added/removed/renamed in the
autopilot code. Thanks to the discovery command, there’s no need to explicitly set the list of test cases.

Note that a setup script should be added to install additional packages that might be required like, for example,
autopilot-touch.

• Write UTAH a runlist that includes the test suite

When writing a runlist, note that it’s possible to let the touch device get the test suite using the bzr-export
fetch method or do that outside of the device, push it to a /tmp location and let the device use the dev fetch
method. Currently, the recommended option is the second one because it’s more reliable.

Once the runlist is ready, the device has to be provisioned. This includes flashing the image, configuring the network
and installing the UTAH client packages:

run_utah_phablet.py --skip-install --skip-network \
-s <serial> --ppa ppa:utah/stable

After the device is provisioned, any files that are expected to be in the device like the ones for the test suite have to be
pushed and the test case can be executed:

/usr/bin/run_utah_phablet.py --skip-install --skip-network --skip-utah \
-s <serial> --results-dir <results_dir> --runlist <remote_runlist>

2.4.2 How does run_utah_phablet.py work?

Preparation

Before really running the autopilot test cases, run_utah_phablet.py performs the following actions:

• Write /usr/local/bin/utah-autorun.sh into the device. This script:

– Looks into the working directory (/etc/utah/autorun) for executable files

– Moves them one by one to /var/cache/utah/autorun/inprogress

– Runs them

– Moves them to /var/cache/utah/autorun/complete

– Renames them to a suffix with their completion timestamp

• Write /etc/init/run_utah.conf. This is an upstart job description file that launches
/usr/local/bin/utah-autorun.sh when the run_utah event is emitted and writes its output to
/tmp/utah.log.

10 Chapter 2. Table of Contents

http://bazaar.launchpad.net/~ubuntu-test-case-dev/ubuntu-test-cases/touch/files/head:/tests/default

UTAH Documentation, Release dev

• Write /usr/local/bin/utah-autopilot into the device. This is a script that makes sure that permis-
sions to /dev/uinput are correctly set and wraps autopilot to make sure it’s called using the phablet
user. To use this script, it must be explicitly called as a comment in the test suite as shown in the following
tslist.auto file from the web browser application smoke tests:

-
discovery_cmd: "autopilot list webbrowser_app | grep webbrowser_app | sed -e ’s/^.*webbrowser_app.tests.//’"
test_cmd: utah-autopilot run -v webbrowser_app.tests.{}

• Write a script to /etc/utah/autorun/01_run-utah that calls utah with the required runlist and en-
ables/disables the shell if needed.

• Launch a process to capture /var/log/syslog and write it to stdout.

• Emit the run_utah event.

Run

Once the run_utah event is emitted, is when all the preparation work comes into play. Specifically:

• The upstart job defined in /etc/init/run_utah.conf is triggered.

• /usr/local/bin/utah-autorun.sh is executed and the output written to /tmp/utah.log.

• /etc/utah/autorun/01_run-utah is found in the working directory.

• /etc/utah/autorun/01_run-utah is moved to /var/cache/utah/autorun/inprogress.

• /etc/utah/autorun/01_run-utah is executed.

• /usr/bin/utah is launched with the runlist passed to run_utah_phablet.py.

• /usr/local/bin/utah-autopilot is called for each autopilot test case found by the discovery com-
mand.

• /etc/utah/autorun/01_run-utah is moved to /var/cache/utah/autorun/complete.

Results

Once the test cases have been executed, run_utah_phablet.py takes care of the following actions:

• Pull /var/lib/utah/utah.yaml from the device to the results directory.

• Pull /tmp/utah.log from the device to the results directory.

• Pull any other result files from the device that might have been requested.

2.5 Frequently Asked Questions

2.5.1 UTAH Client FAQ

How do I install the client?

sudo apt-add-repository ppa:utah/stable
sudo apt-get update
sudo apt-get install utah-client

2.5. Frequently Asked Questions 11

http://bazaar.launchpad.net/~ubuntu-test-case-dev/ubuntu-test-cases/smoke-touch-apps/view/head:/webbrowser-app-autopilot/tslist.auto

UTAH Documentation, Release dev

Is there an example testsuite I can look at?

There is an example testsuite.

How do I run the utah-client locally?

sudo utah -r <master.run>

Why are there so many control files?

The goal of UTAH is to make sharing and reusing testsuites and testcases as easy as possible. The control files make
it possible to define testcases and testsuites fully and allow a third party using a testsuite or testcase the control they
need to run the them in their own environment and to suit their own needs.

Can I run the utah client on a local testsuite?

You can, but it must be in a supported (bzr, git) local repository.

Why doesn’t the utah client support running a testsuite in the current directory or a local copy?

In order to maintain tracability utah needs to know which version of a testsuite was run. This is the reason we require
testsuites be in a VCS. This makes troubleshooting test failures and reproducing test runs in other environments much
easier and more reliable.

How do I get help with writing or migrating my tests to UTAH?

Send an email to ubuntu-utah-devel@lists.ubuntu.com and we will be happy to help you.

