Getting Started

1 Motivation 3
2 Architecture 5
3 Contents 7
Dask.distributed is a lightweight library for distributed computing in Python. It extends both the `concurrent.futures` and `dask` APIs to moderate sized clusters.

See the quickstart to get started.
Distributed serves to complement the existing PyData analysis stack. In particular it meets the following needs:

- **Low latency**: Each task suffers about 1ms of overhead. A small computation and network roundtrip can complete in less than 10ms.

- **Peer-to-peer data sharing**: Workers communicate with each other to share data. This removes central bottlenecks for data transfer.

- **Complex Scheduling**: Supports complex workflows (not just map/filter/reduce) which are necessary for sophisticated algorithms used in nd-arrays, machine learning, image processing, and statistics.

- **Pure Python**: Built in Python using well-known technologies. This eases installation, improves efficiency (for Python users), and simplifies debugging.

- **Data Locality**: Scheduling algorithms cleverly execute computations where data lives. This minimizes network traffic and improves efficiency.

- **Familiar APIs**: Compatible with the `concurrent.futures` API in the Python standard library. Compatible with `dask` API for parallel algorithms

- **Easy Setup**: As a Pure Python package distributed is `pip` installable and easy to *set up* on your own cluster.
Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The central `dask-scheduler` process coordinates the actions of several `dask-worker` processes spread across multiple machines and the concurrent requests of several clients.

The scheduler is asynchronous and event driven, simultaneously responding to requests for computation from multiple clients and tracking the progress of multiple workers. The event-driven and asynchronous nature makes it flexible to concurrently handle a variety of workloads coming from multiple users at the same time while also handling a fluid worker population with failures and additions. Workers communicate amongst each other for bulk data transfer over TCP.

Internally the scheduler tracks all work as a constantly changing directed acyclic graph of tasks. A task is a Python function operating on Python objects, which can be the results of other tasks. This graph of tasks grows as users submit more computations, fills out as workers complete tasks, and shrinks as users leave or become disinterested in previous results.

Users interact by connecting a local Python session to the scheduler and submitting work, either by individual calls to the simple interface `client.submit(function, *args, **kwargs)` or by using the large data collections and parallel algorithms of the parent `dask` library. The collections in the `dask` library like `dask.array` and `dask.dataframe` provide easy access to sophisticated algorithms and familiar APIs like NumPy and Pandas, while the simple `client.submit` interface provides users with custom control when they want to break out of canned “big data” abstractions and submit fully custom workloads.
3.1 Install Dask.Distributed

You can install dask.distributed with **conda**, with **pip**, or by installing from source.

3.1.1 Conda

To install the latest version of dask.distributed from the `conda-forge` repository using **conda**:

```
conda install dask distributed -c conda-forge
```

3.1.2 Pip

Or install distributed with **pip**:

```
pip install dask distributed --upgrade
```

3.1.3 Source

To install distributed from source, clone the repository from **github**:

```
git clone https://github.com/dask/distributed.git
cd distributed
python setup.py install
```
3.1.4 Notes

Note for Macports users: There is a known issue with python from macports that makes executables be placed in a location that is not available by default. A simple solution is to extend the PATH environment variable to the location where python from macports install the binaries:

```bash
$ export PATH=/opt/local/Library/Frameworks/Python.framework/Versions/3.5/bin:$PATH
or
$ export PATH=/opt/local/Library/Frameworks/Python.framework/Versions/2.7/bin:$PATH
```

3.2 Quickstart

3.2.1 Install

```bash
$ pip install dask distributed --upgrade
```

See *installation* document for more information.

3.2.2 Setup Dask.distributed the Easy Way

If you create a client without providing an address it will start up a local scheduler and worker for you.

```python
>>> from dask.distributed import Client
>>> client = Client()  # set up local cluster on your laptop
>>> client
<Client: scheduler="127.0.0.1:8786" processes=8 cores=8>
```

3.2.3 Setup Dask.distributed the Hard Way

This allows dask.distributed to use multiple machines as workers.

Set up scheduler and worker processes on your local computer:

```bash
$ dask-scheduler
Scheduler started at 127.0.0.1:8786

$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
$ dask-worker 127.0.0.1:8786
```

Note: At least one *dask-worker* must be running after launching a scheduler.

Launch a Client and point it to the IP/port of the scheduler.

```python
>>> from dask.distributed import Client
>>> client = Client('127.0.0.1:8786')

See *setup* for advanced use.
Map and Submit Functions

Use the map and submit methods to launch computations on the cluster. The map/submit functions send the function and arguments to the remote workers for processing. They return Future objects that refer to remote data on the cluster. The Future returns immediately while the computations run remotely in the background.

```python
>>> def square(x):
 return x ** 2

>>> def neg(x):
 return -x

>>> A = client.map(square, range(10))

>>> B = client.map(neg, A)

>>> total = client.submit(sum, B)

>>> total.result()
-285
```

Gather

The map/submit functions return Future objects, lightweight tokens that refer to results on the cluster. By default the results of computations stay on the cluster.

```python
>>> total # Function hasn't yet completed
<Future: status: waiting, key: sum-58999c52e0fa35c7d7346c098f5085c7>

>>> total # Function completed, result ready on remote worker
<Future: status: finished, key: sum-58999c52e0fa35c7d7346c098f5085c7>
```

Gather results to your local machine either with the Future.result method for a single future, or with the Client.gather method for many futures at once.

```python
>>> total.result() # result for single future
-285

>>> client.gather(A) # gather for many futures
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
```

Restart

When things go wrong, or when you want to reset the cluster state, call the restart method.

```python
>>> client.restart()
```

See client for advanced use.

3.3 Setup Network

A dask.distributed network consists of one Scheduler node and several Worker nodes. One can set these up in a variety of ways.
3.3.1 Using the Command Line

We launch the `dask-scheduler` executable in one process and the `dask-worker` executable in several processes, possibly on different machines.

Launch `dask-scheduler` on one node:

```
$ dask-scheduler
Start scheduler at 192.168.0.1:8786
```

Then launch `dask-worker` on the rest of the nodes, providing the address to the node that hosts `dask-scheduler`:

```
$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.2:12345
Registered with center at: 192.168.0.1:8786

$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.3:12346
Registered with center at: 192.168.0.1:8786

$ dask-worker 192.168.0.1:8786
Start worker at: 192.168.0.4:12347
Registered with center at: 192.168.0.1:8786
```

There are various mechanisms to deploy these executables on a cluster, ranging from manually SSH-ing into all of the nodes to more automated systems like SGE/SLURM/Torque or Yarn/Mesos. Additionally, cluster SSH tools exist to send the same commands to many machines. One example is `tmux-cssh`.

Note:

- The scheduler and worker both need to accept TCP connections. By default the scheduler uses port 8786 and the worker binds to a random open port. If you are behind a firewall then you may have to open particular ports or tell Dask to use particular ports with the `--port` and `--worker-port` keywords. Other ports like 8787, 8788, and 8789 are also useful to keep open for the diagnostic web interfaces.
- More information about relevant ports is available by looking at the help pages with `dask-scheduler --help` and `dask-worker --help`

3.3.2 Using SSH

The convenience script `dask-ssh` opens several SSH connections to your target computers and initializes the network accordingly. You can give it a list of hostnames or IP addresses:

```
$ dask-ssh 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4
```

Or you can use normal UNIX grouping:

```
$ dask-ssh 192.168.0.{1,2,3,4}
```

Or you can specify a hostfile that includes a list of hosts:

```
$ cat hostfile.txt
192.168.0.1
192.168.0.2
```

(continues on next page)
192.168.0.3
192.168.0.4

$ dask-ssh --hostfile hostfile.txt

The dask-ssh utility depends on the paramiko:

```bash
pip install paramiko
```

### 3.3.3 Using a Shared Network File System and a Job Scheduler

Some clusters benefit from a shared network file system (NFS) and can use this to communicate the scheduler location to the workers:

```bash
dask-scheduler --scheduler-file /path/to/scheduler.json
dask-worker --scheduler-file /path/to/scheduler.json
dask-worker --scheduler-file /path/to/scheduler.json
```

```python
>>> client = Client(scheduler_file='/path/to/scheduler.json')
```

This can be particularly useful when deploying `dask-scheduler` and `dask-worker` processes using a job scheduler like SGE/SLURM/Torque/etc.. Here is an example using SGE’s `qsub` command:

```bash
Start a dask-scheduler somewhere and write connection information to file
qsub -b y /path/to/dask-scheduler --scheduler-file /path/to/scheduler.json

Start 100 dask-worker processes in an array job pointing to the same file
qsub -b y -t 1-100 /path/to/dask-worker --scheduler-file /path/to/scheduler.json
```

Note, the `--scheduler-file` option is only valuable if your scheduler and workers share a standard POSIX file system.

### 3.3.4 Using MPI

You can launch a Dask network using `mpirun` or `mpiexec` and the `dask-mpi` command line executable.

```bash
mpirun --np 4 dask-mpi --scheduler-file /path/to/scheduler.json
```

```python
from dask.distributed import Client
client = Client(scheduler_file='/path/to/scheduler.json')
```

This depends on the `mpi4py` library. It only uses MPI to start the Dask cluster, and not for inter-node communication. You may want to specify a high-bandwidth network interface like infiniband using the `--interface` keyword

```bash
mpirun --np 4 dask-mpi --nthreads 1 --interface ib0 --scheduler-file /path/to/scheduler.json
```
3.3.5 Using the Python API

Alternatively you can start up the `distributed.scheduler.Scheduler` and `distributed.worker.Worker` objects within a Python session manually.

Start the Scheduler, provide the listening port (defaults to 8786) and Tornado IOLoop (defaults to `IOLoop.current()`)

```python
from distributed import Scheduler
from tornado.ioloop import IOLoop
from threading import Thread

loop = IOLoop.current()
t = Thread(target=loop.start, daemon=True)
t.start()

s = Scheduler(loop=loop)
s.start('tcp://:8786') # Listen on TCP port 8786
```

On other nodes start worker processes that point to the URL of the scheduler.

```python
from distributed import Worker
from tornado.ioloop import IOLoop
from threading import Thread

loop = IOLoop.current()
t = Thread(target=loop.start, daemon=True)
t.start()

w = Worker('tcp://127.0.0.1:8786', loop=loop)
w.start() # choose randomly assigned port
```

Alternatively, replace `Worker` with `Nanny` if you want your workers to be managed in a separate process by a local nanny process. This allows workers to restart themselves in case of failure, provides some additional monitoring, and is useful when coordinating many workers that should live in different processes to avoid the GIL.

3.3.6 Using LocalCluster

You can do the work above easily using `LocalCluster`.

```python
from distributed import LocalCluster
c = LocalCluster(processes=False)
```

A scheduler will be available under `c.scheduler` and a list of workers under `c.workers`. There is an IOLoop running in a background thread.

3.3.7 Using AWS

See Cloud Deployments for the latest information on deploying to Amazon cloud.

3.3.8 Using Google Cloud

See the `dask-kubernetes` project to easily launch clusters on Google Kubernetes Engine.
3.3.9 Cluster Resource Managers

Dask.distributed has been deployed on dozens of different cluster resource managers. This section contains links to some external projects, scripts, and instructions that may serve as useful starting points.

Kubernetes

- https://github.com/martindurant/dask-kubernetes
- https://github.com/ogrisel/docker-distributed
- https://github.com/hammerlab/dask-distributed-on-kubernetes/

Marathon

- https://github.com/mrocklin/dask-marathon

DRMAA (SGE, SLURM, Torque, etc..)

- https://github.com/dask/dask-drmaa
- https://github.com/mfouesneau/dasksge

YARN

- https://github.com/dask/dask-yarn

3.3.10 Software Environment

The workers and clients should all share the same software environment. That means that they should all have access to the same libraries and that those libraries should be the same version. Dask generally assumes that it can call a function on any worker with the same outcome (unless explicitly told otherwise.)

This is typically enforced through external means, such as by having a network file system (NFS) mount for libraries, by starting the dask-worker processes in equivalent Docker containers, using Conda environments, or through any of the other means typically employed by cluster administrators.

Windows

Note:

- Running a dask-scheduler on Windows architectures is supported for only a limited number of workers (roughly 100). This is a detail of the underlying tcp server implementation and is discussed here.
- Running dask-worker processes on Windows is well supported, performant, and without limit.

If you wish to run in a primarily Windows environment, it is recommended to run a dask-scheduler on a linux or MacOSX environment, with dask-worker workers on the Windows boxes. This works because the scheduler environment is de-coupled from that of the workers.
3.3.11 Customizing initialization

Both `dask-scheduler` and `dask-worker` support a `--preload` option that allows custom initialization of each scheduler/worker respectively. A module or python file passed as a `--preload` value is guaranteed to be imported before establishing any connection. A `dask_setup(service)` function is called if found, with a `Scheduler` or `Worker` instance as the argument. As the service stops, `dask_teardown(service)` is called if present.

To support additional configuration a single `--preload` module may register additional command-line arguments by exposing `dask_setup` as a `Click` command. This command will be used to parse additional arguments provided to `dask-worker` or `dask-scheduler` and will be called before service initialization.

As an example, consider the following file that creates a `scheduler plugin` and registers it with the scheduler.

```python
scheduler-setup.py
import click

from distributed.diagnostics.plugin import SchedulerPlugin

class MyPlugin(SchedulerPlugin):
 def __init__(self, print_count):
 self.print_count = print_count
 SchedulerPlugin.__init__(self)

 def add_worker(self, scheduler=None, worker=None, **kwargs):
 print("Added a new worker at:", worker)
 if self.print_count and scheduler is not None:
 print("Total workers:", len(scheduler.workers))

@click.command()
@click.option("--print-count/--no-print-count", default=False)
def dask_setup(scheduler, print_count):
 plugin = MyPlugin(print_count)
 scheduler.add_plugin(plugin)
```

We can then run this preload script by referring to its filename (or module name if it is on the path) when we start the scheduler:

```
dask-scheduler --preload scheduler-setup.py --print-count
```

3.4 Client

The Client is the primary entry point for users of `dask.distributed`.

After we `setup a cluster`, we initialize a `Client` by pointing it to the address of a `Scheduler`:

```
>>> from distributed import Client
>>> client = Client('127.0.0.1:8786')
```

There are a few different ways to interact with the cluster through the client:

1. The Client satisfies most of the standard `concurrent.futures` - PEP-3148 interface with `.submit`, `.map` functions and `Future` objects, allowing the immediate and direct submission of tasks.

2. The Client registers itself as the default Dask scheduler, and so runs all dask collections like `dask.array`, `dask.bag`, `dask.dataframe` and `dask.delayed`

3. The Client has additional methods for manipulating data remotely. See the full `API` for a thorough list.
### 3.4.1 Concurrent.futures

We can submit individual function calls with the `client.submit` method or many function calls with the `client.map` method.

```python
>>> def inc(x):
 return x + 1

>>> x = client.submit(inc, 10)

>>> L = client.map(inc, range(1000))
```

These results live on distributed workers.

We can submit tasks on futures. The function will go to the machine where the futures are stored and run on the result once it has completed.

```python
>>> y = client.submit(inc, x) # Submit on x, a Future

>>> total = client.submit(sum, L) # Map on L, a list of Futures
```

We gather back the results using either the `Future.result` method for single futures or `client.gather` method for many futures at once.

```python
>>> x.result()
11

>>> client.gather(L)
[1, 2, 3, 4, 5, ...]
```

But, as always, we want to minimize communicating results back to the local process. It’s often best to leave data on the cluster and operate on it remotely with functions like `submit`, `map`, `get` and `compute`. See `efficiency` for more information on efficient use of distributed.

### 3.4.2 Dask

The parent library Dask contains objects like `dask.array`, `dask.dataframe`, `dask.bag`, and `dask.delayed`, which automatically produce parallel algorithms on larger datasets. All dask collections work smoothly with the distributed scheduler.

When we create a `Client` object it registers itself as the default Dask scheduler. All `.compute()` methods will automatically start using the distributed system.

```python
client = Client('scheduler:8786')

my_dataframe.sum().compute() # Now uses the distributed system by default
```

We can stop this behavior by using the `set_as_default=False` keyword argument when starting the Client. Dask’s normal `.compute()` methods are *synchronous*, meaning that they block the interpreter until they complete. Dask.distributed allows the new ability of *asynchronous* computing, we can trigger computations to occur in the
background and persist in memory while we continue doing other work. This is typically handled with the `Client.persist` and `Client.compute` methods which are used for larger and smaller result sets respectively.

```python
>>> df = client.persist(df) # trigger all computations, keep df in memory
>>> type(df)
<class 'dask.DataFrame'>
```

For more information see the page on Managing Computation.

### 3.4.3 Pure Functions by Default

By default we assume that all functions are pure. If this is not the case we should use the `pure=False` keyword argument.

The client associates a key to all computations. This key is accessible on the Future object.

```python
>>> from operator import add
>>> x = client.submit(add, 1, 2)
>>> x.key
'add-ebf39f96ad7174656f97097d658f3fa2'
```

This key should be the same across all computations with the same inputs and across all machines. If we run the computation above on any computer with the same environment then we should get the exact same key.

The scheduler avoids redundant computations. If the result is already in memory from a previous call then that old result will be used rather than recomputing it. Calls to submit or map are idempotent in the common case.

While convenient, this feature may be undesired for impure functions, like `random`. In these cases two calls to the same function with the same inputs should produce different results. We accomplish this with the `pure=False` keyword argument. In this case keys are randomly generated (by `uuid4`).

```python
>>> import numpy as np
>>> client.submit(np.random.random, 1000, pure=False).key
'random_sample-fc814a39-ee00-42f3-8b6f-cac65bcb5556'
>>> client.submit(np.random.random, 1000, pure=False).key
'random_sample-a24e7220-a113-47f2-a030-72209439f093'
```

### 3.4.4 Tornado Coroutines

If we are operating in an asynchronous environment then the blocking functions listed above become asynchronous equivalents. You must start your client with the `asynchronous=True` keyword and `yield` or `await` blocking functions.

```python
@gen.coroutine
def f():
 client = yield Client(asynchronous=True)
 future = client.submit(func, *args)
 result = yield future
 return result
```

If you want to reuse the same client in asynchronous and synchronous environments you can apply the `asynchronous=True` keyword at each method call.
client = Client()  # normal blocking client
@gen.coroutine
def f():
    futures = client.map(func, L)
    results = yield client.gather(futures, asynchronous=True)
    return results

See the Asynchronous documentation for more information.

### 3.4.5 Additional Links

For more information on how to use dask.distributed you may want to look at the following pages:

- Managing Memory
- Managing Computation
- Data Locality
- API

### 3.5 API

#### Client

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client([address, loop, timeout, ...])</td>
<td>Connect to and drive computation on a distributed Dask cluster</td>
</tr>
<tr>
<td>Client.call_stack([futures, keys])</td>
<td>The actively running call stack of all relevant keys</td>
</tr>
<tr>
<td>Client.cancel([futures[, asynchronous[, force]]])</td>
<td>Cancel running futures</td>
</tr>
<tr>
<td>Client.close([timeout])</td>
<td>Close this client</td>
</tr>
<tr>
<td>Client.compute(collections[, sync[, ...]])</td>
<td>Compute dask collections on cluster</td>
</tr>
<tr>
<td>Client.gather([futures[, errors[, maxsize[, ...]]]])</td>
<td>Gather futures from distributed memory</td>
</tr>
<tr>
<td>Client.get([dsk, keys[, restrictions[, ...]]])</td>
<td>Compute dask graph</td>
</tr>
<tr>
<td>Client.get_dataset(name[, **kwargs])</td>
<td>Get named dataset from the scheduler</td>
</tr>
<tr>
<td>Client.get_executor(**kwargs)</td>
<td>Return a concurrent.futures Executor for submitting tasks on this Client</td>
</tr>
<tr>
<td>Client.get_metadata(keys[, default])</td>
<td>Get arbitrary metadata from scheduler</td>
</tr>
<tr>
<td>Client.get_scheduler_logs([n])</td>
<td>Get logs from scheduler</td>
</tr>
<tr>
<td>Client.get_task_stream([start, stop, count[, ...]])</td>
<td>Get task stream data from scheduler</td>
</tr>
<tr>
<td>Client.get_worker_logs([n, workers])</td>
<td>Get logs from workers</td>
</tr>
<tr>
<td>Client.has_what([workers])</td>
<td>Which keys are held by which workers</td>
</tr>
<tr>
<td>Client.list_datasets(**kwargs)</td>
<td>List named datasets available on the scheduler</td>
</tr>
<tr>
<td>Client.map(func[, *iterables[, **kwargs]])</td>
<td>Map a function on a sequence of arguments</td>
</tr>
<tr>
<td>Client.ncores([workers])</td>
<td>The number of threads/cores available on each worker node</td>
</tr>
<tr>
<td>Client.persist(collections[, ...])</td>
<td>Persist dask collections on cluster</td>
</tr>
<tr>
<td>Client.publish_dataset(*args[, **kwargs])</td>
<td>Publish named datasets to scheduler</td>
</tr>
<tr>
<td>Client.profile([key, start, stop, workers[, ...]])</td>
<td>Collect statistical profiling information about recent work</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Client.rebalance</strong>([futures, workers])</td>
<td>Rebalance data within network</td>
</tr>
<tr>
<td><strong>Client.replicate</strong>([futures[], n, workers, ...])</td>
<td>Set replication of futures within network</td>
</tr>
<tr>
<td><strong>Client.restart</strong>(**)</td>
<td>Restart the distributed network</td>
</tr>
<tr>
<td><strong>Client.retry</strong>([futures[, asynchronous]])</td>
<td>Retry failed futures</td>
</tr>
<tr>
<td><strong>Client.run</strong>(function, *args, **kwargs)</td>
<td>Run a function on all workers outside of task scheduling state</td>
</tr>
<tr>
<td><strong>Client.run_on_scheduler</strong>(function, *args, ...)</td>
<td>Run a function on the scheduler process</td>
</tr>
<tr>
<td><strong>Client.scatter</strong>(data[, workers, broadcast, ...])</td>
<td>Scatter data into distributed memory</td>
</tr>
<tr>
<td><strong>Client.scheduler_info</strong>(**)</td>
<td>Basic information about the workers in the cluster</td>
</tr>
<tr>
<td><strong>Client.write_scheduler_file</strong>(scheduler_file)</td>
<td>Write the scheduler information to a json file.</td>
</tr>
<tr>
<td><strong>Client.start_ipython_workers</strong>(workers, ...)</td>
<td>Start IPython kernels on workers</td>
</tr>
<tr>
<td><strong>Client.start_ipython_scheduler</strong>(magic_name, ...)</td>
<td>Start IPython kernel on the scheduler</td>
</tr>
<tr>
<td><strong>Client.submit</strong>(func, *args, **kwargs)</td>
<td>Submit a function application to the scheduler</td>
</tr>
<tr>
<td><strong>Client.unpublish_dataset</strong>(name, **kwargs)</td>
<td>Remove named datasets from scheduler</td>
</tr>
<tr>
<td><strong>Client.upload_file</strong>(filename, **kwargs)</td>
<td>Upload local package to workers</td>
</tr>
<tr>
<td><strong>Client.who_has</strong>(futures)</td>
<td>The workers storing each future’s data</td>
</tr>
<tr>
<td><strong>worker_client</strong>(timeout, separate_thread)</td>
<td>Get client for this thread</td>
</tr>
<tr>
<td><strong>get_worker</strong>( )</td>
<td>Get the worker currently running this task</td>
</tr>
<tr>
<td><strong>get_client</strong>(address, timeout, resolve_address)</td>
<td>Get a client while within a task.</td>
</tr>
<tr>
<td><strong>secede</strong>( )</td>
<td>Have this task secede from the worker’s thread pool</td>
</tr>
<tr>
<td><strong>rejoin</strong>( )</td>
<td>Have this thread rejoin the ThreadPoolExecutor</td>
</tr>
<tr>
<td><strong>Reschedule</strong>( )</td>
<td>Reschedule this task</td>
</tr>
<tr>
<td><strong>ReplayExceptionClient.get_futures_error</strong>(future)</td>
<td>Ask the scheduler details of the sub-task of the given failed future</td>
</tr>
<tr>
<td><strong>ReplayExceptionClient.recreate_error_locally</strong>(future)</td>
<td>For a failed calculation, perform the blamed task locally for debugging.</td>
</tr>
</tbody>
</table>

**Future**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Future</strong>(key[, client, inform, state])</td>
<td>A remotely running computation</td>
</tr>
<tr>
<td><strong>Future.add_done_callback</strong>(fn)</td>
<td>Call callback on future when callback has finished</td>
</tr>
<tr>
<td><strong>Future.cancel</strong>(**)</td>
<td>Cancel request to run this future</td>
</tr>
<tr>
<td><strong>Future.cancelled</strong>( )</td>
<td>Returns True if the future has been cancelled</td>
</tr>
<tr>
<td><strong>Future.done</strong>( )</td>
<td>Is the computation complete?</td>
</tr>
<tr>
<td><strong>Future.exception</strong>(timeout)</td>
<td>Return the exception of a failed task</td>
</tr>
<tr>
<td><strong>Future.result</strong>(timeout)</td>
<td>Wait until computation completes, gather result to local process.</td>
</tr>
<tr>
<td><strong>Future.retry</strong>(**)</td>
<td>Retry this future if it has failed</td>
</tr>
<tr>
<td><strong>Future.traceback</strong>(timeout)</td>
<td>Return the traceback of a failed task</td>
</tr>
</tbody>
</table>

**Client Coordination**
## 3.5. Asynchronous methods

Most methods and functions can be used equally well within a blocking or asynchronous environment using Tornado coroutines. If used within a Tornado IOLoop then you should yield or await otherwise blocking operations appropriately.

You must tell the client that you intend to use it within an asynchronous environment by passing the `asynchronous=True` keyword.

```python
blocking
client = Client()
future = client.submit(func, *args) # immediate, no blocking/async difference
result = client.gather(future) # blocking

asynchronous Python 2/3
client = yield Client(asynchronous=True)
future = client.submit(func, *args) # immediate, no blocking/async difference
result = yield client.gather(future) # non-blocking/asynchronous

asynchronous Python 3
client = await Client(asynchronous=True)
future = client.submit(func, *args) # immediate, no blocking/async difference
result = await client.gather(future) # non-blocking/asynchronous
```

The asynchronous variants must be run within a Tornado coroutine. See the Asynchronous documentation for more information.

## 3.5.2 Client

```python
class distributed.Client(address=None, loop=None, timeout='__no_default__', set_as_default=True, scheduler_file=None, security=None, asynchronous=False, name=None, heartbeat_interval=None, serializers=None, deserializers=None, extensions=[<class 'distributed.pubsub.PubSubClientExtension'>], direct_to_workers=False, **kwargs)
```

Connect to and drive computation on a distributed Dask cluster. The Client connects users to a `dask.distributed` compute cluster. It provides an asynchronous user interface around functions and futures. This class resembles executors in `concurrent.futures` but also allows
Future objects within submit/map calls.

Parameters

- `address: string, or Cluster` This can be the address of a Scheduler server like a string '127.0.0.1:8786' or a cluster object like `LocalCluster()`
- `timeout: int` Timeout duration for initial connection to the scheduler
- `set_as_default: bool (True)` Claim this scheduler as the global dask scheduler
- `scheduler_file: string (optional)` Path to a file with scheduler information if available
- `security: (optional)` Optional security information
- `asynchronous: bool (False by default)` Set to True if using this client within async/await functions or within Tornado gen.coroutines. Otherwise this should remain False for normal use.
- `name: string (optional)` Gives the client a name that will be included in logs generated on the scheduler for matters relating to this client
- `direct_to_workers: bool (optional)` Can this client connect directly to workers or should it proxy through the scheduler?
- `heartbeat_interval: int` Time in milliseconds between heartbeats to scheduler

See also:

- `distributed.scheduler.Scheduler` Internal scheduler

Examples

Provide cluster's scheduler node address on initialization:

```python
>>> client = Client('127.0.0.1:8786')
```

Use `submit` method to send individual computations to the cluster

```python
>>> a = client.submit(add, 1, 2)
>>> b = client.submit(add, 10, 20)
```

Continue using `submit` or `map` on results to build up larger computations

```python
>>> c = client.submit(add, a, b)
```

Gather results with the `gather` method.

