Django Documentation
Release 2.2.29.dev20220411083753

Django Software Foundation

April 11, 2022

CONTENTS

1 Django documentation 1
1.1 Gettinghelp o e e e e e 1
1.2 How the documentation is organized L e 1
1.3 FrStSteps . . . o v v v e e e e e e e e 2
1.4 Themodellayer 0 e e e e e e e e 2
1.5 Theviewlayer e e e e e 2
1.6 Thetemplate layer e e e 3
17 Forms o o e e e e e e e e e 3
1.8 The development ProCess v v v i vt i e e e e e e e e e e 3
1.9 Theadmin e 3
L10 Security . . . v o o e e e e e e e e e e e e e 4
1.11 Internationalization and localization 4
1.12 Performance and optimization L 4
1.13 Geographic framework e 4
1.14 Common Web application tools e 4
1.15 Other core functionalities e 5
1.16 The Django open-source project v v v v v v v v i e e e e e e e e e e e e e 5

2 Getting started 7
2.1 Djangoataglance e 7
2.2 Quickinstall guide L e e e e e e e 13
2.3 Writing your first Django app, part 1. oL 14
2.4 Writing your first Django app, part 2. L oL e 19
2.5 Writing your first Django app, part 3. L. e 32
2.6 Writing your first Django app, part4 e e e e e e e e e e 39
2.7 Writing your first Django app, part 5. L L e e e e 44
2.8 Writing your first Django app, part 6. L. e 55
2.9 Writing your first Django app, part 7. L oL e 56
2.10 Advanced tutorial: How to write reusable appso 66
2,11 Whattoread NeXtot e e 71
2.12 Writing your first patch for Django L L e 74

3 Using Django 85
3.1 Howtoinstall Django e 85
3.2 Modelsand databases e 88
3.3 Handling HTTPrequests e e et e e e 196
34 Working withforms 240
35 Templates e e e e 290
3.6 Class-based VIEWS o e e 302
37 MIGrations v i e e e e e e e e e e e e e e e e e e e 329

3.8 Managing files e e e e e e e e 341
3.9 TestinginDjango L e e e e e e e e e e e 344
3.10 User authenticationin Django e 388
3.11 Django’s cache framework oL 439
3.12 Conditional View Processing L 458
3.13 Cryptographic signing e e 462
3.14 Sendingemail L. L e e e e e e e 464
3.15 Internationalization and localization L o 474
316 Logging o o e e e e e e e e e e 521
3.17 Pagination L. e e 532
3.18 Securityin Django oL e 537
3.19 Performance and optimization L e e e e e e e e e e 540
3.20 Serializing Django objectso e e e e e e e e 547
321 Django Settings i i e 556
322 Signals . ..o e 561
3.23 System check framework e 565
3.24 External packages L e e 568
“How-to” guides 571
4.1 Authentication using REMOTE_USER it 571
4.2 Writing custom django-admin commands Lo e e 573
4.3 Writing custom model fields L. e e e e e 578
4.4 Custom LooKups o o o e e e e e e 589
4.5 Custom template tags and filterso 595
4.6 Writing a custom Storage SyStem L i e e e e e e e e e e e e e e e e e e 612
4.7 Deploying Django L e e e 613
4.8 Upgrading Django to a newer Version v v v it e e e e e e e e e e e 631
4.9 Providing initial data formodels L L e 633
4.10 DjangoonlJython. e 635
4.11 Integrating Django with alegacy database 0oL 635
4.12 Outputting CSV with Django 636
4.13 Outputting PDFs with Django e e e e e 639
4.14 Overriding templates o e e e e e e e e e e e e e e 640
4.15 Managing static files (e.g. images, JavaScript, CSS) L oL 642
4.16 How toinstall Django on Windows Lo oL 644
4.17 Writing database migrations Lo e 646
Django FAQ 653
5.1 FAQ:General oo e e e e 653
5.2 FAQ:Installation L e 656
53 FAQ: UsingDjangoo o e 657
54 FAQ:GettingHelp o o e 658
5.5 FAQ:Databasesandmodels L e 659
5.6 FAQ: Theadmin L i e e e e e e 661
5.7 FAQ: Contributing code 663
5.8 Troubleshooting e e e e e e e e 664
API Reference 667
6.1 Applications e e 667
6.2 System check framework L e e e 673
6.3 Built-in class-based views APT L e 686
6.4 Clickjacking Protection e 737
6.5 contribpackages e 740
6.6 Cross Site Request Forgery protection 1028

6.7 Databases e e e 1036
6.8 django-admin and manage.py e e e e e e e e e e e e e e e e e 1050
6.9 Running management commands from yourcode 0oL oL 1078
6.10 Django Exceptions L. e 1079
6.11 Filehandling L e 1083
6.12 FOorms o 1091
6.13 Middleware L e e e 1158
6.14 Migration OperationS v i v v it e e e e e e e e e e e e e e e e e e 1165
6.15 Models e e 1173
6.16 Request and response objectso 1339
6.17 SchemaEditor e 1355
6.18 Settings e e e e e e e e e e e e e 1358
6.19 Signals L e e e e e e e 1409
6.20 Templates oL e e e e e e e e e e e e 1417
6.21 TemplateResponse and SimpleTemplateResponse 1485
6.22 Unicodedata e e 1489
6.23 django.urlsutility functions. L. e 1494
6.24 django.urls functions forusein URLconfs 1497
6.25 django.conf.urls functions forusein URLconfs 1499
6.26 Django Utils e 1500
6.27 Validators L e e e e e e e e 1515
6.28 Built-in Views e e e 1520
7 Meta-documentation and miscellany 1523
7.1 APIstability e e 1523
7.2 Design philosophies 1524
7.3 Third-party distributions of Django L. L e e e 1529
8 Glossary 1531
9 Release notes 1533
9.1 Finalreleases e e e e e e e 1533
0.2 Security releases e e e e e 1887
10 Django internals 1915
10.1 Contributingto Django 1915
10.2 Mailing lists e 1963
10.3 Organization of the Django Project e 1965
10.4 Django’s security policies o e e e e e e e e e e e 1969
10.5 Django’srelease process oot e e e e e e e e e e 1972
10.6 Django Deprecation Timeline 0 1975
10.7 The Django source code repository o v v v vt it e e e e 1988
10.8 How is Django Formed? e e e e e 1991
11 Indices, glossary and tables 1999
Python Module Index 2001
Index 2003

CHAPTER
ONE

DJANGO DOCUMENTATION

Everything you need to know about Django.

1.1 Getting help

Having trouble? We’d like to help!
e Try the FAQ — it’s got answers to many common questions.
* Looking for specific information? Try the genindex, modindex or the detailed table of contents.
* Search for information in the archives of the django-users mailing list, or post a question.
* Ask a question in the #django IRC channel.

* Report bugs with Django in our ticket tracker.

1.2 How the documentation is organized

Django has a lot of documentation. A high-level overview of how it’s organized will help you know where to look for
certain things:

* Tutorials take you by the hand through a series of steps to create a Web application. Start here if you’re new to
Django or Web application development. Also look at the “First steps” below.

* Topic guides discuss key topics and concepts at a fairly high level and provide useful background information
and explanation.

* Reference guides contain technical reference for APIs and other aspects of Django’s machinery. They describe
how it works and how to use it but assume that you have a basic understanding of key concepts.

* How-to guides are recipes. They guide you through the steps involved in addressing key problems and use-cases.
They are more advanced than tutorials and assume some knowledge of how Django works.

https://groups.google.com/d/forum/django-users
irc://irc.libera.chat/django
https://code.djangoproject.com/

Django Documentation, Release 2.2.29.dev20220411083753

1.3

First steps

Are you new to Django or to programming? This is the place to start!

1.4

From scratch: Overview | Installation

Tutorial: Part 1: Requests and responses | Part 2: Models and the admin site | Part 3: Views and templates |
Part 4: Forms and generic views | Part 5: Testing | Part 6: Static files | Part 7: Customizing the admin site

Advanced Tutorials: How fo write reusable apps | Writing your first patch for Django

The model layer

Django provides an abstraction layer (the “models”) for structuring and manipulating the data of your Web application.
Learn more about it below:

1.5

Models: Introduction to models | Field types | Indexes | Meta options | Model class

QuerySets: Making queries | QuerySet method reference | Lookup expressions

Model instances: I/nstance methods | Accessing related objects

Migrations: Introduction to Migrations | Operations reference | SchemaEditor | Writing migrations

Advanced: Managers | Raw SQL | Transactions | Aggregation | Search | Custom fields | Multiple databases |
Custom lookups | Query Expressions | Conditional Expressions | Database Functions

Other: Supported databases | Legacy databases | Providing initial data | Optimize database access | PostgreSQL
specific features

The view layer

Django has the concept of “views” to encapsulate the logic responsible for processing a user’s request and for returning
the response. Find all you need to know about views via the links below:

The basics: URLconfs | View functions | Shortcuts | Decorators
Reference: Built-in Views | Request/response objects | TemplateResponse objects
File uploads: Overview | File objects | Storage API | Managing files | Custom storage

Class-based views: Overview | Built-in display views | Built-in editing views | Using mixins | API reference
Flattened index

Advanced: Generating CSV' | Generating PDF

Middleware: Overview | Built-in middleware classes

Chapter 1. Django documentation

Django Documentation, Release 2.2.29.dev20220411083753

1.6 The template layer

The template layer provides a designer-friendly syntax for rendering the information to be presented to the user. Learn
how this syntax can be used by designers and how it can be extended by programmers:

* The basics: Overview
* For designers: Language overview | Built-in tags and filters | Humanization

* For programmers: 7emplate API | Custom tags and filters

1.7 Forms

Django provides a rich framework to facilitate the creation of forms and the manipulation of form data.
* The basics: Overview | Form API | Built-in fields | Built-in widgets

* Advanced: Forms for models | Integrating media | Formsets | Customizing validation

1.8 The development process

Learn about the various components and tools to help you in the development and testing of Django applications:
o Settings: Overview | Full list of settings
* Applications: Overview
* Exceptions: Overview
¢ django-admin and manage.py: Overview | Adding custom commands
e Testing: Introduction | Writing and running tests | Included testing tools | Advanced topics

* Deployment: Overview | WSGI servers | Deploying static files | Tracking code errors by email | Deployment
checklist

1.9 The admin

Find all you need to know about the automated admin interface, one of Django’s most popular features:
* Admin site
* Admin actions

e Admin documentation generator

1.6. The template layer 3

Django Documentation, Release 2.2.29.dev20220411083753

1.10 Security

Security is a topic of paramount importance in the development of Web applications and Django provides multiple
protection tools and mechanisms:

* Security overview

* Disclosed security issues in Django

* Clickjacking protection

* Cross Site Request Forgery protection
* Cryptographic signing

o Security Middleware

1.11 Internationalization and localization

Django offers a robust internationalization and localization framework to assist you in the development of applications
for multiple languages and world regions:

* Overview | Internationalization | Localization | Localized Web Ul formatting and form input

e Time zones

1.12 Performance and optimization

There are a variety of techniques and tools that can help get your code running more efficiently - faster, and using fewer
system resources.

* Performance and optimization overview

1.13 Geographic framework

GeoDjango intends to be a world-class geographic Web framework. Its goal is to make it as easy as possible to build
GIS Web applications and harness the power of spatially enabled data.

1.14 Common Web application tools

Django offers multiple tools commonly needed in the development of Web applications:

¢ Authentication: Overview | Using the authentication system | Password management | Customizing authentica-
tion | API Reference

* Caching

e Logging

o Sending emails

* Syndication feeds (RSS/Atom)

e Pagination

4 Chapter 1. Django documentation

Django Documentation, Release 2.2.29.dev20220411083753

* Messages framework

* Serialization

e Sessions

o Sitemaps

o Static files management

e Data validation

1.15 Other core functionalities

Learn about some other core functionalities of the Django framework:
* Conditional content processing
» Content types and generic relations
* Flatpages
* Redirects
* Signals
o System check framework
e The sites framework

* Unicode in Django

1.16 The Django open-source project

Learn about the development process for the Django project itself and about how you can contribute:

o Community: How fo get involved | The release process | Team organization | The Django source code repository
| Security policies | Mailing lists

¢ Design philosophies: Overview

e Documentation: About this documentation

Third-party distributions: Overview

¢ Django over time: AP/ stability | Release notes and upgrading instructions | Deprecation Timeline

1.15. Other core functionalities 5

Django Documentation, Release 2.2.29.dev20220411083753

6 Chapter 1. Django documentation

CHAPTER
TWO

GETTING STARTED

New to Django? Or to Web development in general? Well, you came to the right place: read this material to quickly
get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common Web-
development tasks fast and easy. Here’s an informal overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this isn’t
intended to be a tutorial or reference — but we’ve got both! When you’re ready to start a project, you can start with the
tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you describe your
database layout in Python code.

The data-model syntax ofters many rich ways of representing your models — so far, it’s been solving many years’ worth
of database-schema problems. Here’s a quick example:

Listing 1: mysite/news/models.py

from django.db import models

class Reporter(models.Model):
full_name = models.CharField(max_length=70)

def __str__():
return .full_name

class Article(models.Model):
pub_date = models.DateField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

def __str__():
return .headline

https://en.wikipedia.org/wiki/Object-relational_mapping

Django Documentation, Release 2.2.29.dev20220411083753

2.1.2 Install it

Next, run the Django command-line utilities to create the database tables automatically:

$ python manage.py makemigrations
$ python manage.py migrate

The makemigrations command looks at all your available models and creates migrations for whichever tables don’t
already exist. migrate runs the migrations and creates tables in your database, as well as optionally providing much
richer schema control.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code generation
necessary:

>>> from news.models import Article, Reporter

>>> Reporter.objects.all()
<QuerySet []1>

>>> r = Reporter(full_name=)

>>> r.save()

>>> r.id
1

>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

>>> r.full_name

>>> Reporter.objects.get(id=1)
<Reporter: John Smith>

>>> Reporter.objects.get(full_name__startswith=)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__contains=)

<Reporter: John Smith>
>>> Reporter.objects.get(id=2)
Traceback (most recent call last):

DoesNotExist: Reporter matching query does not exist.

(continues on next page)

8 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> from datetime import date

>>> a = Article(pub_date=date.today(), headline=
. content= , reporter=r)

>>> a.save()

>>> Article.objects.all()
<QuerySet [<Article: Django is cool>]>

>>> r = a.reporter
>>> r.full_name

>>> r.article_set.all()
<QuerySet [<Article: Django is cool>]>

>>> Article.objects.filter(reporter__full_name__startswith=
<QuerySet [<Article: Django is cool>]>

>>> r.full_name =
>>> r.save()

>>> r.delete()

2.1.4 A dynamic admin interface: it’s not just scaffolding — it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administrative inter-
face — a website that lets authenticated users add, change and delete objects. It’s as easy as registering your model in

the admin site:

Listing 2: mysite/news/models.py

from django.db import models

class Article(models.Model):
pub_date = models.DateField()
headline = models.CharField(max_length=200)
content = models.TextField()

reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

2.1. Django at a glance

Django Documentation, Release 2.2.29.dev20220411083753

Listing 3: mysite/news/admin.py

from django.contrib import admin
from . import models

admin.site.register(models.Article)

The philosophy here is that your site is edited by a staff, or a client, or maybe just you — and you don’t want to have to
deal with creating backend interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as fast as
possible, so your staff (or clients) can start populating data. Then, develop the way data is presented to the public.

2.1.5 Design your URLs
A clean, elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and doesn’t put any cruft in URLSs, like . php or .asp.

To design URLS for an app, you create a Python module called a URLconf. A table of contents for your app, it contains
a simple mapping between URL patterns and Python callback functions. URLconfs also serve to decouple URLSs from
Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

Listing 4: mysite/news/urls.py

from django.urls import path
from . import views

urlpatterns = [

path(, Views.year_archive),
path(, views.month_archive),
path(, views.article_detail),

]

The code above maps URL paths to Python callback functions (“views”). The path strings use parameter tags to
“capture” values from the URLs. When a user requests a page, Django runs through each path, in order, and stops at
the first one that matches the requested URL. (If none of them matches, Django calls a special-case 404 view.) This is
blazingly fast, because the paths are compiled into regular expressions at load time.

Once one of the URL patterns matches, Django calls the given view, which is a Python function. Each view gets passed
a request object — which contains request metadata — and the values captured in the pattern.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django would call the function news.views.
article_detail(request, year=2005, month=5, pk=39323).

10 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

2.1.6 Write your views

Each view is responsible for doing one of two things: Returning an Ht tpResponse object containing the content for
the requested page, or raising an exception such as Ht tp404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with the retrieved
data. Here’s an example view for year_archive from above:

Listing 5: mysite/news/views.py

from django.shortcuts import render
from .models import Article

def year_archive(request, year):
a_list = Article.objects.filter(pub_date__year=year)
context = {'year': year, 'article_list': a_list}
return render(request, 'news/year_archive.html', context)

This example uses Django’s template system, which has several powerful features but strives to stay simple enough for
non-programmers to use.

2.1.7 Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your Django
settings, you specify a list of directories to check for templates with DIRS. If a template doesn’t exist in the first directory,
it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that might look like:

Listing 6: mysite/news/templates/news/year_archive.html

extends "base.html"
block title %}Articles for year endblock

block content
<hl>Articles for year }j</hl>

for article in article_list
<p> article.headline </p>

<p>By article.reporter.full_name </p>
<p>Published article.pub_date|date:"F j, V" }}</p>
endfor

endblock

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the article’s
headline attribute.” But dots aren’t used only for attribute lookup. They also can do dictionary-key lookup, index lookup
and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style “pipe” (the “|” character). This is called a tem-
plate filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python datetime object
in the given format (as found in PHP’s date function).

2.1. Django at a glance 11

Django Documentation, Release 2.2.29.dev20220411083753

You can chain together as many filters as you’d like. You can write custom template filters. You can write custom
template tags, which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the {% extends "base.html" %} does. It
means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks with the following
blocks.” In short, that lets you dramatically cut down on redundancy in templates: each template has to define only
what’s unique to that template.

Here’s what the “base.html” template, including the use of szatic files, might look like:

Listing 7: mysite/templates/base.html

load static
<html>
<head>
<title> block title endblock %}</title>
</head>
<body>
<img src=" static "images/sitelogo.png"
block content endblock
</body>
</html>

alt="Logo">

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child templates to
fill. This makes a site redesign as easy as changing a single file — the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child templates. Django’s
creators have used this technique to create strikingly different mobile versions of sites — simply by creating a new base
template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s template system
is particularly well-integrated with Django’s model layer, nothing forces you to use it. For that matter, you don’t have
to use Django’s database API, either. You can use another database abstraction layer, you can read XML files, you can
read files off disk, or anything you want. Each piece of Django — models, views, templates — is decoupled from the
next.

2.1.8 This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful features:
* A caching framework that integrates with memcached or other backends.
* A syndication framework that makes creating RSS and Atom feeds as easy as writing a small Python class.
* More attractive automatically-generated admin features — this overview barely scratched the surface.

The next obvious steps are for you to download Django, read the tutorial and join the community. Thanks for your
interest!

12 Chapter 2. Getting started

https://www.djangoproject.com/download/
https://www.djangoproject.com/community/

Django Documentation, Release 2.2.29.dev20220411083753

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers all the
possibilities; this guide will guide you to a simple, minimal installation that’ll work while you walk through the intro-
duction.

2.2.1 Install Python

Being a Python Web framework, Django requires Python. See What Python version can I use with Django? for details.
Python includes a lightweight database called SQLite so you won’t need to set up a database just yet.

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s package man-
ager.

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 3.x.y

[GCC 4.x] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

2.2.2 Set up a database

This step is only necessary if you’d like to work with a “large” database engine like PostgreSQL, MySQL, or Oracle.
To install such a database, consult the database installation information.

2.2.3 Install Django

You’ve got three easy options to install Django:
e Install an official release. This is the best approach for most users.
* Install a version of Django provided by your operating system distribution.

e Install the latest development version. This option is for enthusiasts who want the latest-and-greatest features
and aren’t afraid of running brand new code. You might encounter new bugs in the development version, but
reporting them helps the development of Django. Also, releases of third-party packages are less likely to be
compatible with the development version than with the latest stable release.

Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in development
version. That phrase flags features that are only available in development versions of Django, and they likely won’t
work with an official release.

2.2. Quick install guide 13

https://sqlite.org/
https://www.python.org/downloads/

Django Documentation, Release 2.2.29.dev20220411083753

2.2.4 Verifying
To verify that Django can be seen by Python, type python from your shell. Then at the Python prompt, try to import
Django:

>>> import django
>>> print(django.get_version())
2.2

You may have another version of Django installed.

2.2.5 That’s it!

That’s it — you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.
Throughout this tutorial, we’ll walk you through the creation of a basic poll application.
It’1l consist of two parts:

* A public site that lets people view polls and vote in them.

* An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which version by running the
following command in a shell prompt (indicated by the $ prefix):

$ python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No module
named django”.

This tutorial is written for Django 2.2, which supports Python 3.5 and later. If the Django version doesn’t match, you
can refer to the tutorial for your version of Django by using the version switcher at the bottom right corner of this page,
or update Django to the newest version. If you’re using an older version of Python, check What Python version can I
use with Django? to find a compatible version of Django.

See How to install Django for advice on how to remove older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on
irc.libera.chat to chat with other Django users who might be able to help.

14 Chapter 2. Getting started

irc://irc.libera.chat/django
irc://irc.libera.chat/django

Django Documentation, Release 2.2.29.dev20220411083753

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-generate
some code that establishes a Django project — a collection of settings for an instance of Django, including database
configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ django-admin startproject mysite

This will create a mysite directory in your current directory. If it didn’t work, see Problems running django-admin.

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means you
should avoid using names like django (which will conflict with Django itself) or test (which conflicts with a built-in
Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks), you’re probably used to putting code under
the Web server’s document root (in a place such as /var/www). With Django, you don’t do that. It’s not a good idea to
put any of this Python code within your Web server’s document root, because it risks the possibility that people may
be able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

Let’s look at what startproject created:

mysite/
manage.py
mysite/
__init__.py
settings.py
urls.py
wsgi.py

These files are:

The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you can
rename it to anything you like.

manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage. py in django-admin and manage.py.

The inner mysite/ directory is the actual Python package for your project. Its name is the Python package name
you’ll need to use to import anything inside it (e.g. mysite.urls).

mysite/__init__.py: An empty file that tells Python that this directory should be considered a Python pack-
age. If you’re a Python beginner, read more about packages in the official Python docs.

mysite/settings.py: Settings/configuration for this Django project. Django settings will tell you all about
how settings work.

mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered
site. You can read more about URLs in URL dispatcher.

mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See How o deploy
with WSGI for more details.

2.3. Writing your first Django app, part 1 15

https://docs.python.org/3/tutorial/modules.html#tut-packages

Django Documentation, Release 2.2.29.dev20220411083753

2.3.2 The development server

Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already, and run the
following commands:

$ python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...
System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.

April 11, 2022 - 15:50:53

Django version 2.2, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note: Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server — such as
Apache — until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s intended only
for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Congratulations!”
page, with a rocket taking off. It worked!

Changing the port
By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For example, to listen on all available public IPs
(which is useful if you are running Vagrant or want to show off your work on other computers on the network), use:

$ python manage.py runserver 0:8000

0 is a shortcut for 0.0.0.0. Full docs for the development server can be found in the runserver reference.

Automatic reloading of runserver

The development server automatically reloads Python code for each request as needed. You don’t need to restart the
server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

16 Chapter 2. Getting started

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Django Documentation, Release 2.2.29.dev20220411083753

2.3.3 Creating the Polls app

Now that your environment — a “project” — is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django comes
with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What'’s the difference between a project and an app? An app is a Web application that does something — e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular website. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app right next to your manage . py
file so that it can be imported as its own top-level module, rather than a submodule of mysite.

To create your app, make sure you're in the same directory as manage.py and type this command:

$ python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py

models.py
tests.py
views.py

This directory structure will house the poll application.

2.3.4 Write your first view
Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

Listing 8: polls/views.py

from django.http import HttpResponse

def index(request):
return HttpResponse()

This is the simplest view possible in Django. To call the view, we need to map it to a URL - and for this we need a
URLconf.

To create a URLconf in the polls directory, create a file called urls.py. Your app directory should now look like:

polls/
__init__.py

(continues on next page)

2.3. Writing your first Django app, part 1 17

https://docs.python.org/3/tutorial/modules.html#tut-searchpath

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

admin.py
apps.py
migrations/
__init__.py
models.py
tests.py
urls.py
views.py

In the polls/urls.py file include the following code:

Listing 9: polls/urls.py

from django.urls import path
from . import views
urlpatterns = [

path('', views.index, name=),

]

The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for
django.urls.include and insert an include () in the urlpatterns list, so you have:

Listing 10: mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path(, include()),
path(, admin.site.urls),

]

The include () function allows referencing other URLconfs. Whenever Django encounters include (), it chops off
whatever part of the URL matched up to that point and sends the remaining string to the included URLconf for further
processing.

The idea behind incIude () is to make it easy to plug-and-play URLs. Since polls are in their own URLconf (polls/
urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any other path root,
and the app will still work.

When to use include()

You should always use include () when you include other URL patterns. admin.site.urls is the only exception to
this.

You have now wired an index view into the URLconf. Verify it’s working with the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You're at the polls index.”,
which you defined in the index view.

18 Chapter 2. Getting started

http://localhost:8000/polls/

Django Documentation, Release 2.2.29.dev20220411083753

Page not found?

If you get an error page here, check that you’re going to http://localhost:8000/polls/ and not http://localhost:8000/.

The path () function is passed four arguments, two required: route and view, and two optional: kwargs, and name.
At this point, it’s worth reviewing what these arguments are for.

path() argument: route

route is a string that contains a URL pattern. When processing a request, Django starts at the first pattern in
urlpatterns and makes its way down the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example, in a request to https://www.
example.com/myapp/, the URLconf will look for myapp/. In a request to https://www.example.com/myapp/?
page=3, the URLconf will also look for myapp/.

path() argument: view

When Django finds a matching pattern, it calls the specified view function with an Ht tpRequest object as the first
argument and any “captured” values from the route as keyword arguments. We’ll give an example of this in a bit.

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We aren’t going to use this feature of
Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django, especially from within templates. This
powerful feature allows you to make global changes to the URL patterns of your project while only touching a single
file.

When you’re comfortable with the basic request and response flow, read part 2 of this tutorial to start working with the
database.

2.4 Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off. We’ll setup the database, create your first model, and get a quick intro-
duction to Django’s automatically-generated admin site.

2.4. Writing your first Django app, part 2 19

http://localhost:8000/polls/
http://localhost:8000/

Django Documentation, Release 2.2.29.dev20220411083753

2.4.1 Database setup

Now, open up mysite/settings.py. It’s a normal Python module with module-level variables representing Django
settings.

By default, the configuration uses SQLite. If you’re new to databases, or you're just interested in trying Django, this is
the easiest choice. SQLite is included in Python, so you won’t need to install anything else to support your database.
When starting your first real project, however, you may want to use a more scalable database like PostgreSQL, to avoid
database-switching headaches down the road.

If you wish to use another database, install the appropriate database bindings and change the following keys in the
DATABASES 'default' item to match your database connection settings:

e ENGINE —Either 'django.db.backends.sqlite3’', 'django.db.backends.postgresql’, 'django.db.
backends.mysql', or 'django.db.backends.oracle'. Other backends are also available.

e NAME — The name of your database. If you're using SQLite, the database will be a file on your computer; in
that case, NAME should be the full absolute path, including filename, of that file. The default value, os.path.
join(BASE_DIR, 'db.sqlite3"), will store the file in your project directory.

If you are not using SQLite as your database, additional settings such as USER, PASSWORD, and HOST must be added.
For more details, see the reference documentation for DATABASES.

For databases other than SQLite

If you're using a database besides SQLite, make sure you’ve created a database by this point. Do that with “CREATE
DATABASE database_name;” within your database’s interactive prompt.

Also make sure that the database user provided in mysite/settings.py has “create database” privileges. This allows
automatic creation of a rest database which will be needed in a later tutorial.

If you’re using SQLite, you don’t need to create anything beforehand - the database file will be created automatically
when it is needed.

While you’re editing mysite/settings.py, set TIME_ZONE to your time zone.

Also, note the INSTALLED_APPS setting at the top of the file. That holds the names of all Django applications that are
activated in this Django instance. Apps can be used in multiple projects, and you can package and distribute them for
use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:
e django.contrib.admin — The admin site. You’ll use it shortly.
e django.contrib.auth — An authentication system.
e django.contrib.contenttypes — A framework for content types.
e django.contrib.sessions — A session framework.
e django.contrib.messages — A messaging framework.
e django.contrib.staticfiles — A framework for managing static files.
These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though, so we need to create the tables in the
database before we can use them. To do that, run the following command:

$ python manage.py migrate

20 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

The migrate command looks at the INSTALLED_APPS setting and creates any necessary database tables according to
the database settings in your mysite/settings.py file and the database migrations shipped with the app (we’ll cover
those later). You’ll see a message for each migration it applies. If you're interested, run the command-line client for
your database and type \dt (PostgreSQL), SHOW TABLES; (MySQL), .schema (SQLite), or SELECT TABLE_NAME
FROM USER_TABLES; (Oracle) to display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs them. If you
don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from INSTALLED_APPS before
running migrate. The migrate command will only run migrations for apps in INSTALLED_APPS.

2.4.2 Creating models

Now we’ll define your models — essentially, your database layout, with additional metadata.

Philosophy

A model is the single, definitive source of truth about your data. It contains the essential fields and behaviors of the data
you’re storing. Django follows the DRY Principle. The goal is to define your data model in one place and automatically
derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are entirely derived from your models
file, and are essentially just a history that Django can roll through to update your database schema to match your current
models.

In our simple poll app, we’ll create two models: Question and Choice. A Question has a question and a publication
date. A Choice has two fields: the text of the choice and a vote tally. Each Choice is associated with a Question.

These concepts are represented by simple Python classes. Edit the polls/models.py file so it looks like this:

Listing 11: polls/models.py

from django.db import models

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published")

class Choice(models.Model):
question = models.ForeignKey(Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

The code is straightforward. Each model is represented by a class that subclasses django.db.models.Model. Each
model has a number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class —e.g., CharField for character fields and DateTimeField
for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in machine-friendly format.
You’ll use this value in your Python code, and your database will use it as the column name.

2.4. Writing your first Django app, part 2 21

Django Documentation, Release 2.2.29.dev20220411083753

You can use an optional first positional argument to a Field to designate a human-readable name. That’s used in a
couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided, Django will use
the machine-readable name. In this example, we’ve only defined a human-readable name for Question.pub_date.
For all other fields in this model, the field’s machine-readable name will suffice as its human-readable name.

Some Field classes have required arguments. CharField, for example, requires that you give it a max_length.
That’s used not only in the database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in this case, we’ve set the default value of votes to 0.

Finally, note a relationship is defined, using ForeignKey. That tells Django each Choice is related to a single
Question. Django supports all the common database relationships: many-to-one, many-to-many, and one-to-one.

2.4.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:
* Create a database schema (CREATE TABLE statements) for this app.
* Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps, because they don’t
have to be tied to a given Django installation.

To include the app in our project, we need to add a reference to its configuration class in the INSTALLED_APPS setting.
The PollsConfig class is in the polls/apps.py file, so its dotted path is 'polls.apps.PollsConfig'. Edit the
mysite/settings.py file and add that dotted path to the INSTALLED_APPS setting. It'll look like this:

Listing 12: mysite/settings.py

INSTALLED_APPS = [
'polls.apps.PollsConfig’,
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’',
'django.contrib.messages’,
'django.contrib.staticfiles"',

Now Django knows to include the polls app. Let’s run another command:

$ python manage.py makemigrations polls

You should see something similar to the following:

Migrations for 'polls':
polls/migrations/0001_initial.py:
- Create model Choice
- Create model Question
- Add field question to choice

22 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

By running makemigrations, you're telling Django that you’ve made some changes to your models (in this case,
you’ve made new ones) and that you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your database schema) - they’re just files on disk.
You can read the migration for your new model if you like; it’s the file polls/migrations/0001_initial.py. Don’t
worry, you're not expected to read them every time Django makes one, but they’re designed to be human-editable in
case you want to manually tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema automatically - that’s called
migrate, and we’ll come to it in a moment - but first, let’s see what SQL that migration would run. The sqlmigrate
command takes migration names and returns their SQL:

$ python manage.py sqlmigrate polls 0001

You should see something similar to the following (we’ve reformatted it for readability):

BEGIN;
CREATE TABLE (
NOT NULL PRIMARY KEY,
(200) NOT NULL,
NOT NULL
);
CREATE TABLE (
NOT NULL PRIMARY KEY,
(200) NOT NULL,
timestamp with time zone NOT NULL
)
ALTER TABLE ADD COLUMN NOT NULL;
ALTER TABLE ALTER COLUMN DROP DEFAULT;
CREATE INDEX ON ();
ALTER TABLE
ADD CONSTRAINT
FOREIGN KEY ()
REFERENCES ()

DEFERRABLE INITIALLY DEFERRED;

COMMIT;

Note the following:

* The exact output will vary depending on the database you are using. The example above is generated for Post-
greSQL.

* Table names are automatically generated by combining the name of the app (polls) and the lowercase name of
the model — question and choice. (You can override this behavior.)

* Primary keys (IDs) are added automatically. (You can override this, too.)

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 2.2.29.dev20220411083753

By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as well.)

The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the DEFERRABLE
parts; that’s just telling PostgreSQL to not enforce the foreign key until the end of the transaction.

It’s tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),
serial (PostgreSQL), or integer primary key autoincrement (SQLite) are handled for you automati-
cally. Same goes for the quoting of field names — e.g., using double quotes or single quotes.

The sqlmigrate command doesn’t actually run the migration on your database - it just prints it to the screen so
that you can see what SQL Django thinks is required. It’s useful for checking what Django is going to do or if
you have database administrators who require SQL scripts for changes.

If you're interested, you can also run python manage.py check; this checks for any problems in your project without
making migrations or touching the database.

Now, run migrate again to create those model tables in your database:

$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:

Rendering model states... DONE

Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are applied
using a special table in your database called django_migrations) and runs them against your database - essentially,
synchronizing the changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need
to delete your database or tables and make new ones - it specializes in upgrading your database live, without losing data.
We’ll cover them in more depth in a later part of the tutorial, but for now, remember the three-step guide to making
model changes:

* Change your models (in models. py).
* Run python manage.py makemigrations to create migrations for those changes
* Run python manage.py migrate to apply those changes to the database.

The reason that there are separate commands to make and apply migrations is because you’ll commit migrations to
your version control system and ship them with your app; they not only make your development easier, they’re also
usable by other developers and in production.

Read the django-admin documentation for full information on what the manage . py utility can do.

2.4.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To invoke the
Python shell, use this command:

$ python manage.py shell

We’re using this instead of simply typing “python”, because manage.py sets the DJANGO_SETTINGS_MODULE envi-
ronment variable, which gives Django the Python import path to your mysite/settings.py file.

Once you’re in the shell, explore the database API:

24 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

>>> from polls.models import Choice, Question # Import the model classes we just wrote.

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

Create a new Question.

Support for time zones is enabled in the default settings file, so

Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.

>>> from django.utils import timezone

>>> @ = Question(question_text="lhat's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.
>>> q.save()

Now it has an ID.
>>> q.id
1

Access model field values via Python attributes.

>>> g.question_text

"What's new?"

>>> q.pub_date

datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save().
>>> (q.question_text = "What's up?"”
>>> q.save()

objects.all() displays all the questions in the database.
>>> Question.objects.all()
<QuerySet [<Question: Question object (1)>]>

Wait a minute. <Question: Question object (1)> isn’t a helpful representation of this object. Let’s fix that by
editing the Question model (in the polls/models.py file) and adding a __str__ () method to both Question and
Choice:

Listing 13: polls/models.py

from django.db import models

class Question(models.Model):
def __str__(self):
return self.question_text

class Choice(models.Model):
def __str__(self):
return self.choice_text

It’s important to add __str__ () methods to your models, not only for your own convenience when dealing with the
interactive prompt, but also because objects’ representations are used throughout Django’s automatically-generated

2.4. Writing your first Django app, part 2 25

Django Documentation, Release 2.2.29.dev20220411083753

admin.

Let’s also add a custom method to this model:

Listing 14: polls/models.py

import datetime

from django.db import models
from django.utils import timezone

class Question(models.Model):
...
def was_published_recently(self):
return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

Note the addition of import datetime and from django.utils import timezone, to reference Python’s stan-
dard datetime module and Django’s time-zone-related utilities in django.utils. timezone, respectively. If you
aren’t familiar with time zone handling in Python, you can learn more in the time zone support docs.

Save these changes and start a new Python interactive shell by running python manage.py shell again:

>>> from polls.models import Choice, Question

Make sure our __str__() addition worked.

>>> Question.objects.all()
<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.

>>> Question.objects.filter(id=1)

<QuerySet [<Question: What's up?>]>

>>> Question.objects.filter(question_text__startswith='What")
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.

>>> from django.utils import timezone

>>> current_year = timezone.now().year

>>> Question.objects.get(pub_date__year=current_year)
<Question: What's up?>

Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get(id=2)
Traceback (most recent call last):

DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.

The following is identical to Question.objects.get(id=1).

>>> Question.objects.get(pk=1)

<Question: What's up?>

Make sure our custom method worked.

(continues on next page)

26 Chapter 2. Getting started

https://docs.python.org/3/library/datetime.html#module-datetime

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> @ = Question.objects.get(pk=1)
>>> q.was_published_recently()
True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation

(e.g. a question's choice) which can be accessed via the API.

>>> (= Question.objects.get(pk=1)

Display any choices from the related object set -- none so far.
>>> q.choice_set.all()
<QuerySet []>

Create three choices.

>>> .choice_set.create(choice_text="Not much', votes=0)

<Choice: Not much>

>>> (.choice_set.create(choice_text='The sky', votes=0)

<Choice: The sky>

>>> ¢ = g.choice_set.create(choice_text='Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.

>>> ¢.choice_set.all()

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> q.choice_set.count()

3

The API automatically follows relationships as far as you need.

Use double underscores to separate relationships.

This works as many levels deep as you want; there's no limit.

Find all Choices for any question whose pub_date is in this year

(reusing the 'current_year' variable we created above).

>>> Choice.objects.filter(question__pub_date__year=current_year)

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.
>>> ¢ = q.choice_set.filter(choice_text__startswith='Just hacking')
>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double underscores
to perform field lookups via the API, see Field lookups. For full details on the database API, see our Database API
reference.

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 2.2.29.dev20220411083753

2.4.5 Introducing the Django Admin

Philosophy

Generating admin sites for your staff or clients to add, change, and delete content is tedious work that doesn’t require
much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the
“public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed
on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the following command:

$ python manage.py createsuperuser

Enter your desired username and press enter.

Username: admin

You will then be prompted for your desired email address:

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as a confir-
mation of the first.

Password: #*®¥¥¥¥¥kisk
Password (again): Fededededededehd
Superuser created successfully.

Start the development server

The Django admin site is activated by default. Let’s start the development server and explore it.

If the server is not running start it like so:

$ python manage.py runserver

Now, open a Web browser and go to “/admin/” on your local domain — e.g., http://127.0.0.1:8000/admin/. You should
see the admin’s login screen:

28 Chapter 2. Getting started

http://127.0.0.1:8000/admin/

Django Documentation, Release 2.2.29.dev20220411083753

Django administration

Username;

Password:

Login

Since translation is turned on by default, the login screen may be displayed in your own language, depending on your
browser’s settings and if Django has a translation for this language.

Enter the admin site

Now, try logging in with the superuser account you created in the previous step. You should see the Django admin
index page:

DJ ango a dministration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG QUT

Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent Actions

Groups + Add # Change

Users <+ Add # Change My Actions

MNone available

You should see a few types of editable content: groups and users. They are provided by django.contrib.auth, the
authentication framework shipped by Django.

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 2.2.29.dev20220411083753

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: we need to tell the admin that Question objects have an admin interface. To do this, open the
polls/admin.py file, and edit it to look like this:

Listing 15: polls/admin.py

from django.contrib import admin
from .models import Question

admin.site.register(Question)

Explore the free admin functionality

Now that we’ve registered Question, Django knows that it should be displayed on the admin index page:

Site administration

-
Recent Actions

Groups + Add 4 Change

Users + Add ¢ Change My Actions
None available

Questions + Add 4 Change

Click “Questions”. Now you’re at the “change list” page for questions. This page displays all the questions in the
database and lets you choose one to change it. There’s the “What’s up?” question we created earlier:

Home : Polls » Questions

Select question to change

Action: | ==e=memee %+ Go | 0of1 selected

QUESTION

" What's up?

1 question

Click the “What’s up?” question to edit it:

30 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Home : Polls > Questions » What's up?
Change question

Question text: What's up?

Date published: Date: 2015-09-06 Today

Time: 21:16:22 Now | ()

Save and add another Save and continue editing

Things to note here:
* The form is automatically generated from the Question model.

* The different model field types (DateTimeField, CharField) correspond to the appropriate HTML input wid-
get. Each type of field knows how to display itself in the Django admin.

e Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup, and
times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:
» Save — Saves changes and returns to the change-list page for this type of object.
 Save and continue editing — Saves changes and reloads the admin page for this object.
 Save and add another — Saves changes and loads a new, blank form for this type of object.
* Delete — Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the question in Tutorial 1, it probably means
you forgot to set the correct value for the TIME_ZONE setting. Change it, reload the page and check that the correct
value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue editing.”
Then click “History” in the upper right. You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

Home : Polls » Questions » What's up? » History

Change history: What's up?
DATE/TIME USER ACTION
Sept. 6, 2015, 9:21 p.m. elky Changed pub_date.

When you’re comfortable with the models API and have familiarized yourself with the admin site, read part 3 of this
tutorial to learn about how to add more views to our polls app.

2.4. Writing your first Django app, part 2 31

Django Documentation, Release 2.2.29.dev20220411083753

2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re continuing the Web-poll application and will focus on creating the
public interface — “views.”

2.5.1 Overview
A view is a “type” of Web page in your Django application that generally serves a specific function and has a specific
template. For example, in a blog application, you might have the following views:
* Blog homepage — displays the latest few entries.
 Entry “detail” page — permalink page for a single entry.
* Year-based archive page — displays all months with entries in the given year.
* Month-based archive page — displays all days with entries in the given month.
* Day-based archive page — displays all entries in the given day.
* Comment action — handles posting comments to a given entry.
In our poll application, we’ll have the following four views:
* Question “index” page — displays the latest few questions.
* Question “detail” page — displays a question text, with no results but with a form to vote.
* Question “results” page — displays results for a particular question.
* Vote action — handles voting for a particular choice in a particular question.

In Django, web pages and other content are delivered by views. Each view is represented by a simple Python function
(or method, in the case of class-based views). Django will choose a view by examining the URL that’s requested (to
be precise, the part of the URL after the domain name).

Now in your time on the web you may have come across such Dbeauties as
“ME2/Sites/dirmod.asp?sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B”. You will be
pleased to know that Django allows us much more elegant URL patterns than that.

A URL pattern is simply the general form of a URL - for example: /newsarchive/<year>/<month>/.
To get from a URL to a view, Django uses what are known as ‘URLconfs’. A URLconf maps URL patterns to views.

This tutorial provides basic instruction in the use of URLconfs, and you can refer to URL dispatcher for more informa-
tion.

2.5.2 Writing more views
Now let’s add a few more views to polls/views.py. These views are slightly different, because they take an argument:

Listing 16: polls/views.py

def detail(request, question_id):
return HttpResponse('You're looking at question %s." % question_id)

def results(request, question_id):
response = "You're looking at the results of question %s."
return HttpResponse(response % question_id)

(continues on next page)

32 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

def vote(request, question_id):
return HttpResponse(% question_id)

Wire these new views into the polls.urls module by adding the following path () calls:

Listing 17: polls/urls.py

from django.urls import path
from . import views

urlpatterns = [

path('', views.index, name=),

path(, views.detail, name=),

path(, views.results, name=),
path(, Views.vote, name=),

]

Take a look in your browser, at “/polls/34/”. It’ll run the detail () method and display whatever ID you provide in the
URL. Try “/polls/34/results/” and “/polls/34/vote/”” too — these will display the placeholder results and voting pages.

When somebody requests a page from your website — say, “/polls/34/”, Django will load the mysite.urls Python
module because it’s pointed to by the ROOT_URLCONF setting. It finds the variable named urlpatterns and traverses
the patterns in order. After finding the match at 'polls/"', it strips off the matching text ("polls/") and sends the
remaining text — "34/" —to the ‘polls.urls’ URLconf for further processing. There it matches '<int:question_id>/
', resulting in a call to the detail () view like so:

detail (request=<HttpRequest >, question_id=34)

The question_id=34 part comes from <int:question_id>. Using angle brackets “captures” part of the URL and
sends it as a keyword argument to the view function. The : question_id> part of the string defines the name that will
be used to identify the matched pattern, and the <int: part is a converter that determines what patterns should match
this part of the URL path.

There’s no need to add URL cruft such as .html — unless you want to, in which case you can do something like this:

path(, views.index),

But, don’t do that. It’s silly.

2.5. Writing your first Django app, part 3 33

Django Documentation, Release 2.2.29.dev20220411083753

2.5.3 Write views that actually do something

Each view is responsible for doing one of two things: returning an Ht tpResponse object containing the content for
the requested page, or raising an exception such as Ht tp404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s — or a third-party
Python template system — or not. It can generate a PDF file, output XML, create a ZIP file on the fly, anything you
want, using whatever Python libraries you want.

All Django wants is that Ht tpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered in Tuforial 2. Here’s one stab at a new
index () view, which displays the latest 5 poll questions in the system, separated by commas, according to publication
date:

Listing 18: polls/views.py

from django.http import HttpResponse

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]

output = ', '.join([g.question_text for q in latest_question_list])
return HttpResponse(output)

There’s a problem here, though: the page’s design is hard-coded in the view. If you want to change the way the page
looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the design from Python
by creating a template that the view can use.

First, create a directory called templates in your polls directory. Django will look for templates in there.

Your project’s TEMPLATES setting describes how Django will load and render templates. The default settings file
configures a DjangoTemplates backend whose APP_DIRS option is set to True. By convention DjangoTemplates
looks for a “templates” subdirectory in each of the INSTALLED_APPS.

Within the templates directory you have just created, create another directory called polls, and within that create
a file called index.html. In other words, your template should be at polls/templates/polls/index.html. Be-
cause of how the app_directories template loader works as described above, you can refer to this template within
Django simply as polls/index.html.

Template namespacing

Now we might be able to get away with putting our templates directly in polls/templates (rather than creating
another polls subdirectory), but it would actually be a bad idea. Django will choose the first template it finds whose
name matches, and if you had a template with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure this is by
namespacing them. That is, by putting those templates inside another directory named for the application itself.

Put the following code in that template:

34 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Listing 19: polls/templates/polls/index.html

if latest_question_list

for question in latest_question_list
 question.question_text
endfor

else

<p>No polls are available.</p>

endif

Now let’s update our index view in polls/views.py to use the template:

Listing 20: polls/views.py

from django.http import HttpResponse
from django.template import loader

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]
template = loader.get_template('polls/index.html")
context = {
'latest_question_list': latest_question_list,

}

return HttpResponse(template.render(context, request))

That code loads the template called polls/index.html and passes it a context. The context is a dictionary mapping
template variable names to Python objects.

Load the page by pointing your browser at “/polls/”, and you should see a bulleted-list containing the “What’s up”
question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render()

It’s a very common idiom to load a template, fill a context and return an Ht tpResponse object with the result of the
rendered template. Django provides a shortcut. Here’s the full index () view, rewritten:

Listing 21: polls/views.py

from django.shortcuts import render

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by('-pub_date')[:5]
context = {'latest_question_list': latest_question_list}
return render(request, 'polls/index.html', context)

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 2.2.29.dev20220411083753

Note that once we’ve done this in all these views, we no longer need to import loader and HttpResponse (you’ll
want to keep HttpResponse if you still have the stub methods for detail, results, and vote).

The render () function takes the request object as its first argument, a template name as its second argument and a
dictionary as its optional third argument. It returns an Ht tpResponse object of the given template rendered with the
given context.

2.5.4 Raising a 404 error
Now, let’s tackle the question detail view — the page that displays the question text for a given poll. Here’s the view:

Listing 22: polls/views.py

from django.http import Http404
from django.shortcuts import render

from .models import Question

def detail (request, question_id):
try:
question = Question.objects.get(pk=question_id)
except Question.DoesNotExist:
raise Http404("'Question does not exist")
return render(request, 'polls/detail.html’, {'question': question})

The new concept here: The view raises the Ht tp404 exception if a question with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly get the
above example working, a file containing just:

Listing 23: polls/templates/polls/detail.html

question

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get () and raise Http404 if the object doesn’t exist. Django provides a shortcut.
Here’s the detail () view, rewritten:

Listing 24: polls/views.py

from django.shortcuts import get_object_or_404, render
from .models import Question
def detail(request, question_id):

question = get_object_or_404(Question, pk=question_id)
return render(request, 'polls/detail.html', {'question': question})

The get_object_or_404 () function takes a Django model as its first argument and an arbitrary number of keyword
arguments, which it passes to the get () function of the model’s manager. It raises Ht tp404 if the object doesn’t exist.

36 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Philosophy

Why do we use a helper function get_object_or_404 () instead of automatically catching the ObjectDoesNotExist
exceptions at a higher level, or having the model API raise Ht tp404 instead of ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django is to maintain
loose coupling. Some controlled coupling is introduced in the django. shortcuts module.

There’s also a get_list_or_404() function, which works just as get_object_or_404() —except using filter()
instead of get (). It raises Http404 if the list is empty.

2.5.5 Use the template system

Back to the detail () view for our poll application. Given the context variable question, here’s what the polls/
detail.html template might look like:

Listing 25: polls/templates/polls/detail.html

<h1>{{ question.question_text }}</hl>

for choice in question.choice_set.all
 choice.choice_text </1li>
endfor

The template system uses dot-lookup syntax to access variable attributes. In the example of {{ question.
question_text }}, first Django does a dictionary lookup on the object question. Failing that, it tries an attribute
lookup — which works, in this case. If attribute lookup had failed, it would’ve tried a list-index lookup.

