Django Documentation
Release 2.1.16.dev20191202082911

Django Software Foundation

December 02, 2019

Contents

1 Django documentation 1
1.1 Gettinghelp o o . e e e e e e 1
1.2 How the documentation is organized 1
1.3 0 FIrstSteps . . . o v o o o e e e e e e e e e e e e e 2
1.4 Themodel layer e e 2
1.5 Theviewlayer e e e e 2
1.6 Thetemplate layer e e e e e e e e 2
1.7 Forms o . e e e e e e e e e e e e e e e 3
1.8 The development proCess o o v vt i e e e 3
1.9 Theadmin e e 3
110 Security o o o e e e e e e e e 3
1.11 Internationalization and localization e 4
1.12 Performance and optimization it i e e e e e e e e e e e 4
1.13 Geographic framework oL 4
1.14 Common Web application tools e 4
1.15 Other core functionalities e e e e e 4
1.16 The Django open-source project v v v v v v v v v e e e e e e e e e e e e e e e 5

2 Getting started 7
2.1 Djangoataglance e e e 7
2.2 Quickinstall guide L e e e e e e e 12
2.3 Writing your first Django app, part I oL e e 13
2.4 Writing your first Django app, part 2 L L e e e e e e e e e e 19
2.5 Writing your first Django app, part 3 L L. L. e 31
2.6 Writing your first Django app, part4 L L. L e e 37
2.7 Writing your first Django app, partS e e e e e e e e e e e e 42
2.8 Writing your first Django app, part 6 L e e e e e e e e e e 52
2.9 Writing your first Django app, part 7o e e e e e e e e 54
2.10 Advanced tutorial: How to write reusable apps Lo o 64
2.11 Whattoread nexXt. e e e e 69
2.12 Writing your first patch for Django e 72

3 Using Django 81
3.1 Howtoinstall Django L 81
3.2 Modelsand databases e e e e e e e e e 84
3.3 Handling HTTP requests o o v it e 186
34 Working withforms e 227

35

3.6

3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Templates o . e e e e e e e e e e e e e e e
Class-based VIEWS o i i e e e e e e e e
Migrations v v e
Managing fileso
Testingin Django L L e
User authenticationin Django
Django’s cache framework L e e e
Conditional View Processing o i e e e e e
Cryptographic SIgning o i e e e e e e e e e e
Sending email L L e e e e e
Internationalization and localization L e
Logging o e e e e e e e e
Pagination L L e e e e
Security in Django oL e e e e e e e e
Performance and optimization L L oL o e e e e e e
Serializing Django objects L. e
Django Settingso e e e e e e e e
Signals . . . L e e e e e e e e e e e
System check framework L
External packages L e

“How-to”” guides

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Authentication using REMOTE_USER o vt v vt ittt e e et e e e e
Writing custom django—admincommands Lo e e
Writing custom model fields L
Custom Lookups o e e e e e e e e e e
Custom template tags and filters L e e e
Writing a custom Storage SYSteM v . v v i e e e e e e e e e e e e e e e e e e e
Deploying Django
Upgrading Django to @ NEWEr VEISION v v v v v vt e it e e e e e e e e e e
Error reporting e e e
Providing initial data formodels L. L e e
DjangoonlJython e e e e e
Integrating Django with a legacy database L ...
Outputting CSV with Django L e
Outputting PDFs with Django e
Overriding templates o v e e e e e e e e e e e e e e e e e e
Managing static files (e.g. images, JavaScript, CSS) o
Deploying static files e e e
How to install Django on Windows L e e
Writing database migrations L. L e e e e

Django FAQ

5.1
52
53
54
5.5
5.6
5.7
5.8

FAQ: General e e e e
FAQ: Installation e e e e e
FAQ: Using Django o i i e e e e e e e e e e
FAQ: Getting Help o e e e e e
FAQ: Databases and models e e e e
FAQ: Theadmin e e e e e e e e e e e e e e
FAQ: Contributing code e
Troubleshooting L e e

API Reference

6.1

Applications e e

539
539
541
546
556
561
577
579
591
593
597
598
598
599
602
603
605
607
609
610

617
617
620
621
622
623
624
626
627

629

10

11

6.2 Systemcheck framework L e e e
6.3 Built-in class-based views APL L
6.4 Clickjacking Protection o 0 e e e e e
6.5 contribpackages e
6.6 Cross Site Request Forgery protection e
6.7 Databases e e
6.8 django—admin and manage .Py . « . v v v v v i e e e e e e e e e e e e e e e
6.9 Running management commands fromyourcode oL oL
6.10 Django EXceptions L L e e e e e e e e
6.11 Filehandling L e e e e e
6.12 Forms L e e e e e e e
6.13 Middleware e e e e
6.14 Migration OperationS v v v v e
6.15 Models e
6.16 Request and 1esponse ObJECES oL i e e e e e e e e e e e e e e e e
6.17 SchemaEditor v i i i e e e e e e e e e e e e e
6.18 Settings e e e e e
6.19 Signals L e e e e e e e e e
6.20 Templates oL e e e e e e e e e e e e e e e
6.21 TemplateResponse and SimpleTemplateResponse oo v v .
6.22 Unicodedata L e e e e e e e e e e e
6.23 django.urlsutility functions
6.24 django.urls functions forusein URLconfs
6.25 django.conf.urls functions forusein URLconfs
6.26 Django Utils L e e e e e e e
6.27 Validators e e e e e e e e e e e
6.28 Built-in VIEWS L e e e

Meta-documentation and miscellany

7.1 APIstability
7.2 Designphilosophies e e
7.3 Third-party distributions of Django L. L e e e e

Glossary

Release notes
9.1 Finalreleases e e e e e
0.2 Securityreleases e e

Django internals

10.1 Contributing to Django L e e e e e e
10.2 Mailing Lists o e e e e e e
10.3 Organization of the Django Project e
10.4 Django’s security poliCies o vt i e e e e e e e e e e e e
10.5 Django’srelease processt . i e e e e e e e e e e e e e
10.6 Django Deprecation Timeline e e
10.7 The Django source code repository o ot v bt e e e e e e e e
10.8 Howis Django Formed? e

Indices, glossary and tables

Python Module Index

Index

1094
1101

1322
1385

CHAPTER 1

Django documentation

Everything you need to know about Django.

1.1 Getting help

Having trouble? We’d like to help!
e Try the FAQ —it’s got answers to many common questions.
* Looking for specific information? Try the genindex, modindex or the detailed table of contents.
* Search for information in the archives of the django-users mailing list, or post a question.
* Ask a question in the #django IRC channel.

* Report bugs with Django in our ticket tracker.

1.2 How the documentation is organized

Django has a lot of documentation. A high-level overview of how it’s organized will help you know where to look for
certain things:

 Tutorials take you by the hand through a series of steps to create a Web application. Start here if you’re new to
Django or Web application development. Also look at the “First steps” below.

* Topic guides discuss key topics and concepts at a fairly high level and provide useful background information
and explanation.

* Reference guides contain technical reference for APIs and other aspects of Django’s machinery. They describe
how it works and how to use it but assume that you have a basic understanding of key concepts.

* How-to guides are recipes. They guide you through the steps involved in addressing key problems and use-cases.
They are more advanced than tutorials and assume some knowledge of how Django works.

https://groups.google.com/d/forum/django-users
irc://irc.freenode.net/django
https://code.djangoproject.com/

Django Documentation, Release 2.1.16.dev20191202082911

1.3

First steps

Are you new to Django or to programming? This is the place to start!