```python
>>> client.gather(c)
33
```

asynchronous

Are we running in the event loop?

This is true if the user signaled that we might be when creating the client as in the following:

```python
client = Client(asynchronous=True)
```

However, we override this expectation if we can definitively tell that we are running from a thread that is not the event loop. This is common when calling `get_client()` from within a worker task. Even though the client was originally created in asynchronous mode we may find ourselves in contexts when it is better to operate synchronously.
**call_stack** *(futures=None, keys=None)*

The actively running call stack of all relevant keys

You can specify data of interest either by providing futures or collections in the `futures=` keyword or a list of explicit keys in the `keys=` keyword. If neither are provided then all call stacks will be returned.

**Parameters**

- `futures`: list (optional) List of futures, defaults to all data
- `keys`: list (optional) List of key names, defaults to all data

**Examples**

```python
>>> df = dd.read_parquet(...).persist()
>>> client.call_stack(df) # call on collections
>>> client.call_stack() # Or call with no arguments for all activity
```

**cancel** *(futures, asynchronous=None, force=False)*

Cancel running futures

This stops future tasks from being scheduled if they have not yet run and deletes them if they have already run. After calling, this result and all dependent results will no longer be accessible

**Parameters**

- `futures`: list of Futures
- `force`: boolean (False) Cancel this future even if other clients desire it

**close** *(timeout='__no_default__')*

Close this client

Clients will also close automatically when your Python session ends

If you started a client without arguments like `Client()` then this will also close the local cluster that was started at the same time.

**See also:**

`Client.restart`

**compute** *(collections, sync=False, optimize_graph=True, workers=None, allow_other_workers=False, resources=None, retries=0, priority=0, fifo_timeout='60s', actors=None, **kwargs)*

Compute dask collections on cluster

**Parameters**

- `collections`: iterable of dask objects or single dask object Collections like dask.array or dataframe or dask.value objects
- `sync`: bool (optional) Returns Futures if False (default) or concrete values if True
- `optimize_graph`: bool Whether or not to optimize the underlying graphs
- `workers`: str, list, dict Which workers can run which parts of the computation If a string a list then the output collections will run on the listed workers, but other sub-computations can run anywhere If a dict then keys should be (tuples of) collections and values should be addresses or lists.
- `allow_other_workers`: bool, list If True then all restrictions in workers= are considered loose If a list then only the keys for the listed collections are loose
retries: int (default to 0) Number of allowed automatic retries if computing a result fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take precedence

fifo_timeout: timedelta str (defaults to ’60s’) Allowed amount of time between calls to consider the same priority

**kwargs: Options to pass to the graph optimize calls

Returns

List of Futures if input is a sequence, or a single future otherwise

See also:

Client.get Normal synchronous dask.get function

Examples

```python
>>> from dask import delayed
>>> from operator import add
>>> x = delayed(add)(1, 2)
>>> y = delayed(add)(x, x)
>>> xx, yy = client.compute([x, y])
>>> xx
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfe188e>
>>> xx.result()
3
>>> yy.result()
6
```

Also support single arguments

```python
>>> xx = client.compute(x)
```

classmethod current()

Return global client if one exists, otherwise raise ValueError

gather (futures, errors=’raise’, maxsize=0, direct=None, asynchronous=None)

Gather futures from distributed memory

Accepts a future, nested container of futures, iterator, or queue. The return type will match the input type.

Parameters

futures: Collection of futures This can be a possibly nested collection of Future objects. Collections can be lists, sets, iterators, queues or dictionaries

errors: string Either ‘raise’ or ‘skip’ if we should raise if a future has erred or skip its inclusion in the output collection

maxsize: int If the input is a queue then this produces an output queue with a maximum size.

Returns

results: a collection of the same type as the input, but now with gathered results rather than futures

See also:
**Client.scatter** Send data out to cluster

**Examples**

```python
>>> from operator import add
>>> c = Client('127.0.0.1:8787')
>>> x = c.submit(add, 1, 2)
3
>>> c.gather(x)
3
>>> c.gather([x, [x], x]) # support lists and dicts
[3, [3], 3]
```

**get** (*dsk*, *keys*, *restrictions=None*, *loose_restrictions=None*, *resources=None*, *sync=True*, *asynchronous=None*, *direct=None*, *retries=None*, *priority=0*, *fifo_timeout='60s'*, *actors=None*, **kwargs)

Compute dask graph

**Parameters**

- **dsk**: dict
- **keys**: object, or nested lists of objects
- **restrictions**: dict (optional) A mapping of {key: {set of worker hostnames}} that restricts where jobs can take place
- **retries**: int (default to 0) Number of allowed automatic retries if computing a result fails
- **priority**: Number Optional prioritization of task. Zero is default. Higher priorities take precedence
- **sync**: bool (optional) Returns Futures if False or concrete values if True (default).
- **direct**: bool Gather results directly from workers

**See also:**

**Client.compute** Compute asynchronous collections

**Examples**

```python
>>> from operator import add
>>> c = Client('127.0.0.1:8787')
>>> c.get({'x': (add, 1, 2)}, 'x')
3
```

**get_dataset** (*name*, **kwargs)

Get named dataset from the scheduler

**See also:**

**Client.publish_dataset, Client.list_datasets**
**get_executor** (**kwargs**)  
Return a concurrent.futures Executor for submitting tasks on this Client  

**Parameters**  

**kwargs**: Any submit()- or map()- compatible arguments, such as workers or resources.  

**Returns**  
An Executor object that’s fully compatible with the concurrent.futures API.  

**get_metadata** (**keys**, **default='__no_default__'**)  
Get arbitrary metadata from scheduler  

See set_metadata for the full docstring with examples  

**Parameters**  

**keys**: key or list  
Key to access. If a list then gets within a nested collection  

**default**: optional  
If the key does not exist then return this value instead. If not provided then this raises a KeyError if the key is not present  

See also:  

Client.set_metadata  

**classmethod get_restrictions** (**collections**, **workers**, **allow_other_workers**)  
Get restrictions from inputs to compute/persist  

**get_scheduler_logs** (**n=None**)  
Get logs from scheduler  

**Parameters**  

**n**: int  
Number of logs to retrieve. Maxes out at 10000 by default, configurable in config.yaml::log-length  

**Returns**  
Logs in reversed order (newest first)  

**get_task_stream** (**start=None**, **stop=None**, **count=None**, **plot=False**, **filename='task-stream.html'**)  
Get task stream data from scheduler  

This collects the data present in the diagnostic “Task Stream” plot on the dashboard. It includes the start, stop, transfer, and deserialization time of every task for a particular duration.  

Note that the task stream diagnostic does not run by default. You may wish to call this function once before you start work to ensure that things start recording, and then again after you have completed.  

**Parameters**  

**start**: Number or string  
When you want to start recording If a number it should be the result of calling time() If a string then it should be a time difference before now, like ‘60s’ or ‘500 ms’  

**stop**: Number or string  
When you want to stop recording  

**count**: int  
The number of desired records, ignored if both start and stop are specified  

**plot**: boolean, str  
If true then also return a Bokeh figure If plot == ‘save’ then save the figure to a file  

**filename**: str (optional)  
The filename to save to if you set plot='save'
Returns

\[ \text{L: List[ Dict]} \]

See also:

get_task_stream a context manager version of this method

Examples

```python
>>> client.get_task_stream() # prime plugin if not already connected
>>> x.compute() # do some work
>>> client.get_task_stream()
[{'task': ..., 'type': ..., 'thread': ..., ...}]
```

Pass the plot=True or plot='save' keywords to get back a Bokeh figure

```python
>>> data, figure = client.get_task_stream(plot='save', filename='myfile.html')
```

Alternatively consider the context manager

```python
>>> from dask.distributed import get_task_stream
>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]
```

get_versions (check=False, packages=[]) 
Return version info for the scheduler, all workers and myself

Parameters

- **check** [boolean, default False] raise ValueError if all required & optional packages do not match
- **packages** [List[str]] Extra package names to check

Examples

```python
>>> c.get_versions()
```

```python
>>> c.get_versions(packages=['sklearn', 'geopandas'])
```

get_worker_logs (n=None, workers=[]) 
Get logs from workers

Parameters

- **n**: int Number of logs to retrive. Maxes out at 10000 by default, confiruable in config.yaml::log-length
- **workers**: iterable List of worker addresses to retrive. Gets all workers by default.

Returns
Dictionary mapping worker address to logs.

Logs are returned in reversed order (newest first)

```python
has_what(workers=None, **kwargs)
```

Which keys are held by which workers

This returns the keys of the data that are held in each worker’s memory.

**Parameters**

- **workers:** list (optional) A list of worker addresses, defaults to all

**See also:**

- `Client.who_has`
- `Client.ncores`
- `Client.processing`

**Examples**

```python
>>> x, y, z = c.map(inc, [1, 2, 3])
>>> wait([x, y, z])
>>> c.has_what()
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea', 'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b', 'inc-1e297fc27658d7b67b3a758f16bcf47a']}
```

```python
list_datasets(**kwargs)
```

List named datasets available on the scheduler

**See also:**

- `Client.publish_dataset`
- `Client.get_dataset`

```python
map(func, *iterables, **kwargs)
```

Map a function on a sequence of arguments

Arguments can be normal objects or Futures

**Parameters**

- **func:** callable
- **iterables:** Iterables, Iterators, or Queues
- **key:** str, list Prefix for task names if string. Explicit names if list.
- **pure:** bool (defaults to True) Whether or not the function is pure. Set `pure=False` for impure functions like `np.random.random`.
- **workers:** set, iterable of sets A set of worker hostnames on which computations may be performed. Leave empty to default to all workers (common case)
- **retries:** int (default to 0) Number of allowed automatic retries if a task fails
- **priority:** Number Optional prioritization of task. Zero is default. Higher priorities take precedence
- **fifot_timeout:** str `timedelta` (default `100ms`) Allowed amount of time between calls to consider the same priority
- **kwargs:** dict Extra keywords to send to the function. Large values will be included explicitly in the task graph.

**Returns**
List, iterator, or Queue of futures, depending on the type of the inputs.

See also:

**Client.submit**  Submit a single function

Examples

```python
>>> L = client.map(func, sequence)
```

**nbytes** *(keys=None, summary=True, **kwargs)*

The bytes taken up by each key on the cluster

This is as measured by `sys.getsizeof` which may not accurately reflect the true cost.

Parameters

- **keys**: list (optional)  A list of keys, defaults to all keys
- **summary**: boolean, (optional)  Summarize keys into key types

See also:

**Client.who_has**

Examples

```python
>>> x, y, z = c.map(inc, [1, 2, 3])
>>> c.nbytes(summary=False)
{'inc-1c8dd6b1c21646c71f76c16d09304ea': 28, 'inc-1e297fc27658d7b67b3a758f16bcf47a': 28, 'inc-fd65c238a7ea60f6a01bf4c8a5fcb44b': 28}
```

```python
>>> c.nbytes(summary=True)
{'inc': 84}
```

**ncores** *(workers=None, **kwargs)*

The number of threads/cores available on each worker node

Parameters

- **workers**: list (optional)  A list of workers that we care about specifically. Leave empty to receive information about all workers.

See also:

**Client.who_has**, **Client.has_what**

Examples

```python
>>> c.ncores()
```
**normalize_collection** *(collection)*

Replace collection’s tasks by already existing futures if they exist

This normalizes the tasks within a collections task graph against the known futures within the scheduler. It returns a copy of the collection with a task graph that includes the overlapping futures.

See also:

*Client.persist* trigger computation of collection’s tasks

**Examples**

```python
>>> len(x.__dask_graph__()) # x is a dask collection with 100 tasks
100
>>> set(client.futures).intersection(x.__dask_graph__()) # some overlap
\rightarrow exists
10

>>> x = client.normalize_collection(x)

```

**persist** *(collections, optimize_graph=True, workers=None, allow_other_workers=None, resources=None, retries=None, priority=0, fifo_timeout='60s', actors=None, **kwargs)*

Persist dask collections on cluster

Starts computation of the collection on the cluster in the background. Provides a new dask collection that is semantically identical to the previous one, but now based off of futures currently in execution.

**Parameters**

- **collections**: sequence or single dask object  
  Collections like dask.array or dataframe or dask.value objects

- **optimize_graph**: bool  
  Whether or not to optimize the underlying graphs

- **workers**: str, list, dict  
  Which workers can run which parts of the computation If a string a list then the output collections will run on the listed workers, but other sub-computations can run anywhere If a dict then keys should be (tuples of) collections and values should be addresses or lists.

- **allow_other_workers**: bool, list  
  If True then all restrictions in workers= are considered loose If a list then only the keys for the listed collections are loose

- **retries**: int (default to 0)  
  Number of allowed automatic retries if computing a result fails

- **priority**: Number  
  Optional prioritization of task. Zero is default. Higher priorities take precedence

- **fifo_timeout**: timedelta str (defaults to ’60s’)  
  Allowed amount of time between calls to consider the same priority

- **kwargs**: Options to pass to the graph optimize calls

**Returns**

List of collections, or single collection, depending on type of input.

See also:

*Client.compute*
Examples

```python
>>> xx = client.persist(x)
>>> xx, yy = client.persist([x, y])
```

**processing** *(workers=None)*
The tasks currently running on each worker

**Parameters**

- **workers**: list (optional)  A list of worker addresses, defaults to all

**See also:**

`Client.who_has`, `Client.has_what`, `Client.ncores`

Examples

```python
>>> x, y, z = c.map(inc, [1, 2, 3])
>>> c.processing()
{'192.168.1.141:46784': ['inc-c8db6be1c21646c71f76c1609304ea',
 'inc-fd65c238a7ea60f6a0b4c8a5f6c44b',
 'inc-1e297fc27658d7b67b3a758f16b6cf47a']}
```

**profile** *(key=None, start=None, stop=None, workers=None, merge_workers=True)*
Collect statistical profiling information about recent work

**Parameters**

- **key**: str  Key prefix to select, this is typically a function name like ‘inc’ Leave as None to collect all data
- **start**: time
- **stop**: time
- **workers**: list  List of workers to restrict profile information

Examples

```python
>>> client.profile() # call on collections
```

**publish_dataset** (*args, **kwargs)*
Publish named datasets to scheduler
This stores a named reference to a dask collection or list of futures on the scheduler. These references are available to other Clients which can download the collection or futures with `get_dataset`.

Datasets are not immediately computed. You may wish to call `Client.persist` prior to publishing a dataset.

**Parameters**

- **args**: [list of objects to publish as name]
- **name**: [optional name of the dataset to publish]
- **kwars**: dict  named collections to publish on the scheduler
Returns

None

See also:

Client.list_datasets, Client.get_dataset, Client.unpublish_dataset, Client.persist

Examples

Publishing client:

```python
>>> df = dd.read_csv('s3://...')
>>> df = c.persist(df)
>>> c.publish_dataset(my_dataset=df)
```

Alternative invocation >>> c.publish_dataset(df, name='my_dataset')

Receiving client:

```python
>>> c.list_datasets()
['my_dataset']
>>> df2 = c.get_dataset('my_dataset')
```

rebalance (futures=None, workers=None, **kwargs)

Rebalance data within network

Move data between workers to roughly balance memory burden. This either affects a subset of the keys/workers or the entire network, depending on keyword arguments.

This operation is generally not well tested against normal operation of the scheduler. It is not recommended to use it while waiting on computations.

Parameters

futures: list, optional     A list of futures to balance, defaults all data

workers: list, optional     A list of workers on which to balance, defaults all workers

register_worker_callbacks (setup=None)

Registers a setup callback function for all current and future workers.

This registers a new setup function for workers in this cluster. The function will run immediately on all currently connected workers. It will also be run upon connection by any workers that are added in the future. Multiple setup functions can be registered - these will be called in the order they were added.

If the function takes an input argument named dask_worker then that variable will be populated with the worker itself.

Parameters

setup [callable(dask_worker: Worker) -> None] Function to register and run on all workers

replicate (futures, n=None, workers=None, branching_factor=2, **kwargs)

Set replication of futures within network

Copy data onto many workers. This helps to broadcast frequently accessed data and it helps to improve resilience.

This performs a tree copy of the data throughout the network individually on each piece of data. This operation blocks until complete. It does not guarantee replication of data to future workers.
Parameters

- **futures**: list of futures  
  Futures we wish to replicate

- **n**: int, optional  
  Number of processes on the cluster on which to replicate the data. Defaults to all.

- **workers**: list of worker addresses  
  Workers on which we want to restrict the replication. Defaults to all.

- **branching_factor**: int, optional  
  The number of workers that can copy data in each generation

See also:

*Client.rebalance*

Examples

```python
>>> x = c.submit(func, *args)
>>> c.replicate([x]) # send to all workers
>>> c.replicate([x], n=3) # send to three workers
>>> c.replicate([x], workers=['alice', 'bob']) # send to specific workers
>>> c.replicate([x], n=1, workers=['alice', 'bob']) # send to one of specific workers
>>> c.replicate([x], n=1) # reduce replications
```

**restart**(**kwargs**)  
Restart the distributed network

This kills all active work, deletes all data on the network, and restarts the worker processes.

**retire_workers**(**workers=None, close_workers=True, **kwargs**)  
Retire certain workers on the scheduler

See `dask.distributed.Scheduler.retire_workers` for the full docstring.

See also:

*dask.distributed.Scheduler.retire_workers*

Examples

You can get information about active workers using the following: >>> workers = client.scheduler_info()['workers']

From that list you may want to select some workers to close >>> client.retire_workers(workers=['tcp://address:port', ...])

**retry**(**futures, asynchronous=None**)  
Retry failed futures

Parameters

- **futures**: list of Futures

**run**(**function, *args, **kwargs**)  
Run a function on all workers outside of task scheduling system
This calls a function on all currently known workers immediately, blocks until those results come back, and returns the results asynchronously as a dictionary keyed by worker address. This method is generally used for side effects, such as collecting diagnostic information or installing libraries.

If your function takes an input argument named `dask_worker` then that variable will be populated with the worker itself.

### Parameters

- **function**: callable
- ***args**: arguments for remote function
- ****kwargs**: keyword arguments for remote function
- **workers**: list Workers on which to run the function. Defaults to all known workers.
- **wait**: boolean (optional) If the function is asynchronous whether or not to wait until that function finishes.

### Examples

```python
>>> c.run(os.getpid)
{'192.168.0.100:9000': 1234,
 '192.168.0.101:9000': 4321,
 '192.168.0.102:9000': 5555}
```

Restrict computation to particular workers with the `workers` keyword argument.

```python
>>> c.run(os.getpid, workers=['192.168.0.100:9000',
 '192.168.0.101:9000'])
{'192.168.0.100:9000': 1234,
 '192.168.0.101:9000': 4321}
```

```python
>>> def get_status(dask_worker):
... return dask_worker.status

>>> c.run(get_status)
{'192.168.0.100:9000': 'running',
 '192.168.0.101:9000': 'running'}
```

Run asynchronous functions in the background:

```python
>>> async def print_state(dask_worker):
... while True:
... print(dask_worker.status)
... await gen.sleep(1)

>>> c.run(print_state, wait=False)
```

### run_coroutine (function, *args, **kwargs)

Spawn a coroutine on all workers.

This spawns a coroutine on all currently known workers and then waits for the coroutine on each worker. The coroutines’ results are returned as a dictionary keyed by worker address.

### Parameters

- **function**: a coroutine function
run_on_scheduler (function, *args, **kwargs)
Run a function on the scheduler process
This is typically used for live debugging. The function should take a keyword argument
dask_scheduler=, which will be given the scheduler object itself.

See also:
- Client.run Run a function on all workers
- Client.start_ipython_scheduler Start an IPython session on scheduler

Examples

```python
>>> def get_number_of_tasks(dask_scheduler=None):
... return len(dask_scheduler.tasks)

>>> client.run_on_scheduler(get_number_of_tasks)
100
```

Run asynchronous functions in the background:

```python
>>> async def print_state(dask_scheduler):
... while True:
... print(dask_scheduler.status)
... await gen.sleep(1)

>>> c.run(print_state, wait=False)
```

scatter (data, workers=None, broadcast=False, direct=None, hash=True, maxsize=0, timeout='__no_default__', asynchronous=None)
Scatter data into distributed memory
This moves data from the local client process into the workers of the distributed scheduler. Note that it is often better to submit jobs to your workers to have them load the data rather than loading data locally and then scattering it out to them.

Parameters

- data: list, iterator, dict, Queue, or object Data to scatter out to workers. Output type matches input type.
- workers: list of tuples (optional) Optionally constrain locations of data. Specify workers as hostname/port pairs, e.g. ('127.0.0.1', 8787).
- broadcast: bool (defaults to False) Whether to send each data element to all workers. By default we round-robin based on number of cores.
**direct:** bool (defaults to automatically check) Send data directly to workers, bypassing
the central scheduler This avoids burdening the scheduler but assumes that the client is
able to talk directly with the workers.

**maxsize:** int (optional) Maximum size of queue if using queues, 0 implies infinite

**hash:** bool (optional) Whether or not to hash data to determine key. If False then this uses
a random key

**Returns**

List, dict, iterator, or queue of futures matching the type of input.

**See also:**

*Client.gather* Gather data back to local process

**Examples**

```python
>>> c = Client('127.0.0.1:8787')
>>> c.scatter(1)
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>
```

```python
>>> c.scatter([1, 2, 3])
[<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,
 <Future: status: finished, key: 58e78e1b34eb49a68c65b54815d1b158>,
 <Future: status: finished, key: d3395e15f605bc35ab1bac6341a285e2>]
```

```python
>>> c.scatter({'x': 1, 'y': 2, 'z': 3})
{'x': <Future: status: finished, key: x>,
 'y': <Future: status: finished, key: y>,
 'z': <Future: status: finished, key: z>}
```

Constrain location of data to subset of workers

```python
>>> c.scatter([1, 2, 3], workers=[('hostname', 8788)])
```

Handle streaming sequences of data with iterators or queues

```python
>>> seq = c.scatter(iter([1, 2, 3]))
>>> next(seq)
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,
```

Broadcast data to all workers

```python
>>> [future] = c.scatter([element], broadcast=True)
```

Send scattered data to parallelized function using client futures interface

```python
>>> data = c.scatter(data, broadcast=True)
>>> res = [c.submit(func, data, i) for i in range(100)]
```

**scheduler_info(**kwargs**)

Basic information about the workers in the cluster
Examples

```
>>> c.scheduler_info()
{'id': '2de2b6da-69ee-11e6-ab6a-e82ae155996',
'services': {},
'type': 'Scheduler',
'workers': {'127.0.0.1:40575': {'active': 0,
'last-seen': 1472038237.4845693,
'name': '127.0.0.1:40575',
'services': {},
'stored': 0,
'time-delay': 0.0061032772064208984}}
```

**set_metadata**(key, value)

Set arbitrary metadata in the scheduler

This allows you to store small amounts of data on the central scheduler process for administrative purposes. Data should be msgpack serializable (ints, strings, lists, dicts)

If the key corresponds to a task then that key will be cleaned up when the task is forgotten by the scheduler.

If the key is a list then it will be assumed that you want to index into a nested dictionary structure using those keys. For example if you call the following:

```
>>> client.set_metadata(['a', 'b', 'c'], 123)
```

Then this is the same as setting

```
>>> scheduler.task_metadata['a']['b']['c'] = 123
```

The lower level dictionaries will be created on demand.

See also:

**get_metadata**

Examples

```
>>> client.set_metadata('x', 123)
>>> client.get_metadata('x')
123
```

```
>>> client.set_metadata(['x', 'y'], 123)
>>> client.get_metadata('x')
{'y': 123}
```

```
>>> client.set_metadata(['x', 'w', 'z'], 456)
>>> client.get_metadata('x')
{'y': 123, 'w': {'z': 456}}
```

```
>>> client.get_metadata(['x', 'w'])
{'z': 456}
```

**shutdown**(args, **kwargs)

Deprecated, see close instead
This was deprecated because “shutdown” was sometimes confusingly thought to refer to the cluster rather than the client.

**start(**kwargs**)

Start scheduler running in separate thread

**start_ipython_scheduler** *(magic_name='scheduler_if_ipython', qtconsole=False, qtconsole_args=None)*

Start IPython kernel on the scheduler

**Parameters**

- **magic_name:** str or None (optional)  
  If defined, register IPython magic with this name for executing code on the scheduler. If not defined, register %scheduler magic if IPython is running.

- **qtconsole:** bool (optional)  
  If True, launch a Jupyter QtConsole connected to the worker(s).

- **qtconsole_args:** list(str) (optional)  
  Additional arguments to pass to the qtconsole on startup.

**Returns**

- **connection_info:** dict  
  connection_info dict containing info necessary to connect Jupyter clients to the scheduler.

**See also:**

*Client.start_ipython_workers*  
Start IPython on the workers

**Examples**

```python
>>> c.start_ipython_scheduler()
%scheduler scheduler.processing
{'127.0.0.1:3595': {'inc-1', 'inc-2'},
 '127.0.0.1:53589': {'inc-2', 'add-5'}}
```

```python
>>> c.start_ipython_scheduler(qtconsole=True)
```

**start_ipython_workers** *(workers=None, magic_names=False, qtconsole=False, qtconsole_args=None)*

Start IPython kernels on workers

**Parameters**

- **workers:** list (optional)  
  A list of worker addresses, defaults to all

- **magic_names:** str or list(str) (optional)  
  If defined, register IPython magics with these names for executing code on the workers. If string has asterix then expand asterix into 0, 1, ..., n for n workers

- **qtconsole:** bool (optional)  
  If True, launch a Jupyter QtConsole connected to the worker(s).

- **qtconsole_args:** list(str) (optional)  
  Additional arguments to pass to the qtconsole on startup.

**Returns**

- **iter_connection_info:** list  
  List of connection_info dicts containing info necessary to connect Jupyter clients to the workers.

**See also:**
Client.start_ipython_scheduler  start ipython on the scheduler

Examples

```python
>>> info = c.start_ipython_workers()
>>> %remote info['192.168.1.101:5752'] worker.data
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', magic_names='w')
>>> %w worker.data
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', qtconsole=True)
```

Add asterix * in magic names to add one magic per worker

```python
>>> c.start_ipython_workers(magic_names='w_*')
>>> %w_0 worker.data
{'x': 1, 'y': 100}
>>> %w_1 worker.data
{'z': 5}
```

submit (func, *args, **kwargs)
Submit a function application to the scheduler

Parameters

- **func:** callable
- *args:
- **kwargs:
  - **pure:** bool (defaults to True) Whether or not the function is pure. Set pure=False for impure functions like np.random.random.
  - **workers:** set, iterable of sets A set of worker hostnames on which computations may be performed. Leave empty to default to all workers (common case)
  - **key:** str Unique identifier for the task. Defaults to function-name and hash
  - **allow_other_workers:** bool (defaults to False) Used with workers. Indicates whether or not the computations may be performed on workers that are not in the workers set(s).
  - **retries:** int (default to 0) Number of allowed automatic retries if the task fails
  - **priority:** Number Optional prioritization of task. Zero is default. Higher priorities take precedence
  - **fifo_timeout:** str timedelta (default ‘100ms’) Allowed amount of time between calls to consider the same priority

Returns

- **Future**

See also:

Client.map Submit on many arguments at once
Examples

```python
c = client.submit(add, a, b)
```

unpublish_dataset(name, **kwargs)

Remove named datasets from scheduler

See also:

`Client.publish_dataset`

Examples

```python
c.list_datasets()
['my_dataset']
c.unpublish_datasets('my_dataset')
c.list_datasets()
[]
```

upload_file(filename, **kwargs)

Upload local package to workers

This sends a local file up to all worker nodes. This file is placed into a temporary directory on Python’s system path so any .py, .egg or .zip files will be importable.

Parameters

- **filename**: string  Filename of .py, .egg or .zip file to send to workers

Examples

```python
client.upload_file('mylibrary.egg')
from mylibrary import myfunc
L = c.map(myfunc, seq)
```

who_has(futures=None, **kwargs)

The workers storing each future’s data

Parameters

- **futures**: list (optional) A list of futures, defaults to all data

See also:

`Client.has_what`, `Client.ncores`

Examples

```python
x, y, z = c.map(inc, [1, 2, 3])
wait([x, y, z])
c.who_has()
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
 'inc-1e297fc27658d7b67b3a758f16b6cf47a': ['192.168.1.141:46784'],
 'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': ['192.168.1.141:46784']}
```
>>> c.who_has([x, y])
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784']}

**write_scheduler_file** *(scheduler_file)*
Write the scheduler information to a json file.
This facilitates easy sharing of scheduler information using a file system. The scheduler file can be used to instantiate a second Client using the same scheduler.

**Parameters**

- **scheduler_file**: str Path to a write the scheduler file.

**Examples**

```python
>>> client = Client()
>>> client.write_scheduler_file('scheduler.json')
connect to previous client's scheduler
>>> client2 = Client(scheduler_file='scheduler.json')
```

**class** distributed.recreate_exceptions.ReplayExceptionClient *(client)*
A plugin for the client allowing replay of remote exceptions locally

Adds the following methods (and their async variants) to the given client:

- **recreate_error_locally**: main user method

- **get_futures_error**: gets the task, its details and dependencies, responsible for failure of the given future.

**get_futures_error** *(future)*
Ask the scheduler details of the sub-task of the given failed future

When a future evaluates to a status of “error”, i.e., an exception was raised in a task within its graph, we can get information from the scheduler. This function gets the details of the specific task that raised the exception and led to the error, but does not fetch data from the cluster or execute the function.

**Parameters**

- **future**: [future that failed, having status="error", typically] after an attempt to gather() shows a stack-trace.

**Returns**

- **Tuple:**
  - the function that raised an exception
  - argument list (a tuple), may include values and keys
  - keyword arguments (a dictionary), may include values and keys
  - list of keys that the function requires to be fetched to run

**See also:**

- ReplayExceptionClient.recreate_error_locally

**recreate_error_locally** *(future)*
For a failed calculation, perform the blamed task locally for debugging.
This operation should be performed after a future (result of `gather`, `compute`, etc) comes back with a status of “error”, if the stack trace is not informative enough to diagnose the problem. The specific task (part of the graph pointing to the future) responsible for the error will be fetched from the scheduler, together with the values of its inputs. The function will then be executed, so that `pdb` can be used for debugging.

**Parameters**

- `future` [future or collection that failed] The same thing as was given to `gather`, but came back with an exception/stack-trace. Can also be a (persisted) dask collection containing any errored futures.

**Returns**

Nothing; the function runs and should raise an exception, allowing the debugger to run.

**Examples**

```python
def div(x, y):
 return x / y
```

If you’re in IPython you might take this opportunity to use `pdb`

```python
>>> %pdb
Automatic pdb calling has been turned ON
```

If you’re in IPython you might take this opportunity to use `pdb`

```python
>>> c.recreate_error_locally(future)
ZeroDivisionError: division by zero
```

### 3.5.3 Future

```python
class distributed.Future(key, client=None, inform=True, state=None)
```

A remotely running computation

A Future is a local proxy to a result running on a remote worker. A user manages future objects in the local Python process to determine what happens in the larger cluster.

**Parameters**

- `key`: str, or tuple Key of remote data to which this future refers
- `client`: Client Client that should own this future. Defaults to `_get_global_client()`
- `inform`: bool Do we inform the scheduler that we need an update on this future

**See also:**

- `Client` Creates futures
Examples

Futures typically emerge from Client computations

```python
>>> my_future = client.submit(add, 1, 2)
```

We can track the progress and results of a future

```python
>>> my_future
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfeel88e>
```

We can get the result or the exception and traceback from the future

```python
>>> my_future.result()
```

**add_done_callback** *(fn)*

Call callback on future when callback has finished

The callback `fn` should take the future as its only argument. This will be called regardless of if the future completes successfully, err, or is cancelled

The callback is executed in a separate thread.

**cancel** *(**kwargs)*

Cancel request to run this future

See also:

`Client.cancel`

**cancelled** *

Returns True if the future has been cancelled

**done** *

Is the computation complete?

**exception** *(timeout=None, **kwargs)*

Return the exception of a failed task

If `timeout` seconds are elapsed before returning, a `dask.distributed.TimeoutError` is raised.

See also:

`Future.traceback`

**result** *(timeout=None)*

Wait until computation completes, gather result to local process.

If `timeout` seconds are elapsed before returning, a `dask.distributed.TimeoutError` is raised.

**retry** *(**kwargs)*

Retry this future if it has failed

See also:

`Client.retry`

**traceback** *(timeout=None, **kwargs)*

Return the traceback of a failed task

This returns a traceback object. You can inspect this object using the `traceback` module. Alternatively if you call `future.result()` this traceback will accompany the raised exception.

If `timeout` seconds are elapsed before returning, a `dask.distributed.TimeoutError` is raised.
3.5.4 Other

```
distributed.as_completed(futures=None, loop=None, with_results=False, raise_errors=True)
```

Return futures in the order in which they complete

This returns an iterator that yields the input future objects in the order in which they complete. Calling `next` on the iterator will block until the next future completes, irrespective of order.

Additionally, you can also add more futures to this object during computation with the `.add` method

**Parameters**

- **futures**: `Collection of futures` A list of Future objects to be iterated over in the order in which they complete
- **with_results**: `bool (False)` Whether to wait and include results of futures as well; in this case `as_completed` yields a tuple of (future, result)
- **raise_errors**: `bool (True)` Whether we should raise when the result of a future raises an exception; only affects behavior when `with_results=True`.

**Examples**

```
>>> x, y, z = client.map(inc, [1, 2, 3])
>>> for future in as_completed([x, y, z]):
... print(future.result())
3
2
4
```

Add more futures during computation

```
>>> x, y, z = client.map(inc, [1, 2, 3])
>>> ac = as_completed([x, y, z])
>>> for future in ac:
... print(future.result())
... if random.random() < 0.5:
... ac.add(c.submit(double, future))
4
2
8
3
6
```
Optionally wait until the result has been gathered as well

```python
>>> ac = as_completed([x, y, z], with_results=True)
>>> for future, result in ac:
... print(result)
2
4
3
```

distributed.diagnostics.progress(*futures, **kwargs)
Track progress of futures

This operates differently in the notebook and the console

- Notebook: This returns immediately, leaving an IPython widget on screen
- Console: This blocks until the computation completes

**Parameters**

- **futures**: Futures A list of futures or keys to track
- **notebook**: bool (optional) Running in the notebook or not (defaults to guess)
- **multi**: bool (optional) Track different functions independently (defaults to True)
- **complete**: bool (optional) Track all keys (True) or only keys that have not yet run (False) (defaults to True)

**Notes**

In the notebook, the output of `progress` must be the last statement in the cell. Typically, this means calling `progress` at the end of a cell.

**Examples**

```python
>>> progress(futures)
[##] | 100% Completed | 1.7s
```

distributed.wait(fs, timeout=None, return_when='ALL_COMPLETED')
Wait until all futures are complete

**Parameters**

- **fs**: list of futures
- **timeout**: number, optional Time in seconds after which to raise a dask.distributed.TimeoutError

- **Named tuple of completed, not completed**
distributed.fire_and_forget(obj)
Run tasks at least once, even if we release the futures

Under normal operation Dask will not run any tasks for which there is not an active future (this avoids unnecessary work in many situations). However sometimes you want to just fire off a task, not track its future, and expect it to finish eventually. You can use this function on a future or collection of futures to ask Dask to complete the task even if no active client is tracking it.

The results will not be kept in memory after the task completes (unless there is an active future) so this is only useful for tasks that depend on side effects.

**Parameters**

- **obj:** Future, list, dict, dask collection The futures that you want to run at least once

**Examples**

```python
>>> fire_and_forget(client.submit(func, *args))
```

distributed.futures_of(o, client=None)
Future objects in a collection

distributed.worker_client(timeout=3, separate_thread=True)
Get client for this thread

This context manager is intended to be called within functions that we run on workers. When run as a context manager it delivers a client `Client` object that can submit other tasks directly from that worker.

**Parameters**

- **timeout:** Number Timeout after which to err
- **separate_thread:** bool, optional Whether to run this function outside of the normal thread pool defaults to True

**See also:**

`get_worker, get_client, secede`

**Examples**

```python
>>> def func(x):
... with worker_client() as c:
... # connect from worker back to scheduler
... a = c.submit(inc, x) # this task can submit more tasks
... b = c.submit(dec, x)
... result = c.gather([a, b]) # and gather results
... return result

>>> future = client.submit(func, 1) # submit func(1) on cluster
```

distributed.get_worker()
Get the worker currently running this task

**See also:**

`get_client, worker_client`
Examples

```python
>>> def f():
... worker = get_worker() # The worker on which this task is running
... return worker.address

>>> future = client.submit(f)
>>> future.result()
'tcp://127.0.0.1:47373'
```

distributed.get_client(address=None, timeout=3, resolve_address=True)

Get a client while within a task.

This client connects to the same scheduler to which the worker is connected.

Parameters

- **address** [str, optional] The address of the scheduler to connect to. Defaults to the scheduler the worker is connected to.
- **timeout** [int, default 3] Timeout (in seconds) for getting the Client
- **resolve_address** [bool, default True] Whether to resolve address to its canonical form.

Returns

Client

See also:

get_worker, worker_client, secede

Examples

```python
>>> def f():
... client = get_client()
... futures = client.map(lambda x: x + 1, range(10)) # spawn many tasks
... results = client.gather(futures)
... return sum(results)

>>> future = client.submit(f)
>>> future.result()
55
```

distributed.secede()

Have this task secede from the worker’s thread pool

This opens up a new scheduling slot and a new thread for a new task. This enables the client to schedule tasks on this node, which is especially useful while waiting for other jobs to finish (e.g., with client.gather).

See also:

get_client, get_worker

3.5. API
Examples

```python
>>> def mytask(x):
... # do some work
... client = get_client()
... futures = client.map(...) # do some remote work
... secede() # while that work happens, remove ourself from the pool
... return client.gather(futures) # return gathered results
```  

distributed.rejoin()

Have this thread rejoin the ThreadPoolExecutor

This will block until a new slot opens up in the executor. The next thread to finish a task will leave the pool to allow this one to join.

See also:

secede leave the thread pool

class distributed.get_task_stream(client=None, plot=False, filename='task-stream.html')

Collect task stream within a context block

This provides diagnostic information about every task that was run during the time when this block was active. This must be used as a context manager.

Parameters

- **plot**: boolean, str
  If true then also return a Bokeh figure If plot == 'save' then save the figure to a file

- **filename**: str (optional)
  The filename to save to if you set plot='save'

See also:

Client.get_task_stream Function version of this context manager

Examples

```python
>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]
```  

Get back a Bokeh figure and optionally save to a file

```python
>>> with get_task_stream(plot='save', filename='task-stream.html') as ts:
... x.compute()
>>> ts.figure
<Bokeh Figure>
```  

To share this file with others you may wish to upload and serve it online. A common way to do this is to upload the file as a gist, and then serve it on https://rawgit.com

```bash
$ pip install gist
gist task-stream.html
https://gist.github.com/8a5b3c74b10b413f612bb5e250856ceb
```
You can then navigate to that site, click the “Raw” button to the right of the task-stream.html file, and then provide that URL to https://rawgit.com. This process should provide a sharable link that others can use to see your task stream plot.