2.5.2 UTAH Server FAQ

What provisioning methods are currently supported?

Virtual machines via kvm and qemu are currently supported and physical machines via cobbler. The physical
machine support is specific to the Ubuntu Engineering QA Lab setup.

Do you support provisioning LXC, existing VMS, of other methods?

Not at this time. There are plans for adding new provisioning methods and we’d be happy to review merge proposals.
The branch is in launchpad under the UTAH project.

2.6 Provisioning

UTAH is very simple in terms of testing reliably and being able to reproduce a test run in a consistent manner. A
command line specifies the test environment, type of machine to test on and a runlist. Then wait for it to finish and
analyze the results.

12 Chapter 2. Table of Contents

https://code.launchpad.net/~utah/utah/utah_ls_example
mailto:ubuntu-utah-devel@lists.ubuntu.com
https://code.launchpad.net/~utah/utah/dev

UTAH Documentation, Release dev

UTAH can drive testing on whichever machine it is running or on a different one, by provisioning it with a particular
provisioning method.

WARNING: Your machine will be modified, not to interfere with your current set-up or virtualized environ-
ment, so UTAH will create a new user called utah with sudo privileges to run the tests and have an inventory of
existing VMs that you could be interested in for running tests.

2.6.1 Installation

There are some dependencies that need to be met in order to test with VMs, in a nutshell:

sudo apt-add-repository -y ppa:utah/stable
sudo apt-get update
sudo apt-get install utah

This will install the provisioning code as well as the test runner. To install just the test runner, install the utah-client
package.

2.6.2 Provision and Test

Using a Touch Device

usage: run_utah_phablet.py [-h] [-s SERIAL] [--skip-install] [-r REVISION]
[--current] [--ubuntu-bootstrap] [--developer-mode]
[--channel CHANNEL] [--preserve] [--skip-network]
[-n NETWORK_FILE] [--skip-utah] [-b BRANCH]
[-e ENV] [--ppa PPA] [--results-dir RESULTS_DIR]
[--pull PULL] [-l RUNLIST] [-d DISCONNECTED]
[--device DEVICE] [--from-host] [--whoopsie]

Provisions a device for UTAH testing.

optional arguments:
-h, --help show this help message and exit
-s SERIAL, --serial SERIAL

Android serial ID of device
--skip-install Skip running the phablet-flash install.
-r REVISION, --revision REVISION

series/revision to install
--current Use the "current" image rather than "pending".
--ubuntu-bootstrap Use the system-images.ubuntu.com images.
--developer-mode Allow write access system-image partitions.
--channel CHANNEL Use an alternative channel for system-image.
--preserve Preserve the systems user data when flashing.
--skip-network Skip setting up wifi settings on device.
-n NETWORK_FILE, --network-file NETWORK_FILE

Specify network manager config file for wifi. If none
is specified we’ll try and use the default wifi
configuration found on host system.

--skip-utah Skip install the utah-client on device.
-b BRANCH, --branch BRANCH

Install UTAH client on device from branch.
-e ENV, --env ENV Environment variables to set for utah-client.
--ppa PPA Specify an alternative PPA for utah.

default=ppa:utah/stable
--results-dir RESULTS_DIR

2.6. Provisioning 13

UTAH Documentation, Release dev

Directory to store results in on the host.
default=/tmp

--pull PULL A file or directory to copy into the hosts’s results-
dir after UTAH has been run. This option can be
specified multiple times.

-l RUNLIST, --runlist RUNLIST
The utah runlist to execute

-d DISCONNECTED, --disconnected DISCONNECTED
Uses the supplied script to disconnect USB while UTAH
is executed.

--device DEVICE The Android device type.
--from-host Executes from the host (the runlist must talk to the

target using ADB.
--whoopsie Run whoopsie-upload-all after the test to to ensure

complete .crash files are uploaded.

Using an x86 Virtual Machine

usage: run_utah_tests.py [-h] [-m MACHINETYPE] [-v VARIANT]
[--skip-provisioning] [-s SERIES] [-t TYPE] [-a ARCH]
[-n] [-d] [-j] [-f FILES] [-o OUTDIR] [--dumplogs]
[--outputpreseed] [-i IMAGE] [-p PRESEED] [-b BOOT]
[--rewrite {all,minimal,casperonly,none}] [-k KERNEL]
[-r INITRD] [--name NAME] [-e EMULATOR] [-x XML]
[-g GIGABYTES] [--diskbus DISKBUS] [-l LOGPATH]
runlist

Provision a machine and run a runlist there.

positional arguments:
runlist URLs of runlist files to run

optional arguments:
-h, --help show this help message and exit
-m MACHINETYPE, --machinetype MACHINETYPE

Type of machine to provision (physical, virtual)
(Default is virtual)

-v VARIANT, --variant VARIANT
Variant of architecture, i.e., armel, armhf

--skip-provisioning Reuse a system that is already provisioned (name
argument must be passed)

-s SERIES, --series SERIES
Series to use for installation (lucid, precise,
quantal, raring, saucy) (Default is raring)