1.4

From scratch: Overview | Installation

Tutorial: Part 1: Requests and responses | Part 2: Models and the admin site | Part 3: Views and templates |
Part 4: Forms and generic views | Part 5: Testing | Part 6. Static files | Part 7: Customizing the admin site

Advanced Tutorials: How to write reusable apps | Writing your first patch for Django

The model layer

Django provides an abstraction layer (the “models”) for structuring and manipulating the data of your Web application.
Learn more about it below:

1.5

Models: Introduction to models | Field types | Indexes | Meta options | Model class

QuerySets: Making queries | QuerySet method reference | Lookup expressions

Model instances: [nstance methods | Accessing related objects

Migrations: Introduction to Migrations | Operations reference | SchemaEditor | Writing migrations

Advanced: Managers | Raw SQL | Transactions | Aggregation | Search | Custom fields | Multiple databases |
Custom lookups | Query Expressions | Conditional Expressions | Database Functions

Other: Supported databases | Legacy databases | Providing initial data | Optimize database access | PostgreSQL
specific features

The view layer

Django has the concept of “views” to encapsulate the logic responsible for processing a user’s request and for returning
the response. Find all you need to know about views via the links below:

1.6

The basics: URLconfs | View functions | Shortcuts | Decorators
Reference: Built-in Views | Request/response objects | TemplateResponse objects
File uploads: Overview | File objects | Storage API | Managing files | Custom storage

Class-based views: Overview | Built-in display views | Built-in editing views | Using mixins | API reference |
Flattened index

Advanced: Generating CSV | Generating PDF

Middleware: Overview | Built-in middleware classes

The template layer

The template layer provides a designer-friendly syntax for rendering the information to be presented to the user. Learn
how this syntax can be used by designers and how it can be extended by programmers:

The basics: Overview

For designers: Language overview | Built-in tags and filters | Humanization

Chapter 1. Django documentation

Django Documentation, Release 2.1.16.dev20191202082911

e For programmers: Template API | Custom tags and filters

1.7 Forms

Django provides a rich framework to facilitate the creation of forms and the manipulation of form data.
¢ The basics: Overview | Form API | Built-in fields | Built-in widgets

e Advanced: Forms for models | Integrating media | Formsets | Customizing validation

1.8 The development process

Learn about the various components and tools to help you in the development and testing of Django applications:
o Settings: Overview | Full list of settings
* Applications: Overview
¢ Exceptions: Overview
¢ django-admin and manage.py: Overview | Adding custom commands
 Testing: Introduction | Writing and running tests | Included testing tools | Advanced topics

* Deployment: Overview | WSGI servers | Deploying static files | Tracking code errors by email

1.9 The admin

Find all you need to know about the automated admin interface, one of Django’s most popular features:
* Admin site
* Admin actions

e Admin documentation generator

1.10 Security

Security is a topic of paramount importance in the development of Web applications and Django provides multiple
protection tools and mechanisms:

* Security overview

* Disclosed security issues in Django

* Clickjacking protection

* Cross Site Request Forgery protection
* Cryptographic signing

o Security Middleware

1.7. Forms 3

Django Documentation, Release 2.1.16.dev20191202082911

1.11 Internationalization and localization

Django offers a robust internationalization and localization framework to assist you in the development of applications
for multiple languages and world regions:

e Overview | Internationalization | Localization | Localized Web Ul formatting and form input

e Time zones

1.12 Performance and optimization

There are a variety of techniques and tools that can help get your code running more efficiently - faster, and using
fewer system resources.

* Performance and optimization overview

1.13 Geographic framework

GeoDjango intends to be a world-class geographic Web framework. Its goal is to make it as easy as possible to build
GIS Web applications and harness the power of spatially enabled data.

1.14 Common Web application tools

Django offers multiple tools commonly needed in the development of Web applications:

¢ Authentication: Overview | Using the authentication system | Password management | Customizing authentica-
tion | API Reference

e Caching

* Logging

» Sending emails

» Syndication feeds (RSS/Atom)
* Pagination

* Messages framework

e Serialization

o Sessions

» Sitemaps

e Static files management

e Data validation

1.15 Other core functionalities

Learn about some other core functionalities of the Django framework:

* Conditional content processing

4 Chapter 1. Django documentation

Django Documentation, Release 2.1.16.dev20191202082911

e Content types and generic relations
* Flatpages

* Redirects

» Signals

* System check framework

e The sites framework

* Unicode in Django

1.16 The Django open-source project

Learn about the development process for the Django project itself and about how you can contribute:

o Community: How to get involved | The release process | Team organization | The Django source code repository
| Security policies | Mailing lists

 Design philosophies: Overview
¢ Documentation: About this documentation
* Third-party distributions: Overview

* Django over time: AP/ stability | Release notes and upgrading instructions | Deprecation Timeline

1.16. The Django open-source project 5

Django Documentation, Release 2.1.16.dev20191202082911

6 Chapter 1. Django documentation

CHAPTER 2

Getting started

New to Django? Or to Web development in general? Well, you came to the right place: read this material to quickly
get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common Web-
development tasks fast and easy. Here’s an informal overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this isn’t
intended to be a tutorial or reference — but we’ve got both! When you’re ready to start a project, you can start with the
tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you describe
your database layout in Python code.

The data-model syntax offers many rich ways of representing your models — so far, it’s been solving many years’
worth of database-schema problems. Here’s a quick example:

Listing 1: mysite/news/models.py

from django.db import models

class Reporter (models.Model) :
full_name = models.CharField(max_length=70)

def str () :
return .full_name

class Article (models.Model) :

(continues on next page)

https://en.wikipedia.org/wiki/Object-relational_mapping

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

pub_date models.DateField ()

headline = models.CharField (max_length=200)

content = models.TextField()

reporter = models.ForeignKey (Reporter, on_delete=models.CASCADE)

def _ str ()t
return .headline

2.1.2 Install it

Next, run the Django command-line utility to create the database tables automatically:

S python manage.py migrate

The migrate command looks at all your available models and creates tables in your database for whichever tables
don’t already exist, as well as optionally providing much richer schema control.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code generation
necessary:

>>> from news.models import Article, Reporter

>>> Reporter.objects.all()
<QuerySet []>

>>> r = Reporter (full_name='John Smith")

>>> r.save ()

>>> r.id

>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

>>> r.full_name

'"John Smith'

>>> Reporter.objects.get (id=1)

<Reporter: John Smith>

>>> Reporter.objects.get (full_name__startswith='John")
<Reporter: John Smith>

>>> Reporter.objects.get (full_name__ contains='mith')

(continues on next page)

8 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

<Reporter: John Smith>
>>> Reporter.objects.get (1id=2)
Traceback (most recent call last):

DoesNotExist: Reporter matching query does not exist.

>>> from datetime import date

>>> a = Article (pub_date=date.today (), headline='Djangc
content='Yeah.', reporter=r)

>>> a.save ()

>>> Article.objects.all()
<QuerySet [<Article: Django is cool>]>

>>> r = a.reporter
>>> r.full_name

'John Smith'

>>> r.article_set.all()
<QuerySet [<Article: Django is cool>]>

>>> Article.objects.filter (reporter___full name__startswith='John')

<QuerySet [<Article: Django is cool>]>

>>> r.full _name = 'Bill Goat'
>>> r.save ()

>>> r.delete()

2.1.4 A dynamic admin interface: it’s not just scaffolding — it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administrative inter-
Jace — a website that lets authenticated users add, change and delete objects. It’s as easy as registering your model in

the admin site:

Listing 2: mysite/news/models.py

from django.db import models

class Article (models.Model) :
pub_date = models.DateField()
headline = models.CharField (max_length=200)
content = models.TextField()

reporter = models.ForeignKey (Reporter, on_delete=models.CASCADE)

2.1. Django at a glance

Django Documentation, Release 2.1.16.dev20191202082911

Listing 3: mysite/news/admin.py

from django.contrib import admin
from . import models

admin.site.register (models.Article)

The philosophy here is that your site is edited by a staff, or a client, or maybe just you — and you don’t want to have to
deal with creating backend interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as fast as
possible, so your staff (or clients) can start populating data. Then, develop the way data is presented to the public.