```python
class distributed.Lock(name=None, client=None)
Distributed Centralized Lock

Parameters

name: string Name of the lock to acquire. Choosing the same name allows two disconnected processes to coordinate a lock.

Examples

```python
class distributed.Queue(name=None, client=None, maxsize=0)
Distributed Queue

This allows multiple clients to share futures or small bits of data between each other with a multi-producer-multi-consumer queue. All metadata is sequentialized through the scheduler.

Elements of the Queue must be either Futures or msgpack-encodable data (ints, strings, lists, dicts). All data is sent through the scheduler so it is wise not to send large objects. To share large objects scatter the data and share the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:
Variable shared variable between clients

Examples

```python
>>> from dask.distributed import Client, Queue
>>> client = Client()
>>> queue = Queue('x')
>>> future = client.submit(f, x)
>>> queue.put(future)
```

get (timeout=None, batch=False, **kwargs)
Get data from the queue

Parameters

- timeout: Number (optional) Time in seconds to wait before timing out
- batch: boolean, int (optional) If True then return all elements currently waiting in the queue. If an integer than return that many elements from the queue If False (default) then return one item at a time

put (value, timeout=None, **kwargs)
Put data into the queue

qsize(**kwargs)
Current number of elements in the queue

class distributed.Variable (name=None, client=None, maxsize=0)
Distributed Global Variable

This allows multiple clients to share futures and data between each other with a single mutable variable. All metadata is sequentialized through the scheduler. Race conditions can occur.

Values must be either Futures or msgpack-encodable data (ints, lists, strings, etc..) All data will be kept and sent through the scheduler, so it is wise not to send too much. If you want to share a large amount of data then scatter it and share the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:

Queue shared multi-producer/multi-consumer queue between clients

Examples

```python
>>> from dask.distributed import Client, Variable
>>> client = Client()
>>> x = Variable('x')
>>> x.set(123) # doctest: +SKIP
>>> x.get() # doctest: +SKIP
123
>>> future = client.submit(f, x)
>>> x.set(future)
```
delete()  
Delete this variable  
Caution, this affects all clients currently pointing to this variable.

get (timeout=None, **kwargs)  
Get the value of this variable

set (value, **kwargs)  
Set the value of this variable

Parameters

value: Future or object  Must be either a Future or a msgpack-encodable value

3.5.5 Asyncio Client

class distributed.asyncio.AioClient (*args, **kwargs)  
Connect to and drive computation on a distributed Dask cluster

This class provides an asyncio compatible async/await interface for dask.distributed.

The Client connects users to a dask.distributed compute cluster. It provides an asynchronous user interface around functions and futures. This class resembles executors in concurrent.futures but also allows Future objects within submit/map calls.

AioClient is an experimental interface for distributed and may disappear without warning!

Parameters

address: string, or Cluster  This can be the address of a Scheduler server like a string '127.0.0.1:8786' or a cluster object like LocalCluster()

See also:

distributed.client.Client  Blocking Client

distributed.scheduler.Scheduler  Internal scheduler

Examples

Provide cluster’s scheduler address on initialization:

```python
client = AioClient('127.0.0.1:8786')
```

Start the client:

```python
async def start_the_client():
 client = await AioClient()
 # Use the client....
 await client.close()
```

An async with statement is a more convenient way to start and shut down the client:
async def start_the_client():
    async with AioClient() as client:
        # Use the client within this block.
        pass

Use the submit method to send individual computations to the cluster, and await the returned future to retrieve the result:

async def add_two_numbers():
    async with AioClient() as client:
        a = client.submit(add, 1, 2)
        result = await a

Continue using submit or map on results to build up larger computations, and gather results with the gather method:

async def gather_some_results():
    async with AioClient() as client:
        a = client.submit(add, 1, 2)
        b = client.submit(add, 10, 20)
        c = client.submit(add, a, b)
        result = await client.gather([c])

close(timeout='__no_default__')

Close this client

Clients will also close automatically when your Python session ends

If you started a client without arguments like Client() then this will also close the local cluster that was started at the same time.

See also:
Client.restart

get(dsk, keys, restrictions=None, loose_restrictions=None, resources=None, sync=True, asynchronous=None, direct=None, retries=None, priority=0, fifo_timeout='60s', actors=None, **kwargs)

Compute dask graph

Parameters

dsk: dict
keys: object, or nested lists of objects
restrictions: dict (optional) A mapping of {key: {set of worker hostnames}} that restricts where jobs can take place
retries: int (default to 0) Number of allowed automatic retries if computing a result fails
priority: Number Optional prioritization of task. Zero is default. Higher priorities take precedence
sync: bool (optional) Returns Futures if False or concrete values if True (default).
direct: bool Gather results directly from workers

See also:
Client.compute Compute asynchronous collections
Examples

```python
>>> from operator import add
>>> c = Client('127.0.0.1:8787')
>>> c.get({'x': (add, 1, 2)}, 'x')
3
```

`shutdown (*args, **kwargs)`

Deprecated, see close instead

This was deprecated because “shutdown” was sometimes confusingly thought to refer to the cluster rather than the client

3.5.6 Adaptive

```python
class distributed.deploy.Adaptive(scheduler, cluster=None, interval='1s', startup_cost='1s', scale_factor=2, minimum=0, maximum=None, wait_count=3, target_duration='5s', worker_key=<function Adaptive.<lambda>>, **kwargs)
```

Adaptively allocate workers based on scheduler load. A superclass.

Contains logic to dynamically resize a Dask cluster based on current use. This class needs to be paired with a system that can create and destroy Dask workers using a cluster resource manager. Typically it is built into already existing solutions, rather than used directly by users. It is most commonly used from the `.adapt(., .)` method of various Dask cluster classes.

**Parameters**

- `scheduler`: `distributed.Scheduler`
- `cluster`: `object`  Must have `scale_up` and `scale_down` methods/coroutines
- `startup_cost` [timedelta or str, default “1s”]  Estimate of the number of seconds for nnFactor representing how costly it is to start an additional worker. Affects quickly to adapt to high tasks per worker loads
- `interval` [timedelta or str, default “1000 ms”]  Milliseconds between checks
- `wait_count`: `int`, default 3  Number of consecutive times that a worker should be suggested for removal before we remove it.
- `scale_factor` [int, default 2]  Factor to scale by when it’s determined additional workers are needed
- `target_duration`: `timedelta or str`, default “5s”  Amount of time we want a computation to take. This affects how aggressively we scale up.
- `worker_key`: `Callable[WorkerState]`  Function to group workers together when scaling down
  See `Scheduler.workers_to_close` for more information
- `minimum`: `int`  Minimum number of workers to keep around
- `maximum`: `int`  Maximum number of workers to keep around
- `**kwargs`: Extra parameters to pass to `Scheduler.workers_to_close`
Notes

Subclasses can override `Adaptive.should_scale_up()` and `Adaptive.workers_to_close()` to control when the cluster should be resized. The default implementation checks if there are too many tasks per worker or too little memory available (see `Adaptive.needs_cpu()` and `Adaptive.needs_memory()`).

`Adaptive.get_scale_up_kwargs()` method controls the arguments passed to the cluster’s `scale_up` method.

Examples

This is commonly used from existing Dask classes, like KubeCluster

```python
>>> from dask_kubernetes import KubeCluster
>>> cluster = KubeCluster()
>>> cluster.adapt(minimum=10, maximum=100)
```

Alternatively you can use it from your own Cluster class by subclassing from Dask’s Cluster superclass

```python
>>> from distributed.deploy import Cluster
>>> class MyCluster(Cluster):
... def scale_up(self, n):
... """ Bring worker count up to n """
... def scale_down(self, workers):
... """ Remove worker addresses from cluster """

>>> cluster = MyCluster()
>>> cluster.adapt(minimum=10, maximum=100)
```

`get_scale_up_kwargs()` Get the arguments to be passed to `self.cluster.scale_up`.

See also:

`LocalCluster.scale_up`

Notes

By default the desired number of total workers is returned (n). Subclasses should ensure that the return dictionary includes a key-value pair for n, either by implementing it or by calling the parent’s `get_scale_up_kwargs`.

`needs_cpu()` Check if the cluster is CPU constrained (too many tasks per core)

Notes

Returns `True` if the occupancy per core is some factor larger than `startup_cost`.

`needs_memory()` Check if the cluster is RAM constrained
Notes

Returns True if the required bytes in distributed memory is some factor larger than the actual distributed memory available.

should_scale_up()
Determine whether additional workers should be added to the cluster

Returns

scale_up [bool]
Notes

Additional workers are added whenever
1. There are unrunnable tasks and no workers
2. The cluster is CPU constrained
3. The cluster is RAM constrained
4. There are fewer workers than our minimum

See also:

needs_cpu, needs_memory

workers_to_close(**kwargs)
Determine which, if any, workers should potentially be removed from the cluster.

Returns

List of worker addresses to close, if any

See also:

Scheduler.workers_to_close

Notes

Adaptive.workers_to_close dispatches to Scheduler.workers_to_close(), but may be overridden in subclasses.

3.6 Frequently Asked Questions

More questions can be found on StackOverflow at http://stackoverflow.com/search?tab=votes&q=dask%20distributed

3.6.1 How do I use external modules?

Use client.upload_file. For more detail, see the API docs and a StackOverflow question “Can I use functions imported from .py files in Dask/Distributed?” This function supports both standalone file and setuptools's .egg files for larger modules.
3.6.2 Too many open file descriptors?

Your operating system imposes a limit to how many open files or open network connections any user can have at once. Depending on the scale of your cluster the dask-scheduler may run into this limit.

By default most Linux distributions set this limit at 1024 open files/connections and OS-X at 128 or 256. Each worker adds a few open connections to a running scheduler (somewhere between one and ten, depending on how contentious things get.)

If you are on a managed cluster you can usually ask whoever manages your cluster to increase this limit. If you have root access and know what you are doing you can change the limits on Linux by editing /etc/security/limits.conf. Instructions are here under the heading “User Level FD Limits”: http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/

3.6.3 Error when running dask-worker about OMP_NUM_THREADS

For more problems with OMP_NUM_THREADS, see http://stackoverflow.com/questions/39422092/error-with-omp-num-threads-when-using-dask-distributed

3.6.4 Does Dask handle Data Locality?

Yes, both data locality in memory and data locality on disk.

Often it’s much cheaper to move computations to where data lives. If one of your tasks creates a large array and a future task computes the sum of that array, you want to be sure that the sum runs on the same worker that has the array in the first place, otherwise you’ll wait for a long while as the data moves between workers. Needless communication can easily dominate costs if we’re sloppy.

The Dask Scheduler tracks the location and size of every intermediate value produced by every worker and uses this information when assigning future tasks to workers. Dask tries to make computations more efficient by minimizing data movement.

Sometimes your data is on a hard drive or other remote storage that isn’t controlled by Dask. In this case the scheduler is unaware of exactly where your data lives, so you have to do a bit more work. You can tell Dask to preferentially run a task on a particular worker or set of workers.

For example Dask developers use this ability to build in data locality when we communicate to data-local storage systems like the Hadoop File System. When users use high-level functions like dask.dataframe.read_csv('hdfs:///path/to/files.*.csv') Dask talks to the HDFS name node, finds the locations of all of the blocks of data, and sends that information to the scheduler so that it can make smarter decisions and improve load times for users.

3.6.5 PermissionError [Errno 13] Permission Denied: ‘/root/.dask’

This error can be seen when starting distributed through the standard process control tool supervisor and running as a non-root user. This is caused by supervisor not passing the shell environment variables through to the subprocess, head to this section of the supervisor documentation to see how to pass the $HOME and $USER variables through.

3.7 Diagnosing Performance

Understanding the performance of a distributed computation can be difficult. This is due in part to the many components of a distributed computer that may impact performance:
1. Compute time
2. Memory bandwidth
3. Network bandwidth
4. Disk bandwidth
5. Scheduler overhead
6. Serialization costs

This difficulty is compounded because the information about these costs is spread among many machines and so there is no central place to collect data to identify performance issues.

Fortunately, Dask collects a variety of diagnostic information during execution. It does this both to provide performance feedback to users, but also for its own internal scheduling decisions. The primary place to observe this feedback is the diagnostic dashboard. This document describes the various pieces of performance information available and how to access them.

### 3.7.1 Task start and stop times

Workers capture durations associated to tasks. For each task that passes through a worker we record start and stop times for each of the following:

1. Serialization (gray)
2. Dependency gathering from peers (red)
3. Disk I/O to collect local data (orange)
4. Execution times (colored by task)

The main way to observe these times is with the task stream plot on the scheduler's /status page where the colors of the bars correspond to the colors listed above.

Alternatively if you want to do your own diagnostics on every task event you might want to create a Scheduler plugin. All of this information will be available when a task transitions from processing to memory or errored.

### 3.7.2 Statistical Profiling

For single-threaded profiling Python users typically depend on the CProfile module in the standard library (Dask developers recommend the snakeviz tool for single-threaded profiling). Unfortunately the standard CProfile module does not work with multi-threaded or distributed computations.

To address this Dask implements its own distributed statistical profiler. Every 10ms each worker process checks what each of its worker threads are doing. It captures the call stack and adds this stack to a counting data structure. This counting data structure is recorded and cleared every second in order to establish a record of performance over time.

Users typically observe this data through the /profile plot on either the worker or scheduler diagnostic dashboards. On the scheduler page they observe the total profile aggregated over all workers over all threads. Clicking on any of the bars in the profile will zoom the user into just that section, as is typical with most profiling tools. There is a timeline at the bottom of the page to allow users to select different periods in time.

Profiles are also grouped by the task that was being run at the time. You can select a task name from the selection menu at the top of the page. You can also click on the rectangle corresponding to the task in the main task stream plot on the /status page.
Users can also query this data directly using the `Client.profile` function. This will deliver the raw data structure used to produce these plots.

The 10ms and 1s parameters can be controlled by the `profile-interval` and `profile-cycle-interval` entries in the config.yaml file.

### 3.7.3 Bandwidth

Dask workers track every incoming and outgoing transfer in the `Worker.outgoing_transfer_log` and `Worker.incoming_transfer_log` attributes including:

1. Total bytes transferred
2. Compressed bytes transferred
3. Start/stop times
4. Keys moved
5. Peer

These are made available to users through the `/main` page of the Worker’s diagnostic dashboard. You can capture their state explicitly by running a command on the workers:

```python
client.run(lambda dask_worker: dask_worker.outgoing_transfer_log)
client.run(lambda dask_worker: dask_worker.incoming_transfer_log)
```

### 3.7.4 A note about times

Different computers maintain different clocks which may not match perfectly. To address this the Dask scheduler sends its current time in response to every worker heartbeat. Workers compare their local time against this time to obtain an estimate of differences. All times recorded in workers take this estimated delay into account. This helps, but still, imprecise measurements may exist.

All times are intended to be from the scheduler’s perspective.

### 3.8 Efficiency

Parallel computing done well is responsive and rewarding. However, several speed-bumps can get in the way. This section describes common ways to ensure performance.

#### 3.8.1 Leave data on the cluster

Wait as long as possible to gather data locally. If you want to ask a question of a large piece of data on the cluster it is often faster to submit a function onto that data then to bring the data down to your local computer.

For example if we have a numpy array on the cluster and we want to know its shape we might choose one of the following options:

1. **Slow:** Gather the numpy array to the local process, access the `.shape` attribute
2. **Fast:** Send a lambda function up to the cluster to compute the shape
>>> x = client.submit(np.random.random, (1000, 1000))
>>> type(x)
Future

Slow

>>> x.result().shape()  # Slow from lots of data transfer
(1000, 1000)

Fast

>>> client.submit(lambda a: a.shape, x).result()  # fast
(1000, 1000)

3.8.2 Use larger tasks

The scheduler adds about one millisecond of overhead per task or Future object. While this may sound fast it’s quite slow if you run a billion tasks. If your functions run faster than 100ms or so then you might not see any speedup from using distributed computing.

A common solution is to batch your input into larger chunks.

Slow

>>> futures = client.map(f, seq)
>>> len(futures)  # avoid large numbers of futures
1000000000

Fast

>>> def f_many(chunk):
...     return [f(x) for x in chunk]

>>> from toolz import partition_all
>>> chunks = partition_all(1000000, seq)  # Collect into groups of size 1000
>>> futures = client.map(f_many, chunks)
>>> len(futures)  # Compute on larger pieces of your data at once
1000

3.8.3 Adjust between Threads and Processes

By default a single Worker runs many computations in parallel using as many threads as your compute node has cores. When using pure Python functions this may not be optimal and you may instead want to run several separate worker processes on each node, each using one thread. When configuring your cluster you may want to use the options to the dask-worker executable as follows:

$ dask-worker ip:port --nprocs 8 --nthreads 1

Note that if you’re primarily using NumPy, Pandas, SciPy, Scikit Learn, Numba, or other C/Fortran/LLVM/Cython-accelerated libraries then this is not an issue for you. Your code is likely optimal for use with multi-threading.
3.8.4 Don’t go distributed

Consider the `dask` and `concurrent.futures` modules, which have similar APIs to distributed but operate on a single machine. It may be that your problem performs well enough on a laptop or large workstation.

Consider accelerating your code through other means than parallelism. Better algorithms, data structures, storage formats, or just a little bit of C/Fortran/Numba code might be enough to give you the 10x speed boost that you’re looking for. Parallelism and distributed computing are expensive ways to accelerate your application.

3.9 Limitations

Dask.distributed has limitations. Understanding these can help you to reliably create efficient distributed computations.

3.9.1 Performance

- The central scheduler spends a few hundred microseconds on every task. For optimal performance, task durations should be greater than 10-100ms.
- Dask can not parallelize within individual tasks. Individual tasks should be a comfortable size so as not to overwhelm any particular worker.
- Dask assigns tasks to workers heuristically. It usually makes the right decision, but non-optimal situations do occur.
- The workers are just Python processes, and inherit all capabilities and limitations of Python. They do not bound or limit themselves in any way. In production you may wish to run dask-workers within containers.

3.9.2 Assumptions on Functions and Data

Dask assumes the following about your functions and your data:

- All functions must be serializable either with pickle or `cloudpickle`. This is usually the case except in fairly exotic situations. The following should work:

```python
from cloudpickle import dumps, loads
loads(dumps(my_object))
```

- All data must be serializable either with pickle, cloudpickle, or using Dask’s custom serialization system.
- Dask may run your functions multiple times, such as if a worker holding an intermediate result dies. Any side effects should be idempotent.

3.9.3 Security

As a distributed computing framework, Dask enables the remote execution of arbitrary code. You should only host dask-workers within networks that you trust. This is standard among distributed computing frameworks, but is worth repeating.
3.10 Data Locality

Data movement often needlessly limits performance.

This is especially true for analytic computations. Dask.distributed minimizes data movement when possible and enables the user to take control when necessary. This document describes current scheduling policies and user API around data locality.

### 3.10.1 Current Policies

#### Task Submission

In the common case distributed runs tasks on workers that already hold dependent data. If you have a task $f(x)$ that requires some data $x$ then that task will very likely be run on the worker that already holds $x$.

If a task requires data split among multiple workers, then the scheduler chooses to run the task on the worker that requires the least data transfer to it. The size of each data element is measured by the workers using the `sys.getsizeof` function, which depends on the `__sizeof__` protocol generally available on most relevant Python objects.

#### Data Scatter

When a user scatters data from their local process to the distributed network this data is distributed in a round-robin fashion grouping by number of cores. So for example if we have two workers Alice and Bob, each with two cores and we scatter out the list `range(10)` as follows:

```python
futures = client.scatter(range(10))
```

Then Alice and Bob receive the following data

- Alice: [0, 1, 4, 5, 8, 9]
- Bob: [2, 3, 6, 7]

### 3.10.2 User Control

Complex algorithms may require more user control.

For example the existence of specialized hardware such as GPUs or database connections may restrict the set of valid workers for a particular task.

In these cases use the `workers=` keyword argument to the `submit`, `map`, or `scatter` functions, providing a hostname, IP address, or alias as follows:

```python
future = client.submit(func, *args, workers=['Alice'])
```

- Alice: [0, 1, 4, 5, 8, 9, new_result]
- Bob: [2, 3, 6, 7]

Required data will always be moved to these workers, even if the volume of that data is significant. If this restriction is only a preference and not a strict requirement, then add the `allow_other_workers` keyword argument to signal that in extreme cases such as when no valid worker is present, another may be used.
future = client.submit(func, *args, workers=['Alice'], allow_other_workers=True)

Additionally the scatter function supports a broadcast= keyword argument to enforce that the all data is sent to all workers rather than round-robined. If new workers arrive they will not automatically receive this data.

futures = client.scatter([1, 2, 3], broadcast=True)  # send data to all workers

- Alice: [1, 2, 3]
- Bob: [1, 2, 3]

Valid arguments for workers= include the following:

- A single IP addresses, IP/Port pair, or hostname like the following:
  192.168.1.100, 192.168.1.100:8989, alice, alice:8989

- A list or set of the above:
  ['alice'], ['192.168.1.100', '192.168.1.101:9999']

If only a hostname or IP is given then any worker on that machine will be considered valid. Additionally, you can provide aliases to workers upon creation:

$ dask-worker scheduler_address:8786 --name worker_1

And then use this name when specifying workers instead.

client.map(func, sequence, workers='worker_1')

### 3.10.3 Specify workers with Compute/Persist

The workers= keyword in scatter, submit, and map is fairly straightforward, taking either a worker hostname, host:port pair or a sequence of those as valid inputs:

client.submit(f, x, workers='127.0.0.1')
client.submit(f, x, workers='127.0.0.1:55852')
client.submit(f, x, workers=['192.168.1.101', '192.168.1.100'])

For more complex computations, such as occur with dask collections like dask.dataframe or dask.delayed, we sometimes want to specify that certain parts of the computation run on certain workers while other parts run on other workers.

x = delayed(f)(1)
y = delayed(f)(2)
z = delayed(g)(x, y)
future = client.compute(z, workers={z: '127.0.0.1', x: '192.168.0.1'})

Here the values of the dictionary are of the same form as before, a host, a host:port pair, or a list of these. The keys in this case are either dask collections or tuples of dask collections. All of the final keys of these collections will run on the specified machines; dependencies can run anywhere unless they are also listed in workers=. We explore this through a set of examples:
The computation $z = f(x, y)$ runs on the host 127.0.0.1. The other two computations for $x$ and $y$ can run anywhere.

```python
future = client.compute(z, workers={z: '127.0.0.1'})
```

The computations for both $z$ and $x$ must run on 127.0.0.1

```python
future = client.compute(z, workers={z: '127.0.0.1',
 x: '127.0.0.1'})
```

Use a tuple to group collections. This is shorthand for the above.

```python
future = client.compute(z, workers={(x, y): '127.0.0.1'})
```

Recall that all options for `workers=` in `scatter/submit/map` hold here as well.

```python
future = client.compute(z, workers={(x, y): ['192.168.1.100', '192.168.1.101:9999']})
```

Set `allow_other_workers=True` to make these loose restrictions rather than hard requirements.

```python
future = client.compute(z, workers={(x, y): '127.0.0.1'},
 allow_other_workers=True)
```

Provide a collection to `allow_other_workers=[...]` to say that the keys for only some of the collections are loose. In the case below $z$ must run on 127.0.0.1 while $x$ should run on 127.0.0.1 but can run elsewhere if necessary:

```python
future = client.compute(z, workers={(x, y): '127.0.0.1'},
 allow_other_workers=[x])
```

This works fine with `persist` and with any dask collection (any object with a `__dask_graph__()` method):

```python
df = dd.read_csv('s3://...')
df = client.persist(df, workers={df: ...})
```

See the `efficiency` page to learn about best practices.

## 3.11 Managing Computation

Data and Computation in Dask.distributed are always in one of three states

1. Concrete values in local memory. Example include the integer 1 or a numpy array in the local process.
2. Lazy computations in a dask graph, perhaps stored in a `dask.delayed` or `dask.dataframe` object.
3. Running computations or remote data, represented by `Future` objects pointing to computations currently in flight.

All three of these forms are important and there are functions that convert between all three states.

### 3.11.1 Dask Collections to Concrete Values

You can turn any dask collection into a concrete value by calling the `.compute()` method or `dask.compute(., .)` function. This function will block until the computation is finished, going straight from a lazy dask collection to a concrete value in local memory.
This approach is the most familiar and straightforward, especially for people coming from the standard single-machine Dask experience or from just normal programming. It is great when you have data already in memory and want to get small fast results right to your local process.

```python
>>> df = dd.read_csv('s3://...')
>>> df.value.sum().compute()
100000000
```

However, this approach often breaks down if you try to bring the entire dataset back to local RAM

```python
>>> df.compute()
MemoryError(...)
```

It also forces you to wait until the computation finishes before handing back control of the interpreter.

### 3.11.2 Dask Collections to Futures

You can asynchronously submit lazy dask graphs to run on the cluster with the `client.compute` and `client.persist` methods. These functions return Future objects immediately. These futures can then be queried to determine the state of the computation.

**client.compute**

The `.compute` method takes a collection and returns a single future.

```python
>>> df = dd.read_csv('s3://...')
>>> total = client.compute(df.sum()) # Return a single future
>>> total
Future(..., status='pending')
>>> total.result() # Block until finished
100000000
```

Because this is a single future the result must fit on a single worker machine. Like `dask.compute` above, the `client.compute` method is only appropriate when results are small and should fit in memory. The following would likely fail:

```python
>>> future = client.compute(df) # Blows up memory
```

Instead, you should use `client.persist`

**client.persist**

The `.persist` method submits the task graph behind the Dask collection to the scheduler, obtaining Futures for all of the top-most tasks (for example one Future for each Pandas DataFrame in a Dask DataFrame). It then returns a copy of the collection pointing to these futures instead of the previous graph. This new collection is semantically equivalent but now points to actively running data rather than a lazy graph. If you look at the dask graph within the collection you will see the Future objects directly:

```python
>>> df = dd.read_csv('s3://...')
>>> df.dask
Recipe to compute df in chunks
{('read', 0): (load_s3_bytes, ...),
 ('parse', 0): (pd.read_csv, ('read', 0)),
```
The collection is returned immediately and the computation happens in the background on the cluster. Eventually all of the futures of this collection will be completed at which point further queries on this collection will likely be very fast.

Typically the workflow is to define a computation with a tool like dask.dataframe or dask.delayed until a point where you have a nice dataset to work from, then persist that collection to the cluster and then perform many fast queries off of the resulting collection.

3.11.3 Concrete Values to Futures

We obtain futures through a few different ways. One is the mechanism above, by wrapping Futures within Dask collections. Another is by submitting data or tasks directly to the cluster with client.scatter, client.submit or client.map.

```python
futures = client.scatter(args) # Send data
future = client.submit(function, *args, **kwargs) # Send single task
futures = client.map(function, sequence, **kwargs) # Send many tasks
```

In this case `*args` or `**kwargs` can be normal Python objects, like 1 or 'hello', or they can be other `Future` objects if you want to link tasks together with dependencies.

Unlike Dask collections like dask.delayed these task submissions happen immediately. The concurrent.futures interface is very similar to dask.delayed except that execution is immediate rather than lazy.

3.11.4 Futures to Concrete Values

You can turn an individual `Future` into a concrete value in the local process by calling the `Future.result()` method. You can convert a collection of futures into concrete values by calling the `client.gather` method.

```python
>>> future.result()
1

>>> client.gather(futures)
[1, 2, 3, 4, ...]
```

3.11.5 Futures to Dask Collections

As seen in the Collection to futures section it is common to have currently computing `Future` objects within Dask graphs. This lets us build further computations on top of currently running computations. This is most often done with dask.delayed workflows on custom computations:
Mixing the two forms allow you to build and submit a computation in stages like `sum(...) + product(...)`. This is often valuable if you want to wait to see the values of certain parts of the computation before determining how to proceed. Submitting many computations at once allows the scheduler to be slightly more intelligent when determining what gets run.

*If this page interests you then you may also want to check out the doc page on Managing Memory*

## 3.12 Managing Memory

Dask.distributed stores the results of tasks in the distributed memory of the worker nodes. The central scheduler tracks all data on the cluster and determines when data should be freed. Completed results are usually cleared from memory as quickly as possible in order to make room for more computation. The result of a task is kept in memory if either of the following conditions hold:

1. A client holds a future pointing to this task. The data should stay in RAM so that the client can gather the data on demand.
2. The task is necessary for ongoing computations that are working to produce the final results pointed to by futures. These tasks will be removed once no ongoing tasks require them.

When users hold Future objects or persisted collections (which contain many such Futures inside their `.dask` attribute) they pin those results to active memory. When the user deletes futures or collections from their local Python process the scheduler removes the associated data from distributed RAM. Because of this relationship, distributed memory reflects the state of local memory. A user may free distributed memory on the cluster by deleting persisted collections in the local session.

### 3.12.1 Creating Futures

The following functions produce Futures

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Client.submit(func, *args, **kwargs)</code></td>
<td>Submit a function application to the scheduler</td>
</tr>
<tr>
<td><code>Client.map(func, *iterables, **kwargs)</code></td>
<td>Map a function on a sequence of arguments</td>
</tr>
<tr>
<td><code>Client.compute(collections[, sync, ...])</code></td>
<td>Compute dask collections on cluster</td>
</tr>
<tr>
<td><code>Client.persist(collections[, ...])</code></td>
<td>Persist dask collections on cluster</td>
</tr>
<tr>
<td><code>Client.scatter(data[, workers, broadcast, ...])</code></td>
<td>Scatter data into distributed memory</td>
</tr>
</tbody>
</table>

The `submit` and `map` methods handle raw Python functions. The `compute` and `persist` methods handle Dask collections like arrays, bags, delayed values, and dataframes. The `scatter` method sends data directly from the local process.

### 3.12.2 Persisting Collections

Calls to `Client.compute` or `Client.persist` submit task graphs to the cluster and return `Future` objects that point to particular output tasks.

Compute returns a single future per input, persist returns a copy of the collection with each block or partition replaced by a single future. In short, use `persist` to keep full collection on the cluster and use `compute` when you want a small result as a single future.
Persist is more common and is often used as follows with collections:

```python
>>> # Construct dataframe, no work happens
>>> df = dd.read_csv(...)
>>> df = df[df.x > 0]
>>> df = df.assign(z = df.x + df.y)

>>> # Pin data in distributed ram, this triggers computation
>>> df = client.persist(df)

>>> # continue operating on df
```

Note for Spark users: this differs from what you’re accustomed to. Persist is an immediate action. However, you’ll get control back immediately as computation occurs in the background.

In this example we build a computation by parsing CSV data, filtering rows, and then adding a new column. Up until this point all work is lazy; we’ve just built up a recipe to perform the work as a graph in the `df` object.

When we call `df = client.persist(df)` we cut this graph off of the `df` object, send it up to the scheduler, receive `Future` objects in return and create a new dataframe with a very shallow graph that points directly to these futures. This happens more or less immediately (as long as it takes to serialize and send the graph) and we can continue working on our new `df` object while the cluster works to evaluate the graph in the background.

### 3.12.3 Difference with `dask.compute`

The operations `client.persist(df)` and `client.compute(df)` are asynchronous and so differ from the traditional `df.compute()` method or `dask.compute` function, which blocks until a result is available. The `.compute()` method does not persist any data on the cluster. The `.compute()` method also brings the entire result back to the local machine, so it is unwise to use it on large datasets. However, `.compute()` is very convenient for smaller results particularly because it does return concrete results in a way that most other tools expect.

Typically we use asynchronous methods like `client.persist` to set up large collections and then use `df.compute()` for fast analyses.

```python
>>> # df.compute() # This is bad and would likely flood local memory
>>> df = client.persist(df) # This is good and asynchronously pins df
>>> df.x.sum().compute() # This is good because the result is small
>>> future = client.compute(df.x.sum()) # This is also good but less intuitive
```

### 3.12.4 Clearing data

We remove data from distributed ram by removing the collection from our local process. Remote data is removed once all Futures pointing to that data are removed from all client machines.

```python
>>> del df # Deleting local data often deletes remote data
```

If this is the only copy then this will likely trigger the cluster to delete the data as well.

However if we have multiple copies or other collections based on this one then we’ll have to delete them all.