Method-calling happens in the {% for %} loop: question.choice_set.all is interpreted as the Python code
question.choice_set.all(), which returns an iterable of Choice objects and is suitable for use in the {% for
%} tag.

See the template guide for more about templates.

2.5.6 Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html template, the link was partially hardcoded
like this:

 question.question_text </1li>

The problem with this hardcoded, tightly-coupled approach is that it becomes challenging to change URLSs on projects
with a lot of templates. However, since you defined the name argument in the path () functions in the polls.urls
module, you can remove a reliance on specific URL paths defined in your url configurations by using the {% url %}
template tag:

 question.question_text

The way this works is by looking up the URL definition as specified in the polls.urls module. You can see exactly
where the URL name of ‘detail’ is defined below:

2.5. Writing your first Django app, part 3 37

Django Documentation, Release 2.2.29.dev20220411083753

path(, Views.detail, name=),

If you want to change the URL of the polls detail view to something else, perhaps to something like polls/specifics/
12/ instead of doing it in the template (or templates) you would change it in polls/urls.py:

path(, views.detail, name=),

2.5.7 Namespacing URL names

The tutorial project has just one app, polls. In real Django projects, there might be five, ten, twenty apps or more.
How does Django differentiate the URL names between them? For example, the polls app has a detail view, and
so might an app on the same project that is for a blog. How does one make it so that Django knows which app view to
create for a url when using the {% url %} template tag?

The answer is to add namespaces to your URLconf. In the polls/urls.py file, go ahead and add an app_name to set
the application namespace:

Listing 26: polls/urls.py

from django.urls import path

from . import views

app_name =
urlpatterns = [
path('', views.index, name=),
path(, views.detail, name=),
path(, views.results, name=),
path(, views.vote, name=),
]

Now change your polls/index.html template from:

Listing 27: polls/templates/polls/index.html

{{ question.question_text }}

to point at the namespaced detail view:

38 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Listing 28: polls/templates/polls/index.html

 question.question_text }}

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and
generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Turorial 3 left off. We’re continuing the Web-poll application and will focus on simple form
processing and cutting down our code.

2.6.1 Write a simple form

Let’s update our poll detail template (“polls/detail.html”’) from the last tutorial, so that the template contains an HTML
<form> element:

Listing 29: polls/templates/polls/detail.html

<h1l> question.question_text </h1>

if error_message %}<p>{{ error_message }}</p> endif

<form action=" url 'polls:vote' question.id " method="post'">
csrf_token
for choice in question.choice_set.all
<input type="radio" name="choice" id="choice .counter " value=" choice.
~id ">
<label for="choice .counter > choice.choice_text </label>

endfor
<input type="submit" value="Vote'">
</form>

A quick rundown:

» The above template displays a radio button for each question choice. The value of each radio button is the
associated question choice’s ID. The name of each radio button is "choice". That means, when somebody
selects one of the radio buttons and submits the form, it’ll send the POST data choice=# where # is the ID of
the selected choice. This is the basic concept of HTML forms.

* We set the form’s action to {% url 'polls:vote' question.id %}, and we set method="post". Using
method="post" (as opposed to method="get") is very important, because the act of submitting this form will
alter data server-side. Whenever you create a form that alters data server-side, use method="post". This tip
isn’t specific to Django; it’s just good Web development practice.

» forloop.counter indicates how many times the for tag has gone through its loop

 Since we’re creating a POST form (which can have the effect of modifying data), we need to worry about Cross
Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django comes with a very easy-
to-use system for protecting against it. In short, all POST forms that are targeted at internal URLs should use the
{% csrf_token %} template tag.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in Turorial 3,
we created a URLconf for the polls application that includes this line:

2.6. Writing your first Django app, part 4 39

Django Documentation, Release 2.2.29.dev20220411083753

Listing 30: polls/urls.py

path('<int:question_id>/vote/', views.vote, name='vote'),

We also created a dummy implementation of the vote () function. Let’s create a real version. Add the following to
polls/views.py:

Listing 31: polls/views.py

from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from .models import Choice, Question

def vote(request, question_id):

question = get_object_or_404(Question, pk=question_id)
try:

selected_choice = question.choice_set.get(pk=request.POST['choice'])
except (KeyError, Choice.DoesNotExist):

return render(request, 'polls/detail.html', {
"question': question,
'error_message': "You didn't select a choice.",
b
else:
selected_choice.votes += 1
selected_choice.save()

return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

e request.POST is a dictionary-like object that lets you access submitted data by key name. In this case,
request.POST['choice'] returns the ID of the selected choice, as a string. request.POST values are al-
ways strings.

Note that Django also provides request.GET for accessing GET data in the same way — but we’re explicitly
using request.POST in our code, to ensure that data is only altered via a POST call.

* request.POST['choice'] will raise KeyError if choice wasn’t provided in POST data. The above code
checks for KeyError and redisplays the question form with an error message if choice isn’t given.

e After incrementing the choice count, the code returns an HttpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be redi-
rected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an Ht tpResponseRedirect after success-
fully dealing with POST data. This tip isn’t specific to Django; it’s just good Web development practice.

e We are using the reverse () function in the Ht tpResponseRedirect constructor in this example. This function
helps avoid having to hardcode a URL in the view function. It is given the name of the view that we want to pass
control to and the variable portion of the URL pattern that points to that view. In this case, using the URLconf
we set up in Tutorial 3, this reverse () call will return a string like

40

Chapter 2. Getting started

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

Django Documentation, Release 2.2.29.dev20220411083753

'/polls/3/results/’

where the 3 is the value of question.id. This redirected URL will then call the 'results' view to display
the final page.

As mentioned in Tutorial 3, request is an Ht tpRequest object. For more on Ht tpRequest objects, see the request
and response documentation.

After somebody votes in a question, the vote() view redirects to the results page for the question. Let’s write that
view:

Listing 32: polls/views.py

from django.shortcuts import get_object_or_404, render

def results(request, question_id):
question = get_object_or_404(Question, pk=question_id)
return render(request, 'polls/results.html’, {'question': question})

This is almost exactly the same as the detail () view from Tutorial 3. The only difference is the template name. We’ll
fix this redundancy later.

Now, create a polls/results.html template:

Listing 33: polls/templates/polls/results.html

<h1>{{ question.question_text </h1>

for choice in question.choice_set.all
<1i> choice.choice_text -- choice.votes vote choice.votes|pluralize </
—1i>
endfor

Vote again?

Now, go to /polls/1/ in your browser and vote in the question. You should see a results page that gets updated each
time you vote. If you submit the form without having chosen a choice, you should see the error message.

Note: The code for our vote() view does have a small problem. It first gets the selected_choice object from the
database, then computes the new value of votes, and then saves it back to the database. If two users of your website
try to vote at exactly the same time, this might go wrong: The same value, let’s say 42, will be retrieved for votes.
Then, for both users the new value of 43 is computed and saved, but 44 would be the expected value.

This is called a race condition. If you are interested, you can read Avoiding race conditions using F() to learn how you
can solve this issue.

2.6. Writing your first Django app, part 4 41

Django Documentation, Release 2.2.29.dev20220411083753

2.6.2 Use generic views: Less code is better
The detail () (from Tutorial 3) and results() views are very simple — and, as mentioned above, redundant. The
index () view, which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from the database according to a param-
eter passed in the URL, loading a template and returning the rendered template. Because this is so common, Django
provides a shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a bunch of our own code. We’ll just have
to take a few steps to make the conversion. We will:

1. Convert the URLconf.
2. Delete some of the old, unneeded views.
3. Introduce new views based on Django’s generic views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views are a good fit for your problem, and
you’ll use them from the beginning, rather than refactoring your code halfway through. But this tutorial intentionally
has focused on writing the views “the hard way” until now, to focus on core concepts.

You should know basic math before you start using a calculator.

Amend URLconf
First, open the polls/urls.py URLconf and change it like so:

Listing 34: polls/urls.py

from django.urls import path

from . import views

app_name = 'polls’
urlpatterns = [
path('', views.IndexView.as_view(), name='index'),

path('<int:pk>/", views.DetailView.as_view(), name='detail'),
path('<int:pk>/results/', views.ResultsView.as_view(), name='results'),
path('<int:question_id>/vote/"', views.vote, name='vote'),

Note that the name of the matched pattern in the path strings of the second and third patterns has changed from
<question_id> to <pk>.

42 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Amend views

Next, we’re going to remove our old index, detail, and results views and use Django’s generic views instead. To
do so, open the polls/views.py file and change it like so:

Listing 35: polls/views.py

from django.http import HttpResponseRedirect

from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from django.views import generic

from .models import Choice, Question

class IndexView(generic.ListView):
template_name = 'polls/index.html’
context_object_name = 'latest_question_list'

def get_queryset():
"""Return the last five published questions.
return Question.objects.order_by('-pub_date')[:5]

non

class DetailView(generic.DetailView):
model = Question
template_name = 'polls/detail.html’

class ResultsView(generic.DetailView):
model = Question
template_name = 'polls/results.html’

def vote(request, question_id):

We’re using two generic views here: ListView and DetailView. Respectively, those two views abstract the concepts
of “display a list of objects” and “display a detail page for a particular type of object.”

» Each generic view needs to know what model it will be acting upon. This is provided using the model attribute.

e The DetailView generic view expects the primary key value captured from the URL to be called "pk", so we’ve
changed question_id to pk for the generic views.

By default, the DetailView generic view uses a template called <app name>/<model name>_detail.html. In
our case, it would use the template "polls/question_detail.html". The template_name attribute is used to
tell Django to use a specific template name instead of the autogenerated default template name. We also specify the
template_name for the results list view — this ensures that the results view and the detail view have a different
appearance when rendered, even though they’re both a DetailView behind the scenes.

Similarly, the ListView generic view uses a default template called <app name>/<model name>_list.html; we
use template_name to tell ListView to use our existing "polls/index.html" template.

In previous parts of the tutorial, the templates have been provided with a context that contains the question and
latest_question_list context variables. For DetailView the question variable is provided automatically — since
we’re using a Django model (Question), Django is able to determine an appropriate name for the context variable.

2.6. Writing your first Django app, part 4 43

Django Documentation, Release 2.2.29.dev20220411083753

However, for ListView, the automatically generated context variable is question_list. To override this we provide the
context_object_name attribute, specifying that we want to use latest_question_list instead. As an alternative
approach, you could change your templates to match the new default context variables — but it’s a lot easier to just tell
Django to use the variable you want.

Run the server, and use your new polling app based on generic views.
For full details on generic views, see the generic views documentation.

When you’re comfortable with forms and generic views, read part 5 of this tutorial to learn about testing our polls app.

2.7 Writing your first Django app, part 5

This tutorial begins where Tutorial 4 left off. We’ve built a Web-poll application, and we’ll now create some automated
tests for it.

2.7.1 Introducing automated testing
What are automated tests?

Tests are simple routines that check the operation of your code.

Testing operates at different levels. Some tests might apply to a tiny detail (does a particular model method return
values as expected?) while others examine the overall operation of the software (does a sequence of user inputs on the
site produce the desired result?). That’s no different from the kind of testing you did earlier in Tutorial 2, using the
shell to examine the behavior of a method, or running the application and entering data to check how it behaves.

What's different in automated tests is that the testing work is done for you by the system. You create a set of tests once,
and then as you make changes to your app, you can check that your code still works as you originally intended, without
having to perform time consuming manual testing.

Why you need to create tests

So why create tests, and why now?

You may feel that you have quite enough on your plate just learning Python/Django, and having yet another thing to
learn and do may seem overwhelming and perhaps unnecessary. After all, our polls application is working quite happily
now; going through the trouble of creating automated tests is not going to make it work any better. If creating the polls
application is the last bit of Django programming you will ever do, then true, you don’t need to know how to create
automated tests. But, if that’s not the case, now is an excellent time to learn.

Tests will save you time

Up to a certain point, ‘checking that it seems to work’ will be a satisfactory test. In a more sophisticated application,
you might have dozens of complex interactions between components.

A change in any of those components could have unexpected consequences on the application’s behavior. Checking
that it still ‘seems to work’ could mean running through your code’s functionality with twenty different variations of
your test data just to make sure you haven’t broken something - not a good use of your time.

That’s especially true when automated tests could do this for you in seconds. If something’s gone wrong, tests will also
assist in identifying the code that’s causing the unexpected behavior.

44 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Sometimes it may seem a chore to tear yourself away from your productive, creative programming work to face the
unglamorous and unexciting business of writing tests, particularly when you know your code is working properly.

However, the task of writing tests is a lot more fulfilling than spending hours testing your application manually or trying
to identify the cause of a newly-introduced problem.

Tests don’t just identify problems, they prevent them

It’s a mistake to think of tests merely as a negative aspect of development.

Without tests, the purpose or intended behavior of an application might be rather opaque. Even when it’s your own
code, you will sometimes find yourself poking around in it trying to find out what exactly it’s doing.

Tests change that; they light up your code from the inside, and when something goes wrong, they focus light on the
part that has gone wrong - even if you hadn’t even realized it had gone wrong.

Tests make your code more attractive

You might have created a brilliant piece of software, but you will find that many other developers will simply refuse
to look at it because it lacks tests; without tests, they won’t trust it. Jacob Kaplan-Moss, one of Django’s original
developers, says “Code without tests is broken by design.”

That other developers want to see tests in your software before they take it seriously is yet another reason for you to
start writing tests.

Tests help teams work together

The previous points are written from the point of view of a single developer maintaining an application. Complex
applications will be maintained by teams. Tests guarantee that colleagues don’t inadvertently break your code (and that
you don’t break theirs without knowing). If you want to make a living as a Django programmer, you must be good at
writing tests!

2.7.2 Basic testing strategies

There are many ways to approach writing tests.

Some programmers follow a discipline called “test-driven development”; they actually write their tests before they
write their code. This might seem counter-intuitive, but in fact it’s similar to what most people will often do anyway:
they describe a problem, then create some code to solve it. Test-driven development simply formalizes the problem in
a Python test case.

More often, a newcomer to testing will create some code and later decide that it should have some tests. Perhaps it
would have been better to write some tests earlier, but it’s never too late to get started.

Sometimes it’s difficult to figure out where to get started with writing tests. If you have written several thousand lines
of Python, choosing something to test might not be easy. In such a case, it’s fruitful to write your first test the next time
you make a change, either when you add a new feature or fix a bug.

So let’s do that right away.

2.7. Writing your first Django app, part 5 45

https://en.wikipedia.org/wiki/Test-driven_development

Django Documentation, Release 2.2.29.dev20220411083753

2.7.3 Writing our first test

We identify a bug

Fortunately, there’s a little bug in the polls application for us to fix right away: the Question.
was_published_recently() method returns True if the Question was published within the last day (which is
correct) but also if the Question’s pub_date field is in the future (which certainly isn’t).

Confirm the bug by using the shell to check the method on a question whose date lies in the future:

$ python manage.py shell

>>> import datetime

>>> from django.utils import timezone

>>> from polls.models import Question

>>>

>>> future_question = Question(pub_date=timezone.now() + datetime.timedelta(days=30))
>>>

>>> future_question.was_published_recently()

True

Since things in the future are not ‘recent’, this is clearly wrong.

Create a test to expose the bug
What we’ve just done in the shell to test for the problem is exactly what we can do in an automated test, so let’s turn
that into an automated test.

A conventional place for an application’s tests is in the application’s tests.py file; the testing system will automatically
find tests in any file whose name begins with test.

Put the following in the tests.py file in the polls application:

Listing 36: polls/tests.py

import datetime

from django.test import TestCase
from django.utils import timezone

from .models import Question

class QuestionModelTests(TestCase):

def test_was_published_recently_with_future_question():
was_published_recently() returns False for questions whose pub_date
is in the future.
time = timezone.now() + datetime.timedelta(days=30)
future_question = Question(pub_date=time)
.assertIs(future_question.was_published_recently(), False)

46 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Here we have created a django. test.TestCase subclass with a method that creates a Question instance with a
pub_date in the future. We then check the output of was_published_recently() - which ought to be False.

Running tests

In the terminal, we can run our test:

$ python manage.py polls

and you’ll see something like:

Creating test database for alias
System check identified no issues (0 511enced)
F

FAIL: test_was_published_recently_with_future_question (polls.tests.QuestionModelTests)
Traceback (most recent call last):
File , line 16, in test_was_published_recently_with_
- future_question
.assertIs(future_question.was_published_recently(), False)
AssertionError: True is not False

Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias

Different error?

If instead you’re getting a NameError here, you may have missed a step in Part 2 where we added imports of datetime
and timezone to polls/models.py. Copy the imports from that section, and try running your tests again.

What happened is this:
* manage.py test polls looked for tests in the polls application
« it found a subclass of the django. test. TestCase class
* it created a special database for the purpose of testing
* it looked for test methods - ones whose names begin with test

e in test_was_published_recently_with_future_question it created a Question instance whose
pub_date field is 30 days in the future

e ... and using the assertIs() method, it discovered that its was_published_recently() returns True,
though we wanted it to return False

The test informs us which test failed and even the line on which the failure occurred.

2.7. Writing your first Django app, part 5 47

Django Documentation, Release 2.2.29.dev20220411083753

Fixing the bug
We already know what the problem is: Question.was_published_recently() should return False if its
pub_date is in the future. Amend the method in models.py, so that it will only return True if the date is also in

the past:

Listing 37: polls/models.py

def was_published_recently():
now = timezone.now()
return now - datetime.timedelta(days=1) <= .pub_date <= now

and run the test again:

Creating test database for alias 'default'...
System check identified no issues (0 silenced).

Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

After identifying a bug, we wrote a test that exposes it and corrected the bug in the code so our test passes.

Many other things might go wrong with our application in the future, but we can be sure that we won’t inadvertently
reintroduce this bug, because simply running the test will warn us immediately. We can consider this little portion of
the application pinned down safely forever.

More comprehensive tests

While we’re here, we can further pin down the was_published_recently () method; in fact, it would be positively
embarrassing if in fixing one bug we had introduced another.

Add two more test methods to the same class, to test the behavior of the method more comprehensively:

Listing 38: polls/tests.py

def test_was_published_recently_with_old_question():
was_published_recently() returns False for questions whose pub_date
is older than 1 day.
time = timezone.now() - datetime.timedelta(days=1, seconds=1)
old_question = Question(pub_date=time)
.assertIs(old_question.was_published_recently(), False)

def test_was_published_recently_with_recent_question():
was_published_recently() returns True for questions whose pub_date
is within the last day.

time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59)
recent_question = Question(pub_date=time)
.assertIs(recent_question.was_published_recently(), True)

48 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

And now we have three tests that confirm that Question.was_published_recently() returns sensible values for
past, recent, and future questions.

Again, polls is a simple application, but however complex it grows in the future and whatever other code it interacts
with, we now have some guarantee that the method we have written tests for will behave in expected ways.

2.7.4 Test a view

The polls application is fairly undiscriminating: it will publish any question, including ones whose pub_date field lies
in the future. We should improve this. Setting a pub_date in the future should mean that the Question is published at
that moment, but invisible until then.

A test for a view
When we fixed the bug above, we wrote the test first and then the code to fix it. In fact that was a simple example of
test-driven development, but it doesn’t really matter in which order we do the work.

In our first test, we focused closely on the internal behavior of the code. For this test, we want to check its behavior as
it would be experienced by a user through a web browser.

Before we try to fix anything, let’s have a look at the tools at our disposal.

The Django test client
Django provides a test C1ient to simulate a user interacting with the code at the view level. We can use it in tests.py
or even in the shell.

We will start again with the shell, where we need to do a couple of things that won’t be necessary in tests.py. The
first is to set up the test environment in the shell:

$ python manage.py shell

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment ()

setup_test_environment () installs a template renderer which will allow us to examine some additional attributes
on responses such as response.context that otherwise wouldn’t be available. Note that this method does not setup
a test database, so the following will be run against the existing database and the output may differ slightly depending
on what questions you already created. You might get unexpected results if your TIME_ZONE in settings.py isn’t
correct. If you don’t remember setting it earlier, check it before continuing.

Next we need to import the test client class (later in tests.py we will use the django. test. TestCase class, which
comes with its own client, so this won’t be required):

>>> from django.test import Client
>>>
>>> client = Client()

With that ready, we can ask the client to do some work for us:

>>>

>>> response = client.get()
Not Found: /

>>>

(continues on next page)

2.7. Writing your first Django app, part 5 49

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> # "Invalid HTTP_HOST header" error and a 400 response, you probably
>>> # omitted the setup_test_environment() call described earlier.

>>> response.status_code

404

>>> # on the other hand we should expect to find something at '/polls/’
>>> # we'll use 'reverse()' rather than a hardcoded URL

>>> from django.urls import reverse

>>> response = client.get(reverse('polls:index'))

>>> response.status_code

200

>>> response.content

b'\n \n \n What's up?\n \n </
—ul>\n\n'

>>> response.context['latest_question_list']
<QuerySet [<Question: What's up?>]>

Improving our view

The list of polls shows polls that aren’t published yet (i.e. those that have a pub_date in the future). Let’s fix that.

In Tutorial 4 we introduced a class-based view, based on ListView:

Listing 39: polls/views.py

class IndexView(generic.ListView):
template_name = 'polls/index.html’
context_object_name = 'latest_question_list'

def get_queryset(self):
"""Return the last five published questions.
return Question.objects.order_by('-pub_date')[:5]

non

We need to amend the get_queryset () method and change it so that it also checks the date by comparing it with
timezone.now(). First we need to add an import:

Listing 40: polls/views.py

from django.utils import timezone

and then we must amend the get_queryset method like so:

Listing 41: polls/views.py

def get_queryset(self):
Return the last five published questions (not including those set to be
published in the future).
return Question.objects.filter(
pub_date__lte=timezone.now()
).order_by('-pub_date")[:5]

Question.objects.filter(pub_date__lte=timezone.now()) returns a queryset containing Questions whose

50 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

pub_date is less than or equal to - that is, earlier than or equal to - timezone.now.

Testing our new view

Now you can satisfy yourself that this behaves as expected by firing up runserver, loading the site in your browser,
creating Questions with dates in the past and future, and checking that only those that have been published are listed.
You don’t want to have to do that every single time you make any change that might affect this - so let’s also create a
test, based on our shell session above.

Add the following to polls/tests.py:

Listing 42: polls/tests.py

from django.urls import reverse

and we’ll create a shortcut function to create questions as well as a new test class:

Listing 43: polls/tests.py

def create_question(question_text, days):

non

Create a question with the given "question_text and published the
given number of “days offset to now (negative for questions published
in the past, positive for questions that have yet to be published).

non

time

= timezone.now() + datetime.timedelta(days=days)

return Question.objects.create(question_text=question_text, pub_date=time)

class QuestionIndexViewTests(TestCase):

def

def

def

test_no_questions(self):

non

If no questions exist, an appropriate message is displayed.

response = self.client.get(reverse('polls:index"))

self.assertEqual (response.status_code, 200)
self.assertContains(response, "No polls are available.")
self.assertQuerysetEqual (response.context['latest_question_list'], [])

test_past_question(self):
Questions with a pub_date in the past are displayed on the
index page.
create_question(question_text="Past question.", days=-30)
response = self,client.get(reverse('polls:index'))
self.assertQuerysetEqual(
response.context['latest_question_list'],
['<Question: Past question.>']

test_future_question(self):

non

Questions with a pub_date in the future aren't displayed on

(continues on next page)

2.7. Writing your first Django app, part 5 51

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

the index page.

create_question(question_text="Future question.", days=30)

response = .client.get(reverse('polls:index'))
.assertContains(response, "No polls are available.™)
.assertQuerysetEqual (response.context['latest_question_list'], []1)

def test_future_question_and_past_question():
Even if both past and future questions exist, only past questions
are displayed.

non

create_question(question_text="Past question.", days=-30)
create_question(question_text="Future question.", days=30)
response = .client.get(reverse('polls:index"))

.assertQuerysetEqual(
response.context['latest _question_list'],
['<Question: Past question.>']

def test_two_past_questions():

non

The questions index page may display multiple questions.

non

create_question(question_text="Past question 1.", days=-30)
create_question(question_text="Past question 2.", days=-5)
response = .client.get(reverse('polls:index"))

.assertQuerysetEqual(
response.context['latest_question_list'],
['<Question: Past question 2.>', '<Question: Past question 1.>']

Let’s look at some of these more closely.
First is a question shortcut function, create_question, to take some repetition out of the process of creating questions.

test_no_questions doesn’t create any questions, but checks the message: “No polls are available.” and verifies the
latest_question_list is empty. Note that the django. test.TestCase class provides some additional assertion
methods. In these examples, we use assertContains () and assertQuerysetEqual().

In test_past_question, we create a question and verify that it appears in the list.

In test_future_question, we create a question with a pub_date in the future. The database is reset for each test
method, so the first question is no longer there, and so again the index shouldn’t have any questions in it.

And so on. In effect, we are using the tests to tell a story of admin input and user experience on the site, and checking
that at every state and for every new change in the state of the system, the expected results are published.

52 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Testing the DetailView

What we have works well; however, even though future questions don’t appear in the index, users can still reach them
if they know or guess the right URL. So we need to add a similar constraint to DetailView:

Listing 44: polls/views.py

class DetailView(generic.DetailView):
def get_queryset():

Excludes any questions that aren't published yet.

return Question.objects.filter(pub_date__lte=timezone.now())

And of course, we will add some tests, to check that a Question whose pub_date is in the past can be displayed, and
that one with a pub_date in the future is not:

Listing 45: polls/tests.py

class QuestionDetailViewTests(TestCase):
def test_future_question():
The detail view of a question with a pub_date in the future
returns a 404 not found.

non

future_question = create_question(question_text='Future question.', days=5)
url = reverse('polls:detail', args=(future_question.id,))
response = .client.get(url)

.assertEqual (response.status_code, 404)

def test_past_question():

non

The detail view of a question with a pub_date in the past
displays the question's text.

non

past_question = create_question(question_text='Past Question.', days=-5)
url = reverse('polls:detail’, args=(past_question.id,))
response = .client.get(url)

.assertContains(response, past_question.question_text)

Ideas for more tests

We ought to add a similar get_queryset method to ResultsView and create a new test class for that view. It’ll be
very similar to what we have just created; in fact there will be a lot of repetition.

We could also improve our application in other ways, adding tests along the way. For example, it’s silly that Questions
can be published on the site that have no Choices. So, our views could check for this, and exclude such Questions.
Our tests would create a Question without Choices and then test that it’s not published, as well as create a similar
Question with Choices, and test that it is published.

Perhaps logged-in admin users should be allowed to see unpublished Questions, but not ordinary visitors. Again:
whatever needs to be added to the software to accomplish this should be accompanied by a test, whether you write the
test first and then make the code pass the test, or work out the logic in your code first and then write a test to prove it.

2.7. Writing your first Django app, part 5 53

Django Documentation, Release 2.2.29.dev20220411083753

At a certain point you are bound to look at your tests and wonder whether your code is suffering from test bloat, which
brings us to:

2.7.5 When testing, more is better
It might seem that our tests are growing out of control. At this rate there will soon be more code in our tests than in
our application, and the repetition is unaesthetic, compared to the elegant conciseness of the rest of our code.

It doesn’t matter. Let them grow. For the most part, you can write a test once and then forget about it. It will continue
performing its useful function as you continue to develop your program.

Sometimes tests will need to be updated. Suppose that we amend our views so that only Questions with Choices are
published. In that case, many of our existing tests will fail - telling us exactly which tests need to be amended to bring
them up to date, so to that extent tests help look after themselves.

At worst, as you continue developing, you might find that you have some tests that are now redundant. Even that’s not
a problem; in testing redundancy is a good thing.

As long as your tests are sensibly arranged, they won’t become unmanageable. Good rules-of-thumb include having:
* aseparate TestClass for each model or view
* a separate test method for each set of conditions you want to test

¢ test method names that describe their function

2.7.6 Further testing
This tutorial only introduces some of the basics of testing. There’s a great deal more you can do, and a number of very
useful tools at your disposal to achieve some very clever things.

For example, while our tests here have covered some of the internal logic of a model and the way our views publish
information, you can use an “in-browser” framework such as Selenium to test the way your HTML actually renders in
a browser. These tools allow you to check not just the behavior of your Django code, but also, for example, of your
JavaScript. It’s quite something to see the tests launch a browser, and start interacting with your site, as if a human
being were driving it! Django includes LiveServerTestCase to facilitate integration with tools like Selenium.

If you have a complex application, you may want to run tests automatically with every commit for the purposes of
continuous integration, so that quality control is itself - at least partially - automated.

A good way to spot untested parts of your application is to check code coverage. This also helps identify fragile or even
dead code. If you can’t test a piece of code, it usually means that code should be refactored or removed. Coverage will
help to identify dead code. See Integration with coverage.py for details.

Testing in Django has comprehensive information about testing.

2.7.7 What’s next?

For full details on testing, see Testing in Django.

When you’re comfortable with testing Django views, read part 6 of this tutorial to learn about static files management.

54 Chapter 2. Getting started

http://seleniumhq.org/
https://en.wikipedia.org/wiki/Continuous_integration

Django Documentation, Release 2.2.29.dev20220411083753

2.8 Writing your first Django app, part 6

This tutorial begins where Tutorial 5 left off. We’ve built a tested Web-poll application, and we’ll now add a stylesheet
and an image.

Aside from the HTML generated by the server, web applications generally need to serve additional files — such as
images, JavaScript, or CSS — necessary to render the complete web page. In Django, we refer to these files as “static
files”.

For small projects, this isn’t a big deal, because you can just keep the static files somewhere your web server can find
it. However, in bigger projects — especially those comprised of multiple apps — dealing with the multiple sets of static
files provided by each application starts to get tricky.

That’s what django.contrib.staticfiles is for: it collects static files from each of your applications (and any
other places you specify) into a single location that can easily be served in production.

2.8.1 Customize your app’s look and feel

First, create a directory called static in your polls directory. Django will look for static files there, similarly to how
Django finds templates inside polls/templates/.

Django’s STATICFILES_FINDERS setting contains a list of finders that know how to discover static files from vari-
ous sources. One of the defaults is AppDirectoriesFinder which looks for a “static” subdirectory in each of the
INSTALLED_APPS, like the one in polls we just created. The admin site uses the same directory structure for its static
files.

Within the static directory you have just created, create another directory called polls and within that create a file
called style.css. In other words, your stylesheet should be at polls/static/polls/style.css. Because of how
the AppDirectoriesFinder staticfile finder works, you can refer to this static file in Django simply as polls/style.
css, similar to how you reference the path for templates.

Static file namespacing

Just like templates, we might be able to get away with putting our static files directly in polls/static (rather than
creating another polls subdirectory), but it would actually be a bad idea. Django will choose the first static file it finds
whose name matches, and if you had a static file with the same name in a different application, Django would be unable
to distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure this is
by namespacing them. That is, by putting those static files inside another directory named for the application itself.

Put the following code in that stylesheet (polls/static/polls/style.css):

Listing 46: polls/static/polls/style.css

1li a {
color: green;

}

Next, add the following at the top of polls/templates/polls/index.html:

Listing 47: polls/templates/polls/index.html

load static

<link rel="stylesheet" type="text/css" href=" static 'polls/style.css' ">

2.8. Writing your first Django app, part 6 55

Django Documentation, Release 2.2.29.dev20220411083753

The {% static %} template tag generates the absolute URL of static files.
That’s all you need to do for development.

Start the server (or restart it if it’s already running):

$ python manage.py runserver

Reload http://localhost:8000/polls/ and you should see that the question links are green (Django style!) which
means that your stylesheet was properly loaded.

2.8.2 Adding a background-image

Next, we’ll create a subdirectory for images. Create an images subdirectory in the polls/static/polls/ directory.
Inside this directory, put an image called background. gif. In other words, put your image in polls/static/polls/
images/background.gif.

Then, add to your stylesheet (polls/static/polls/style.css):

Listing 48: polls/static/polls/style.css

body {
background: white ("images/background.gif") no-repeat;

}

Reload http://localhost:8000/polls/ and you should see the background loaded in the top left of the screen.

Warning: Of course the {% static %} template tag is not available for use in static files like your stylesheet
which aren’t generated by Django. You should always use relative paths to link your static files between each other,
because then you can change STATIC_URL (used by the static template tag to generate its URLs) without having
to modify a bunch of paths in your static files as well.

These are the basics. For more details on settings and other bits included with the framework see the static files howto
and the staticfiles reference. Deploying static files discusses how to use static files on a real server.

When you’re comfortable with the static files, read part 7 of this tutorial to learn how to customize Django’s
automatically-generated admin site.

2.9 Writing your first Django app, part 7

This tutorial begins where Tutorial 6 left off. We’re continuing the Web-poll application and will focus on customizing
Django’s automatically-generated admin site that we first explored in Tuforial 2.

56 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

2.9.1 Customize the admin form

By registering the Question model with admin.site.register(Question), Django was able to construct a default
form representation. Often, you’ll want to customize how the admin form looks and works. You’ll do this by telling
Django the options you want when you register the object.

Let’s see how this works by reordering the fields on the edit form. Replace the admin.site.register(Question)
line with:

Listing 49: polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin) :
fields = ['pub_date', 'question_text']

admin.site.register(Question, QuestionAdmin)

You’ll follow this pattern — create a model admin class, then pass it as the second argument to admin.site.
register() — any time you need to change the admin options for a model.

This particular change above makes the “Publication date” come before the “Question” field:

Home > Polls > Questions > What's up?

Change question

Date published: Date: 2015-09-06 Today

Time: 21:16:20 Now | (3

Question text: What's up?

This isn’t impressive with only two fields, but for admin forms with dozens of fields, choosing an intuitive order is an
important usability detail.

And speaking of forms with dozens of fields, you might want to split the form up into fieldsets:

Listing 50: polls/admin.py

from django.contrib import admin

from .models import Question

(continues on next page)

2.9. Writing your first Django app, part 7 57

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

class QuestionAdmin(admin.ModelAdmin) :
fieldsets = [
(None, {'fields': ['question_text']}),
('Date information', {'fields': ['pub_date']}),
]

admin.site.register(Question, QuestionAdmin)

The first element of each tuple in fieldsets is the title of the fieldset. Here’s what our form looks like now:

Home : Polls > Questions > What's up?

Change question

Question text: What's up?
Date published: Date: 2015-09-06 Today

Time: 21:16:20 Now | (D)

2.9.2 Adding related objects

OK, we have our Question admin page, but a Question has multiple Choices, and the admin page doesn’t display
choices.

Yet.

There are two ways to solve this problem. The first is to register Choice with the admin just as we did with Question.

That’s easy:

Listing 51: polls/admin.py

from django.contrib import admin

from .models import Choice, Question
admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form looks like this:

58 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Home » Polls » Choices » Add choice

Add choice

Question: e A | +

Choice text:

Votes: v}

In that form, the “Question” field is a select box containing every question in the database. Django knows that a
ForeignKey should be represented in the admin as a <select> box. In our case, only one question exists at this point.

Also note the “Add Another” link next to “Question.” Every object with a ForeignKey relationship to another gets
this for free. When you click “Add Another”, you’ll get a popup window with the “Add question” form. If you add a
question in that window and click “Save”, Django will save the question to the database and dynamically add it as the
selected choice on the “Add choice” form you’re looking at.

But, really, this is an inefficient way of adding Choice objects to the system. It’d be better if you could add a bunch of
Choices directly when you create the Question object. Let’s make that happen.

Remove the register() call for the Choice model. Then, edit the Question registration code to read:

Listing 52: polls/admin.py

from django.contrib import admin

from .models import Choice, Question

class ChoiceInline(admin.StackedInline):
model = Choice
extra = 3

class QuestionAdmin(admin.ModelAdmin):
fieldsets = [
(None, {'fields': ['question_text']}),
('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}),
]

inlines = [ChoiceInline]

admin.site.register(Question, QuestionAdmin)

This tells Django: “Choice objects are edited on the Question admin page. By default, provide enough fields for 3
choices.”

Load the “Add question” page to see how that looks:

2.9. Writing your first Django app, part 7 59

Django Documentation, Release 2.2.29.dev20220411083753

Home : Polls > Questions : Add question

Add guestion

Question text:

Date information (Hide)

Date published: Date: Today | £9)
Time: Now | (D
CHOICES
Choice: #1
Choice text:
Votes: 0
Choice: #2
Choice text:
Votes: 0
Choice: #3
Choice text:
Votes: 0
<+ Add another Choice

Save and add another Save and continue editing

It works like this: There are three slots for related Choices — as specified by extra — and each time you come back to
the “Change” page for an already-created object, you get another three extra slots.

At the end of the three current slots you will find an “Add another Choice” link. If you click on it, a new slot will be
added. If you want to remove the added slot, you can click on the X to the top right of the added slot. Note that you
can’t remove the original three slots. This image shows an added slot:

60 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

CHOICES

Choice: #1

Choice text:
Votes: 0
Choice: #2
Choice text:
Votes: 0
Choice: #3
Choice text:
Votes: 0
Choice: #4 ()
Choice text:
Votes: 0
<+ Add another Choice

One small problem, though. It takes a lot of screen space to display all the fields for entering related Choice objects. For
that reason, Django offers a tabular way of displaying inline related objects; you just need to change the ChoiceInline
declaration to read:

Listing 53: polls/admin.py

class ChoiceInline(admin.TabularInline):
#.o..

With that TabularInline (instead of StackedInline), the related objects are displayed in a more compact, table-
based format:

CHOICES

CHOICE TEXT VOTES DELETE?
0
0
0

+ Add another Choice

Save and add another Save and continue editing

2.9. Writing your first Django app, part 7 61

Django Documentation, Release 2.2.29.dev20220411083753

Note that there is an extra “Delete?” column that allows removing rows added using the “Add Another Choice” button
and rows that have already been saved.

2.9.3 Customize the admin change list

Now that the Question admin page is looking good, let’s make some tweaks to the “change list” page — the one that
displays all the questions in the system.

Here’s what it looks like at this point:

Home > Polls » Questions
Select question to change

Action: | ==m=--me- 4! Go | Oof1 selected

QUESTION

What's up?

1 question

By default, Django displays the str () of each object. But sometimes it’d be more helpful if we could display individual
fields. To do that, use the 1ist_display admin option, which is a tuple of field names to display, as columns, on the
change list page for the object:

Listing 54: polls/admin.py

class QuestionAdmin(admin.ModelAdmin) :
list_display = ('question_text', 'pub_date')

Just for good measure, let’s also include the was_published_recently () method from Tutorial 2:

62 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

Listing 55: polls/admin.py

class QuestionAdmin(admin.ModelAdmin) :
list_display = ('question_text', 'pub_date', 'was_published_recently')

Now the question change list page looks like this:

Home : Polls » Questions

Select question to change

Action: | =======-- $+!| Go | Oof1 selected
QUESTION TEXT DATE PUBLISHED WAS PUBLISHED RECENTLY
What's up? Sept. 3, 2015,9:16 p.m. False

1 question

You can click on the column headers to sort by those values — except in the case of the was_published_recently
header, because sorting by the output of an arbitrary method is not supported. Also note that the column header for
was_published_recently is, by default, the name of the method (with underscores replaced with spaces), and that
each line contains the string representation of the output.

You can improve that by giving that method (in polls/models.py) a few attributes, as follows:

Listing 56: polls/models.py

class Question(models.Model):
def was_published_recently(self):
now = timezone.now()
return now - datetime.timedelta(days=1) <= self.pub_date <= now
was_published_recently.admin_order_field = 'pub_date'’
was_published_recently.boolean = True
was_published_recently.short_description = 'Published recently?'

For more information on these method properties, see 1ist_display.

Edit your polls/admin.py file again and add an improvement to the Question change list page: filters using the
list_filter. Add the following line to QuestionAdmin:

list_filter = ['pub_date']

That adds a “Filter” sidebar that lets people filter the change list by the pub_date field:

2.9. Writing your first Django app, part 7 63

Django Documentation, Release 2.2.29.dev20220411083753

Home : Polls » Questions

Select question to change
Action: | ==ee=mem—— %!/ Go | Oof 1 selected FILTER

By date published

QUESTION TEXT DATE PUBLISHED PUBLISHED RECENTLY?
Wh Any date
t ? . 1 16 p.m.
at's up Sept. 3,2015,9:16 p.m [x] Today
. Past 7 days
1 question .
This month
This year

The type of filter displayed depends on the type of field you're filtering on. Because pub_date is a DateTimeField,
Django knows to give appropriate filter options: “Any date”, “Today”, “Past 7 days”, “This month”, “This year”.

This is shaping up well. Let’s add some search capability:

search_fields = ['question_text']

That adds a search box at the top of the change list. When somebody enters search terms, Django will search the
question_text field. You can use as many fields as you’d like — although because it uses a LIKE query behind the
scenes, limiting the number of search fields to a reasonable number will make it easier for your database to do the
search.

Now’s also a good time to note that change lists give you free pagination. The default is to display 100 items per page.
Change list pagination, search boxes, filters, date-hierarchies, and column-header-ordering all
work together like you think they should.

2.9.4 Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder text.

That’s easy to change, though, using Django’s template system. The Django admin is powered by Django itself, and
its interfaces use Django’s own template system.

Customizing your project’s templates

Create a templates directory in your project directory (the one that contains manage.py). Templates can live any-
where on your filesystem that Django can access. (Django runs as whatever user your server runs.) However, keeping
your templates within the project is a good convention to follow.

Open your settings file (mysite/settings.py, remember) and add a DIRS option in the TEMPLATES setting:

Listing 57: mysite/settings.py

TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS'": [os.path.join(BASE_DIR, 'templates')],
"APP_DIRS': True,
"OPTIONS': {
'context_processors': [

(continues on next page)

64 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

'django.template.context_processors.debug',
'django.template.context_processors.request’,
'django.contrib.auth.context_processors.auth’,
'django.contrib.messages.context_processors.messages',
1,
1,
3,
]

DIRS is a list of filesystem directories to check when loading Django templates; it’s a search path.

Organizing templates

Just like the static files, we could have all our templates together, in one big templates directory, and it would work
perfectly well. However, templates that belong to a particular application should be placed in that application’s template
directory (e.g. polls/templates) rather than the project’s (templates). We’ll discuss in more detail in the reusable
apps tutorial why we do this.

Now create a directory called admin inside templates, and copy the template admin/base_site.html from
within the default Django admin template directory in the source code of Django itself (django/contrib/admin/
templates) into that directory.

Where are the Django source files?

If you have difficulty finding where the Django source files are located on your system, run the following command:

[

$ python -c "import django; print(django.__path__)"

Then, just edit the file and replace {{ site_header|default:_('Django administration') }} (including the
curly braces) with your own site’s name as you see fit. You should end up with a section of code like:

block branding
<hl id="site-name">Polls Administration</hl>
endblock

We use this approach to teach you how to override templates. In an actual project, you would probably use the django.
contrib.admin.AdminSite.site_header attribute to more easily make this particular customization.

This template file contains lots of text like {% block branding %} and {{ title }}. The {% and {{ tags are
part of Django’s template language. When Django renders admin/base_site.html, this template language will be
evaluated to produce the final HTML page, just like we saw in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same thing
you did with base_site.html — copy it from the default directory into your custom directory, and make changes.

2.9. Writing your first Django app, part 7 65

Django Documentation, Release 2.2.29.dev20220411083753

Customizing your application’s templates

Astute readers will ask: But if DIRS was empty by default, how was Django finding the default admin templates? The
answer is that, since APP_DIRS is set to True, Django automatically looks for a templates/ subdirectory within each
application package, for use as a fallback (don’t forget that django.contrib.admin is an application).

Our poll application is not very complex and doesn’t need custom admin templates. But if it grew more sophisticated
and required modification of Django’s standard admin templates for some of its functionality, it would be more sensible
to modify the application’s templates, rather than those in the project. That way, you could include the polls application
in any new project and be assured that it would find the custom templates it needed.

See the template loading documentation for more information about how Django finds its templates.

2.9.5 Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been registered with the admin application, in al-
phabetical order. You may want to make significant changes to the layout. After all, the index is probably the most
important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with admin/base_site.html in the previous
section — copy it from the default directory to your custom template directory). Edit the file, and you’ll see it uses a
template variable called app_list. That variable contains every installed Django app. Instead of using that, you can
hard-code links to object-specific admin pages in whatever way you think is best.

2.9.6 What’s next?

The beginner tutorial ends here. In the meantime, you might want to check out some pointers on where to go from here.

If you are familiar with Python packaging and interested in learning how to turn polls into a “reusable app”, check out
Advanced tutorial: How to write reusable apps.

2.10 Advanced tutorial: How to write reusable apps

This advanced tutorial begins where Tutorial 7 left off. We’ll be turning our Web-poll into a standalone Python package
you can reuse in new projects and share with other people.

If you haven’t recently completed Tutorials 1-7, we encourage you to review these so that your example project matches
the one described below.

2.10.1 Reusability matters

It’s a lot of work to design, build, test and maintain a web application. Many Python and Django projects share common
problems. Wouldn’t it be great if we could save some of this repeated work?

Reusability is the way of life in Python. The Python Package Index (PyPI) has a vast range of packages you can use
in your own Python programs. Check out Django Packages for existing reusable apps you could incorporate in your
project. Django itself is also just a Python package. This means that you can take existing Python packages or Django
apps and compose them into your own web project. You only need to write the parts that make your project unique.

Let’s say you were starting a new project that needed a polls app like the one we’ve been working on. How do you
make this app reusable? Luckily, you're well on the way already. In Tutorial 1, we saw how we could decouple polls

66 Chapter 2. Getting started

https://pypi.org/
https://djangopackages.org

Django Documentation, Release 2.2.29.dev20220411083753

from the project-level URLconf using an include. In this tutorial, we’ll take further steps to make the app easy to use
in new projects and ready to publish for others to install and use.

Package? App?

A Python package provides a way of grouping related Python code for easy reuse. A package contains one or more
files of Python code (also known as “modules”).

A package can be imported with import foo.bar or from foo import bar. For a directory (like polls) to form
a package, it must contain a special file __init__.py, even if this file is empty.

A Django application is just a Python package that is specifically intended for use in a Django project. An application
may use common Django conventions, such as having models, tests, urls, and views submodules.

Later on we use the term packaging to describe the process of making a Python package easy for others to install. It
can be a little confusing, we know.

2.10.2 Your project and your reusable app

After the previous tutorials, our project should look like this:

mysite/
manage.py
mysite/
__init__.py
settings.py
urls.py
wsgi.py
polls/
__init__.py
admin.py
migrations/
__init__.py
0001_initial.py
models.py
static/
polls/
images/
background.gif
style.css
templates/
polls/
detail.html
index.html
results.html
tests.py
urls.py
views.py
templates/
admin/
base_site.html

You created mysite/templates in Tutorial 7, and polls/templates in Tutorial 3. Now perhaps it is clearer why we
chose to have separate template directories for the project and application: everything that is part of the polls application

2.10. Advanced tutorial: How to write reusable apps 67

https://docs.python.org/3/glossary.html#term-package

Django Documentation, Release 2.2.29.dev20220411083753

is in polls. It makes the application self-contained and easier to drop into a new project.

The polls directory could now be copied into a new Django project and immediately reused. It’s not quite ready to
be published though. For that, we need to package the app to make it easy for others to install.

2.10.3 Installing some prerequisites

The current state of Python packaging is a bit muddled with various tools. For this tutorial, we’re going to use setuptools
to build our package. It’s the recommended packaging tool (merged with the distribute fork). We’ll also be using
pip to install and uninstall it. You should install these two packages now. If you need help, you can refer to how fo
install Django with pip. You can install setuptools the same way.

2.10.4 Packaging your app

Python packaging refers to preparing your app in a specific format that can be easily installed and used. Django itself
is packaged very much like this. For a small app like polls, this process isn’t too difficult.

1. First, create a parent directory for polls, outside of your Django project. Call this directory django-polls.

Choosing a name for your app

When choosing a name for your package, check resources like PyPI to avoid naming conflicts with existing
packages. It’s often useful to prepend django- to your module name when creating a package to distribute. This
helps others looking for Django apps identify your app as Django specific.

Application labels (that is, the final part of the dotted path to application packages) must be unique in
INSTALLED_APPS. Avoid using the same label as any of the Django contrib packages, for example auth, admin,
or messages.

2. Move the polls directory into the django-polls directory.

3. Create a file django-polls/README. rst with the following contents:

Listing 58: django-polls/README.rst

Polls is a simple Django app to conduct Web-based polls. For each
question, visitors can choose between a fixed number of answers.

Detailed documentation is in the "docs" directory.

1. Add "polls" to your INSTALLED_APPS setting like this::

INSTALLED_APPS = [

(continues on next page)

68 Chapter 2. Getting started

https://pypi.org/project/setuptools/
https://pypi.org/project/pip/

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

2. Include the polls URLconf in your project urls.py like this::
path('polls/', include('polls.urls')),
3. Run "python manage.py migrate to create the polls models.

4. Start the development server and visit http://127.0.0.1:8000/admin/
to create a poll (you'll need the Admin app enabled).

5. Visit http://127.0.0.1:8000/polls/ to participate in the poll.

4. Create a django-polls/LICENSE file. Choosing a license is beyond the scope of this tutorial, but suffice it
to say that code released publicly without a license is useless. Django and many Django-compatible apps are
distributed under the BSD license; however, you’re free to pick your own license. Just be aware that your licensing
choice will affect who is able to use your code.