2.1.5 Design your URLs
A clean, elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and doesn’t put any cruft in URLs, like . php or . asp.

To design URLSs for an app, you create a Python module called a URLconf. A table of contents for your app, it contains
a simple mapping between URL patterns and Python callback functions. URLconfs also serve to decouple URLSs from
Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

Listing 4: mysite/news/urls.py

from django.urls import path

from . import views

urlpatterns = [
path (, views.year_archive),
path (, views.month_archive),
path (, views.article_detail),

The code above maps URL paths to Python callback functions (‘“views”). The path strings use parameter tags to
“capture” values from the URLs. When a user requests a page, Django runs through each path, in order, and stops at
the first one that matches the requested URL. (If none of them matches, Django calls a special-case 404 view.) This is
blazingly fast, because the paths are compiled into regular expressions at load time.

Once one of the URL patterns matches, Django calls the given view, which is a Python function. Each view gets
passed a request object — which contains request metadata — and the values captured in the pattern.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django would call the function news .views.
article_detail (request, year=2005, month=5, pk=39323).

2.1.6 Write your views
Each view is responsible for doing one of two things: Returning an At tpResponse object containing the content
for the requested page, or raising an exception such as Http404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with the
retrieved data. Here’s an example view for year_archive from above:

10 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

Listing 5: mysite/news/views.py

from django.shortcuts import render
from .models import Article

def year_archive (request, year):
a_list = Article.objects.filter (pub_date__year=year)
context = {'year': year, 'article list': a_list}
return render (request, 'news/year_archive.html', context)

This example uses Django’s template system, which has several powerful features but strives to stay simple enough
for non-programmers to use.

2.1.7 Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your Django
settings, you specify a list of directories to check for templates with DTRS. If a template doesn’t exist in the first
directory, it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that might look like:

Listing 6: mysite/news/templates/news/year_archive.html

extends "base.html"
block title Articles for year endblock

block content
<hl>Articles for year </hl>

for article in article_ list
<p> article.headline </p>

<p>By article.reporter.full_name </p>
<p>Published article.pub_date|date:"r 7, Y" </p>
endfor
endblock

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the
article’s headline attribute.” But dots aren’t used only for attribute lookup. They also can do dictionary-key lookup,
index lookup and function calls.

Note {{ article.pub_datel|date:"F j, Y" }} usesa Unix-style “pipe” (the “I” character). This is called
a template filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python datetime
object in the given format (as found in PHP’s date function).

You can chain together as many filters as you’d like. You can write custom template filters. You can write custom
template tags, which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the {$ extends "base.html" %}
does. It means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks with
the following blocks.” In short, that lets you dramatically cut down on redundancy in templates: each template has to
define only what’s unique to that template.

Here’s what the “base.html” template, including the use of static files, might look like:

2.1. Django at a glance 11

Django Documentation, Release 2.1.16.dev20191202082911

Listing 7: mysite/templates/base.html

load static

<html>
<head>

<title> block title endblock </title>
</head>
<body>

block content endblock

</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child templates to
fill. This makes a site redesign as easy as changing a single file — the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child templates. Django’s
creators have used this technique to create strikingly different mobile versions of sites — simply by creating a new base
template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s template
system is particularly well-integrated with Django’s model layer, nothing forces you to use it. For that matter, you
don’t have to use Django’s database API, either. You can use another database abstraction layer, you can read XML
files, you can read files off disk, or anything you want. Each piece of Django — models, views, templates — is decoupled
from the next.

2.1.8 This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful features:
* A caching framework that integrates with memcached or other backends.
* A syndication framework that makes creating RSS and Atom feeds as easy as writing a small Python class.
* More sexy automatically-generated admin features — this overview barely scratched the surface.

The next obvious steps are for you to download Django, read the tutorial and join the community. Thanks for your
interest!

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers all
the possibilities; this guide will guide you to a simple, minimal installation that’ll work while you walk through the
introduction.

2.2.1 Install Python

Being a Python Web framework, Django requires Python. See What Python version can I use with Django? for details.
Python includes a lightweight database called SQLite so you won’t need to set up a database just yet.

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s package man-
ager.

You can verify that Python is installed by typing python from your shell; you should see something like:

12 Chapter 2. Getting started

https://www.djangoproject.com/download/
https://www.djangoproject.com/community/
https://sqlite.org/
https://www.python.org/downloads/

Django Documentation, Release 2.1.16.dev20191202082911

Python 3.x.y

[GCC 4.x] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

2.2.2 Set up a database

This step is only necessary if you’d like to work with a “large” database engine like PostgreSQL, MySQL, or Oracle.
To install such a database, consult the database installation information.

2.2.3 Install Django

You’ve got three easy options to install Django:
e Install an official release. This is the best approach for most users.
* Install a version of Django provided by your operating system distribution.

e Install the latest development version. This option is for enthusiasts who want the latest-and-greatest features
and aren’t afraid of running brand new code. You might encounter new bugs in the development version, but
reporting them helps the development of Django. Also, releases of third-party packages are less likely to be
compatible with the development version than with the latest stable release.

Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in development
version. That phrase flags features that are only available in development versions of Django, and they likely won’t
work with an official release.

2.2.4 Verifying
To verify that Django can be seen by Python, type python from your shell. Then at the Python prompt, try to import
Django:

>>> import django
>>> print (django.get_version())
2.1

You may have another version of Django installed.

2.2.5 That’s it!

That’s it — you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.
Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

It’1] consist of two parts:

2.3. Writing your first Django app, part 1 13

Django Documentation, Release 2.1.16.dev20191202082911

* A public site that lets people view polls and vote in them.
* An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which version by running the
following command in a shell prompt (indicated by the $ prefix):

$ python -m django —-version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No module
named django”.

This tutorial is written for Django 2.1, which supports Python 3.5 and later. If the Django version doesn’t match, you
can refer to the tutorial for your version of Django by using the version switcher at the bottom right corner of this
page, or update Django to the newest version. If you’re using an older version of Python, check What Python version
can I use with Django? to find a compatible version of Django.

See How to install Django for advice on how to remove older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on
irc.freenode.net to chat with other Django users who might be able to help.

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-
generate some code that establishes a Django project — a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the following command:

S django-admin startproject mysite

This will create a mysite directory in your current directory. If it didn’t work, see Problems running django-admin.

Note: You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means
you should avoid using names like d jango (which will conflict with Django itself) or test (which conflicts with a
built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks), you’re probably used to putting code
under the Web server’s document root (in a place such as /var/www). With Django, you don’t do that. It’s not a
good idea to put any of this Python code within your Web server’s document root, because it risks the possibility that
people may be able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home /mycode.

Let’s look at what startpro ject created:

14 Chapter 2. Getting started

irc://irc.freenode.net/django
irc://irc.freenode.net/django

Django Documentation, Release 2.1.16.dev20191202082911

mysite/
manage.py
mysite/
__init__ .py
settings.py
urls.py
wsgi.py

These files are:

* The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you
can rename it to anything you like.