```python
>>> df2 = df[df.x < 10]
>>> del df # would not delete data, because df2 still tracks the futures
```
3.12.5 Aggressively Clearing Data

To definitely remove a computation and all computations that depend on it you can always cancel the futures/collection.

```python
>>> client.cancel(df) # kills df, df2, and every other dependent computation
```

Alternatively, if you want a clean slate, you can restart the cluster. This clears all state and does a hard restart of all worker processes. It generally completes in around a second.

```python
>>> client.restart()
```

3.12.6 Resilience

Results are not intentionally copied unless necessary for computations on other worker nodes. Resilience is achieved through recomputation by maintaining the provenance of any result. If a worker node goes down the scheduler is able to recompute all of its results. The complete graph for any desired Future is maintained until no references to that future exist.

For more information see Resilience.

3.12.7 Advanced techniques

At first the result of a task is not intentionally copied, but only persists on the node where it was originally computed or scattered. However result may be copied to another worker node in the course of normal computation if that result is required by another task that is intended to be run by a different worker. This occurs if a task requires two pieces of data on different machines (at least one must move) or through work stealing. In these cases it is the policy for the second machine to maintain its redundant copy of the data. This helps to organically spread around data that is in high demand.

However, advanced users may want to control the location, replication, and balancing of data more directly throughout the cluster. They may know ahead of time that certain data should be broadcast throughout the network or that their data has become particularly imbalanced, or that they want certain pieces of data to live on certain parts of their network. These considerations are not usually necessary.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client.rebalance([futures, workers])</code></td>
<td>Rebalance data within network</td>
</tr>
<tr>
<td><code>client.replicate(futures[, n, workers, ...])</code></td>
<td>Set replication of futures within network</td>
</tr>
<tr>
<td><code>client.scatter(data[, workers, broadcast, ...])</code></td>
<td>Scatter data into distributed memory</td>
</tr>
</tbody>
</table>

3.13 Prioritizing Work

When there is more work than workers, Dask has to decide which tasks to prioritize over others. Dask can determine these priorities automatically to optimize performance, or a user can specify priorities manually according to their needs.

Dask uses the following priorities, in order:

1. **User priorities**: A user defined priority, provided by the `priority=` keyword argument to functions like `compute()`, `persist()`, `submit()`, or `map()`. Tasks with higher priorities run before tasks with lower priorities with the default priority being zero.
2. **First in first out chronologically**: Dask prefers computations that were submitted early. Because users can submit computations asynchronously it may be that several different computations are running on the workers at the same time. Generally Dask prefers those groups of tasks that were submitted first.

As a nuance, tasks that are submitted within a close window are often considered to be submitted at the same time.

```python
x = x.persist() # submitted first and so has higher priority
wait a while
x = x.persist() # submitted second and so has lower priority
```

In this case “a while” depends on the kind of computation. Operations that are often used in bulk processing, like `compute` and `persist` consider any two computations submitted in the same sixty seconds to have the same priority. Operations that are often used in real-time processing, like `submit` or `map` are considered the same priority if they are submitted within the 100 milliseconds of each other. This behavior can be controlled with the `fifo_timeout=` keyword:

```python
x = x.persist() # wait one minute
x = x.persist(fifo_timeout='10 minutes') # has the same priority
a = client.submit(func, *args) # wait no time at all
b = client.submit(func, *args, fifo_timeout='0ms') # is lower priority
```

3. **Graph Structure**: Within any given computation (a compute or persist call) Dask orders tasks in such a way as to minimize the memory-footprint of the computation. This is discussed in more depth in the task ordering documentation.

### 3.14 Related Work

Writing the “related work” for a project called “distributed”, is a Sisyphean task. We’ll list a few notable projects that you’ve probably already heard of down below.

You may also find the [dask comparison with spark](https://dask.org) of interest.

#### 3.14.1 Big Data World

- The venerable Hadoop provides batch processing with the MapReduce programming paradigm. Python users typically use Hadoop Streaming or MRJob.
- Spark builds on top of HDFS systems with a nicer API and in-memory processing. Python users typically use PySpark.
- Storm provides streaming computation. Python users typically use streamparse.

This is a woefully inadequate representation of the excellent work blossoming in this space. A variety of projects have come into this space and rival or complement the projects above. Still, most “Big Data” processing hype probably centers around the three projects above, or their derivatives.
3.14.2 Python Projects

There are dozens of Python projects for distributed computing. Here we list a few of the more prominent projects that we see in active use today.

Task scheduling

- **Celery**: An asynchronous task scheduler, focusing on real-time processing.
- **Luigi**: A bulk big-data/batch task scheduler, with hooks to a variety of interesting data sources.

Ad hoc computation

- **IPython Parallel**: Allows for stateful remote control of several running ipython sessions.
- **Scoop**: Implements the `concurrent.futures` API on distributed workers. Notably allows tasks to spawn more tasks.

Direct Communication

- **MPI4Py**: Wraps the Message Passing Interface popular in high performance computing.
- **PyZMQ**: Wraps ZeroMQ, the high-performance asynchronous messaging library.

Venerable

There are a couple of older projects that often get mentioned

- **Dispy**: Embarrassingly parallel function evaluation
- **Pyro**: Remote objects / RPC

3.14.3 Relationship

In relation to these projects distributed...

- Supports data-local computation like Hadoop and Spark
- Uses a task graph with data dependencies abstraction like Luigi
- In support of ad-hoc applications, like IPython Parallel and Scoop

3.14.4 In depth comparison to particular projects

**IPython Parallel**

**Short Description**

**IPython Parallel** is a distributed computing framework from the IPython project. It uses a centralized hub to farm out jobs to several `ipengine` processes running on remote workers. It communicates over ZeroMQ sockets and centralizes communication through the central hub.

IPython parallel has been around for a while and, while not particularly fancy, is quite stable and robust.

**IPython Parallel** offers parallel `map` and remote `apply` functions that route computations to remote workers.
view = Client(...)[:]

results = view.map(func, sequence)

result = view.apply(func, *args, **kwargs)

distributed also provides direct execution of code in the remote process and collection of data from the remote namespace.

view.execute('x = 1 + 2')
view['x']

[3, 3, 3, 3, 3, 3]

Brief Comparison

Distributed and IPython Parallel are similar in that they provide map and apply/submit abstractions over distributed worker processes running Python. Both manage the remote namespaces of those worker processes.

They are dissimilar in terms of their maturity, how worker nodes communicate to each other, and in the complexity of algorithms that they enable.

Distributed Advantages

The primary advantages of distributed over IPython Parallel include

1. Peer-to-peer communication between workers
2. Dynamic task scheduling

Distributed workers share data in a peer-to-peer fashion, without having to send intermediate results through a central bottleneck. This allows distributed to be more effective for more complex algorithms and to manage larger datasets in a more natural manner. IPython parallel does not provide a mechanism for workers to communicate with each other, except by using the central node as an intermediary for data transfer or by relying on some other medium, like a shared file system. Data transfer through the central node can easily become a bottleneck and so IPython parallel has been mostly helpful in embarrassingly parallel work (the bulk of applications) but has not been used extensively for more sophisticated algorithms that require non-trivial communication patterns.

The distributed client includes a dynamic task scheduler capable of managing deep data dependencies between tasks. The IPython parallel docs include a recipe for executing task graphs with data dependencies. This same idea is core to all of distributed, which uses a dynamic task scheduler for all operations. Notably, distributed.Future objects can be used within submit/map/get calls before they have completed.

x = client.submit(f, 1)  # returns a future
y = client.submit(f, 2)  # returns a future
z = client.submit(add, x, y)  # consumes futures

The ability to use futures cheaply within submit and map methods enables the construction of very sophisticated data pipelines with simple code. Additionally, distributed can serve as a full dask task scheduler, enabling support for distributed arrays, dataframes, machine learning pipelines, and any other application build on dask graphs. The dynamic task schedulers within distributed are adapted from the dask task schedulers and so are fairly sophisticated/efficient.

IPython Parallel Advantages

IPython Parallel has the following advantages over distributed

1. Maturity: IPython Parallel has been around for a while.
2. Explicit control over the worker processes: IPython parallel allows you to execute arbitrary statements on the workers, allowing it to serve in system administration tasks.
3. Deployment help: IPython Parallel has mechanisms built-in to aid deployment on SGE, MPI, etc.. Distributed does not have any such sugar, though is fairly simple to set up by hand.
4. Various other advantages: Over the years IPython parallel has accrued a variety of helpful features like IPython interaction magics, @parallel decorators, etc..

concurrent.futures

The `distributed.Client` API is modeled after `concurrent.futures` and PEP 3184. It has a few notable differences:

- `distributed` accepts `Future` objects within calls to `submit/map`. When chaining computations, it is preferable to submit `Future` objects directly rather than wait on them before submission.
- The `map()` method returns `Future` objects, not concrete results. The `map()` method returns immediately.
- Despite sharing a similar API, `distributed` `Future` objects cannot always be substituted for `concurrent.futures.Future` objects, especially when using `wait()` or `as_completed()`.
- `distributed` generally does not support callbacks.

If you need full compatibility with the `concurrent.futures.Executor` API, use the object returned by the `get_executor()` method.

3.15 Resilience

Software fails, Hardware fails, network connections fail, user code fails. This document describes how `dask.distributed` responds in the face of these failures and other known bugs.

3.15.1 User code failures

When a function raises an error that error is kept and transmitted to the client on request. Any attempt to gather that result or any dependent result will raise that exception.

```python
>>> def div(a, b):
... return a / b

>>> x = client.submit(div, 1, 0)
>>> x.result()
ZeroDivisionError: division by zero

>>> y = client.submit(add, x, 10)
>>> y.result() # same error as above
ZeroDivisionError: division by zero
```

This does not affect the smooth operation of the scheduler or worker in any way.

3.15.2 Closed Network Connections

If the connection to a remote worker unexpectedly closes and the local process appropriately raises an `IOError` then the scheduler will reroute all pending computations to other workers.

If the lost worker was the only worker to hold vital results necessary for future computations then those results will be recomputed by surviving workers. The scheduler maintains a full history of how each result was produced and so is able to reproduce those same computations on other workers.

This has some fail cases.
1. If results depend on impure functions then you may get a different (although still entirely accurate) result.

2. If the worker failed due to a bad function, for example a function that causes a segmentation fault, then that bad function will repeatedly be called on other workers. This function will be marked as “bad” after it kills a fixed number of workers (defaults to three).

3. Data scattered out to the workers is not kept in the scheduler (it is often quite large) and so the loss of this data is irreparable. You may wish to call Client.replicate on the data with a suitable replication factor to ensure that it remains long-lived or else back the data off of some resilient store, like a file system.

### 3.15.3 Hardware Failures

It is not clear under which circumstances the local process will know that the remote worker has closed the connection. If the socket does not close cleanly then the system will wait for a timeout, roughly three seconds, before marking the worker as failed and resuming smooth operation.

### 3.15.4 Scheduler Failure

The process containing the scheduler might die. There is currently no persistence mechanism to record and recover the scheduler state.

The workers and clients will all reconnect to the scheduler after it comes back online but records of ongoing computations will be lost.

### 3.15.5 Restart and Nanny Processes

The client provides a mechanism to restart all of the workers in the cluster. This is convenient if, during the course of experimentation, you find your workers in an inconvenient state that makes them unresponsive. The Client.restart method kills all workers, flushes all scheduler state, and then brings all workers back online, resulting in a clean cluster.

### 3.16 Scheduling Policies

This document describes the policies used to select the preference of tasks and to select the preference of workers used by Dask’s distributed scheduler. For more information on how these policies are enacted efficiently see Scheduling State.

#### 3.16.1 Choosing Workers

When a task transitions from waiting to a processing state we decide a suitable worker for that task. If the task has significant data dependencies or if the workers are under heavy load then this choice of worker can strongly impact global performance. Currently workers for tasks are determined as follows:

1. If the task has no major dependencies and no restrictions then we find the least occupied worker.

2. Otherwise, if a task has user-provided restrictions (for example it must run on a machine with a GPU) then we restrict the available pool of workers to just that set, otherwise we consider all workers.

3. From among this pool of workers we determine the workers to whom the least amount of data would need to be transferred.
4. We break ties by choosing the worker that currently has the fewest tasks, counting both those tasks in memory and those tasks processing currently. This process is easy to change (and indeed this document may be outdated). We encourage readers to inspect the `decide_worker` function in scheduler.py

\[
\text{decide_worker}(ts, \text{all_workers}, \ldots) \quad \text{Decide which worker should take task } ts.\]

### 3.16.2 Choosing Tasks

We often have a choice between running many valid tasks. There are a few competing interests that might motivate our choice:

1. Run tasks on a first-come-first-served basis for fairness between multiple clients
2. Run tasks that are part of the critical path in an effort to reduce total running time and minimize straggler workloads
3. Run tasks that allow us to release many dependencies in an effort to keep the memory footprint small
4. Run tasks that are related so that large chunks of work can be completely eliminated before running new chunks of work

Accomplishing all of these objectives simultaneously is impossible. Optimizing for any of these objectives perfectly can result in costly overhead. The heuristics with the scheduler do a decent but imperfect job of optimizing for all of these (they all come up in important workloads) quickly.

**Last in, first out**

When a worker finishes a task the immediate dependencies of that task get top priority. This encourages a behavior of finishing ongoing work immediately before starting new work. This often conflicts with the first-come-first-served objective but often results in shorter total runtimes and significantly reduced memory footprints.

**Break ties with children and depth**

Often a task has multiple dependencies and we need to break ties between them with some other objective. Breaking these ties has a surprisingly strong impact on performance and memory footprint.

When a client submits a graph we perform a few linear scans over the graph to determine something like the number of descendants of each node (not quite, because it’s a DAG rather than a tree, but this is a close proxy). This number can be used to break ties and helps us to prioritize nodes with longer critical paths and nodes with many children. The actual algorithms used are somewhat more complex and are described in detail in `dask/order.py`.

**Initial Task Placement**

When a new large batch of tasks come in and there are many idle workers then we want to give each worker a set of tasks that are close together/related and unrelated from the tasks given to other workers. This usually avoids inter-worker communication down the line. The same depth-first-with-child-weights priority given to workers described above can usually be used to properly segment the leaves of a graph into decently well separated sub-graphs with relatively low inter-sub-graph connectedness.
First-Come-First-Served, Coarsely

The last-in-first-out behavior used by the workers to minimize memory footprint can distort the task order provided by the clients. Tasks submitted recently may run sooner than tasks submitted long ago because they happen to be more convenient given the current data in memory. This behavior can be *unfair* but improves global runtimes and system efficiency, sometimes quite significantly.

However, workers inevitably run out of tasks that were related to tasks they were just working on and the last-in-first-out policy eventually exhausts itself. In these cases workers often pull tasks from the common task pool. The tasks in this pool are ordered in a first-come-first-served basis and so workers do behave in a fair scheduling manner at a *coarse* level if not a fine grained one.

Dask’s scheduling policies are short-term-efficient and long-term-fair.

Where these decisions are made

The objectives above are mostly followed by small decisions made by the client, scheduler, and workers at various points in the computation.

1. As we submit a graph from the client to the scheduler we assign a numeric priority to each task of that graph. This priority focuses on computing deeply before broadly, preferring critical paths, preferring nodes with many dependencies, etc.. This is the same logic used by the single-machine scheduler and lives in dask/order.py.

2. When the graph reaches the scheduler the scheduler changes each of these numeric priorities into a tuple of two numbers, the first of which is an increasing counter, the second of which is the client-generated priority described above. This per-graph counter encourages a first-in-first-out policy between computations. All tasks from a previous call to compute have a higher priority than all tasks from a subsequent call to compute (or submit, persist, map, or any operation that generates futures).

3. Whenever a task is ready to run the scheduler assigns it to a worker. The scheduler does not wait based on priority.

4. However when the worker receives these tasks it considers their priorities when determining which tasks to prioritize for communication or for computation. The worker maintains a heap of all ready-to-run tasks ordered by this priority.

### 3.17 Scheduling State

#### 3.17.1 Overview

The life of a computation with Dask can be described in the following stages:

1. The user authors a graph using some library, perhaps dask.delayed or dask.dataframe or the `submit/map` functions on the client. They submit these tasks to the scheduler.

2. The schedulers assimilates these tasks into its graph of all tasks to track, and as their dependencies become available it asks workers to run each of these tasks in turn.

3. The worker receives information about how to run the task, communicates with its peer workers to collect data dependencies, and then runs the relevant function on the appropriate data. It reports back to the scheduler that it has finished, keeping the result stored in the worker where it was computed.

4. The scheduler reports back to the user that the task has completed. If the user desires, it then fetches the data from the worker through the scheduler.
Most relevant logic is in tracking tasks as they evolve from newly submitted, to waiting for dependencies, to actively running on some worker, to finished in memory, to garbage collected. Tracking this process, and tracking all effects that this task has on other tasks that might depend on it, is the majority of the complexity of the dynamic task scheduler. This section describes the system used to perform this tracking.

For more abstract information about the policies used by the scheduler, see *Scheduling Policies*.

The scheduler keeps internal state about several kinds of entities:

- Individual tasks known to the scheduler
- Workers connected to the scheduler
- Clients connected to the scheduler

**Note:** Everything listed in this page is an internal detail of how Dask operates. It may change between versions and you should probably avoid relying on it in user code (including on any APIs explained here).

### 3.17.2 Task State

Internally, the scheduler moves tasks between a fixed set of states, notably *released*, *waiting*, *no-worker*, *processing*, *memory*, *error*.

Tasks flow along the following states with the following allowed transitions:

- **Released:** Known but not actively computing or in memory
- **Waiting:** On track to be computed, waiting on dependencies to arrive in memory
- **No-worker:** Ready to be computed, but no appropriate worker exists (for example because of resource restrictions, or because no worker is connected at all).
- **Processing:** Actively being computed by one or more workers
- **Memory:** In memory on one or more workers
- **Erred:** Task computation, or one of its dependencies, has encountered an error
- **Forgotten** (not actually a state): Task is no longer needed by any client or dependent task

In addition to the literal state, though, other information needs to be kept and updated about each task. Individual task state is stored in an object named `TaskState` and consists of the following information:

```python
class distributed.scheduler.TaskState(key, run_spec)
A simple object holding information about a task.

key: str
The key is the unique identifier of a task, generally formed from the name of the function, followed by a
hash of the function and arguments, like 'inc-ab31c010444977004d656610d2d421ec'.

prefix: str
The key prefix, used in certain calculations to get an estimate of the task’s duration based on the duration
of other tasks in the same “family” (for example ‘inc’).

run_spec: object
A specification of how to run the task. The type and meaning of this value is opaque to the scheduler, as it is
only interpreted by the worker to which the task is sent for executing.

As a special case, this attribute may also be None, in which case the task is “pure data” (such as, for example, a piece of data loaded in the scheduler using `Client.scatter()`). A “pure data” task cannot be computed again if its value is lost.
```
priority: tuple
The priority provides each task with a relative ranking which is used to break ties when many tasks are being considered for execution.

This ranking is generally a 2-item tuple. The first (and dominant) item corresponds to when it was submitted. Generally, earlier tasks take precedence. The second item is determined by the client, and is a way to prioritize tasks within a large graph that may be important, such as if they are on the critical path, or good to run in order to release many dependencies. This is explained further in Scheduling Policy.

state: str
This task’s current state. Valid states include released, waiting, no-worker, processing, memory, erred and forgotten. If it is forgotten, the task isn’t stored in the tasks dictionary anymore and will probably disappear soon from memory.

dependencies: {TaskState}
The set of tasks this task depends on for proper execution. Only tasks still alive are listed in this set. If, for whatever reason, this task also depends on a forgotten task, the has_lost_dependencies flag is set.

A task can only be executed once all its dependencies have already been successfully executed and have their result stored on at least one worker. This is tracked by progressively draining the waiting_on set.

dependents: {TaskState}
The set of tasks which depend on this task. Only tasks still alive are listed in this set.

This is the reverse mapping of dependencies.

has_lost_dependencies: bool
Whether any of the dependencies of this task has been forgotten. For memory consumption reasons, forgotten tasks are not kept in memory even though they may have dependent tasks. When a task is forgotten, therefore, each of its dependents has their has_lost_dependencies attribute set to True.

If has_lost_dependencies is true, this task cannot go into the “processing” state anymore.

waiting_on: {TaskState}
The set of tasks this task is waiting on before it can be executed. This is always a subset of dependencies. Each time one of the dependencies has finished processing, it is removed from the waiting_on set.

Once waiting_on becomes empty, this task can move from the “waiting” state to the “processing” state (unless one of the dependencies errored out, in which case this task is instead marked “erred”).

waiters: {TaskState}
The set of tasks which need this task to remain alive. This is always a subset of dependents. Each time one of the dependents has finished processing, it is removed from the waiters set.

Once both waiters and who_wants become empty, this task can be released (if it has a non-empty run_spec) or forgotten (otherwise) by the scheduler, and by any workers in who_has.

Note: Counter-intuitively, waiting_on and waiters are not reverse mappings of each other.

who_wants: {ClientState}
The set of clients who want this task’s result to remain alive. This is the reverse mapping of ClientState.wants_what.

When a client submits a graph to the scheduler it also specifies which output tasks it desires, such that their results are not released from memory.

Once a task has finished executing (i.e. moves into the “memory” or “erred” state), the clients in who_wants are notified.
Once both waiters and who_wants become empty, this task can be released (if it has a non-empty run_spec) or forgotten (otherwise) by the scheduler, and by any workers in who_has.

**who_has: {WorkerState}**
The set of workers who have this task’s result in memory. It is non-empty iff the task is in the “memory” state. There can be more than one worker in this set if, for example, `Client.scatter()` or `Client.replicate()` was used.

This is the reverse mapping of WorkerState.has_what.

**processing_on: WorkerState (or None)**
If this task is in the “processing” state, which worker is currently processing it. Otherwise this is None.

This attribute is kept in sync with WorkerState.processing.

**retries: int**
The number of times this task can automatically be retried in case of failure. If a task fails executing (the worker returns with an error), its retries attribute is checked. If it is equal to 0, the task is marked “erred”. If it is greater than 0, the retries attribute is decremented and execution is attempted again.

**nbytes: int (or None)**
The number of bytes, as determined by sizeof, of the result of a finished task. This number is used for diagnostics and to help prioritize work.

**exception: object**
If this task failed executing, the exception object is stored here. Otherwise this is None.

**traceback: object**
If this task failed executing, the traceback object is stored here. Otherwise this is None.

**exception_blame: TaskState (or None)**
If this task or one of its dependencies failed executing, the failed task is stored here (possibly itself). Otherwise this is None.

**suspicious: int**
The number of times this task has been involved in a worker death.

Some tasks may cause workers to die (such as calling os._exit(0)). When a worker dies, all of the tasks on that worker are reassigned to others. This combination of behaviors can cause a bad task to catastrophically destroy all workers on the cluster, one after another. Whenever a worker dies, we mark each task currently processing on that worker (as recorded by WorkerState.processing) as suspicious.

If a task is involved in three deaths (or some other fixed constant) then we mark the task as erred.

**host_restrictions: {hostnames}**
A set of hostnames where this task can be run (or None if empty). Usually this is empty unless the task has been specifically restricted to only run on certain hosts. A hostname may correspond to one or several connected workers.

**worker_restrictions: {worker addresses}**
A set of complete worker addresses where this can be run (or None if empty). Usually this is empty unless the task has been specifically restricted to only run on certain workers.

Note this is tracking worker addresses, not worker states, since the specific workers may not be connected at this time.

**resource_restrictions: {resource: quantity}**
Resources required by this task, such as {'gpu': 1} or {'memory': 1e9} (or None if empty). These are user-defined names and are matched against the contents of each WorkerState.resources dictionary.
loose_restrictions: bool
If False, each of host_restrictions, worker_restrictions and resource_restrictions is a hard constraint: if no worker is available satisfying those restrictions, the task cannot go into the “processing” state and will instead go into the “no-worker” state.

If True, the above restrictions are mere preferences: if no worker is available satisfying those restrictions, the task can still go into the “processing” state and be sent for execution to another connected worker.

The scheduler keeps track of all the TaskState objects (those not in the “forgotten” state) using several containers:

tasks: {str: TaskState}
A dictionary mapping task keys (usually strings) to TaskState objects. Task keys are how information about tasks is communicated between the scheduler and clients, or the scheduler and workers; this dictionary is then used to find the corresponding TaskState object.

unrunnable: {TaskState}
A set of TaskState objects in the “no-worker” state. These tasks already have all their dependencies satisfied (their waiting_on set is empty), and are waiting for an appropriate worker to join the network before computing.

3.17.3 Worker State

Each worker’s current state is stored in a WorkerState object. This information is involved in deciding which worker to run a task on.

class distributed.scheduler.WorkerState

A simple object holding information about a worker.

address
This worker’s unique key. This can be its connected address (such as 'tcp://127.0.0.1:8891') or an alias (such as 'alice').

processing: {TaskState: cost}
A dictionary of tasks that have been submitted to this worker. Each task state is associated with the expected cost in seconds of running that task, summing both the task’s expected computation time and the expected communication time of its result.

Multiple tasks may be submitted to a worker in advance and the worker will run them eventually, depending on its execution resources (but see Work Stealing).

All the tasks here are in the “processing” state.

This attribute is kept in sync with TaskState.processing_on.

has_what: {TaskState}
The set of tasks which currently reside on this worker. All the tasks here are in the “memory” state.

This is the reverse mapping of TaskState.who_has.

nbytes: int
The total memory size, in bytes, used by the tasks this worker holds in memory (i.e. the tasks in this worker’s has_what).

ncores: int
The number of CPU cores made available on this worker.
resources: {str: Number}
The available resources on this worker like {'gpu': 2}. These are abstract quantities that constrain certain tasks from running at the same time on this worker.

used_resources: {str: Number}
The sum of each resource used by all tasks allocated to this worker. The numbers in this dictionary can only be less or equal than those in this worker's resources.

occupancy: Number
The total expected runtime, in seconds, of all tasks currently processing on this worker. This is the sum of all the costs in this worker's processing dictionary.

status: str
The current status of the worker, either 'running' or 'closed'

last_seen: Number
The last time we received a heartbeat from this worker, in local scheduler time.

actors: {TaskState}
A set of all TaskStates on this worker that are actors. This only includes those actors whose state actually lives on this worker, not actors to which this worker has a reference.

In addition to individual worker state, the scheduler maintains two containers to help with scheduling tasks:

Scheduler.saturated: {WorkerState}
A set of workers whose computing power (as measured by WorkerState.ncores) is fully exploited by processing tasks, and whose current occupancy is a lot greater than the average.

Scheduler.idle: {WorkerState}
A set of workers whose computing power is not fully exploited. These workers are assumed to be able to start computing new tasks immediately.

These two sets are disjoint. Also, some workers may be neither “idle” nor “saturated”. “Idle” workers will be preferred when deciding a suitable worker to run a new task on. Conversely, “saturated” workers may see their workload lightened through Work Stealing.

3.17.4 Client State

Information about each individual client is kept in a ClientState object:

class distributed.scheduler.ClientState (client)
A simple object holding information about a client.

client_key: str
A unique identifier for this client. This is generally an opaque string generated by the client itself.

wants_what: {TaskState}
A set of tasks this client wants kept in memory, so that it can download its result when desired. This is the reverse mapping of TaskState.who_wants.

Tasks are typically removed from this set when the corresponding object in the client’s space (for example a Future or a Dask collection) gets garbage-collected.

3.17.5 Understanding a Task’s Flow

As seen above, there are numerous pieces of information pertaining to task and worker state, and some of them can be computed, updated or removed during a task’s transitions.
The table below shows which state variable a task is in, depending on the task’s state. Cells with a check mark (✓) indicate the task key must be present in the given state variable; cells with an question mark (?) indicate the task key may be present in the given state variable.

<table>
<thead>
<tr>
<th>State variable</th>
<th>Released</th>
<th>Waiting</th>
<th>No-worker</th>
<th>Processing</th>
<th>Memory</th>
<th>Erred</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaskState.dependencies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.dependents</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.waiting_on</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.waiters</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.processing_on</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WorkerState.processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.who_has</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WorkerState.has_what</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TaskState.nbytes (1)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>✓</td>
<td>?</td>
</tr>
</tbody>
</table>

Notes:

1. TaskState.nbytes: this attribute can be known as long as a task has already been computed, even if it has been later released.

2. TaskState.exception and TaskState.traceback should be looked up on the TaskState.exception_blame task.

The table below shows which worker state variables are updated on each task state transition.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Affected worker state</th>
</tr>
</thead>
<tbody>
<tr>
<td>released → waiting</td>
<td>occupancy, idle, saturated</td>
</tr>
<tr>
<td>waiting → processing</td>
<td>occupancy, idle, saturated, used_resources</td>
</tr>
<tr>
<td>waiting → memory</td>
<td>idle, saturated, nbytes</td>
</tr>
<tr>
<td>processing → memory</td>
<td>occupancy, idle, saturated, used_resources, nbytes</td>
</tr>
<tr>
<td>processing → erred</td>
<td>occupancy, idle, saturated, used_resources</td>
</tr>
<tr>
<td>processing → released</td>
<td>occupancy, idle, saturated, used_resources</td>
</tr>
<tr>
<td>memory → released</td>
<td>nbytes</td>
</tr>
<tr>
<td>memory → forgotten</td>
<td>nbytes</td>
</tr>
</tbody>
</table>

Note: Another way of understanding this table is to observe that entering or exiting a specific task state updates a well-defined set of worker state variables. For example, entering and exiting the “memory” state updates WorkerState.nbytes.
3.17.6 Implementation

Every transition between states is a separate method in the scheduler. These task transition functions are prefixed with `transition` and then have the name of the start and finish task state like the following.

```python
def transition_released_waiting(self, key):
def transition_processing_memory(self, key):
def transition_processing_erred(self, key):
```

These functions each have three effects.

1. They perform the necessary transformations on the scheduler state (the 20 dicts/lists/sets) to move one key between states.

2. They return a dictionary of recommended `{key: state}` transitions to enact directly afterwards on other keys. For example after we transition a key into memory we may find that many waiting keys are now ready to transition from waiting to a ready state.

3. Optionally they include a set of validation checks that can be turned on for testing.

Rather than call these functions directly we call the central function `transition`:

```python
def transition(self, key, final_state):
 """ Transition key to the suggested state """
```

This transition function finds the appropriate path from the current to the final state. It also serves as a central point for logging and diagnostics.

Often we want to enact several transitions at once or want to continually respond to new transitions recommended by initial transitions until we reach a steady state. For that we use the `transitions` function (note the plural `s`).