-t TYPE, --type TYPE Install type to use for installation (desktop, server,
mini, alternate) (Default is mini)

-a ARCH, --arch ARCH Architecture to use for installation (i386, amd64,
arm) (Default is amd64)

-n, --no-destroy Preserve VM after tests have run
-d, --debug Enable debug logging
-j, --json Enable json logging (default is YAML)
-f FILES, --files FILES

File or directory to copy from test system
-o OUTDIR, --outdir OUTDIR

Directory to store locally copied files (Default is
/var/log/utah/machine-name)

--dumplogs Write client output logs to standard out

14 Chapter 2. Table of Contents

UTAH Documentation, Release dev

--outputpreseed Copy preseed to logs directory and list as log file in
output

-i IMAGE, --image IMAGE
Image/ISO file to use for installation

-p PRESEED, --preseed PRESEED
Preseed file to use for installation

-b BOOT, --boot BOOT Boot arguments for initial installation
--rewrite {all,minimal,casperonly,none}

Set level of automatic configuration rewriting
(Default is all)

-k KERNEL, --kernel KERNEL
Kernel file to use for installation

-r INITRD, --initrd INITRD
InitRD file to use for installation

--name NAME Name of machine to provision
-e EMULATOR, --emulator EMULATOR

Emulator to use (kvm and qemu are supported, kvm will
be favored if available)

-x XML, --xml XML XML VM definition file (Default is /etc/utah/default-
vm.xml)

-g GIGABYTES, --gigabytes GIGABYTES
Size in gigabytes of virtual disk, specify more than
once for multiple disks (Default is [8])

--diskbus DISKBUS Disk bus to use for customvm installation (virtio,
sata, ide) (Default is virtio)

-l LOGPATH, --logpath LOGPATH
Directory used to write log files to

For example:
Provision a VM using a precise server image with i386 architecture and run the given runlist

run_utah_tests.py -s precise -t server -a i386 \
/usr/share/utah/client/examples/master.run

2.7 Developing UTAH

2.7.1 Provisionioning

Within the UTAH code, provisioning machines is handled by subclasses of the Machine class.

Scripts should provision machines by creating an instance of a subclass of the Inventory class, and using the
Inventory.request() method to obtain a machine. Inventories are intended to prevent resource collision.

End users not writing scripts can provision machines automatically using scripts provided by the UTAH package.
Please see the main UTAH page for that.

2.7.2 How to use custom preseeds

By default UTAH uses a preseed stored as /etc/utah/default-preseed.cfg for the provisioning of the test
machine. By giving a -p preseed_file input to UTAH a custom provisioning could be carried out.

For example, the following command would provision the test machine with quantal server image with the options
given in the contents of preseed_file and run the post installation tests given in master.run:

2.7. Developing UTAH 15

UTAH Documentation, Release dev

sudo -i -u utah /usr/share/utah/examples/run_utah_tests.py \
-i http://cdimage.ubuntu.com/ubuntu-server/daily/current/quantal-server-i386.iso \
-p /absolute_path_to/preseed-file /absolute_path_to/master.run

An example preseed for precise is given in the Ubuntu Installation Guide.

2.7.3 Coding guidelines for developers

Introduction

As UTAH codebase becomes more stable, there’s an effort to make it not only work correctly, but also look correctly.
To do that, we’re using flake8, a static code analysis tool that is a combination of both pyflakes and pep8. This way,
both syntax and PEP008 errors can be checked in a single shot.

What is PEP8?

PEP008 (Python Enhancement Proposal 8) is a document that contains a set of style guidelines for developers writ-
ten by Guido van Rossum and Barry Warsaw. It’s commonly accepted as the de facto style document for python
developers; so, unless we don’t find useful after some time, we decided to adopt it.

Are there any other guidelines?

Aside from PEP008, the Google Python Style Guide has received some attention as well. Since it differs from PEP008
at some places, this one isn’t being followed at this time, but some part of it could be used in the future.

Are there any other tools?

Another tool that has a very good reputation is pylint. While it’s a very useful tool, it’s a little bit more difficult to use
and requires some time to configure it to adapt to the policy of a given project. Anyway, it could be used in the future
as well to catch some of the errors/warnings that might not be detected by flake8.

16 Chapter 2. Table of Contents

https://help.ubuntu.com/12.04/installation-guide/example-preseed.txt
http://pypi.python.org/pypi/flake8/
https://en.wikipedia.org/wiki/Static_program_analysis
http://pypi.python.org/pypi/pyflakes
http://pypi.python.org/pypi/pep8
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
https://en.wikipedia.org/wiki/Guido_van_Rossum
http://barry.warsaw.us/
http://www.python.org/dev/peps/pep-0008/
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pylint/
http://pypi.python.org/pypi/flake8/

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

	Getting Started
	Table of Contents
	Test Definition Format
	Creating Testsuite and Testcase Skeletons
	Running Tests
	UTAH and autopilot
	Frequently Asked Questions
	Provisioning
	Developing UTAH

	Indices and tables