* manage.py: A command-line utility that lets you interact with this Django project in various ways. You can
read all the details about manage . py in django-admin and manage.py.

* The inner mysite/ directory is the actual Python package for your project. Its name is the Python package
name you’ll need to use to import anything inside it (e.g. mysite.urls).

e mysite/__init__ .py: An empty file that tells Python that this directory should be considered a Python
package. If you’re a Python beginner, read more about packages in the official Python docs.

* mysite/settings.py: Settings/configuration for this Django project. Django settings will tell you all
about how settings work.

e mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-
powered site. You can read more about URLSs in URL dispatcher.

* mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See How to
deploy with WSGI for more details.

2.3.2 The development server

Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already, and run the
following commands:

$ python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...
System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are
—applied.
Run 'python manage.py migrate' to apply them.

December 02, 2019 - 15:50:53

Django version 2.1, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note: Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

2.3. Writing your first Django app, part 1 15

https://docs.python.org/3/tutorial/modules.html#tut-packages
http://127.0.0.1:8000/

Django Documentation, Release 2.1.16.dev20191202082911

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this
with Django so you can develop things rapidly, without having to deal with configuring a production server — such as
Apache — until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s intended only
for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Congratulations!”
page, with a rocket taking off. It worked!

Changing the port
By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

’$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For example, to listen on all available public IPs
(which is useful if you are running Vagrant or want to show off your work on other computers on the network), use:

’$ python manage.py runserver 0:8000

0 is a shortcut for 0.0.0.0. Full docs for the development server can be found in the runserver reference.

Automatic reloading of runserver

The development server automatically reloads Python code for each request as needed. You don’t need to restart the
server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

2.3.3 Creating the Polls app

Now that your environment — a “project” — is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django comes
with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What'’s the difference between a project and an app? An app is a Web application that does something — e.g., a Weblog
system, a database of public records or a simple poll app. A project is a collection of configuration and apps for a
particular website. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app right next to your manage .
py file so that it can be imported as its own top-level module, rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage . py and type this command:

$ python manage.py startapp polls

That’ll create a directory pol1ls, which is laid out like this:

16 Chapter 2. Getting started

http://127.0.0.1:8000/
https://docs.python.org/3/tutorial/modules.html#tut-searchpath

Django Documentation, Release 2.1.16.dev20191202082911

polls/
__init__ .py
admin.py
apps.py
migrations/
__init__ .py

models.py
tests.py
views.py

This directory structure will house the poll application.

2.3.4 Write your first view
Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

Listing 8: polls/views.py

from django.http import HttpResponse

def index (request):
return HttpResponse ()

This is the simplest view possible in Django. To call the view, we need to map it to a URL - and for this we need a
URLconf.

To create a URLconf in the polls directory, create a file called urls.py. Your app directory should now look like:

polls/
__init__ .py
admin.py
apps.py
migrations/
__init__ .py

models.py
tests.py
urls.py
views.py

In the polls/urls.py file include the following code:

Listing 9: polls/urls.py

from django.urls import path
from . import views
urlpatterns = [

path('', views.index, name=),

]

The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for
django.urls.include and insert an include () inthe urlpatterns list, so you have:

2.3. Writing your first Django app, part 1 17

Django Documentation, Release 2.1.16.dev20191202082911

Listing 10: mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path('polls/", include('polls.urls')),
path('admin/', admin.site.urls),

The include () function allows referencing other URLconfs. Whenever Django encounters include (), it chops
off whatever part of the URL matched up to that point and sends the remaining string to the included URLconf for
further processing.

The idea behind include () is to make it easy to plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any
other path root, and the app will still work.

When to use include ()

You should always use include () when you include other URL patterns. admin.site.urls is the only excep-
tion to this.

You have now wired an index view into the URLconf. Lets verify it’s working, run the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You're at the polls
index.”, which you defined in the index view.

Page not found?

If you get an error page here, check that you’re going to http://localhost:8000/polls/ and not http://localhost:8000/.

The path () function is passed four arguments, two required: route and view, and two optional: kwargs, and
name. At this point, it’s worth reviewing what these arguments are for.

path () argument: route

route is a string that contains a URL pattern. When processing a request, Django starts at the first pattern in
urlpatterns and makes its way down the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example, in a request to https://www.
example.com/myapp/, the URLconf will look for myapp/. In a request to https://www.example.com/
myapp/ ?prage=3, the URLconf will also look for myapp/.

path () argument: view

When Django finds a matching pattern, it calls the specified view function with an Ht t pRequest object as the first
argument and any “captured” values from the route as keyword arguments. We’ll give an example of this in a bit.

18 Chapter 2. Getting started

http://localhost:8000/polls/
http://localhost:8000/polls/
http://localhost:8000/

Django Documentation, Release 2.1.16.dev20191202082911

path () argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We aren’t going to use this feature of
Django in the tutorial.

path () argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django, especially from within templates.
This powerful feature allows you to make global changes to the URL patterns of your project while only touching a
single file.

When you’re comfortable with the basic request and response flow, read part 2 of this tutorial to start working with
the database.

2.4 Writing your first Django app, part 2

This tutorial begins where Turorial 1 left off. We’ll setup the database, create your first model, and get a quick
introduction to Django’s automatically-generated admin site.

2.4.1 Database setup

Now, open up mysite/settings.py. It’s a normal Python module with module-level variables representing
Django settings.

By default, the configuration uses SQLite. If you’re new to databases, or you’re just interested in trying Django, this is
the easiest choice. SQLite is included in Python, so you won’t need to install anything else to support your database.
When starting your first real project, however, you may want to use a more scalable database like PostgreSQL, to avoid
database-switching headaches down the road.

If you wish to use another database, install the appropriate database bindings and change the following keys in the
DATABASES 'default' item to match your database connection settings:

* ENGINE — FEither 'django.db.backends.sglite3', 'django.db.backends.postgresql’,
'django.db.backends.mysqgl', or 'django.db.backends.oracle'. Other backends are also
available.

* NAME — The name of your database. If you're using SQLite, the database will be a file on your computer; in
that case, NAME should be the full absolute path, including filename, of that file. The default value, os .path.
join (BASE_DIR, 'db.sglite3'), will store the file in your project directory.

If you are not using SQLite as your database, additional settings such as USER, PASSWORD, and HOS T must be added.
For more details, see the reference documentation for DATABASES.

For databases other than SQLite

If you’re using a database besides SQLite, make sure you’ve created a database by this point. Do that with “CREATE
DATABASE database_name;” within your database’s interactive prompt.

Also make sure that the database user provided in mysite/settings.py has “create database” privileges. This
allows automatic creation of a test database which will be needed in a later tutorial.

If you’re using SQLite, you don’t need to create anything beforehand - the database file will be created automatically
when it is needed.

2.4. Writing your first Django app, part 2 19

Django Documentation, Release 2.1.16.dev20191202082911

While you're editing mysite/settings.py, set TTME_ZONE to your time zone.