5. Next we’ll create setup.cfgand setup.py files which detail how to build and install the app. A full explanation
of these files is beyond the scope of this tutorial, but the setuptools documentation has a good explanation. Create
the files django-polls/setup.cfg and django-polls/setup.py with the following contents:

Listing 59: django-polls/setup.cfg

[metadata]

name = django-polls

version = 0.1

description = A Django app to conduct Web-based polls.
long_description = file: README.rst

url = https://www.example.com/

author = Your Name

author_email = yourname@example.com

license = BSD-3-Clause # Example license

classifiers =
Environment :: Web Environment
Framework :: Django
Framework :: Django :: X.Y # Replace "X.Y" as appropriate
Intended Audience :: Developers

License :: OSI Approved :: BSD License
Operating System :: OS Independent

Programming Language :: Python

Programming Language :: Python :: 3
Programming Language :: Python :: 3 :: Only
Programming Language :: Python :: 3.6
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8

Topic :: Internet :: WWW/HTTP
Topic :: Internet :: WWW/HTTP :: Dynamic Content

[options]
include_package_data = true
packages = find:

2.10. Advanced tutorial: How to write reusable apps 69

https://setuptools.readthedocs.io/en/latest/

Django Documentation, Release 2.2.29.dev20220411083753

Listing 60: django-polls/setup.py

from setuptools import setup

setup()

6. Only Python modules and packages are included in the package by default. To include additional files, we’ll need
to create a MANIFEST. in file. The setuptools docs referred to in the previous step discuss this file in more details.
To include the templates, the README. rst and our LICENSE file, create a file django-polls/MANIFEST.in
with the following contents:

Listing 61: django-polls/MANIFEST.in

include LICENSE
include README.rst
recursive-include polls/static
recursive-include polls/templates *

*

7. It’s optional, but recommended, to include detailed documentation with your app. Create an empty directory
django-polls/docs for future documentation. Add an additional line to django-polls/MANIFEST.in:

recursive-include docs *

Note that the docs directory won’t be included in your package unless you add some files to it. Many Django
apps also provide their documentation online through sites like readthedocs.org.

8. Try building your package with python setup.py sdist (run from inside django-polls). This creates a
directory called dist and builds your new package, django-polls-0.1.tar.gz.

For more information on packaging, see Python’s Tutorial on Packaging and Distributing Projects.
2.10.5 Using your own package

Since we moved the polls directory out of the project, it’s no longer working. We’ll now fix this by installing our new
django-polls package.

Installing as a user library

The following steps install django-polls as a user library. Per-user installs have a lot of advantages over installing the
package system-wide, such as being usable on systems where you don’t have administrator access as well as preventing
the package from affecting system services and other users of the machine.

Note that per-user installations can still affect the behavior of system tools that run as that user, so virtualenv is a
more robust solution (see below).

1. To install the package, use pip (you already installed it, right?):

pip install --user django-polls/dist/django-polls-0.1.tar.gz

2. With luck, your Django project should now work correctly again. Run the server again to confirm this.

3. To uninstall the package, use pip:

pip uninstall django-polls

70 Chapter 2. Getting started

https://readthedocs.org
https://packaging.python.org/tutorials/packaging-projects/

Django Documentation, Release 2.2.29.dev20220411083753

2.10.6 Publishing your app
Now that we’ve packaged and tested django-polls, it’s ready to share with the world! If this wasn’t just an example,
you could now:

* Email the package to a friend.

» Upload the package on your website.

* Post the package on a public repository, such as the Python Package Index (PyPI). packaging.python.org has a
good tutorial for doing this.

2.10.7 Installing Python packages with virtualenv

Earlier, we installed the polls app as a user library. This has some disadvantages:
* Modifying the user libraries can affect other Python software on your system.
* You won’t be able to run multiple versions of this package (or others with the same name).

Typically, these situations only arise once you’re maintaining several Django projects. When they do, the best solution
is to use virtualenv. This tool allows you to maintain multiple isolated Python environments, each with its own copy
of the libraries and package namespace.

2.11 What to read next

So you’ve read all the introductory material and have decided you’d like to keep using Django. We’ve only just scratched
the surface with this intro (in fact, if you’ve read every single word, you’ve read about 5% of the overall documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project of your
own and start fooling around. As you need to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, easy to read and as complete as possible. The
rest of this document explains more about how the documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans to write a document about how to
read the document about documentation.)

2.11.1 Finding documentation

Django’s got a lot of documentation — almost 450,000 words and counting — so finding what you need can sometimes
be tricky. A few good places to start are the search and the genindex.

Or you can just browse around!

2.11. What to read next 71

https://pypi.org/
https://packaging.python.org
https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives
https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives
https://virtualenv.pypa.io/

Django Documentation, Release 2.2.29.dev20220411083753

2.11.2 How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill different needs:

 The introductory material is designed for people new to Django — or to Web development in general. It doesn’t
cover anything in depth, but instead gives a high-level overview of how developing in Django “feels”.

» The topic guides, on the other hand, dive deep into individual parts of Django. There are complete guides to
Django’s model system, template engine, forms framework, and much more.

This is probably where you’ll want to spend most of your time; if you work your way through these guides you
should come out knowing pretty much everything there is to know about Django.

* Web development is often broad, not deep — problems span many domains. We’ve written a set of how-fo guides
that answer common “How do I ...7” questions. Here you’ll find information about generating PDFs with
Django, writing custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

* The guides and how-to’s don’t cover every single class, function, and method available in Django — that would
be overwhelming when you’re trying to learn. Instead, details about individual classes, functions, methods, and
modules are kept in the reference. This is where you’ll turn to find the details of a particular function or whatever
you need.

* If you are interested in deploying a project for public use, our docs have several guides for various deployment
setups as well as a deployment checklist for some things you’ll need to think about.

* Finally, there’s some “specialized” documentation not usually relevant to most developers. This includes the
release notes and internals documentation for those who want to add code to Django itself, and a few other
things that simply don'’t fit elsewhere.

2.11.3 How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our documentation is consistently improving.
We improve documentation for several reasons:

* To make content fixes, such as grammar/typo corrections.
* To add information and/or examples to existing sections that need to be expanded.

* To document Django features that aren’t yet documented. (The list of such features is shrinking but exists nonethe-
less.)

* To add documentation for new features as new features get added, or as Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It lives in the docs directory of our Git
repository. Each document online is a separate text file in the repository.

2.11.4 Where to get it

You can read Django documentation in several ways. They are, in order of preference:

72

Chapter 2. Getting started

https://github.com/django/django/blob/stable/2.2.x/docs

Django Documentation, Release 2.2.29.dev20220411083753

On the Web

The most recent version of the Django documentation lives at https://docs.djangoproject.com/en/dev/. These HTML
pages are generated automatically from the text files in source control. That means they reflect the “latest and greatest”
in Django — they include the very latest corrections and additions, and they discuss the latest Django features, which
may only be available to users of the Django development version. (See Differences between versions below.)

We encourage you to help improve the docs by submitting changes, corrections and suggestions in the ticket system.
The Django developers actively monitor the ticket system and use your feedback to improve the documentation for
everybody.

Note, however, that tickets should explicitly relate to the documentation, rather than asking broad tech-support ques-
tions. If you need help with your particular Django setup, try the django-users mailing list or the #django IRC channel
instead.

In plain text

For offline reading, or just for convenience, you can read the Django documentation in plain text.

If you’re using an official release of Django, the zipped package (tarball) of the code includes a docs/ directory, which
contains all the documentation for that release.

If you’re using the development version of Django (aka the master branch), the docs/ directory contains all of the
documentation. You can update your Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search for a phrase
in all of the documentation. For example, this will show you each mention of the phrase “max_length” in any Django
document:

$ grep -r max_length /path/to/django/docs/

As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

* Django’s documentation uses a system called Sphinx to convert from plain text to HTML. You’ll need to install
Sphinx by either downloading and installing the package from the Sphinx website, or with pip:

$ pip install Sphinx

* Then, just use the included Makefile to turn the documentation into HTML:

$ path/to/django/docs
$ make html

You’ll need GNU Make installed for this.

If you’re on Windows you can alternatively use the included batch file:

cd path\to\django\docs
make.bat html

e The HTML documentation will be placed in docs/_build/html.

2.11. What to read next 73

https://docs.djangoproject.com/en/dev/
https://code.djangoproject.com/
irc://irc.libera.chat/django
http://sphinx-doc.org/
https://www.gnu.org/software/make/

Django Documentation, Release 2.2.29.dev20220411083753

2.11.5 Differences between versions

The text documentation in the master branch of the Git repository contains the “latest and greatest” changes and addi-
tions. These changes include documentation of new features targeted for Django’s next feature release. For that reason,
it’s worth pointing out our policy to highlight recent changes and additions to Django.

We follow this policy:

* The development documentation at https://docs.djangoproject.com/en/dev/ is from the master branch. These
docs correspond to the latest feature release, plus whatever features have been added/changed in the framework
since then.

* As we add features to Django’s development version, we update the documentation in the same Git commit
transaction.

* To distinguish feature changes/additions in the docs, we use the phrase: “New in Django Development version”
for the version of Django that hasn’t been released yet, or “New in version X.Y” for released versions.

* Documentation fixes and improvements may be backported to the last release branch, at the discretion of the
committer, however, once a version of Django is no longer supported, that version of the docs won’t get any
further updates.

¢ The main documentation Web page includes links to documentation for previous versions. Be sure you are using
the version of the docs corresponding to the version of Django you are using!

2.12 Writing your first patch for Django

2.12.1 Introduction

Interested in giving back to the community a little? Maybe you’ve found a bug in Django that you’d like to see fixed,
or maybe there’s a small feature you want added.

Contributing back to Django itself is the best way to see your own concerns addressed. This may seem daunting at first,
but it’s really pretty simple. We’ll walk you through the entire process, so you can learn by example.

Who'’s this tutorial for?

See also:
If you are looking for a reference on how to submit patches, see the Submitting patches documentation.

For this tutorial, we expect that you have at least a basic understanding of how Django works. This means you should be
comfortable going through the existing tutorials on writing your first Django app. In addition, you should have a good
understanding of Python itself. But if you don’t, Dive Into Python is a fantastic (and free) online book for beginning
Python programmers.

Those of you who are unfamiliar with version control systems and Trac will find that this tutorial and its links include
just enough information to get started. However, you’ll probably want to read some more about these different tools if
you plan on contributing to Django regularly.

For the most part though, this tutorial tries to explain as much as possible, so that it can be of use to the widest audience.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-developers or drop by #django-dev
on irc.libera.chat to chat with other Django users who might be able to help.

74 Chapter 2. Getting started

https://docs.djangoproject.com/en/dev/
https://docs.djangoproject.com/en/dev/
https://diveinto.org/python3/table-of-contents.html
irc://irc.libera.chat/django-dev
irc://irc.libera.chat/django-dev

Django Documentation, Release 2.2.29.dev20220411083753

What does this tutorial cover?
We’ll be walking you through contributing a patch to Django for the first time. By the end of this tutorial, you should
have a basic understanding of both the tools and the processes involved. Specifically, we’ll be covering the following:
¢ Installing Git.
* Downloading a copy of Django’s development version.
* Running Django’s test suite.
* Writing a test for your patch.
* Writing the code for your patch.
* Testing your patch.
* Submitting a pull request.
* Where to look for more information.

Once you’re done with the tutorial, you can look through the rest of Django’s documentation on contributing. It contains
lots of great information and is a must read for anyone who’d like to become a regular contributor to Django. If you’ve
got questions, it’s probably got the answers.

Python 3 required!

The current version of Django doesn’t support Python 2.7. Get Python 3 at Python’s download page or with your
operating system’s package manager.

For Windows users

When installing Python on Windows, make sure you check the option “Add python.exe to Path”, so that it is always
available on the command line.

2.12.2 Code of Conduct

As a contributor, you can help us keep the Django community open and inclusive. Please read and follow our Code of
Conduct.

2.12.3 Installing Git

For this tutorial, you’ll need Git installed to download the current development version of Django and to generate patch
files for the changes you make.

To check whether or not you have Git installed, enter git into the command line. If you get messages saying that this
command could not be found, you’ll have to download and install it, see Git’s download page.

If you’re not that familiar with Git, you can always find out more about its commands (once it’s installed) by typing
git help into the command line.

2.12. Writing your first patch for Django 75

https://www.python.org/downloads/
https://www.djangoproject.com/conduct/
https://www.djangoproject.com/conduct/
https://git-scm.com/download

Django Documentation, Release 2.2.29.dev20220411083753

2.12.4 Getting a copy of Django’s development version

The first step to contributing to Django is to get a copy of the source code. First, fork Django on GitHub. Then, from
the command line, use the cd command to navigate to the directory where you’ll want your local copy of Django to
live.

Download the Django source code repository using the following command:

$ git clone https://github.com/YourGitHubName/django.git

Low bandwidth connection?

You can add the --depth 1 argument to git clone to skip downloading all of Django’s commit history, which
reduces data transfer from ~250 MB to ~70 MB.

Now that you have a local copy of Django, you can install it just like you would install any package using pip. The
most convenient way to do so is by using a virtual environment, which is a feature built into Python that allows you to
keep a separate directory of installed packages for each of your projects so that they don’t interfere with each other.

It’s a good idea to keep all your virtual environments in one place, for example in .virtualenvs/ in your home
directory.

Create a new virtual environment by running:

$ python3 -m venv ~/.virtualenvs/djangodev

The path is where the new environment will be saved on your computer.

The final step in setting up your virtual environment is to activate it:

$ ~/.virtualenvs/djangodev/bin/activate

If the source command is not available, you can try using a dot instead:

$. ~/.virtualenvs/djangodev/bin/activate

For Windows users

To activate your virtual environment on Windows, run:

... \> %HOMEPATH%\ .virtualenvs\djangodev\Scripts\activate.bat

You have to activate the virtual environment whenever you open a new terminal window. virtualenvwrapper is a useful
tool for making this more convenient.

The name of the currently activated virtual environment is displayed on the command line to help you keep track of
which one you are using. Anything you install through pip while this name is displayed will be installed in that virtual
environment, isolated from other environments and system-wide packages.

Go ahead and install the previously cloned copy of Django:

$ pip install -e /path/to/your/local/clone/django/

The installed version of Django is now pointing at your local copy by installing in editable mode. You will immediately
see any changes you make to it, which is of great help when writing your first patch.

76 Chapter 2. Getting started

https://github.com/django/django/fork
https://virtualenvwrapper.readthedocs.io/en/latest/

Django Documentation, Release 2.2.29.dev20220411083753

Creating projects with a local copy of Django

It may be helpful to test your local changes with a Django project. First you have to create a new virtual environment,
install the previously cloned local copy of Django in editable mode, and create a new Django project outside of your
local copy of Django. You will immediately see any changes you make to Django in your new project, which is of great
help when writing your first patch.

2.12.5 Running Django’s test suite for the first time

When contributing to Django it’s very important that your code changes don’t introduce bugs into other areas of Django.
One way to check that Django still works after you make your changes is by running Django’s test suite. If all the tests
still pass, then you can be reasonably sure that your changes work and haven’t broken other parts Django. If you've
never run Django’s test suite before, it’s a good idea to run it once beforehand to get familiar with its output.

Before running the test suite, install its dependencies by cd-ing into the Django tests/ directory and then running:

$ pip install -r requirements/py3.txt

If you encounter an error during the installation, your system might be missing a dependency for one or more of the
Python packages. Consult the failing package’s documentation or search the Web with the error message that you
encounter.

Now we are ready to run the test suite. If you’re using GNU/Linux, macOS, or some other flavor of Unix, run:

$./runtests.py

Now sit back and relax. Django’s entire test suite has thousands of tests, and it takes at least a few minutes run,
depending on the speed of your computer.

While Django’s test suite is running, you’ll see a stream of characters representing the status of each test as it completes.
E indicates that an error was raised during a test, and F indicates that a test’s assertions failed. Both of these are
considered to be test failures. Meanwhile, x and s indicated expected failures and skipped tests, respectively. Dots
indicate passing tests.

Skipped tests are typically due to missing external libraries required to run the test; see Running all the tests for a list
of dependencies and be sure to install any for tests related to the changes you are making (we won’t need any for this
tutorial). Some tests are specific to a particular database backend and will be skipped if not testing with that backend.
SQLite is the database backend for the default settings. To run the tests using a different backend, see Using another
settings module.

Once the tests complete, you should be greeted with a message informing you whether the test suite passed or failed.
Since you haven’t yet made any changes to Django’s code, the entire test suite should pass. If you get failures or errors
make sure you’ve followed all of the previous steps properly. See Running the unit tests for more information.

Note that the latest Django master may not always be stable. When developing against master, you can check Django’s
continuous integration builds to determine if the failures are specific to your machine or if they are also present in
Django’s official builds. If you click to view a particular build, you can view the “Configuration Matrix” which shows
failures broken down by Python version and database backend.

Note: For this tutorial and the ticket we’re working on, testing against SQLite is sufficient, however, it’s possible (and
sometimes necessary) to run the tests using a different database.

2.12. Writing your first patch for Django 77

https://djangoci.com
https://djangoci.com

Django Documentation, Release 2.2.29.dev20220411083753

2.12.6 Working on a feature

For this tutorial, we’ll work on a “fake ticket” as a case study. Here are the imaginary details:

Ticket #99999 — Allow making toast

Django should provide a function django.shortcuts.make_toast() that returns 'toast"'.

We’ll now implement this feature and associated tests.

2.12.7 Creating a branch for your patch

Before making any changes, create a new branch for the ticket:

$ git checkout -b ticket_99999

You can choose any name that you want for the branch, “ticket_99999” is an example. All changes made in this branch
will be specific to the ticket and won’t affect the main copy of the code that we cloned earlier.

2.12.8 Writing some tests for your ticket

In most cases, for a patch to be accepted into Django it has to include tests. For bug fix patches, this means writing a
regression test to ensure that the bug is never reintroduced into Django later on. A regression test should be written
in such a way that it will fail while the bug still exists and pass once the bug has been fixed. For patches containing
new features, you’ll need to include tests which ensure that the new features are working correctly. They too should
fail when the new feature is not present, and then pass once it has been implemented.

A good way to do this is to write your new tests first, before making any changes to the code. This style of development
is called test-driven development and can be applied to both entire projects and single patches. After writing your tests,
you then run them to make sure that they do indeed fail (since you haven’t fixed that bug or added that feature yet). If
your new tests don’t fail, you’ll need to fix them so that they do. After all, a regression test that passes regardless of
whether a bug is present is not very helpful at preventing that bug from reoccurring down the road.

Now for our hands-on example.

Writing a test for ticket #99999
In order to resolve this ticket, we’ll add a make_toast () function to the top-level django module. First we are going
to write a test that tries to use the function and check that its output looks correct.

Navigate to Django’s tests/shortcuts/ folder and create a new file test_make_toast.py. Add the following
code:

from django.shortcuts import make_toast
from django.test import SimpleTestCase

class MakeToastTests(SimpleTestCase):
def test_make_toast():
.assertEqual (make_toast(), 'toast')

78 Chapter 2. Getting started

https://en.wikipedia.org/wiki/Test-driven_development

Django Documentation, Release 2.2.29.dev20220411083753

This test checks that the make_toast () returns 'toast'.

But this testing thing looks kinda hard...

If you’ve never had to deal with tests before, they can look a little hard to write at first glance. Fortunately, testing is a
very big subject in computer programming, so there’s lots of information out there:

* A good first look at writing tests for Django can be found in the documentation on Writing and running tests.

* Dive Into Python (a free online book for beginning Python developers) includes a great introduction to Unit
Testing.

* After reading those, if you want something a little meatier to sink your teeth into, there’s always the Python
unittest documentation.

Running your new test

Since we haven’t made any modifications to django.shortcuts yet, our test should fail. Let’s run all the tests in the
shortcuts folder to make sure that’s really what happens. cd to the Django tests/ directory and run:

$./runtests.py shortcuts

If the tests ran correctly, you should see one failure corresponding to the test method we added, with this error:

ImportError: cannot import name 'make_toast' from 'django.shortcuts'

If all of the tests passed, then you’ll want to make sure that you added the new test shown above to the appropriate
folder and file name.

2.12.9 Writing the code for your ticket

Next we’ll be adding the make_toast () function.

Navigate to the django/ folder and open the shortcuts.py file. At the bottom, add:

def make_toast():
return 'toast’

Now we need to make sure that the test we wrote earlier passes, so we can see whether the code we added is working
correctly. Again, navigate to the Django tests/ directory and run:

§ ./runtests.py shortcuts

Everything should pass. If it doesn’t, make sure you correctly added the function to the correct file.

2.12. Writing your first patch for Django 79

https://www.diveinto.org/python3/unit-testing.html
https://www.diveinto.org/python3/unit-testing.html
https://docs.python.org/3/library/unittest.html#module-unittest

Django Documentation, Release 2.2.29.dev20220411083753

2.12.10 Running Django’s test suite for the second time

Once you’ve verified that your patch and your test are working correctly, it’s a good idea to run the entire Django test
suite just to verify that your change hasn’t introduced any bugs into other areas of Django. While successfully passing
the entire test suite doesn’t guarantee your code is bug free, it does help identify many bugs and regressions that might
otherwise go unnoticed.

To run the entire Django test suite, cd into the Django tests/ directory and run:

$./runtests.py

2.12.11 Writing Documentation

This is a new feature, so it should be documented. Open the file docs/topics/http/shortcuts.txt and add the
following at the end of the file:

" “make_toast() "

. versionadded:: 2.2

Returns "~ 'toast' .

Since this new feature will be in an upcoming release it is also added to the release notes for the next version of Django.
Open the release notes for the latest version in docs/releases/, which at time of writing is 2.2.txt. Add a note
under the “Minor Features” header:

:mod: "django.shortcuts’

* The new :func: django.shortcuts.make_toast™ function returns " 'toast' ".

For more information on writing documentation, including an explanation of what the versionadded bit is all about,
see Writing documentation. That page also includes an explanation of how to build a copy of the documentation locally,
so you can preview the HTML that will be generated.

2.12.12 Previewing your changes

Now it’s time to go through all the changes made in our patch. To stage all the changes ready for commit, run:

$ git add --all

Then display the differences between your current copy of Django (with your changes) and the revision that you initially
checked out earlier in the tutorial with:

$ git diff --cached

Use the arrow keys to move up and down.

--- a/django/shortcuts.py
+++ b/django/shortcuts.py

(continues on next page)

80 Chapter 2. Getting started

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

Finally, fall back and assume it's a URL

return to
o]
o]
+def make_toast():
+ return 'toast'

--- a/docs/releases/2.2.txt
+++ b/docs/releases/2.2.txt

Minor features

+:mod: "django.shortcuts’

+
T

+

+* The new :func: django.shortcuts.make_toast ™ function returns " 'toast' .

+
:mod: "django.contrib.admin’

--- a/docs/topics/http/shortcuts.txt
+++ b/docs/topics/http/shortcuts.txt

my_objects = list(MyModel.objects.filter(published=True))
if not my_objects:
raise Http404("No MyModel matches the given query.™)

n
+" "make_toast() "

+

n

+.. function:: make_toast()
"

+.. versionadded:: 2.2

n

+Returns " 'toast' .

--- /dev/null
+++ b/tests/shortcuts/test_make_toast.py

+from django.shortcuts import make_toast
+from django.test import SimpleTestCase
n

n

+class MakeToastTests(SimpleTestCase):

(continues on next page)

2.12. Writing your first patch for Django

81

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

+ def test_make_toast(self):
+ self.assertEqual (make_toast(), 'toast')

When you’re done previewing the patch, hit the q key to return to the command line. If the patch’s content looked okay,
it’s time to commit the changes.

2.12.13 Committing the changes in the patch

To commit the changes:

$ git commit

This opens up a text editor to type the commit message. Follow the commit message guidelines and write a message
like:

Fixed #99999 -- Added a shortcut function to make toast.

2.12.14 Pushing the commit and making a pull request

After committing the patch, send it to your fork on GitHub (substitute “ticket_99999” with the name of your branch if
it’s different):

$ git push origin ticket_99999

You can create a pull request by visiting the Django GitHub page. You’ll see your branch under “Your recently pushed
branches”. Click “Compare & pull request” next to it.

Please don’t do it for this tutorial, but on the next page that displays a preview of the patch, you would click “Create
pull request”.

2.12.15 Next steps
Congratulations, you’ve learned how to make a pull request to Django! Details of more advanced techniques you may
need are in Working with Git and GitHub.

Now you can put those skills to good use by helping to improve Django’s codebase.

More information for new contributors

Before you get too into writing patches for Django, there’s a little more information on contributing that you should
probably take a look at:

* You should make sure to read Django’s documentation on claiming tickets and submitting patches. It covers Trac
etiquette, how to claim tickets for yourself, expected coding style for patches, and many other important details.

* First time contributors should also read Django’s documentation for first time contributors. It has lots of good
advice for those of us who are new to helping out with Django.

* After those, if you're still hungry for more information about contributing, you can always browse through the
rest of Django’s documentation on contributing. It contains a ton of useful information and should be your first
source for answering any questions you might have.

82 Chapter 2. Getting started

https://github.com/django/django/

Django Documentation, Release 2.2.29.dev20220411083753

Finding your first real ticket

Once you’ve looked through some of that information, you’ll be ready to go out and find a ticket of your own to write
a patch for. Pay special attention to tickets with the “easy pickings” criterion. These tickets are often much simpler in
nature and are great for first time contributors. Once you’re familiar with contributing to Django, you can move on to
writing patches for more difficult and complicated tickets.

If you just want to get started already (and nobody would blame you!), try taking a look at the list of easy tickets that
need patches and the easy tickets that have patches which need improvement. If you’re familiar with writing tests, you
can also look at the list of easy tickets that need tests. Just remember to follow the guidelines about claiming tickets
that were mentioned in the link to Django’s documentation on claiming tickets and submitting patches.

What’s next after creating a pull request?

After a ticket has a patch, it needs to be reviewed by a second set of eyes. After submitting a pull request, update the
ticket metadata by setting the flags on the ticket to say “has patch”, “doesn’t need tests”, etc, so others can find it for
review. Contributing doesn’t necessarily always mean writing a patch from scratch. Reviewing existing patches is also
a very helpful contribution. See Triaging tickets for details.

See also:

If you’re new to Python, you might want to start by getting an idea of what the language is like. Django is 100% Python,
so if you’ve got minimal comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this list of Python resources for non-programmers

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive Into
Python. If that’s not quite your style, there are many other books about Python.

2.12. Writing your first patch for Django 83

https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&needs_better_patch=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://code.djangoproject.com/query?status=new&status=reopened&needs_tests=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority
https://python.org/
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://diveinto.org/python3/table-of-contents.html
https://diveinto.org/python3/table-of-contents.html
https://wiki.python.org/moin/PythonBooks

Django Documentation, Release 2.2.29.dev20220411083753

84

Chapter 2. Getting started

CHAPTER
THREE

USING DJANGO

Introductions to all the key parts of Django you’ll need to know:

3.1 How to install Django

This document will get you up and running with Django.

3.1.1 Install Python

Django is a Python Web framework. See What Python version can I use with Django? for details.

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s package man-
ager.

Django on Jython

Jython (a Python implementation for the Java platform) is not compatible with Python 3, so Django > 2.0 cannot run
on Jython.

Python on Windows

If you are just starting with Django and using Windows, you may find How to install Django on Windows useful.

3.1.2 Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight web server
you can use for testing, so you won’t need to set up Apache until you're ready to deploy Django in production.

If you want to use Django on a production site, use Apache with mod_wsgi. mod_wsgi operates in one of two modes:
embedded mode or daemon mode. In embedded mode, mod_wsgi is similar to mod_perl — it embeds Python within
Apache and loads Python code into memory when the server starts. Code stays in memory throughout the life of
an Apache process, which leads to significant performance gains over other server arrangements. In daemon mode,
mod_wsgi spawns an independent daemon process that handles requests. The daemon process can run as a different
user than the Web server, possibly leading to improved security. The daemon process can be restarted without restarting
the entire Apache Web server, possibly making refreshing your codebase more seamless. Consult the mod_wsgi doc-
umentation to determine which mode is right for your setup. Make sure you have Apache installed with the mod_wsgi
module activated. Django will work with any version of Apache that supports mod_wsgi.

85

https://www.python.org/downloads/
http://www.jython.org/
https://httpd.apache.org/
https://modwsgi.readthedocs.io/en/develop/

Django Documentation, Release 2.2.29.dev20220411083753

See How to use Django with mod_wsgi for information on how to configure mod_wsgi once you have it installed.

If you can’t use mod_wsgi for some reason, fear not: Django supports many other deployment options. One is uWSGI;
it works very well with nginx. Additionally, Django follows the WSGI spec (PEP 3333), which allows it to run on a
variety of server platforms.

3.1.3 Get your database running

If you plan to use Django’s database API functionality, you’ll need to make sure a database server is running. Django
supports many different database servers and is officially supported with PostgreSQL, MySQL, Oracle and SQLite.

If you are developing a simple project or something you don’t plan to deploy in a production environment, SQLite is
generally the simplest option as it doesn’t require running a separate server. However, SQLite has many differences
from other databases, so if you are working on something substantial, it’s recommended to develop with the same
database that you plan on using in production.

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other
databases with Django.

In addition to a database backend, you’ll need to make sure your Python database bindings are installed.
* If you're using PostgreSQL, you’ll need the psycopg?2 package. Refer to the PostgreSOL notes for further details.

* If you're using MySQL, you’ll need a DB API driver like mysqlclient. See notes for the MySQL backend for
details.

* If you’re using SQLite you might want to read the SQOLite backend notes.

* If you're using Oracle, you’ll need a copy of cx_Oracle, but please read the notes for the Oracle backend for
details regarding supported versions of both Oracle and cx_Oracle.

* If you're using an unofficial 3rd party backend, please consult the documentation provided for any additional
requirements.

If you plan to use Django’s manage.py migrate command to automatically create database tables for your models
(after first installing Django and creating a project), you’ll need to ensure that Django has permission to create and alter
tables in the database you’re using; if you plan to manually create the tables, you can simply grant Django SELECT,
INSERT, UPDATE and DELETE permissions. After creating a database user with these permissions, you’ll specify the
details in your project’s settings file, see DATABASES for details.

If you’re using Django’s testing framework to test database queries, Django will need permission to create a test
database.

3.1.4 Install the Django code

Installation instructions are slightly different depending on whether you’re installing a distribution-specific package,
downloading the latest official release, or fetching the latest development version.

It’s easy, no matter which way you choose.

86 Chapter 3. Using Django

https://nginx.org/
https://peps.python.org/pep-3333/
https://www.postgresql.org/
https://www.mysql.com/
https://www.oracle.com/
https://www.sqlite.org/
http://initd.org/psycopg/
https://oracle.github.io/python-cx_Oracle/

Django Documentation, Release 2.2.29.dev20220411083753

Installing an official release with pip

This is the recommended way to install Django.

1. Install pip. The easiest is to use the standalone pip installer. If your distribution already has pip installed, you
might need to update it if it’s outdated. If it’s outdated, you’ll know because installation won’t work.

2. Take a look at virtualenv and virtualenvwrapper. These tools provide isolated Python environments, which are
more practical than installing packages systemwide. They also allow installing packages without administrator
privileges. The contributing tutorial walks through how to create a virtualenv.

3. After you’ve created and activated a virtual environment, enter the command:

$ pip install Django

Installing a distribution-specific package
Check the distribution specific notes to see if your platform/distribution provides official Django packages/installers.

Distribution-provided packages will typically allow for automatic installation of dependencies and easy upgrade paths;
however, these packages will rarely contain the latest release of Django.

Installing the development version

Tracking Django development

If you decide to use the latest development version of Django, you’ll want to pay close attention to the development
timeline, and you’ll want to keep an eye on the release notes for the upcoming release. This will help you stay on top of
any new features you might want to use, as well as any changes you’ll need to make to your code when updating your
copy of Django. (For stable releases, any necessary changes are documented in the release notes.)

If you’'d like to be able to update your Django code occasionally with the latest bug fixes and improvements, follow
these instructions:

1. Make sure that you have Git installed and that you can run its commands from a shell. (Enter git help at a
shell prompt to test this.)

2. Check out Django’s main development branch like so:

$ git clone https://github.com/django/django.git

This will create a directory django in your current directory.

3. Make sure that the Python interpreter can load Django’s code. The most convenient way to do this is to use
virtualenv, virtualenvwrapper, and pip. The contributing tutorial walks through how to create a virtualenv.

4. After setting up and activating the virtualenv, run the following command:

$ pip install -e django/

This will make Django’s code importable, and will also make the django-admin utility command available. In
other words, you’re all set!

When you want to update your copy of the Django source code, just run the command git pull from within the
django directory. When you do this, Git will automatically download any changes.

3.1. How to install Django 87

https://pip.pypa.io/
https://pip.pypa.io/en/latest/installing/#installing-with-get-pip-py
https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://code.djangoproject.com/timeline
https://code.djangoproject.com/timeline
https://git-scm.com/
https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://pip.pypa.io/

Django Documentation, Release 2.2.29.dev20220411083753

3.2 Models and databases

A model is the single, definitive source of data about your data. It contains the essential fields and behaviors of the data
you’re storing. Generally, each model maps to a single database table.

3.2.1 Models
A model is the single, definitive source of information about your data. It contains the essential fields and behaviors of
the data you’re storing. Generally, each model maps to a single database table.
The basics:
» Each model is a Python class that subclasses django.db.models. Model.
» Each attribute of the model represents a database field.

» With all of this, Django gives you an automatically-generated database-access API; see Making queries.

Quick example

This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute
maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (

"id" NOT NULL PRIMARY KEY,
"first_name" (30) NOT NULL,
"last_name" (30) NOT NULL

);

Some technical notes:

* The name of the table, myapp_person, is automatically derived from some model metadata but can be overrid-
den. See Table names for more details.

* An id field is added automatically, but this behavior can be overridden. See Automatic primary key fields.

e The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django
uses SQL tailored to the database backend specified in your settings file.

88 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Using models
Once you have defined your models, you need to tell Django you’re going to use those models. Do this by editing your
settings file and changing the INSTALLED_APPS setting to add the name of the module that contains your models. py.

For example, if the models for your application live in the module myapp . models (the package structure that is created
for an application by the manage.py startapp script), INSTALLED_APPS should read, in part:

INSTALLED_APPS = [

'myapp ",

]

When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally making migrations for
them first with manage. py makemigrations.

Fields

The most important part of a model — and the only required part of a model — is the list of database fields it defines.
Fields are specified by class attributes. Be careful not to choose field names that conflict with the models API like
clean, save, or delete.

Example:

from django.db import models

class Musician(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model):
artist = models.ForeignKey(Musician, on_delete=models.CASCADE)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

Field types

Each field in your model should be an instance of the appropriate Field class. Django uses the field class types to
determine a few things:

* The column type, which tells the database what kind of data to store (e.g. INTEGER, VARCHAR, TEXT).
¢ The default HTML widget to use when rendering a form field (e.g. <input type="text">, <select>).
* The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference. You can
easily write your own fields if Django’s built-in ones don’t do the trick; see Writing custom model fields.

3.2. Models and databases 89

Django Documentation, Release 2.2.29.dev20220411083753

Field options

Each field takes a certain set of field-specific arguments (documented in the model field reference). For example,
CharField (and its subclasses) require a max_Ilength argument which specifies the size of the VARCHAR database
field used to store the data.

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained in the
reference, but here’s a quick summary of the most often-used ones:

null If True, Django will store empty values as NULL in the database. Default is False.
blank If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related. If a
field has blank=True, form validation will allow entry of an empty value. If a field has blank=False, the field
will be required.

choices A sequence of 2-tuples to use as choices for this field. If this is given, the default form widget will be a select
box instead of the standard text field and will limit choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = [
('FR', 'Freshman'),
('S0', 'Sophomore'),
('IJR', "Junior'),
('SR', 'Senior'),
('GR', 'Graduate'),

Note: A new migration is created each time the order of choices changes.

The first element in each tuple is the value that will be stored in the database. The second element is displayed
by the field’s form widget.

Given a model instance, the display value for a field with choices can be accessed using the
get_F00_display() method. For example:

from django.db import models

class Person(models.Model):
SHIRT_SIZES = (
('S', 'Small'"),
('M', 'Medium'),
('L', 'Large"),
)
name = models.CharField(max_length=60)
shirt_size = models.CharField(max_length=1, choices=SHIRT_SIZES)

>>> p = Person(name="Fred Flintstone", shirt_size="L")
>>> p.save()

>>> p.shirt_size

L

>>> p.get_shirt_size_display()

'Large’

90 Chapter 3. Using Django

https://docs.python.org/3/glossary.html#term-sequence

Django Documentation, Release 2.2.29.dev20220411083753

default The default value for the field. This can be a value or a callable object. If callable it will be called every time
a new object is created.

help_text Extra “help” text to be displayed with the form widget. It’s useful for documentation even if your field
isn’t used on a form.

primary_key If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don’t need to set primary_key=True on any of your fields
unless you want to override the default primary-key behavior. For more, see Automatic primary key fields.

The primary key field is read-only. If you change the value of the primary key on an existing object and then
save it, a new object will be created alongside the old one. For example:

from django.db import models

class Fruit(models.Model):
name = models.CharField(max_length=100, primary_key=True)

>>> fruit = Fruit.objects.create(name='Apple")
>>> fruit.name = 'Pear’

>>> fruit.save()

>>> Fruit.objects.values_list('name', flat=True)
<QuerySet ['Apple', 'Pear']>

unique If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full details can be found in the common
model field option reference.

Automatic primary key fields

By default, Django gives each model the following field:

= models.AutoField(primary_key=True)

This is an auto-incrementing primary key.

If you’d like to specify a custom primary key, just specify primary_key=True on one of your fields. If Django sees
you’ve explicitly set Field.primary_key, it won’t add the automatic id column.

Each model requires exactly one field to have primary_key=True (either explicitly declared or automatically added).

Verbose field names

Each field type, except for ForeignKey, ManyToManyField and OneToOneField, takes an optional first positional
argument — a verbose name. If the verbose name isn’t given, Django will automatically create it using the field’s
attribute name, converting underscores to spaces.

In this example, the verbose name is "person's first name'":

first_name = models.CharField("person's first name", max_length=30)

In this example, the verbose name is "first name":

3.2. Models and databases 91

Django Documentation, Release 2.2.29.dev20220411083753

first_name = models.CharField(max_length=30)

ForeignKey, ManyToManyField and OneToOneField require the first argument to be a model class, so use the
verbose_name keyword argument:

poll = models.ForeignKey(

Poll,

on_delete=models.CASCADE,

verbose_name="the related poll",
)
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(

Place,

on_delete=models.CASCADE,

verbose_name="related place",

The convention is not to capitalize the first letter of the verbose_name. Django will automatically capitalize the first
letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the three
most common types of database relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships

To define a many-to-one relationship, use django.db.models.ForeignKey. You use it just like any other Field
type: by including it as a class attribute of your model.

ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer — that is, a Manufacturer makes multiple cars but each Car only
has one Manufacturer — use the following definitions:

from django.db import models
class Manufacturer(models.Model):
pass

class Car(models.Model):
manufacturer = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)

You can also create recursive relationships (an object with a many-to-one relationship to itself) and relationships to
models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above) be the
name of the model, lowercase. You can, of course, call the field whatever you want. For example:

class Car(models.Model):
company_that_makes_it = models.ForeignKey(

(continues on next page)

92 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

Manufacturer,
on_delete=models.CASCADE,

See also:

ForeignKey fields accept a number of extra arguments which are explained in the model field reference. These options
help define how the relationship should work; all are optional.

For details on accessing backwards-related objects, see the Following relationships backward example.

For sample code, see the Many-to-one relationship model example.

Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField. You use it just like any other Field type: by including
it as a class attribute of your model.

ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects — that is, a Topping can be on multiple pizzas and each Pizza
has multiple toppings — here’s how you’d represent that:

from django.db import models

class Topping(models.Model):
pass

class Pizza(models.Model):

toppings = models.ManyToManyField(Topping)

As with ForeignKey, you can also create recursive relationships (an object with a many-to-many relationship to itself)
and relationships to models not yet defined.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a plural
describing the set of related model objects.

It doesn’t matter which model has the ManyToManyField, but you should only put it in one of the models — not both.

Generally, ManyToManyField instances should go in the object that’s going to be edited on a form. In the above
example, toppings is in Pizza (rather than Topping having a pizzas ManyToManyField) because it’s more natural
to think about a pizza having toppings than a topping being on multiple pizzas. The way it’s set up above, the Pizza
form would let users select the toppings.

See also:
See the Many-to-many relationship model example for a full example.

ManyToManyField fields also accept a number of extra arguments which are explained in the model field reference.
These options help define how the relationship should work; all are optional.

3.2. Models and databases 93

Django Documentation, Release 2.2.29.dev20220411083753

Extra fields on many-to-many relationships

When you’re only dealing with simple many-to-many relationships such as mixing and matching pizzas and toppings, a
standard ManyToManyField is all you need. However, sometimes you may need to associate data with the relationship
between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to. There
is a many-to-many relationship between a person and the groups of which they are a member, so you could use a
ManyToManyField to represent this relationship. However, there is a lot of detail about the membership that you
might want to collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used to govern the many-to-many rela-
tionship. You can then put extra fields on the intermediate model. The intermediate model is associated with the
ManyToManyField using the through argument to point to the model that will act as an intermediary. For our musi-
cian example, the code would look something like this:

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128)

def __str__():
return .hame

class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership')

def __str__():
return .hame

class Membership(models.Model):
person = models.ForeignKey(Person, on_delete=models.CASCADE)
group = models.ForeignKey(Group, on_delete=models.CASCADE)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

When you set up the intermediary model, you explicitly specify foreign keys to the models that are involved in the
many-to-many relationship. This explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

* Your intermediate model must contain one - and only one - foreign key to the source model (this would be Group
in our example), or you must explicitly specify the foreign keys Django should use for the relationship using
ManyToManyField. through_fields. If you have more than one foreign key and through_fields is not
specified, a validation error will be raised. A similar restriction applies to the foreign key to the target model
(this would be Person in our example).

* For a model which has a many-to-many relationship to itself through an intermediary model, two foreign keys
to the same model are permitted, but they will be treated as the two (different) sides of the many-to-many rela-
tionship. If there are more than two foreign keys though, you must also specify through_fields as above, or a
validation error will be raised.

* When defining a many-to-many relationship from a model to itself, using an intermediary model, you must use
symmetrical=False (see the model field reference).

Now that you have set up your ManyToManyField to use your intermediary model (Membership, in this case), you're

94 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

ready to start creating some many-to-many relationships. You do this by creating instances of the intermediate model:

>>> ringo = Person.objects.create(name="Ringo Starr")

>>> paul = Person.objects.create(name="Paul McCartney')

>>> beatles = Group.objects.create(name="The Beatles")

>>> ml = Membership(person=ringo, group=beatles,
date_joined=date(1962, 8, 16),

.. invite_reason="Needed a new drummer.")

>>> ml.save()

>>> beatles.members.all()

<QuerySet [<Person: Ringo Starr>]>

>>> ringo.group_set.all()

<QuerySet [<Group: The Beatles>]>

>>> m2 = Membership.objects.create(person=paul, group=beatles,
date_joined=date(1960, 8, 1),

. invite_reason="lanted to form a band.™)

>>> beatles.members.all()

<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>]>

You can also use add (), create(), or set() to create relationships, as long as you specify through_defaults for
any required fields:

>>> beatles.members.add(john, through_defaults={'date_joined': date(1960, 8, 1)})

>>> beatles.members.create(name="George Harrison'", through_defaults={'date_joined':.
—date(1960, 8, 1)})

>>> beatles.members.set([john, paul, ringo, george], through_defaults={'date_joined':.
—date(1960, 8, 1D}

You may prefer to create instances of the intermediate model directly.

If the custom through table defined by the intermediate model does not enforce uniqueness on the (modell, model2)
pair, allowing multiple values, the remove () call will remove all intermediate model instances:

>>> Membership.objects.create(person=ringo, group=beatles,
date_joined=date(1968, 9, 4),
. invite_reason="You've been gone for a month and we miss you.")
>>> beatles.members.all()
<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>, <Person: Ringo Starr>]>
>>>
>>> beatles.members.remove(ringo)
>>> beatles.members.all()
<QuerySet [<Person: Paul McCartney>]>

The clear () method can be used to remove all many-to-many relationships for an instance:

>>>
>>> beatles.members.clear()
>>>

>>> Membership.objects.all()
<QuerySet []>

Once you have established the many-to-many relationships, you can issue queries. Just as with normal many-to-many
relationships, you can query using the attributes of the many-to-many-related model:

3.2. Models and databases 95

Django Documentation, Release 2.2.29.dev20220411083753

>>> Group.objects.filter (members__name__startswith='Paul"')
<QuerySet [<Group: The Beatles>]>

As you are using an intermediate model, you can also query on its attributes:

>>> Person.objects.filter(

group__name='The Beatles',
. membership__date_joined__gt=date(1961,1,1))
<QuerySet [<Person: Ringo Starr]>

If you need to access a membership’s information you may do so by directly querying the Membership model:

>>> ringos_membership = Membership.objects.get(group=beatles, person=ringo)
>>> ringos_membership.date_joined

datetime.date(1962, 8, 16)

>>> ringos_membership.invite_reason

'Needed a new drummer.'

Another way to access the same information is by querying the many-to-many reverse relationship from a Person
object:

>>> ringos_membership = ringo.membership_set.get(group=beatles)
>>> ringos_membership.date_joined

datetime.date(1962, 8, 16)

>>> ringos_membership.invite_reason

'Needed a new drummer.'

One-to-one relationships

To define a one-to-one relationship, use OneToOneField. You use it just like any other Field type: by including it as
a class attribute of your model.

This is most useful on the primary key of an object when that object “extends” another object in some way.
OneToOneField requires a positional argument: the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as address, phone
number, etc. in the database. Then, if you wanted to build a database of restaurants on top of the places, instead
of repeating yourself and replicating those fields in the Restaurant model, you could make Restaurant have a
OneToOneField to Place (because a restaurant “is a” place; in fact, to handle this you’d typically use inheritance,
which involves an implicit one-to-one relation).

As with ForeignKey, a recursive relationship can be defined and references to as-yet undefined models can be made.
See also:

See the One-to-one relationship model example for a full example.

OneToOneField fields also accept an optional parent_1link argument.

OneToOneField classes used to automatically become the primary key on a model. This is no longer true (although
you can manually pass in the primary_key argument if you like). Thus, it’s now possible to have multiple fields of
type OneToOneField on a single model.

96 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Models across files

It’s perfectly OK to relate a model to one from another app. To do this, import the related model at the top of the file
where your model is defined. Then, just refer to the other model class wherever needed. For example:

from django.db import models
from geography.models import ZipCode

class Restaurant (models.Model):

zip_code = models.ForeignKey(
ZipCode,
on_delete=models.SET_NULL,
blank=True,
null=True,

Field name restrictions

Django places some restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python syntax error. For example:

class Example(models.Model):
pass = models.IntegerField()

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query lookup syntax
works. For example:

class Example(models.Model):
foo__bar = models.IntegerField()

3. A field name cannot end with an underscore, for similar reasons.

These limitations can be worked around, though, because your field name doesn’t necessarily have to match your
database column name. See the db_column option.

SQL reserved words, such as join, where or select, are allowed as model field names, because Django escapes all
database table names and column names in every underlying SQL query. It uses the quoting syntax of your particular
database engine.

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if you wish to take advantage of some less
common database column types, you can create your own field class. Full coverage of creating your own fields is
provided in Writing custom model fields.

3.2. Models and databases 97

Django Documentation, Release 2.2.29.dev20220411083753

Meta options

Give your model metadata by using an inner class Meta, like so:

from django.db import models

class Ox(models.Model):
horn_length = models.IntegerField()

class Meta:
ordering = ["horn_length"]
verbose_name_plural = "oxen"

Model metadata is “anything that’s not a field”, such as ordering options (ordering), database table name (db_table),
or human-readable singular and plural names (verbose_name and verbose_name_plural). None are required, and
adding class Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

Model attributes

objects The most important attribute of a model is the Manager. It’s the interface through which database query
operations are provided to Django models and is used to retrieve the instances from the database. If no custom
Manager is defined, the default name is objects. Managers are only accessible via model classes, not the model
instances.

Model methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager methods
are intended to do “table-wide” things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place — the model.

For example, this model has a few custom methods:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
birth_date = models.DateField()

def baby_boomer_status():

"Returns the person's baby-boomer status."

import datetime

if .birth_date < datetime.date(1945, 8, 1):
return "Pre-boomer"

elif .birth_date < datetime.date(1965, 1, 1):
return "Baby boomer"

else:
return "Post-boomer"

@property
def full_name():

(continues on next page)

98 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

"Returns the person's full name."
return '%s %s' % (.first_name, .last_name)

The last method in this example is a property.

The model instance reference has a complete list of methods automatically given to each model. You can override most
of these — see overriding predefined model methods, below — but there are a couple that you’ll almost always want to
define:

__str__() A Python “magic method” that returns a string representation of any object. This is what Python and
Django will use whenever a model instance needs to be coerced and displayed as a plain string. Most notably,
this happens when you display an object in an interactive console or in the admin.

You’ll always want to define this method; the default isn’t very helpful at all.

get_absolute_url() This tells Django how to calculate the URL for an object. Django uses this in its admin
interface, and any time it needs to figure out a URL for an object.

Any object that has a URL that uniquely identifies it should define this method.

Overriding predefined model methods

There’s another set of model methods that encapsulate a bunch of database behavior that you’ll want to customize. In
particular you’ll often want to change the way save () and delete() work.

You’re free to override these methods (and any other model method) to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save an object.
For example (see save () for documentation of the parameters it accepts):

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(, *args, *¥*kwargs):
do_something ()
() .save(*args, **kwargs)
do_something_else()

You can also prevent saving:

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(, *args, **kwargs):
if .name == "Yoko Ono's blog":
return
else:

() .save(*args, **kwargs)

3.2. Models and databases 99

Django Documentation, Release 2.2.29.dev20220411083753

It’s important to remember to call the superclass method — that’s that super () .save(*args, **kwargs) business
— to ensure that the object still gets saved into the database. If you forget to call the superclass method, the default
behavior won’t happen and the database won’t get touched.

It’s also important that you pass through the arguments that can be passed to the model method — that’s what the
*args, **kwargs bit does. Django will, from time to time, extend the capabilities of built-in model methods, adding
new arguments. If you use *args, **kwargs in your method definitions, you are guaranteed that your code will
automatically support those arguments when they are added.

Overridden model methods are not called on bulk operations

Note that the delete () method for an object is not necessarily called when deleting objects in bulk using a QuerySet
or as a result of a cascading delete. To ensure customized delete logic gets executed, you can use pre_delete
and/or post_delete signals.

Unfortunately, there isn’t a workaround when creating or updating objects in bulk, since none of save(),
pre_save, and post_save are called.

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and module-level methods. For more
details on using raw SQL, see the documentation on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal class inheritance works in Python, but the
basics at the beginning of the page should still be followed. That means the base class should subclass django.db.
models.Model.