```python
def transitions(self, recommendations):
 recommendations = recommendations.copy()
 while recommendations:
 key, finish = recommendations.popitem()
 new = self.transition(key, finish)
 recommendations.update(new)
```

This function runs `transition`, takes the recommendations and runs them as well, repeating until no further task-transitions are recommended.

3.17.7 Stimuli

Transitions occur from stimuli, which are state-changing messages to the scheduler from workers or clients. The scheduler responds to the following stimuli:

- **Workers**
  - Task finished: A task has completed on a worker and is now in memory
  - Task erred: A task ran and erred on a worker
  - Task missing data: A task tried to run but was unable to find necessary data on other workers
  - Worker added: A new worker was added to the network
  - Worker removed: An existing worker left the network

- **Clients**
- Update graph: The client sends more tasks to the scheduler
- Release keys: The client no longer desires the result of certain keys

Stimuli functions are prepended with the text `stimulus`, and take a variety of keyword arguments from the message as in the following examples:

```python
def stimulus_task_finished(self, key=None, worker=None, nbytes=None, type=None, compute_start=None, compute_stop=None, transfer_start=None, transfer_stop=None):

def stimulus_task_erred(self, key=None, worker=None, exception=None, traceback=None)
```

These functions change some non-essential administrative state and then call transition functions.

Note that there are several other non-state-changing messages that we receive from the workers and clients, such as messages requesting information about the current state of the scheduler. These are not considered stimuli.

### 3.17.8 API

```python
class distributed.scheduler.Scheduler(center=None, loop=None, delete_interval='500ms', synchronize_worker_interval='60s', services=None, allowed_failures=3, extensions=None, validate=False, scheduler_file=None, security=None, worker_ttl=None, **kwargs)
```

Dynamic distributed task scheduler

The scheduler tracks the current state of workers, data, and computations. The scheduler listens for events and responds by controlling workers appropriately. It continuously tries to use the workers to execute an ever growing dask graph.

All events are handled quickly, in linear time with respect to their input (which is often of constant size) and generally within a millisecond. To accomplish this the scheduler tracks a lot of state. Every operation maintains the consistency of this state.

The scheduler communicates with the outside world through Comm objects. It maintains a consistent and valid view of the world even when listening to several clients at once.

A Scheduler is typically started either with the `dask-scheduler` executable:

```
$ dask-scheduler
Scheduler started at 127.0.0.1:8786
```

Or within a LocalCluster a Client starts up without connection information:

```
>>> c = Client()
>>> c.cluster.scheduler
Scheduler(…)
```

Users typically do not interact with the scheduler directly but rather with the client object `Client`.

**State**

The scheduler contains the following state variables. Each variable is listed along with what it stores and a brief description.

- **tasks**: *(task key: TaskState)* Tasks currently known to the scheduler
- **unrunnable**: *(TaskState)* Tasks in the “no-worker” state
• workers: {worker key: WorkerState} Workers currently connected to the scheduler
• idle: {WorkerState}: Set of workers that are not fully utilized
• saturated: {WorkerState}: Set of workers that are not over-utilized
• host_info: {hostname: dict}: Information about each worker host
• clients: {client key: ClientState} Clients currently connected to the scheduler
• services: {str: port}: Other services running on this scheduler, like Bokeh
• loop: IOLoop: The running Tornado IOLoop
• client_comms: {client key: Comm} For each client, a Comm object used to receive task requests and report task status updates.
• stream_comms: {worker key: Comm} For each worker, a Comm object from which we both accept stimuli and report results
• task_duration: {key-prefix: time} Time we expect certain functions to take, e.g. {'sum': 0.25}
• coroutines: [Futures]: A list of active futures that control operation

add_client (comm, client=None)
Add client to network

add_keys (comm=None, worker=None, keys=())
Learn that a worker has certain keys
This should not be used in practice and is mostly here for legacy reasons. However, it is sent by workers from time to time.

add_plugin (plugin=None, idempotent=False, **kwargs)
Add external plugin to scheduler
See https://distributed.readthedocs.io/en/latest/plugins.html

add_worker (comm=None, address=None, keys=(), ncores=None, name=None, resolve_address=True, nbytes=None, now=None, resources=None, host_info=None, memory_limit=None, metrics=None, pid=0, services=None, local_directory=None)
Add a new worker to the cluster

broadcast (comm=None, msg=None, workers=None, hosts=None, nanny=False, serializers=None)
Broadcast message to workers, return all results

cancel_key (key, client, retries=5, force=False)
Cancel a particular key and all dependents

calendar_heartbeat (client=None)
Handle heartbeats from Client

calendar_releases_keys (keys=None, client=None)
Remove keys from client desired list

close (comm=None, fast=False)
Send cleanup signal to all coroutines then wait until finished

See also:
Scheduler.cleanup
**close_worker** (*stream=None, worker=None, safe=None*)
Remove a worker from the cluster

This both removes the worker from our local state and also sends a signal to the worker to shut down. This works regardless of whether or not the worker has a nanny process restarting it.

**coerce_address** (*addr, resolve=True*)
Coerce possible input addresses to canonical form. *resolve* can be disabled for testing with fake hostnames.
Handles strings, tuples, or aliases.

**coerce_hostname** (*host*)
Coerce the hostname of a worker.

**decide_worker** (*ts*)
Decide on a worker for task *ts*. Return a WorkerState.

**feed** (*comm, function=None, setup=None, teardown=None, interval='1s', **kwargs*)
Provides a data Comm to external requester

Caution: this runs arbitrary Python code on the scheduler. This should eventually be phased out. It is mostly used by diagnostics.

**finished**
Wait until all coroutines have ceased

**gather** (*comm=None, keys=None, serializers=None*)
Collect data in from workers

**get_comm_cost** (*ts, ws*)
Get the estimated communication cost (in s.) to compute the task on the given worker.

**get_task_duration** (*ts, default=0.5*)
Get the estimated computation cost of the given task (not including any communication cost).

**get_worker_service_addr** (*worker, service_name, protocol=False*)
Get the (host, port) address of the named service on the *worker*. Returns None if the service doesn’t exist.

**handle_long_running** (*key=None, worker=None, compute_duration=None*)
A task has seceded from the thread pool

We stop the task from being stolen in the future, and change task duration accounting as if the task has stopped.

**handle_worker** (*comm=None, worker=None*)
Listen to responses from a single worker

This is the main loop for scheduler-worker interaction

**See also:**

- `Scheduler.handle_client` Equivalent coroutine for clients

**identity** (*comm=None*)
Basic information about ourselves and our cluster
proxy (comm=None, msg=None, worker=None, serializers=None)
Proxy a communication through the scheduler to some other worker

rebalance (comm=None, keys=None, workers=None)
Rebalance keys so that each worker stores roughly equal bytes

Policy
This orders the workers by what fraction of bytes of the existing keys they have. It walks down this list from most-to-least. At each worker it sends the largest results it can find and sends them to the least occupied worker until either the sender or the recipient are at the average expected load.

reevaluate_occupancy (worker_index=0)
Periodically reassess task duration time

The expected duration of a task can change over time. Unfortunately we don’t have a good constant-time way to propagate the effects of these changes out to the summaries that they affect, like the total expected runtime of each of the workers, or what tasks are stealable.

In this coroutine we walk through all of the workers and re-align their estimates with the current state of tasks. We do this periodically rather than at every transition, and we only do it if the scheduler process isn’t under load (using psutil.Process.cpu_percent()). This lets us avoid this fringe optimization when we have better things to think about.

register_worker_callbacks (comm, setup=None)
Registers a setup function, and call it on every worker

remove_client (client=None)
Remove client from network

remove_plugin (plugin)
Remove external plugin from scheduler

remove_worker (comm=None, address=None, safe=False, close=True)
Remove worker from cluster

We do this when a worker reports that it plans to leave or when it appears to be unresponsive. This may send its tasks back to a released state.

replicate (comm=None, keys=None, n=None, workers=None, branching_factor=2, delete=True)
Replicate data throughout cluster

This performs a tree copy of the data throughout the network individually on each piece of data.

Parameters

- **keys**: Iterable  list of keys to replicate
- **n**: int  Number of replications we expect to see within the cluster
- **branching_factor**: int, optional  The number of workers that can copy data in each generation. The larger the branching factor, the more data we copy in a single step, but the more a given worker risks being swamped by data requests.

See also:

Scheduler.rebalance

report (msg, ts=None, client=None)
Publish updates to all listening Queues and Comms

If the message contains a key then we only send the message to those comms that care about the key.
```python
reschedule(key=None, worker=None)
```
Reschedule a task

Things may have shifted and this task may now be better suited to run elsewhere

```python
restart(client=None, timeout=3)
```
Restart all workers. Reset local state.

```python
retire_workers(comm=None, workers=None, remove=True, close_workers=False, **kwargs)
```
Gracefully retire workers from cluster

**Parameters**

- **workers**: list (optional) List of worker IDs to retire. If not provided we call `workers_to_close` which finds a good set
- **remove**: bool (defaults to True) Whether or not to remove the worker metadata immediately or else wait for the worker to contact us
- **close_workers**: bool (defaults to False) Whether or not to actually close the worker explicitly from here. Otherwise we expect some external job scheduler to finish off the worker.
- **kwargs**: dict Extra options to pass to `workers_to_close` to determine which workers we should drop

**Returns**

Dictionary mapping worker ID/address to dictionary of information about that worker for each retired worker.

See also:

- `Scheduler.workers_to_close`

```python
run_function(stream, function, args=(), kwargs={}, wait=True)
```
Run a function within this process

See also:

- `Client.run_on_scheduler`

```python
scatter(comm=None, data=None, workers=None, client=None, broadcast=False, timeout=2)
```
Send data out to workers

See also:

- `Scheduler.broadcast`

```python
send_task_to_worker(worker, key)
```
Send a single computational task to a worker

```python
start(addr_or_port=8786, start_queues=True)
```
Clear out old state and restart all running coroutines

```python
start_ipython(comm=None)
```
Start an IPython kernel

Returns Jupyter connection info dictionary.

```python
stimulus_cancel(comm, keys=None, client=None, force=False)
```
Stop execution on a list of keys

```python
stimulus_missing_data(cause=None, key=None, worker=None, ensure=True, **kwargs)
```
Mark that certain keys have gone missing. Recover.
stimulus_task_erred(key=None, worker=None, exception=None, traceback=None, **kwargs)
Mark that a task has erred on a particular worker

stimulus_task_finished(key=None, worker=None, **kwargs)
Mark that a task has finished execution on a particular worker

story(*keys)
Get all transitions that touch one of the input keys

transition(key, finish, *args, **kwargs)
Transition a key from its current state to the finish state

Returns
Dictionary of recommendations for future transitions

See also:
Scheduler.transitions transitive version of this function

Examples

```python
>>> self.transition('x', 'waiting')
{'x': 'processing'}
```

transition_story(*keys)
Get all transitions that touch one of the input keys

transitions(recommendations)
Process transitions until none are left

This includes feedback from previous transitions and continues until we reach a steady state

update_data(comm=None, who_has=None, nbytes=None, client=None, serializers=None)
Learn that new data has entered the network from an external source

See also:
Scheduler.mark_key_in_memory

update_graph(client=None, tasks=None, keys=None, dependencies=None, restrictions=None, priority=None, loose_restrictions=None, resources=None, submitting_task=None, retries=None, user_priority=0, actors=None, fifo_timeout=0)
Add new computations to the internal dask graph

This happens whenever the Client calls submit, map, get, or compute.

valid_workers(ts)
Return set of currently valid workers for key

If all workers are valid then this returns True. This checks tracks the following state:

- worker_restrictions
- host_restrictions
- resource_restrictions

worker_objective(ts, ws)
Objective function to determine which worker should get the task

Minimize expected start time. If a tie then break with data storage.
worker_send(worker, msg)
   Send message to worker
   This also handles connection failures by adding a callback to remove the worker on the next cycle.

workers_list(workers)
   List of qualifying workers
   Takes a list of worker addresses or hostnames. Returns a list of all worker addresses that match

workers_to_close(memory_ratio=None, n=None, key=None, minimum=None)
   Find workers that we can close with low cost
   This returns a list of workers that are good candidates to retire. These workers are not running anything
   and are storing relatively little data relative to their peers. If all workers are idle then we still maintain
   enough workers to have enough RAM to store our data, with a comfortable buffer.
   This is for use with systems like distributed.deploy.adaptive.

   Parameters
   memory_factor: Number  Amount of extra space we want to have for our stored data. Defaults two 2, or that we want to have twice as much memory as we currently have data.
   n: int  Number of workers to close
   minimum: int  Minimum number of workers to keep around
   key: Callable(WorkerState)  An optional callable mapping a WorkerState object to a group affiliation. Groups will be closed together. This is useful when closing workers must be done collectively, such as by hostname.

   Returns
   to_close: list of worker addresses that are OK to close

See also:
Scheduler.retire_workers

Examples

>>> scheduler.workers_to_close()
['tcp://192.168.0.1:1234', 'tcp://192.168.0.2:1234']

Group workers by hostname prior to closing

>>> scheduler.workers_to_close(key=lambda ws: ws.host)
['tcp://192.168.0.1:1234', 'tcp://192.168.0.1:4567']

Remove two workers

>>> scheduler.workers_to_close(n=2)

Keep enough workers to have twice as much memory as we we need.

>>> scheduler.workers_to_close(memory_ratio=2)

distributed.scheduler.decide_worker(ts, all_workers, valid_workers, objective)
   Decide which worker should take task ts.
   We choose the worker that has the data on which ts depends.

3.17. Scheduling State
If several workers have dependencies then we choose the less-busy worker.

Optionally provide `valid_workers` of where jobs are allowed to occur (if all workers are allowed to take the task, pass `True` instead).

If the task requires data communication because no eligible worker has all the dependencies already, then we choose to minimize the number of bytes sent between workers. This is determined by calling the `objective` function.

### 3.18 Worker

#### 3.18.1 Overview

Workers provide two functions:

1. Compute tasks as directed by the scheduler
2. Store and serve computed results to other workers or clients

Each worker contains a ThreadPool that it uses to evaluate tasks as requested by the scheduler. It stores the results of these tasks locally and serves them to other workers or clients on demand. If the worker is asked to evaluate a task for which it does not have all of the necessary data then it will reach out to its peer workers to gather the necessary dependencies.

A typical conversation between a scheduler and two workers Alice and Bob may look like the following:

<table>
<thead>
<tr>
<th>Scheduler -&gt; Alice:</th>
<th>Compute <code>x &lt;- add(1, 2)</code>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice -&gt; Scheduler:</td>
<td>I've computed x and am holding on to it!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheduler -&gt; Bob:</th>
<th>Compute <code>y &lt;- add(x, 10)</code>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>You will need x. Alice has x.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bob -&gt; Alice:</th>
<th>Please send me x.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Alice -&gt; Bob:</th>
<th>Sure. x is 3!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bob -&gt; Scheduler:</th>
<th>I've computed y and am holding on to it!</th>
</tr>
</thead>
</table>

#### 3.18.2 Storing Data

Data is stored locally in a dictionary in the `.data` attribute that maps keys to the results of function calls.

```python
>>> worker.data
{'x': 3,
 'y': 13,
 ...
 '(df, 0)': pd.DataFrame(...),
 ...
}
```

This `.data` attribute is a `MutableMapping` that is typically a combination of in-memory and on-disk storage with an LRU policy to move data between them.

#### 3.18.3 Thread Pool

Each worker sends computations to a thread in a `concurrent.futures.ThreadPoolExecutor` for computation. These computations occur in the same process as the Worker communication server so that they can access and share data
efficiently between each other. For the purposes of data locality all threads within a worker are considered the same worker.

If your computations are mostly numeric in nature (for example NumPy and Pandas computations) and release the GIL entirely then it is advisable to run `dask-worker` processes with many threads and one process. This reduces communication costs and generally simplifies deployment.

If your computations are mostly Python code and don’t release the GIL then it is advisable to run `dask-worker` processes with many processes and one thread per process:

```bash
$ dask-worker scheduler:8786 --nprocs 8 --nthreads 1
```

This will launch 8 worker processes each of which has its own ThreadPoolExecutor of size 1.

If your computations are external to Python and long-running and don’t release the GIL then beware that while the computation is running the worker process will not be able to communicate to other workers or to the scheduler. This situation should be avoided. If you don’t link in your own custom C/Fortran code then this topic probably doesn’t apply.

### 3.18.4 Command Line tool

Use the `dask-worker` command line tool to start an individual worker. Here are the available options:

```bash
$ dask-worker --help
Usage: dask-worker [OPTIONS] SCHEDULER

Options:

--worker-port INTEGER Serving worker port, defaults to randomly assigned
--http-port INTEGER Serving http port, defaults to randomly assigned
--nanny-port INTEGER Serving nanny port, defaults to randomly assigned
--port INTEGER Deprecated, see --nanny-port
--host TEXT Serving host. Defaults to an ip address that can
 hopefully be visible from the scheduler network.
--nthreads INTEGER Number of threads per process. Defaults to number of
cores
--nprocs INTEGER Number of worker processes to launch. Defaults to one.
--memory-limit TEXT Number of bytes (per worker process) before spilling data to
disk
--no-nanny
--help Show this message and exit.
```

### 3.18.5 Internal Scheduling

Internally tasks that come to the scheduler proceed through the following pipeline:

The worker also tracks data dependencies that are required to run the tasks above. These follow through a simpler pipeline:

As tasks arrive they are prioritized and put into a heap. They are then taken from this heap in turn to have any remote dependencies collected. For each dependency we select a worker at random that has that data and collect the dependency from that worker. To improve bandwidth we opportunistically gather other dependencies of other tasks that are known to be on that worker, up to a maximum of 200MB of data (too little data and bandwidth suffers, too
much data and responsiveness suffers). We use a fixed number of connections (around 10-50) so as to avoid overly-
fragmenting our network bandwidth. After all dependencies for a task are in memory we transition the task to the
ready state and put the task again into a heap of tasks that are ready to run.

We collect from this heap and put the task into a thread from a local thread pool to execute.

Optionally, this task may identify itself as a long-running task (see Tasks launching tasks), at which point it secedes
from the thread pool.

A task either errs or its result is put into memory. In either case a response is sent back to the scheduler.

3.18.6 Memory Management

Workers are given a target memory limit to stay under with the command line --memory-limit keyword or the
memory_limit= Python keyword argument, which sets the memory limit per worker processes launched by dask-
worker

```bash
$ dask-worker tcp://scheduler:port --memory-limit=auto # total available RAM on the
 #--machine
$ dask-worker tcp://scheduler:port --memory-limit=4e9 # four gigabytes per worker
```

Workers use a few different heuristics to keep memory use beneath this limit:
1. At 60% of memory load (as estimated by sizeof), spill least recently used data to disk
2. At 70% of memory load, spill least recently used data to disk regardless of what is reported by sizeof
3. At 80% of memory load, stop accepting new work on local thread pool
4. At 95% of memory load, terminate and restart the worker

These values can be configured by modifying the ~/.config/dask/distributed.yaml file

```yaml
distributed:
 worker:
 # Fractions of worker memory at which we take action to avoid memory blowup
 # Set any of the lower three values to False to turn off the behavior entirely
 memory:
 target: 0.60 # target fraction to stay below
 spill: 0.70 # fraction at which we spill to disk
 pause: 0.80 # fraction at which we pause worker threads
 terminate: 0.95 # fraction at which we terminate the worker
```

Spill data to Disk

Every time the worker finishes a task it estimates the size in bytes that the result costs to keep in memory using the
sizeof function. This function defaults to sys.getsizeof for arbitrary objects which uses the standard Python
__sizeof__ protocol, but also has special-cased implementations for common data types like NumPy arrays and Pandas
dataframes.

When the sum of the number of bytes of the data in memory exceeds 60% of the available threshold the worker will
begin to dump the least recently used data to disk. You can control this location with the --local-directory
keyword:

```bash
$ dask-worker tcp://scheduler:port --memory-limit 4e9 --local-directory /scratch
```
That data is still available and will be read back from disk when necessary. On the diagnostic dashboard status page disk I/O will show up in the task stream plot as orange blocks. Additionally the memory plot in the upper left will become orange and then red.

**Monitor process memory load**

The approach above can fail for a few reasons

1. Custom objects may not report their memory size accurately
2. User functions may take up more RAM than expected
3. Significant amounts of data may accumulate in network I/O buffers

To address this we periodically monitor the memory of the worker process every 200 ms. If the system reported memory use is above 70% of the target memory usage then the worker will start dumping unused data to disk, even if internal `sizeof` recording hasn’t yet reached the normal 60% limit.

**Halt worker threads**

At 80% load the worker's thread pool will stop accepting new tasks. This gives time for the write-to-disk functionality to take effect even in the face of rapidly accumulating data.

**Kill Worker**

At 95% memory load a worker’s nanny process will terminate it. This is to avoid having our worker job being terminated by an external job scheduler (like YARN, Mesos, SGE, etc.). After termination the nanny will restart the worker in a fresh state.

### 3.18.7 API Documentation

```python
class distributed.worker.Worker(scheduler_ip=None, scheduler_port=None, scheduler_file=None, ncores=None, loop=None, local_dir='dask-worker-space', services=None, service_ports=None, name=None, reconnect=True, memory_limit='auto', executor=None, resources=None, silence_logs=None, death_timeout=None, preload=None, preload_argv=None, security=None, contact_address=None, memory_monitor_interval='200ms', extensions=None, metrics=None, **kwargs)
```

Worker node in a Dask distributed cluster

Workers perform two functions:

1. **Serve data** from a local dictionary
2. **Perform computation** on that data and on data from peers

Workers keep the scheduler informed of their data and use that scheduler to gather data from other workers when necessary to perform a computation.

You can start a worker with the `dask-worker` command line application:

```bash
$ dask-worker scheduler-ip:port
```

Use the `--help` flag to see more options
$ dask-worker --help

The rest of this docstring is about the internal state the the worker uses to manage and track internal computations.

State

Informational State

These attributes don’t change significantly during execution.

- **ncores**: `int`: Number of cores used by this worker process
- **executor**: `concurrent.futures.ThreadPoolExecutor`: Executor used to perform computation
- **local_dir**: `path`: Path on local machine to store temporary files
- **scheduler**: `rpc`: Location of scheduler. See `.ip/.port` attributes.
- **name**: `string`: Alias
- **services**: `{str: Server}`: Auxiliary web servers running on this worker
- **service_ports**: `{str: port}`:
- **total_out_connections**: `int`: The maximum number of concurrent outgoing requests for data
- **total_in_connections**: `int`: The maximum number of concurrent incoming requests for data
- **total_comm_nbytes**: `int`
- **batched_stream**: `BatchedSend`: A batched stream along which we communicate to the scheduler
- **log**: `[(message)]`: A structured and queryable log. See `Worker.story`

Volatile State

This attributes track the progress of tasks that this worker is trying to complete. In the descriptions below a `key` is the name of a task that we want to compute and `dep` is the name of a piece of dependent data that we want to collect from others.

- **data**: `{key: object}`: Dictionary mapping keys to actual values
- **task_state**: `{key: string}`: The state of all tasks that the scheduler has asked us to compute. Valid states include waiting, constrained, executing, memory, erred
- **tasks**: `{key: dict}`: The function, args, kwargs of a task. We run this when appropriate
- **dependencies**: `{key: {deps}}`: The data needed by this key to run
- **dependents**: `{dep: {keys}}`: The keys that use this dependency
- **data_needed**: `deque(keys)`: The keys whose data we still lack, arranged in a deque
- **waiting_for_data**: `{key: {deps}}`: A dynamic verion of dependencies. All dependencies that we still don’t have for a particular key.
- **ready**: `[keys]`: Keys that are ready to run. Stored in a LIFO stack
- **constrained**: `[keys]`: Keys for which we have the data to run, but are waiting on abstract resources like GPUs. Stored in a FIFO deque
- **executing**: `[keys]`: Keys that are currently executing
- **executed_count**: `int`: A number of tasks that this worker has run in its lifetime
- **long_running**: `[keys]`: A set of keys of tasks that are running and have started their own long-running clients.
• **dep_state**: `{dep: string}` The state of all dependencies required by our tasks. Valid states include waiting, flight, and memory.

• **who_has**: `{dep: worker}` Workers that we believe have this data.

• **has_what**: `{worker: {deps}}` The data that we care about that we think a worker has.

• **pending_data_per_worker**: `{worker: [dep]}` The data on each worker that we still want, prioritized as a deque.

• **in_flight_tasks**: `{task: worker}` All dependencies that are coming to us in current peer-to-peer connections and the workers from which they are coming.

• **in_flight_workers**: `{worker: [task]}` The workers from which we are currently gathering data and the dependencies we expect from those connections.

• **comm_bytes**: `int` The total number of bytes in flight.

• **suspicious_deps**: `{dep: int}` The number of times a dependency has not been where we expected it.

• **nbytes**: `{key: int}` The size of a particular piece of data.

• **types**: `{key: type}` The type of a particular piece of data.

• **threads**: `{key: int}` The ID of the thread on which the task ran.

• **active_threads**: `{int: key}` The keys currently running on active threads.

• **exceptions**: `{key: exception}` The exception caused by running a task if it erred.

• **tracebacks**: `{key: traceback}` The exception caused by running a task if it erred.

• **startstops**: `{key: [(str, float, float)]}` Log of transfer, load, and compute times for a task.

• **priorities**: `{key: tuple}` The priority of a key given by the scheduler. Determines run order.

• **durations**: `{key: float}` Expected duration of a task.

• **resource_restrictions**: `{key: (str, number)}` Abstract resources required to run a task.

**Parameters**

- **scheduler_ip**: str
- **scheduler_port**: int
- **ip**: str, optional
- **ncores**: int, optional
- **loop**: `tornado.ioloop.IOLoop`
- **local_dir**: str, optional Directory where we place local resources
- **name**: str, optional
- **memory_limit**: int, float, string Number of bytes of memory that this worker should use. Set to zero for no limit. Set to ‘auto’ for 60% of memory use. Use strings or numbers like 5GB or 5e9
- **memory_target_fraction**: float Fraction of memory to try to stay beneath
- **memory_spill_fraction**: float Fraction of memory at which we start spilling to disk
- **memory_pause_fraction**: float Fraction of memory at which we stop running new tasks
- **executor**: `concurrent.futures.Executor`
resources: dict  Resources that this worker has like {'GPU': 2}

See also:

distributed.scheduler.Scheduler, distributed.nanny.Nanny

Examples

Use the command line to start a worker:

```bash
$ dask-scheduler
Start scheduler at 127.0.0.1:8786

$ dask-worker 127.0.0.1:8786
Start worker at: 127.0.0.1:1234
Registered with scheduler at: 127.0.0.1:8786
```

3.19 Work Stealing

Some tasks prefer to run on certain workers. This may be because that worker holds data dependencies of the task or because the user has expressed a loose desire that the task run in a particular place. Occasionally this results in a few very busy workers and several idle workers. In this situation the idle workers may choose to steal work from the busy workers, even if stealing work requires the costly movement of data.

This is a performance optimization and not required for correctness. Work stealing provides robustness in many ad-hoc cases, but can also backfire when we steal the wrong tasks and reduce performance.

3.19.1 Criteria for stealing

Computation to Communication Ratio

Stealing is profitable when the computation time for a task is much longer than the communication time of the task’s dependencies.

**Bad example**

We do not want to steal tasks that require moving a large dependent piece of data across a wire from the victim to the thief if the computation is fast. We end up spending far more time in communication than just waiting a bit longer and giving up on parallelism.

```python
[data] = client.scatter([np.arange(1000000000)])
x = client.submit(np.sum, data)
```

**Good example**

We do want to steal tasks that only need to move dependent pieces of data, especially when the computation time is expensive (here 100 seconds.)

```python
[data] = client.scatter([100])
x = client.submit(sleep, data)
```

Fortunately we often know both the number of bytes of dependencies (as reported by calling `sys.getsizeof` on the workers) and the runtime cost of previously seen functions, which is maintained as an exponentially weighted moving average.
Saturated Worker Burden

Stealing may be profitable even when the computation-time to communication-time ratio is poor. This occurs when the saturated workers have a very long backlog of tasks and there are a large number of idle workers. We determine if it acceptable to steal a task if the last task to be run by the saturated workers would finish more quickly if stolen or if it remains on the original/victim worker.

The longer the backlog of stealable tasks, and the smaller the number of active workers we have both increase our willingness to steal. This is balanced against the compute-to-communicate cost ratio.

Replicate Popular Data

It is also good long term if stealing causes highly-sought-after data to be replicated on more workers.

Steal from the Rich

We would like to steal tasks from particularly over-burdened workers rather than workers with just a few excess tasks.

Restrictions

If a task has been specifically restricted to run on particular workers (such as is the case when special hardware is required) then we do not steal.

3.19.2 Choosing tasks to steal

We maintain a list of sets of stealable tasks, ordered into bins by computation-to-communication time ratio. The first bin contains all tasks with a compute-to-communicate ratio greater than or equal to 8 (considered high enough to always steal), the next bin with a ratio of 4, the next bin with a ratio of 2, etc., all the way down to a ratio of 1/256, which we will never steal.

This data structure provides a somewhat-ordered view of all stealable tasks that we can add to and remove from in constant time, rather than \( \log(n) \) as with more traditional data structures, like a heap.

During any stage when we submit tasks to workers we check if there are both idle and saturated workers and if so we quickly run through this list of sets, selecting tasks from the best buckets first, working our way down to the buckets of less desirable stealable tasks. We stop either when there are no more stealable tasks, no more idle workers, or when the quality of the task-to-be-stolen is not high enough given the current backlog.

This approach is fast, optimizes to steal the tasks with the best computation-to-communicate cost ratio (up to a factor of two) and tends to steal from the workers that have the largest backlogs, just by nature that random selection tends to draw from the largest population.

3.19.3 Transactional Work Stealing

To avoid running the same task twice, Dask implements transactional work stealing. When the scheduler identifies a task that should be moved it first sends a request to the busy worker. The worker inspects its current state of the task and sends a response to the scheduler:

1. If the task is not yet running, then the worker cancels the task and informs the scheduler that it can reroute the task elsewhere.
2. If the task is already running or complete then the worker tells the scheduler that it should not replicate the task elsewhere.
This avoids redundant work, and also the duplication of side effects for more exotic tasks. However, concurrent or repeated execution of the same task is still possible in the event of worker death or a disrupted network connection.

### 3.20 Actors

**Note:** This is an experimental feature and is subject to change without notice

**Note:** This is an advanced feature and may not be suitable for beginning users. It is rarely necessary for common workloads.

Actors enable stateful computations within a Dask workflow. They are useful for some rare algorithms that require additional performance and are willing to sacrifice resilience.

An actor is a pointer to a user-defined-object living on a remote worker. Anyone with that actor can call methods on that remote object.

#### 3.20.1 Example

Here we create a simple Counter class, instantiate that class on one worker, and then call methods on that class remotely.

```python
class Counter:
 """ A simple class to manage an incrementing counter """
 n = 0

 def __init__(self):
 self.n = 0

 def increment(self):
 self.n += 1
 return self.n

 def add(self, x):
 self.n += x
 return self.n

from dask.distributed import Client # Start a Dask Client
client = Client()

future = client.submit(Counter, actor=True) # Create a Counter on a worker
counter = future.result() # Get back a pointer to that object

counter # <Actor: Counter, key=Counter-1234abcd>

future = counter.increment() # Call remote method
future.result() # Get back result # 1

future = counter.add(10) # Call remote method
```

(continues on next page)
3.20.2 Motivation

Actors are motivated by some of the challenges of using pure task graphs.

Normal Dask computations are composed of a graph of functions. This approach has a few limitations that are good for resilience, but can negatively affect performance:

1. **State**: The functions should not mutate their inputs in-place or rely on global state. They should instead operate in a pure-functional manner, consuming inputs and producing separate outputs.

2. **Central Overhead**: The execution location and order is determined by the centralized scheduler. Because the scheduler is involved in every decision it can sometimes create a central bottleneck.

Some workloads may need to update state directly, or may involve more tiny tasks than the scheduler can handle (the scheduler can coordinate about 4000 tasks per second).

Actors side-step both of these limitations:

1. **State**: Actors can hold on to and mutate state. They are allowed to update their state in-place.

2. **Overhead**: Operations on actors do not inform the central scheduler, and so do not contribute to the 4000 task/second overhead. They also avoid an extra network hop and so have lower latencies.

3.20.3 Create an Actor

You create an actor by submitting a Class to run on a worker using normal Dask computation functions like `submit`, `map`, `compute`, or `persist`, and using the `actors=` keyword (or `actor=` on `submit`).

```python
future = client.submit(Counter, actors=True)
```

You can use all other keywords to these functions like `workers=`, `resources=`, and so on to control where this actor ends up.

This creates a normal Dask future on which you can call `.result()` to get the Actor once it has successfully run on a worker.

```python
>>> counter = future.result()
>>> counter
<Actor: Counter, key=...>
```

A `Counter` object has been instantiated on one of the workers, and this `Actor` object serves as our proxy to that remote object. It has the same methods and attributes.

```python
>>> dir(counter)
['add', 'increment', 'n']
```

3.20.4 Call Remote Methods

However accessing an attribute or calling a method will trigger a communication to the remote worker, run the method on the remote worker in a separate thread pool, and then communicate the result back to the calling side. For attribute access these operations block and return when finished, for method calls they return an `ActorFuture` immediately.
ActorFuture are similar to normal Dask Future objects, but not as fully featured. They currently only support the result method and nothing else. They don’t currently work with any other Dask functions that expect futures, like as_completed, wait, or client.gather. They can’t be placed into additional submit or map calls to form dependencies. They communicate their results immediately (rather than waiting for result to be called) and cache the result on the future itself.

### 3.20.5 Access Attributes

If you define an attribute at the class level then that attribute will be accessible to the actor.

```python
class Counter:
 n = 0 # Recall that we defined our class with `n` as a class variable
 ...

>>> counter.n # Blocks until finished
1
```

Attribute access blocks automatically. It’s as though you called `.result()`.

### 3.20.6 Execution on the Worker

When you call a method on an actor, your arguments get serialized and sent to the worker that owns the actor’s object. If you do this from a worker this communication is direct. If you do this from a Client then this will be direct if the Client has direct access to the workers (create a client with `Client(..., direct_to_workers=True)` if direct connections are possible) or by proxying through the scheduler if direct connections from the client to the workers are not possible.

The appropriate method of the Actor’s object is then called in a separate thread, the result captured, and then sent back to the calling side. Currently workers have only a single thread for actors, but this may change in the future.

The result is sent back immediately to the calling side, and is not stored on the worker with the actor. It is cached on the ActorFuture object.

### 3.20.7 Calling from coroutines and async/await

If you use actors within a coroutine or async/await function then actor methods and attribute access will return Tornado futures.

```python
async def f():
 counter = await client.submit(Counter, actor=True)

 await counter.increment()
 n = await counter.n
```
3.20.8 Coroutines and async/await on the Actor

If you define an async def function on the actor class then that method will run on the Worker’s event loop thread rather than a separate thread.