Also, note the TNSTALLED_APPS setting at the top of the file. That holds the names of all Django applications that
are activated in this Django instance. Apps can be used in multiple projects, and you can package and distribute them
for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:
* django.contrib.admin— The admin site. You’ll use it shortly.
* django.contrib.auth— An authentication system.
* django.contrib.contenttypes — A framework for content types.
e django.contrib.sessions — A session framework.
* django.contrib.messages — A messaging framework.
* django.contrib.staticfiles— A framework for managing static files.
These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though, so we need to create the tables in the
database before we can use them. To do that, run the following command:

$ python manage.py migrate

The migrate command looks atthe TNSTALLED_APPS setting and creates any necessary database tables according
to the database settings in your mysite/settings. py file and the database migrations shipped with the app (we’ll
cover those later). You’ll see a message for each migration it applies. If you’re interested, run the command-line
client for your database and type \dt (PostgreSQL), SHOW TABLES; (MySQL), . schema (SQLite), or SELECT
TABLE_NAME FROM USER_TABLES; (Oracle) to display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs them. If you
don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from INSTALLED APPS
before running migrate. The migrate command will only run migrations for apps in INSTALLED APPS.

2.4.2 Creating models

Now we’ll define your models — essentially, your database layout, with additional metadata.

Philosophy

A model is the single, definitive source of truth about your data. It contains the essential fields and behaviors of
the data you’re storing. Django follows the DRY Principle. The goal is to define your data model in one place and
automatically derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are entirely derived from your models
file, and are essentially just a history that Django can roll through to update your database schema to match your
current models.

In our simple poll app, we’ll create two models: Question and Choice. A Question has a question and a
publication date. A Choice has two fields: the text of the choice and a vote tally. Each Choice is associated with a
Question.

These concepts are represented by simple Python classes. Edit the polls/models.py file so it looks like this:

20 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

Listing 11: polls/models.py

from django.db import models

class Question (models.Model) :
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published")

class Choice (models.Model) :
question = models.ForeignKey (Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

The code is straightforward. Each model is represented by a class that subclasses d jango.db.models.Model.
Each model has a number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class — e.g.,, CharField for character fields and
DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in machine-friendly
format. You’ll use this value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable name. That’s used
in a couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided, Django
will use the machine-readable name. In this example, we’ve only defined a human-readable name for Question.
pub_date. For all other fields in this model, the field’s machine-readable name will suffice as its human-readable
name.

Some F'ield classes have required arguments. CharField, for example, requires that you give it a max_ length.
That’s used not only in the database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in this case, we’ve set the default value of votes to 0.

Finally, note a relationship is defined, using ForeignKey. That tells Django each Choice is related to a single
Question. Django supports all the common database relationships: many-to-one, many-to-many, and one-to-one.

2.4.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:
* Create a database schema (CREATE TABLE statements) for this app.
* Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the pol1ls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps, because they don’t
have to be tied to a given Django installation.

To include the app in our project, we need to add a reference to its configuration class in the TNSTALLED APPS
setting. The PollsConfig class is in the polls/apps.py file, so its dotted path is 'polls.apps.
PollsConfig'. Editthemysite/settings.py file and add that dotted path to the TNSTALLED_ APPS setting.
It’1l look like this:

2.4. Writing your first Django app, part 2 21

Django Documentation, Release 2.1.16.dev20191202082911

Listing 12: mysite/settings.py

INSTALLED_APPS = [

Now Django knows to include the pol1ls app. Let’s run another command:

S python manage.py makemigrations polls

You should see something similar to the following:

Migrations for 'polls':
polls/migrations/0001_initial.py:
- Create model Choice
— Create model Question
- Add field question to choice

By running makemigrations, you're telling Django that you’ve made some changes to your models (in this case,
you’ve made new ones) and that you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your database schema) - they’re just files on disk.
You can read the migration for your new model if you like; it’s the file polls/migrations/0001_initial.py.
Don’t worry, you’re not expected to read them every time Django makes one, but they’re designed to be human-editable
in case you want to manually tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema automatically - that’s
called migrate, and we’ll come to it in a moment - but first, let’s see what SQL that migration would run. The
sglmigrate command takes migration names and returns their SQL:

S python manage.py sglmigrate polls 0001

You should see something similar to the following (we’ve reformatted it for readability):

BEGIN;

CREATE TABLE (
NOT NULL PRIMARY KEY,
(200) NOT NULL,
NOT NULL

CREATE TABLE (
NOT NULL PRIMARY KEY,
(200) NOT NULL,
timestamp with time zone NOT NULL

(continues on next page)

22 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

ALTER TABLE ADD COLUMN NOT NULL;
ALTER TABLE ALTER COLUMN DROP DEFAULT;
CREATE INDEX ON ()

ALTER TABLE
ADD CONSTRAINT
FOREIGN KEY ()
REFERENCES ()
DEFERRABLE INITIALLY DEFERRED;

COMMIT;

Note the following:

* The exact output will vary depending on the database you are using. The example above is generated for
PostgreSQL.

* Table names are automatically generated by combining the name of the app (pol1ls) and the lowercase name
of the model — question and choice. (You can override this behavior.)

* Primary keys (IDs) are added automatically. (You can override this, too.)
* By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as well.)

* The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the
DEFERRABLE parts; that’s just telling PostgreSQL to not enforce the foreign key until the end of the trans-
action.

* It’s tailored to the database you’re using, so database-specific field types such as aut o_increment (MySQL),
serial (PostgreSQL), or integer primary key autoincrement (SQLite) are handled for you au-
tomatically. Same goes for the quoting of field names — e.g., using double quotes or single quotes.

* The sgimigrate command doesn’t actually run the migration on your database - it just prints it to the screen
so that you can see what SQL Django thinks is required. It’s useful for checking what Django is going to do or
if you have database administrators who require SQL scripts for changes.

If you’re interested, you can also run python manage.py check; this checks for any problems in your project
without making migrations or touching the database.

Now, run migrate again to create those model tables in your database:

S python manage.py migrate

rations to perform:

7 all migrations: admin, auth, contenttypes, polls,

dering

ying polls. OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are applied us-
ing a special table in your database called d jango_migrations) and runs them against your database - essentially,
synchronizing the changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need
to delete your database or tables and make new ones - it specializes in upgrading your database live, without losing
data. We’ll cover them in more depth in a later part of the tutorial, but for now, remember the three-step guide to
making model changes:

* Change your models (in models.py).

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 2.1.16.dev20191202082911

* Run python manage.py makemigrations to create migrations for those changes
* Run python manage.py migrate to apply those changes to the database.

The reason that there are separate commands to make and apply migrations is because you’ll commit migrations to
your version control system and ship them with your app; they not only make your development easier, they’re also
usable by other developers and in production.

Read the django-admin documentation for full information on what the manage . py utility can do.

2.4.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To invoke the
Python shell, use this command:

S python manage.py shell

We’re using this instead of simply typing “python”, because manage . py sets the DOANGO_SETTINGS_MODULE
environment variable, which gives Django the Python import path to your mysite/settings.py file.

Once you're in the shell, explore the database API:

>>> from polls.models import Choice, Question # Import the model classes we

—wrote.

No questions are in the system yet.
>>> Question.objects.all()

<QuerySet []>

Create a new Question.

Support for time zones is enabled in the default settings file, so

Django expects a datetime with tzinfo for pub_date. Use timezone.now ()
instead of datetime.datetime.now() and it will do the right thing.

>>> from django.utils import timezone

>>> g = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.
>>> g.save ()

Now it has an ID.

>>> g.id

1

Access model field values via Python attributes.
>>> g.question_text

"What's new?"

>>> q.pub_date

datetime.datetime (2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save() .
>>> g.question_text = "What's up?"

>>> g.save ()

objects.all() displays all the questions in the database.