The only decision you have to make is whether you want the parent models to be models in their own right (with their
own database tables), or if the parents are just holders of common information that will only be visible through the
child models.

There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that you don’t want to have to type out for
each child model. This class isn’t going to ever be used in isolation, so Abstract base classes are what you're
after.

2. If you’re subclassing an existing model (perhaps something from another application entirely) and want each
model to have its own database table, Multi-table inheritance is the way to go.

3. Finally, if you only want to modify the Python-level behavior of a model, without changing the models fields in
any way, you can use Proxy models.

100 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other models. You
write your base class and put abstract=True in the Meta class. This model will then not be used to create any database
table. Instead, when it is used as a base class for other models, its fields will be added to those of the child class.

An example:

from django.db import models

class CommonInfo(models.Model):
name = models.CharField(max_length=100)
age = models.PositiveIntegerField()

class Meta:
abstract = True

class Student(CommonInfo):
home_group = models.CharField(max_length=5)

The Student model will have three fields: name, age and home_group. The CommonInfo model cannot be used as a
normal Django model, since it is an abstract base class. It does not generate a database table or have a manager, and
cannot be instantiated or saved directly.

Fields inherited from abstract base classes can be overridden with another field or value, or be removed with None.

For many uses, this type of model inheritance will be exactly what you want. It provides a way to factor out common
information at the Python level, while still only creating one database table per child model at the database level.

Meta inheritance

When an abstract base class is created, Django makes any Meta inner class you declared in the base class available as
an attribute. If a child class does not declare its own Meta class, it will inherit the parent’s Meza. If the child wants to
extend the parent’s Meta class, it can subclass it. For example:

from django.db import models

class CommonInfo(models.Model):

class Meta:
abstract = True
ordering = []

class Student(CommonInfo):

class Meta(CommonInfo.Meta):
db_table =

Django does make one adjustment to the Meta class of an abstract base class: before installing the Mera attribute, it
sets abstract=False. This means that children of abstract base classes don’t automatically become abstract classes
themselves. Of course, you can make an abstract base class that inherits from another abstract base class. You just need
to remember to explicitly set abstract=True each time.

Some attributes won’t make sense to include in the Mera class of an abstract base class. For example, including
db_table would mean that all the child classes (the ones that don’t specify their own Meta) would use the same

3.2. Models and databases 101

Django Documentation, Release 2.2.29.dev20220411083753

database table, which is almost certainly not what you want.

Be careful with related_name and related_query_name

If you are using related_name or related_query_name on a ForeignKey or ManyToManyField, you must always
specify a unique reverse name and query name for the field. This would normally cause a problem in abstract base
classes, since the fields on this class are included into each of the child classes, with exactly the same values for the
attributes (including related_name and related_query_name) each time.

To work around this problem, when you are using related_name or related_query_name in an abstract base class
(only), part of the value should contain '%(app_label)s' and '%(class)s’.

* '%(class)s' is replaced by the lowercased name of the child class that the field is used in.

* "%(app_label)s' is replaced by the lowercased name of the app the child class is contained within. Each
installed application name must be unique and the model class names within each app must also be unique,
therefore the resulting name will end up being different.

For example, given an app common/models.py:

from django.db import models

class Base(models.Model):
m2m = models.ManyToManyField(
OtherModel,
related_name="%(app_label)s %(class)s_related",
related_query_name="%(app_label)s %(class)ss",

)

class Meta:
abstract = True

class ChildA(Base):
pass

class ChildB(Base):
pass

Along with another app rare/models.py:

from common.models import Base

class ChildB(Base):
pass

The reverse name of the common.ChildA.m2m field will be common_childa_related and the reverse query name
will be common_childas. The reverse name of the common.ChildB.m2m field will be common_childb_related
and the reverse query name will be common_childbs. Finally, the reverse name of the rare.ChildB.m2m field
will be rare_childb_related and the reverse query name will be rare_childbs. It’s up to you how you use
the '%(class)s' and '%(app_label)s' portion to construct your related name or related query name but if you
forget to use it, Django will raise errors when you perform system checks (or run migrate).

If you don’t specify a related_name attribute for a field in an abstract base class, the default reverse name will be the
name of the child class followed by ' _set', just as it normally would be if you’d declared the field directly on the child
class. For example, in the above code, if the related_name attribute was omitted, the reverse name for the m2m field
would be childa_set in the ChildA case and childb_set for the ChildB field.

102 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in the hierarchy is a model all by itself.
Each model corresponds to its own database table and can be queried and created individually. The inheritance relation-
ship introduces links between the child model and each of its parents (via an automatically-created OneToOneField).
For example:

from django.db import models

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

class Restaurant(Place):
serves_hot_dogs = models.BooleanField(default=False)
serves_pizza = models.BooleanField(default=False)

All of the fields of Place will also be available in Restaurant, although the data will reside in a different database
table. So these are both possible:

>>> Place.objects.filter(name="Bob's Cafe")
>>> Restaurant.objects.filter(name="Bob's Cafe')

If you have a Place that is also a Restaurant, you can get from the Place object to the Restaurant object by using
the lowercase version of the model name:

>>> p = Place.objects.get(id=12)

If p is a Restaurant object, this will give the child class:
>>> p.restaurant

<Restaurant: ...>

However, if p in the above example was not a Restaurant (it had been created directly as a Place object or was the
parent of some other class), referring to p.restaurant would raise a Restaurant.DoesNotExist exception.

The automatically-created OneToOneField on Restaurant that links it to Place looks like this:

place_ptr = models.OneToOneField(
Place, on_delete=models.CASCADE,
parent_link=True,

You can override that field by declaring your own OneToOneField with parent_link=True on Restaurant.

Meta and multi-table inheritance

In the multi-table inheritance situation, it doesn’t make sense for a child class to inherit from its parent’s Meta class.
All the Meta options have already been applied to the parent class and applying them again would normally only lead
to contradictory behavior (this is in contrast with the abstract base class case, where the base class doesn’t exist in its
own right).

So a child model does not have access to its parent’s Meta class. However, there are a few limited cases where the child
inherits behavior from the parent: if the child does not specify an ordering attribute or a get_latest_by attribute,
it will inherit these from its parent.

If the parent has an ordering and you don’t want the child to have any natural ordering, you can explicitly disable it:

3.2. Models and databases 103

Django Documentation, Release 2.2.29.dev20220411083753

class ChildModel (ParentModel):
class Meta:

ordering = []

Inheritance and reverse relations

Because multi-table inheritance uses an implicit OneToOneField to link the child and the parent, it’s possible to
move from the parent down to the child, as in the above example. However, this uses up the name that is the default
related_name value for ForeignKey and ManyToManyField relations. If you are putting those types of relations on
a subclass of the parent model, you must specify the related_name attribute on each such field. If you forget, Django
will raise a validation error.

For example, using the above Place class again, let’s create another subclass with a ManyToManyField:

class Supplier(Place):
customers = models.ManyToManyField(Place)

This results in the error:

Reverse query name for 'Supplier.customers' clashes with reverse query
name for 'Supplier.place_ptr'.

HINT: Add or change a related_name argument to the definition for
'Supplier.customers' or 'Supplier.place_ptr'.

Adding related_name to the customers field as follows would resolve the error: models.
ManyToManyField(Place, related_name='provider').

Specifying the parent link field

As mentioned, Django will automatically create a OneToOneField linking your child class back to any non-abstract
parent models. If you want to control the name of the attribute linking back to the parent, you can create your own
OneToOneField and set parent_Iink=True to indicate that your field is the link back to the parent class.

Proxy models

When using multi-table inheritance, a new database table is created for each subclass of a model. This is usually the
desired behavior, since the subclass needs a place to store any additional data fields that are not present on the base
class. Sometimes, however, you only want to change the Python behavior of a model — perhaps to change the default
manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the original model. You can create, delete and update
instances of the proxy model and all the data will be saved as if you were using the original (non-proxied) model. The
difference is that you can change things like the default model ordering or the default manager in the proxy, without
having to alter the original.

Proxy models are declared like normal models. You tell Django that it’s a proxy model by setting the proxy attribute
of the Meta class to True.

For example, suppose you want to add a method to the Person model. You can do it like this:

104 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

from django.db import models
class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
class MyPerson(Person):
class Meta:
proxy = True

def do_something():

pass

The MyPerson class operates on the same database table as its parent Person class. In particular, any new instances
of Person will also be accessible through MyPerson, and vice-versa:

>>> p = Person.objects.create(first_name=)
>>> MyPerson.objects.get(first_name=)
<MyPerson: foobar>

You could also use a proxy model to define a different default ordering on a model. You might not always want to order
the Person model, but regularly order by the 1ast_name attribute when you use the proxy. This is easy:

class OrderedPerson(Person):
class Meta:
ordering = []
proxy = True

Now normal Person queries will be unordered and OrderedPerson queries will be ordered by 1ast_name.

Proxy models inherit Meta attributes in the same way as regular models.

QuerySets still return the model that was requested

There is no way to have Django return, say, a MyPerson object whenever you query for Person objects. A queryset
for Person objects will return those types of objects. The whole point of proxy objects is that code relying on the
original Person will use those and your own code can use the extensions you included (that no other code is relying on
anyway). It is not a way to replace the Person (or any other) model everywhere with something of your own creation.

Base class restrictions

A proxy model must inherit from exactly one non-abstract model class. You can’t inherit from multiple non-abstract
models as the proxy model doesn’t provide any connection between the rows in the different database tables. A proxy
model can inherit from any number of abstract model classes, providing they do not define any model fields. A proxy
model may also inherit from any number of proxy models that share a common non-abstract parent class.

3.2. Models and databases 105

Django Documentation, Release 2.2.29.dev20220411083753

Proxy model managers

If you don’t specify any model managers on a proxy model, it inherits the managers from its model parents. If you
define a manager on the proxy model, it will become the default, although any managers defined on the parent classes
will still be available.

Continuing our example from above, you could change the default manager used when you query the Person model
like this:

from django.db import models
class NewManager (models.Manager):
pass

class MyPerson(Person):
objects = NewManager()

class Meta:
proxy = True

If you wanted to add a new manager to the Proxy, without replacing the existing default, you can use the techniques
described in the custom manager documentation: create a base class containing the new managers and inherit that after
the primary base class:

class ExtraManagers(models.Model):
secondary = NewManager ()

class Meta:
abstract = True

class MyPerson(Person, ExtraManagers):
class Meta:
proxy = True

You probably won’t need to do this very often, but, when you do, it’s possible.

Differences between proxy inheritance and unmanaged models

Proxy model inheritance might look fairly similar to creating an unmanaged model, using the managed attribute on a
model’s Meta class.

With careful setting of Meta. db_table you could create an unmanaged model that shadows an existing model and adds
Python methods to it. However, that would be very repetitive and fragile as you need to keep both copies synchronized
if you make any changes.

On the other hand, proxy models are intended to behave exactly like the model they are proxying for. They are always
in sync with the parent model since they directly inherit its fields and managers.

The general rules are:

1. If you are mirroring an existing model or database table and don’t want all the original database table columns,
use Meta.managed=False. That option is normally useful for modeling database views and tables not under
the control of Django.

106 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

2. If you are wanting to change the Python-only behavior of a model, but keep all the same fields as in the original,
use Meta.proxy=True. This sets things up so that the proxy model is an exact copy of the storage structure of
the original model when data is saved.

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a Django model to inherit from multiple parent models. Keep in
mind that normal Python name resolution rules apply. The first base class that a particular name (e.g. Meta) appears
in will be the one that is used; for example, this means that if multiple parents contain a Mefa class, only the first one
is going to be used, and all others will be ignored.

Generally, you won’t need to inherit from multiple parents. The main use-case where this is useful is for “mix-in”
classes: adding a particular extra field or method to every class that inherits the mix-in. Try to keep your inheritance
hierarchies as simple and straightforward as possible so that you won’t have to struggle to work out where a particular
piece of information is coming from.

Note that inheriting from multiple models that have a common id primary key field will raise an error. To properly use
multiple inheritance, you can use an explicit AutoField in the base models:

class Article(models.Model):
article_id = models.AutoField(primary_key=True)

class Book(models.Model):
book_id = models.AutoField(primary_key=True)

class BookReview(Book, Article):
pass

Or use a common ancestor to hold the AutoField. This requires using an explicit OneToOneField from each parent
model to the common ancestor to avoid a clash between the fields that are automatically generated and inherited by the
child:

class Piece(models.Model):
pass

class Article(Piece):
article_piece = models.OneToOneField(Piece, on_delete=models.CASCADE, parent_
—1ink=True)

class Book(Piece):
book_piece = models.OneToOneField(Piece, on_delete=models.CASCADE, parent_link=True)

class BookReview(Book, Article):
pass

3.2. Models and databases 107

Django Documentation, Release 2.2.29.dev20220411083753

Field name “hiding” is not permitted

In normal Python class inheritance, it is permissible for a child class to override any attribute from the parent class. In
Django, this isn’t usually permitted for model fields. If a non-abstract model base class has a field called author, you
can’t create another model field or define an attribute called author in any class that inherits from that base class.

This restriction doesn’t apply to model fields inherited from an abstract model. Such fields may be overridden with
another field or value, or be removed by setting field_name = None.

Warning: Model managers are inherited from abstract base classes. Overriding an inherited field which is refer-
enced by an inherited Manager may cause subtle bugs. See custom managers and model inheritance.

Note: Some fields define extra attributes on the model, e.g. a ForeignKey defines an extra attribute with _id appended
to the field name, as well as related_name and related_query_name on the foreign model.

These extra attributes cannot be overridden unless the field that defines it is changed or removed so that it no longer
defines the extra attribute.

Overriding fields in a parent model leads to difficulties in areas such as initializing new instances (specifying which field
is being initialized in Model.__init__) and serialization. These are features which normal Python class inheritance
doesn’t have to deal with in quite the same way, so the difference between Django model inheritance and Python class
inheritance isn’t arbitrary.

This restriction only applies to attributes which are Field instances. Normal Python attributes can be overridden if
you wish. It also only applies to the name of the attribute as Python sees it: if you are manually specifying the database
column name, you can have the same column name appearing in both a child and an ancestor model for multi-table
inheritance (they are columns in two different database tables).

Django will raise a FieldError if you override any model field in any ancestor model.

Organizing models in a package
The manage.py startapp command creates an application structure that includes a models.py file. If you have
many models, organizing them in separate files may be useful.

To do so, create amodels package. Remove models.py and create amyapp/models/ directory withan __init__.py
file and the files to store your models. You must import the models in the __init__.py file.

For example, if you had organic.py and synthetic.py in the models directory:

Listing 1: myapp/models/__init__.py

from .organic import Person
from .synthetic import Robot

Explicitly importing each model rather than using from .models import * has the advantages of not cluttering the
namespace, making code more readable, and keeping code analysis tools useful.

See also:

The Models Reference Covers all the model related APIs including model fields, related objects, and QuerySet.

108 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

3.2.2 Making queries

Once you’ve created your data models, Django automatically gives you a database-abstraction API that lets you create,
retrieve, update and delete objects. This document explains how to use this API. Refer to the data model reference for
full details of all the various model lookup options.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog application:

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def __str__()N
return Nname

class Author(models.Model):
name = models.CharField(max_length=200)
email = models.EmailField()

def __str__()N
return .hame

class Entry(models.Model):
blog = models.ForeignKey(Blog, on_delete=models.CASCADE)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField()
authors = models.ManyToManyField(Author)
number_of_comments = models.IntegerField()
number_of_pingbacks = models.IntegerField()
rating = models.IntegerField()

def __str__():
return .headline

Creating objects

To represent database-table data in Python objects, Django uses an intuitive system: A model class represents a database
table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save () to save it to the database.

Assuming models live in a file mysite/blog/models.py, here’s an example:

>>> from blog.models import Blog
>>> b = Blog(name= , tagline=)
>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

The save () method has no return value.

3.2. Models and databases 109

Django Documentation, Release 2.2.29.dev20220411083753

See also:

save() takes a number of advanced options not described here. See the documentation for save () for complete
details.

To create and save an object in a single step, use the create () method.

Saving changes to objects

To save changes to an object that’s already in the database, use save ().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and updates its
record in the database:

>>> b5.name = 'New name'
>>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field — simply assign an object of the
right type to the field in question. This example updates the blog attribute of an Entry instance entry, assuming
appropriate instances of Entry and Blog are already saved to the database (so we can retrieve them below):

>>> from blog.models import Blog, Entry

>>> entry = Entry.objects.get(pk=1)

>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog

>>> entry.save()

Updating a ManyToManyField works a little differently — use the add () method on the field to add a record to the
relation. This example adds the Author instance joe to the entry object:

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)

To add multiple records to a ManyToManyField in one go, include multiple arguments in the call to add (), like this:

>>> john = Author.objects.create(name="John'")
>>> paul = Author.objects.create(name="Paul')
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)

Django will complain if you try to assign or add an object of the wrong type.

110 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Retrieving objects

To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters. Filters narrow
down the query results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT statement, and
a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called objects
by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')

>>> b.objects

Traceback:

AttributeError: "Manager isn't accessible via Blog instances."

Note: Managers are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations.

The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a QuerySet
that contains all Blog objects in the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all () method on a Manager:

>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table. Usually, though, you’ll need to select
only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to refine
a QuerySet are:

filter(**kwargs) Returns a new QuerySet containing objects that match the given lookup parameters.
exclude (**kwargs) Returns a new QuerySet containing objects that do nor match the given lookup parameters.

The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups
below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Entry.objects.filter(pub_date__year=2006)

With the default manager class, it is the same as:

3.2. Models and databases 111

Django Documentation, Release 2.2.29.dev20220411083753

Entry.objects.all().filter(pub_date__year=2006)

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together. For example:

>>> Entry.objects.filter(
headline__startswith="lhat'
...).exclude(
.. pub_date__gte=datetime.date.today()
...).filter(
pub_date__gte=datetime.date(2005, 1, 30)
.)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The
final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between
January 30, 2005, and the current day.

Filtered QuerySets are unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way bound to the previous QuerySet.
Each refinement creates a separate and distinct QuerySet that can be stored, used and reused.

Example:

>>> ql = Entry.objects.filter(headline__startswith="What")
>>> 2 = gl.exclude(pub_date__gte=datetime.date.today())
>>> q3 = ql.filter(pub_date__gte=datetime.date.today())

These three QuerySets are separate. The first is a base QuerySet containing all entries that contain a headline starting
with “What”. The second is a subset of the first, with an additional criteria that excludes records whose pub_date is
today or in the future. The third is a subset of the first, with an additional criteria that selects only the records whose
pub_date is today or in the future. The initial QuerySet (q1) is unaffected by the refinement process.

QuerySets are lazy

QuerySets are lazy — the act of creating a QuerySet doesn’t involve any database activity. You can stack filters
together all day long, and Django won’t actually run the query until the QuerySet is evaluated. Take a look at this
example:

>>> q = Entry.objects.filter(headline__startswith="lhat")
>>> q = q.filter(pub_date__lte=datetime.date.today())

>>> q = g.exclude(body_text__icontains="food")

>>> @

Though this looks like three database hits, in fact it hits the database only once, at the last line (print(q)). In general,
the results of a QuerySet aren’t fetched from the database until you “ask” for them. When you do, the QuerySet is
evaluated by accessing the database. For more details on exactly when evaluation takes place, see When QuerySets are
evaluated.

112 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Retrieving a single object with get()

filter() will always give you a QuerySet, even if only a single object matches the query - in this case, it will be a
QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get () method on a Manager which
returns the object directly:

>>> one_entry = Entry.objects.get(pk=1)

You can use any query expression with get (), just like with filter() - again, see Field lookups below.

Note that there is a difference between using get (), and using filter() with a slice of [0]. If there are no results
that match the query, get () will raise a DoesNotExist exception. This exception is an attribute of the model class
that the query is being performed on - so in the code above, if there is no Entry object with a primary key of 1, Django
will raise Entry.DoesNotExist.

Similarly, Django will complain if more than one item matches the get() query. In this case, it will raise
MultipleObjectsReturned, which again is an attribute of the model class itself.

Other QuerySet methods

Most of the time you’ll use all(), get(), filter() and exclude() when you need to look up objects from the
database. However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the various
QuerySet methods.

Limiting QuerySets

Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This is the
equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

>>> Entry.objects.all()[:5]

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

>>> Entry.objects.all()[5:10]

Negative indexing (i.e. Entry.objects.all() [-1]) is not supported.

Generally, slicing a QuerySet returns a new QuerySet — it doesn’t evaluate the query. An exception is if you use the
“step” parameter of Python slice syntax. For example, this would actually execute the query in order to return a list of
every second object of the first 10:

>>> Entry.objects.all(Q[:10:2]

Further filtering or ordering of a sliced queryset is prohibited due to the ambiguous nature of how that might work.

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use a simple index instead of a
slice. For example, this returns the first Entry in the database, after ordering entries alphabetically by headline:

>>> Entry.objects.order_by('headline')[0]

This is roughly equivalent to:

3.2. Models and databases 113

Django Documentation, Release 2.2.29.dev20220411083753

>>> Entry.objects.order_by()[0:1].get(Q)

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no objects
match the given criteria. See get () for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get ().

Basic lookups keyword arguments take the form field__lookuptype=value. (That’s a double-underscore). For
example:

>>> Entry.objects.filter(pub_date__lte=)

translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE pub_date <= ;

How this is possible

Python has the ability to define functions that accept arbitrary name-value arguments whose names and values are
evaluated at runtime. For more information, see Keyword Arguments in the official Python tutorial.

The field specified in a lookup has to be the name of a model field. There’s one exception though, in case of a
ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter is expected to contain
the raw value of the foreign model’s primary key. For example:

>>> Entry.objects.filter(blog_id=4)

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The database API supports about two dozen lookup types; a complete reference can be found in the field lookup refer-
ence. To give you a taste of what’s available, here’s some of the more common lookups you’ll probably use:

exact An “exact” match. For example:

>>> Entry.objects.get(headline__exact=)

Would generate SQL along these lines:

SELECT ... WHERE headline = ;

If you don’t provide a lookup type — that is, if your keyword argument doesn’t contain a double underscore — the
lookup type is assumed to be exact.

For example, the following two statements are equivalent:

>>> Blog.objects.get(id__exact=14)
>>> Blog.objects.get(id=14)

This is for convenience, because exact lookups are the common case.

iexact A case-insensitive match. So, the query:

114 Chapter 3. Using Django

https://docs.python.org/3/tutorial/controlflow.html#tut-keywordargs

Django Documentation, Release 2.2.29.dev20220411083753

>>> Blog.objects.get(name__iexact=)

Would match a Blog titled "Beatles Blog", "beatles blog", or even "BeAt1lES bl0G".

contains Case-sensitive containment test. For example:

Entry.objects.get(headline__contains=)

Roughly translates to this SQL:

SELECT ... WHERE headline LIKE ;

Note this will match the headline 'Today Lennon honored' but not 'today lennon honored'.
There’s also a case-insensitive version, icontains.

startswith, endswith Starts-with and ends-with search, respectively. There are also case-insensitive versions
called istartswith and iendswith.

Again, this only scratches the surface. A complete reference can be found in the field lookup reference.

Lookups that span relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across models,
separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is 'Beatles Blog':

>>> Entry.objects.filter(blog__name=)

This spanning can be as deep as you’d like.
It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains 'Lennon':

>>> Blog.objects.filter(entry__headline__contains=)

If you are filtering across multiple relationships and one of the intermediate models doesn’t have a value that meets the
filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object there. All this means
is that no error will be raised. For example, in this filter:

Blog.objects.filter(entry__authors__name=)

(if there was a related Author model), if there was no author associated with an entry, it would be treated as if there
was also no name attached, rather than raising an error because of the missing author. Usually this is exactly what
you want to have happen. The only case where it might be confusing is if you are using isnull. Thus:

Blog.objects.filter(entry__authors__name__isnull=True)

will return Blog objects that have an empty name on the author and also those which have an empty author on the
entry. If you don’t want those latter objects, you could write:

Blog.objects.filter(entry__authors__isnull=False, entry__authors__name__isnull=True)

3.2. Models and databases 115

Django Documentation, Release 2.2.29.dev20220411083753

Spanning multi-valued relationships

When you are filtering an object based on a ManyToManyField or a reverse ForeignKey, there are two different sorts
of filter you may be interested in. Consider the Blog/Entry relationship (Blog to Entry is a one-to-many relation).
We might be interested in finding blogs that have an entry which has both “Lennon” in the headline and was published
in 2008. Or we might want to find blogs that have an entry with “Lennon” in the headline as well as an entry that was
published in 2008. Since there are multiple entries associated with a single Blog, both of these queries are possible
and make sense in some situations.

The same type of situation arises with a ManyToManyField. For example, if an Entry has a ManyToManyField
called tags, we might want to find entries linked to tags called “music” and “bands” or we might want an entry that
contains a tag with a name of “music” and a status of “public”.

To handle both of these situations, Django has a consistent way of processing £ilter () calls. Everything inside a single
filter() callis applied simultaneously to filter out items matching all those requirements. Successive filter () calls
further restrict the set of objects, but for multi-valued relations, they apply to any object linked to the primary model,
not necessarily those objects that were selected by an earlier filter () call.

That may sound a bit confusing, so hopefully an example will clarify. To select all blogs that contain entries with both
“Lennon” in the headline and that were published in 2008 (the same entry satisfying both conditions), we would write:

Blog.objects.filter(entry__headline__contains= , entry__pub_date__year=2008)

To select all blogs that contain an entry with “Lennon” in the headline as well as an entry that was published in 2008,
we would write:

Blog.objects.filter(entry__headline__contains=).filter(entry__pub_date__
—year=2008)

Suppose there is only one blog that had both entries containing “Lennon” and entries from 2008, but that none of the
entries from 2008 contained “Lennon”. The first query would not return any blogs, but the second query would return
that one blog.

In the second example, the first filter restricts the queryset to all those blogs linked to entries with “Lennon” in the
headline. The second filter restricts the set of blogs further to those that are also linked to entries that were published
in 2008. The entries selected by the second filter may or may not be the same as the entries in the first filter. We are
filtering the Blog items with each filter statement, not the Entry items.

Note: The behavior of filter () for queries that span multi-value relationships, as described above, is not imple-
mented equivalently for exclude (). Instead, the conditions in a single excIude () call will not necessarily refer to
the same item.

For example, the following query would exclude blogs that contain both entries with “Lennon” in the headline and
entries published in 2008:

Blog.objects.exclude(
entry__headline__contains= s
entry__pub_date__year=2008,

However, unlike the behavior when using filter (), this will not limit blogs based on entries that satisfy both condi-
tions. In order to do that, i.e. to select all blogs that do not contain entries published with “Lennon” that were published
in 2008, you need to make two queries:

Blog.objects.exclude(
entry__in=Entry.objects.filter(

(continues on next page)

116 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

headline__contains= ,
pub_date__year=2008,
),

Filters can reference fields on the model

In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But
what if you want to compare the value of a model field with another field on the same model?

Django provides F expressions to allow such comparisons. Instances of F() act as a reference to a model field
within a query. These references can then be used in query filters to compare the values of two different fields on the
same model instance.

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F () object
to reference the pingback count, and use that F () object in the query:

>>> from django.db.models import F
>>> Entry.objects.filter(number_of_comments__gt=F())

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F()
objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many
comments as pingbacks, we modify the query:

>>> Entry.objects.filter(number_of_comments__gt=F() *2)

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we
would issue the query:

>>> Entry.objects.filter(rating__1t=F() + F()

You can also use the double underscore notation to span relationships in an F() object. An F() object with a double
underscore will introduce any joins needed to access the related object. For example, to retrieve all the entries where
the author’s name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter(authors__name=F())

For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries that
were modified more than 3 days after they were published:

>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F() + timedelta(days=3))

The F () objects support bitwise operations by .bitand(), .bitor(), .bitrightshift(), and .bitleftshift().
For example:

>>> F().bitand(16)

3.2. Models and databases 117

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Django Documentation, Release 2.2.29.dev20220411083753

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for “primary key”.

In the example Blog model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get(id__exact=14)
>>> Blog.objects.get(id=14)
>>> Blog.objects.get(pk=14)

The use of pk isn’t limited to __exact queries — any query term can be combined with pk to perform a query on the
primary key of a model:

>>> Blog.objects.filter(pk__in=[1,4,7])

>>> Blog.objects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3)
>>> Entry.objects.filter(blog__id=3)
>>> Entry.objects.filter(blog__pk=3)

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith, istartswith,
endswith and iendswith) will automatically escape the two special characters used in LIKE statements — the per-
cent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-character wildcard and the
underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the entries that
contain a percent sign, just use the percent sign as any other character:

>>> Entry.objects.filter(headline__contains=)

Django takes care of the quoting for you; the resulting SQL will look something like this:

SELECT ... WHERE headline LIKE ;

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and QuerySets

Each QuerySet contains a cache to minimize database access. Understanding how it works will allow you to write the
most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated — and, hence, a database
query happens — Django saves the query results in the QuerySet’s cache and returns the results that have been explicitly
requested (e.g., the next element, if the QuerySet is being iterated over). Subsequent evaluations of the QuerySet
reuse the cached results.

118 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example,
the following will create two QuerySets, evaluate them, and throw them away:

>>> ([e.headline for e in Entry.objects.all()])
>>> ([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also, there’s a
possibility the two lists may not include the same database records, because an Entry may have been added or deleted
in the split second between the two requests.

To avoid this problem, simply save the QuerySet and reuse it:

>>> queryset = Entry.objects.all()
>>> ([p.headline for p in queryset])
>>> ([p.pub_date for p in queryset])

When QuerySets are not cached

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it
is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting
the queryset using an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> (queryset[5])
>>> (queryset[5])

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset]
>>> (queryset[5])

>>> (queryset[5])

Here are some examples of other actions that will result in the entire queryset being evaluated and therefore populate
the cache:

>>> [entry for entry in queryset]

>>> (queryset)
>>> entry in queryset
>>> (queryset)

Note: Simply printing the queryset will not populate the cache. This is because the call to __repr__() only returns
a slice of the entire queryset.

3.2. Models and databases 119

Django Documentation, Release 2.2.29.dev20220411083753

Complex lookups with Q objects
Keyword argument queries —in filter(), etc. —are “AND”ed together. If you need to execute more complex queries
(for example, queries with OR statements), you can use Q objects.

A Q object (django.db.models.Q) is an object used to encapsulate a collection of keyword arguments. These
keyword arguments are specified as in “Field lookups™ above.

For example, this Q object encapsulates a single LIKE query:

from django.db.models import Q
Q(question__startswith=)

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q
object.

For example, this statement yields a single Q object that represents the “OR” of two "question__startswith"
queries:

Q(question__startswith=) | Q(question__startswith=)

This is equivalent to the following SQL WHERE clause:

WHERE question LIKE OR question LIKE

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators and use par-
enthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined lookups that combine
both a normal query and a negated (NOT) query:

Q(question__startswith=) | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter(), exclude(), get()) can also be passed one or
more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup function,
the arguments will be “AND”ed together. For example:

Poll.objects.get(
Q(question__startswith=),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))

. roughly translates into the SQL:

SELECT * from polls WHERE question LIKE
AND (pub_date = OR pub_date =)

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup function
(be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided, it must precede
the definition of any keyword arguments. For example:

Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith= ,

. would be a valid query, equivalent to the previous example; but:

120 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Poll.objects.get(
question__startswith= ,
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))

. would not be valid.
See also:

The OR lookups examples in Django’s unit tests show some possible uses of Q.

Comparing objects

To compare two model instances, just use the standard Python comparison operator, the double equals sign: ==. Behind
the scenes, that compares the primary key values of two models.

Using the Entry example above, the following two statements are equivalent:

>>> some_entry == other_entry
>>> some_entry.id == other_entry.id

If a model’s primary key isn’t called id, no problem. Comparisons will always use the primary key, whatever it’s called.
For example, if a model’s primary key field is called name, these two statements are equivalent:

>>> some_obj == other_obj
>>> some_obj.name == other_obj.name

Deleting objects

The delete method, conveniently, is named delete (). This method immediately deletes the object and returns the
number of objects deleted and a dictionary with the number of deletions per object type. Example:

>>> e.delete()
(1, {'weblog.Entry': 1})

You can also delete objects in bulk. Every QuerySet has a delete() method, which deletes all members of that
QuerySet.

For example, this deletes all Entry objects with a pub_date year of 2005:

>>> Entry.objects.filter(pub_date__year=2005).delete()
(5, {'webapp.Entry': 5})

Keep in mind that this will, whenever possible, be executed purely in SQL, and so the delete () methods of individual
object instances will not necessarily be called during the process. If you’ve provided a custom delete() method on
a model class and want to ensure that it is called, you will need to “manually” delete instances of that model (e.g., by
iterating over a QuerySet and calling delete() on each object individually) rather than using the bulk delete()
method of a QuerySet.

When Django deletes an object, by default it emulates the behavior of the SQL constraint ON DELETE CASCADE — in
other words, any objects which had foreign keys pointing at the object to be deleted will be deleted along with it. For
example:

3.2. Models and databases 121

https://github.com/django/django/blob/stable/2.2.x/tests/or_lookups/tests.py

Django Documentation, Release 2.2.29.dev20220411083753

b = Blog.objects.get(pk=1)

b.delete()

This cascade behavior is customizable via the on_delete argument to the ForeignKey.

Note that delete() is the only QuerySet method that is not exposed on a Manager itself. This is a safety mechanism
to prevent you from accidentally requesting Entry.objects.delete(), and deleting all the entries. If you do want
to delete all the objects, then you have to explicitly request a complete query set:

Entry.objects.all().delete()

Copying model instances

Although there is no built-in method for copying model instances, it is possible to easily create new instance with all
fields’ values copied. In the simplest case, you can just set pk to None. Using our blog example:

blog = Blog(name= , tagline=)
blog.save()

blog.pk = None
blog.save()

Things get more complicated if you use inheritance. Consider a subclass of Blog:

class ThemeBlog(Blog):
theme = models.CharField(max_length=200)

django_blog = ThemeBlog(name= , tagline= , theme=)
django_blog.save()

Due to how inheritance works, you have to set both pk and id to None:

django_blog.pk = None
django_blog.id = None
django_blog.save()

This process doesn’t copy relations that aren’t part of the model’s database table. For example, Entry has a
ManyToManyField to Author. After duplicating an entry, you must set the many-to-many relations for the new entry:

entry = Entry.objects.all()[0]
old_authors = entry.authors.all()
entry.pk = None

entry.save()
entry.authors.set(old_authors)

For a OneToOneField, you must duplicate the related object and assign it to the new object’s field to avoid violating
the one-to-one unique constraint. For example, assuming entry is already duplicated as above:

detail = EntryDetail.objects.all()[0]
detail.pk = None

detail.entry = entry

detail.save()

122 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Updating multiple objects at once

Sometimes you want to set a field to a particular value for all the objects in a QuerySet. You can do this with the
update () method. For example:

Entry.objects.filter(pub_date__year=2007) .update(headline='Everything is the same')

You can only set non-relation fields and ForeignKey fields using this method. To update a non-relation field, provide
the new value as a constant. To update ForeignKey fields, set the new value to be the new model instance you want
to point to. For example:

>>> b = Blog.objects.get(pk=1)

Change every Entry so that it belongs to this Blog.
>>> Entry.objects.all().update(blog=b)

The update () method is applied instantly and returns the number of rows matched by the query (which may not be
equal to the number of rows updated if some rows already have the new value). The only restriction on the QuerySet
being updated is that it can only access one database table: the model’s main table. You can filter based on related
fields, but you can only update columns in the model’s main table. Example:

>>> b = Blog.objects.get(pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline='Everything is the same
D

Be aware that the update () method is converted directly to an SQL statement. It is a bulk operation for direct up-
dates. It doesn’t run any save () methods on your models, or emit the pre_save or post_save signals (which are a
consequence of calling save()), or honor the auto_now field option. If you want to save every item in a QuerySet
and make sure that the save () method is called on each instance, you don’t need any special function to handle that.
Just loop over them and call save():

for item in my_queryset:
item.save()

Calls to update can also use F expressions to update one field based on the value of another field in the model. This
is especially useful for incrementing counters based upon their current value. For example, to increment the pingback
count for every entry in the blog:

>>> Entry.objects.all() .update(number_of_pingbacks=F(' number_of_pingbacks') + 1)

However, unlike F () objects in filter and exclude clauses, you can’t introduce joins when you use F() objects in an
update — you can only reference fields local to the model being updated. If you attempt to introduce a join with an F()
object, a FieldError will be raised:

>>> Entry.objects.update(headline=F('blog__name"))

3.2. Models and databases 123

Django Documentation, Release 2.2.29.dev20220411083753

Related objects
When you define a relationship in a model (i.e., a ForeignKey, OneToOneField, or ManyToManyField), instances
of that model will have a convenient API to access the related object(s).

Using the models at the top of this page, for example, an Entry object e can get its associated B1og object by accessing
the blog attribute: e.blog.

(Behind the scenes, this functionality is implemented by Python descriptors. This shouldn’t really matter to you, but
we point it out here for the curious.)

Django also creates API accessors for the “other” side of the relationship — the link from the related model to the model
that defines the relationship. For example, a Blog object b has access to a list of all related Entry objects via the
entry_set attribute: b.entry_set.all().

All examples in this section use the sample Blog, Author and Entry models defined at the top of this page.

One-to-many relationships
Forward

If a model has a ForeignKey, instances of that model will have access to the related (foreign) object via a simple
attribute of the model.

Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog

You can get and set via a foreign-key attribute. As you may expect, changes to the foreign key aren’t saved to the
database until you call save (). Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = some_blog
>>> e.save()

If a ForeignKey field has null=True set (i.e., it allows NULL values), you can assign None to remove the relation.
Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = None
>>> e.save()

Forward access to one-to-many relationships is cached the first time the related object is accessed. Subsequent accesses
to the foreign key on the same object instance are cached. Example:

>>> e = Entry.objects.get(id=2)
>>> (e.blog)
>>> (e.blog)

Note that the select_related() QuerySet method recursively prepopulates the cache of all one-to-many relation-
ships ahead of time. Example:

>>> e = Entry.objects.select_related().get(id=2)
>>> (e.blog)
>>> (e.blog)

124 Chapter 3. Using Django

https://docs.python.org/howto/descriptor.html

Django Documentation, Release 2.2.29.dev20220411083753

Following relationships “backward”

If amodel has a ForeignKey, instances of the foreign-key model will have access to a Manager that returns all instances
of the first model. By default, this Manager is named FOO_set, where FOO is the source model name, lowercased. This
Manager returns QuerySets, which can be filtered and manipulated as described in the “Retrieving objects” section
above.

Example:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.all()

b.entry_set is a Manager that returns QuerySets.
>>> b.entry_set.filter(headline__contains='Lennon')
>>> b.entry_set.count()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey definition.
For example, if the Entry model was altered to blog = ForeignKey(Blog, on_delete=models.CASCADE,
related_name='"entries"'), the above example code would look like this:

>>> b = Blog.objects.get(id=1)
>>> b.entries.all()

b.entries is a Manager that returns QuerySets.
>>> b.entries.filter(headline__contains='Lennon')
>>> b.entries.count()

Using a custom reverse manager

By default the RelatedManager used for reverse relations is a subclass of the default manager for that model. If you
would like to specify a different manager for a given query you can use the following syntax:

from django.db import models

class Entry(models.Model):

objects models.Manager ()
entries = EntryManager()

b = Blog.objects.get(id=1)
b.entry_set(manager='entries').all()

If EntryManager performed default filtering in its get_queryset () method, that filtering would apply to the al1()
call.

Of course, specifying a custom reverse manager also enables you to call its custom methods:

b.entry_set(manager='entries').is_published()

3.2. Models and databases 125

Django Documentation, Release 2.2.29.dev20220411083753

Additional methods to handle related objects

In addition to the QuerySet methods defined in “Retrieving objects” above, the ForeignKey Manager has additional
methods used to handle the set of related objects. A synopsis of each is below, and complete details can be found in
the related objects reference.

add(objl, obj2, ...) Adds the specified model objects to the related object set.

create(**kwargs) Creates a new object, saves it and puts it in the related object set. Returns the newly created
object.

remove(objl, obj2, ...) Removes the specified model objects from the related object set.
clear() Removes all objects from the related object set.
set(objs) Replace the set of related objects.

To assign the members of a related set, use the set () method with an iterable of object instances. For example, if el
and e2 are Entry instances:

b = Blog.objects.get(id=1)
b.entry_set.set([el, e2])

If the clear () method is available, any pre-existing objects will be removed from the entry_set before all objects in
the iterable (in this case, a list) are added to the set. If the clear () method is not available, all objects in the iterable
will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition, creation
and deletion is immediately and automatically saved to the database.

Many-to-many relationships

Both ends of a many-to-many relationship get automatic API access to the other end. The API works similar to a
“backward” one-to-many relationship, above.

One difference is in the attribute naming: The model that defines the ManyToManyField uses the attribute name of
that field itself, whereas the “reverse” model uses the lowercased model name of the original model, plus '_set' (just
like reverse one-to-many relationships).

An example makes this easier to understand:

e = Entry.objects.get(id=3)
e.authors.all()

e.authors.count ()

e.authors.filter (name__contains=)

s3]

= Author.objects.get(id=5)
.entry_set.all()

[+)

Like ForeignKey, ManyToManyField can specify related_name. In the above example, if the ManyToManyField
in Entry had specified related_name="entries', then each Author instance would have an entries attribute
instead of entry_set.

Another difference from one-to-many relationships is that in addition to model instances, the add(), set(), and
remove () methods on many-to-many relationships accept primary key values. For example, if el and e2 are Entry
instances, then these set () calls work identically:

126 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

a = Author.objects.get(id=5)
a.entry_set.set([el, e2])
a.entry_set.set([el.pk, e2.pk])

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. If you define a OneToOneField on your model,
instances of that model will have access to the related object via a simple attribute of the model.

For example:

class EntryDetail (models.Model):
entry = models.OneToOneField(Entry, on_delete=models.CASCADE)
details = models.TextField()

ed = EntryDetail.objects.get(id=2)
ed.entry

The difference comes in “reverse” queries. The related model in a one-to-one relationship also has access to a Manager
object, but that Manager represents a single object, rather than a collection of objects:

e = Entry.objects.get(id=2)
e.entrydetail

If no object has been assigned to this relationship, Django will raise a DoesNotExist exception.

Instances can be assigned to the reverse relationship in the same way as you would assign the forward relationship:

e.entrydetail = ed

How are the backward relationships possible?

Other object-relational mappers require you to define relationships on both sides. The Django developers believe this
is a violation of the DRY (Don’t Repeat Yourself) principle, so Django only requires you to define the relationship on
one end.

But how is this possible, given that a model class doesn’t know which other model classes are related to it until those
other model classes are loaded?

The answer lies in the app registry. When Django starts, it imports each application listed in INSTALLED_APPS,
and then the models module inside each application. Whenever a new model class is created, Django adds backward-
relationships to any related models. If the related models haven’t been imported yet, Django keeps tracks of the rela-
tionships and adds them when the related models eventually are imported.

For this reason, it’s particularly important that all the models you’re using be defined in applications listed in
INSTALLED_APPS. Otherwise, backwards relations may not work properly.

3.2. Models and databases 127

Django Documentation, Release 2.2.29.dev20220411083753

Queries over related objects

Queries involving related objects follow the same rules as queries involving normal value fields. When specifying the
value for a query to match, you may use either an object instance itself, or the primary key value for the object.

For example, if you have a Blog object b with id=5, the following three queries would be identical:

Entry.objects.filter(blog=b)
Entry.objects.filter(blog=b.id)
Entry.objects.filter(blog=5)

Falling back to raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to handle, you
can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL queries; see Performing
raw SQL queries.

Finally, it’s important to note that the Django database layer is merely an interface to your database. You can access
your database via other tools, programming languages or database frameworks; there’s nothing Django-specific about
your database.

3.2.3 Aggregation

The topic guide on Django’s database-abstraction API described the way that you can use Django queries that create,
retrieve, update and delete individual objects. However, sometimes you will need to retrieve values that are derived by
summarizing or aggregating a collection of objects. This topic guide describes the ways that aggregate values can be
generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are used to track the inventory for a series of
online bookstores:

from django.db import models

class Author (models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField()

class Publisher(models.Model):
name = models.CharField(max_length=300)

class Book(models.Model):
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)
pubdate = models.DateField()

class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)

128 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Cheat sheet

In a hurry? Here’s how to do common aggregate queries, assuming the models above:

Total number of books.
>>> Book.objects.count ()
2452

Total number of books with publisher=BaloneyPress
>>> Book.objects.filter(publisher__name='BaloneyPress').count()
73

Average price across all books.
>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))

]

{'price__avg': 34.35}

Max price across all books.

>>> from django.db.models import Max

>>> Book.objects.all().aggregate(Max('price'))
{'price__max': Decimal('81.20"')}

Difference between the highest priced book and the average price of all books.
>>> from django.db.models import FloatField

>>> Book.objects.aggregate(

. price_diff=Max('price', output_field=FloatField()) - Avg('price'))
{'price_diff': 46.85}

All the following queries involve traversing the Book<->Publisher
foreign key relationship backwards.

Each publisher, each with a count of books as a "num_books" attribute.
>>> from django.db.models import Count

>>> pubs = Publisher.objects.annotate(num_books=Count('book'))

>>> pubs

<QuerySet [<Publisher: BaloneyPress>, <Publisher: SalamiPress>, ...]>
>>> pubs[0] .num_books

73

Each publisher, with a separate count of books with a rating above and below 5
>>> from django.db.models import Q

>>> above_5 = Count('book', filter=Q(book__rating__gt=5))

>>> below_5 = Count('book"', filter=Q(book__rating__lte=5))

>>> pubs = Publisher.objects.annotate(below_5=below_5).annotate(above_5=above_5)
>>> pubs[0].above_5

23

>>> pubs[0].below_5

12

The top 5 publishers, in order by number of books.

>>> pubs = Publisher.objects.annotate(num_books=Count (' 'book')).order_by('-num_books')[:5]

>>> pubs[0] .num_books
1323

3.2. Models and databases

129

Django Documentation, Release 2.2.29.dev20220411083753

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate summary values over an entire QuerySet.
For example, say you wanted to calculate the average price of all books available for sale. Django’s query syntax
provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that belong to this QuerySet. This is done by
appending an aggregate() clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35}

The all() is redundant in this example, so this could be simplified to:

>>> Book.objects.aggregate(Avg('price'))
{'price__avg': 34.35}

The argument to the aggregate() clause describes the aggregate value that we want to compute - in this case, the
average of the price field on the Book model. A list of the aggregate functions that are available can be found in the
QuerySet reference.

aggregate() is a terminal clause for a QuerySet that, when invoked, returns a dictionary of name-value pairs. The
name is an identifier for the aggregate value; the value is the computed aggregate. The name is automatically generated
from the name of the field and the aggregate function. If you want to manually specify a name for the aggregate value,
you can do so by providing that name when you specify the aggregate clause:

>>> Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 34.35}

If you want to generate more than one aggregate, you just add another argument to the aggregate () clause. So, if we
also wanted to know the maximum and minimum price of all books, we would issue the query:

>>> from django.db.models import Avg, Max, Min
>>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99"')}

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent summary for each object in a QuerySet.
For example, if you are retrieving a list of books, you may want to know how many authors contributed to each book.
Each Book has a many-to-many relationship with the Author; we want to summarize this relationship for each book in
the QuerySet.

Per-object summaries can be generated using the annotate () clause. When an annotate () clause is specified, each
object in the QuerySet will be annotated with the specified values.

The syntax for these annotations is identical to that used for the aggregate () clause. Each argument to annotate()
describes an aggregate that is to be calculated. For example, to annotate books with the number of authors:

>>> from django.db.models import Count
>>> q = Book.objects.annotate(Count('authors"'))

(continues on next page)

130 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> q[0]

<Book: The Definitive Guide to Django>
>>> q[0].authors__count

2

>>> q[1]

<Book: Practical Django Projects>
>>> q[1].authors__count

1

As with aggregate (), the name for the annotation is automatically derived from the name of the aggregate function
and the name of the field being aggregated. You can override this default name by providing an alias when you specify
the annotation:

>>> q = Book.objects.annotate(num_authors=Count ())
>>> q[0] .num_authors
2

>>> q[1] .num_authors
1

Unlike aggregate (), annotate() is not a terminal clause. The output of the annotate () clause is a QuerySet; this
QuerySet can be modified using any other QuerySet operation, including filter (), order_by (), or even additional
calls to annotate().

Combining multiple aggregations

Combining multiple aggregations with annotate() will yield the wrong results because joins are used instead of
subqueries:

>>> book = Book.objects.first()
>>> book.authors.count()

2

>>> book.store_set.count()

3

>>> ¢ = Book.objects.annotate(Count(), Count())
>>> q[0].authors__count

6

>>> q[0].store__count

6

For most aggregates, there is no way to avoid this problem, however, the Count aggregate has a distinct parameter
that may help:

>>> q = Book.objects.annotate(Count (, distinct=True), Count(Yo
—distinct=True))

>>> q[0].authors__count

2

>>> q[0].store__count

3

3.2. Models and databases 131

https://code.djangoproject.com/ticket/10060

Django Documentation, Release 2.2.29.dev20220411083753

If in doubt, inspect the SQL query!

In order to understand what happens in your query, consider inspecting the query property of your QuerySet.

Joins and aggregates
So far, we have dealt with aggregates over fields that belong to the model being queried. However, sometimes the value
you want to aggregate will belong to a model that is related to the model you are querying.

When specifying the field to be aggregated in an aggregate function, Django will allow you to use the same double
underscore notation that is used when referring to related fields in filters. Django will then handle any table joins that
are required to retrieve and aggregate the related value.

For example, to find the price range of books offered in each store, you could use the annotation:

>>> from django.db.models import Max, Min
>>> Store.objects.annotate(min_price=Min(), max_price=Max())

This tells Django to retrieve the Store model, join (through the many-to-many relationship) with the Book model, and
aggregate on the price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate () clause. If you wanted to know the lowest and highest price of any book that
is available for sale in any of the stores, you could use the aggregate:

>>> Store.objects.aggregate(min_price=Min(), max_price=Max())

Join chains can be as deep as you require. For example, to extract the age of the youngest author of any book available
for sale, you could issue the query:

>>> Store.objects.aggregate(youngest_age=Min())

Following relationships backwards

In a way similar to Lookups that span relationships, aggregations and annotations on fields of models or models that
are related to the one you are querying can include traversing “reverse” relationships. The lowercase name of related
models and double-underscores are used here too.