```python
def Waiter(object):
 def __init__(self):
 self.event = tornado.locks.Event()

 async def set(self):
 self.event.set()

 async def wait(self):
 await self.event.wait()

waiter = client.submit(Waiter, actor=True).result()
waiter.wait().result() # waits until set, without consuming a worker thread
```

3.20.9 Performance

Worker operations currently have about 1ms of latency, on top of any network latency that may exist. However other activity in a worker may easily increase these latencies if enough other activities are present.

3.20.10 Limitations

Actors offer advanced capabilities, but with some cost:

1. **No Resilience**: No effort is made to make actor workloads resilient to worker failure. If the worker dies while holding an actor that actor is lost forever.

2. **No Diagnostics**: Because the scheduler is not informed about actor computations no diagnostics are available about these computations.

3. **No Load balancing**: Actors are allocated onto workers evenly, without serious consideration given to avoiding communication.

4. **Experimental**: Actors are a new feature and subject to change without warning

3.21 Adaptive Deployments

It is possible to grow and shrink Dask clusters based on current use. This allows you to run Dask permanently on your cluster and have it only take up resources when necessary. Dask contains the logic about when to grow and shrink but relies on external cluster managers to launch and kill dask-worker jobs. This page describes the policies about adaptively resizing Dask clusters based on load, how to connect these policies to a particular job scheduler, and an example implementation.

Dynamically scaling a Dask cluster up and down requires tight integration with an external cluster management system that can deploy dask-worker jobs throughout the cluster. Several systems are in wide use today, including common examples like SGE, SLURM, Torque, Condor, LSF, Yarn, Mesos, Marathon, Kubernetes, etc... These systems can be quite different from each other, but all are used to manage distributed services throughout different kinds of clusters.

The large number of relevant systems, the challenges of rigorously testing each, and finite development time precludes the systematic inclusion of all solutions within the dask/distributed repository. Instead, we include a generic interface
that can be extended by someone with basic understanding of their cluster management tool. We encourage these as third party modules.

### 3.21.1 Policies

We control the number of workers based on current load and memory use. The scheduler checks itself periodically to determine if more or fewer workers are needed.

If there are excess unclaimed tasks, or if the memory of the current workers is more nearing full then the scheduler tries to increase the number of workers by a fixed factor, defaulting to 2. This causes exponential growth while growth is useful.

If there are idle workers and if the memory of the current workers is nearing empty then we gracefully retire the idle workers with the least amount of data in memory. We first move these results to the surviving workers and then remove the idle workers from the cluster. This shrinks the cluster while gracefully preserving intermediate results, shrinking the cluster when excess size is not useful.

### 3.21.2 Adaptive class interface

The `distributed.deploy.Adaptive` class contains the logic about when to ask for new workers, and when to close idle ones. This class requires both a scheduler and a cluster object.

The cluster object must support two methods, `scale_up(n, **kwargs)`, which takes in a target number of total workers for the cluster and `scale_down(workers)`, which takes in a list of addresses to remove from the cluster. The Adaptive class will call these methods with the correct values at the correct times.

```python
class MyCluster(object):
 @gen.coroutine
 def scale_up(self, n, **kwargs):
 """
 Bring the total count of workers up to `n`

 This function/coroutine should bring the total number of workers up to
 the number `n`.

 This can be implemented either as a function or as a Tornado coroutine.
 ""
 raise NotImplementedError()

 @gen.coroutine
 def scale_down(self, workers):
 """
 Remove `workers` from the cluster

 Given a list of worker addresses this function should remove those
 workers from the cluster. This may require tracking which jobs are
 associated to which worker address.

 This can be implemented either as a function or as a Tornado coroutine.
 ""

from distributed.deploy import Adaptive

scheduler = Scheduler()
cluster = MyCluster()
```

(continues on next page)
adapative_cluster = Adaptive(scheduler, cluster)
scheduler.start()

Implementing these `scale_up` and `scale_down` functions depends strongly on the cluster management system. See `LocalCluster` for an example.

### 3.21.3 Marathon: an example

We now present an example project that implements this cluster interface backed by the Marathon cluster management tool on Mesos. Full source code and testing apparatus is available here: [http://github.com/mrocklin/dask-marathon](http://github.com/mrocklin/dask-marathon)

The implementation is small. It uses the Marathon HTTP API through the `marathon` Python client library. We reproduce the full body of the implementation below as an example:

```python
from marathon import MarathonClient, MarathonApp
from marathon.models.container import MarathonContainer

class MarathonCluster(object):
 def __init__(self, scheduler,
 executable='dask-worker',
 docker_image='mrocklin/dask-distributed',
 marathon_address='http://localhost:8080',
 name=None, **kwargs):
 self.scheduler = scheduler
 # Create Marathon App to run dask-worker
 args = [executable, scheduler.address,
 '--name', '$MESOS_TASK_ID'] # use Mesos task ID as worker name
 if 'mem' in kwargs:
 args.extend(['--memory-limit',
 str(int(kwargs['mem'] * 0.6 * 1e6))])
 kwargs['cmd'] = ' '.join(args)
 container = MarathonContainer({'image': docker_image})

 app = MarathonApp(instances=0, container=container, **kwargs)

 # Connect and register app
 self.client = MarathonClient(marathon_address)
 self.app = self.client.create_app(name
 or 'dask-%s' % uuid.uuid4(), app)

 def scale_up(self, instances):
 self.marathon_client.scale_app(self.app.id, instances=instances)

 def scale_down(self, workers):
 for w in workers:
 self.marathon_client.kill_task(self.app.id,
 self.scheduler.worker_info[w]['name'],
 scale=True)
```

### 3.21.4 Subclassing Adaptive

The default behaviors of `Adaptive` controlling when to scale up or down, and by how much, may not be appropriate for your cluster manager or workload. For example, you may have tasks that require a worker with more memory than usual. This means we need to pass through some additional keyword arguments to `cluster.scale_up` call.

---

3.21. Adaptive Deployments

101
from distributed.deploy import Adaptive

class MyAdaptive(Adaptive):
    def get_scale_up_kwargs(self):
        kwargs = super(Adaptive, self).get_scale_up_kwargs()
        # resource_restrictions maps task keys to a dict of restrictions
        restrictions = self.scheduler.resource_restrictions.values()
        memory_restrictions = [x.get('memory') for x in restrictions
        if 'memory' in x]

        if memory_restrictions:
            kwargs['memory'] = max(memory_restrictions)

        return kwargs

So if there are any tasks that are waiting to be run on a worker with enough memory, the `kwargs` dictionary passed to `cluster.scale_up` will include a key and value for 'memory' (your `Cluster.scale_up` method needs to be able to support this).

### 3.22 Asynchronous Operation

Dask can run fully asynchronously and so interoperate with other highly concurrent applications. Internally Dask is built on top of Tornado coroutines but also has a compatibility layer for asyncio (see below).

#### 3.22.1 Basic Operation

When starting a client provide the `asynchronous=True` keyword to tell Dask that you intend to use this client within an asynchronous context, such as a function defined with `async/await` syntax.

```python
async def f():
 client = await Client(asynchronous=True)
```

Operations that used to block now provide Tornado coroutines on which you can `await`.

Fast functions that only submit work remain fast and don’t need to be awaited. This includes all functions that submit work to the cluster, like `submit`, `map`, `compute`, and `persist`.

```python
future = client.submit(lambda x: x + 1, 10)
```

You can await futures directly

```python
result = await future
```

```python
>>> print(result)
11
```

Or you can use the normal client methods. Any operation that waited until it received information from the scheduler should now be `await`ed.

```python
result = await client.gather(future)
```

If you want to reuse the same client in asynchronous and synchronous environments you can apply the `asynchronous=True` keyword at each method call.
client = Client()  # normal blocking client
async def f():
    futures = client.map(func, L)
    results = await client.gather(futures, asynchronous=True)
    return results

3.22.2 AsyncIO

If you prefer to use the Asyncio event loop over the Tornado event loop you should use the AioClient.

```python
from distributed.asyncio import AioClient
client = await AioClient()
```

All other operations remain the same:

```python
future = client.submit(lambda x: x + 1, 10)
result = await future
or
result = await client.gather(future)
```

3.22.3 Python 2 Compatibility

Everything here works with Python 2 if you replace `await` with `yield`. See more extensive comparison in the example below.

3.22.4 Example

This self-contained example starts an asynchronous client, submits a trivial job, waits on the result, and then shuts down the client. You can see implementations for Python 2 and 3 and for Asyncio and Tornado.

**Python 3 with Tornado**

```python
from dask.distributed import Client
async def f():
 client = await Client(asynchronous=True)
 future = client.submit(lambda x: x + 1, 10)
 result = await future
 await client.close()
 return result

from tornado.ioloop import IOLoop
IOLoop().run_sync(f)
```

**Python 2/3 with Tornado**

```python
from tornado.ioloop import IOLoop
IOLoop().run_sync(f)
```
from dask.distributed import Client
from tornado import gen

@gen.coroutine
def f():
    client = yield Client(asynchronous=True)
    future = client.submit(lambda x: x + 1, 10)
    result = yield future
    yield client.close()
    raise gen.Result(result)

from tornado.ioloop import IOLoop
IOLoop().run_sync(f)

Python 3 with Asyncio

from distributed.asyncio import AioClient

async def f():
    client = await AioClient()
    future = client.submit(lambda x: x + 1, 10)
    result = await future
    await client.close()
    return result

from asyncio import get_event_loop
get_event_loop().run_until_complete(f())

3.22.5 Use Cases

Historically this has been used in a few kinds of applications:

1. To integrate Dask into other asynchronous services (such as web backends), supplying a computational engine similar to Celery, but while still maintaining a high degree of concurrency and not blocking needlessly.

2. For computations that change or update state very rapidly, such as is common in some advanced machine learning workloads.

3. To develop the internals of Dask’s distributed infrastructure, which is written entirely in this style.

4. For complex control and data structures in advanced applications.

3.23 Configuration

As with any distributed computation system, taking full advantage of Dask distributed sometimes requires configuration. Some options can be passed as API parameters and/or command line options to the various Dask executables. However, some options can also be entered in the Dask configuration file.

3.23.1 User-wide configuration

Dask accepts some configuration options in a configuration file, which by default is a .dask/config.yaml file located in your home directory. The file path can be overridden using the DASK_CONFIG environment variable. In
order to parse this configuration file, the `pyyaml` module needs to be installed. If the `pyyaml` module is not installed, the configuration file is ignored.

The file is written in the YAML format, which allows for a human-readable hierarchical key-value configuration. All keys in the configuration file are optional, though Dask will create a default configuration file for you on its first launch.

Here is a synopsis of the configuration file:

```
logging:
 distributed: info
 distributed.client: warning
 bokeh: critical

Scheduler options
bandwidth: 100000000 # 100 MB/s estimated worker-worker bandwidth
allowed-failures: 3 # number of retries before a task is considered bad
pdb-on-err: False # enter debug mode on scheduling error
transition-log-length: 100000

Worker options
multiprocessing-method: forkserver

Communication options
compression: auto
tcp-timeout: 30 # seconds delay before calling an unresponsive connection dead
default-scheme: tcp
require-encryption: False # whether to require encryption on non-local comms
tls:
 ca-file: myca.pem
 scheduler:
 cert: mycert.pem
 key: mykey.pem
 worker:
 cert: mycert.pem
 key: mykey.pem
 client:
 cert: mycert.pem
 key: mykey.pem
 #ciphers:
 # ECDHE-ECDSA-AES128-GCM-SHA256

Bokeh web dashboard
bokeh-export-tool: False
```

We will review some of those options hereafter.

**Communication options**

**compression**

This key configures the desired compression scheme when transferring data over the network. The default value, “auto”, applies heuristics to try and select the best compression scheme for each piece of data.
default-scheme

The communication scheme used by default. You can override the default (“tcp”) here, but it is recommended to use explicit URIs for the various endpoints instead (for example tls:// if you want to enable TLS communications).

require-encryption

Whether to require that all non-local communications be encrypted. If true, then Dask will refuse establishing any clear-text communications (for example over TCP without TLS), forcing you to use a secure transport such as TLS.

tcp-timeout

The default “timeout” on TCP sockets. If a remote endpoint is unresponsive (at the TCP layer, not at the distributed layer) for at least the specified number of seconds, the communication is considered closed. This helps detect endpoints that have been killed or have disconnected abruptly.

tls

This key configures TLS communications. Several sub-keys are recognized:

- ca-file configures the CA certificate file used to authenticate and authorize all endpoints.
- ciphers restricts allowed ciphers on TLS communications.

Each kind of endpoint has a dedicated endpoint sub-key: scheduler, worker and client. Each endpoint sub-key also supports several sub-keys:

- cert configures the certificate file for the endpoint.
- key configures the private key file for the endpoint.

Scheduler options

allowed-failures

The number of retries before a “suspicious” task is considered bad. A task is considered “suspicious” if the worker died while executing it.

bandwidth

The estimated network bandwidth, in bytes per second, from worker to worker. This value is used to estimate the time it takes to ship data from one node to another, and balance tasks and data accordingly.

Misc options

logging

This key configures the logging settings. There are two possible formats. The simple, recommended format configures the desired verbosity level for each logger. It also sets default values for several loggers such as distributed unless explicitly configured.
A more extended format is possible following the `logging` module’s `Configuration` dictionary schema. To enable this extended format, there must be a `version` sub-key as mandated by the schema. The extended format does not set any default values.

**Note:** Python’s `logging` module uses a hierarchical logger tree. For example, configuring the logging level for the `distributed` logger will also affect its children such as `distributed.scheduler`, unless explicitly overriden.

**logging-file-config**

As an alternative to the two logging settings formats discussed above, you can specify a logging config file. Its format adheres to the `logging` module’s `Configuration` file format.

**Note:** The configuration options `logging-file-config` and `logging` are mutually exclusive.

## 3.24 Local Cluster

For convenience you can start a local cluster from your Python session.

```python
>>> from distributed import Client, LocalCluster
>>> cluster = LocalCluster()
LocalCluster("127.0.0.1:8786", workers=8, ncores=8)
>>> client = Client(cluster)
<Client: scheduler=127.0.0.1:8786 processes=8 cores=8>
```

You can dynamically scale this cluster up and down:

```python
>>> worker = cluster.add_worker()
>>> cluster.remove_worker(worker)
```

Alternatively, a `LocalCluster` is made for you automatically if you create an `Client` with no arguments:

```python
>>> from distributed import Client
>>> client = Client()
>>> client
<Client: scheduler=127.0.0.1:8786 processes=8 cores=8>
```

### 3.24.1 API

```python
class distributed.deploy.local.LocalCluster(n_workers=None, threads_per_worker=None,_processes=True, loop=None, start=None, ip=None, scheduler_port=0, silence_logs=30, diagnostics_port=8787, services=None, worker_services=None, service_kwargs=None, asynchronous=False, security=None, **worker_kwargs)
```

Create local Scheduler and Workers

This creates a “cluster” of a scheduler and workers running on the local machine.
Parameters

- **n_workers**: int  Number of workers to start
- **processes**: bool  Whether to use processes (True) or threads (False). Defaults to True
- **threads_per_worker**: int  Number of threads per each worker
- **scheduler_port**: int  Port of the scheduler. 8786 by default, use 0 to choose a random port
- **silence_logs**: logging level  Level of logs to print out to stdout. `logging.WARN` by default. Use a falsey value like False or None for no change.
- **ip**: string  IP address on which the scheduler will listen, defaults to only localhost
- **diagnostics_port**: int  Port on which the Web Interface will be provided. 8787 by default, use 0 to choose a random port, None to disable it, or an (ip:port) tuple to listen on a different IP address than the scheduler.
- **asynchronous**: bool (False by default)  Set to True if using this cluster within async/await functions or within Tornado gen.coroutines. This should remain False for normal use.
- **kwargs**: dict  Extra worker arguments, will be passed to the Worker constructor.
- **service_kwargs**: Dict[str, Dict]  Extra keywords to hand to the running services
- **security**: [Security]

Examples

```python
>>> c = LocalCluster() # Create a local cluster with as many workers as cores
>>> c
LocalCluster("127.0.0.1:8786", workers=8, ncores=8)
```

```python
>>> c = Client(c) # connect to local cluster
```

Add a new worker to the cluster

```python
>>> w = c.start_worker(ncores=2)
```

Shut down the extra worker

```python
>>> c.stop_worker(w)
```

Pass extra keyword arguments to Bokeh

```python
>>> LocalCluster(service_kwargs={"bokeh": {"prefix": "/foo"}})
```

**close**(timeout=20)

Close the cluster

**scale_down**(workers)

Remove workers from the cluster

Given a list of worker addresses this function should remove those workers from the cluster. This may require tracking which jobs are associated to which worker address.

This can be implemented either as a function or as a Tornado coroutine.
scale_up \((n, **kwargs)\)

Bring the total count of workers up to \(n\)

This function/coroutine should bring the total number of workers up to the number \(n\).

This can be implemented either as a function or as a Tornado coroutine.

start_worker (**kwargs)

Add a new worker to the running cluster

Parameters

- **port**: int (optional)  Port on which to serve the worker, defaults to 0 or random
- **ncores**: int (optional)  Number of threads to use. Defaults to number of logical cores

Returns

The created Worker or Nanny object. Can be discarded.

Examples

```python
>>> c = LocalCluster()
>>> c.start_worker(ncores=2)
```

stop_worker \((w)\)

Stop a running worker

Examples

```python
>>> c = LocalCluster()
>>> w = c.start_worker(ncores=2)
>>> c.stop_worker(w)
```

### 3.25 IPython Integration

Dask.distributed integrates with IPython in three ways:

1. You can launch a Dask.distributed cluster from an IPyParallel cluster
2. You can launch IPython kernels from Dask Workers and Schedulers to assist with debugging
3. They both support the common concurrent.futures interface

#### 3.25.1 Launch Dask from IPyParallel

IPyParallel is IPython’s distributed computing framework that allows you to easily manage many IPython engines on different computers.

An IPyParallel Client can launch a dask.distributed Scheduler and Workers on those IPython engines, effectively launching a full dask.distributed system.

This is possible with the Client.become_dask method:
3.25.2 Launch IPython within Dask Workers

It is sometimes convenient to inspect the Worker or Scheduler process interactively. Fortunately IPython gives us a way to launch interactive sessions within Python processes. This is available through the following methods:

```
>>> e.start_ipython_scheduler()
%scheduler scheduler.processing
{'127.0.0.1:3595': ['inc-1', 'inc-2'],
 '127.0.0.1:53589': ['inc-2', 'add-5']}

>>> info = e.start_ipython_workers()
%remote info['127.0.0.1:3595'] worker.active
{'inc-1', 'inc-2'}
```

Example with qt-console

You can also open up a full interactive IPython qt-console on the scheduler or each of the workers:

```
>>> e.start_ipython_scheduler(qtconsole=True)
>>> e.start_ipython_workers(qtconsole=True)
```

3.26 Publish Datasets

A published dataset is a named reference to a Dask collection or list of futures that has been published to the cluster. It is available for any client to see and persists beyond the scope of an individual session.

Publishing datasets is useful in the following cases:

- You want to share computations with colleagues
- You want to persist results on the cluster between interactive sessions
3.26.1 Motivating Example

In this example we load a dask.dataframe from S3, manipulate it, and then publish the result.

Connect and Load

```python
from dask.distributed import Client
client = Client('scheduler-address:8786')
import dask.dataframe as dd
df = dd.read_csv('s3://my-bucket/*.csv')
df2 = df[df.balance < 0]
df2 = client.persist(df2)

>>> df2.head()
 name balance
0 Alice -100
1 Bob -200
2 Charlie -300
3 Dennis -400
4 Edith -500
```

Publish

To share this collection with a colleague we publish it under the name `'negative_accounts'`

```python
client.publish_dataset(negative_accounts=df2)
```

Load published dataset from different client

Now any other client can connect to the scheduler and retrieve this published dataset.

```python
>>> from dask.distributed import Client
>>> client = Client('scheduler-address:8786')

>>> client.list_datasets()
['negative_accounts']

>>> df = client.get_dataset('negative_accounts')

>>> df.head()
 name balance
0 Alice -100
1 Bob -200
2 Charlie -300
3 Dennis -400
4 Edith -500
```

This allows users to easily share results. It also allows for the persistence of important and commonly used datasets beyond a single session. Published datasets continue to reside in distributed memory even after all clients requesting them have disconnected.

3.26.2 Dictionary interface

Alternatively you can use the `.datasets` mapping on the client to publish, list, get, and delete global datasets.

```python
>>> client.datasets['negative_accounts'] = df
```

(continues on next page)
This mapping is globally shared among all clients connected to the same scheduler.

3.26.3 Notes

Published collections are not automatically persisted. If you publish an un-persisted collection then others will still be able to get the collection from the scheduler, but operations on that collection will start from scratch. This allows you to publish views on data that do not permanently take up cluster memory but can be surprising if you expect “publishing” to automatically make a computed dataset rapidly available.

Any client can publish or unpublish a dataset.

Publishing too many large datasets can quickly consume a cluster’s RAM.

3.26.4 API

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client.publish_dataset(*args, **kwargs)</td>
<td>Publish named datasets to scheduler</td>
</tr>
<tr>
<td>Client.list_datasets(**kwargs)</td>
<td>List named datasets available on the scheduler</td>
</tr>
<tr>
<td>Client.get_dataset(name, **kwargs)</td>
<td>Get named dataset from the scheduler</td>
</tr>
<tr>
<td>Client.unpublish_dataset(name, **kwargs)</td>
<td>Remove named datasets from scheduler</td>
</tr>
</tbody>
</table>

3.27 Data Streams with Queues

The Client methods `scatter`, `map`, and `gather` can consume and produce standard Python `Queue` objects. This is useful for processing continuous streams of data. However, it does not constitute a full streaming data processing pipeline like Storm.

3.27.1 Example

We connect to a local Client.

```python
>>> from distributed import Client
>>> client = Client('127.0.0.1:8786')
>>> client
<Client: scheduler=127.0.0.1:8786 workers=1 threads=4>
```

We build a couple of toy data processing functions:

```python
from time import sleep
from random import random

def inc(x):
 from random import random
 sleep(random() * 2)
 return x + 1

def double(x):
```

(continues on next page)
from random import random
sleep(random())
return 2 * x

And we set up an input Queue and map our functions across it.

```python
>>> from queue import Queue
>>> input_q = Queue()
>>> remote_q = client.scatter(input_q)
>>> inc_q = client.map(inc, remote_q)
>>> double_q = client.map(double, inc_q)
```

We will fill the `input_q` with local data from some stream, and then `remote_q`, `inc_q` and `double_q` will fill with Future objects as data gets moved around.

We gather the futures from the `double_q` back to a queue holding local data in the local process.

```python
>>> result_q = client.gather(double_q)
```

**Insert Data Manually**

Because we haven’t placed any data into any of the queues everything is empty, including the final output, `result_q`.

```python
>>> result_q.qsize()
0
```

But when we insert an entry into the `input_q`, it starts to make its way through the pipeline and ends up in the `result_q`.

```python
>>> input_q.put(10)
>>> result_q.get()
22
```

**Insert data in a separate thread**

We simulate a slightly more realistic situation by dumping data into the `input_q` in a separate thread. This simulates what you might get if you were to read from an active data source.

```python
def load_data(q):
 i = 0
 while True:
 q.put(i)
 sleep(random())
 i += 1

>>> from threading import Thread
>>> load_thread = Thread(target=load_data, args=(input_q,))
>>> load_thread.start()

>>> result_q.qsize()
4
```
We consume data from the result_q and print results to the screen.

```python
>>> while True:
... item = result_q.get()
... print(item)
2
4
6
8
10
12
...
```

### 3.27.2 Limitations

- This doesn’t do any sort of auto-batching of computations, so ideally you batch your data to take significantly longer than 1ms to run.
- This isn’t a proper streaming system. There is no support outside of what you see here. In particular there are no policies for dropping data, joining over time windows, etc..

### 3.27.3 Extensions

We can extend this small example to more complex systems that have buffers, split queues, merge queues, etc. all by manipulating normal Python Queues.

Here are a couple of useful function to multiplex and merge queues:

```python
from queue import Queue
from threading import Thread

def multiplex(n, q, **kwargs):
 """ Convert one queue into several equivalent Queues
 """
 out_queues = [Queue(**kwargs) for i in range(n)]
 def f():
 while True:
 x = q.get()
 for out_q in out_queues:
 out_q.put(x)
 t = Thread(target=f)
 t.daemon = True
 t.start()
 return out_queues

def push(in_q, out_q):
 while True:
 x = in_q.get()
 out_q.put(x)

def merge(*in_qs, **kwargs):
 """ Merge multiple queues together
 """
```

(continues on next page)
With useful functions like these we can build out more sophisticated data processing pipelines that split off and join back together. By creating queues with `maxsize` we can control buffering and apply back pressure.

## 3.28 Worker Resources

Access to scarce resources like memory, GPUs, or special hardware may constrain how many of certain tasks can run on particular machines.

For example, we may have a cluster with ten computers, four of which have two GPUs each. We may have a thousand tasks, a hundred of which require a GPU and ten of which require two GPUs at once. In this case we want to balance tasks across the cluster with these resource constraints in mind, allocating GPU-constrained tasks to GPU-enabled workers. Additionally we need to be sure to constrain the number of GPU tasks that run concurrently on any given worker to ensure that we respect the provided limits.

This situation arises not only for GPUs but for many resources like tasks that require a large amount of memory at runtime, special disk access, or access to special hardware. Dask allows you to specify abstract arbitrary resources to constrain how your tasks run on your workers. Dask does not model these resources in any particular way (Dask does not know what a GPU is) and it is up to the user to specify resource availability on workers and resource demands on tasks.

### 3.28.1 Example

We consider a computation where we load data from many files, process each one with a function that requires a GPU, and then aggregate all of the intermediate results with a task that takes up 70GB of memory.

We operate on a three-node cluster that has two machines with two GPUs each and one machine with 100GB of RAM.

When we set up our cluster we define resources per worker:

```bash
dask-worker scheduler:8786 --resources "GPU=2"
dask-worker scheduler:8786 --resources "GPU=2"
dask-worker scheduler:8786 --resources "MEMORY=100e9"
```

When we submit tasks to the cluster we specify constraints per task:

```python
from distributed import Client
client = Client('scheduler:8786')
data = [client.submit(load, fn) for fn in filenames]
processed = [client.submit(process, d, resources={'GPU': 1}) for d in data]
final = client.submit(aggregate, processed, resources={'MEMORY': 70e9})
```
3.28.2 Resources are Abstract

Resources listed in this way are just abstract quantities. We could equally well have used terms “mem”, “memory”, “bytes” etc. above because, from Dask’s perspective, this is just an abstract term. You can choose any term as long as you are consistent across workers and clients.

It’s worth noting that Dask separately track number of cores and available memory as actual resources and uses these in normal scheduling operation.

3.28.3 Resources with collections

You can also use resources with Dask collections, like arrays, dataframes, and delayed objects. You can pass a dictionary mapping keys of the collection to resource requirements during compute or persist calls.

```python
x = dd.read_csv(...)
y = x.map_partitions(func1)
z = y.map_partitions(func2)
z.compute(resources={tuple(y.__dask_keys__()): {'GPU': 1}})
```

In some cases (such as the case above) the keys for `y` may be optimized away before execution. You can avoid that either by requiring them as an explicit output, or by passing the `optimize_graph=False` keyword.

```python
z.compute(resources={tuple(y.__dask_keys__()): {'GPU': 1}, optimize_graph=False})
```

3.29 Submitting Applications

The `dask-submit` cli can be used to submit an application to the dask cluster running remotely. If your code depends on resources that can only be access from cluster running dask, `dask-submit` provides a mechanism to send the script to the cluster for execution from a different machine.

For example, S3 buckets could not be visible from your local machine and hence any attempt to create a dask graph from local machine may not work.

3.29.1 Submitting Dask Applications with `dask-submit`

In order to remotely submit scripts to the cluster from a local machine or a CI/CD environment, we need to run a remote client on the same machine as the scheduler:

```bash
scheduler machine
dask-remote --port 8788
```

After making sure the `dask-remote` is running, you can submit a script by:

```bash
local machine
dask-submit <dask-remote-address>:<port> <script.py>
```

Some of the commonly used arguments are:

- `REMOTE_CLIENT_ADDRESS`: host name where dask-remote client is running
- `FILEPATH`: Local path to file containing dask application

For example, given the following dask application saved in a file called `script.py`:
from distributed import Client

def inc(x):
    return x + 1

if __name__=='__main__':
    client = Client('127.0.0.1:8786')
    x = client.submit(inc, 10)
    print(x.result())

We can submit this application from a local machine by running:

dask-submit <remote-client-address>:<port> script.py

3.30 Launch Tasks from Tasks

Sometimes it is convenient to launch tasks from other tasks. For example you may not know what computations to run until you have the results of some initial computations.

3.30.1 Motivating example

We want to download one piece of data and turn it into a list. Then we want to submit one task for every element of that list. We don’t know how long the list will be until we have the data.

So we send off our original download_and_convert_to_list function, which downloads the data and converts it to a list on one of our worker machines:

future = client.submit(download_and_convert_to_list, uri)

But now we need to submit new tasks for individual parts of this data. We have three options.

1. Gather the data back to the local process and then submit new jobs from the local process
2. Gather only enough information about the data back to the local process and submit jobs from the local process
3. Submit a task to the cluster that will submit other tasks directly from that worker

3.30.2 Gather the data locally

If the data is not large then we can bring it back to the client to perform the necessary logic on our local machine:

>>> data = future.result()               # gather data to local process
>>> data                                 # data is a list
[...]                                   

>>> futures = e.map(process_element, data) # submit new tasks on data
>>> analysis = e.submit(aggregate, futures) # submit final aggregation task

This is straightforward and, if data is small then it is probably the simplest, and therefore correct choice. However, if data is large then we have to choose another option.
3.30.3 Submit tasks from client

We can run small functions on our remote data to determine enough to submit the right kinds of tasks. In the following example we compute the `len` function on `data` remotely and then break up data into its various elements.

```python
>>> n = client.submit(len, data) # compute number of elements
>>> n = n.result() # gather n (small) locally

>>> from operator import getitem
>>> elements = [client.submit(getitem, data, i) for i in range(n)] # split data

>>> futures = client.map(process_element, elements)

>>> analysis = client.submit(aggregate, futures)
```

We compute the length remotely, gather back this very small result, and then use it to submit more tasks to break up the data and process on the cluster. This is more complex because we had to go back and forth a couple of times between the cluster and the local process, but the data moved was very small, and so this only added a few milliseconds to our total processing time.

Extended Example

Computing the Fibonacci numbers creates involves a recursive function. When the function is run, it calls itself using values it computed. We will use this as an example throughout this documentation to illustrate different techniques of submitting tasks from tasks.

```python
def fib(n):
 if n < 2:
 return n
 a = fib(n - 1)
 b = fib(n - 2)
 return a + b

print(fib(10)) # prints "55"
```

We will use this example to show the different interfaces.

3.30.4 Submit tasks from worker

*Note: this interface is new and experimental. It may be changed without warning in future versions.*

We can submit tasks from other tasks. This allows us to make decisions while on worker nodes.

To submit new tasks from a worker that worker must first create a new client object that connects to the scheduler. There are three options for this:

1. `dask.delayed` and `dask.compute`
2. `get_client` with `secede` and `rejoin`
3. `worker_client`

**dask.delayed**

The Dask delayed behaves as normal: it submits the functions to the graph, optimizes for less bandwidth/computation and gathers the results. For more detail, see `dask.delayed`. 
from `distributed` import Client
from `dask` import delayed, compute

```python
@delayed
def fib(n):
 if n < 2:
 return n
 # We can use `dask.delayed` and `dask.compute` to launch
 # computation from within tasks
 a = fib(n - 1) # these calls are delayed
 b = fib(n - 2)
 a, b = compute(a, b) # execute both in parallel
 return a + b

if __name__ == '__main__':
 # these features require the `dask.distributed` scheduler
 client = Client()
 result = fib(10).compute()
 print(result) # prints "55"
```

### Getting the client on a worker

The `get_client` function provides a normal Client object that gives full access to the dask cluster, including the ability to submit, scatter, and gather results.

```python
from `distributed` import Client, get_client, secede, rejoin

def fib(n):
 if n < 2:
 return n
 client = get_client()
 a_future = client.submit(fib, n - 1)
 b_future = client.submit(fib, n - 2)
 a, b = client.gather([a_future, b_future])
 return a + b

if __name__ == '__main__':
 client = Client()
 future = client.submit(fib, 10)
 result = future.result()
 print(result) # prints "55"
```

However, this can deadlock the scheduler if too many tasks request jobs at once. Each task does not communicate to the scheduler that they are waiting on results and are free to compute other tasks. This can deadlock the cluster if every scheduling slot is running a task and they all request more tasks.

To avoid this deadlocking issue we can use `secede` and `rejoin`. These functions will remove and rejoin the current task from the cluster respectively.

```python
def fib(n):
 if n < 2:
 return n
 client = get_client()
 a_future = client.submit(fib, n - 1)
```

(continues on next page)
Connection with context manager

The `worker_client` function performs the same task as `get_client`, but is implemented as a context manager. Using `worker_client` as a context manager ensures proper cleanup on the worker.