>>> Question.objects.all()

<QuerySet [<Question: Question object (1)>]>

Wait a minute. <Question: Question object (1)> isn’ta helpful representation of this object. Let’s fix

24 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

that by editing the Que st ion model (in the polls/models.py file) and addinga___ str__ () method to both
Question and Choice:

Listing 13: polls/models.py

from django.db import models
class Question (models.Model) :

def str () :
return .question_text

class Choice (models.Model) :

def str_ ()t

return .choice_text

It’s important to add ___str___ () methods to your models, not only for your own convenience when dealing with the
interactive prompt, but also because objects’ representations are used throughout Django’s automatically-generated
admin.

Note these are normal Python methods. Let’s add a custom method, just for demonstration:

Listing 14: polls/models.py

import datetime

from django.db import models

from django.utils import timezone
class Question (models.Model) :

def was_published_recently ()z
return .pub_date >= timezone.now() — datetime.timedelta (days=1)

Note the addition of import datetime and from django.utils import timezone, to reference
Python’s standard datetime module and Django’s time-zone-related utilities in django.utils.timezone,
respectively. If you aren’t familiar with time zone handling in Python, you can learn more in the time zone support
docs.

Save these changes and start a new Python interactive shell by running python manage.py shell again:

>>> from polls.models import Choice, Question

Make sure our __str_ () addition worked.
>>> Question.objects.all()
<QuerySet [<Question: What's up?>]>

rich database lookup API that's entirely driven by

<QuerySet [<Question: What's up?>]>

>>> Question.objects.filter (question_text___startswith='What")
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.

>>> from django.utils import timezone

(continues on next page)

2.4. Writing your first Django app, part 2 25

https://docs.python.org/3/library/datetime.html#module-datetime

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

>>> current_year = timezone.now () .year
>>> Question.objects.get (pub_date__year=current_year)
<Question: What's up?>

Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get (1d=2)
Traceback (most recent call last):

DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.

The following is identical to Question.objects.get (id=1).

>>> Question.objects.get (pk=1)

<Question: What's up?>

Make sure our custom method worked.
>>> g = Question.objects.get (pk=1)
>>> g.was_published_recently ()

True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation

(e.g. a question's choice) which can be accessed via the API.

>>> g = Question.objects.get (pk=1)

Display any choices from the related object set -- none so far.

>>> g.choice_set.all()

<QuerySet []>

Create three choices.

>>> g.choice_set.create (choice_text='Not much', votes=0)

<Choice: Not much>

>>> g.choice_set.create (choice_text='The sky', votes=0)

<Choice: The sky>

>>> ¢ = g.choice_set.create(choice_text='Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.

>>> g.choice_set.all()

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> g.choice_set.count ()

3

The API automatically follows relationships as far as you need.

Use double underscores to separate relationships.

This works as many levels deep as you want; there's no limit.

Find all Choices for any question whose pub_date is in this year

(reusing the 'current_year' variable we created above).

>>> Choice.objects.filter (question__pub_date__year=current_year)

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

H o o

(continues on next page)

26 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

Let's delete one of the choices. Use delete() for that.
>>> ¢ = g.choice_set.filter (choice_text___startswith='Just hacking')
>>> c.delete ()

For more information on model relations, see Accessing related objects. For more on how to use double underscores
to perform field lookups via the API, see Field lookups. For full details on the database API, see our Database API
reference.

2.4.5 Introducing the Django Admin

Philosophy

Generating admin sites for your staff or clients to add, change, and delete content is tedious work that doesn’t require
much creativity. For that reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between “content publishers” and the
“public” site. Site managers use the system to add news stories, events, sports scores, etc., and that content is displayed
on the public site. Django solves the problem of creating a unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the following command:

’$ python manage.py createsuperuser

Enter your desired username and press enter.

’ Username: admin

You will then be prompted for your desired email address:

’Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as a
confirmation of the first.

Password: xx*kx*kx**
Password (again): s*xxxxxxx%
Superuser created successfully.

Start the development server

The Django admin site is activated by default. Let’s start the development server and explore it.

If the server is not running start it like so:

S python manage.py runserver

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 2.1.16.dev20191202082911

Now, open a Web browser and go to “/admin/” on your local domain — e.g., http://127.0.0.1:8000/admin/. You should
see the admin’s login screen:

Django administration

Username:;

Password:

Login

Since translation is turned on by default, the login screen may be displayed in your own language, depending on your
browser’s settings and if Django has a translation for this language.

Enter the admin site

Now, try logging in with the superuser account you created in the previous step. You should see the Django admin
index page:

DJ ango a dministration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG QUT

Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent Actions

Groups + Add # Change
Users <+ Add # Change My Actions

None available

You should see a few types of editable content: groups and users. They are provided by d jango. contrib.auth,
the authentication framework shipped by Django.

28 Chapter 2. Getting started

http://127.0.0.1:8000/admin/

Django Documentation, Release 2.1.16.dev20191202082911

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: we need to tell the admin that Quest ion objects have an admin interface. To do this, open the
polls/admin.py file, and edit it to look like this:

Listing 15: polls/admin.py

from django.contrib import admin
from .models import Question

admin.site.register (Question)

Explore the free admin functionality

Now that we’ve registered Que st ion, Django knows that it should be displayed on the admin index page:

Site administration

-
Recent Actions

Groups + Add 4 Change

Users +Add # Change My Actions
None available

Questions +aAdd 4 Change

Click “Questions”. Now you’re at the “change list” page for questions. This page displays all the questions in the
database and lets you choose one to change it. There’s the “What’s up?” question we created earlier:

Home » Polls » Questions

Select question to change

Action: | ====memee 21 Go | 0of1 selected

QUESTION

" What's up?

1 question

Click the “What’s up?” question to edit it:

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 2.1.16.dev20191202082911

Home : Polls > Questions » What's up?

Change question

Question text: What's up?

Date published: Date: 2015-09-06 Today

Time: 21:16:22 Now | ()

Save and add another Save and continue editing

Things to note here:
* The form is automatically generated from the Que st ion model.

* The different model field types (DateTimeField, CharField) correspond to the appropriate HTML input
widget. Each type of field knows how to display itself in the Django admin.

e Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup, and
times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:
» Save — Saves changes and returns to the change-list page for this type of object.
 Save and continue editing — Saves changes and reloads the admin page for this object.
 Save and add another — Saves changes and loads a new, blank form for this type of object.
* Delete — Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the question in Tutorial 1, it probably means
you forgot to set the correct value for the TTME ZONE setting. Change it, reload the page and check that the correct
value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue editing.”
Then click “History” in the upper right. You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

Home : Polls » Questions » What's up? » History

Change history: What's up?
DATE/TIME USER ACTION
Sept. 6, 2015, 9:21 p.m. elky Changed pub_date.

When you’re comfortable with the models API and have familiarized yourself with the admin site, read part 3 of this
tutorial to learn about how to add more views to our polls app.

30 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re continuing the Web-poll application and will focus on creating the
public interface — “views.”

2.5.1 Overview
A view is a “type” of Web page in your Django application that generally serves a specific function and has a specific
template. For example, in a blog application, you might have the following views:
* Blog homepage — displays the latest few entries.
 Entry “detail” page — permalink page for a single entry.
* Year-based archive page — displays all months with entries in the given year.
* Month-based archive page — displays all days with entries in the given month.
» Day-based archive page — displays all entries in the given day.
¢ Comment action — handles posting comments to a given entry.
In our poll application, we’ll have the following four views:
* Question “index” page — displays the latest few questions.
* Question “detail” page — displays a question text, with no results but with a form to vote.
* Question “results” page — displays results for a particular question.
* Vote action — handles voting for a particular choice in a particular question.