For example, we can ask for all publishers, annotated with their respective total book stock counters (note how we use
'"book' to specify the Publisher -> Book reverse foreign key hop):

>>> from django.db.models import Avg, Count, Min, Sum
>>> Publisher.objects.annotate(Count ())

(Every Publisher in the resulting QuerySet will have an extra attribute called book__count.)

We can also ask for the oldest book of any of those managed by every publisher:

>>> Publisher.objects.aggregate(oldest_pubdate=Min())

(The resulting dictionary will have a key called 'oldest_pubdate'. If no such alias were specified, it would be the
rather long 'book__pubdate__min".)

This doesn’t apply just to foreign keys. It also works with many-to-many relations. For example, we can ask for every
author, annotated with the total number of pages considering all the books the author has (co-)authored (note how we
use 'book' to specify the Author -> Book reverse many-to-many hop):

132 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

>>> Author.objects.annotate(total_pages=Sum())

(Every Author in the resulting QuerySet will have an extra attribute called total_pages. If no such alias were
specified, it would be the rather long book__pages__sum.)

Or ask for the average rating of all the books written by author(s) we have on file:

>>> Author.objects.aggregate(average_rating=Avg())

(The resulting dictionary will have a key called 'average_rating'. If no such alias were specified, it would be the
rather long 'book__rating__avg'.)

Aggregations and other QuerySet clauses

filter() and exclude()

Aggregates can also participate in filters. Any filter() (or exclude()) applied to normal model fields will have the
effect of constraining the objects that are considered for aggregation.

When used with an annotate() clause, a filter has the effect of constraining the objects for which an annotation is
calculated. For example, you can generate an annotated list of all books that have a title starting with “Django” using
the query:

>>> from django.db.models import Avg, Count
>>> Book.objects.filter(name__startswith=) .annotate (num_authors=Count ())

When used with an aggregate () clause, a filter has the effect of constraining the objects over which the aggregate is
calculated. For example, you can generate the average price of all books with a title that starts with “Django” using the

query:

>>> Book.objects.filter(name__startswith=) .aggregate (Avg())

Filtering on annotations

Annotated values can also be filtered. The alias for the annotation can be used in filter () and exclude() clauses
in the same way as any other model field.

For example, to generate a list of books that have more than one author, you can issue the query:

>>> Book.objects.annotate (num_authors=Count ()).filter(num_authors__gt=1)

This query generates an annotated result set, and then generates a filter based upon that annotation.

If you need two annotations with two separate filters you can use the filter argument with any aggregate. For example,
to generate a list of authors with a count of highly rated books:

>>> highly_rated = Count(, =Q(book__rating__gte=7))
>>> Author.objects.annotate(num_books=Count (), highly_rated_books=highly_rated)

Each Author in the result set will have the num_books and highly_rated_books attributes.

Choosing between filter and QuerySet.filter()

3.2. Models and databases 133

Django Documentation, Release 2.2.29.dev20220411083753

Avoid using the filter argument with a single annotation or aggregation. It’s more efficient to use QuerySet.
filter () to exclude rows. The aggregation filter argument is only useful when using two or more aggregations
over the same relations with different conditionals.

Order of annotate() and filter() clauses

When developing a complex query that involves both annotate () and filter() clauses, pay particular attention to
the order in which the clauses are applied to the QuerySet.

When an annotate() clause is applied to a query, the annotation is computed over the state of the query up to the
point where the annotation is requested. The practical implication of this is that filter() and annotate() are not
commutative operations.

Given:
¢ Publisher A has two books with ratings 4 and 5.
* Publisher B has two books with ratings 1 and 4.
* Publisher C has one book with rating 1.

Here’s an example with the Count aggregate:

>>> a, b = Publisher.objects.annotate(num_books=Count('book', distinct=True)).
—filter(book__rating__gt=3.0)

>>> a, a.num_books

(<Publisher: A>, 2)

>>> b, b.num_books

(<Publisher: B>, 2)

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count('book
)

>>> a, a.num_books

(<Publisher: A>, 2)

>>> b, b.num_books

(<Publisher: B>, 1)

Both queries return a list of publishers that have at least one book with a rating exceeding 3.0, hence publisher C is
excluded.

In the first query, the annotation precedes the filter, so the filter has no effect on the annotation. distinct=True is
required to avoid a query bug.

The second query counts the number of books that have a rating exceeding 3.0 for each publisher. The filter precedes
the annotation, so the filter constrains the objects considered when calculating the annotation.

Here’s another example with the Avg aggregate:

>>> a, b = Publisher.objects.annotate(avg_rating=Avg(' book _rating')).filter(book__
—rating__gt=3.0)

>>> a, a.avg_rating

(<Publisher: A>, 4.5) # (5+4)/2

>>> b, b.avg_rating

(<Publisher: B>, 2.5) # (1+4)/2

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0).annotate(avg_rating=Avg('book__
ratina'))

(continues on next page)

134 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> a, a.avg_rating

(<Publisher: A>, 4.5) # (5+4)/2

>>> b, b.avg_rating

(<Publisher: B>, 4.0) # 4/1 (book with rating 1 excluded)

The first query asks for the average rating of all a publisher’s books for publisher’s that have at least one book with
a rating exceeding 3.0. The second query asks for the average of a publisher’s book’s ratings for only those ratings
exceeding 3.0.

It’s difficult to intuit how the ORM will translate complex querysets into SQL queries so when in doubt, inspect the
SQL with str(queryset.query) and write plenty of tests.

order_by ()

Annotations can be used as a basis for ordering. When you define an order_by () clause, the aggregates you provide
can reference any alias defined as part of an annotate() clause in the query.

For example, to order a QuerySet of books by the number of authors that have contributed to the book, you could use
the following query:

>>> Book.objects.annotate (num_authors=Count ()).order_by()

values()

Ordinarily, annotations are generated on a per-object basis - an annotated QuerySet will return one result for each
object in the original QuerySet. However, when a values () clause is used to constrain the columns that are returned
in the result set, the method for evaluating annotations is slightly different. Instead of returning an annotated result for
each result in the original QuerySet, the original results are grouped according to the unique combinations of the fields
specified in the values () clause. An annotation is then provided for each unique group; the annotation is computed
over all members of the group.

For example, consider an author query that attempts to find out the average rating of books written by each author:

>>> Author.objects.annotate(average_rating=Avg())

This will return one result for each author in the database, annotated with their average book rating.

However, the result will be slightly different if you use a values() clause:

>>> Author.objects.values() .annotate(average_rating=Avg())

In this example, the authors will be grouped by name, so you will only get an annotated result for each unique author
name. This means if you have two authors with the same name, their results will be merged into a single result in the
output of the query; the average will be computed as the average over the books written by both authors.

3.2. Models and databases 135

Django Documentation, Release 2.2.29.dev20220411083753

Order of annotate() and values() clauses

As with the filter () clause, the order in which annotate () and values() clauses are applied to a query is signifi-
cant. If the values () clause precedes the annotate (), the annotation will be computed using the grouping described
by the values() clause.

However, if the annotate () clause precedes the values () clause, the annotations will be generated over the entire
query set. In this case, the values() clause only constrains the fields that are generated on output.

For example, if we reverse the order of the values() and annotate() clause from our previous example:

>>> Author.objects.annotate(average_rating=Avg()) .values(,

-)

This will now yield one unique result for each author; however, only the author’s name and the average_rating
annotation will be returned in the output data.

You should also note that average_rating has been explicitly included in the list of values to be returned. This is
required because of the ordering of the values() and annotate() clause.

If the values () clause precedes the annotate () clause, any annotations will be automatically added to the result set.
However, if the values () clause is applied after the annotate() clause, you need to explicitly include the aggregate
column.

Interaction with default ordering or order_by()

Deprecated since version 2.2: Starting in Django 3.1, the ordering from a model’s Meta.ordering won’t be used in
GROUP BY queries, such as .annotate() .values(). Since Django 2.2, these queries issue a deprecation warning
indicating to add an explicit order_by () to the queryset to silence the warning.

Fields that are mentioned in the order_by () part of a queryset (or which are used in the default ordering on a model)
are used when selecting the output data, even if they are not otherwise specified in the values() call. These extra
fields are used to group “like” results together and they can make otherwise identical result rows appear to be separate.
This shows up, particularly, when counting things.

By way of example, suppose you have a model like this:

from django.db import models

class Item(models.Model):
name = models.CharField(max_length=10)
data = models.IntegerField()

class Meta:
ordering = [1

The important part here is the default ordering on the name field. If you want to count how many times each distinct
data value appears, you might try this:

Item.objects.values().annotate(Count())

...which will group the Item objects by their common data values and then count the number of id values in each
group. Except that it won’t quite work. The default ordering by name will also play a part in the grouping, so this query
will group by distinct (data, name) pairs, which isn’t what you want. Instead, you should construct this queryset:

136 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Item.objects.values('data").annotate(Count("id")) .order_by(

...clearing any ordering in the query. You could also order by, say, data without any harmful effects, since that is
already playing a role in the query.

This behavior is the same as that noted in the queryset documentation for distinct () and the general rule is the same:
normally you won’t want extra columns playing a part in the result, so clear out the ordering, or at least make sure it’s
restricted only to those fields you also select in a values () call.

Note: You might reasonably ask why Django doesn’t remove the extraneous columns for you. The main reason is
consistency with distinct () and other places: Django never removes ordering constraints that you have specified
(and we can’t change those other methods’ behavior, as that would violate our AP/ stability policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you define an aggregate() clause, the
aggregates you provide can reference any alias defined as part of an annotate() clause in the query.

For example, if you wanted to calculate the average number of authors per book you first annotate the set of books with
the author count, then aggregate that author count, referencing the annotation field:

>>> from django.db.models import Avg, Count
>>> Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors"'))
{'num_authors__avg': 1.66}

3.2.4 Search

A common task for web applications is to search some data in the database with user input. In a simple case, this
could be filtering a list of objects by a category. A more complex use case might require searching with weighting,
categorization, highlighting, multiple languages, and so on. This document explains some of the possible use cases
and the tools you can use.

We’ll refer to the same models used in Making queries.
Use Cases
Standard textual queries

Text-based fields have a selection of simple matching operations. For example, you may wish to allow lookup up an
author like so:

>>> Author.objects.filter(name__contains='Terry')
[<Author: Terry Gilliam>, <Author: Terry Jones>]

This is a very fragile solution as it requires the user to know an exact substring of the author’s name. A better approach
could be a case-insensitive match (icontains), but this is only marginally better.

3.2. Models and databases 137

Django Documentation, Release 2.2.29.dev20220411083753

A database’s more advanced comparison functions

If you're using PostgreSQL, Django provides a selection of database specific tools to allow you to leverage more
complex querying options. Other databases have different selections of tools, possibly via plugins or user-defined
functions. Django doesn’t include any support for them at this time. We’ll use some examples from PostgreSQL to
demonstrate the kind of functionality databases may have.

Searching in other databases

All of the searching tools provided by django.contrib.postgres are constructed entirely on public APIs such as
custom lookups and database functions. Depending on your database, you should be able to construct queries to allow
similar APIs. If there are specific things which cannot be achieved this way, please open a ticket.

In the above example, we determined that a case insensitive lookup would be more useful. When dealing with non-
English names, a further improvement is to use unaccented comparison:

>>> Author.objects.filter(name__unaccent__icontains='Helen")
[<Author: Helen Mirren>, <Author: Helena Bonham Carter>, <Author: Hélene Joy>]

This shows another issue, where we are matching against a different spelling of the name. In this case we have an
asymmetry though - a search for Helen will pick up Helena or Héléne, but not the reverse. Another option would be
touse a trigram_similar comparison, which compares sequences of letters.

For example:

>>> Author.objects.filter(name__unaccent__lower__trigram_similar='Hélene')
[<Author: Helen Mirren>, <Author: Héléne Joy>]

Now we have a different problem - the longer name of “Helena Bonham Carter” doesn’t show up as it is much longer.
Trigram searches consider all combinations of three letters, and compares how many appear in both search and source
strings. For the longer name, there are more combinations which appear in the source string so it is no longer considered
a close match.

The correct choice of comparison functions here depends on your particular data set, for example the language(s) used
and the type of text being searched. All of the examples we’ve seen are on short strings where the user is likely to enter
something close (by varying definitions) to the source data.

Document-based search

Simple database operations are too simple an approach when you start considering large blocks of text. Whereas the
examples above can be thought of as operations on a string of characters, full text search looks at the actual words.
Depending on the system used, it’s likely to use some of the following ideas:

¢ Ignoring “stop words” such as “a”, “the”, “and”.
* Stemming words, so that “pony” and “ponies” are considered similar.

» Weighting words based on different criteria such as how frequently they appear in the text, or the importance of
the fields, such as the title or keywords, that they appear in.

There are many alternatives for using searching software, some of the most prominent are Elastic and Solr. These are
full document-based search solutions. To use them with data from Django models, you’ll need a layer which translates
your data into a textual document, including back-references to the database ids. When a search using the engine
returns a certain document, you can then look it up in the database. There are a variety of third-party libraries which
are designed to help with this process.

138 Chapter 3. Using Django

https://www.elastic.co/
https://lucene.apache.org/solr/

Django Documentation, Release 2.2.29.dev20220411083753

PostgreSQL support

PostgreSQL has its own full text search implementation built-in. While not as powerful as some other search engines,
it has the advantage of being inside your database and so can easily be combined with other relational queries such as
categorization.

The django.contrib.postgres module provides some helpers to make these queries. For example, a simple query
might be to select all the blog entries which mention “cheese”:

>>> Entry.objects.filter(body_text__search="'cheese')
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]

You can also filter on a combination of fields and on related models:

>>> Entry.objects.annotate(
. search=SearchVector('blog__tagline', 'body_text'),
...).filter(search="cheese")

[
<Entry: Cheese on Toast recipes>,
<Entry: Pizza Recipes>,
<Entry: Dairy farming in Argentina>,
]

See the contrib.postgres Full text search document for complete details.

3.2.5 Managers

class Manager

A Manager is the interface through which database query operations are provided to Django models. At least one
Manager exists for every model in a Django application.

The way Manager classes work is documented in Making queries; this document specifically touches on model options
that customize Manager behavior.

Manager hames

By default, Django adds a Manager with the name objects to every Django model class. However, if you want to use
objects as a field name, or if you want to use a name other than objects for the Manager, you can rename it on a
per-model basis. To rename the Manager for a given class, define a class attribute of type models.Manager () on that
model. For example:

from django.db import models
class Person(models.Model):

people = models.Manager()

Using this example model, Person.objects will generate an AttributeError exception, but Person.people.
all () will provide a list of all Person objects.

3.2. Models and databases 139

Django Documentation, Release 2.2.29.dev20220411083753

Custom managers
You can use a custom Manager in a particular model by extending the base Manager class and instantiating your custom
Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to modify the
initial QuerySet the Manager returns.

Adding extra manager methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For “row-level”
functionality —i.e., functions that act on a single instance of a model object — use Model methods, not custom Manager
methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

For example, this custom Manager offers a method with_counts (), which returns a list of all OpinionPoll objects,
each with an extra num_responses attribute that is the result of an aggregate query:

from django.db import models

class PollManager (models.Manager) :
def with_counts():
from django.db import connection
with connection.cursor() as cursor:
cursor.execute("""
SELECT p.id, p.question, p.poll_date, COUNT(*)
FROM polls_opinionpoll p, polls_response r
WHERE p.id = r.poll_id
GROUP BY p.id, p.question, p.poll_date
ORDER BY p.poll_date DESC""")
result_list = []
for row in cursor.fetchall():
p = .model (id=row[0], question=row[1], poll_date=row[2])
p.num_responses = row[3]
result_list.append(p)
return result_list

class OpinionPoll(models.Model):
question = models.CharField(max_length=200)
poll_date = models.DateField()
objects = PollManager()

class Response(models.Model):
poll = models.ForeignKey(OpinionPoll, on_delete=models.CASCADE)
person_name = models.CharField(max_length=50)
response = models.TextField()

With this example, you’d use OpinionPoll.objects.with_counts() to return that list of OpinionPoll objects
with num_responses attributes.

Another thing to note about this example is that Manager methods can access self.model to get the model class to
which they’re attached.

140 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Modifying a manager’s initial QuerySet

A Manager’s base QuerySet returns all objects in the system. For example, using this model:

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

... the statement Book.objects.all() will return all books in the database.

You can override a Manager’s base QuerySet by overriding the Manager.get_queryset() method.
get_queryset () should return a QuerySet with the properties you require.

For example, the following model has rwo Managers — one that returns all objects, and one that returns only the books
by Roald Dahl:

class DahlBookManager (models.Manager) :
def get_queryset():
return () .get_queryset().filter(author=)

class Book(models.Model):
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

objects = models.Manager()
dahl_objects = DahlBookManager ()

With this sample model, Book.objects.all() will return all books in the database, but Book.dahl_objects.
all () will only return the ones written by Roald Dahl.

Of course, because get_queryset () returns a QuerySet object, you can use filter (), exclude() and all the other
QuerySet methods on it. So these statements are all legal:

Book.dahl_objects.all()
Book.dahl_objects.filter(title=)
Book.dahl_objects.count()

This example also pointed out another interesting technique: using multiple managers on the same model. You can
attach as many Manager () instances to a model as you’d like. This is an easy way to define common “filters” for your
models.

For example:

class AuthorManager(models.Manager):
def get_queryset():
return () .get_queryset().filter(role="A")

class EditorManager(models.Manager):
def get_queryset():
return () .get_queryset().filter(role=)

class Person(models.Model):

(continues on next page)

3.2. Models and databases 141

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

first_name = models.CharField(max_length=50)

last_name = models.CharField(max_length=50)

role = models.CharField(max_length=1, choices=[('A', _('Author')), ('E', _('Editor
=D

people = models.Manager()

authors = AuthorManager()

editors = EditorManager()

This example allows you to request Person.authors.all(), Person.editors.all(), and Person.people.
all (), yielding predictable results.

Default managers

Model._default_manager

If you use custom Manager objects, take note that the first Manager Django encounters (in the order in which they’re
defined in the model) has a special status. Django interprets the first Manager defined in a class as the “default”
Manager, and several parts of Django (including dumpdata) will use that Manager exclusively for that model. As a
result, it’s a good idea to be careful in your choice of default manager in order to avoid a situation where overriding
get_queryset () results in an inability to retrieve objects you’d like to work with.

You can specify a custom default manager using Meta.defaul t_manager_name.

If you’re writing some code that must handle an unknown model, for example, in a third-party app that implements a
generic view, use this manager (or _base_manager) rather than assuming the model has an objects manager.

Base managers

Model._base_manager

Using managers for related object access

By default, Django uses an instance of the Model ._base_manager manager class when accessing related objects (i.e.
choice.question), not the _default_manager on the related object. This is because Django needs to be able to
retrieve the related object, even if it would otherwise be filtered out (and hence be inaccessible) by the default manager.

If the normal base manager class (django.db.models.Manager) isn’t appropriate for your circumstances, you can
tell Django which class to use by setting Meta.base_manager_name.

Base managers aren’t used when querying on related models. For example, if the Question model from the tutorial had
a deleted field and a base manager that filters out instances with deleted=True, a queryset like Choice.objects.
filter(question__name__startswith="What') would include choices related to deleted questions.

142 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Don’t filter away any results in this type of manager subclass

This manager is used to access objects that are related to from some other model. In those situations, Django has to be
able to see all the objects for the model it is fetching, so that anything which is referred to can be retrieved.

If you override the get_queryset () method and filter out any rows, Django will return incorrect results. Don’t do
that. A manager that filters results in get_queryset () is not appropriate for use as a base manager.

Calling custom QuerySet methods from the manager

While most methods from the standard QuerySet are accessible directly from the Manager, this is only the case for
the extra methods defined on a custom QuerySet if you also implement them on the Manager:

class PersonQuerySet(models.QuerySet):
def authors():
return .filter(role='A")

def editors():
return .filter(role='E")

class PersonManager (models.Manager):
def get_queryset():
return PersonQuerySet(.model, using= ._db)

def authors():
return .get_queryset().authors()

def editors():
return .get_queryset().editors()

class Person(models.Model):

first_name = models.CharField(max_length=50)

last_name = models.CharField(max_length=50)

role = models.CharField(max_length=1, choices=[('A"', _('Author"')), ('E', _('Editor
=D

people = PersonManager()

This example allows you to call both authors() and editors() directly from the manager Person.people.

Creating a manager with QuerySet methods

In lieu of the above approach which requires duplicating methods on both the QuerySet and the Manager, QuerySet.
as_manager () can be used to create an instance of Manager with a copy of a custom QuerySet’s methods:

class Person(models.Model):

people = PersonQuerySet.as_manager()

The Manager instance created by QuerySet.as_manager () will be virtually identical to the PersonManager from
the previous example.

Not every QuerySet method makes sense at the Manager level; for instance we intentionally prevent the QuerySet.
delete () method from being copied onto the Manager class.

3.2. Models and databases 143

Django Documentation, Release 2.2.29.dev20220411083753

Methods are copied according to the following rules:
* Public methods are copied by default.
* Private methods (starting with an underscore) are not copied by default.
* Methods with a queryset_only attribute set to False are always copied.
* Methods with a queryset_only attribute set to True are never copied.

For example:

class CustomQuerySet(models.QuerySet):

def public_method():
return

def _private_method():
return

def opted_out_public_method():
return
opted_out_public_method.queryset_only = True

def _opted_in_private_method():
return
_opted_in_private_method.queryset_only = False

from_queryset()

classmethod from_queryset (queryset_class)

For advanced usage you might want both a custom Manager and a custom QuerySet. You can do that by calling
Manager. from_queryset () which returns a subclass of your base Manager with a copy of the custom QuerySet
methods:

class BaseManager (models.Manager):
def manager_only_method():
return

class CustomQuerySet(models.QuerySet):
def manager_and_queryset_method():
return

class MyModel (models.Model):
objects = BaselManager.from_queryset(CustomQuerySet) ()

You may also store the generated class into a variable:

CustomManager = BaseManager.from_queryset(CustomQuerySet)

(continues on next page)

144 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

class MyModel (models.Model):
objects = CustomManager()

Custom managers and model inheritance

Here’s how Django handles custom managers and model inheritance:

1. Managers from base classes are always inherited by the child class, using Python’s normal name resolution order
(names on the child class override all others; then come names on the first parent class, and so on).

2. If no managers are declared on a model and/or its parents, Django automatically creates the objects manager.

3. The default manager on a class is either the one chosen with Meta. default_manager_name, or the first manager
declared on the model, or the default manager of the first parent model.

These rules provide the necessary flexibility if you want to install a collection of custom managers on a group of models,
via an abstract base class, but still customize the default manager. For example, suppose you have this base class:

class AbstractBase(models.Model):
objects = CustomManager ()

class Meta:
abstract = True

If you use this directly in a subclass, objects will be the default manager if you declare no managers in the base class:

class ChildA(AbstractBase):

pass

If you want to inherit from AbstractBase, but provide a different default manager, you can provide the default manager
on the child class:

class ChildB(AbstractBase):

default_manager = OtherManager()

Here, default_manager is the default. The objects manager is still available, since it’s inherited. It just isn’t used
as the default.

Finally for this example, suppose you want to add extra managers to the child class, but still use the default from
AbstractBase. You can’t add the new manager directly in the child class, as that would override the default and you
would have to also explicitly include all the managers from the abstract base class. The solution is to put the extra
managers in another base class and introduce it into the inheritance hierarchy after the defaults:

class ExtraManager (models.Model):
extra_manager = OtherManager()

class Meta:
abstract = True

(continues on next page)

3.2. Models and databases 145

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

class ChildC(AbstractBase, ExtraManager):

pass

Note that while you can define a custom manager on the abstract model, you can’t invoke any methods using the abstract
model. That is:

ClassA.objects.do_something()

is legal, but:

AbstractBase.objects.do_something()

will raise an exception. This is because managers are intended to encapsulate logic for managing collections of objects.
Since you can’t have a collection of abstract objects, it doesn’t make sense to be managing them. If you have function-
ality that applies to the abstract model, you should put that functionality in a staticmethod or classmethod on the
abstract model.

Implementation concerns

Whatever features you add to your custom Manager, it must be possible to make a shallow copy of a Manager instance;
i.e., the following code must work:

>>> import copy
>>> manager = MyManager ()
>>> my_copy = copy.copy(manager)

Django makes shallow copies of manager objects during certain queries; if your Manager cannot be copied, those
queries will fail.

This won’t be an issue for most custom managers. If you are just adding simple methods to your Manager, it is unlikely
that you will inadvertently make instances of your Manager uncopyable. However, if you’re overriding __getattr__
or some other private method of your Manager object that controls object state, you should ensure that you don’t affect
the ability of your Manager to be copied.

3.2.6 Performing raw SQL queries

Django gives you two ways of performing raw SQL queries: you can use Manager. raw() to perform raw queries and
return model instances, or you can avoid the model layer entirely and execute custom SQL directly.

Explore the ORM before using raw SQL!
The Django ORM provides many tools to express queries without writing raw SQL. For example:
* The QuerySet API is extensive.

* You can annotate and aggregate using many built-in database functions. Beyond those, you can create custom
query expressions.

Before using raw SQL, explore the ORM. Ask on one of the support channels to see if the ORM supports your use
case.

146 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Warning: You should be very careful whenever you write raw SQL. Every time you use it, you should properly
escape any parameters that the user can control by using params in order to protect against SQL injection attacks.
Please read more about SQL injection protection.

Performing raw queries

The raw() manager method can be used to perform raw SQL queries that return model instances:

Manager.raw(raw_query, params=None, translations=None)

This method takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet instance.
This RawQuerySet instance can be iterated over just like a normal QuerySet to provide object instances.

This is best illustrated with an example. Suppose you have the following model:

class Person(models.Model):
first_name = models.CharField(...)
last_name = models.CharField(...)
birth_date = models.DateField(...)

You could then execute custom SQL like so:

>>> for p in Person.objects.raw('SELECT * FROM myapp_person'):
€2))

John Smith
Jane Jones

Of course, this example isn’t very exciting — it’s exactly the same as running Person.objects.all(). However,
raw() has a bunch of other options that make it very powerful.

Model table names
Where did the name of the Person table come from in that example?

By default, Django figures out a database table name by joining the model’s “app label” — the name you used in manage.
py startapp — to the model’s class name, with an underscore between them. In the example we’ve assumed that the
Person model lives in an app named myapp, so its table would be myapp_person.

For more details check out the documentation for the db_table option, which also lets you manually set the database
table name.

Warning: No checking is done on the SQL statement that is passed in to . raw (). Django expects that the statement
will return a set of rows from the database, but does nothing to enforce that. If the query does not return rows, a
(possibly cryptic) error will result.

Warning: If you are performing queries on MySQL, note that MySQL’s silent type coercion may cause unexpected
results when mixing types. If you query on a string type column, but with an integer value, MySQL will coerce the
types of all values in the table to an integer before performing the comparison. For example, if your table contains
the values 'abc', 'def' and you query for WHERE mycolumn=0, both rows will match. To prevent this, perform
the correct typecasting before using the value in a query.

3.2. Models and databases 147

Django Documentation, Release 2.2.29.dev20220411083753

Mapping query fields to model fields

raw() automatically maps fields in the query to fields on the model.

The order of fields in your query doesn’t matter. In other words, both of the following queries work identically:

>>> Person.objects.raw('SELECT id, first_name, last_name, birth_date FROM myapp_person')

>>> Person.objects.raw('SELECT last_name, birth_date, first_name, id FROM myapp_person')

Matching is done by name. This means that you can use SQL’s AS clauses to map fields in the query to model fields.
So if you had some other table that had Person data in it, you could easily map it into Person instances:

>>> Person.objects.raw('''SELECT first AS first_name,
last AS last_name,
bd AS birth_date,
pk AS id,
FROM some_other_table''")

As long as the names match, the model instances will be created correctly.

Alternatively, you can map fields in the query to model fields using the translations argument to raw(). This is a
dictionary mapping names of fields in the query to names of fields on the model. For example, the above query could
also be written:

>>> name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id
"}

>>> Person.objects.raw('SELECT * FROM some_other_table', translations=name_map)

Index lookups

raw() supports indexing, so if you need only the first result you can write:

>>> first_person = Person.objects.raw('SELECT * FROM myapp_person')[0]

However, the indexing and slicing are not performed at the database level. If you have a large number of Person objects
in your database, it is more efficient to limit the query at the SQL level:

>>> first_person = Person.objects.raw('SELECT * FROM myapp_person LIMIT 1')[0]

Deferring model fields

Fields may also be left out:

>>> people = Person.objects.raw('SELECT id, first_name FROM myapp_person')

The Person objects returned by this query will be deferred model instances (see defer()). This means that the fields
that are omitted from the query will be loaded on demand. For example:

>>> for p in Person.objects.raw('SELECT id, first_name FROM myapp_person'):
(p.first_name,

(continues on next page)

148 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

p.last_name)

John Smith
Jane Jones

From outward appearances, this looks like the query has retrieved both the first name and last name. However, this
example actually issued 3 queries. Only the first names were retrieved by the raw() query — the last names were both
retrieved on demand when they were printed.

There is only one field that you can’t leave out - the primary key field. Django uses the primary key to identify model
instances, so it must always be included in a raw query. An InvalidQuery exception will be raised if you forget to
include the primary key.

Adding annotations

You can also execute queries containing fields that aren’t defined on the model. For example, we could use PostgreSQL’s
age() function to get a list of people with their ages calculated by the database:

>>> people = Person.objects.raw('SELECT *, age(birth_date) AS age FROM myapp_person')
>>> for p in people:

- ("%s is %s." % (p.first_name, p.age))

John is 37.
Jane is 42.

You can often avoid using raw SQL to compute annotations by instead using a Func() expression.

Passing parameters into raw()

If you need to perform parameterized queries, you can use the params argument to raw():

>>> lname = 'Doe’
>>> Person.objects.raw('SELECT * FROM myapp_person WHERE last_name = %s', [lname])

params is a list or dictionary of parameters. You’ll use %s placeholders in the query string for a list, or %(key)s
placeholders for a dictionary (where key is replaced by a dictionary key, of course), regardless of your database engine.
Such placeholders will be replaced with parameters from the params argument.

Note: Dictionary params are not supported with the SQLite backend; with this backend, you must pass parameters as
a list.

Warning: Do not use string formatting on raw queries or quote placeholders in your SQL strings!

It’s tempting to write the above query as:

>>> query = 'SELECT * FROM myapp_person WHERE last_name = %s' % lname
>>> Person.objects.raw(query)

You might also think you should write your query like this (with quotes around %s):

>>> query = "SELECT * FROM myapp_person WHERE last_name = '%s'"

3.2. Models and databases 149

https://www.postgresql.org/docs/current/functions-datetime.html
https://www.postgresql.org/docs/current/functions-datetime.html

Django Documentation, Release 2.2.29.dev20220411083753

Don’t make either of these mistakes.

As discussed in SQL injection protection, using the params argument and leaving the placeholders unquoted pro-
tects you from SQL injection attacks, a common exploit where attackers inject arbitrary SQL into your database. If
you use string interpolation or quote the placeholder, you’re at risk for SQL injection.

Executing custom SQL directly

Sometimes even Manager.raw() isn’t quite enough: you might need to perform queries that don’t map cleanly to
models, or directly execute UPDATE, INSERT, or DELETE queries.

In these cases, you can always access the database directly, routing around the model layer entirely.

The object django.db.connection represents the default database connection. To use the database connection, call
connection.cursor() to get a cursor object. Then, call cursor.execute(sql, [params]) to execute the SQL
and cursor. fetchone() or cursor. fetchall() to return the resulting rows.

For example:

from django.db import connection

def my_custom_sql():
with connection.cursor() as cursor:
cursor.execute("UPDATE bar SET foo = 1 WHERE baz = %s", [.baz])
cursor.execute("SELECT foo FROM bar WHERE baz = %s", [.baz])
row = cursor.fetchone()

return row

To protect against SQL injection, you must not include quotes around the %s placeholders in the SQL string.

Note that if you want to include literal percent signs in the query, you have to double them in the case you are passing
parameters:

cursor.execute("SELECT foo FROM bar WHERE baz
cursor.execute("SELECT foo FROM bar WHERE baz

l3®%l|l)
'30%%' AND id = %s", [.idD

If you are using more than one database, you can use django.db.connections to obtain the connection (and cursor)
for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a specific
connection using its alias:

from django.db import connections
with connections['my_db_alias'].cursor() as cursor:

By default, the Python DB API will return results without their field names, which means you end up with a 1list
of values, rather than a dict. At a small performance and memory cost, you can return results as a dict by using
something like this:

def dictfetchall(cursor):
"Return all rows from a cursor as a dict"
columns = [col[0] for col in cursor.description]
return [
((columns, row))

(continues on next page)

150 Chapter 3. Using Django

https://en.wikipedia.org/wiki/SQL_injection

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

for row in cursor.fetchall()

Another option is to use collections.namedtuple() from the Python standard library. A namedtuple is a tuple-
like object that has fields accessible by attribute lookup; it’s also indexable and iterable. Results are immutable and
accessible by field names or indices, which might be useful:

from collections import namedtuple

def namedtuplefetchall(cursor):
"Return all rows from a cursor as a namedtuple"”
desc = cursor.description
nt_result = namedtuple('Result', [col[0] for col in desc])
return [nt_result(*row) for row in cursor.fetchall()]

Here is an example of the difference between the three:

>>> cursor.execute("'SELECT id, parent_id FROM test LIMIT 2");
>>> cursor.fetchall()
((54360982, None), (54360880, None))

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2");
>>> dictfetchall (cursor)
[{'parent_id': None, 'id': 54360982}, {'parent_id': None, 'id': 54360880}]

>>> cursor.execute('SELECT id, parent_id FROM test LIMIT 2");

>>> results = namedtuplefetchall (cursor)

>>> results

[Result(id=54360982, parent_id=None), Result(id=54360880, parent_id=None)]
>>> results[0].id

54360982

>>> results[0][0]

54360982

Connections and cursors

connection and cursor mostly implement the standard Python DB-API described in PEP 249 — except when it
comes to transaction handling.

If you’re not familiar with the Python DB-API, note that the SQL statement in cursor.execute () uses placeholders,
"%s", rather than adding parameters directly within the SQL. If you use this technique, the underlying database library
will automatically escape your parameters as necessary.

Also note that Django expects the "%s" placeholder, not the "?" placeholder, which is used by the SQLite Python
bindings. This is for the sake of consistency and sanity.

Using a cursor as a context manager:

with connection.cursor() as c:
c.execute(...)

is equivalent to:

3.2. Models and databases 151

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://peps.python.org/pep-0249/

Django Documentation, Release 2.2.29.dev20220411083753

c = connection.cursor()
try:

c.execute(...)
finally:

c.close()

Calling stored procedures

CursorWrapper.callproc(procname, params=None, kparams=None)

Calls a database stored procedure with the given name. A sequence (params) or dictionary (kparams) of input
parameters may be provided. Most databases don’t support kparams. Of Django’s built-in backends, only Oracle
supports it.

For example, given this stored procedure in an Oracle database:

CREATE PROCEDURE "TEST_PROCEDURE"(v_i , v_text NVARCHAR2(10)) AS
p_i ;
p_text NVARCHAR2(10);

BEGIN
p_i = v_i

—1;
p_text := v_text;

END;

This will call it:

with connection.cursor() as cursor:
cursor.callproc('test_procedure', [1, 'test'])

3.2.7 Database transactions

Django gives you a few ways to control how database transactions are managed.

Managing database transactions

Django’s default transaction behavior

Django’s default behavior is to run in autocommit mode. Each query is immediately committed to the database, unless
a transaction is active. See below for details.

Django uses transactions or savepoints automatically to guarantee the integrity of ORM operations that require multiple
queries, especially delete() and update() queries.

Django’s TestCase class also wraps each test in a transaction for performance reasons.

152 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Tying transactions to HTTP requests

A common way to handle transactions on the web is to wrap each request in a transaction. Set ATOMIC_REQUESTS to
True in the configuration of each database for which you want to enable this behavior.

It works like this. Before calling a view function, Django starts a transaction. If the response is produced without
problems, Django commiits the transaction. If the view produces an exception, Django rolls back the transaction.

You may perform subtransactions using savepoints in your view code, typically with the atomic () context manager.
However, at the end of the view, either all or none of the changes will be committed.

Warning: While the simplicity of this transaction model is appealing, it also makes it inefficient when traffic
increases. Opening a transaction for every view has some overhead. The impact on performance depends on the
query patterns of your application and on how well your database handles locking.

Per-request transactions and streaming responses

When a view returns a StreamingHttpResponse, reading the contents of the response will often execute code to
generate the content. Since the view has already returned, such code runs outside of the transaction.

Generally speaking, it isn’t advisable to write to the database while generating a streaming response, since there’s no
sensible way to handle errors after starting to send the response.

In practice, this feature simply wraps every view function in the atomic () decorator described below.

Note that only the execution of your view is enclosed in the transactions. Middleware runs outside of the transaction,
and so does the rendering of template responses.

When ATOMIC_REQUESTS is enabled, it’s still possible to prevent views from running in a transaction.

non_atomic_requests (using=None)
This decorator will negate the effect of ATOMIC_REQUESTS for a given view:

from django.db import transaction

@transaction.non_atomic_requests
def my_view(request):
do_stuff()

@transaction.non_atomic_requests(using='other")
def my_other_view(request):
do_stuff_on_the_other_database()

It only works if it’s applied to the view itself.

3.2. Models and databases 153

Django Documentation, Release 2.2.29.dev20220411083753

Controlling transactions explicitly

Django provides a single API to control database transactions.

atomic (using=None, savepoint=True)

Atomicity is the defining property of database transactions. atomic allows us to create a block of code within
which the atomicity on the database is guaranteed. If the block of code is successfully completed, the changes
are committed to the database. If there is an exception, the changes are rolled back.

atomic blocks can be nested. In this case, when an inner block completes successfully, its effects can still be
rolled back if an exception is raised in the outer block at a later point.

atomic is usable both as a decorator:

from django.db import transaction

@transaction.atomic
def viewfunc(request):

do_stuff()

and as a context manager:

from django.db import transaction
def viewfunc(request):

do_stuff()

with transaction.atomic():

do_more_stuff()

Wrapping atomic in a try/except block allows for natural handling of integrity errors:

from django.db import IntegrityError, transaction

@transaction.atomic
def viewfunc(request):
create_parent()

try:
with transaction.atomic():
generate_relationships()
except IntegrityError:
handle_exception()

add_children()

In this example, even if generate_relationships() causes a database error by breaking an integrity con-
straint, you can execute queries in add_children(), and the changes from create_parent () are still there.
Note that any operations attempted in generate_relationships() will already have been rolled back safely
when handle_exception() is called, so the exception handler can also operate on the database if necessary.

Avoid catching exceptions inside atomic!

154

Chapter 3. Using Django

https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/glossary.html#term-context-manager

Django Documentation, Release 2.2.29.dev20220411083753

When exiting an atomic block, Django looks at whether it’s exited normally or with an exception to determine
whether to commit or roll back. If you catch and handle exceptions inside an atomic block, you may hide from
Django the fact that a problem has happened. This can result in unexpected behavior.

This is mostly a concern for DatabaseError and its subclasses such as IntegrityError. After such an error,
the transaction is broken and Django will perform a rollback at the end of the atomic block. If you attempt to
run database queries before the rollback happens, Django will raise a TransactionManagementError. You
may also encounter this behavior when an ORM-related signal handler raises an exception.

The correct way to catch database errors is around an atomic block as shown above. If necessary, add an extra
atomic block for this purpose. This pattern has another advantage: it delimits explicitly which operations will
be rolled back if an exception occurs.

If you catch exceptions raised by raw SQL queries, Django’s behavior is unspecified and database-dependent.

You may need to manually revert model state when rolling back a transaction.

The values of a model’s fields won’t be reverted when a transaction rollback happens. This could lead to an
inconsistent model state unless you manually restore the original field values.

For example, given MyModel with an active field, this snippet ensures that the if obj.active check at the
end uses the correct value if updating active to True fails in the transaction:

from django.db import DatabaseError, transaction

obj = MyModel (active=False)
obj.active = True
try:
with transaction.atomic():
obj.save()
except DatabaseError:
obj.active = False

if obj.active:

In order to guarantee atomicity, atomic disables some APIs. Attempting to commit, roll back, or change the
autocommit state of the database connection within an atomic block will raise an exception.

atomic takes a using argument which should be the name of a database. If this argument isn’t provided, Django
uses the "default" database.

Under the hood, Django’s transaction management code:
* opens a transaction when entering the outermost atomic block;
e creates a savepoint when entering an inner atomic block;
* releases or rolls back to the savepoint when exiting an inner block;
* commits or rolls back the transaction when exiting the outermost block.

You can disable the creation of savepoints for inner blocks by setting the savepoint argument to False. If an
exception occurs, Django will perform the rollback when exiting the first parent block with a savepoint if there
is one, and the outermost block otherwise. Atomicity is still guaranteed by the outer transaction. This option
should only be used if the overhead of savepoints is noticeable. It has the drawback of breaking the error handling
described above.

3.2. Models and databases 155

Django Documentation, Release 2.2.29.dev20220411083753

You may use atomic when autocommit is turned off. It will only use savepoints, even for the outermost block.

Performance considerations

Open transactions have a performance cost for your database server. To minimize this overhead, keep your transactions
as short as possible. This is especially important if you’re using atomic () in long-running processes, outside of
Django’s request / response cycle.

Autocommit

Why Django uses autocommit

In the SQL standards, each SQL query starts a transaction, unless one is already active. Such transactions must then
be explicitly committed or rolled back.

This isn’t always convenient for application developers. To alleviate this problem, most databases provide an auto-
commit mode. When autocommit is turned on and no transaction is active, each SQL query gets wrapped in its own
transaction. In other words, not only does each such query start a transaction, but the transaction also gets automatically
committed or rolled back, depending on whether the query succeeded.

PEP 249, the Python Database API Specification v2.0, requires autocommit to be initially turned off. Django overrides
this default and turns autocommit on.

To avoid this, you can deactivate the transaction management, but it isn’t recommended.

Deactivating transaction management

You can totally disable Django’s transaction management for a given database by setting AUTOCOMMIT to False in its
configuration. If you do this, Django won’t enable autocommit, and won’t perform any commits. You’ll get the regular
behavior of the underlying database library.

This requires you to commit explicitly every transaction, even those started by Django or by third-party libraries. Thus,
this is best used in situations where you want to run your own transaction-controlling middleware or do something
really strange.

Performing actions after commit
Sometimes you need to perform an action related to the current database transaction, but only if the transaction suc-
cessfully commits. Examples might include a Celery task, an email notification, or a cache invalidation.

Django provides the on_commit () function to register callback functions that should be executed after a transaction
is successfully committed:

on_commit (func, using=None)

Pass any function (that takes no arguments) to on_commit():

from django.db import transaction

def do_something():
pass

transaction.on_commit (do_something)

156 Chapter 3. Using Django

https://peps.python.org/pep-0249/
http://www.celeryproject.org/

Django Documentation, Release 2.2.29.dev20220411083753

You can also wrap your function in a lambda:

transaction.on_commit(lambda: some_celery_task.delay())

The function you pass in will be called immediately after a hypothetical database write made where on_commit () is
called would be successfully committed.

If you call on_commit () while there isn’t an active transaction, the callback will be executed immediately.

If that hypothetical database write is instead rolled back (typically when an unhandled exception is raised in an
atomic () block), your function will be discarded and never called.

Savepoints

Savepoints (i.e. nested atomic () blocks) are handled correctly. That is, an on_commit () callable registered after a
savepoint (in a nested atomic () block) will be called after the outer transaction is committed, but not if a rollback to
that savepoint or any previous savepoint occurred during the transaction:

with transaction.atomic():
transaction.on_commit (foo)

with transaction.atomic():
transaction.on_commit (bar)

On the other hand, when a savepoint is rolled back (due to an exception being raised), the inner callable will not be
called:

with transaction.atomic():
transaction.on_commit (foo)

try:
with transaction.atomic():
transaction.on_commit (bar)
raise SomeError()
except SomeError:
pass

Order of execution

On-commit functions for a given transaction are executed in the order they were registered.

3.2. Models and databases 157

Django Documentation, Release 2.2.29.dev20220411083753

Exception handling

If one on-commit function within a given transaction raises an uncaught exception, no later registered functions in that
same transaction will run. This is, of course, the same behavior as if you’d executed the functions sequentially yourself
without on_commit ().

Timing of execution

Your callbacks are executed after a successful commit, so a failure in a callback will not cause the transaction to roll
back. They are executed conditionally upon the success of the transaction, but they are not part of the transaction. For
the intended use cases (mail notifications, Celery tasks, etc.), this should be fine. If it’s not (if your follow-up action is
so critical that its failure should mean the failure of the transaction itself), then you don’t want to use the on_commit ()
hook. Instead, you may want two-phase commit such as the psycopg Two-Phase Commit protocol support and the
optional Two-Phase Commit Extensions in the Python DB-API specification.

Callbacks are not run until autocommit is restored on the connection following the commit (because otherwise any
queries done in a callback would open an implicit transaction, preventing the connection from going back into auto-
commit mode).

When in autocommit mode and outside of an atomic () block, the function will run immediately, not on commit.

On-commit functions only work with autocommit mode and the atomic () (or ATOMIC_REQUESTS) transaction APIL
Calling on_commit () when autocommit is disabled and you are not within an atomic block will result in an error.

Use in tests

Django’s TestCase class wraps each test in a transaction and rolls back that transaction after each test, in order to
provide test isolation. This means that no transaction is ever actually committed, thus your on_commit () callbacks
will never be run. If you need to test the results of an on_commit () callback, use a TransactionTestCase instead.

Why no rollback hook?

A rollback hook is harder to implement robustly than a commit hook, since a variety of things can cause an implicit
rollback.

For instance, if your database connection is dropped because your process was killed without a chance to shut down
gracefully, your rollback hook will never run.

The solution is simple: instead of doing something during the atomic block (transaction) and then undoing it if the
transaction fails, use on_commit () to delay doing it in the first place until after the transaction succeeds. It’s a lot
easier to undo something you never did in the first place!

Low-level APIs

Warning: Always prefer atomic() if possible at all. It accounts for the idiosyncrasies of each database and
prevents invalid operations.

The low level APIs are only useful if you’re implementing your own transaction management.

158 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://initd.org/psycopg/docs/usage.html#tpc
https://www.python.org/dev/peps/pep-0249/#optional-two-phase-commit-extensions

Django Documentation, Release 2.2.29.dev20220411083753

Autocommit

Django provides a straightforward API in the django.db. transaction module to manage the autocommit state of
each database connection.

get_autocommit (using=None)
set_autocommit Cautocommit, using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django uses the
"default" database.

Autocommit is initially turned on. If you turn it off, it’s your responsibility to restore it.

Once you turn autocommit off, you get the default behavior of your database adapter, and Django won’t help you.
Although that behavior is specified in PEP 249, implementations of adapters aren’t always consistent with one another.
Review the documentation of the adapter you're using carefully.

You must ensure that no transaction is active, usually by issuing a commit () or a rollback(), before turning auto-
commit back on.

Django will refuse to turn autocommit off when an atomic () block is active, because that would break atomicity.

Transactions

A transaction is an atomic set of database queries. Even if your program crashes, the database guarantees that either
all the changes will be applied, or none of them.

Django doesn’t provide an API to start a transaction. The expected way to start a transaction is to disable autocommit
with set_autocommit ().

Once you'’re in a transaction, you can choose either to apply the changes you’ve performed until this point with
commit (), or to cancel them with rollback (). These functions are defined in django.db. transaction.

commit (using=None)
rollback (using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django uses the
"default" database.

Django will refuse to commit or to rollback when an atomic () block is active, because that would break atomicity.

Savepoints

A savepoint is a marker within a transaction that enables you to roll back part of a transaction, rather than the full
transaction. Savepoints are available with the SQLite, PostgreSQL, Oracle, and MySQL (when using the InnoDB
storage engine) backends. Other backends provide the savepoint functions, but they’re empty operations — they don’t
actually do anything.

Savepoints aren’t especially useful if you are using autocommit, the default behavior of Django. However, once you
open a transaction with atomic (), you build up a series of database operations awaiting a commit or rollback. If you
issue a rollback, the entire transaction is rolled back. Savepoints provide the ability to perform a fine-grained rollback,
rather than the full rollback that would be performed by transaction.rollback().

When the atomic() decorator is nested, it creates a savepoint to allow partial commit or rollback. You’re strongly
encouraged to use atomic () rather than the functions described below, but they’re still part of the public API, and
there’s no plan to deprecate them.

3.2. Models and databases 159

https://peps.python.org/pep-0249/

Django Documentation, Release 2.2.29.dev20220411083753

Each of these functions takes a using argument which should be the name of a database for which the behavior applies.
If no using argument is provided then the "default" database is used.

Savepoints are controlled by three functions in django.db. transaction:

savepoint (using=None)
Creates a new savepoint. This marks a point in the transaction that is known to be in a “good” state. Returns the
savepoint ID (sid).

savepoint_commit (sid, using=None)

Releases savepoint sid. The changes performed since the savepoint was created become part of the transaction.

savepoint_rollback(sid, using=None)

Rolls back the transaction to savepoint sid.
These functions do nothing if savepoints aren’t supported or if the database is in autocommit mode.
In addition, there’s a utility function:

clean_savepoints (using=None)
Resets the counter used to generate unique savepoint IDs.

The following example demonstrates the use of savepoints:

from django.db import transaction
@transaction.atomic
def viewfunc(request):

a.save()

sid = transaction.savepoint()

b.save()

if want_to_keep_b:
transaction.savepoint_commit(sid)

else:
transaction.savepoint_rollback(sid)

Savepoints may be used to recover from a database error by performing a partial rollback. If you're doing this inside
an atomic () block, the entire block will still be rolled back, because it doesn’t know you’ve handled the situation at a
lower level! To prevent this, you can control the rollback behavior with the following functions.

get_rollback (using=None)
set_rollback (rollback, using=None)

Setting the rollback flag to True forces a rollback when exiting the innermost atomic block. This may be useful to
trigger a rollback without raising an exception.