```python
from dask.distributed import worker_client

def fib(n):
 if n < 2:
 return n
 with worker_client() as client:
 a_future = client.submit(fib, n - 1)
 b_future = client.submit(fib, n - 2)
 a, b = client.gather([a_future, b_future])
 return a + b

if __name__ == '__main__':
 client = Client()
 future = client.submit(fib, 10)
 result = future.result()
 print(result) # prints "55"

```

Tasks that invoke `worker_client` are conservatively assumed to be long running. They can take a long time, waiting for other tasks to finish, gathering results, etc. In order to avoid having them take up processing slots the following actions occur whenever a task invokes `worker_client`.

1. The thread on the worker running this function `secedes` from the thread pool and goes off on its own. This allows the thread pool to populate that slot with a new thread and continue processing additional tasks without counting this long running task against its normal quota.

2. The Worker sends a message back to the scheduler temporarily increasing its allowed number of tasks by one. This likewise lets the scheduler allocate more tasks to this worker, not counting this long running task against it.

Establishing a connection to the scheduler takes a few milliseconds and so it is wise for computations that use this feature to be at least a few times longer in duration than this.

### 3.31 TLS/SSL

Currently dask distributed has experimental support for TLS/SSL communication, providing mutual authentication and encryption of communications between cluster endpoints (Clients, Schedulers and Workers).

TLS is enabled by using a `tls` address such as `tls://` (the default being `tcp`, which sends data unauthenticated and unencrypted). In TLS mode, all cluster endpoints must present a valid TLS certificate signed by a given Certificate Authority (CA). It is generally recommended to use a custom CA for your organization, as it will allow signing certificates for internal hostnames or IP addresses.
3.31.1 Parameters

When using TLS, one has to provide additional parameters:

- a CA certificate(s) file, which allows TLS to decide whether an endpoint’s certificate has been signed by the correct authority;
- a certificate file for each endpoint, which is presented to other endpoints so as to achieve mutual authentication;
- a private key file, which is the cryptographic means to prove to other endpoints that you are the authorized user of a given certificate.

**Note:** As per OpenSSL’s requirements, all those files should be in PEM format. Also, it is allowed to concatenate the certificate and private key into a single file (you can then just specify the certificate parameter and leave the private key parameter absent).

It is up to you whether each endpoint uses a different certificate and private key, or whether all endpoints share the same, or whether each endpoint kind (Client, Scheduler, Worker) gets its own certificate / key pair. Unless you have extraordinary requirements, however, the CA certificate should probably be the same for all endpoints.

One can also pass additional parameters:

- a set of allowed ciphers, if you have strong requirements as to which algorithms are considered secure; this setting’s value should be an OpenSSL cipher string;
- whether to require encryption, to avoid using plain TCP communications by mistake.

All those parameters can be passed in several ways:

- through the Dask configuration file;
- if using the command line, through options to dask-scheduler and dask-worker;
- if using the API, through a Security object. For example, here is how you might configure a Security object for client use:

```python
from distributed import Client
from distributed.security import Security

sec = Security(tls_ca_file='cluster_ca.pem',
 tls_client_cert='cli_cert.pem',
 tls_client_key='cli_key.pem',
 require_encryption=True)

client = Client(..., security=sec)
```

3.31.2 Security policy

Dask always verifies the certificate presented by a remote endpoint against the configured CA certificate(s). Certificates are verified for both “client” and “server” endpoints (in the TCP sense), ensuring the endpoints are mutually authenticated. The hostname or IP address for which a certificate has been issued is not checked; this should not be an issue if you are using your own internal Certificate Authority.

It is not possible to disable certificate verification, as it would render the communications vulnerable to Man-in-the-Middle attacks.
3.31.3 Performance implications

Encryption is fast on recent CPUs, most of which have hardware acceleration for AES-based encryption. AES is normally selected by the TLS layer unless you have forced the `ciphers` parameter to something else. However, encryption may still have a non-negligible overhead if you are transferring very large data over very high speed network links.

See also:

A study of AES-NI acceleration shows recent x86 CPUs can AES-encrypt more than 1 GB per second on each CPU core.

3.32 Web Interface

Information about the current state of the network helps to track progress, identify performance issues, and debug failures.

Dask.distributed includes a web interface to help deliver this information over a normal web page in real time. This web interface is launched by default wherever the scheduler is launched if the scheduler machine has Bokeh installed (conda install bokeh -c bokeh).

3.32.1 List of Servers

There are a few sets of diagnostic pages served at different ports:

- Main Scheduler pages at http://scheduler-address:8787. These pages, particularly the /status page are the main page that most people associate with Dask. These pages are served from a separate standalone Bokeh server application running in a separate process.

- Debug Scheduler pages at http://scheduler-address:8788. These pages have more detailed diagnostic information about the scheduler. They are more often used by developers than by users, but may still be of interest to the performance-conscious. These pages run from inside the scheduler process, and so compete for resources with the main scheduler.

- Debug Worker pages for each worker at http://worker-address:8789. These pages have detailed diagnostic information about the worker. Like the diagnostic scheduler pages they are of more utility to developers or to people looking to understand the performance of their underlying cluster. If port 8789 is unavailable (for example it is in use by another worker) then a random port is chosen. A list of all ports can be obtained from looking at the service ports for each worker in the result of calling `client.scheduler_info()`.

The rest of this document will be about the main pages at http://scheduler-address:8787.

The available pages are http://scheduler-address:8787/<page> where <page> is one of

- `status`: a stream of recently run tasks, progress bars, resource use
- `tasks`: a larger stream of the last 100k tasks
- `workers`: basic information about workers and their current load

3.32.2 Plots

Example Computation

The following plots show a trace of the following computation:
from distributed import Client
from time import sleep
import random
def inc(x):
    sleep(random.random() / 10)
    return x + 1
def dec(x):
    sleep(random.random() / 10)
    return x - 1
def add(x, y):
    sleep(random.random() / 10)
    return x + y

client = Client('127.0.0.1:8786')
incs = client.map(inc, range(100))
decs = client.map(dec, range(100))
adds = client.map(add, incs, decs)
total = client.submit(sum, adds)
del incs, decs, adds
total.result()

Progress

The interface shows the progress of the various computations as well as the exact number completed.

Each bar is assigned a color according to the function being run. Each bar has a few components. On the left the lighter shade is the number of tasks that have both completed and have been released from memory. The darker shade to the right corresponds to the tasks that are completed and whose data still reside in memory. If errors occur then they appear as a black colored block to the right.

Typical computations may involve dozens of kinds of functions. We handle this visually with the following approaches:

1. Functions are ordered by the number of total tasks
2. The colors are assigned in a round-robin fashion from a standard palette
3. The progress bars shrink horizontally to make space for more functions
4. Only the largest functions (in terms of number of tasks) are displayed

Counts of tasks processing, waiting for dependencies, processing, etc.. are displayed in the title bar.

Memory Use

The interface shows the relative memory use of each function with a horizontal bar sorted by function name.
The title shows the number of total bytes in use. Hovering over any bar tells you the specific function and how many bytes its results are actively taking up in memory. This does not count data that has been released.

**Task Stream**

The task stream plot shows when tasks complete on which workers. Worker cores are on the y-axis and time is on the x-axis. As a worker completes a task its start and end times are recorded and a rectangle is added to this plot accordingly.

If data transfer occurs between workers a *red* bar appears preceding the task bar showing the duration of the transfer. If an error occurs than a *black* bar replaces the normal color. This plot show the last 1000 tasks. It resets if there is a delay greater than 10 seconds.

For a full history of the last 100,000 tasks see the `tasks/` page.

**Resources**

The resources plot show the average CPU and Memory use over time as well as average network traffic. More detailed information on a per-worker basis is available in the `workers/` page.

**Per-worker resources**

The `workers/` page shows per-worker resources, the main ones being CPU and memory use. Custom metrics can be registered and displayed in this page. Here is an example showing how to display GPU utilization and GPU memory use:

```python
import subprocess

def nvidia_data(name):
 def dask_function(dask_worker):
 cmd = 'nvidia-smi --query-gpu={} --format=csv,noheader'.format(name)
 result = subprocess.check_output(cmd.split())
 return result.strip().decode()
 return dask_function

def register_metrics(dask_worker):
 for name in ['utilization.gpu', 'utilization.memory']:
 dask_worker.metrics[name] = nvidia_data(name)
client.run(register_metrics)
```

### 3.32.3 Connecting to Web Interface

**Default**

By default, `dask-scheduler` prints out the address of the web interface:
INFO - Bokeh UI at: http://10.129.39.91:8787/status
INFO - Starting Bokeh server on port 8787 with applications at paths ['/status', '/-tasks']

The machine hosting the scheduler runs an HTTP server serving at that address.

### 3.32.4 Troubleshooting

Some clusters restrict the ports that are visible to the outside world. These ports may include the default port for the web interface, 8787. There are a few ways to handle this:

1. Open port 8787 to the outside world. Often this involves asking your cluster administrator.
2. Use a different port that is publicly accessible using the `--bokeh-port PORT` option on the `dask-scheduler` command.
3. Use fancier techniques, like Port Forwarding

Running distributed on a remote machine can cause issues with viewing the web UI – this depends on the remote machines network configuration.

#### Port Forwarding

If you have SSH access then one way to gain access to a blocked port is through SSH port forwarding. A typical use case looks like the following:

```
local$ ssh -L 8000:localhost:8787 user@remote
remote$ dask-scheduler # now, the web UI is visible at localhost:8000
remote$ # continue to set up dask if needed -- add workers, etc
```

It is then possible to go to localhost:8000 and see Dask Web UI. This same approach is not specific to dask.distributed, but can be used by any service that operates over a network, such as Jupyter notebooks. For example, if we chose to do this we could forward port 8888 (the default Jupyter port) to port 8001 with `ssh -L 8001:localhost:8888 user@remote`.

### 3.33 Changelog

#### 3.33.1 1.25.1 - 2018-12-15

- Serialize numpy.ma.masked objects properly (GH#2384) Jim Crist
- Turn off bokeh property validation in dashboard (GH#2387) Jim Crist
- Fully initialize WorkerState objects (GH#2388) Jim Crist
- Fix typo in scheduler docstring (GH#2393) Russ Bubley
- DOC: fix typo in distributed.worker.Worker docstring (GH#2395) Loïc Estève
- Remove clients and workers from event log after removal (GH#2394) tjb900
- Support msgpack 0.6.0 by providing length keywords (GH#2399) tjb900
- Use async-await on large messages test (GH#2404) Matthew Rocklin
- Fix race condition in normalize_collection (GH#2386) Jim Crist

3.33. Changelog 125
• Fix redirect collection after HighLevelGraph fix upstream (GH#2413) Matthew Rocklin
• Add a blocking argument to Lock.acquire(') (GH#2412) Stephan Hoyer
• Fix long traceback test (GH#2417) Matthew Rocklin
• Update x509 certificates to current OpenSSL standards. (GH#2418) Diane Trout

3.33.2 1.25.0 - 2018-11-28

• Fixed the 404 error on the Scheduler Dashboard homepage (GH#2361) Michael Wheeler
• Consolidate two Worker classes into one (GH#2363) Matthew Rocklin
• Avoid warnings in pyarrow and msgpack (GH#2364) Matthew Rocklin
• Avoid race condition in Actor’s Future (GH#2374) Matthew Rocklin
• Support missing packages keyword in Client.get_versions (GH#2379) Matthew Rocklin
• Fixup serializing masked arrays (GH#2373) Jim Crist

3.33.3 1.24.2 - 2018-11-15

• Add support for Bokeh 1.0 (GH#2348) (GH#2356) Matthew Rocklin
• Fix regression that dropped support for Tornado 4 (GH#2353) Roy Wedge
• Avoid deprecation warnings (GH#2355) (GH#2357) Matthew Rocklin
• Fix typo in worker documentation (GH#2349) Tom Rochette

3.33.4 1.24.1 - 2018-11-09

• Use tornado’s builtin AnyThreadLoopEventPolicy (GH#2326) Matthew Rocklin
• Adjust TLS tests for openssl 1.1 (GH#2331) Marius van Niekerk
• Avoid setting event loop policy if within Jupyter notebook server (GH#2343) Matthew Rocklin
• Add preload script to conf (GH#2325) Guillaume Eynard-Bontemps
• Add serializer for Numpy masked arrays (GH#2335) Peter Killick
• Use psutil.Process.oneshot (GH#2339) NotSqrt
• Use worker SSL context when getting client from worker. (GH#2301) Anonymous

3.33.5 1.24.0 - 2018-10-26

• Remove Joblib Dask Backend from codebase (GH#2298) Matthew Rocklin
• Include worker tls protocol in Scheduler.restart (GH#2295) Matthew Rocklin
• Adapt to new Bokeh selection for 1.0 (GH#2292) Matthew Rocklin
• Add explicit retry method to Future and Client (GH#2299) Matthew Rocklin
• Point to main worker page in bokeh links (GH#2300) Matthew Rocklin
• Limit concurrency when gathering many times (GH#2303) Matthew Rocklin
• Add tls_cluster pytest fixture (GH#2302) Matthew Rocklin
• Convert ConnectionPool.open and active to properties (GH#2304) Matthew Rocklin
• change export_tb to format_tb (GH#2306) Eric Ma
• Redirect joblib page to dask-ml (GH#2307) Matthew Rocklin
• Include unserializable object in error message (GH#2310) Matthew Rocklin
• Include unserializable object in error message (GH#2315) Gaurav Sheni
• Extend Client.scatter docstring (GH#2320) Eric Ma
• Update for new flake8 (GH#2321) Matthew Rocklin

3.33.6 1.23.3 - 2018-10-05

• Err in dask serialization if not a NotImplementedError (GH#2251) Matthew Rocklin
• Protect against key missing from priority in GraphLayout (GH#2259) Matthew Rocklin
• Do not pull data twice in Client.gather (GH#2263) Adam Klein
• Add pytest fixture for cluster tests (GH#2262) Matthew Rocklin
• Cleanup bokeh callbacks (GH#2261) (GH#2278) Matthew Rocklin
• Fix bokeh error for memory_limit=None (GH#2255) Brett Naul
• Place large keywords into task graph in Client.map (GH#2281) Matthew Rocklin
• Remove redundant blosc threading code from protocol.numpy (GH#2284) Mike Gevaert
• Add ncores to workertable (GH#2289) Matthew Rocklin
• Support upload_file on files with no extension (GH#2290) Matthew Rocklin

3.33.7 1.23.2 - 2018-09-17

• Discard dependent rather than remove (GH#2250) Matthew Rocklin
• Use dask_sphinx_theme Matthew Rocklin
• Drop the Bokeh index page (GH#2241) John Kirkham
• Revert change to keep link relative (GH#2242) Matthew Rocklin
• docs: Fix broken AWS link in setup.rst file (GH#2240) Vladyslav Moisieienkov
• Return cancelled futures in as_completed (GH#2233) Chris White

3.33.8 1.23.1 - 2018-09-06

• Raise informative error when mixing futures between clients (GH#2227) Matthew Rocklin
• add byte_keys to unpack_remotedata call (GH#2232) Matthew Rocklin
• Add documentation for gist/rawgit for get_task_stream (GH#2236) Matthew Rocklin
• Quiet Client.close by waiting for scheduler stop signal (GH#2237) Matthew Rocklin
• Display system graphs nicely on different screen sizes (GH#2239) Derek Ludwig
• Mutate passed in workers dict in TaskStreamPlugin.rectangles (GH#2238) Matthew Rocklin

3.33.9 1.23.0 - 2018-08-30

• Add direct_to_workers to Client Matthew Rocklin
• Add Scheduler.proxy to workers Matthew Rocklin
• Implement Actors Matthew Rocklin
• Fix tooltip (GH#2168) Loïc Estève
• Fix scale / avoid returning coroutines (GH#2171) Joe Hamman
• Clarify dask-worker –nprocs (GH#2173) Yu Feng
• Concatenate all bytes of small messages in TCP comms (GH#2172) Matthew Rocklin
• Add dashboard_link property (GH#2176) Jacob Tomlinson
• Always offload to_frames (GH#2170) Matthew Rocklin
• Warn if desired port is already in use (GH#2191) (GH#2199) Matthew Rocklin
• Add profile page for event loop thread (GH#2144) Matthew Rocklin
• Use dispatch for dask serialization, also add sklearn, pytorch (GH#2175) Matthew Rocklin
• Handle corner cases with busy signal (GH#2182) Matthew Rocklin
• Check self dependencies when looking at tasks in memory (GH#2196) Matthew Rocklin
• Add ability to log additional custom metrics from each worker (GH#2169) Loïc Estève
• Fix formatting when port is a tuple (GH#2204) Loïc Estève
• Describe what ZeroMQ is (GH#2211) Mike DePalatis
• Tiny typo fix (GH#2214) Anderson Banihirwe
• Add Python 3.7 to travis.yml (GH#2203) Matthew Rocklin
• Add plot= keyword to get_task_stream (GH#2198) Matthew Rocklin
• Add support for optional versions in Client.get_versions (GH#2216) Matthew Rocklin
• Add routes for solo bokeh figures in dashboard (GH#2185) Matthew Rocklin
• Be resilient to missing dep after busy signal (GH#2217) Matthew Rocklin
• Use CSS Grid to layout status page on the dashboard (GH#2213) Derek Ludwig and Luke Canavan
• Fix deserialization of queues on main ioloop thread (GH#2221) Matthew Rocklin
• Add a worker initialization function (GH#2201) Guillaume Eynard-Bontemps
• Collapse navbar in dashboard (GH#2223) Luke Canavan

3.33.10 1.22.1 - 2018-08-03

• Add worker_class= keyword to Nanny to support different worker types (GH#2147) Martin Durant
• Cleanup intermittent worker failures (GH#2152) (GH#2146) Matthew Rocklin
• Fix msgpack PendingDeprecationWarning for encoding='utf-8' (GH#2153) Olivier Grisel
• Make bokeh coloring deterministic using hash function (GH#2143) Matthew Rocklin
• Allow client to query the task stream plot (GH#2122) Matthew Rocklin
• Use PID and counter in thread names (GH#2084) (GH#2128) Dror Birkman
• Test that worker restrictions are cleared after cancellation (GH#2107) Matthew Rocklin
• Expand resources in graph_to_futures (GH#2131) Matthew Rocklin
• Add custom serialization support for pyarrow (GH#2115) Dave Hirschfeld
• Update dask-scheduler cli help text for preload (GH#2120) Matt Nicolls
• Added another nested parallelism test (GH#1710) Tom Augspurger
• insert newline by default after TextProgressBar (GH#1976) Phil Tooley
• Retire workers from scale (GH#2104) Matthew Rocklin
• Allow worker to refuse data requests with busy signal (GH#2092) Matthew Rocklin
• Don’t forget released keys (GH#2098) Matthew Rocklin
• Update example for stopping a worker (GH#2088) John Kirkham
• removed hardcoded value of memory terminate fraction from a log message (GH#2096) Bartosz Marcinkowski
• Adjust worker doc after change in config file location and treatment (GH#2094) Aurélien Ponte
• Prefer gathering data from same host (GH#2090) Matthew Rocklin
• Handle exceptions on deserialized comm with text error (GH#2093) Matthew Rocklin
• Fix typo in docstring (GH#2087) Loïc Estève
• Provide communication context to serialization functions (GH#2054) Matthew Rocklin
• Allow name to be explicitly passed in publish_dataset (GH#1995) Marius van Niekerk
• Avoid accessing Worker.scheduler_delay around yield point (GH#2074) Matthew Rocklin
• Support TB and PB in format bytes (GH#2072) Matthew Rocklin
• Add test for as_completed for loops in Python 2 (GH#2071) Matthew Rocklin
• Allow adaptive to exist without a cluster (GH#2064) Matthew Rocklin
• Have worker data transfer wait until recipient acknowledges (GH#2052) Matthew Rocklin
• Support async def functions in Client.sync (GH#2070) Matthew Rocklin
• Add asynchronous parameter to docstring of LocalCluster Matthew Rocklin
• Normalize address before comparison (GH#2066) Tom Augspurger
• Use ConnectionPool for Worker.scheduler Matthew Rocklin
• Avoid reference cycle in str_graph Matthew Rocklin
• Pull data outside of while loop in gather (GH#2059) Matthew Rocklin

3.33.11 1.22.0 - 2018-06-14

• Overhaul configuration (GH#1948) Matthew Rocklin
• Replace get= keyword with scheduler= (GH#1959) Matthew Rocklin
• Use tuples in msgpack (GH#2000) Matthew Rocklin and Marius van Niekerk
• Unify handling of high-volume connections (GH#1970) Matthew Rocklin
• Automatically scatter large arguments in joblib connector (GH#2020) (GH#2030) Olivier Grisel
• Turn click Python 3 locales failure into a warning (GH#2001) Matthew Rocklin
• Rely on dask implementation of sizeof (GH#2042) Matthew Rocklin
• Replace deprecated workers.iloc with workers.values() (GH#2013) Grant Jenks
• Introduce serialization families (GH#1912) Matthew Rocklin
• Add PubSub (GH#1999) Matthew Rocklin
• Add Dask stylesheet to documentation Matthew Rocklin
• Avoid recomputation on partially-complete results (GH#1840) Matthew Rocklin
• Use sys.prefix in popen for testing (GH#1954) Matthew Rocklin
• Include yaml files in manifest Matthew Rocklin
• Use self.sync so Client.processing works in asynchronous context (GH#1962) Henry Doupe
• Fix bug with bad repr on closed client (GH#1965) Matthew Rocklin
• Parse --death-timeout keyword in dask-worker (GH#1967) Matthew Rocklin
• Support serializers in BatchedSend (GH#1964) Matthew Rocklin
• Use normal serialization mechanisms to serialize published datasets (GH#1972) Matthew Rocklin
• Add security support to LocalCluster. (GH#1855) Marius van Niekerk
• add ConnectionPool.remove method (GH#1977) Tony Lorenzo
• Cleanly close workers when scheduler closes (GH#1981) Matthew Rocklin
• Add .pyz support in upload_file (GH#1781) @bmaisson
• add comm to packages (GH#1980) Matthew Rocklin
• Replace dask.set_options with dask.config.set Matthew Rocklin
• Exclude versions of sortedcontainers which do not have .iloc. (GH#1993) Russ Bubley
• Exclude gc statistics under PyPy (GH#1997) Marius van Niekerk
• Manage recent config and dataframe changes in dask (GH#2009) Matthew Rocklin
• Cleanup lingering clients in tests (GH#2012) Matthew Rocklin
• Use timeouts during Client._ensure_connected (GH#2011) Martin Durant
• Avoid reference cycle in joblib backend (GH#2014) Matthew Rocklin, also Olivier Grisel
• DOC: fixed test example (GH#2017) Tom Augspurger
• Add worker_key parameter to Adaptive (GH#1992) Matthew Rocklin
• Prioritize tasks with their true keys, before stringifying (GH#2006) Matthew Rocklin
• Serialize worker exceptions through normal channels (GH#2016) Matthew Rocklin
• Include exception in progress bar (GH#2028) Matthew Rocklin
• Avoid logging orphaned futures in All (GH#2008) Matthew Rocklin
• Don’t use spill-to-disk dictionary if we’re not spilling to disk Matthew Rocklin
• Only avoid recomputation if key exists (GH#2036) Matthew Rocklin
• Use client connection and serialization arguments in progress (GH#2035) Matthew Rocklin
• Rejoin worker client on closing context manager (GH#2041) Matthew Rocklin
• Avoid forgetting erred tasks when losing dependencies (GH#2047) Matthew Rocklin
• Avoid collisions in graph_layout (GH#2050) Matthew Rocklin
• Avoid recursively calling bokeh callback in profile plot (GH#2048) Matthew Rocklin

3.33.12 1.21.8 - 2018-05-03

• Remove errant print statement (GH#1957) Matthew Rocklin
• Only add reevaluate_occupancy callback once (GH#1953) Tony Lorenzo

3.33.13 1.21.7 - 2018-05-02

• Newline needed for doctest rendering (GH#1917) Loïc Estève
• Support Client._repr_html_ when in async mode (GH#1909) Matthew Rocklin
• Add parameters to dask-ssh command (GH#1910) Irene Rodriguez
• Santize get_dataset trace (GH#1888) John Kirkham
• Fix bug where queues would not clean up cleanly (GH#1922) Matthew Rocklin
• Delete cached file safely in upload file (GH#1921) Matthew Rocklin
• Accept KeyError when closing tornado IOLoop in tests (GH#1937) Matthew Rocklin
• Quiet the client and scheduler when gather(…, errors='skip') (:pr:`1936`) Matthew Rocklin
• Clarify couldn’t gather keys warning (GH#1942) Kenneth Koski
• Support submit keywords in joblib (GH#1947) Matthew Rocklin
• Avoid use of external resources in bokeh server (GH#1934) Matthew Rocklin
• Drop __contains__ from Datasets (GH#1889) John Kirkham
• Fix bug with queue timeouts (GH#1950) Matthew Rocklin
• Replace msgpack-python by msgpack (GH#1927) Loïc Estève

3.33.14 1.21.6 - 2018-04-06

• Fix numeric environment variable configuration (GH#1885) Joseph Atkins-Kurkish
• support bytearrays in older lz4 library (GH#1886) Matthew Rocklin
• Remove started timeout in nanny (GH#1852) Matthew Rocklin
• Don’t log errors in sync (GH#1894) Matthew Rocklin
• downgrade stale lock warning to info logging level (GH#1890) Matthew Rocklin
• Fix UnboundLocalError for key (GH#1900) John Kirkham
• Resolve deployment issues in Python 2 (GH#1905) Matthew Rocklin
• Support retries and priority in Client.get method (GH#1902) Matthew Rocklin
• Add additional attributes to task page if applicable (GH#1901) Matthew Rocklin
• Add count method to `as_completed` (GH#1897) Matthew Rocklin
• Extend default timeout to 10s (GH#1904) Matthew Rocklin

### 3.33.15 1.21.5 - 2018-03-31

• Increase default allowable tick time to 3s (GH#1854) Matthew Rocklin
• Handle errant workers when another worker has data (GH#1853) Matthew Rocklin
• Close multiprocessing queue in Nanny to reduce open file descriptors (GH#1862) Matthew Rocklin
• Extend nanny started timeout to 30s, make configurable (GH#1865) Matthew Rocklin
• Comment out the default config file (GH#1871) Matthew Rocklin
• Update to fix bokeh 0.12.15 update errors (GH#1872) Matthew Rocklin
• Downgrade Event Loop unresponsive warning to INFO level (GH#1870) Matthew Rocklin
• Add fifo timeout to control priority generation (GH#1828) Matthew Rocklin
• Add `retire_workers` API to Client (GH#1876) Matthew Rocklin
• Catch `NoSuchProcess` error in Nanny.memory_monitor (GH#1877) Matthew Rocklin
• Add uid to nanny queue communications (GH#1880) Matthew Rocklin

### 3.33.16 1.21.4 - 2018-03-21

• Avoid passing bytearrays to snappy decompression (GH#1831) Matthew Rocklin
• Specify IOLoop in Adaptive (GH#1841) Matthew Rocklin
• Use connect-timeout config value throughout client (GH#1839) Matthew Rocklin
• Support `direct=` keyword argument in Client.get (GH#1845) Matthew Rocklin

### 3.33.17 1.21.3 - 2018-03-08

• Add cluster superclass and improve adaptivity (GH#1813) Matthew Rocklin
• Fixup tests and support Python 2 for Tornado 5.0 (GH#1818) Matthew Rocklin
• Fix bug in `recreate_error` when dependencies are dropped (GH#1815) Matthew Rocklin
• Add worker time to live in Scheduler (GH#1811) Matthew Rocklin
• Scale adaptive based on `total_occupancy` (GH#1807) Matthew Rocklin
• Support calling `compute` within worker_client (GH#1814) Matthew Rocklin
• Add percentage to profile plot (GH#1817) Brett Naul
• Overwrite option for remote python in dask-ssh (GH#1812) Sven Kreiss
3.33.18 1.21.2 - 2018-03-05

- Fix bug where we didn’t check idle/saturated when stealing (GH#1801) Matthew Rocklin
- Fix bug where client was noisy when scheduler closed unexpectedly (GH#1806) Matthew Rocklin
- Use string-based timedeltas (like '500 ms') everywhere (GH#1804) Matthew Rocklin
- Keep logs in scheduler and worker even if silenced (GH#1803) Matthew Rocklin
- Support minimum, maximum, wait_count keywords in Adaptive (GH#1797) Jacob Tomlinson and Matthew Rocklin
- Support async protocols for LocalCluster, replace start= with asynchronous= (GH#1798) Matthew Rocklin
- Avoid restarting workers when nanny waits on scheduler (GH#1793) Matthew Rocklin
- Use IOStream.read_into() when available (GH#1477) Antoine Pitrou
- Reduce LocalCluster logging threshold from CRITICAL to WARN (GH#1785) Andy Jones
- Add futures_of to API docs (GH#1783) John Kirkham
- Make diagnostics link in client configurable (GH#1810) Matthew Rocklin

3.33.19 1.21.1 - 2018-02-22

- Fixed an uncaught exception in distributed.joblib with a LocalCluster using only threads (GH#1775) Tom Augspurger
- Format bytes in info worker page (GH#1752) Matthew Rocklin
- Add pass-through arguments for scheduler/worker –preload modules. (GH#1634) Alexander Ford
- Use new LZ4 API (GH#1757) Thrasibule
- Replace dask.optimize with dask.optimization (GH#1754) Matthew Rocklin
- Add graph layout engine and bokeh plot (GH#1756) Matthew Rocklin
- Only expand name with –nprocs if name exists (GH#1776) Matthew Rocklin
- Specify IOLoop for stealing PeriodicCallback (GH#1777) Matthew Rocklin
- Fixed distributed.joblib with no processes Tom Augspurger
- Use set.discard to avoid KeyErrors in stealing (GH#1766) Matthew Rocklin
- Avoid KeyError when task has been released during steal (GH#1765) Matthew Rocklin
- Add versions routes to avoid the use of run in Client.get_versions (GH#1773) Matthew Rocklin
- Add write_scheduler_file to Client (GH#1778) Joe Hamman
- Default host to tls:// if tls information provided (GH#1780) Matthew Rocklin

3.33.20 1.21.0 - 2018-02-09

- Refactor scheduler to use TaskState objects rather than dictionaries (GH#1594) Antoine Pitrou
- Plot CPU fraction of total in workers page (GH#1624) Matthew Rocklin
- Use thread CPU time in Throttled GC (GH#1625) Antoine Pitrou
- Fix bug with memory_limit=None (GH#1639) Matthew Rocklin
• Add futures_of to top level api (GH#1646) Matthew Rocklin
• Warn on serializing large data in Client (GH#1636) Matthew Rocklin
• Fix intermittent windows failure when removing lock file (GH#1652) Antoine Pitrou
• Add diagnosis and logging of poor GC Behavior (GH#1635) Antoine Pitrou
• Add client-scheduler heartbeats (GH#1657) Matthew Rocklin
• Return dictionary of worker info in retire_workers (GH#1659) Matthew Rocklin
• Ensure dumps_function works with unhashable functions (GH#1662) Matthew Rocklin
• Collect client name ids rom client-name config variable (GH#1664) Matthew Rocklin
• Allow simultaneous use of –name and –nprocs in dask-worker (GH#1665) Matthew Rocklin
• Add support for grouped adaptive scaling and adaptive behavior overrides (GH#1632) Alexander Ford
• Share scheduler RPC between worker and client (GH#1673) Matthew Rocklin
• Allow retries= in ClientExecutor (GH#1672) @rqx
• Improve documentation for get_client and dask.compute examples (GH#1638) Scott Sievert
• Support DASK_SCHEDULER_ADDRESS environment variable in worker (GH#1680) Matthew Rocklin
• Support tuple-keys in retries (GH#1681) Matthew Rocklin
• Use relative links in bokeh dashboard (GH#1682) Matthew Rocklin
• Make message log length configurable, default to zero (GH#1691) Matthew Rocklin
• Deprecate Client.shutdown (GH#1699) Matthew Rocklin
• Add warning in configuration docs to install pyyaml (GH#1701) Cornelius Riemenschneider
• Handle nested parallelism in distributed.joblib (GH#1705) Tom Augspurger
• Don’t wait for Worker.executor to shutdown cleanly when restarting process (GH#1708) Matthew Rocklin
• Add support for user defined priorities (GH#1651) Matthew Rocklin
• Catch and log OSErrors around worker lock files (GH#1714) Matthew Rocklin
• Remove worker prioritization. Coincides with changes to dask.order (GH#1730) Matthew Rocklin
• Use process-measured memory rather than nbytes in Bokeh dashboard (GH#1737) Matthew Rocklin
• Enable serialization of Locks (GH#1738) Matthew Rocklin
• Support Tornado 5 beta (GH#1735) Matthew Rocklin
• Cleanup remote_magic client cache after tests (GH#1743) Min RK
• Allow service ports to be specified as (host, port) (GH#1744) Bruce Merry

3.33.21 1.20.2 - 2017-12-07

• Clear deque handlers after each test (GH#1586) Antoine Pitrou
• Handle deserialization in FutureState.set_error (GH#1592) Matthew Rocklin
• Add process leak checker to tests (GH#1596) Antoine Pitrou
• Customize process title for subprocess (GH#1590) Antoine Pitrou
• Make linting a separate CI job (GH#1599) Antoine Pitrou
- Fix error from get_client() with no global client (GH#1595) Daniel Li
- Remove Worker.host_health, correct WorkerTable metrics (GH#1600) Matthew Rocklin
- Don’t mark tasks as suspicious when retire_workers called. Addresses (GH#1607) Russ Bubley
- Do not include processing workers in workers_to_close (GH#1609) Russ Bubley
- Disallow simultaneous scale up and down in Adaptive (GH#1608) Russ Bubley
- Parse bytestrings in –memory-limit (GH#1615) Matthew Rocklin
- Use environment variable for scheduler address if present (GH#1610) Matthew Rocklin
- Fix deprecation warning from logger.warn (GH#1616) Brett Naul

3.33.22 1.20.1 - 2017-11-26

- Wrap import ssl statements with try-except block for ssl-crippled environments, (GH#1570) Xander Johnson
- Support zero memory-limit in Nanny (GH#1571) Matthew Rocklin
- Avoid PeriodicCallback double starts (GH#1573) Matthew Rocklin
- Add disposable workspace facility (GH#1543) Antoine Pitrou
- Use format_time in task_stream plots (GH#1575) Matthew Rocklin
- Avoid delayed finalize calls in compute (GH#1577) Matthew Rocklin
- Doc fix about secede (GH#1583) Scott Sievert
- Add tracemalloc option when tracking test leaks (GH#1585) Antoine Pitrou
- Add JSON routes to Bokeh server (GH#1584) Matthew Rocklin
- Handle exceptions cleanly in Variables and Queues (GH#1580) Matthew Rocklin

3.33.23 1.20.0 - 2017-11-17

- Drop use of pandas.msgpack (GH#1473) Matthew Rocklin
- Add methods to get/set scheduler metadata Matthew Rocklin
- Add distributed lock Matthew Rocklin
- Add reschedule exception for worker tasks Matthew Rocklin
- Fix nbytes() for bytearrays Matthew Rocklin
- Capture scheduler and worker logs Matthew Rocklin
- Garbage collect after data eviction on high worker memory usage (GH#1488) Olivier Grisel
- Add scheduler HTML routes to bokeh server (GH#1478) (GH#1514) Matthew Rocklin
- Add pytest plugin to test for resource leaks (GH#1499) Antoine Pitrou
- Improve documentation for scheduler states (GH#1498) Antoine Pitrou
- Correct warn_if_longer timeout in ThrottledGC (GH#1496) Fabian Keller
- Catch race condition in as_completed on cancelled futures (GH#1507) Matthew Rocklin
- Transactional work stealing (GH#1489) (GH#1528) Matthew Rocklin
• Avoid forkserver in PyPy (GH#1509) Matthew Rocklin
• Add dict access to get/set datasets (GH#1508) Mike DePalatis
• Support Tornado 5 (GH#1509) (GH#1512) (GH#1518) (GH#1534) Antoine Pitrou
• Move thread_state in Dask (GH#1523) Jim Crist
• Use new Dask collections interface (GH#1513) Matthew Rocklin
• Add nanny flag to dask-mpi Matthew Rocklin
• Remove JSON-based HTTP servers Matthew Rocklin
• Avoid doing I/O in repr/str (GH#1536) Matthew Rocklin
• Fix URL for MPI4Py project (GH#1546) Ian Hopkinson
• Allow automatic retries of a failed task (GH#1524) Antoine Pitrou
• Clean and accelerate tests (GH#1548) (GH#1549) (GH#1552) (GH#1553) (GH#1560) (GH#1564) Antoine Pitrou
• Move HDFS functionality to the hdfs3 library (GH#1561) Jim Crist
• Fix bug when using events page with no events (GH#1562) @rubley
• Improve diagnostic naming of tasks within tuples (GH#1566) Kelvyn Yang

3.33.24 1.19.3 - 2017-10-16

• Handle None case in profile.identity (GH#1456)
• Asyncio rewrite (GH#1458)
• Add rejoin function partner to secede (GH#1462)
• Nested compute (GH#1465)
• Use LooseVersion when comparing Bokeh versions (GH#1470)

3.33.25 1.19.2 - 2017-10-06

• as_completed doesn’t block on cancelled futures (GH#1436)
• Notify waiting threads/coroutines on cancellation (GH#1438)
• Set Future(inform=True) as default (GH#1437)
• Rename Scheduler.transition_story to story (GH#1445)
• Future uses default client by default (GH#1449)
• Add keys= keyword to Client.call_stack (GH#1446)
• Add get_current_task to worker (GH#1444)
• Ensure that Client remains asynchronous before ioloop starts (GH#1452)
• Remove “click for worker page” in bokeh plot (GH#1453)
• Add Client.current() (GH#1450)
• Clean handling of restart timeouts (GH#1442)
3.33.26 1.19.1 - September 25th, 2017

- Fix tool issues with TaskStream plot (GH#1425)
- Move profile module to top level (GH#1423)

3.33.27 1.19.0 - September 24th, 2017

- Avoid storing messages in message log (GH#1361)
- fileConfig does not disable existing loggers (GH#1380)
- Offload upload_file disk I/O to separate thread (GH#1383)
- Add missing SSLContext (GH#1385)
- Collect worker thread information from sys._current_frames (GH#1387)
- Add nanny timeout (GH#1395)
- Restart worker if memory use goes above 95% (GH#1397)
- Track workers memory use with psutil (GH#1398)
- Track scheduler delay times in workers (GH#1400)
- Add time slider to profile plot (GH#1403)
- Change memory-limit keyword to refer to maximum number of bytes (GH#1405)
- Add `cancel(force=)` keyword (GH#1408)

3.33.28 1.18.2 - September 2nd, 2017

- Silently pass on cancelled futures in `as_completed` (GH#1366)
- Fix unicode keys error in Python 2 (GH#1370)
- Support numeric worker names
- Add dask-mpi executable (GH#1367)

3.33.29 1.18.1 - August 25th, 2017

- Clean up forgotten keys in fire-and-forget workloads (GH#1250)
- Handle missing extensions (GH#1263)
- Allow recreate_exception on persisted collections (GH#1253)
- Add asynchronous= keyword to blocking client methods (GH#1272)
- Restrict to horizontal panning in bokeh plots (GH#1274)
- Rename client.shutdown to client.close (GH#1275)
- Avoid blocking on event loop (GH#1270)
- Avoid cloudpickle errors for `Client.get_versions` (GH#1279)
- Yield on Tornado IOStream.write futures (GH#1289)
- Assume async behavior if inside a sync statement (GH#1284)
• Avoid error messages on closing (GH#1297), (GH#1296) (GH#1318) (GH#1319)
• Add timeout= keyword to get_client (GH#1290)
• Respect timeouts when restarting (GH#1304)
• Clean file descriptor and memory leaks in tests (GH#1317)
• Deprecate Executor (GH#1302)
• Add timeout to ThreadPoolExecutor.shutdown (GH#1330)
• Clean up AsyncProcess handling (GH#1324)
• Allow unicode keys in Python 2 scheduler (GH#1328)
• Avoid leaking stolen data (GH#1326)
• Improve error handling on failed nanny starts (GH#1337), (GH#1331)
• Make Adaptive more flexible
• Support --contact-address and --listen-address in worker (GH#1278)
• Remove old dworker, dscheduler executables (GH#1355)
• Exit workers if nanny process fails (GH#1345)
• Auto pep8 and flake (GH#1353)

3.33.30 1.18.0 - July 8th, 2017

• Multi-threading safety (GH#1191), (GH#1228), (GH#1229)
• Improve handling of byte counting (GH#1198) (GH#1224)
• Add get_client, secede functions, refactor worker-client relationship (GH#1201)
• Allow logging configuration using logging.dictConfig() (GH#1206) (GH#1211)
• Offload serialization and deserialization to separate thread (GH#1218)
• Support fire-and-forget tasks (GH#1221)
• Support bytestrings as keys (for Julia) (GH#1234)
• Resolve testing corner-cases (GH#1236), (GH#1237), (GH#1240), (GH#1241), (GH#1242), (GH#1244)
• Automatic use of scatter/gather(direct=True) in more cases (GH#1239)

3.33.31 1.17.1 - June 14th, 2017

• Remove Python 3.4 testing from travis-ci (GH#1157)
• Remove ZMQ Support (GH#1160)
• Fix memoryview nbytes issue in Python 2.7 (GH#1165)
• Re-enable counters (GH#1168)
• Improve scheduler.restart (GH#1175)
3.33.32  1.17.0 - June 9th, 2017

- Reevaluate worker occupancy periodically during scheduler downtime (GH#1038) (GH#1101)
- Add AioClient asyncio-compatible client API (GH#1029) (GH#1092) (GH#1099)
- Update Keras serializer (GH#1067)
- Support TLS/SSL connections for security (GH#866) (GH#1034)
- Always create new worker directory when passed --local-directory (GH#1079)
- Support pre-scattering data when using joblib frontend (GH#1022)
- Make workers more robust to failure of sizeof function (GH#1108) and writing to disk (GH#1096)
- Add is_empty and update methods to as_completed (GH#1113)
- Remove _get coroutine and replace with get(..., sync=False) (GH#1109)
- Improve API compatibility with async/await syntax (GH#1115) (GH#1124)
- Add distributed Queues (GH#1117) and shared Variables (GH#1128) to enable inter-client coordination
- Support direct client-to-worker scattering and gathering (GH#1130) as well as performance enhancements when scattering data
- Style improvements for bokeh web dashboards (GH#1126) (GH#1141) as well as a removal of the external bokeh process
- HTML reprs for Future and Client objects (GH#1136)
- Support nested collections in client.compute (GH#1144)
- Use normal client API in asynchronous mode (GH#1152)
- Remove old distributed.collections submodule (GH#1153)

3.33.33  1.16.3 - May 5th, 2017

- Add bokeh template files to MANIFEST (GH#1063)
- Don’t set worker_client.get as default get (GH#1061)
- Clean up logging on Client().shutdown() (GH#1055)

3.33.34  1.16.2 - May 3rd, 2017

- Support async with Client syntax (GH#1053)
- Use internal bokeh server for default diagnostics server (GH#1047)
- Improve styling of bokeh plots when empty (GH#1046) (GH#1037)
- Support efficient serialization for sparse arrays (GH#1040)
- Prioritize newly arrived work in worker (GH#1035)
- Prescatter data with joblib backend (GH#1022)
- Make client.restart more robust to worker failure (GH#1018)
- Support preloading a module or script in dask-worker or dask-scheduler processes (GH#1016)
- Specify network interface in command line interface (GH#1007)
• Client.scatter supports a single element (GH#1003)
• Use blosc compression on all memoryviews passing through comms (GH#998)
• Add concurrent.futures-compatible Executor (GH#997)
• Add as_completed.batches method and return results (GH#994) (GH#971)
• Allow worker_clients to optionally stay within the thread pool (GH#993)
• Add bytes-stored and tasks-processing diagnostic histograms (GH#990)
• Run supports non-msgpack-serializable results (GH#965)

3.33.35 1.16.1 - March 22nd, 2017

• Use inproc transport in LocalCluster (GH#919)
• Add structured and queryable cluster event logs (GH#922)
• Use connection pool for inter-worker communication (GH#935)
• Robustly shut down spawned worker processes at shutdown (GH#928)
• Worker death timeout (GH#940)
• More visual reporting of exceptions in progressbar (GH#941)
• Render disk and serialization events to task stream visual (GH#943)
• Support async for / await protocol (GH#952)
• Ensure random generators are re-seeded in worker processes (GH#953)
• Upload sourcecode as zip module (GH#886)
• Replay remote exceptions in local process (GH#894)

3.33.36 1.16.0 - February 24th, 2017

• First come first served priorities on client submissions (GH#840)
• Can specify Bokeh internal ports (GH#850)
• Allow stolen tasks to return from either worker (GH#853), (GH#875)
• Add worker resource constraints during execution (GH#857)
• Send small data through Channels (GH#858)
• Better estimates for SciPy sparse matrix memory costs (GH#863)
• Avoid stealing long running tasks (GH#873)
• Maintain fortran ordering of NumPy arrays (GH#876)
• Add --scheduler-file keyword to dask-scheduler (GH#877)
• Add serializer for Keras models (GH#878)
• Support uploading modules from zip files (GH#886)
• Improve titles of Bokeh dashboards (GH#895)
3.33.37 1.15.2 - January 27th, 2017

- Fix a bug where arrays with large dtypes or shapes were being improperly compressed (GH#830 GH#832 GH#833)
- Extend `as_completed` to accept new futures during iteration (GH#829)
- Add `--nohost` keyword to `dask-ssh` startup utility (GH#827)
- Support scheduler shutdown of remote workers, useful for adaptive clusters (pr: 811 GH#816 GH#821)
- Add `Client.run_on_scheduler` method for running debug functions on the scheduler (GH#808)

3.33.38 1.15.1 - January 11th, 2017

- Make compatible with Bokeh 0.12.4 (GH#803)
- Avoid compressing arrays if not helpful (GH#777)
- Optimize inter-worker data transfer (GH#770) (GH#790)
- Add `--local-directory` keyword to worker (GH#788)
- Enable workers to arrive to the cluster with their own data. Useful if a worker leaves and comes back (GH#785)
- Resolve thread safety bug when using `local_client` (GH#802)
- Resolve scheduling issues in worker (GH#804)

3.33.39 1.15.0 - January 2nd, 2017

- Major Worker refactor (GH#704)
- Major Scheduler refactor (GH#717) (GH#722) (GH#724) (GH#742) (GH#743)
- Add `check` (default is `False`) option to `Client.get_versions` to raise if the versions don’t match on client, scheduler & workers (GH#664)
- `Future.add_done_callback` executes in separate thread (GH#656)
- Clean up numpy serialization (GH#670)
- Support serialization of Tornado v4.5 coroutines (GH#673)
- Use CPickle instead of Pickle in Python 2 (GH#684)
- Use Forkserver rather than Fork on Unix in Python 3 (GH#687)
- Support abstract resources for per-task constraints (GH#694) (GH#720) (GH#737)
- Add TCP timeouts (GH#697)
- Add embedded Bokeh server to workers (GH#709) (GH#713) (GH#738)
- Add embedded Bokeh server to scheduler (GH#724) (GH#736) (GH#738)
- Add more precise timers for Windows (GH#713)
- Add Versioneer (GH#715)
- Support inter-client channels (GH#729) (GH#749)
- Scheduler Performance improvements (GH#740) (GH#760)
- Improve load balancing and work stealing (GH#747) (GH#754) (GH#757)
- Run Tornado coroutines on workers
- Avoid slow sizeof call on Pandas dataframes (GH#758)

### 3.33.40 1.14.3 - November 13th, 2016
- Remove custom Bokeh export tool that implicitly relied on nodejs (GH#655)
- Clean up scheduler logging (GH#657)

### 3.33.41 1.14.2 - November 11th, 2016
- Support more numpy dtypes in custom serialization, (GH#627), (GH#630), (GH#636)
- Update Bokeh plots (GH#628)
- Improve spill to disk heuristics (GH#633)
- Add Export tool to Task Stream plot
- Reverse frame order in loads for very many frames (GH#651)
- Add timeout when waiting on write (GH#653)

### 3.33.42 1.14.0 - November 3rd, 2016
- Add `Client.get_versions()` function to return software and package information from the scheduler, workers, and client (GH#595)
- Improved windows support (GH#577) (GH#590) (GH#583) (GH#597)
- Clean up rpc objects explicitly (GH#584)
- Normalize collections against known futures (GH#587)
- Add key= keyword to map to specify keynames (GH#589)
- Custom data serialization (GH#606)
- Refactor the web interface (GH#608) (GH#615) (GH#621)
- Allow user-supplied Executor in Worker (GH#609)
- Pass Worker kwargs through LocalCluster

### 3.33.43 1.13.3 - October 15th, 2016
- Schedulers can retire workers cleanly
- Add `Future.add_done_callback` for `concurrent.futures` compatibility
- Update web interface to be consistent with Bokeh 0.12.3
- Close streams explicitly, avoiding race conditions and supporting more robust restarts on Windows.
- Improved shuffled performance for `dask.dataframe`
- Add adaptive allocation cluster manager
- Reduce administrative overhead when dealing with many workers
• dask-ssh --log-directory. No longer errors
• Microperformance tuning for the scheduler

3.33.44 1.13.2

• Revert dask_worker to use fork rather than subprocess by default
• Scatter retains type information
• Bokeh always uses subprocess rather than spawn

3.33.45 1.13.1

• Fix critical Windows error with dask_worker executable

3.33.46 1.13.0

• Rename Executor to Client (GH#492)
• Add --memory-limit option to dask-worker, enabling spill-to-disk behavior when running out of memory (GH#485)
• Add --pid-file option to dask-worker and --dask-scheduler (GH#496)
• Add upload_environment function to distribute conda environments. This is experimental, undocumented, and may change without notice. (GH#494)
• Add workers= keyword argument to Client.compute and Client.persist, supporting location-restricted workloads with Dask collections (GH#484)
• Add upload_environment function to distribute conda environments. This is experimental, undocumented, and may change without notice. (GH#494)
  – Add optional dask_worker= keyword to client.run functions that gets provided the worker or nanny object
  – Add nanny=False keyword to Client.run, allowing for the execution of arbitrary functions on the nannies as well as normal workers

3.33.47 1.12.2

This release adds some new features and removes dead code

• Publish and share datasets on the scheduler between many clients (GH#453). See Publish Datasets.
• Launch tasks from other tasks (experimental) (GH#471). See Launch Tasks from Tasks.
• Remove unused code, notably the Center object and older client functions (GH#478)
• Executor() and LocalCluster() is now robust to Bokeh’s absence (GH#481)
• Removed s3fs and boto3 from requirements. These have moved to Dask.
3.33.48 1.12.1

This release is largely a bugfix release, recovering from the previous large refactor.

• **Fixes from previous refactor**
  – Ensure idempotence across clients
  – Stress test losing scattered data permanently

• **IPython fixes**
  – Add `start_ipython_scheduler` method to Executor
  – Add `%remote` magic for workers
  – Clean up code and tests

• Pool connects to maintain reuse and reduce number of open file handles

• Re-implement work stealing algorithm

• Support cancellation of tuple keys, such as occur in dask.arrays

• Start synchronizing against worker data that may be superfluous

• **Improve bokeh plots styling**
  – Add memory plot tracking number of bytes
  – Make the progress bars more compact and align colors
  – Add workers/page with workers table, stacks/processing plot, and memory

• Add this release notes document

3.33.49 1.12.0

This release was largely a refactoring release. Internals were changed significantly without many new features.

• Major refactor of the scheduler to use transitions system

• Tweak protocol to traverse down complex messages in search of large bytestrings

• Add dask-submit and dask-remote

• Refactor HDFS writing to align with changes in the dask library

• Executor reconnects to scheduler on broken connection or failed scheduler

• Support sklearn.external.joblib as well as normal joblib

3.34 Communications

Workers, the Scheduler, and Clients communicate by sending each other Python objects (such as Protocol messages or user data). The communication layer handles appropriate encoding and shipping of those Python objects between the distributed endpoints. The communication layer is able to select between different transport implementations, depending on user choice or (possibly) internal optimizations.

The communication layer lives in the `distributed.comm` package.
3.34.1 Addresses

Communication addresses are canonically represented as URIs, such as tcp://127.0.0.1:1234. For compatibility with existing code, if the URI scheme is omitted, a default scheme of tcp is assumed (so 127.0.0.1:456 is really the same as tcp://127.0.0.1:456). The default scheme may change in the future.

The following schemes are currently implemented in the distributed source tree:

- **tcp** is the main transport; it uses TCP sockets and allows for IPv4 and IPv6 addresses.
- **tls** is a secure transport using the well-known TLS protocol over TCP sockets. Using it requires specifying keys and certificates as outlined in TLS/SSL.
- **inproc** is an in-process transport using simple object queues; it eliminates serialization and I/O overhead, providing almost zero-cost communication between endpoints as long as they are situated in the same process.

Some URIs may be valid for listening but not for connecting. For example, the URI tcp:// will listen on all IPv4 and IPv6 addresses and on an arbitrary port, but you cannot connect to that address.

Higher-level APIs in distributed may accept other address formats for convenience or compatibility, for example a (host, port) pair. However, the abstract communications layer always deals with URIs.

**Functions**

There are a number of top-level functions in distributed.comm to help deal with addresses:

`distributed.comm.parse_address(addr, strict=False)`

Split address into its scheme and scheme-dependent location string.