In Django, web pages and other content are delivered by views. Each view is represented by a simple Python function
(or method, in the case of class-based views). Django will choose a view by examining the URL that’s requested (to
be precise, the part of the URL after the domain name).

Now in your time on the web you may have come across such Dbeauties as
“ME2/Sites/dirmod.asp?sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B”. You will be
pleased to know that Django allows us much more elegant URL patterns than that.

A URL pattern is simply the general form of a URL - for example: /newsarchive/<year>/<month>/.
To get from a URL to a view, Django uses what are known as ‘URLconfs’. A URLconf maps URL patterns to views.

This tutorial provides basic instruction in the use of URLconfs, and you can refer to URL dispatcher for more infor-
mation.

2.5.2 Writing more views

Now let’s add a few more views to polls/views.py. These views are slightly different, because they take an
argument:

Listing 16: polls/views.py

def detail (request, question_id):
return HttpResponse ("You're looking at question %s." % question_id)

def results (request, question_id):
response = "You're looking at the results of question %s.
return HttpResponse (response % question_id)

n

(continues on next page)

2.5. Writing your first Django app, part 3 31

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

def vote (request, question_id):
return HttpResponse (% question_id)

Wire these new views into the polls.urls module by adding the following path () calls:

Listing 17: polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
path('', views.index, name=),
path (, views.detail, name=),
path (, views.results, name=),
path (, views.vote, name=),

Take a look in your browser, at “/polls/34/”. It’ll run the detail () method and display whatever ID you provide
in the URL. Try “/polls/34/results/” and “/polls/34/vote/” too — these will display the placeholder results and voting
pages.

When somebody requests a page from your website — say, “/polls/34/”, Django will load the mysite.urls Python
module because it’s pointed to by the ROOT URLCONEF setting. It finds the variable named urlpatterns and
traverses the patterns in order. After finding the match at '"polls/"', it strips off the matching text ("polls/
") and sends the remaining text — "34/" — to the ‘polls.urls’ URLconf for further processing. There it matches
'<int:question_id>/"', resulting in a call to the detail () view like so:

detail (request=<HttpRequest >, question_id=34)

The question_1id=34 part comes from <int :question_id>. Using angle brackets “captures” part of the URL
and sends it as a keyword argument to the view function. The : question_id> part of the string defines the name
that will be used to identify the matched pattern, and the <int : part is a converter that determines what patterns
should match this part of the URL path.

There’s no need to add URL cruft such as . html — unless you want to, in which case you can do something like this:

path (, views.index),

But, don’t do that. It’s silly.

2.5.3 Write views that actually do something
Each view is responsible for doing one of two things: returning an Ht t pResponse object containing the content for
the requested page, or raising an exception such as Ht t p404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s — or a third-party
Python template system — or not. It can generate a PDF file, output XML, create a ZIP file on the fly, anything you
want, using whatever Python libraries you want.

All Django wants is that Ht t pResponse. Or an exception.

32 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

Because it’s convenient, let’s use Django’s own database API, which we covered in Tuforial 2. Here’s one stab at
anew index () view, which displays the latest 5 poll questions in the system, separated by commas, according to
publication date:

Listing 18: polls/views.py

from django.http import HttpResponse

from .models import Question

def index (request) :
latest_question_list = Question.objects.order_ by ('-pub_date') [:5]
output = ', '.join([g.question_text for g in latest_question_list])
return HttpResponse (output)

There’s a problem here, though: the page’s design is hard-coded in the view. If you want to change the way the page
looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the design from Python
by creating a template that the view can use.

First, create a directory called templates in your polls directory. Django will look for templates in there.

Your project’s TEMPLATES setting describes how Django will load and render templates. The default set-
tings file configures a DjangoTemplates backend whose APP_DIRS option is set to True. By convention
DjangoTemplates looks for a “templates” subdirectory in each of the INSTALLED_APPS.

Within the templates directory you have just created, create another directory called pol1ls, and within that create
a file called index.html. In other words, your template should be at polls/templates/polls/index.
html. Because of how the app_directories template loader works as described above, you can refer to this
template within Django simply as polls/index.html.

Template namespacing

Now we might be able to get away with putting our templates directly in polls/templates (rather than creating
another pol1s subdirectory), but it would actually be a bad idea. Django will choose the first template it finds whose
name matches, and if you had a template with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right one, and the easiest way to ensure this is by
namespacing them. That is, by putting those templates inside another directory named for the application itself.

Put the following code in that template:

Listing 19: polls/templates/polls/index.html

if latest_question_list

for question in latest_question_list
 question.question_text </1li>
endfor

else
<p>No polls are available.</p>
endif

Now let’s update our index view in polls/views.py to use the template:

2.5. Writing your first Django app, part 3 33

Django Documentation, Release 2.1.16.dev20191202082911

Listing 20: polls/views.py

from django.http import HttpResponse
from django.template import loader

from .models import Question

def index (request):

latest_question_list = Question.objects.order_by('-pub date') [:5]
template = loader.get_template('polls/index.html")
context = {

atest _question_ list': latest_guestion_list,
}

return HttpResponse (template.render (context, request))

That code loads the template called polls/index.html and passes it a context. The context is a dictionary
mapping template variable names to Python objects.

Load the page by pointing your browser at “/polls/”, and you should see a bulleted-list containing the “What’s up”
question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render ()

It’s a very common idiom to load a template, fill a context and return an At t pRe sponse object with the result of the
rendered template. Django provides a shortcut. Here’s the full index () view, rewritten:

Listing 21: polls/views.py

from django.shortcuts import render

from .models import Question

def index (request) :
latest_question_list = Question.objects.order_ by ('-pub_date') [:5]
context = {'latest question_ list': latest_question_list}
return render (request, s/ 1 !

polls/index.html', context)

Note that once we’ve done this in all these views, we no longer need to import 1 ocader and Ht tpResponse (you'll
want to keep Ht t pResponse if you still have the stub methods for detail, results, and vote).

The render () function takes the request object as its first argument, a template name as its second argument and a
dictionary as its optional third argument. It returns an Ht t pResponse object of the given template rendered with
the given context.

2.5.4 Raising a 404 error
Now, let’s tackle the question detail view — the page that displays the question text for a given poll. Here’s the view:

Listing 22: polls/views.py

from django.http import Http404
from django.shortcuts import render

(continues on next page)

34 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

from .models import Question

def detail (request, question_id):
try:
question = Question.objects.get (pk=question_id)
except Question.DoesNotExist:
raise Http404 ("Question does not exist")
return render (request, 'polls/detail.html', {'question': question})

The new concept here: The view raises the Ht t p4 04 exception if a question with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly get
the above example working, a file containing just:

Listing 23: polls/templates/polls/detail.html

question

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get () and raise Http404 if the object doesn’t exist. Django provides a shortcut.
Here’s the detail () view, rewritten:

Listing 24: polls/views.py

from django.shortcuts import get_object_or_404, render
from .models import Question
def detail (request, question_id):

question = get_object_or_404 (Question, pk=question_id)
return render (request, 'polls/detail.html', {'question': question})

The get_object_or_ 404 () function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the get () function of the model’s manager. It raises At tp404 if the object
doesn’t exist.

Philosophy

Why do we use a helper function get_object_or_404 () instead of automatically catching the
ObjectDoesNotExist exceptions at a higher level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django is to maintain
loose coupling. Some controlled coupling is introduced in the d jango. shortcut s module.

There’s also a get_1ist_or_404 () function, which works just as get_object_or._404 () — except using
filter () instead of get (). It raises Ht tp4 04 if the list is empty.