Setting it to False prevents such a rollback. Before doing that, make sure you’ve rolled back the transaction to a
known-good savepoint within the current atomic block! Otherwise you’re breaking atomicity and data corruption may
occur.

160 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Database-specific notes

Savepoints in SQLite

While SQLite supports savepoints, a flaw in the design of the sqlite3 module makes them hardly usable.

When autocommit is enabled, savepoints don’t make sense. When it’s disabled, sqlite3 commits implicitly before
savepoint statements. (In fact, it commits before any statement other than SELECT, INSERT, UPDATE, DELETE and
REPLACE.) This bug has two consequences:

* The low level APIs for savepoints are only usable inside a transaction ie. inside an atomic () block.

 It’s impossible to use atomic () when autocommit is turned off.

Transactions in MySQL

If you’re using MySQL, your tables may or may not support transactions; it depends on your MySQL version and the
table types you're using. (By “table types,” we mean something like “InnoDB” or “MyISAM”.) MySQL transaction
peculiarities are outside the scope of this article, but the MySQL site has information on MySQL transactions.

If your MySQL setup does not support transactions, then Django will always function in autocommit mode: statements
will be executed and committed as soon as they’re called. If your MySQL setup does support transactions, Django will
handle transactions as explained in this document.

Handling exceptions within PostgreSQL transactions

Note: This section is relevant only if you’re implementing your own transaction management. This problem cannot
occur in Django’s default mode and atomic () handles it automatically.

Inside a transaction, when a call to a PostgreSQL cursor raises an exception (typically IntegrityError), all subse-
quent SQL in the same transaction will fail with the error “current transaction is aborted, queries ignored until end of
transaction block”. While simple use of save() is unlikely to raise an exception in PostgreSQL, there are more ad-
vanced usage patterns which might, such as saving objects with unique fields, saving using the force_insert/force_update
flag, or invoking custom SQL.

There are several ways to recover from this sort of error.

Transaction rollback

The first option is to roll back the entire transaction. For example:

a.save()
try:
b.save()
except IntegrityError:
transaction.rollback()
c.save()

Calling transaction.rollback() rolls back the entire transaction. Any uncommitted database operations will be
lost. In this example, the changes made by a.save () would be lost, even though that operation raised no error itself.

3.2. Models and databases 161

https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://dev.mysql.com/doc/refman/en/sql-syntax-transactions.html

Django Documentation, Release 2.2.29.dev20220411083753

Savepoint rollback

You can use savepoints to control the extent of a rollback. Before performing a database operation that could fail, you
can set or update the savepoint; that way, if the operation fails, you can roll back the single offending operation, rather
than the entire transaction. For example:

a.save()
sid = transaction.savepoint()
try:
b.save()
transaction.savepoint_commit(sid)
except IntegrityError:
transaction.savepoint_rollback(sid)
c.save()

In this example, a.save () will not be undone in the case where b. save () raises an exception.

3.2.8 Multiple databases

This topic guide describes Django’s support for interacting with multiple databases. Most of the rest of Django’s
documentation assumes you are interacting with a single database. If you want to interact with multiple databases,
you’ll need to take some additional steps.

See also:

See Multi-database support for information about testing with multiple databases.

Defining your databases

The first step to using more than one database with Django is to tell Django about the database servers you’ll be using.
This is done using the DATABASES setting. This setting maps database aliases, which are a way to refer to a specific
database throughout Django, to a dictionary of settings for that specific connection. The settings in the inner dictionaries
are described fully in the DATABASES documentation.

Databases can have any alias you choose. However, the alias default has special significance. Django uses the
database with the alias of default when no other database has been selected.

The following is an example settings.py snippet defining two databases — a default PostgreSQL database and a
MySQL database called users:

DATABASES = {
'default': {
'NAME': 'app_data',
'"ENGINE': 'django.db.backends.postgresql',
'USER': 'postgres_user',
'"PASSWORD': 's3krit'

3
'users': {
'NAME': 'user_data',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'"PASSWORD': 'priv4te'
3

162 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

If the concept of a default database doesn’t make sense in the context of your project, you need to be careful to always
specify the database that you want to use. Django requires that a default database entry be defined, but the parameters
dictionary can be left blank if it will not be used. To do this, you must set up DATABASE_ROUTERS for all of your apps’
models, including those in any contrib and third-party apps you’re using, so that no queries are routed to the default
database. The following is an example settings.py snippet defining two non-default databases, with the default
entry intentionally left empty:

DATABASES = {
'default': {3},
'users': {
'"NAME': 'user_data',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'"PASSWORD': 'superS3cret'

I
'customers': {
'"NAME': 'customer_data',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysqgl_cust',
'"PASSWORD': 'veryPriv@ate'
}

If you attempt to access a database that you haven’t defined in your DATABASES setting, Django will raise a django.
db.utils.ConnectionDoesNotExist exception.

Synchronizing your databases

The migrate management command operates on one database at a time. By default, it operates on the default
database, but by providing the --database option, you can tell it to synchronize a different database. So, to synchro-
nize all models onto all databases in the first example above, you would need to call:

§ ./manage.py migrate
$./manage.py migrate --database=users

If you don’t want every application to be synchronized onto a particular database, you can define a database router that
implements a policy constraining the availability of particular models.

If, as in the second example above, you’ve left the default database empty, you must provide a database name each
time you run migrate. Omitting the database name would raise an error. For the second example:

§ ./manage.py migrate --database=users
$./manage.py migrate --database=customers

3.2. Models and databases 163

Django Documentation, Release 2.2.29.dev20220411083753

Using other management commands

Most other django-admin commands that interact with the database operate in the same way as migrate — they only
ever operate on one database at a time, using --database to control the database used.

An exception to this rule is the makemigrations command. It validates the migration history in the databases to catch
problems with the existing migration files (which could be caused by editing them) before creating new migrations.
By default, it checks only the default database, but it consults the allow_migrate () method of routers if any are
installed.

Automatic database routing

The easiest way to use multiple databases is to set up a database routing scheme. The default routing scheme ensures
that objects remain ‘sticky’ to their original database (i.e., an object retrieved from the foo database will be saved on
the same database). The default routing scheme ensures that if a database isn’t specified, all queries fall back to the
default database.

You don’t have to do anything to activate the default routing scheme — it is provided ‘out of the box’ on every Django
project. However, if you want to implement more interesting database allocation behaviors, you can define and install
your own database routers.

Database routers

A database Router is a class that provides up to four methods:
db_for_read(model, **hints)
Suggest the database that should be used for read operations for objects of type model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

db_for_write(model, **hints)
Suggest the database that should be used for writes of objects of type Model.

If a database operation is able to provide any additional information that might assist in selecting a database, it
will be provided in the hints dictionary. Details on valid hints are provided below.

Returns None if there is no suggestion.

allow_relation(objl, obj2, **hints)

Return True if a relation between obj1 and obj2 should be allowed, False if the relation should be prevented,
or None if the router has no opinion. This is purely a validation operation, used by foreign key and many to many
operations to determine if a relation should be allowed between two objects.

If no router has an opinion (i.e. all routers return None), only relations within the same database are allowed.

allow_migrate(db, app_label, model_name=None, **hints)
Determine if the migration operation is allowed to run on the database with alias db. Return True if the operation
should run, False if it shouldn’t run, or None if the router has no opinion.

The app_label positional argument is the label of the application being migrated.

model_name is set by most migration operations to the value of model._meta.model_name (the lowercased
version of the model __name__) of the model being migrated. Its value is None for the RunPython and RunSQL
operations unless they provide it using hints.

164 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

hints are used by certain operations to communicate additional information to the router.

When model_name is set, hints normally contains the model class under the key 'model’. Note that it may
be a historical model, and thus not have any custom attributes, methods, or managers. You should only rely on
_meta.

This method can also be used to determine the availability of a model on a given database.

makemigrations always creates migrations for model changes, but if allow_migrate() returns False, any
migration operations for the model_name will be silently skipped when running migrate on the db. Changing
the behavior of allow_migrate() for models that already have migrations may result in broken foreign keys,
extra tables, or missing tables. When makemigrations verifies the migration history, it skips databases where
no app is allowed to migrate.

A router doesn’t have to provide all these methods — it may omit one or more of them. If one of the methods is omitted,
Django will skip that router when performing the relevant check.

Hints

The hints received by the database router can be used to decide which database should receive a given request.

At present, the only hint that will be provided is instance, an object instance that is related to the read or write
operation that is underway. This might be the instance that is being saved, or it might be an instance that is being added
in a many-to-many relation. In some cases, no instance hint will be provided at all. The router checks for the existence
of an instance hint, and determine if that hint should be used to alter routing behavior.

Using routers

Database routers are installed using the DATABASE_ROUTERS setting. This setting defines a list of class names, each
specifying a router that should be used by the master router (django.db.router).

The master router is used by Django’s database operations to allocate database usage. Whenever a query needs to know
which database to use, it calls the master router, providing a model and a hint (if available). Django then tries each
router in turn until a database suggestion can be found. If no suggestion can be found, it tries the current _state.db
of the hint instance. If a hint instance wasn’t provided, or the instance doesn’t currently have database state, the master
router will allocate the default database.

An example

Example purposes only!

This example is intended as a demonstration of how the router infrastructure can be used to alter database usage. It
intentionally ignores some complex issues in order to demonstrate how routers are used.

This example won’t work if any of the models in myapp contain relationships to models outside of the other database.
Cross-database relationships introduce referential integrity problems that Django can’t currently handle.

The primary/replica (referred to as master/slave by some databases) configuration described is also flawed — it doesn’t
provide any solution for handling replication lag (i.e., query inconsistencies introduced because of the time taken for a
write to propagate to the replicas). It also doesn’t consider the interaction of transactions with the database utilization
strategy.

3.2. Models and databases 165

Django Documentation, Release 2.2.29.dev20220411083753

So - what does this mean in practice? Let’s consider another sample configuration. This one will have several databases:
one for the auth application, and all other apps using a primary/replica setup with two read replicas. Here are the
settings specifying these databases:

DATABASES = {

'"default': {3},

"auth_db': {
'NAME': 'auth_db',
"ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'"PASSWORD': 'swordfish',

1

'primary': {
'NAME': 'primary',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysqgl_user',
'"PASSWORD': 'spam',

3,
'replical': {
'NAME': 'replical',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysql_user',
'"PASSWORD': 'eggs',
3
'replica2': {
'NAME': 'replica2',
'"ENGINE': 'django.db.backends.mysql',
'USER': 'mysqgl_user',
'"PASSWORD': 'bacon',
s

Now we’ll need to handle routing. First we want a router that knows to send queries for the auth and contenttypes
apps to auth_db (auth models are linked to ContentType, so they must be stored in the same database):

class AuthRouter:
A router to control all database operations on models in the
auth and contenttypes applications.

non

route_app_labels = {'auth', 'contenttypes'}

def db_for_read(self, model, **hints):

Attempts to read auth and contenttypes models go to auth_db.
if model._meta.app_label in self.route_app_labels:

return 'auth_db’
return None

def db_for_write(self, model, **hints):

Attempts to write auth and contenttypes models go to auth_db.

(continues on next page)

166 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

if model._meta.app_label in .route_app_labels:
return 'auth_db'
return None

def allow_relation(, objl, obj2, **hints):

nmon

Allow relations if a model in the auth or contenttypes apps is

involved.

if (
objl._meta.app_label in .route_app_labels or
obj2._meta.app_label in .route_app_labels

):

return True
return None

def allow_migrate(, db, app_label, model_name=None, **hints):
Make sure the auth and contenttypes apps only appear in the
"auth_db' database.
if app_label in .route_app_labels:
return db == 'auth_db’
return None

And we also want a router that sends all other apps to the primary/replica configuration, and randomly chooses a replica
to read from:

import random

class PrimaryReplicaRouter:
def db_for_read(, model, **hints):

non

Reads go to a randomly-chosen replica.

non

return random.choice(['replical', 'replicaz2'])

def db_for_write(, model, **hints):

non

Writes always go to primary.

non

return 'primary’

def allow_relation(, objl, obj2, **hints):
Relations between objects are allowed if both objects are
in the primary/replica pool.
db_list = ('primary', 'replical', 'replica2')
if objl._state.db in db_list and obj2._state.db in db_list:
return True
return None

(continues on next page)

3.2. Models and databases 167

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

def allow_migrate(, db, app_label, model_name=None, **hints):

return True

Finally, in the settings file, we add the following (substituting path.to. with the actual Python path to the module(s)
where the routers are defined):

DATABASE_ROUTERS = [)]

The order in which routers are processed is significant. Routers will be queried in the order they are listed in the
DATABASE_ROUTERS setting. In this example, the AuthRouter is processed before the PrimaryReplicaRouter,
and as a result, decisions concerning the models in auth are processed before any other decision is made. If the
DATABASE_ROUTERS setting listed the two routers in the other order, PrimaryReplicaRouter.allow_migrate()
would be processed first. The catch-all nature of the PrimaryReplicaRouter implementation would mean that all models
would be available on all databases.

With this setup installed, lets run some Django code:

>>>
>>> fred = User.objects.get(username=)
>>> fred.first_name =

>>>
>>> fred.save()

>>>
>>> dna = Person.objects.get(name=)

>>>
>>> mh = Book(title=)

>>>
>>>
>>> mh.author = dna

>>>
>>> mh.save()

>>>
>>> mh = Book.objects.get(title=)

This example defined a router to handle interaction with models from the auth app, and other routers to handle inter-
action with all other apps. If you left your default database empty and don’t want to define a catch-all database router
to handle all apps not otherwise specified, your routers must handle the names of all apps in INSTALLED_APPS before
you migrate. See Behavior of contrib apps for information about contrib apps that must be together in one database.

168 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Manually selecting a database

Django also provides an API that allows you to maintain complete control over database usage in your code. A manually
specified database allocation will take priority over a database allocated by a router.

Manually selecting a database for a QuerySet

You can select the database for a QuerySet at any point in the QuerySet “chain.” Just call using () on the QuerySet
to get another QuerySet that uses the specified database.

using() takes a single argument: the alias of the database on which you want to run the query. For example:

>>>
>>> Author.objects.all()

>>>
>>> Author.objects.using().allO
>>>

>>> Author.objects.using().allO

Selecting a database for save()

Use the using keyword to Model.save() to specify to which database the data should be saved.

For example, to save an object to the legacy_users database, you’d use this:

>>> my_object.save(using=)

If you don’t specify using, the save () method will save into the default database allocated by the routers.

Moving an object from one database to another

If you’ve saved an instance to one database, it might be tempting to use save (using=...) as a way to migrate the in-
stance to a new database. However, if you don’t take appropriate steps, this could have some unexpected consequences.

Consider the following example:

>>> p = Person(name=)
>>> p.save(using=)
>>> p.save(using=)

In statement 1, a new Person object is saved to the first database. At this time, p doesn’t have a primary key, so
Django issues an SQL INSERT statement. This creates a primary key, and Django assigns that primary key to p.

When the save occurs in statement 2, p already has a primary key value, and Django will attempt to use that primary key
on the new database. If the primary key value isn’t in use in the second database, then you won’t have any problems —
the object will be copied to the new database.

However, if the primary key of p is already in use on the second database, the existing object in the second database
will be overridden when p is saved.

You can avoid this in two ways. First, you can clear the primary key of the instance. If an object has no primary key,
Django will treat it as a new object, avoiding any loss of data on the second database:

3.2. Models and databases 169

Django Documentation, Release 2.2.29.dev20220411083753

>>> p = Person(name=)
>>> p.save(using=)
>>> p.pk = None

>>> p.save(using=)

The second option is to use the force_insert option to save () to ensure that Django does an SQL INSERT:

>>> p = Person(name=)
>>> p.save(using=)
>>> p.save(using= , force_insert=True)

This will ensure that the person named Fred will have the same primary key on both databases. If that primary key is
already in use when you try to save onto the second database, an error will be raised.

Selecting a database to delete from

By default, a call to delete an existing object will be executed on the same database that was used to retrieve the object
in the first place:

>>> u = User.objects.using() .get(username=)
>>> u.delete()

To specify the database from which a model will be deleted, pass a using keyword argument to the Model .delete()
method. This argument works just like the using keyword argument to save ().

For example, if you’re migrating a user from the legacy_users database to the new_users database, you might use
these commands:

>>> user_obj.save(using=)
>>> user_obj.delete(using=)

Using managers with multiple databases

Use the db_manager () method on managers to give managers access to a non-default database.

For example, say you have a custom manager method that touches the database — User.objects.create_user().
Because create_user() is a manager method, not a QuerySet method, you can’t do User.objects.
using('new_users').create_user(). (The create_user() method is only available on User.objects, the
manager, not on QuerySet objects derived from the manager.) The solution is to use db_manager (), like this:

User.objects.db_manager().create_user(...)

db_manager () returns a copy of the manager bound to the database you specify.

170 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Using get_queryset () with multiple databases

If you're overriding get_queryset () on your manager, be sure to either call the method on the parent (using super ())
or do the appropriate handling of the _db attribute on the manager (a string containing the name of the database to use).

For example, if you want to return a custom QuerySet class from the get_queryset method, you could do this:

class MyManager (models.Manager):
def get_queryset():

gqs = CustomQuerySet(.model)
if ._db is not None:

gs = gs.using(._db)
return gs

Exposing multiple databases in Django’s admin interface

Django’s admin doesn’t have any explicit support for multiple databases. If you want to provide an admin interface for
a model on a database other than that specified by your router chain, you’ll need to write custom ModelAdmin classes
that will direct the admin to use a specific database for content.

ModelAdmin objects have five methods that require customization for multiple-database support:

class MultiDBModelAdmin(admin.ModelAdmin):

using =
def save_model(, request, obj, form, change):
obj.save(using= .using)
def delete_model(, request, obj):
obj.delete(using= .using)
def get_queryset(, request):
return () .get_queryset(request).using(.using)
def formfield_for_foreignkey(, db_field, request, **kwargs):
return () .formfield_for_foreignkey(db_field, request, using= .using, .
. **kwargs)
def formfield_for_manytomany (, db_field, request, **kwargs):
return (O .formfield_for_manytomany(db_field, request, using= .using, ..
. **kwargs)

The implementation provided here implements a multi-database strategy where all objects of a given type are stored
on a specific database (e.g., all User objects are in the other database). If your usage of multiple databases is more
complex, your ModelAdmin will need to reflect that strategy.

3.2. Models and databases 171

Django Documentation, Release 2.2.29.dev20220411083753

InlinelModelAdmin objects can be handled in a similar fashion. They require three customized methods:

class MultiDBTabularInline(admin.TabularInline):

using =
def get_queryset(, request):
return () .get_queryset(request) .using(.using)
def formfield_for_foreignkey(, db_field, request, **kwargs):
return (O .formfield_for_foreignkey(db_field, request, using= .using, .
. **kwargs)
def formfield_for_manytomany (, db_field, request, **kwargs):
return (O .formfield_for_manytomany(db_field, request, using= .using, ..
- **kwargs)

Once you’ve written your model admin definitions, they can be registered with any Admin instance:

from django.contrib import admin
class BookInline(MultiDBTabularInline):
model = Book

class PublisherAdmin(MultiDBModelAdmin):
inlines = [BookInline]

admin.site.register(Author, MultiDBModelAdmin)
admin.site.register(Publisher, PublisherAdmin)

othersite = admin.AdminSite()
othersite.register(Publisher, MultiDBModelAdmin)

This example sets up two admin sites. On the first site, the Author and Publisher objects are exposed; Publisher
objects have a tabular inline showing books published by that publisher. The second site exposes just publishers, without
the inlines.

Using raw cursors with multiple databases

If you are using more than one database you can use django.db.connections to obtain the connection (and cursor)
for a specific database. django.db.connections is a dictionary-like object that allows you to retrieve a specific
connection using its alias:

from django.db import connections
with connections[].cursor() as cursor:

172 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Limitations of multiple databases

Cross-database relations

Django doesn’t currently provide any support for foreign key or many-to-many relationships spanning multiple
databases. If you have used a router to partition models to different databases, any foreign key and many-to-many
relationships defined by those models must be internal to a single database.

This is because of referential integrity. In order to maintain a relationship between two objects, Django needs to know
that the primary key of the related object is valid. If the primary key is stored on a separate database, it’s not possible
to easily evaluate the validity of a primary key.

If you’re using Postgres, Oracle, or MySQL with InnoDB, this is enforced at the database integrity level — database
level key constraints prevent the creation of relations that can’t be validated.

However, if you're using SQLite or MySQL with MyISAM tables, there is no enforced referential integrity; as a result,
you may be able to ‘fake’ cross database foreign keys. However, this configuration is not officially supported by Django.

Behavior of contrib apps

Several contrib apps include models, and some apps depend on others. Since cross-database relationships are impos-
sible, this creates some restrictions on how you can split these models across databases:

e each one of contenttypes.ContentType, sessions.Session and sites.Site can be stored in any
database, given a suitable router.

e auth models — User, Group and Permission — are linked together and linked to ContentType, so they must
be stored in the same database as ContentType.

* admin depends on auth, so its models must be in the same database as auth.

e flatpages and redirects depend on sites, so their models must be in the same database as sites.
In addition, some objects are automatically created just after migrate creates a table to hold them in a database:

e adefault Site,

* a ContentType for each model (including those not stored in that database),

¢ the Permissions for each model (including those not stored in that database).

For common setups with multiple databases, it isn’t useful to have these objects in more than one database. Common
setups include primary/replica and connecting to external databases. Therefore, it’s recommended to write a database
router that allows synchronizing these three models to only one database. Use the same approach for contrib and
third-party apps that don’t need their tables in multiple databases.

Warning: If you’re synchronizing content types to more than one database, be aware that their primary keys may
not match across databases. This may result in data corruption or data loss.

3.2. Models and databases 173

Django Documentation, Release 2.2.29.dev20220411083753

3.2.9 Tablespaces

A common paradigm for optimizing performance in database systems is the use of tablespaces to organize disk layout.

Warning: Django does not create the tablespaces for you. Please refer to your database engine’s documentation
for details on creating and managing tablespaces.

Declaring tablespaces for tables
A tablespace can be specified for the table generated by a model by supplying the db_tablespace option inside the
model’s class Meta. This option also affects tables automatically created for ManyToManyFields in the model.

You can use the DEFAULT_TABLESPACE setting to specify a default value for db_tablespace. This is useful for setting
a tablespace for the built-in Django apps and other applications whose code you cannot control.

Declaring tablespaces for indexes

You can pass the db_tablespace option to an Index constructor to specify the name of a tablespace to use for the
index. For single field indexes, you can pass the db_tablespace option to a Field constructor to specify an alternate
tablespace for the field’s column index. If the column doesn’t have an index, the option is ignored.

You can use the DEFAULT_INDEX_TABLESPACE setting to specify a default value for db_tablespace.

If db_tablespace isn’t specified and you didn’t set DEFAULT_INDEX_TABLESPACE, the index is created in the same
tablespace as the tables.

An example

class TablespaceExample(models.Model):
name = models.CharField(max_length=30, db_index=True, db_tablespace="indexes")
data = models.CharField(max_length=255, db_index=True)
shortcut = models.CharField(max_length=7)
edges = models.ManyToManyField(to="self", db_tablespace="indexes")

class Meta:
db_tablespace = "tables"
indexes = [models.Index(fields=['shortcut'], db_tablespace='other_indexes')]

In this example, the tables generated by the TablespaceExample model (i.e. the model table and the many-to-many
table) would be stored in the tables tablespace. The index for the name field and the indexes on the many-to-many
table would be stored in the indexes tablespace. The data field would also generate an index, but no tablespace for it
is specified, so it would be stored in the model tablespace tables by default. The index for the shortcut field would
be stored in the other_indexes tablespace.

174 Chapter 3. Using Django

https://en.wikipedia.org/wiki/Tablespace

Django Documentation, Release 2.2.29.dev20220411083753

Database support

PostgreSQL and Oracle support tablespaces. SQLite and MySQL don’t.

When you use a backend that lacks support for tablespaces, Django ignores all tablespace-related options.

3.2.10 Database access optimization

Django’s database layer provides various ways to help developers get the most out of their databases. This document
gathers together links to the relevant documentation, and adds various tips, organized under a number of headings that
outline the steps to take when attempting to optimize your database usage.

Profile first

As general programming practice, this goes without saying. Find out what queries you are doing and what they are
costing you. Use QuerySet.explain() to understand how specific QuerySets are executed by your database. You
may also want to use an external project like django-debug-toolbar, or a tool that monitors your database directly.

Remember that you may be optimizing for speed or memory or both, depending on your requirements. Sometimes
optimizing for one will be detrimental to the other, but sometimes they will help each other. Also, work that is done by
the database process might not have the same cost (to you) as the same amount of work done in your Python process.
It is up to you to decide what your priorities are, where the balance must lie, and profile all of these as required since
this will depend on your application and server.

With everything that follows, remember to profile after every change to ensure that the change is a benefit, and a big
enough benefit given the decrease in readability of your code. All of the suggestions below come with the caveat that
in your circumstances the general principle might not apply, or might even be reversed.

Use standard DB optimization techniques

...including:

¢ Indexes. This is a number one priority, after you have determined from profiling what indexes should be added.
Use Meta. indexes or Field.db_index to add these from Django. Consider adding indexes to fields that you
frequently query using filter(), exclude(), order_by(), etc. as indexes may help to speed up lookups.
Note that determining the best indexes is a complex database-dependent topic that will depend on your particular
application. The overhead of maintaining an index may outweigh any gains in query speed.

» Appropriate use of field types.

We will assume you have done the obvious things above. The rest of this document focuses on how to use Django in
such a way that you are not doing unnecessary work. This document also does not address other optimization techniques
that apply to all expensive operations, such as general purpose caching.

Understand QuerySets

Understanding QuerySets is vital to getting good performance with simple code. In particular:

3.2. Models and databases 175

https://github.com/jazzband/django-debug-toolbar/
https://en.wikipedia.org/wiki/Database_index

Django Documentation, Release 2.2.29.dev20220411083753

Understand QuerySet evaluation

To avoid performance problems, it is important to understand:
e that QuerySets are lazy.
* when they are evaluated.

* how the data is held in memory.

Understand cached attributes

As well as caching of the whole QuerySet, there is caching of the result of attributes on ORM objects. In general,
attributes that are not callable will be cached. For example, assuming the example Weblog models:

>>> entry = Entry.objects.get(id=1)
>>> entry.blog
>>> entry.blog

But in general, callable attributes cause DB lookups every time:

>>> entry = Entry.objects.get(id=1)
>>> entry.authors.all()
>>> entry.authors.all()

Be careful when reading template code - the template system does not allow use of parentheses, but will call callables
automatically, hiding the above distinction.

Be careful with your own custom properties - it is up to you to implement caching when required, for example using
the cached_property decorator.

Use the with template tag

To make use of the caching behavior of QuerySet, you may need to use the with template tag.

Use iterator()

When you have a lot of objects, the caching behavior of the QuerySet can cause a large amount of memory to be used.
In this case, iterator () may help.

Use explain(Q

QuerySet.explain() gives you detailed information about how the database executes a query, including indexes and
joins that are used. These details may help you find queries that could be rewritten more efficiently, or identify indexes
that could be added to improve performance.

176 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Do database work in the database rather than in Python

For instance:
At the most basic level, use filter and exclude to do filtering in the database.
e Use F expressions to filter based on other fields within the same model.
» Use annotate to do aggregation in the database.

If these aren’t enough to generate the SQL you need:

Use RawSQL

A less portable but more powerful method is the RawSQL expression, which allows some SQL to be explicitly added to
the query. If that still isn’t powerful enough:

Use raw SQL

Write your own custom SQL to retrieve data or populate models. Use django.db.connection.queries to find out
what Django is writing for you and start from there.

Retrieve individual objects using a unique, indexed column

There are two reasons to use a column with unique or db_index when using get () to retrieve individual objects.
First, the query will be quicker because of the underlying database index. Also, the query could run much slower if
multiple objects match the lookup; having a unique constraint on the column guarantees this will never happen.

So using the example Weblog models:

>>> entry = Entry.objects.get(id=10)

will be quicker than:

>>> entry = Entry.objects.get(headline="News Item Title")

because id is indexed by the database and is guaranteed to be unique.

Doing the following is potentially quite slow:

>>> entry = Entry.objects.get(Cheadline__startswith="News")

First of all, headline is not indexed, which will make the underlying database fetch slower.

Second, the lookup doesn’t guarantee that only one object will be returned. If the query matches more than one object,
it will retrieve and transfer all of them from the database. This penalty could be substantial if hundreds or thousands
of records are returned. The penalty will be compounded if the database lives on a separate server, where network
overhead and latency also play a factor.

3.2. Models and databases 177

Django Documentation, Release 2.2.29.dev20220411083753

Retrieve everything at once if you know you will need it

Hitting the database multiple times for different parts of a single ‘set’ of data that you will need all parts of is, in general,
less efficient than retrieving it all in one query. This is particularly important if you have a query that is executed in a
loop, and could therefore end up doing many database queries, when only one was needed. So:

Use QuerySet.select_related() and prefetch_related()

Understand select_related() and prefetch_related() thoroughly, and use them:

* in managers and default managers where appropriate. Be aware when your manager is and is not used; sometimes
this is tricky so don’t make assumptions.

* in view code or other layers, possibly making use of prefetch_related_objects() where needed.

Don’t retrieve things you don’t need

Use QuerySet.values() and values_list()

When you just want a dict or 1ist of values, and don’t need ORM model objects, make appropriate usage of
values (). These can be useful for replacing model objects in template code - as long as the dicts you supply have the
same attributes as those used in the template, you are fine.

Use QuerySet.defer() and only()

Use defer () and only() if there are database columns you know that you won’t need (or won’t need in most cases)
to avoid loading them. Note that if you do use them, the ORM will have to go and get them in a separate query, making
this a pessimization if you use it inappropriately.

Don’t be too aggressive in deferring fields without profiling as the database has to read most of the non-text, non-
VARCHAR data from the disk for a single row in the results, even if it ends up only using a few columns. The defer ()
and only () methods are most useful when you can avoid loading a lot of text data or for fields that might take a lot of
processing to convert back to Python. As always, profile first, then optimize.

Use QuerySet.count()

...if you only want the count, rather than doing len(queryset).

Use QuerySet.exists()

...if you only want to find out if at least one result exists, rather than if queryset.

But:

178 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Don’t overuse count () and exists()

If you are going to need other data from the QuerySet, just evaluate it.

For example, assuming an Email model that has a body attribute and a many-to-many relation to User, the following
template code is optimal:

if display_inbox
with emails=user.emails.all
if emails
<p>You have emails|length email(s)</p>
for email in emails
<p> email.body }i</p>
endfor
else
<p>No messages today.</p>
endif
endwith
endif

It is optimal because:
1. Since QuerySets are lazy, this does no database queries if ‘display_inbox’ is False.
2. Use of with means that we store user.emails.all in a variable for later use, allowing its cache to be re-used.

3. The line {% if emails %} causes QuerySet.__bool__() to be called, which causes the user.emails.
all() query to be run on the database, and at the least the first line to be turned into an ORM object. If there
aren’t any results, it will return False, otherwise True.

4. The use of {{ emails|length }} calls QuerySet.__len__(), filling out the rest of the cache without doing
another query.

5. The for loop iterates over the already filled cache.

In total, this code does either one or zero database queries. The only deliberate optimization performed is the use of
the with tag. Using QuerySet.exists() or QuerySet.count() at any point would cause additional queries.

Use QuerySet.update() and delete()

Rather than retrieve a load of objects, set some values, and save them individual, use a bulk SQL UPDATE statement,
via QuerySet.update(). Similarly, do bulk deletes where possible.

Note, however, that these bulk update methods cannot call the save () or delete() methods of individual instances,
which means that any custom behavior you have added for these methods will not be executed, including anything
driven from the normal database object signals.

3.2. Models and databases 179

Django Documentation, Release 2.2.29.dev20220411083753

Use foreign key values directly

If you only need a foreign key value, use the foreign key value that is already on the object you've got, rather than
getting the whole related object and taking its primary key. i.e. do:

entry.blog_id

instead of:

entry.blog.id

Don’t order results if you don’t care

Ordering is not free; each field to order by is an operation the database must perform. If a model has a default ordering
(Meta.ordering) and you don’t need it, remove it on a QuerySet by calling order_by () with no parameters.

Adding an index to your database may help to improve ordering performance.

Use bulk methods
Use bulk methods to reduce the number of SQL statements.
Create in bulk

When creating objects, where possible, use the bulk_create() method to reduce the number of SQL queries. For
example:

Entry.objects.bulk_create([
EntryCheadline='This is a test'),
EntryCheadline='This is only a test'),

D

...is preferable to:

Entry.objects.create(headline='This is a test')
Entry.objects.create(headline="This is only a test')

Note that there are a number of caveats to this method, so make sure it’s appropriate for your use case.

Update in bulk

When updating objects, where possible, use the bulk_update () method to reduce the number of SQL queries. Given
a list or queryset of objects:

entries = Entry.objects.bulk_create([
Entry(Cheadline='This is a test'),
Entry(headline='This is only a test'),
D

The following example:

180 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

entries[0].headline
entries[1] .headline
Entry.objects.bulk_update(entries, [1

...is preferable to:

entries[0] .headline
entries.save()
entries[1].headline
entries.save()

Note that there are a number of caveats to this method, so make sure it’s appropriate for your use case.

Insert in bulk

When inserting objects into ManyToManyFields, use add() with multiple objects to reduce the number of SQL
queries. For example:

my_band.members.add(me, my_friend)

...is preferable to:

my_band.members.add (me)
my_band.members.add(my_£friend)

...where Bands and Artists have a many-to-many relationship.

When inserting different pairs of objects into ManyToManyField or when the custom through table is defined, use
bulk_create () method to reduce the number of SQL queries. For example:

PizzaToppingRelationship = Pizza.toppings.through
PizzaToppingRelationship.objects.bulk_create([
PizzaToppingRelationship(pizza=my_pizza, topping=pepperoni),
PizzaToppingRelationship(pizza=your_pizza, topping=pepperoni),
PizzaToppingRelationship(pizza=your_pizza, topping=mushroom),
], ignore_conflicts=True)

...is preferable to:

my_pizza.toppings.add(pepperoni)
your_pizza.toppings.add(pepperoni, mushroom)

...where Pizza and Topping have a many-to-many relationship. Note that there are a number of caveats to this
method, so make sure it’s appropriate for your use case.

3.2. Models and databases 181

Django Documentation, Release 2.2.29.dev20220411083753

Remove in bulk

When removing objects from ManyToManyFields, use remove () with multiple objects to reduce the number of SQL
queries. For example:

my_band.members.remove(me, my_friend)

...is preferable to:

my_band.members.remove (me)
my_band.members.remove (my_friend)

...where Bands and Artists have a many-to-many relationship.

When removing different pairs of objects from ManyToManyFields, use delete() on a Q expression with multiple
through model instances to reduce the number of SQL queries. For example:

from django.db.models import Q
PizzaToppingRelationship = Pizza.toppings.through
PizzaToppingRelationship.objects.filter(
Q(pizza=my_pizza, topping=pepperoni) |
Q(pizza=your_pizza, topping=pepperoni) |
Q(pizza=your_pizza, topping=mushroom)
).delete()

...is preferable to:

my_pizza.toppings.remove(pepperoni)
your_pizza.toppings.remove (pepperoni, mushroom)

...where Pizza and Topping have a many-to-many relationship.

3.2.11 Database instrumentation

To help you understand and control the queries issued by your code, Django provides a hook for installing wrapper
functions around the execution of database queries. For example, wrappers can count queries, measure query duration,
log queries, or even prevent query execution (e.g. to make sure that no queries are issued while rendering a template
with prefetched data).

The wrappers are modeled after middleware — they are callables which take another callable as one of their arguments.
They call that callable to invoke the (possibly wrapped) database query, and they can do what they want around that
call. They are, however, created and installed by user code, and so don’t need a separate factory like middleware do.

Installing a wrapper is done in a context manager — so the wrappers are temporary and specific to some flow in your
code.

As mentioned above, an example of a wrapper is a query execution blocker. It could look like this:

def blocker(*args):
raise Exception()

And it would be used in a view to block queries from the template like so:

from django.db import connection
from django.shortcuts import render

(continues on next page)

182 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

def my_view(request):
context = {...}
template_name = ...
with connection.execute_wrapper(blocker):
return render(request, template_name, context)

The parameters sent to the wrappers are:
* execute — a callable, which should be invoked with the rest of the parameters in order to execute the query.
¢ sql —a str, the SQL query to be sent to the database.

* params — a list/tuple of parameter values for the SQL command, or a list/tuple of lists/tuples if the wrapped call
is executemany ().

* many — a bool indicating whether the ultimately invoked call is execute() or executemany () (and whether
params is expected to be a sequence of values, or a sequence of sequences of values).

e context — a dictionary with further data about the context of invocation. This includes the connection and
CUISOL.

Using the parameters, a slightly more complex version of the blocker could include the connection name in the error
message:

def blocker(execute, sql, params, many, context):
alias = context[].alias
raise Exception(.format(alias))

For a more complete example, a query logger could look like this:

import time
class QueryLogger:

def __init__():
.queries = []

def __call__(, execute, sql, params, many, context):
current_query = { 1 sql, . params, : many}
start = time.time()
try:

result = execute(sql, params, many, context)
except Exception as e:
current_query[] =
current_query[1 =e
raise
else:
current_query[] =
return result
finally:
duration = time.time() - start
current_query[] = duration
.queries.append(current_query)

To use this, you would create a logger object and install it as a wrapper:

3.2. Models and databases 183

Django Documentation, Release 2.2.29.dev20220411083753

from django.db import connection
gl = QueryLogger()
with connection.execute_wrapper(ql):

do_queries()

(ql.queries)

connection.execute_wrapper()

execute_wrapper (wrapper)

Returns a context manager which, when entered, installs a wrapper around database query executions, and when exited,

removes the wrapper. The wrapper is installed on the thread-local connection object.

wrapper is a callable taking five arguments. It is called for every query execution in the scope of the context manager,
with arguments execute, sql, params, many, and context as described above. It’s expected to call execute(sql,

params, many, context) and return the return value of that call.

3.2.12 Examples of model relationship APl usage
Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField.

In this example, an Article can be published in multiple Publication objects, and a Publication has multiple

Article objects:

from django.db import models

class Publication(models.Model):
title = models.CharField(max_length=30)

class Meta:
ordering = ['title']

def __str__():
return .title

class Article(models.Model):
headline = models.CharField(max_length=100)
publications = models.ManyToManyField(Publication)

class Meta:
ordering = ['headline']

def __str__():
return .headline

What follows are examples of operations that can be performed using the Python API facilities.

Create a few Publications:

184 Chapter 3.

Using Django

Django Documentation, Release 2.2.29.dev20220411083753

>>> pl = Publication(title='The Python Journal')
>>> pl.save()

>>> p2 = Publication(title='Science News')

>>> p2.save()

>>> p3 = Publication(title='Science Weekly")

>>> p3.save()

Create an Article:

>>> al = ArticleCheadline='Django lets you build Web apps easily')

You can’t associate it with a Publication until it’s been saved:

>>> al.publications.add(pl)
Traceback (most recent call last):

ValueError: "<Article: Django lets you build Web apps easily>" needs to have a value for..
—field "id" before this many-to-many relationship can be used.

Save it!

>>> al.save()

Associate the Article with a Publication:

>>> al.publications.add(pl)

Create another Article, and set it to appear in the Publications:

>>> a2 = Article(Cheadline='NASA uses Python')
>>> a2.save()

>>> a2.publications.add(pl, p2)

>>> a2.publications.add(p3)

Adding a second time is OK, it will not duplicate the relation:

>>> a2.publications.add(p3)

Adding an object of the wrong type raises TypeError:

>>> a2.publications.add(al)
Traceback (most recent call last):

TypeError: 'Publication' instance expected

Create and add a Publication to an Article in one step using create():

>>> new_publication = a2.publications.create(title="'Highlights for Children")

Article objects have access to their related Publication objects:

>>> al.publications.all()

<QuerySet [<Publication: The Python Journal>]>

>>> a2.publications.all()

<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,

—<Publication: Science Weekly>, <Publication: The Python Journal>]> (continues on next page)

3.2. Models and databases 185

https://docs.python.org/3/library/exceptions.html#TypeError

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

Publication objects have access to their related Article objects:

>>> p2.article_set.all()

<QuerySet [<Article: NASA uses Python>]>

>>> pl.article_set.all()

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
<]>

>>> Publication.objects.get(id=4).article_set.all()

<QuerySet [<Article: NASA uses Python>]>

Many-to-many relationships can be queried using lookups across relationships:

>>> Article.objects.filter(publications__id=1)

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
1>

>>> Article.objects.filter(publications__pk=1)

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
1>

>>> Article.objects.filter(publications=1)

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
1>

>>> Article.objects.filter(publications=pl)

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
>

>>> Article.objects.filter(publications__title__startswith="Science")
<QuerySet [<Article: NASA uses Python>, <Article: NASA uses Python>]>

>>> Article.objects.filter(publications__title__startswith="Science").distinct()
<QuerySet [<Article: NASA uses Python>]>

The count () function respects distinct () as well:

>>> Article.objects.filter(publications__title__startswith="Science").count()
2

>>> Article.objects.filter(publications__title__startswith="Science").distinct().count()
1

>>> Article.objects.filter(publications__in=[1,2]).distinct()

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
1>

>>> Article.objects.filter(publications__in=[pl,p2]).distinct()

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA uses Python>
1>

Reverse m2m queries are supported (i.e., starting at the table that doesn’t have a ManyToManyField):

>>> Publication.objects.filter(id=1)
<QuerySet [<Publication: The Python Journal>]>
>>> Publication.objects.filter(pk=1)

(continues on next page)

186 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

<QuerySet [<Publication:

>>> Publication.objects.
<QuerySet [<Publication:

—<Publication: Science

>>> Publication.objects.
<QuerySet [<Publication:
>>> Publication.objects.
<QuerySet [<Publication:
>>> Publication.objects.
<QuerySet [<Publication:
>>> Publication.objects.
<QuerySet [<Publication:

>>> Publication.objects.
<QuerySet [<Publication:

—<Publication: Science

>>> Publication.objects.
<QuerySet [<Publication:

—<Publication: Science

The Python Journal>]>

filter(article__headline__startswith="NASA")
Highlights for Children>, <Publication: Science News>,
Weekly>, <Publication: The Python Journal>]>

filter(article__id=1)
The Python Journal>]>
filter(article__pk=1)
The Python Journal>]>
filter(article=1)

The Python Journal>]>
filter(article=al)

The Python Journal>]>

filter(article__in=[1,2]).distinct()

Highlights for Children>, <Publication: Science News>,
Weekly>, <Publication: The Python Journal>]>
filter(article__in=[al,a2]).distinct()

Highlights for Children>, <Publication: Science News>,
Weekly>, <Publication: The Python Journal>]>

Excluding a related item works as you would expect, too (although the SQL involved is a little complex):

>>> Article.objects.exclude(publications=p2)
<QuerySet [<Article: Django lets you build Web apps easily>]>

If we delete a Publication, its Articles won’t be able to access it:

>>> pl.delete()

>>> Publication.objects.
<QuerySet [<Publication:

—<Publication: Science

allQO
Highlights for Children>, <Publication:
Weekly>]>

Science News>,

>>> al = Article.objects.get(pk=1)

>>> al.publications.all()
<QuerySet []>

If we delete an Article, its Publications won’t be able to access it:

>>> a2.delete()

>>> Article.objects.all()

<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> p2.article_set.all()

<QuerySet []>

Adding via the ‘other’ end of an m2m:

>>> a4 = ArticleCheadline='NASA finds intelligent life on Earth')

>>> ad.save()

>>> p2.article_set.add(a4)

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>]>

(continues on next page)

3.2. Models and databases

187

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

>>> a4.publications.all()
<QuerySet [<Publication: Science News>]>

Adding via the other end using keywords:

>>> new_article = p2.article_set.create(headline='0xygen-free diet works wonders")

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet.
—works wonders>]>

>>> a5 = p2.article_set.all(Q[1]

>>> a5.publications.all()

<QuerySet [<Publication: Science News>]>

Removing Publication from an Article:

>>> ad.publications.remove(p2)

>>> p2.article_set.all()

<QuerySet [<Article: Oxygen-free diet works wonders>]>
>>> ad.publications.all()

<QuerySet []>

And from the other end:

>>> p2.article_set.remove(a5)
>>> p2.article_set.all()
<QuerySet []>

>>> a5.publications.all()
<QuerySet []>

Relation sets can be set:

>>> ad.publications.all()

<QuerySet [<Publication: Science News>]>
>>> ad.publications.set([p3])

>>> ad.publications.all()

<QuerySet [<Publication: Science Weekly>]>

Relation sets can be cleared:

>>> p2.article_set.clear()
>>> p2.article_set.all()
<QuerySet []>

And you can clear from the other end:

>>> p2.article_set.add(a4, a5)

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet.
—works wonders>]>

>>> a4.publications.all()

<QuerySet [<Publication: Science News>, <Publication: Science Weekly>]>

>>> a4.publications.clear()

>>> a4.publications.all()

(continues on next page)

188 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

<QuerySet []>
>>> p2.article_set.all()
<QuerySet [<Article: Oxygen-free diet works wonders>]>

Recreate the Article and Publication we have deleted:

>>> pl = Publication(title='The Python Journal')
>>> pl.save()

>>> a2 = Article(headline="'NASA uses Python')
>>> a2.save()

>>> a2.publications.add(pl, p2, p3)

Bulk delete some Publications - references to deleted publications should go:

>>> Publication.objects.filter(title__startswith='Science').delete()

>>> Publication.objects.all()

<QuerySet [<Publication: Highlights for Children>, <Publication: The Python Journal>]>
>>> Article.objects.all()

<QuerySet [<Article: Django lets you build Web apps easily>, <Article: NASA finds.
—intelligent life on Earth>, <Article: NASA uses Python>, <Article: Oxygen-free diet.
—works wonders>]>

>>> a2.publications.all()

<QuerySet [<Publication: The Python Journal>]>

Bulk delete some articles - references to deleted objects should go:

>>> q = Article.objects.filter(headline__startswith='Django')
>>> print(q)

<QuerySet [<Article: Django lets you build Web apps easily>]>
>>> q.delete()

After the delete (), the QuerySet cache needs to be cleared, and the referenced objects should be gone:

>>> print(q)

<QuerySet []>

>>> pl.article_set.all()

<QuerySet [<Article: NASA uses Python>]>

Many-to-one relationships

To define a many-to-one relationship, use ForeignKey:

from django.db import models

class Reporter(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
email = models.EmailField()

def __str__(self):
return "%s %s" % (self.first_name, self.last_name)

(continues on next page)

3.2. Models and databases 189

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

class Article(models.Model):
headline = models.CharField(max_length=100)
pub_date = models.DateField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

def __str__():
return .headline

class Meta:
ordering = []

What follows are examples of operations that can be performed using the Python API facilities.

Create a few Reporters:

>>> r = Reporter(first_name= , last_name= , email=)
>>> r.save()

>>> r2 = Reporter(first_name= , last_name= , email=)
>>> r2.save()

Create an Article:

>>> from datetime import date

>>> a = Article(id=None, headline= , pub_date=date(2005, 7, 27),.
. reporter=r)

>>> a.save()

>>> a.reporter.id
1

>>> a.reporter
<Reporter: John Smith>

Note that you must save an object before it can be assigned to a foreign key relationship. For example, creating an
Article with unsaved Reporter raises ValueError:

>>> r3 = Reporter(first_name= , last_name= , email=)
>>> Article.objects.create(headline= , pub_date=date(2005, 7, 27),.
—.reporter=r3)

Traceback (most recent call last):

ValueError: save() prohibited to prevent data loss due to unsaved related object
— 'reporter’.

Article objects have access to their related Reporter objects:

>>> r = a.reporter

Create an Article via the Reporter object:

>>> new_article = r.article_set.create(headline= , pub_
—date=date(2005, 7, 29))
>>> new_article

(continues on next page)

190 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

<Article: John's second story>
>>> new_article.reporter
<Reporter: John Smith>

>>> new_article.reporter.id

1

Create a new article:

>>> new_article2 = Article.objects.createCheadline="Paul's story", pub_date=date(2006, 1,
— 17), reporter=r)

>>> new_article2.reporter

<Reporter: John Smith>

>>> new_article2.reporter.id

1

>>> r.article_set.all()

<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a.
~test>]>

Add the same article to a different article set - check that it moves:

>>> r2.article_set.add(new_article2)
>>> new_article2.reporter.id

2

>>> new_article2.reporter

<Reporter: Paul Jones>

Adding an object of the wrong type raises TypeError:

>>> r.article_set.add(r2)
Traceback (most recent call last):

TypeError: 'Article' instance expected, got <Reporter: Paul Jones>

>>> r.article_set.all()

<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> r2.article_set.all()

<QuerySet [<Article: Paul's story>]>

>>> r.article_set.count()
2

>>> r2.article_set.count()
1

Note that in the last example the article has moved from John to Paul.

Related managers support field lookups as well. The API automatically follows relationships as far as you need. Use
double underscores to separate relationships. This works as many levels deep as you want. There’s no limit. For
example:

>>> r.article_set.filter(headline__startswith='This")
<QuerySet [<Article: This is a test>]>

(continues on next page)

3.2. Models and databases 191

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

Find all Articles for any Reporter whose first name is "John".
>>> Article.objects.filter(reporter__first_name='John')
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Exact match is implied here:

>>> Article.objects.filter(reporter__first_name='John')
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Query twice over the related field. This translates to an AND condition in the WHERE clause:

>>> Article.objects.filter(reporter__first_name='John', reporter__last_name='Smith')

<QuerySet [<Article: John's second story>, <Article: This is a test>]>

For the related lookup you can supply a primary key value or pass the related object explicitly:

>>> Article.objects.filter(reporter__pk=1)

<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Article.objects.filter(reporter=1)

<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Article.objects.filter(reporter=r)

<QuerySet [<Article: John's second story>, <Article: This is a test>]>

>>> Article.objects.filter(reporter__in=[1,2]).distinct()

<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a.

~test>]>
>>> Article.objects.filter(reporter__in=[r,r2]).distinct()

<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a.

~test>]>

You can also use a queryset instead of a literal list of instances:

>>> Article.objects.filter(reporter__in=Reporter.objects.filter(first_name='John')).

—~distinct()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Querying in the opposite direction:

>>> Reporter.objects.filter(article__pk=1)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article=1)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article=a)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__headline__startswith='This")

<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>]>
>>> Reporter.objects.filter(article__headline__startswith='This').distinct()

<QuerySet [<Reporter: John Smith>]>

Counting in the opposite direction works in conjunction with distinct():

192 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

>>> Reporter.objects.filter(article__headline__startswith='This').count()

3

>>> Reporter.objects.filter(article__headline__startswith="'This"').distinct().count()
1

Queries can go round in circles:

>>> Reporter.objects.filter(article__reporter__first_name__startswith="'John")

<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>,
—<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__reporter__first_name__startswith='John').distinct()
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__reporter=r).distinct()

<QuerySet [<Reporter: John Smith>]>

If you delete a reporter, his articles will be deleted (assuming that the ForeignKey was defined with django.db.
models.ForeignKey.on_delete set to CASCADE, which is the default):

>>> Article.objects.all()

<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a.
~test>]>

>>> Reporter.objects.order_by('first_name')

<QuerySet [<Reporter: John Smith>, <Reporter: Paul Jones>]>

>>> r2.delete()

>>> Article.objects.all()

<QuerySet [<Article: John's second story>, <Article: This is a test>]>

>>> Reporter.objects.order_by(' first_name")

<QuerySet [<Reporter: John Smith>]>

You can delete using a JOIN in the query:

>>> Reporter.objects.filter(article__headline__startswith='This").delete()
>>> Reporter.objects.all()

<QuerySet []>

>>> Article.objects.all()

<QuerySet []>

One-to-one relationships

To define a one-to-one relationship, use OneToOneField.

In this example, a Place optionally can be a Restaurant:

from django.db import models

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

def __str__():
return "%s the place" % .name

class Restaurant (models.Model):

(continues on next page)

3.2. Models and databases 193

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

place = models.OneToOneField(
Place,
on_delete=models.CASCADE,
primary_key=True,
)
serves_hot_dogs = models.BooleanField(default=False)
serves_pizza = models.BooleanField(default=False)

def __str__():
return % .place.name

class Waiter(models.Model):
restaurant = models.ForeignKey(Restaurant, on_delete=models.CASCADE)
name = models.CharField(max_length=50)

def __str__():
return % (.hame, .restaurant)

What follows are examples of operations that can be performed using the Python API facilities.

Create a couple of Places:

>>> pl = Place(name= , address=)
>>> pl.save()
>>> p2 = Place(name= , address=)

>>> p2.save()

Create a Restaurant. Pass the ID of the “parent” object as this object’s ID:

>>> r = Restaurant(place=pl, serves_hot_dogs=True, serves_pizza=False)
>>> r.save()

A Restaurant can access its place:

>>> r.place
<Place: Demon Dogs the place>

A Place can access its restaurant, if available:

>>> pl.restaurant
<Restaurant: Demon Dogs the restaurant>

p2 doesn’t have an associated restaurant:

>>> from django.core.exceptions import ObjectDoesNotExist
>>> try:

>>> p2.restaurant
>>> except ObjectDoesNotExist:
>>> ()

There is no restaurant here.

You can also use hasattr to avoid the need for exception catching:

194 Chapter 3.

Using Django

Django Documentation, Release 2.2.29.dev20220411083753

>>> (p2, 'restaurant')
False

Set the place using assignment notation. Because place is the primary key on Restaurant, the save will create a new
restaurant:

>>> r.place = p2

>>> r.save()

>>> p2.restaurant

<Restaurant: Ace Hardware the restaurant>
>>> r.place

<Place: Ace Hardware the place>

Set the place back again, using assignment in the reverse direction:

>>> pl.restaurant = r
>>> pl.restaurant
<Restaurant: Demon Dogs the restaurant>

Note that you must save an object before it can be assigned to a one-to-one relationship. For example, creating a
Restaurant with unsaved Place raises ValueError:

>>> p3 = Place(name='Demon Dogs', address='944 U. Fullerton')
>>> Restaurant.objects.create(place=p3, serves_hot_dogs=True, serves_pizza=False)
Traceback (most recent call last):

ValueError: save() prohibited to prevent data loss due to unsaved related object 'place'.

Restaurant.objects.all() just returns the Restaurants, not the Places. Note that there are two restaurants - Ace Hardware
the Restaurant was created in the call to r.place = p2:

>>> Restaurant.objects.all()
<QuerySet [<Restaurant: Demon Dogs the restaurant>, <Restaurant: Ace Hardware the.,
—restaurant>]>

Place.objects.all() returns all Places, regardless of whether they have Restaurants:

>>> Place.objects.order_by('name")
<QuerySet [<Place: Ace Hardware the place>, <Place: Demon Dogs the place>]>

You can query the models using lookups across relationships:

>>> Restaurant.objects.get(place=pl)

<Restaurant: Demon Dogs the restaurant>

>>> Restaurant.objects.get(place__pk=1)

<Restaurant: Demon Dogs the restaurant>

>>> Restaurant.objects.filter(place__name__startswith="Demon'")
<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

>>> Restaurant.objects.exclude(place__address__contains="Ashland")
<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

This of course works in reverse:

3.2. Models and databases 195

Django Documentation, Release 2.2.29.dev20220411083753

>>> Place.objects.get(pk=1)

<Place: Demon Dogs the place>

>>> Place.objects.get(restaurant__place=pl)

<Place: Demon Dogs the place>

>>> Place.objects.get(restaurant=r)

<Place: Demon Dogs the place>

>>> Place.objects.get(restaurant__place__name__startswith="Demon")
<Place: Demon Dogs the place>

Add a Waiter to the Restaurant:

>>> W = r.waiter_set.create(name="'Joe")
>>> W
<Waiter: Joe the waiter at Demon Dogs the restaurant>

Query the waiters:

>>> Waiter.objects.filter(restaurant__place=pl)

<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>
>>> Waiter.objects.filter(restaurant__place__name__startswith="Demon")
<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>

3.3 Handling HTTP requests

Information on handling HTTP requests in Django:

3.3.1 URL dispatcher

A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets you design URLSs
however you want, with no framework limitations.

See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excellent arguments on why URLs
should be clean and usable.

Overview
To design URLSs for an app, you create a Python module informally called a URLconf (URL configuration). This
module is pure Python code and is a mapping between URL path expressions to Python functions (your views).

This mapping can be as short or as long as needed. It can reference other mappings. And, because it’s pure Python
code, it can be constructed dynamically.

Django also provides a way to translate URLs according to the active language. See the internationalization documen-
tation for more information.

196 Chapter 3. Using Django

https://www.w3.org/Provider/Style/URI

Django Documentation, Release 2.2.29.dev20220411083753

How Django processes a request
When a user requests a page from your Django-powered site, this is the algorithm the system follows to determine
which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT_URLCONF setting,
but if the incoming HttpRequest object has a urlconf attribute (set by middleware), its value will be used in
place of the ROOT_URLCONF setting.

2. Django loads that Python module and looks for the variable urlpatterns. This should be a sequence of
django.urls.path() and/or django.urls.re_path() instances.

3. Django runs through each URL pattern, in order, and stops at the first one that matches the requested URL.

4. Once one of the URL patterns matches, Django imports and calls the given view, which is a simple Python
function (or a class-based view). The view gets passed the following arguments:

¢ An instance of Ht tpRequest.

* If the matched URL pattern returned no named groups, then the matches from the regular expression are
provided as positional arguments.

* The keyword arguments are made up of any named parts matched by the path expression, overridden by
any arguments specified in the optional kwargs argument to django.urls.path() or django.urls.
re_path().

5. If no URL pattern matches, or if an exception is raised during any point in this process, Django invokes an
appropriate error-handling view. See Error handling below.

Example

Here’s a sample URLconf:

from django.urls import path
from . import views

urlpatterns = [
path('articles/2003/", views.special_case_2003),
path('articles/<int:year>/"', views.year_archive),
path('articles/<int:year>/<int:month>/', views.month_archive),
path('articles/<int:year>/<int:month>/<slug:slug>/', views.article_detail),

Notes:
* To capture a value from the URL, use angle brackets.

» Captured values can optionally include a converter type. For example, use <int:name> to capture an integer
parameter. If a converter isn’t included, any string, excluding a / character, is matched.

* There’s no need to add a leading slash, because every URL has that. For example, it’s articles, not /articles.
Example requests:

* A request to /articles/2005/03/ would match the third entry in the list. Django would call the function
views.month_archive(request, year=2005, month=3).

3.3. Handling HTTP requests 197

https://docs.python.org/3/glossary.html#term-sequence

Django Documentation, Release 2.2.29.dev20220411083753

e /articles/2003/ would match the first pattern in the list, not the second one, because the patterns are tested
in order, and the first one is the first test to pass. Feel free to exploit the ordering to insert special cases like this.
Here, Django would call the function views.special_case_2003(request)

e /articles/2003 would not match any of these patterns, because each pattern requires that the URL end with
a slash.

e /articles/2003/03/building-a-django-site/ would match the final pattern. Django would call the func-
tion views.article_detail (request, year=2003, month=3, slug="building-a-django-site").

Path converters

The following path converters are available by default:

e str - Matches any non-empty string, excluding the path separator, '/'. This is the default if a converter isn’t
included in the expression.

e int - Matches zero or any positive integer. Returns an int.

* slug - Matches any slug string consisting of ASCII letters or numbers, plus the hyphen and underscore characters.
For example, building-your-1st-django-site.

* uuid - Matches a formatted UUID. To prevent multiple URLs from mapping to the same page, dashes must be
included and letters must be lowercase. For example, 075194d3-6885-417e-a8a8-6c931e272£00. Returns
a UUID instance.

* path - Matches any non-empty string, including the path separator, '/'. This allows you to match against a
complete URL path rather than just a segment of a URL path as with str.

Registering custom path converters

For more complex matching requirements, you can define your own path converters.
A converter is a class that includes the following:
* A regex class attribute, as a string.

e A to_python(self, value) method, which handles converting the matched string into the type that should
be passed to the view function. It should raise ValueError if it can’t convert the given value. A ValueError
is interpreted as no match and as a consequence a 404 response is sent to the user.

* A to_url(self, value) method, which handles converting the Python type into a string to be used in the
URL.

For example:

class FourDigitYearConverter:

regex =

def to_python(, value):
return (value)

def to_url(, value):
return % value

Register custom converter classes in your URLconf using register_converter():

198 Chapter 3. Using Django

https://docs.python.org/3/library/uuid.html#uuid.UUID

Django Documentation, Release 2.2.29.dev20220411083753

from django.urls import path, register_converter

from . import converters, views
register_converter(converters.FourDigitYearConverter, 'yyyy')
urlpatterns = [

path('articles/2003/"', views.special_case_2003),
path('articles/<yyyy:year>/", views.year_archive),

Using regular expressions
If the paths and converters syntax isn’t sufficient for defining your URL patterns, you can also use regular expressions.
To do so, use re_path() instead of path().

In Python regular expressions, the syntax for named regular expression groups is (?P<name>pattern), where name
is the name of the group and pattern is some pattern to match.

Here’s the example URLconf from earlier, rewritten using regular expressions:

from django.urls import path, re_path
from . import views

urlpatterns = [
path('articles/2003/", views.special_case_2003),
re_path(r'*articles/(?P<year>[0-9]{4})/$', views.year_archive),
re_path(r'*articles/(?P<year>[0-9]{4})/(?P<month>[0-97{2})/$", views.month_archive),
re_path(r'rarticles/(?P<year>[0-9]{4})/(?P<month>[0-9]1{2})/(?P<slug>[\w-1+)/$",.
—views.article_detail),

]

This accomplishes roughly the same thing as the previous example, except:

* The exact URLs that will match are slightly more constrained. For example, the year 10000 will no longer match
since the year integers are constrained to be exactly four digits long.

 Each captured argument is sent to the view as a string, regardless of what sort of match the regular expression
makes.

When switching from using path() to re_path() or vice versa, it’s particularly important to be aware that the type
of the view arguments may change, and so you may need to adapt your views.

3.3. Handling HTTP requests 199

Django Documentation, Release 2.2.29.dev20220411083753

Using unnamed regular expression groups

As well as the named group syntax, e.g. (?P<year>[0-9]{4}), you can also use the shorter unnamed group, e.g.

([0-9]1{4D.

This usage isn’t particularly recommended as it makes it easier to accidentally introduce errors between the intended
meaning of a match and the arguments of the view.

In either case, using only one style within a given regex is recommended. When both styles are mixed, any unnamed
groups are ignored and only named groups are passed to the view function.

Nested arguments

Regular expressions allow nested arguments, and Django will resolve them and pass them to the view. When reversing,
Django will try to fill in all outer captured arguments, ignoring any nested captured arguments. Consider the following
URL patterns which optionally take a page argument:

from django.urls import re_path

urlpatterns = [
re_path(, blog_articles),
re_path(, comments),

Both patterns use nested arguments and will resolve: for example, blog/page-2/ will result in a match to
blog_articles with two positional arguments: page-2/ and 2. The second pattern for comments will match
comments/page-2/ with keyword argument page_number set to 2. The outer argument in this case is a non-capturing
argument (?:...).

The blog_articles view needs the outermost captured argument to be reversed, page-2/ or no arguments in this
case, while comments can be reversed with either no arguments or a value for page_number.

Nested captured arguments create a strong coupling between the view arguments and the URL as illustrated by
blog_articles: the view receives part of the URL (page-2/) instead of only the value the view is interested in.
This coupling is even more pronounced when reversing, since to reverse the view we need to pass the piece of URL
instead of the page number.

As a rule of thumb, only capture the values the view needs to work with and use non-capturing arguments when the
regular expression needs an argument but the view ignores it.

What the URLconf searches against

The URLconf searches against the requested URL, as a normal Python string. This does not include GET or POST
parameters, or the domain name.

For example, in a request to https://www.example.com/myapp/, the URLconf will look for myapp/.

In a request to https://www.example. com/myapp/?page=3, the URLconf will look for myapp/.

The URLconf doesn’t look at the request method. In other words, all request methods — POST, GET, HEAD, etc. — will
be routed to the same function for the same URL.

200 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Specifying defaults for view arguments

A convenient trick is to specify default parameters for your views’ arguments. Here’s an example URLconf and view:

from django.urls import path
from . import views
urlpatterns = [

path('blog/", views.page),
path('blog/page<int:num>/', views.page),

def page(request, num=1):

In the above example, both URL patterns point to the same view — views.page — but the first pattern doesn’t capture
anything from the URL. If the first pattern matches, the page () function will use its default argument for num, 1. If
the second pattern matches, page () will use whatever num value was captured.

Performance

Each regular expression in a urlpatterns is compiled the first time it’s accessed. This makes the system blazingly
fast.

Syntax of the urlpatterns variable

urlpatterns should be a sequence of path() and/or re_path() instances.

Error handling
When Django can’t find a match for the requested URL, or when an exception is raised, Django invokes an error-
handling view.

The views to use for these cases are specified by four variables. Their default values should suffice for most projects,
but further customization is possible by overriding their default values.

See the documentation on customizing error views for the full details.
Such values can be set in your root URLconf. Setting these variables in any other URLconf will have no effect.

Values must be callables, or strings representing the full Python import path to the view that should be called to handle
the error condition at hand.

The variables are:
* handler400 — See django.conf.urls.handler400.
¢ handler403 — See django.conf.urls.handler403.
e handler404 — See django.conf.urls.handler404.
e handler500 — See django.conf.urls.handler500.

3.3. Handling HTTP requests 201

https://docs.python.org/3/glossary.html#term-sequence

Django Documentation, Release 2.2.29.dev20220411083753

Including other URLconfs

At any point, your urlpatterns can “include” other URLconf modules. This essentially “roots” a set of URLs below
other ones.

For example, here’s an excerpt of the URLconf for the Django website itself. It includes a number of other URLconfs:

from django.urls import include, path
urlpatterns = [

path('community/", include('aggregator.urls')),
path('contact/"', include('contact.urls')),

Whenever Django encounters include (), it chops off whatever part of the URL matched up to that point and sends
the remaining string to the included URLconf for further processing.

Another possibility is to include additional URL patterns by using a list of path() instances. For example, consider
this URLconf:

from django.urls import include, path

from apps.main import views as main_views
from credit import views as credit_views

extra_patterns = [
path('reports/', credit_views.report),
path('reports/<int:id>/"', credit_views.report),
path('charge/', credit_views.charge),

]

urlpatterns = [
path('', main_views.homepage),
path('help/", include('apps.help.urls')),
path('credit/', include(extra_patterns)),

In this example, the /credit/reports/ URL will be handled by the credit_views.report() Django view.

This can be used to remove redundancy from URLconfs where a single pattern prefix is used repeatedly. For example,
consider this URLconf:

from django.urls import path
from . import views

urlpatterns = [
path('<page_slug>-<page_id>/history/', views.history),
path('<page_slug>-<page_id>/edit/"', views.edit),
path('<page_slug>-<page_id>/discuss/', views.discuss),
path('<page_slug>-<page_id>/permissions/"', views.permissions),

We can improve this by stating the common path prefix only once and grouping the suffixes that differ:

202 Chapter 3. Using Django

https://www.djangoproject.com/

Django Documentation, Release 2.2.29.dev20220411083753

from django.urls import include, path
from . import views

urlpatterns = [

path(, include([
path(, views.history),
path(, views.edit),
path(, views.discuss),
path(, Views.permissions),
D),

Captured parameters

An included URLconf receives any captured parameters from parent URLconfs, so the following example is valid:

from django.urls import include, path

urlpatterns = [
path(, include()),
]

from django.urls import path
from . import views

urlpatterns = [
path('', views.blog.index),
path(, views.blog.archive),

]

In the above example, the captured "username" variable is passed to the included URLconf, as expected.

Passing extra options to view functions

URLconfs have a hook that lets you pass extra arguments to your view functions, as a Python dictionary.

The path () function can take an optional third argument which should be a dictionary of extra keyword arguments to
pass to the view function.

For example:

from django.urls import path
from . import views

urlpatterns = [
path(, views.year_archive, { : b,

]

In this example, for a request to /blog/2005/, Django will call views.year_archive(request, year=2005,
foo="bar').

3.3. Handling HTTP requests 203

Django Documentation, Release 2.2.29.dev20220411083753

This technique is used in the syndication framework to pass metadata and options to views.

Dealing with conflicts

It’s possible to have a URL pattern which captures named keyword arguments, and also passes arguments with the same
names in its dictionary of extra arguments. When this happens, the arguments in the dictionary will be used instead of
the arguments captured in the URL.

Passing extra options to include()

Similarly, you can pass extra options to include () and each line in the included URLconf will be passed the extra
options.

For example, these two URLconf sets are functionally identical:

Set one:

from django.urls import include, path

urlpatterns = [
path('blog/', include('inner'), {'blog_id': 33}),
]

from django.urls import path
from mysite import views

urlpatterns = [
path('archive/', views.archive),
path('about/', views.about),

Set two:

from django.urls import include, path
from mysite import views

urlpatterns = [
path('blog/', include('inner")),
]

from django.urls import path
urlpatterns = [

path('archive/', views.archive, {'blog_id': 3}),
path('about/', views.about, {'blog_id': 33}),

Note that extra options will always be passed to every line in the included URLconf, regardless of whether the line’s
view actually accepts those options as valid. For this reason, this technique is only useful if you're certain that every

204 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

view in the included URLconf accepts the extra options you’re passing.

Reverse resolution of URLs

A common need when working on a Django project is the possibility to obtain URLs in their final forms either for
embedding in generated content (views and assets URLs, URLSs shown to the user, etc.) or for handling of the navigation
flow on the server side (redirections, etc.)

It is strongly desirable to avoid hard-coding these URLSs (a laborious, non-scalable and error-prone strategy). Equally
dangerous is devising ad-hoc mechanisms to generate URLs that are parallel to the design described by the URLconf,
which can result in the production of URLSs that become stale over time.

In other words, what’s needed is a DRY mechanism. Among other advantages it would allow evolution of the URL
design without having to go over all the project source code to search and replace outdated URLs.

The primary piece of information we have available to get a URL is an identification (e.g. the name) of the view in
charge of handling it. Other pieces of information that necessarily must participate in the lookup of the right URL are
the types (positional, keyword) and values of the view arguments.

Django provides a solution such that the URL mapper is the only repository of the URL design. You feed it with your
URLconf and then it can be used in both directions:

 Starting with a URL requested by the user/browser, it calls the right Django view providing any arguments it
might need with their values as extracted from the URL.

* Starting with the identification of the corresponding Django view plus the values of arguments that would be
passed to it, obtain the associated URL.

The first one is the usage we’ve been discussing in the previous sections. The second one is what is known as reverse
resolution of URLs, reverse URL matching, reverse URL lookup, or simply URL reversing.

Django provides tools for performing URL reversing that match the different layers where URLs are needed:
 In templates: Using the url template tag.
* In Python code: Using the reverse () function.

¢ Inhigherlevel code related to handling of URLs of Django model instances: The get_absolute_url () method.

Examples

Consider again this URLconf entry:

from django.urls import path
from . import views
urlpatterns = [
path(, views.year_archive, name=),

]

According to this design, the URL for the archive corresponding to year nnnn is /articles/<nnnn>/.

You can obtain these in template code by using:

3.3. Handling HTTP requests 205

Django Documentation, Release 2.2.29.dev20220411083753

2012 Archive

for yearvar in year_list

 yearvar Archive</1i>
endfor

Or in Python code:

from django.http import HttpResponseRedirect
from django.urls import reverse

def redirect_to_year(request):
year = 2006

return HttpResponseRedirect(reverse(, args=(year,)))

If, for some reason, it was decided that the URLs where content for yearly article archives are published at should be
changed then you would only need to change the entry in the URLconf.

In some scenarios where views are of a generic nature, a many-to-one relationship might exist between URLs and
views. For these cases the view name isn’t a good enough identifier for it when comes the time of reversing URLs.
Read the next section to know about the solution Django provides for this.

Naming URL patterns

In order to perform URL reversing, you’ll need to use named URL patterns as done in the examples above. The string
used for the URL name can contain any characters you like. You are not restricted to valid Python names.

When naming URL patterns, choose names that are unlikely to clash with other applications’ choice of names. If you
call your URL pattern comment and another application does the same thing, the URL that reverse () finds depends
on whichever pattern is last in your project’s urlpatterns list.

Putting a prefix on your URL names, perhaps derived from the application name (such as myapp-comment instead of
comment), decreases the chance of collision.

You can deliberately choose the same URL name as another application if you want to override a view. For example, a
common use case is to override the LoginView. Parts of Django and most third-party apps assume that this view has
a URL pattern with the name login. If you have a custom login view and give its URL the name login, reverse()
will find your custom view as long as it’s in urlpatterns after django.contrib.auth.urls is included (if that’s
included at all).

You may also use the same name for multiple URL patterns if they differ in their arguments. In addition to the URL
name, reverse () matches the number of arguments and the names of the keyword arguments.

206 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

URL namespaces

Introduction

URL namespaces allow you to uniquely reverse named URL patterns even if different applications use the same URL
names. It’s a good practice for third-party apps to always use namespaced URLSs (as we did in the tutorial). Similarly,
it also allows you to reverse URLs if multiple instances of an application are deployed. In other words, since multiple
instances of a single application will share named URLs, namespaces provide a way to tell these named URLs apart.

Django applications that make proper use of URL namespacing can be deployed more than once for a particular site.
For example django.contrib.admin has an AdminSite class which allows you to easily deploy more than one
instance of the admin. In a later example, we’ll discuss the idea of deploying the polls application from the tutorial in
two different locations so we can serve the same functionality to two different audiences (authors and publishers).

A URL namespace comes in two parts, both of which are strings:

application namespace This describes the name of the application that is being deployed. Every instance of a sin-
gle application will have the same application namespace. For example, Django’s admin application has the
somewhat predictable application namespace of 'admin’.

instance namespace This identifies a specific instance of an application. Instance namespaces should be unique across
your entire project. However, an instance namespace can be the same as the application namespace. This is used
to specify a default instance of an application. For example, the default Django admin instance has an instance
namespace of 'admin'.

v

Namespaced URLs are specified using the ' : ' operator. For example, the main index page of the admin application is
referenced using 'admin:index'. This indicates a namespace of 'admin', and a named URL of 'index'.

Namespaces can also be nested. The named URL 'sports:polls:index' would look for a pattern named 'index'
in the namespace 'polls’ that is itself defined within the top-level namespace 'sports'.

Reversing namespaced URLs

When given a namespaced URL (e.g. 'polls:index') to resolve, Django splits the fully qualified name into parts
and then tries the following lookup:

1. First, Django looks for a matching application namespace (in this example, 'polls"). This will yield a list of
instances of that application.

2. If there is a current application defined, Django finds and returns the URL resolver for that instance. The current
application can be specified with the current_app argument to the reverse () function.

The url template tag uses the namespace of the currently resolved view as the current application in
a RequestContext. You can override this default by setting the current application on the request.
current_app attribute.

3. If there is no current application, Django looks for a default application instance. The default application instance
is the instance that has an instance namespace matching the application namespace (in this example, an instance
of polls called 'polls").

4. If there is no default application instance, Django will pick the last deployed instance of the application, whatever
its instance name may be.

5. If the provided namespace doesn’t match an application namespace in step 1, Django will attempt a direct lookup
of the namespace as an instance namespace.

If there are nested namespaces, these steps are repeated for each part of the namespace until only the view name is
unresolved. The view name will then be resolved into a URL in the namespace that has been found.

3.3. Handling HTTP requests 207

Django Documentation, Release 2.2.29.dev20220411083753

Example

To show this resolution strategy in action, consider an example of two instances of the polls application from the tu-
torial: one called 'author-polls' and one called 'publisher-polls’'. Assume we have enhanced that application
so that it takes the instance namespace into consideration when creating and displaying polls.

Listing 2: urls.py

from django.urls import include, path

urlpatterns = [
path(, include(, hamespace=)),
path(, include(, hamespace=),

Listing 3: polls/urls.py

from django.urls import path

from . import views

app_name =
urlpatterns = [

path('', views.IndexView.as_view(), name=),

path(, views.DetailView.as_view(), name=),
]

Using this setup, the following lookups are possible:

« If one of the instances is current - say, if we were rendering the detail page in the instance 'author-polls"' -
'polls:index' will resolve to the index page of the 'author-polls' instance; i.e. both of the following will
result in " /author-polls/".

In the method of a class-based view:

reverse(, current_app= .request.resolver_match.namespace)

and in the template:

url

« If there is no current instance - say, if we were rendering a page somewhere else on the site - 'polls:index’
will resolve to the last registered instance of polls. Since there is no default instance (instance namespace of
'polls’'), the last instance of polls that is registered will be used. This would be 'publisher-polls' since
it’s declared last in the urlpatterns.

e 'author-polls:index' will always resolve to the index page of the instance 'author-polls' (and likewise
for 'publisher-polls').

If there were also a default instance - i.e., an instance named 'polls' - the only change from above would be in the
case where there is no current instance (the second item in the list above). In this case 'polls:index' would resolve
to the index page of the default instance instead of the instance declared last in urlpatterns.

208 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

URL namespaces and included URLconfs

Application namespaces of included URLconfs can be specified in two ways.

Firstly, you can set an app_name attribute in the included URLconf module, at the same level as the urlpatterns
attribute. You have to pass the actual module, or a string reference to the module, to include(), not the list of
urlpatterns itself.

Listing 4: polls/urls.py

from django.urls import path

from . import views

app_name =
urlpatterns = [

path('', views.IndexView.as_view(), name=),

path(, views.DetailView.as_view(), name=),
]

Listing 5: urls.py

from django.urls import include, path

urlpatterns = [
path(, include()),
]

The URLs defined in polls.urls will have an application namespace polls.

Secondly, you can include an object that contains embedded namespace data. If you include() a list of path() or
re_path() instances, the URLs contained in that object will be added to the global namespace. However, you can
also include () a 2-tuple containing:

(< of path()/re_path() instances>, <application namespace>)

For example:

from django.urls import include, path
from . import views

polls_patterns = ([
path('', views.IndexView.as_view(), name=),
path(, views.DetailView.as_view(), name=),

1, D)

urlpatterns = [
path(, include(polls_patterns)),
]

This will include the nominated URL patterns into the given application namespace.

The instance namespace can be specified using the namespace argument to include (). If the instance namespace is
not specified, it will default to the included URLconf’s application namespace. This means it will also be the default

3.3. Handling HTTP requests 209

Django Documentation, Release 2.2.29.dev20220411083753

instance for that namespace.

3.3.2 Writing views

A view function, or view for short, is simply a Python function that takes a Web request and returns a Web response.
This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML document, or an image

. or anything, really. The view itself contains whatever arbitrary logic is necessary to return that response. This
code can live anywhere you want, as long as it’s on your Python path. There’s no other requirement—no “magic,” so to
speak. For the sake of putting the code somewhere, the convention is to put views in a file called views.py, placed in
your project or application directory.

A simple view

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse(html)

Let’s step through this code one line at a time:

* First, we import the class Ht tpResponse from the django.http module, along with Python’s datetime li-
brary.

¢ Next, we define a function called current_datetime. This is the view function. Each view function takes an
HttpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way in order for
Django to recognize it. We’re calling it current_datetime here, because that name clearly indicates what it
does.

» The view returns an Ht tpResponse object that contains the generated response. Each view function is respon-
sible for returning an Ht tpResponse object. (There are exceptions, but we’ll get to those later.)

Django’s Time Zone

Django includes a TTME_ZONE setting that defaults to America/Chicago. This probably isn’t where you live, so you
might want to change it in your settings file.

Mapping URLs to views

So, to recap, this view function returns an HTML page that includes the current date and time. To display this view at
a particular URL, you’ll need to create a URLconf; see URL dispatcher for instructions.

210 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Returning errors

Returning HTTP error codes in Django is easy. There are subclasses of HttpResponse for a number of common
HTTP status codes other than 200 (which means “OK”). You can find the full list of available subclasses in the
request/response documentation. Just return an instance of one of those subclasses instead of a normal Ht tpResponse
in order to signify an error. For example:

from django.http import HttpResponse, HttpResponseNotFound
def my_view(request):

if foo:

return HttpResponseNotFound()
else:

return HttpResponse()

There isn’t a specialized subclass for every possible HTTP response code, since many of them aren’t going to be that
common. However, as documented in the Ht tpResponse documentation, you can also pass the HTTP status code into
the constructor for Ht tpResponse to create a return class for any status code you like. For example:

from django.http import HttpResponse

def my_view(request):

return HttpResponse(status=201)

Because 404 errors are by far the most common HTTP error, there’s an easier way to handle those errors.

The Http404 exception

class django.http.Http404

When you return an error such as Ht t pResponseNotFound, you’re responsible for defining the HTML of the resulting
error page:

return HttpResponseNotFound()

For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django provides an
Http404 exception. If you raise Http404 at any point in a view function, Django will catch it and return the standard
error page for your application, along with an HTTP error code 404.

Example usage:

from django.http import Http404
from django.shortcuts import render
from polls.models import Poll

def detail(request, poll_id):
try:
p = Poll.objects.get(pk=poll_id)
except Poll.DoesNotExist:

(continues on next page)

3.3. Handling HTTP requests 211

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

raise Http404('Poll does not exist')
return render(request, 'polls/detail.html', {'poll': p})

In order to show customized HTML when Django returns a 404, you can create an HTML template named 404 .html
and place it in the top level of your template tree. This template will then be served when DEBUG is set to False.

When DEBUG is True, you can provide a message to Http404 and it will appear in the standard 404 debug template.
Use these messages for debugging purposes; they generally aren’t suitable for use in a production 404 template.

Customizing error views

The default error views in Django should suffice for most Web applications, but can easily be overridden if you need
any custom behavior. Simply specify the handlers as seen below in your URLconf (setting them anywhere else will
have no effect).

The page_not_found() view is overridden by handler404:

handler404 = 'mysite.views.my_custom_page_not_found_ view'

The server_error() view is overridden by handler500:

handler500 = 'mysite.views.my_custom_error_view'

The permission_denied() view is overridden by handler403:

handler403 = 'mysite.views.my_custom_permission_denied_view'

The bad_request () view is overridden by handIler400:

handler400 = 'mysite.views.my_custom_bad_request_view'

See also:

Use the CSRF_FAILURE_VIEW setting to override the CSRF error view.

Testing custom error views

To test the response of a custom error handler, raise the appropriate exception in a test view. For example:

from django.core.exceptions import PermissionDenied

from django.http import HttpResponse

from django.test import SimpleTestCase, override_settings
from django.urls import path

def response_error_handler(request, exception=None):
return HttpResponse('Error handler content', status=403)

def permission_denied_view(request):
raise PermissionDenied

(continues on next page)

212 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

urlpatterns = [
path('403/", permission_denied_view),

]

handler403 = response_error_handler

@override_settings (ROOT_URLCONF=__name__)
class CustomErrorHandlerTests(SimpleTestCase):

def test_handler_renders_template_response():
response = .client.get('/403/")

.assertContains(response, 'Error handler content', status_code=403)

3.3.3 View decorators

Django provides several decorators that can be applied to views to support various HTTP features.

See Decorating the class for how to use these decorators with class-based views.

Allowed HTTP methods
The decorators in django.views.decorators.http can be used to restrict access to views based on the request
method. These decorators will return a django.http.HttpResponseNotAllowed if the conditions are not met.

require_http_methods (request_method_list)
Decorator to require that a view only accepts particular request methods. Usage:

from django.views.decorators.http import require_http_methods

@require_http_methods(["GET", "POST"])
def my_view(request):

pass

Note that request methods should be in uppercase.

require_GET()
Decorator to require that a view only accepts the GET method.

require_POST()
Decorator to require that a view only accepts the POST method.

require_safe()

Decorator to require that a view only accepts the GET and HEAD methods. These methods are commonly
considered “safe” because they should not have the significance of taking an action other than retrieving the
requested resource.

3.3. Handling HTTP requests 213

Django Documentation, Release 2.2.29.dev20220411083753

Note: Web servers should automatically strip the content of responses to HEAD requests while leaving the head-
ers unchanged, so you may handle HEAD requests exactly like GET requests in your views. Since some software,
such as link checkers, rely on HEAD requests, you might prefer using require_safe instead of require_GET.

Conditional view processing
The following decorators in django. views.decorators.http can be used to control caching behavior on particular
views.

condition(etag_func=None, last_modified_func=None)

etag(etag_func)

last_modified(last_modified_func)
These decorators can be used to generate ETag and Last-Modified headers; see conditional view processing.

GZip compression

The decorators in django. views.decorators.gzip control content compression on a per-view basis.

gzip_page()
This decorator compresses content if the browser allows gzip compression. It sets the Vary header accordingly,
so that caches will base their storage on the Accept-Encoding header.

Vary headers

The decorators in django. views. decorators. vary can be used to control caching based on specific request headers.

vary_on_cookie (func)

vary_on_headers (*headers)

The Vary header defines which request headers a cache mechanism should take into account when building its
cache key.

See using vary headers.

Caching

The decorators in django.views.decorators.cache control server and client-side caching.

cache_control (**kwargs)
This decorator patches the response’s Cache-Control header by adding all of the keyword arguments to it. See
patch_cache_control () for the details of the transformation.

never_cache (view_func)

This decorator adds a Cache-Control: max-age=0, no-cache, no-store, must-revalidate header
to a response to indicate that a page should never be cached.

214 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

3.3.4 File Uploads

When Django handles a file upload, the file data ends up placed in request. FILES (for more on the request object
see the documentation for request and response objects). This document explains how files are stored on disk and in
memory, and how to customize the default behavior.

Warning: There are security risks if you are accepting uploaded content from untrusted users! See the security
guide’s topic on User-uploaded content for mitigation details.

Basic file uploads
Consider a simple form containing a FileField:

Listing 6: forms.py

from django import forms

class UploadFileForm(forms.Form) :
title = forms.CharField(max_length=50)
file = forms.FileField()

A view handling this form will receive the file data in request. FILES, which is a dictionary containing a key for each
FileField (or ImageField, or other FileField subclass) in the form. So the data from the above form would be
accessible as request.FILES['file'].

Note that request.FILES will only contain data if the request method was POST and the <form> that posted the
request has the attribute enctype="multipart/form-data". Otherwise, request.FILES will be empty.

Most of the time, you’ll simply pass the file data from request into the form as described in Binding uploaded files to
a form. This would look something like:

Listing 7: views.py

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import UploadFileForm

from somewhere import handle_uploaded_file

def upload_file(request):
if request.method == 'POST':
form = UploadFileForm(request.POST, request.FILES)
if form.is_validQ):
handle_uploaded_file(request.FILES['file'])
return HttpResponseRedirect('/success/url/")
else:
form = UploadFileForm()
return render(request, 'upload.html', {'form': form})

Notice that we have to pass request. FILES into the form’s constructor; this is how file data gets bound into a form.

Here’s a common way you might handle an uploaded file:

3.3. Handling HTTP requests 215

Django Documentation, Release 2.2.29.dev20220411083753

def handle_uploaded_file(f):
with (s) as destination:
for chunk in f.chunks(Q):
destination.write(chunk)

Looping over UploadedFile.chunks() instead of using read() ensures that large files don’t overwhelm your sys-
tem’s memory.

There are a few other methods and attributes available on UploadedFile objects; see UploadedFile for a complete
reference.

Handling uploaded files with a model

If you’re saving a file on a Model with a FileField, using a ModelForm makes this process much easier. The file
object will be saved to the location specified by the upload_to argument of the corresponding FileField when
calling form.save():

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import ModelFormWithFileField

def upload_file(request):
if request.method == :
form = ModelFormWithFileField(request.POST, request.FILES)
if form.is_validQ:

form.save()

return HttpResponseRedirect()
else:
form = ModelFormWithFileField()
return render(request, , { : form})

If you are constructing an object manually, you can simply assign the file object from request.FILES to the file field
in the model:

from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import UploadFileForm

from .models import ModelWithFileField

def upload_file(request):
if request.method == :
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid(Q):

instance = ModelWithFileField(file_field=request.FILES[D
instance.save()
return HttpResponseRedirect()
else:
form = UploadFileForm()
return render(request, , { : form})

216 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

Uploading multiple files

If you want to upload multiple files using one form field, set the multiple HTML attribute of field’s widget:

Listing 8: forms.py

from django import forms

class FileFieldForm(forms.Form):
file_field = forms.FileField(widget=forms.ClearableFileInput(attrs={'multiple': True}
=)

Then override the post method of your FormView subclass to handle multiple file uploads:

Listing 9: views.py

from django.views.generic.edit import FormView
from .forms import FileFieldForm

class FileFieldView(FormView):
form_class = FileFieldForm
template_name = 'upload.html’
success_url = '..."'

def post(, request, *args, **kwargs):
form_class = .get_form_class()
form = .get_form(form_class)

files = request.FILES.getlist('file field')
if form.is_validQ:
for f in files:

return .form_valid(form)
else:
return .form_invalid(form)

Upload Handlers

When a user uploads a file, Django passes off the file data to an upload handler — a small class that handles file data as
it gets uploaded. Upload handlers are initially defined in the FILE_UPLOAD_HANDLERS setting, which defaults to:

["django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler"]

Together MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default file upload
behavior of reading small files into memory and large ones onto disk.

You can write custom handlers that customize how Django handles files. You could, for example, use custom handlers
to enforce user-level quotas, compress data on the fly, render progress bars, and even send data to another storage
location directly without storing it locally. See Writing custom upload handlers for details on how you can customize
or completely replace upload behavior.

3.3. Handling HTTP requests 217

Django Documentation, Release 2.2.29.dev20220411083753

Where uploaded data is stored

Before you save uploaded files, the data needs to be stored somewhere.

By default, if an uploaded file is smaller than 2.5 megabytes, Django will hold the entire contents of the upload in
memory. This means that saving the file involves only a read from memory and a write to disk and thus is very fast.

However, if an uploaded file is too large, Django will write the uploaded file to a temporary file stored in your system’s
temporary directory. On a Unix-like platform this means you can expect Django to generate a file called something
like /tmp/tmpz£fp616.upload. If an upload is large enough, you can watch this file grow in size as Django streams
the data onto disk.

These specifics — 2.5 megabytes; /tmp; etc. — are simply “reasonable defaults” which can be customized as described
in the next section.

Changing upload handler behavior

There are a few settings which control Django’s file upload behavior. See File Upload Settings for details.

Modifying upload handlers on the fly

Sometimes particular views require different upload behavior. In these cases, you can override upload handlers on a
per-request basis by modifying request.upload_handlers. By default, this list will contain the upload handlers
given by FILE_UPLOAD_HANDLERS, but you can modify the list as you would any other list.

For instance, suppose you’ve written a ProgressBarUploadHandler that provides feedback on upload progress to
some sort of AJAX widget. You’d add this handler to your upload handlers like this:

request.upload_handlers.insert(0, ProgressBarUploadHandler(request))

You’d probably want to use list.insert() in this case (instead of append()) because a progress bar handler would
need to run before any other handlers. Remember, the upload handlers are processed in order.

If you want to replace the upload handlers completely, you can just assign a new list:

request.upload_handlers = [ProgressBarUploadHandler (request)]

Note: You can only modify upload handlers before accessing request.POST or request.FILES — it doesn’t
make sense to change upload handlers after upload handling has already started. If you try to modify request.
upload_handlers after reading from request.POST or request.FILES Django will throw an error.

Thus, you should always modify uploading handlers as early in your view as possible.

Also, request.POST is accessed by CsrfViewMiddleware which is enabled by default. This means you will
need to use csrf_exempt () on your view to allow you to change the upload handlers. You will then need to use
csrf_protect() on the function that actually processes the request. Note that this means that the handlers may start
receiving the file upload before the CSRF checks have been done. Example code:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt

def upload_file_view(request):
request.upload_handlers.insert(®, ProgressBarUploadHandler(request))
return _upload_file_view(request)

(continues on next page)

218 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

@csrf_protect
def _upload_file_view(request):

3.3.5 Django shortcut functions

The package django.shortcuts collects helper functions and classes that “span” multiple levels of MVC. In other
words, these functions/classes introduce controlled coupling for convenience’s sake.

render()

render (request, template_name, context=None, content_type=None, status=None, using=None)

Combines a given template with a given context dictionary and returns an Ht tpResponse object with that ren-
dered text.

Django does not provide a shortcut function which returns a TemplateResponse because the constructor of
TemplateResponse offers the same level of convenience as render ().

Required arguments

request The request object used to generate this response.

template_name The full name of a template to use or sequence of template names. If a sequence is given, the first
template that exists will be used. See the template loading documentation for more information on how templates
are found.

Optional arguments

context A dictionary of values to add to the template context. By default, this is an empty dictionary. If a value in
the dictionary is callable, the view will call it just before rendering the template.

content_type The MIME type to use for the resulting document. Defaults to the value of the
DEFAULT_CONTENT_TYPE setting.

status The status code for the response. Defaults to 200.

using The NAME of a template engine to use for loading the template.

Example

The following example renders the template myapp/index.html with the MIME type application/xhtml+xml:

from django.shortcuts import render
def my_view(request):

return render(request, 'myapp/index.html", {

(continues on next page)

3.3. Handling HTTP requests 219

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

'foo': 'bar',
}, content_type='application/xhtml+xml")

This example is equivalent to:

from django.http import HttpResponse
from django.template import loader

def my_view(request):
t = loader.get_template('myapp/index.html")

c = {'"foo': '"bar'}
return HttpResponse(t.render(c, request), content_type='application/xhtml+xml")

render_to_response()

render_to_response (template_name, context=None, content_type=None, status=None, using=None)

Deprecated since version 2.0.

This function preceded the introduction of render () and works similarly except that it doesn’t make the request
available in the response.

redirect()

redirect (to, *args, permanent=False, **kwargs)
Returns an HttpResponseRedirect to the appropriate URL for the arguments passed.

The arguments could be:
¢ A model: the model’s get_absolute_url () function will be called.
* A view name, possibly with arguments: reverse () will be used to reverse-resolve the name.
¢ An absolute or relative URL, which will be used as-is for the redirect location.

By default issues a temporary redirect; pass permanent=True to issue a permanent redirect.

Examples

You can use the redirect () function in a number of ways.

1. By passing some object; that object’s get_absolute_url () method will be called to figure out the redirect
URL.:

from django.shortcuts import redirect
def my_view(request):

obj = MyModel.objects.get(...)
return redirect(obj)

2. By passing the name of a view and optionally some positional or keyword arguments; the URL will be reverse
resolved using the reverse () method:

220 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

def my_view(request):

return redirect(, foo=)

3. By passing a hardcoded URL to redirect to:

def my_view(request):

return redirect()

This also works with full URLs:

def my_view(request):

return redirect()

By default, redirect () returns a temporary redirect. All of the above forms accept a permanent argument; if set to
True a permanent redirect will be returned:

def my_view(request):

obj = MyModel.objects.get(...)
return redirect(obj, permanent=True)

get_object_or_404()

get_object_or_404 (kiass, *args, **kwargs)
Calls get () on a given model manager, but it raises Ht tp404 instead of the model’s DoesNotExist exception.

Required arguments

klass A Model class, a Manager, or a QuerySet instance from which to get the object.

**kwargs Lookup parameters, which should be in the format accepted by get () and filter().

Example

The following example gets the object with the primary key of 1 from MyModel:

from django.shortcuts import get_object_or_404

def my_view(request):
obj = get_object_or_404(MyModel, pk=1)

This example is equivalent to:

from django.http import Http404

def my_view(request):
try:
obj = MyModel.objects.get(pk=1)

(continues on next page)

3.3. Handling HTTP requests 221

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

except MylModel.DoesNotExist:
raise Http404()

The most common use case is to pass a Model, as shown above. However, you can also pass a QuerySet instance:

queryset = Book.objects.filter(title__startswith="11")
get_object_or_404(queryset, pk=1)

The above example is a bit contrived since it’s equivalent to doing:

get_object_or_404(Book, title__startswith= , pk=1)

but it can be useful if you are passed the queryset variable from somewhere else.

Finally, you can also use a Manager. This is useful for example if you have a custom manager:

get_object_or_404(Book.dahl_objects, title=)

You can also use related managers:

author = Author.objects.get(name=)
get_object_or_404(author.book_set, title=)

Note: As with get(), a MultipleObjectsReturned exception will be raised if more than one object is found.

get_list_or_4040

get_list_or_404 (klass, *args, **kwargs)

Returns the result of filter() on a given model manager cast to a list, raising Ht tp404 if the resulting list is
empty.

Required arguments

klass A Model, Manager or QuerySet instance from which to get the list.

**kwargs Lookup parameters, which should be in the format accepted by get () and filter().

Example

The following example gets all published objects from MylModel:

from django.shortcuts import get_list_or_404

def my_view(request):
my_objects = get_list_or_404(MyModel, published=True)

This example is equivalent to:

from django.http import Http404

def my_view(request):

(continues on next page)

222 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

my_objects = (MyModel.objects.filter(published=True))
if not my_objects:
raise Http404('No MyModel matches the given query.")

3.3.6 Generic views

See Built-in class-based views API.

3.3.7 Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin” system
for globally altering Django’s input or output.

Each middleware component is responsible for doing some specific function. For example, Django includes a middle-
ware component, Authenticationliddleware, that associates users with requests using sessions.

This document explains how middleware works, how you activate middleware, and how to write your own middleware.
Django ships with some built-in middleware you can use right out of the box. They’re documented in the built-in
middleware reference.

Writing your own middleware

A middleware factory is a callable that takes a get_response callable and returns a middleware. A middleware is a
callable that takes a request and returns a response, just like a view.

A middleware can be written as a function that looks like this:

def simple_middleware(get_response):

def middleware(request):

response = get_response(request)

return response

return middleware

Or it can be written as a class whose instances are callable, like this:

class SimpleMiddleware:
def __init__(, get_response):
.get_response = get_response

def __call__(, request):

(continues on next page)

3.3. Handling HTTP requests 223

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

Code to be executed for each request before
the view (and later middleware) are called.

response = self.get_response(request)

Code to be executed for each request/response after
the view is called.

return response

The get_response callable provided by Django might be the actual view (if this is the last listed middleware) or it
might be the next middleware in the chain. The current middleware doesn’t need to know or care what exactly it is, just
that it represents whatever comes next.

The above is a slight simplification — the get_response callable for the last middleware in the chain won’t be the
actual view but rather a wrapper method from the handler which takes care of applying view middleware, calling the
view with appropriate URL arguments, and applying remplate-response and exception middleware.

Middleware can live anywhere on your Python path.

__init__(get_response)

Middleware factories must accept a get_response argument. You can also initialize some global state for the mid-
dleware. Keep in mind a couple of caveats:

* Django initializes your middleware with only the get_response argument, so you can’t define __init__() as
requiring any other arguments.

* Unlike the __call__() method which is called once per request, __init__() is called only once, when the
Web server starts.

Marking middleware as unused

It’s sometimes useful to determine at startup time whether a piece of middleware should be used. In these cases, your
middleware’s __init__() method may raise MiddIlewareNotUsed. Django will then remove that middleware from
the middleware process and log a debug message to the django.request logger when DEBUG is True.

Activating middleware

To activate a middleware component, add it to the MIDDLEWARE list in your Django settings.

In MIDDLEWARE, each middleware component is represented by a string: the full Python path to the middleware factory’s
class or function name. For example, here’s the default value created by django-admin startproject:

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',

(continues on next page)

224 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

'django.middleware.clickjacking.XFrameOptionsMiddleware',

A Django installation doesn’t require any middleware — MIDDLEWARE can be empty, if you’d like — but it’s strongly
suggested that you at least use CommonMiddleware.

The order in MIDDLEWARE matters because a middleware can depend on other middleware. For in-
stance, AuthenticationMiddleware stores the authenticated user in the session; therefore, it must run after
SessionMiddleware. See Middleware ordering for some common hints about ordering of Django middleware
classes.

Middleware order and layering

During the request phase, before calling the view, Django applies middleware in the order it’s defined in MIDDLEWARE,
top-down.