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 2.1.16.dev20191202082911

2.5.5 Use the template system

Backtothe detail () view for our poll application. Given the context variable que st ion, here’s what the polls/
detail.html template might look like:

Listing 25: polls/templates/polls/detail.html

<hl> question.question_text </hl>

for choice in question.choice_set.all
 choice.choice_text </1li>
endfor

The template system uses dot-lookup syntax to access variable attributes. In the example of {{ question.
question_text }}, first Django does a dictionary lookup on the object question. Failing that, it tries an
attribute lookup — which works, in this case. If attribute lookup had failed, it would’ve tried a list-index lookup.

Method-calling happensinthe {$ for %} loop: question.choice_set.all isinterpreted as the Python code
question.choice_set.all (), which returns an iterable of Choice objects and is suitable for use in the { %
for %} tag.

See the template guide for more about templates.

2.5.6 Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html template, the link was partially
hardcoded like this:

 question.question_text </1li>

The problem with this hardcoded, tightly-coupled approach is that it becomes challenging to change URLSs on projects
with a lot of templates. However, since you defined the name argument in the path () functions inthe polls.urls
module, you can remove a reliance on specific URL paths defined in your url configurations by using the {$ url
%} template tag:

 question.question_text </1li>

The way this works is by looking up the URL definition as specified in the pol1ls.urls module. You can see exactly
where the URL name of ‘detail’ is defined below:

path('<int:question id>/", views.detail, name='detail'),

If you want to change the URL of the polls detail view to something else, perhaps to something like polls/
specifics/12/ instead of doing it in the template (or templates) you would change itin polls/urls.py:

path('specifics/<int:questi , views.detail, name='detail'),

36 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

2.5.7 Namespacing URL names

The tutorial project has just one app, polls. In real Django projects, there might be five, ten, twenty apps or more.
How does Django differentiate the URL names between them? For example, the pol1ls app has a detail view, and
so might an app on the same project that is for a blog. How does one make it so that Django knows which app view to
create for a url when using the {$ url %} template tag?

The answer is to add namespaces to your URLconf. In the polls/urls.py file, go ahead and add an app_name
to set the application namespace:

Listing 26: polls/urls.py

from django.urls import path

from . import views

1

app_name = 'polls
urlpatterns = [
path('', views.index, name='index'"),
path('<int:qu ion_id>/", views.detail, name='detail'),
path ('<int:c on_id>/results/', views.results, name='results'),
path('<int:question_id>/vot ', views.vote, name='vote'),

Now change your polls/index.html template from:

Listing 27: polls/templates/polls/index.html

 question.question_text

to point at the namespaced detail view:

Listing 28: polls/templates/polls/index.html

 question.question_text </
—1i>

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and
generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We’re continuing the Web-poll application and will focus on simple form
processing and cutting down our code.

2.6.1 Write a simple form

Let’s update our poll detail template (“polls/detail.html”) from the last tutorial, so that the template contains an HTML
<form> element:

Listing 29: polls/templates/polls/detail.html

<hl> question.question_text </hl>

(continues on next page)

2.6. Writing your first Django app, part 4 37

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

if error_message <p> error_message </p> endif

<form action=" url 'polls:vote' question.id " method="post">
csrf token
for choice in question.choice_set.all
<input type="radio"
—choice.id ">
<label for="choice .counter "> choice.choice_text </label>

endfor

name="choice" id="choice .counter " value="

[

<input type="submit" value="Vote">
</form>

A quick rundown:

* The above template displays a radio button for each question choice. The value of each radio button is the
associated question choice’s ID. The name of each radio button is "choice". That means, when somebody
selects one of the radio buttons and submits the form, it’ll send the POST data choice=# where # is the ID of
the selected choice. This is the basic concept of HTML forms.

e We set the form’s action to {% url 'polls:vote' question.id %}, and we set
method="post". Using method="post" (as opposed to method="get") is very important, be-
cause the act of submitting this form will alter data server-side. Whenever you create a form that alters data
server-side, use method="post". This tip isn’t specific to Django; it’s just good Web development practice.

e forloop.counter indicates how many times the for tag has gone through its loop

* Since we’re creating a POST form (which can have the effect of modifying data), we need to worry about Cross
Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django comes with a very easy-
to-use system for protecting against it. In short, all POST forms that are targeted at internal URLs should use
the {¢ csrf token ¢} template tag.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in Tuforial 3,
we created a URLconf for the polls application that includes this line:

Listing 30: polls/urls.py

path('<int:question_ id ote/', views.vote, name='vote'),

We also created a dummy implementation of the vote () function. Let’s create a real version. Add the following to
polls/views.py:

Listing 31: polls/views.py

from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from .models import Choice, Question

def vote (request, question_id):
question = get_object_or_404 (Question, pk=question_id)
try:
selected_choice = question.choice_set.get (pk=request.POST['choice'])
except (KeyError, Choice.DoesNotExist):

return render (request, 'polls/detail.html', {

[1

guestion': question,

(continues on next page)

38 Chapter 2. Getting started

Django Documentation, Release 2.1.16.dev20191202082911

(continued from previous page)

else:
selected_choice.votes += 1
selected_choice.save ()

return HttpResponseRedirect (reverse('polls:results', args=(question.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

* request.POST is a dictionary-like object that lets you access submitted data by key name. In this case,
request .POST ['choice'] returns the ID of the selected choice, as a string. request . POST values are
always strings.

Note that Django also provides request . GET for accessing GET data in the same way — but we’re explicitly
using request.POST in our code, to ensure that data is only altered via a POST call.

* request .POST['choice'] will raise KeyError if choice wasn’t provided in POST data. The above
code checks for KeyError and redisplays the question form with an error message if choice isn’t given.

» After incrementing the choice count, the code returns an Ht tpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be
redirected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an HttpResponseRedirect after
successfully dealing with POST data. This tip isn’t specific to Django; it’s just good Web development practice.

e We are using the reverse () function in the Ht t pResponseRedirect constructor in this example. This
function helps avoid having to hardcode a URL in the view function. It is given the name of the view that we
want to pass control to and the variable portion of the URL pattern that points to that view. In this case, using
the URLconf we set up in Tutorial 3, this reverse () call will return a string like

1 +a /0

polls/3/resul

where the 3 is the value of question. id. This redirected URL will then call the ' results' view to display
the final page.

As mentioned in Tutorial 3, request is an Ht tpRequest object. For more on Ht tpRequest objects, see the
)"€C]M€Sl and response ([06‘[”7’[6}11‘6117071.

After somebody votes in a question, the vote () view redirects to the results page for the question. Let’s write that
view:

Listing 32: polls/views.py

from django.shortcuts import get_object_or_404, render

def results (request, question_id):
question = get_object_or_404 (Question, pk=question_id)
return render (request, 'polls/results.html', {'guestion': question})

This is almost exactly the same as the detail () view from Tuforial 3. The only difference is the template name.
We’ll fix this redundancy later.

Now, create a polls/results.html template:

2.6. Writing your first Django app, part 4 39

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

Django Documentation, Release 2.1.16.dev20191202082911

Listing 33: polls/templates/polls/results.html

<hl> question.question_text </hl>

for choice in question.choice_set.all

 choice.choice_text - choice.votes vote choice.votes|pluralize

o p</11i>

endfor

Vote again?

Now, go to /polls/1/ in your browser and vote in the question. You should see a results page that gets updated
each time you vote. If you submit the form without having chosen a choice, you should see the error message.

Note: The code