You can think of it like an onion: each middleware class is a “layer” that wraps the view, which is in the core of the
onion. If the request passes through all the layers of the onion (each one calls get_response to pass the request in to
the next layer), all the way to the view at the core, the response will then pass through every layer (in reverse order) on
the way back out.

If one of the layers decides to short-circuit and return a response without ever calling its get_response, none of the
layers of the onion inside that layer (including the view) will see the request or the response. The response will only
return through the same layers that the request passed in through.

Other middleware hooks

Besides the basic request/response middleware pattern described earlier, you can add three other special methods to
class-based middleware:

process_view()

process_view(request, view_func, view_args, view_kwargs)

request is an HttpRequest object. view_func is the Python function that Django is about to use. (It’s the actual
function object, not the name of the function as a string.) view_args is a list of positional arguments that will be
passed to the view, and view_kwargs is a dictionary of keyword arguments that will be passed to the view. Neither
view_args nor view_kwargs include the first view argument (request).

process_view() is called just before Django calls the view.

It should return either None or an HttpResponse object. If it returns None, Django will continue processing
this request, executing any other process_view() middleware and, then, the appropriate view. If it returns an
HttpResponse object, Django won’t bother calling the appropriate view; it’ll apply response middleware to that
HttpResponse and return the result.

Note: Accessing request.POST inside middleware before the view runs or in process_view() will prevent any
view running after the middleware from being able to modify the upload handlers for the request, and should normally
be avoided.

3.3. Handling HTTP requests 225

Django Documentation, Release 2.2.29.dev20220411083753

The CsrfViewMiddleware class can be considered an exception, as it provides the csrf_exempt() and
csrf_protect() decorators which allow views to explicitly control at what point the CSRF validation should oc-
cur.

process_exception()

process_exception(request, exception)

request is an HttpRequest object. exception is an Exception object raised by the view function.

Django calls process_exception() when a view raises an exception. process_exception() should return either
None or an HttpResponse object. If it returns an Ht tpResponse object, the template response and response middle-
ware will be applied and the resulting response returned to the browser. Otherwise, default exception handling kicks
in.

Again, middleware are run in reverse order during the response phase, which includes process_exception. If an

exception middleware returns a response, the process_exception methods of the middleware classes above that
middleware won’t be called at all.

process_template_response()

process_template_response (request, response)

requestisan HttpRequest object. response is the TemplateResponse object (or equivalent) returned by a Django
view or by a middleware.

process_template_response() is called just after the view has finished executing, if the response instance has a
render () method, indicating that it is a TemplateResponse or equivalent.

It must return a response object that implements a render method. It could alter the given response by
changing response.template_name and response.context_data, or it could create and return a brand-new
TemplateResponse or equivalent.

You don’t need to explicitly render responses — responses will be automatically rendered once all template response
middleware has been called.

Middleware are run in reverse order during the response phase, which includes process_template_response().
Dealing with streaming responses
Unlike HttpResponse, StreamingHttpResponse does not have a content attribute. As a result, middleware can

no longer assume that all responses will have a content attribute. If they need access to the content, they must test for
streaming responses and adjust their behavior accordingly:

if response.streaming:

response.streaming_content = wrap_streaming_content(response.streaming_content)
else:

response.content = alter_content(response.content)

Note: streaming_content should be assumed to be too large to hold in memory. Response middleware may wrap
it in a new generator, but must not consume it. Wrapping is typically implemented as follows:

226 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

def wrap_streaming_content(content):
for chunk in content:
yield alter_content (chunk)

Exception handling

Django automatically converts exceptions raised by the view or by middleware into an appropriate HTTP response with
an error status code. Certain exceptions are converted to 4xx status codes, while an unknown exception is converted to
a 500 status code.

This conversion takes place before and after each middleware (you can think of it as the thin film in between each layer
of the onion), so that every middleware can always rely on getting some kind of HTTP response back from calling
its get_response callable. Middleware don’t need to worry about wrapping their call to get_response in a try/
except and handling an exception that might have been raised by a later middleware or the view. Even if the very next
middleware in the chain raises an Ht tp404 exception, for example, your middleware won’t see that exception; instead
it will get an Ht tpResponse object with a status_code of 404.

Upgrading pre-Django 1.10-style middleware

class django.utils.deprecation.MiddlewareMixin

Django provides django.utils.deprecation.MiddlewareMixin to ease creating middleware classes that are com-
patible with both MIDDLEWARE and the old MIDDLEWARE_CLASSES. All middleware classes included with Django are
compatible with both settings.

The mixin provides an __init__() method that accepts an optional get_response argument and stores it in self.
get_response.

The __call__() method:
1. Calls self.process_request(request) (if defined).
2. Calls self.get_response(request) to get the response from later middleware and the view.
3. Calls self.process_response(request, response) (if defined).
4. Returns the response.

If used with MIDDLEWARE_CLASSES, the __call__() method will never be used; Django calls process_request ()
and process_response() directly.

In most cases, inheriting from this mixin will be sufficient to make an old-style middleware compatible with the new
system with sufficient backwards-compatibility. The new short-circuiting semantics will be harmless or even beneficial
to the existing middleware. In a few cases, a middleware class may need some changes to adjust to the new semantics.

These are the behavioral differences between using MIDDLEWARE and MIDDLEWARE_CLASSES:

1. Under MIDDLEWARE_CLASSES, every middleware will always have its process_response method called, even
if an earlier middleware short-circuited by returning a response from its process_request method. Under
MIDDLEWARE, middleware behaves more like an onion: the layers that a response goes through on the way out
are the same layers that saw the request on the way in. If a middleware short-circuits, only that middleware and
the ones before it in MIDDLEWARE will see the response.

2. Under MIDDLEWARE_CLASSES, process_exception is applied to exceptions raised from a middleware
process_request method. Under MIDDLEWARE, process_exception applies only to exceptions raised from
the view (or from the render method of a TemplateResponse). Exceptions raised from a middleware are
converted to the appropriate HTTP response and then passed to the next middleware.

3.3. Handling HTTP requests 227

Django Documentation, Release 2.2.29.dev20220411083753

3. Under MIDDLEWARE_CLASSES, if a process_response method raises an exception, the process_response
methods of all earlier middleware are skipped and a 500 Internal Server Error HTTP response is always
returned (even if the exception raised was e.g. an Http404). Under MIDDLEWARE, an exception raised from a
middleware will immediately be converted to the appropriate HTTP response, and then the next middleware in
line will see that response. Middleware are never skipped due to a middleware raising an exception.

3.3.8 How to use sessions

Django provides full support for anonymous sessions. The session framework lets you store and retrieve arbitrary data
on a per-site-visitor basis. It stores data on the server side and abstracts the sending and receiving of cookies. Cookies
contain a session ID — not the data itself (unless you’re using the cookie based backend).

Enabling sessions

Sessions are implemented via a piece of middleware.
To enable session functionality, do the following:

» Edit the MIDDLEWARE setting and make sure it contains 'django.contrib.sessions.middleware.
SessionMiddleware'. The default settings.py created by django-admin startproject has
SessionMiddleware activated.

If you don’t want to use sessions, you might as well remove the SessionMiddleware line from MIDDLEWARE and
'django.contrib.sessions' from your INSTALLED_APPS. It’'ll save you a small bit of overhead.

Configuring the session engine

By default, Django stores sessions in your database (using the model django.contrib.sessions.models.
Session). Though this is convenient, in some setups it’s faster to store session data elsewhere, so Django can be
configured to store session data on your filesystem or in your cache.

Using database-backed sessions

If you want to use a database-backed session, you need to add 'django.contrib.sessions' to your
INSTALLED_APPS setting.

Once you have configured your installation, run manage.py migrate to install the single database table that stores
session data.

Using cached sessions

For better performance, you may want to use a cache-based session backend.

To store session data using Django’s cache system, you'll first need to make sure you’ve configured your cache; see the
cache documentation for details.

Warning: You should only use cache-based sessions if you're using the Memcached cache backend. The local-
memory cache backend doesn’t retain data long enough to be a good choice, and it’ll be faster to use file or database
sessions directly instead of sending everything through the file or database cache backends. Additionally, the local-
memory cache backend is NOT multi-process safe, therefore probably not a good choice for production environ-
ments.

228 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

If you have multiple caches defined in CACHES, Django will use the default cache. To use another cache, set
SESSION_CACHE_ALIAS to the name of that cache.

Once your cache is configured, you’ve got two choices for how to store data in the cache:

e Set SESSION_ENGINE to "django.contrib.sessions.backends.cache" for a simple caching session store.
Session data will be stored directly in your cache. However, session data may not be persistent: cached data can
be evicted if the cache fills up or if the cache server is restarted.

* For persistent, cached data, set SESSION_ENGINE to "django.contrib.sessions.backends.cached_db".
This uses a write-through cache — every write to the cache will also be written to the database. Session reads
only use the database if the data is not already in the cache.

Both session stores are quite fast, but the simple cache is faster because it disregards persistence. In most cases, the
cached_db backend will be fast enough, but if you need that last bit of performance, and are willing to let session data
be expunged from time to time, the cache backend is for you.

If you use the cached_db session backend, you also need to follow the configuration instructions for the using database-
backed sessions.

Using file-based sessions

To use file-based sessions, set the SESSTON_ENGINE setting to "django.contrib.sessions.backends.file".

You might also want to set the SESSION_FILE_PATH setting (which defaults to output from tempfile.
gettempdir (), most likely /tmp) to control where Django stores session files. Be sure to check that your Web server
has permissions to read and write to this location.

Using cookie-based sessions

To use cookies-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.backends.
signed_cookies". The session data will be stored using Django’s tools for cryptographic signing and the
SECRET_KEY setting.

Note: It’s recommended to leave the SESSION_COOKIE_HTTPONLY setting on True to prevent access to the stored
data from JavaScript.

Warning: If the SECRET_KEY is not kept secret and you are using the PickleSerializer, this can lead
to arbitrary remote code execution.

An attacker in possession of the SECRET_KEY can not only generate falsified session data, which your site will trust,
but also remotely execute arbitrary code, as the data is serialized using pickle.

If you use cookie-based sessions, pay extra care that your secret key is always kept completely secret, for any system
which might be remotely accessible.

The session data is signed but not encrypted
When using the cookies backend the session data can be read by the client.

A MAC (Message Authentication Code) is used to protect the data against changes by the client, so that the session
data will be invalidated when being tampered with. The same invalidation happens if the client storing the cookie
(e.g. your user’s browser) can’t store all of the session cookie and drops data. Even though Django compresses the
data, it’s still entirely possible to exceed the common limit of 4096 bytes per cookie.

3.3. Handling HTTP requests 229

https://tools.ietf.org/html/rfc2965#section-5.3

Django Documentation, Release 2.2.29.dev20220411083753

No freshness guarantee

Note also that while the MAC can guarantee the authenticity of the data (that it was generated by your site, and
not someone else), and the integrity of the data (that it is all there and correct), it cannot guarantee freshness i.e.
that you are being sent back the last thing you sent to the client. This means that for some uses of session data, the
cookie backend might open you up to replay attacks. Unlike other session backends which keep a server-side record
of each session and invalidate it when a user logs out, cookie-based sessions are not invalidated when a user logs
out. Thus if an attacker steals a user’s cookie, they can use that cookie to login as that user even if the user logs out.
Cookies will only be detected as ‘stale’ if they are older than your SESSION_COOKIE_AGE.

Performance

Finally, the size of a cookie can have an impact on the speed of your site.

Using sessions in views

When SessionMiddleware is activated, each Ht tpRequest object — the first argument to any Django view function
— will have a session attribute, which is a dictionary-like object.

You can read it and write to request.session at any point in your view. You can edit it multiple times.

class backends.base.SessionBase

This is the base class for all session objects. It has the following standard dictionary methods:
__getitem__(key)
Example: fav_color = request.session['fav_color']

__setitem__(key, value)
Example: request.session['fav_color'] = 'blue'

__delitem__(key)

Example: del request.session['fav_color']. This raises KeyError if the given key isn’t already
in the session.

__contains__ (key)

Example: 'fav_color' in request.session

get (key, default=None)
Example: fav_color = request.session.get('fav_color', 'red')

pop (key, default=__not_given)
Example: fav_color = request.session.pop('fav_color', 'blue')

keys()
items(Q)
setdefault()
clear()

It also has these methods:

flush(O

Deletes the current session data from the session and deletes the session cookie. This is used if you want
to ensure that the previous session data can’t be accessed again from the user’s browser (for example, the
django.contrib.auth. logout () function calls it).

230

Chapter 3. Using Django

https://en.wikipedia.org/wiki/Replay_attack
https://yuiblog.com/blog/2007/03/01/performance-research-part-3/

Django Documentation, Release 2.2.29.dev20220411083753

set_test_cookie()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way cookies work,
you won’t be able to test this until the user’s next page request. See Setting test cookies below for more
information.

test_cookie_worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie. Due to
the way cookies work, you’ll have to call set_test_cookie() on a previous, separate page request. See
Setting test cookies below for more information.

delete_test_cookie()

Deletes the test cookie. Use this to clean up after yourself.

set_expiry (value)

Sets the expiration time for the session. You can pass a number of different values:

¢ If value is an integer, the session will expire after that many seconds of inactivity. For example,
calling request.session.set_expiry(300) would make the session expire in 5 minutes.

e If value is a datetime or timedelta object, the session will expire at that specific date/time. Note
that datetime and timedelta values are only serializable if you are using the PickleSerializer.

 If value is 0, the user’s session cookie will expire when the user’s Web browser is closed.
* If value is None, the session reverts to using the global session expiry policy.

Reading a session is not considered activity for expiration purposes. Session expiration is computed from
the last time the session was modified.

get_expiry_age()

Returns the number of seconds until this session expires. For sessions with no custom expiration (or those
set to expire at browser close), this will equal SESSION_COOKIE_AGE.

This function accepts two optional keyword arguments:
* modification: last modification of the session, as a datetime object. Defaults to the current time.

e expiry: expiry information for the session, as a datetime object, an int (in seconds), or None.
Defaults to the value stored in the session by set_expiry(), if there is one, or None.

get_expiry_date()

Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at
browser close), this will equal the date SESSTON_COOKIE_AGE seconds from now.

This function accepts the same keyword arguments as get_expiry_age().

get_expire_at_browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when the user’s
Web browser is closed.

clear_expired()
Removes expired sessions from the session store. This class method is called by clearsessions.

cycle_key()

Creates a new session key while retaining the current session data. django.contrib.auth.login()
calls this method to mitigate against session fixation.

Handling HTTP requests 231

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int

Django Documentation, Release 2.2.29.dev20220411083753

Session serialization

By default, Django serializes session data using JSON. You can use the SESSTON_SERTALIZER setting to customize
the session serialization format. Even with the caveats described in Write your own serializer, we highly recommend
sticking with JSON serialization especially if you are using the cookie backend.

For example, here’s an attack scenario if you use pickle to serialize session data. If you're using the signed cookie
session backend and SECRET_KEY is known by an attacker (there isn’t an inherent vulnerability in Django that would
cause it to leak), the attacker could insert a string into their session which, when unpickled, executes arbitrary code
on the server. The technique for doing so is simple and easily available on the internet. Although the cookie session
storage signs the cookie-stored data to prevent tampering, a SECRET_KEY leak immediately escalates to a remote code
execution vulnerability.

Bundled serializers

class serializers.JSONSerializer
A wrapper around the JSON serializer from django. core.signing. Can only serialize basic data types.

In addition, as JSON supports only string keys, note that using non-string keys in request.session won’t work
as expected:

>>>

>>> request.session[0] = 'bar'
>>>

>>>

>>> request.session[0]

>>> request.session['0']

"bar'

Similarly, data that can’t be encoded in JSON, such as non-UTF8 bytes like '\xd9' (which raises
UnicodeDecodeError), can’t be stored.

See the Write your own serializer section for more details on limitations of JSON serialization.

class serializers.PickleSerializer

Supports arbitrary Python objects, but, as described above, can lead to a remote code execution vulnerability if
SECRET_KEY becomes known by an attacker.

Write your own serializer

Note that unlike PickleSerializer, the JSONSerializer cannot handle arbitrary Python data types. As is often
the case, there is a trade-off between convenience and security. If you wish to store more advanced data types including
datetime and Decimal in JSON backed sessions, you will need to write a custom serializer (or convert such values
to a JSON serializable object before storing them in request.session). While serializing these values is fairly
straightforward (DjangoJSONEncoder may be helpful), writing a decoder that can reliably get back the same thing
that you put in is more fragile. For example, you run the risk of returning a datetime that was actually a string that
just happened to be in the same format chosen for datetimes).

Your serializer class must implement two methods, dumps (self, obj) and loads(self, data), to serialize and
deserialize the dictionary of session data, respectively.

232 Chapter 3. Using Django

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError

Django Documentation, Release 2.2.29.dev20220411083753

Session object guidelines

¢ Use normal Python strings as dictionary keys on request.session. This is more of a convention than a hard-
and-fast rule.

» Session dictionary keys that begin with an underscore are reserved for internal use by Django.

* Don’t override request.session with a new object, and don’t access or set its attributes. Use it like a Python
dictionary.

Examples

This simplistic view sets a has_commented variable to True after a user posts a comment. It doesn’t let a user post a
comment more than once:

def post_comment(request, new_comment) :
if request.session.get(, False):
return HttpResponse()
c = comments.Comment (comment=new_comment)
c.save()
request.session[] = True
return HttpResponse()

This simplistic view logs in a “member” of the site:

def login(request):

m = Member.objects.get(username=request.POST[iD)
if m.password == request.POST[]1:
request.session[] = m.id
return HttpResponse()
else:
return HttpResponse()

...And this one logs a member out, according to 1ogin() above:

def logout(request):
try:
del request.session[]
except KeyError:
pass
return HttpResponse()

The standard django.contrib.auth.logout () function actually does a bit more than this to prevent inadvertent
data leakage. It calls the fIush() method of request.session. We are using this example as a demonstration of
how to work with session objects, not as a full logout () implementation.

3.3. Handling HTTP requests 233

Django Documentation, Release 2.2.29.dev20220411083753

Setting test cookies

As a convenience, Django provides an easy way to test whether the user’s browser accepts cookies. Just call the
set_test_cookie() method of request.session in a view, and call test_cookie_worked() in a subsequent
view — not in the same view call.

This awkward split between set_test_cookie() and test_cookie_worked() is necessary due to the way cookies
work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s next request.

It’s good practice to use delete_test_cookie() to clean up after yourself. Do this after you’ve verified that the test
cookie worked.

Here’s a typical usage example:

from django.http import HttpResponse
from django.shortcuts import render

def login(request):
if request.method == 'POST':
if request.session.test_cookie_worked():
request.session.delete_test_cookie()
return HttpResponse("You're logged in.")
else:
return HttpResponse(''Please enable cookies and try again.")
request.session.set_test_cookie()
return render(request, 'foo/login_form.html")

Using sessions out of views

Note: The examples in this section import the SessionStore object directly from the django.contrib.sessions.
backends.db backend. In your own code, you should consider importing SessionStore from the session engine
designated by SESSTON_ENGINE, as below:

>>> from importlib import import_module
>>> from django.conf import settings
>>> SessionStore = import_module(settings.SESSION_ENGINE).SessionStore

An API is available to manipulate session data outside of a view:

>>> from django.contrib.sessions.backends.db import SessionStore
>>> s = SessionStore()

>>>

>>> s['last_login'] = 1376587691

>>> s.create()

>>> s,session_key

'2b1189a188b44ad18c35ell13acbceead’

>>> s = SessionStore(session_key='2b1189a188h44ad18c35ell3acbceead")
>>> s['last_login']

1376587691

SessionStore.create() is designed to create a new session (i.e. one not loaded from the session store and with
session_key=None). save() is designed to save an existing session (i.e. one loaded from the session store). Calling

234 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

save() on a new session may also work but has a small chance of generating a session_key that collides with an
existing one. create() calls save() and loops until an unused session_key is generated.

If you’re using the django. contrib.sessions.backends.db backend, each session is just a normal Django model.
The Session model is defined in django/contrib/sessions/models.py. Because it’s a normal model, you can
access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session

>>> s = Session.objects.get(pk="2h1189a188b44adl8c35ell3acbeceead")
>>> s.expire_date

datetime.datetime (2005, 8, 20, 13, 35, 12)

Note that you’ll need to call get_decoded () to get the session dictionary. This is necessary because the dictionary is
stored in an encoded format:

>>> s.session_data

'KGRwMQpTJ 19hdXRoX3VzZXJ faWQnCnAyCkkxCnMuMTEXY2ZjODI2Yj. . . "
>>> s.get_decoded()

{'user_id': 42}

When sessions are saved

By default, Django only saves to the session database when the session has been modified — that is if any of its dictionary
values have been assigned or deleted:

request.session['foo'] = 'bar

del request.session['foo']

request.session['foo'] = {}

request.session['foo']['bar'] = 'baz'

In the last case of the above example, we can tell the session object explicitly that it has been modified by setting the
modified attribute on the session object:

request.session.modified = True

To change this default behavior, set the SESSION_SAVE_EVERY_REQUEST setting to True. When set to True, Django
will save the session to the database on every single request.

Note that the session cookie is only sent when a session has been created or modified. It
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

The session is not saved if the response’s status code is 500.

3.3. Handling HTTP requests 235

Django Documentation, Release 2.2.29.dev20220411083753

Browser-length sessions vs. persistent sessions

You can control whether the session framework uses browser-length sessions vs. persistent sessions with the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting.

By default, SESSTON_EXPIRE_AT_BROWSER_CLOSE is set to False, which means session cookies will be stored in
users’ browsers for as long as SESSION_COOKIE_AGE. Use this if you don’t want people to have to log in every time
they open a browser.

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies — cookies that expire
as soon as the user closes their browser. Use this if you want people to have to log in every time they open a browser.

This setting is a global default and can be overwritten at a per-session level by explicitly calling the set_expiry ()
method of request.session as described above in using sessions in views.

Note: Some browsers (Chrome, for example) provide settings that allow users to continue browsing sessions after
closing and re-opening the browser. In some cases, this can interfere with the SESSION_EXPIRE_AT_BROWSER_CLOSE
setting and prevent sessions from expiring on browser close. Please be aware of this while testing Django applications
which have the SESSTON_EXPIRE_AT_BROWSER_CLOSE setting enabled.

Clearing the session store

As users create new sessions on your website, session data can accumulate in your session store. If you’re using the
database backend, the django_session database table will grow. If you're using the file backend, your temporary
directory will contain an increasing number of files.

To understand this problem, consider what happens with the database backend. When a user logs in, Django adds a row
to the django_session database table. Django updates this row each time the session data changes. If the user logs
out manually, Django deletes the row. But if the user does not log out, the row never gets deleted. A similar process
happens with the file backend.

Django does not provide automatic purging of expired sessions. Therefore, it’s your job to purge expired sessions on
a regular basis. Django provides a clean-up management command for this purpose: clearsessions. It’s recom-
mended to call this command on a regular basis, for example as a daily cron job.

Note that the cache backend isn’t vulnerable to this problem, because caches automatically delete stale data. Neither is
the cookie backend, because the session data is stored by the users’ browsers.

Settings

A few Django settings give you control over session behavior:
e SESSION_CACHE_ALIAS
e SESSION_COOKIE_AGE
e SESSION_COOKIE_DOMAIN
e SESSION_COOKIE_HTTPONLY
e SESSION_COOKIE_NAME
e SESSION_COOKIE_PATH
e SESSION_COOKIE_SAMESITE
¢ SESSION_COOKIE_SECURE

236 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

* SESSION_ENGINE

SESSION_EXPIRE_AT_BROWSER_CLOSE

SESSION_FILE_PATH

SESSION_SAVE_EVERY_REQUEST

SESSION_SERIALIZER

Session security
Subdomains within a site are able to set cookies on the client for the whole domain. This makes session fixation possible
if cookies are permitted from subdomains not controlled by trusted users.

For example, an attacker could log into good.example.com and get a valid session for their account. If the attacker
has control over bad.example. com, they can use it to send their session key to you since a subdomain is permitted to
set cookies on *.example.com. When you visit good.example.com, you’ll be logged in as the attacker and might
inadvertently enter your sensitive personal data (e.g. credit card info) into the attacker’s account.

Another possible attack would be if good.example.com sets its SESSION_COOKIE_DOMAIN to "example.com"
which would cause session cookies from that site to be sent to bad.example.com.

Technical details
* The session dictionary accepts any json serializable value when using JSONSerializer or any picklable
Python object when using PickleSerializer. See the pickle module for more information.
¢ Session data is stored in a database table named django_session.

* Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie.

The SessionStore object

When working with sessions internally, Django uses a session store object from the corresponding session engine.
By convention, the session store object class is named SessionStore and is located in the module designated by
SESSION_ENGINE.

All SessionStore classes available in Django inherit from SessionBase and implement data manipulation methods,
namely:

e exists()

e create()

* save()

e delete()

e load(Q

e clear_expired()

In order to build a custom session engine or to customize an existing one, you may create a new class inheriting from
SessionBase or any other existing SessionStore class.

Extending most of the session engines is quite straightforward, but doing so with database-backed session engines
generally requires some extra effort (see the next section for details).

3.3. Handling HTTP requests 237

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/pickle.html#module-pickle

Django Documentation, Release 2.2.29.dev20220411083753

Extending database-backed session engines
Creating a custom database-backed session engine built upon those included in Django (namely db and cached_db)
may be done by inheriting AbstractBaseSession and either SessionStore class.

AbstractBaseSession and BaseSessionManager are importable from django.contrib.sessions.
base_session so that they can be imported without including django.contrib.sessions in INSTALLED_APPS.

class base_session.AbstractBaseSession

The abstract base session model.

session_key

Primary key. The field itself may contain up to 40 characters. The current implementation generates a
32-character string (a random sequence of digits and lowercase ASCII letters).

session_data

A string containing an encoded and serialized session dictionary.

expire_date

A datetime designating when the session expires.

Expired sessions are not available to a user, however, they may still be stored in the database until the
clearsessions management command is run.

classmethod get_session_store_class()
Returns a session store class to be used with this session model.

get_decoded()
Returns decoded session data.

Decoding is performed by the session store class.
You can also customize the model manager by subclassing BaseSessionManager:
class base_session.BaseSessionManager
encode (session_dict)
Returns the given session dictionary serialized and encoded as a string.
Encoding is performed by the session store class tied to a model class.

save (session_key, session_dict, expire_date)

Saves session data for a provided session key, or deletes the session in case the data is empty.
Customization of SessionStore classes is achieved by overriding methods and properties described below:

class backends.db.SessionStore
Implements database-backed session store.

classmethod get_model_class()
Override this method to return a custom session model if you need one.

create_model_instance(data)
Returns a new instance of the session model object, which represents the current session state.

Overriding this method provides the ability to modify session model data before it’s saved to database.

class backends.cached_db.SessionStore

Implements cached database-backed session store.

238 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

cache_key_prefix
A prefix added to a session key to build a cache key string.

Example

The example below shows a custom database-backed session engine that includes an additional database column to
store an account ID (thus providing an option to query the database for all active sessions for an account):

from django.contrib.sessions.backends.db import SessionStore as DBStore
from django.contrib.sessions.base_session import AbstractBaseSession
from django.db import models

class CustomSession(AbstractBaseSession):
account_id = models.IntegerField(null=True, db_index=True)

@classmethod
def get_session_store_class():
return SessionStore

class SessionStore(DBStore):

@classmethod
def get_model_class(cls):
return CustomSession

def create_model_instance(, data):
obj = () .create_model_instance(data)
try:
account_id = (data.get('_auth_user_id"))

except (ValueError, TypeError):

account_id = None
obj.account_id = account_id
return obj

If you are migrating from the Django’s built-in cached_db session store to a custom one based on cached_db, you
should override the cache key prefix in order to prevent a namespace clash:

class SessionStore(CachedDBStore):
cache_key_prefix = 'mysessions.custom_cached_db_backend'

Session IDs in URLs

The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session IDs in
URLs as a last resort, as PHP does. This is an intentional design decision. Not only does that behavior make URLSs
ugly, it makes your site vulnerable to session-ID theft via the “Referer”” header.

3.3. Handling HTTP requests 239

Django Documentation, Release 2.2.29.dev20220411083753

3.4 Working with forms

About this document

This document provides an introduction to the basics of web forms and how they are handled in Django. For a more
detailed look at specific areas of the forms AP, see The Forms API, Form fields, and Form and field validation.

Unless you’re planning to build websites and applications that do nothing but publish content, and don’t accept input
from your visitors, you’re going to need to understand and use forms.

Django provides a range of tools and libraries to help you build forms to accept input from site visitors, and then process
and respond to the input.

3.4.1 HTML forms

In HTML, a form is a collection of elements inside <form>. . . </form> that allow a visitor to do things like enter text,
select options, manipulate objects or controls, and so on, and then send that information back to the server.

Some of these form interface elements - text input or checkboxes - are fairly simple and are built into HTML itself.
Others are much more complex; an interface that pops up a date picker or allows you to move a slider or manipulate
controls will typically use JavaScript and CSS as well as HTML form <input> elements to achieve these effects.

As well as its <input> elements, a form must specify two things:
* where: the URL to which the data corresponding to the user’s input should be returned
e how: the HTTP method the data should be returned by

As an example, the login form for the Django admin contains several <input> elements: one of type="text" for the
username, one of type="password" for the password, and one of type="submit" for the “Log in” button. It also
contains some hidden text fields that the user doesn’t see, which Django uses to determine what to do next.

It also tells the browser that the form data should be sent to the URL specified in the <form>’s action attribute -
/admin/ - and that it should be sent using the HTTP mechanism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is returned to /admin/.

GET and POST

GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data, encodes it for
transmission, sends it to the server, and then receives back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains the
address where the data must be sent, as well as the data keys and values. You can see this in action if you do a search in
the Django documentation, which will produce a URL of the form https://docs.djangoproject.com/search/
?q=forms&release=1.

GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes in the
database - should use POST. GET should be used only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus, also in
browser history and server logs, all in plain text. Neither would it be suitable for large quantities of data, or for binary
data, such as an image. A Web application that uses GET requests for admin forms is a security risk: it can be easy for an

240 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

attacker to mimic a form’s request to gain access to sensitive parts of the system. POST, coupled with other protections
like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLSs that represent a GET request can
easily be bookmarked, shared, or resubmitted.

3.4.2 Django’s role in forms

Handling forms is a complex business. Consider Django’s admin, where numerous items of data of several different
types may need to be prepared for display in a form, rendered as HTML, edited using a convenient interface, returned
to the server, validated and cleaned up, and then saved or passed on for further processing.

Django’s form functionality can simplify and automate vast portions of this work, and can also do it more securely than
most programmers would be able to do in code they wrote themselves.

Django handles three distinct parts of the work involved in forms:
e preparing and restructuring data to make it ready for rendering
e creating HTML forms for the data
* receiving and processing submitted forms and data from the client

It is possible to write code that does all of this manually, but Django can take care of it all for you.

3.4.3 Forms in Django

We’ve described HTML forms briefly, but an HTML <form> is just one part of the machinery required.

In the context of a Web application, ‘form’ might refer to that HTML <form>, or to the Django Form that produces it,
or to the structured data returned when it is submitted, or to the end-to-end working collection of these parts.

The Django Form class

At the heart of this system of components is Django’s Form class. In much the same way that a Django model describes
the logical structure of an object, its behavior, and the way its parts are represented to us, a Form class describes a form
and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to HTML form <input>
elements. (A ModelForm maps a model class’s fields to HTML form <input> elements via a Form; this is what the
Django admin is based upon.)

A form’s fields are themselves classes; they manage form data and perform validation when a form is submitted. A
DateField and a FileField handle very different kinds of data and have to do different things with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface machinery. Each
field type has an appropriate default Widget class, but these can be overridden as required.

3.4. Working with forms 241

Django Documentation, Release 2.2.29.dev20220411083753

Instantiating, processing, and rendering forms

When rendering an object in Django, we generally:
1. get hold of it in the view (fetch it from the database, for example)
2. pass it to the template context
3. expand it to HTML markup using template variables

Rendering a form in a template involves nearly the same work as rendering any other kind of object, but there are some
key differences.

In the case of a model instance that contained no data, it would rarely if ever be useful to do anything with it in a
template. On the other hand, it makes perfect sense to render an unpopulated form - that’s what we do when we want
the user to populate it.

So when we handle a model instance in a view, we typically retrieve it from the database. When we’re dealing with a
form we typically instantiate it in the view.

When we instantiate a form, we can opt to leave it empty or pre-populate it, for example with:
* data from a saved model instance (as in the case of admin forms for editing)
 data that we have collated from other sources
* data received from a previous HTML form submission

The last of these cases is the most interesting, because it’s what makes it possible for users not just to read a website,
but to send information back to it too.

3.4.4 Building a form

The work that needs to be done

Suppose you want to create a simple form on your website, in order to obtain the user’s name. You’d need something
like this in your template:

<form action="/your-name/" method="post">
<label for="your_name">Your name: </label>

<input id="your_name" type="text" name="your_name" value=" current_name >
<input type="submit" value="OK">
</form>

This tells the browser to return the form data to the URL /your-name/, using the POST method. It will display a text
field, labeled “Your name:”, and a button marked “OK”. If the template context contains a current_name variable,
that will be used to pre-fill the your_name field.

You’ll need a view that renders the template containing the HTML form, and that can supply the current_name field
as appropriate.

When the form is submitted, the POST request which is sent to the server will contain the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the appropriate key/value pairs
in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of fields, many of which might need to
be pre-populated, and we might expect the user to work through the edit-submit cycle several times before concluding
the operation.

242 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

We might require some validation to occur in the browser, even before the form is submitted; we might want to use
much more complex fields, that allow the user to do things like pick dates from a calendar and so on.

At this point it’s much easier to get Django to do most of this work for us.
Building a form in Django
The Form class

We already know what we want our HTML form to look like. Our starting point for it in Django is this:

Listing 10: forms.py

from django import forms

class NameForm(forms.Form) :
your_name = forms.CharField(label='Your name', max_length=100)

This defines a Form class with a single field (your_name). We’ve applied a human-friendly label to the field, which
will appear in the <label> when it’s rendered (although in this case, the 1abel we specified is actually the same one
that would be generated automatically if we had omitted it).

The field’s maximum allowable length is defined by max_Iength. This does two things. It puts a maxlength="100"
on the HTML <input> (so the browser should prevent the user from entering more than that number of characters in
the first place). It also means that when Django receives the form back from the browser, it will validate the length of
the data.

A Form instance has an is_valid() method, which runs validation routines for all its fields. When this method is
called, if all fields contain valid data, it will:

¢ return True
* place the form’s data in its cIeaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" maxlength="100" required>

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those ourselves in the template.

The view

Form data sent back to a Django website is processed by a view, generally the same view which published the form.
This allows us to reuse some of the same logic.

To handle the form we need to instantiate it in the view for the URL where we want it to be published:

Listing 11: views.py

from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import NameForm

def get_name(request):

(continues on next page)

3.4. Working with forms 243

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

if request.method ==
form = NameForm(request.POST)

if form.is_validQ:

return HttpResponseRedirect()

else:

form = NameForm()

return render(request, , { : form})

If we arrive at this view with a GET request, it will create an empty form instance and place it in the template context
to be rendered. This is what we can expect to happen the first time we visit the URL.

If the form is submitted using a POST request, the view will once again create a form instance and populate it with data
from the request: form = NameForm(request.POST) This is called “binding data to the form” (it is now a bound
form).

We call the form’s is_valid () method; if it’s not True, we go back to the template with the form. This time the form
is no longer empty (unbound) so the HTML form will be populated with the data previously submitted, where it can
be edited and corrected as required.

If is_valid() is True, we’ll now be able to find all the validated form data in its cleaned_data attribute. We can
use this data to update the database or do other processing before sending an HTTP redirect to the browser telling it
where to go next.

The template

We don’t need to do much in our name . html template. The simplest example is:

<form action= method= >
csrf_token
form
<input type= value= >
</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that {{ form }} by Django’s
template language.

Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request Forgeries. When submitting a form via POST
with CSRF protection enabled you must use the csrf_token template tag as in the preceding example. However,
since CSRF protection is not directly tied to forms in templates, this tag is omitted from the following examples in this
document.

244 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

HTMLS input types and browser validation

If your form includes a URLField, an EmailField or any integer field type, Django will use the url, email and
number HTMLS input types. By default, browsers may apply their own validation on these fields, which may be
stricter than Django’s validation. If you would like to disable this behavior, set the novalidate attribute on the form tag,
or specify a different widget on the field, like TextInput.

We now have a working web form, described by a Django Form, processed by a view, and rendered as an HTML
<form>.

That’s all you need to get started, but the forms framework puts a lot more at your fingertips. Once you understand the
basics of the process described above, you should be prepared to understand other features of the forms system and
ready to learn a bit more about the underlying machinery.

3.4.5 More about Django Form classes

All form classes are created as subclasses of either django. forms. Form or django. forms.ModelForm. You can
think of ModelForm as a subclass of Form. Form and ModelForm actually inherit common functionality from a
(private) BaseForm class, but this implementation detail is rarely important.

Models and Forms

In fact if your form is going to be used to directly add or edit a Django model, a ModelForm can save you a great deal of
time, effort, and code, because it will build a form, along with the appropriate fields and their attributes, from a Model
class.

Bound and unbound form instances

The distinction between Bound and unbound forms is important:

¢ An unbound form has no data associated with it. When rendered to the user, it will be empty or will contain
default values.

¢ A bound form has submitted data, and hence can be used to tell if that data is valid. If an invalid bound form is
rendered, it can include inline error messages telling the user what data to correct.

The form’s is_bound attribute will tell you whether a form has data bound to it or not.
More on fields

Consider a more useful form than our minimal example above, which we could use to implement “contact me” func-
tionality on a personal website:

Listing 12: forms.py

from django import forms

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField(widget=forms.Textarea)
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=False)

3.4. Working with forms 245

Django Documentation, Release 2.2.29.dev20220411083753

Our earlier form used a single field, your_name, a CharField. In this case, our form has four fields: subject,
message, sender and cc_myself. CharField, EmailField and BooleanField are just three of the available field
types; a full list can be found in Form fields.

Widgets

Each form field has a corresponding Widget class, which in turn corresponds to an HTML form widget such as <input
type="text">.

In most cases, the field will have a sensible default widget. For example, by default, a CharField will have a
TextInput widget, that produces an <input type="text"> in the HTML. If you needed <textarea> instead,
you’d specify the appropriate widget when defining your form field, as we have done for the message field.

Field data

Whatever the data submitted with a form, once it has been successfully validated by calling is_valid() (and
is_valid() has returned True), the validated form data will be in the form.cleaned_data dictionary. This data
will have been nicely converted into Python types for you.

Note: You can still access the unvalidated data directly from request.POST at this point, but the validated data is
better.

In the contact form example above, cc_mysel f will be a boolean value. Likewise, fields such as IntegerField and
FloatField convert values to a Python int and float respectively.

Here’s how the form data could be processed in the view that handles this form:

Listing 13: views.py

from django.core.mail import send_mail

if form.is_valid(Q):
subject = form.cleaned_data['subject']
message = form.cleaned_data['message']
sender = form.cleaned_data['sender']
cc_myself = form.cleaned_data['cc_myself']

recipients = ['info@example.com']
if cc_myself:
recipients.append(sender)

send_mail (subject, message, sender, recipients)
return HttpResponseRedirect('/thanks/")

Tip: For more on sending email from Django, see Sending email.

Some field types need some extra handling. For example, files that are uploaded using a form need to be handled
differently (they can be retrieved from request.FILES, rather than request.POST). For details of how to handle file
uploads with your form, see Binding uploaded files to a form.

246 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

3.4.6 Working with form templates

All you need to do to get your form into a template is to place the form instance into the template context. So if your
form is called form in the context, {{ form }} will render its <label> and <input> elements appropriately.

Form rendering options

Additional form template furniture

Don’t forget that a form’s output does not include the surrounding <form> tags, or the form’s submit control. You
will have to provide these yourself.

There are other output options though for the <label>/<input> pairs:
e {{ form.as_table }} will render them as table cells wrapped in <tr> tags
e {{ form.as_p }} will render them wrapped in <p> tags
e {{ form.as_ul }} will render them wrapped in <1i> tags

Note that you’ll have to provide the surrounding <table> or elements yourself.

Here’s the output of {{ form.as_p }} for our ContactForm instance:

<p><label for="id_subject">Subject:</label>
<input id="id_subject" type="text" name="subject" maxlength="100" required></p>
<p><label for="id_message'>Message:</label>
<textarea name="message" id="id_message" required></textarea></p>
<p><label for="id_sender">Sender:</label>
<input type="email" name="sender" id="id_sender" required></p>
<p><label for="id_cc_myself">Cc myself:</label>
<input type="checkbox" name="cc_myself" id="id_cc_myself"></p>

Note that each form field has an ID attribute set to id_<field-name>, which is referenced by the accompanying label
tag. This is important in ensuring that forms are accessible to assistive technology such as screen reader software. You
can also customize the way in which labels and ids are generated.

See Outputting forms as HTML for more on this.
Rendering fields manually
We don’t have to let Django unpack the form’s fields; we can do it manually if we like (allowing us to reorder the fields,

for example). Each field is available as an attribute of the form using {{ form.name_of_field }}, and in a Django
template, will be rendered appropriately. For example:

form.non_field_errors
<div class="fieldWrapper">
form.subject.errors
<label for=" form.subject.id_for_label ">Email subject:</label>
form.subject
</div>
<div class="fieldWrapper'">
form.message.errors
<label for=" form.message.id_for_label ">Your message:</label>

(continues on next page)

3.4. Working with forms 247

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

form.message
</div>
<div class="fieldWrapper">
form.sender.errors
<label for=" form.sender.id_for_label ">Your email address:</label>
form.sender
</div>
<div class="fieldlWirapper">
form.cc_myself.errors
<label for=" form.cc_myself.id_for_label ">CC yourself?</label>
form.cc_myself
</div>

Complete <label> elements can also be generated using the 1abel_tag (). For example:

<div class="fieldWrapper">
form.subject.errors
form.subject.label_tag
form.subject

</div>

Rendering form error messages

Of course, the price of this flexibility is more work. Until now we haven’t had to worry about how to display form
errors, because that’s taken care of for us. In this example we have had to make sure we take care of any errors for each
field and any errors for the form as a whole. Note {{ form.non_field_errors }} at the top of the form and the
template lookup for errors on each field.

Using {{ form.name_of_field.errors }} displays a list of form errors, rendered as an unordered list. This might
look like:

<ul class="errorlist">
Sender is required.</1i>

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize the display
of errors you can do so by looping over them:

if form.subject.errors

for error in form.subject.errors
 error|escape </1li>
endfor

endif

Non-field errors (and/or hidden field errors that are rendered at the top of the form when using helpers like form.
as_p()) will be rendered with an additional class of nonfield to help distinguish them from field-specific errors. For
example, {{ form.non_field_errors }} would look like:

248 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

<ul class= >
Generic validation error

See The Forms API for more on errors, styling, and working with form attributes in templates.

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through each
field in turn using a {% for %} loop:

for field in form

<div class= >
field.errors
field.label_tag field
if field.help_text
<p class= >{{ field.help_text|safe }}</p>
endif
</div>
endfor

Useful attributes on {{ field }} include:
{{ field.label }} The label of the field, e.g. Email address.

{{ field.label_tag }} The field’s label wrapped in the appropriate HTML <label> tag. This includes the form’s
label_suffix. For example, the default 1abel_suffix is a colon:

<label for= >Email address:</label>

{{ field.id_for_label }} The ID that will be used for this field (id_email in the example above). If you are
constructing the label manually, you may want to use this in lieu of label_tag. It’s also useful, for example, if
you have some inline JavaScript and want to avoid hardcoding the field’s ID.

{{ field.value }} The value of the field. e.g someone@example. com.

{{ field.html_name }} The name of the field that will be used in the input element’s name field. This takes the
form prefix into account, if it has been set.

{{ field.help_text }} Any help text that has been associated with the field.

{{ field.errors }} Outputsa<ul class="errorlist"> containing any validation errors corresponding to this
field. You can customize the presentation of the errors with a {% for error in field.errors %} loop. In
this case, each object in the loop is a simple string containing the error message.

{{ field.is_hidden }} This attribute is True if the form field is a hidden field and False otherwise. It’s not
particularly useful as a template variable, but could be useful in conditional tests such as:

if field.is_hidden

endif

{{ field.field }} The Field instance from the form class that this BoundField wraps. You can use it to access
Field attributes, e.g. {{ char_field.field.max_length }}.

See also:

For a complete list of attributes and methods, see BoundField.

3.4. Working with forms 249

Django Documentation, Release 2.2.29.dev20220411083753

Looping over hidden and visible fields

If you’re manually laying out a form in a template, as opposed to relying on Django’s default form layout, you might
want to treat <input type="hidden"> fields differently from non-hidden fields. For example, because hidden fields
don’t display anything, putting error messages ‘“next to” the field could cause confusion for your users — so errors for
those fields should be handled differently.

Django provides two methods on a form that allow you to loop over the hidden and visible fields independently:
hidden_fields() and visible_fields (). Here’s a modification of an earlier example that uses these two methods:

for hidden in form.hidden_fields
hidden
endfor

for field in form.visible_fields

<div class="fieldWrapper">
field.errors
field.label_tag field

</div>

endfor

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign of form
tampering, since normal form interaction won’t alter them. However, you could easily insert some error displays for
those form errors, as well.

Reusable form templates

If your site uses the same rendering logic for forms in multiple places, you can reduce duplication by saving the form’s
loop in a standalone template and using the incIlude tag to reuse it in other templates:

In your form template:
include "form_snippet.html"

In form_snippet.html:
for field in form
<div class="fieldWrapper">
field.errors
field.label_tag field
</div>
endfor

If the form object passed to a template has a different name within the context, you can alias it using the with argument
of the include tag:

include "form_snippet.html"” with form=comment_form

If you find yourself doing this often, you might consider creating a custom inclusion tag.

250 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

3.4.7 Further topics

This covers the basics, but forms can do a whole lot more:

Formsets

class BaseFormSet

A formset is a layer of abstraction to work with multiple forms on the same page. It can be best compared to a data
grid. Let’s say you have the following form:

>>> from django import forms

>>> class ArticleForm(forms.Form):
title = forms.CharField()
pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm you
would do:

>>> from django.forms import formset_factory
>>> ArticleFormSet = formset_factory(ArticleForm)

You now have created a formset class named ArticleFormSet. Instantiating the formset gives you the ability to iterate
over the forms in the formset and display them as you would with a regular form:

>>> formset = ArticleFormSet()

>>> for form in formset:

. (form.as_table())

<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
<"form-0-title" id="id_form-0-title"></td></tr>

<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text".
—name="form-0-pub_date" id="id_form-0-pub_date"></td></tr>

As you can see it only displayed one empty form. The number of empty forms that is displayed is controlled by the
extra parameter. By default, formset_factory () defines one extra form; the following example will create a formset
class to display two blank forms:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)

Iterating over a formset will render the forms in the order they were created. You can change this order by providing
an alternate implementation for the __iter__() method.

Formsets can also be indexed into, which returns the corresponding form. If you override __iter__, you will need to
also override __getitem__ to have matching behavior.

3.4. Working with forms 251

Django Documentation, Release 2.2.29.dev20220411083753

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of extra forms.
What this means is that you are telling the formset how many additional forms to show in addition to the number of
forms it generates from the initial data. Let’s take a look at an example:

>>> import datetime
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)
>>> formset = ArticleFormSet(initial=[
{'title': 'Django is now open source',
.. 'pub_date': datetime.date.today(Q),}

- D
>>> for form in formset:

print(form.as_table())

<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
—"form-0-title" value="Django is now open source" id="id_form-0-title"></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text".
—name="Fform-0-pub_date" value="2008-05-12" id="id_form-0-pub_date"></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name=
<"form-1-title" id="id_form-1-title"></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text".
—name="form-1-pub_date" id="id_form-1-pub_date"></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name=
<"form-2-title" id="id_form-2-title"></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text",
—name="form-2-pub_date" id="id_form-2-pub_date"></td></tr>

There are now a total of three forms showing above. One for the initial data that was passed in and two extra forms.
Also note that we are passing in a list of dictionaries as the initial data.

If youuse an initial for displaying a formset, you should pass the same initial when processing that formset’s sub-
mission so that the formset can detect which forms were changed by the user. For example, you might have something
like: ArticleFormSet (request.POST, initial=[...]).

See also:

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory() gives you the ability to limit the number of forms the formset will
display:

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2, max_num=1)

>>> formset = ArticleFormSet()

>>> for form in formset:

.. print(form.as_table())

<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name=
<"form-0-title" id="id_form-0-title"></td></tr>

(continues on next page)

252 Chapter 3. Using Django

Django Documentation, Release 2.2.29.dev20220411083753

(continued from previous page)

<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text".
—name="form-0-pub_date" id="id_form-0-pub_date"></td></tr>

If the value of max_num is greater than the number of existing items in the initial data, up to extra additional blank
forms will be added to the formset, so long as the total number of forms does not exceed max_num. For example, if
extra=2 and max_num=2 and the formset is initialized with one initial item, a form for the initial item and one
blank form will be displayed.

If the number of items in the initial data exceeds max_num, all initial data forms will be displayed regardless of the
value of max_num and no extra forms will be displayed. For example, if extra=3 and max_num=1 and the formset is
initialized with two initial items, two forms with the initial data will be displayed.

A max_num value of None (the default) puts a high limit on the number of forms displayed (1000). In practice this is
equivalent to no limit.

By default, max_num only affects how many forms are displayed and does not affect validation. If validate_max=True
is passed to the formset_factory (), then max_num will affect validation. See validate_max.

Formset validation

Validation with a formset is almost identical to a regular Form. There is an is_valid method on the formset to provide
a convenient way to validate all forms in the formset:

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> ArticleFormSet = formset_factory(ArticleForm)

>>> data = {
'form-TOTAL_FORMS': '1',
'form-INITIAL_FORMS': '0',
'form-MAX_NUM_FORMS': '',

}

>>> formset = ArticleFormSet(data)

>>> formset.is_valid()

True

We passed in no data to the formset which is resulting in a valid form. The formset is smart enough to i