```python
>>> parse_address('tcp://127.0.0.1')
('tcp', '127.0.0.1')
```

If strict is set to true the address must have a scheme.

`distributed.comm.unparse_address(scheme, loc)`

Undo parse_address().

```python
>>> unparse_address('tcp', '127.0.0.1')
'tcp://127.0.0.1'
```

`distributed.comm.normalize_address(addr)`

Canonicalize address, adding a default scheme if necessary.

```python
>>> normalize_address('tls://[::1]')
'tls://[::1]'
>>> normalize_address('[]:1]')
'tcp://[::1]'
```

`distributed.comm.resolve_address(addr)`

Apply scheme-specific address resolution to `addr`, replacing all symbolic references with concrete location specifiers.

In practice, this can mean hostnames are resolved to IP addresses.

```python
>>> resolve_address('tcp://localhost:8786')
'tcp://127.0.0.1:8786'
```

`distributed.comm.get_address_host(addr)`

Return a hostname / IP address identifying the machine this address is located on.
In contrast to `get_address_host_port()`, this function should always succeed for well-formed addresses.

```python
>>> get_address_host('tcp://1.2.3.4:80')
'1.2.3.4'
```

### 3.34.2 Communications API

The basic unit for dealing with established communications is the `Comm` object:

```python
class distributed.comm.Comm
 A message-oriented communication object, representing an established communication channel. There should be only one reader and one writer at a time: to manage current communications, even with a single peer, you must create distinct `Comm` objects.

 Messages are arbitrary Python objects. Concrete implementations of this class can implement different serialization mechanisms depending on the underlying transport’s characteristics.

 abort()
 Close the communication immediately and abruptly. Useful in destructors or generators’ finally blocks.

 close()
 Close the communication cleanly. This will attempt to flush outgoing buffers before actually closing the underlying transport.

 This method is a coroutine.

 closed()
 Return whether the stream is closed.

 extra_info
 Return backend-specific information about the communication, as a dict. Typically, this is information which is initialized when the communication is established and doesn’t vary afterwards.

 local_address
 The local address. For logging and debugging purposes only.

 peer_address
 The peer’s address. For logging and debugging purposes only.

 read()
 Read and return a message (a Python object).

 This method is a coroutine.

 write(msg)
 Write a message (a Python object).

 This method is a coroutine.
```

You don’t create `Comm` objects directly: you either `listen` for incoming communications, or `connect` to a peer listening for connections:

```python
distributed.comm.connect(addr, timeout=None, deserialize=True, connection_args=None)
 Connect to the given address (a URI such as `tcp://127.0.0.1:1234`) and yield a `Comm` object. If the connection attempt fails, it is retried until the `timeout` is expired.

distributed.comm.listen(addr, handle_comm, deserialize=True, connection_args=None)
 Create a listener object with the given parameters. When its `start()` method is called, the listener will listen on the given address (a URI such as `tcp://0.0.0.0`) and call `handle_comm` with a `Comm` object for each incoming connection.
```
*handle_comm* can be a regular function or a coroutine.

Listener objects expose the following interface:

```python
class distributed.comm.core.Listener
```

- **contact_address**
  An address this listener can be contacted on. This can be different from *listen_address* if the latter is some wildcard address such as `tcp://0.0.0.0:123`.

- **listen_address**
  The listening address as a URI string.

- **start()**
  Start listening for incoming connections.

- **stop()**
  Stop listening. This does not shutdown already established communications, but prevents accepting new ones.

### 3.34.3 Extending the Communication Layer

Each transport is represented by a URI scheme (such as `tcp`) and backed by a dedicated *Backend* implementation, which provides entry points into all transport-specific routines.

```python
class distributed.comm.registry.Backend
```

- **get_address_host(loc)**
  Get a host name (normally an IP address) identifying the host the address is located on. *loc* is a scheme-less address.

- **get_address_host_port(loc)**
  Get the (host, port) tuple of the scheme-less address *loc*. This should only be implemented by IP-based transports.

- **get_connector()**
  Get a connector object usable for connecting to addresses.

- **get_listener(loc, handle_comm, deserialize, **connection_args)**
  Get a listener *object* for the scheme-less address *loc*.

- **get_local_address_for(loc)**
  Get the local listening address suitable for reaching *loc*.

- **resolve_address(loc)**
  Resolve the address into a canonical form. *loc* is a scheme-less address.

  Simple implementations may return *loc* unchanged.

### 3.35 Development Guidelines

This repository is part of the Dask projects. General development guidelines including where to ask for help, a layout of repositories, testing practices, and documentation and style standards are available at the Dask developer guidelines in the main documentation.
3.35.1 Install

After setting up an environment as described in the Dask developer guidelines you can clone this repository with git:

```
git clone git@github.com:dask/distributed.git
```

and install it from source:

```
cd distributed
python setup.py install
```

3.35.2 Test

Test using `py.test`:

```
py.test distributed --verbose
```

3.35.3 Tornado

Dask.distributed is a Tornado TCP application. Tornado provides us with both a communication layer on top of sockets, as well as a syntax for writing asynchronous coroutines, similar to asyncio. You can make modest changes to the policies within this library without understanding much about Tornado, however moderate changes will probably require you to understand Tornado IOLoops, coroutines, and a little about non-blocking communication. The Tornado API documentation is quite good and we recommend that you read the following resources:


Additionally, if you want to interact at a low level with the communication between workers and scheduler then you should understand the Tornado TCPServer and IOStream available here:


Dask.distributed wraps a bit of logic around Tornado. See Foundations for more information.

3.35.4 Writing Tests

Testing distributed systems is normally quite difficult because it is difficult to inspect the state of all components when something goes wrong. Fortunately, the non-blocking asynchronous model within Tornado allows us to run a scheduler, multiple workers, and multiple clients all within a single thread. This gives us predictable performance, clean shutdowns, and the ability to drop into any point of the code during execution. At the same time, sometimes we want everything to run in different processes in order to simulate a more realistic setting.

The test suite contains three kinds of tests

1. `@gen_cluster`: Fully asynchronous tests where all components live in the same event loop in the main thread. These are good for testing complex logic and inspecting the state of the system directly. They are also easier to debug and cause the fewest problems with shutdowns.
2. `def test_foo(client)`: Tests with multiple processes forked from the master process. These are good for testing the synchronous (normal user) API and when triggering hard failures for resilience tests.
3. `popen`: Tests that call out to the command line to start the system. These are rare and mostly for testing the command line interface.
If you are comfortable with the Tornado interface then you will be happiest using the `@gen_cluster` style of test:

```python
from distributed.utils_test import gen_cluster

@gen_cluster(client=True)
def test_submit(c, s, a, b):
 assert isinstance(c, Client)
 assert isinstance(s, Scheduler)
 assert isinstance(a, Worker)
 assert isinstance(b, Worker)

 future = c.submit(inc, 1)
 assert future.key in c.futures

 # result = future.result() # This synchronous API call would block
 result = yield future
 assert result == 2

 assert future.key in s.tasks
 assert future.key in a.data or future.key in b.data
```

The `@gen_cluster` decorator sets up a scheduler, client, and workers for you and cleans them up after the test. It also allows you to directly inspect the state of every element of the cluster directly. However, you can not use the normal synchronous API (doing so will cause the test to wait forever) and instead you need to use the coroutine API, where all blocking functions are prepended with an underscore (_). Beware, it is a common mistake to use the blocking interface within these tests.

If you want to test the normal synchronous API you can use the `client` pytest fixture style test, which sets up a scheduler and workers for you in different forked processes:

```python
from distributed.utils_test import client

def test_submit(client):
 future = client.submit(inc, 10)
 assert future.result() == 11
```

Additionally, if you want access to the scheduler and worker processes you can also add the `s, a, b` fixtures as well.

```python
from distributed.utils_test import client

def test_submit(client, s, a, b):
 future = client.submit(inc, 10)
 assert future.result() == 11 # use the synchronous/blocking API here

 a['proc'].terminate() # kill one of the workers

 result = future.result() # test that future remains valid
 assert result == 2
```

In this style of test you do not have access to the scheduler or workers. The variables `s, a, b` are now dictionaries holding a multiprocessing.Process object and a port integer. However, you can now use the normal synchronous API (never use yield in this style of test) and you can close processes easily by terminating them.

Typically for most user-facing functions you will find both kinds of tests. The `@gen_cluster` tests test particular logic while the `client` pytest fixture tests test basic interface and resilience.

You should avoid `popen` style tests unless absolutely necessary, such as if you need to test the command line interface.

3.35. Development Guidelines
3.36 Foundations

You should read through the quickstart before reading this document. Distributed computing is hard for two reasons:

1. Consistent coordination of distributed systems requires sophistication
2. Concurrent network programming is tricky and error prone

The foundations of dask.distributed provide abstractions to hide some complexity of concurrent network programming (#2). These abstractions ease the construction of sophisticated parallel systems (#1) in a safer environment. However, as with all layered abstractions, ours has flaws. Critical feedback is welcome.

3.36.1 Concurrency with Tornado Coroutines

Worker and Scheduler nodes operate concurrently. They serve several overlapping requests and perform several overlapping computations at the same time without blocking. There are several approaches for concurrent programming, we’ve chosen to use Tornado for the following reasons:

1. Developing and debugging is more comfortable without threads
2. Tornado’s documentation is excellent
3. Stackoverflow coverage is excellent
4. Performance is satisfactory

3.36.2 Endpoint-to-endpoint Communication

The various distributed endpoints (Client, Scheduler, Worker) communicate by sending each other arbitrary Python objects. Encoding, sending and then decoding those objects is the job of the communication layer.

Ancillary services such as a Bokeh-based Web interface, however, have their own implementation and semantics.

3.36.3 Protocol Handling

While the abstract communication layer can transfer arbitrary Python objects (as long as they are serializable), participants in a distributed cluster concretely obey the distributed Protocol, which specifies request-response semantics using a well-defined message format.

Dedicated infrastructure in distributed handles the various aspects of the protocol, such as dispatching the various operations supported by an endpoint.

Servers

Worker, Scheduler, and Nanny objects all inherit from a Server class.

```
class distributed.core.Server(handlers, stream_handlers=None, connection_limit=512, deserialize=True, io_loop=None)
```

Distributed TCP Server

Superclass for endpoints in a distributed cluster, such as Worker and Scheduler objects.

Handlers
Servers define operations with a `handlers` dict mapping operation names to functions. The first argument of a handler function will be a `Comm` for the communication established with the client. Other arguments will receive inputs from the keys of the incoming message which will always be a dictionary.

```python
>>> def pingpong(comm):
... return b'pong'

>>> def add(comm, x, y):
... return x + y

>>> handlers = {'ping': pingpong, 'add': add}

>>> server = Server(handlers)

>>> server.listen('tcp://0.0.0.0:8000')
```

**Message Format**

The server expects messages to be dictionaries with a special key, `op` that corresponds to the name of the operation, and other key-value pairs as required by the function.

So in the example above the following would be good messages.

- `{op: 'ping'}`
- `{op: 'add', 'x': 10, 'y': 20}`

**RPC**

To interact with remote servers we typically use `rpc` objects which expose a familiar method call interface to invoke remote operations.

```python
class distributed.core.rpc(...)
```

Conveniently interact with a remote server

```python
>>> remote = rpc(address)
>>> response = yield remote.add(x=10, y=20)
```

One `rpc` object can be reused for several interactions. Additionally, this object creates and destroys many comms as necessary and so is safe to use in multiple overlapping communications.

When done, close comms explicitly.

```python
>>> remote.close_comms()
```

**3.36.4 Examples**

Here is a small example using `distributed.core` to create and interact with a custom server.

**Server Side**

```python
from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import Server
```

(continues on next page)
**Client Side**

```python
from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import connect

@gen.coroutine
def f():
 comm = yield connect('tcp://127.0.0.1:8888')
 yield comm.write({'op': 'add', 'x': 1, 'y': 2})
 result = yield comm.read()
 yield comm.close()
 print(result)

>>> IOLoop().run_sync(f)
3

@gen.coroutine
def g():
 comm = yield connect('tcp://127.0.0.1:8888')
 yield comm.write({'op': 'stream_data', 'interval': 1})
 while True:
 result = yield comm.read()
 print(result)

>>> IOLoop().run_sync(g)
1
2
3
...
```

**Client Side with rpc**

RPC provides a more pythonic interface. It also provides other benefits, such as using multiple streams in concurrent cases. Most distributed code uses rpc. The exception is when we need to perform multiple reads or writes, as with the stream data case above.
from tornado import gen
from tornado.ioloop import IOLoop
from distributed.core import rpc

def f():
    # comm = yield connect('tcp://127.0.0.1', 8888)
    # yield comm.write({'op': 'add', 'x': 1, 'y': 2})
    # result = yield comm.read()
    r = rpc('tcp://127.0.0.1:8888')
    result = yield r.add(x=1, y=2)
    r.close_comms()

    print(result)

>>> IOLoop().run_sync(f)
3

3.37 Journey of a Task

We follow a single task through the user interface, scheduler, worker nodes, and back. Hopefully this helps to illustrate the inner workings of the system.

3.37.1 User code

A user computes the addition of two variables already on the cluster, then pulls the result back to the local process.

client = Client('host:port')
x = e.submit(...)  
y = e.submit(...)  

z = client.submit(add, x, y)  # we follow z

print(z.result())

3.37.2 Step 1: Client

z begins its life when the Client.submit function sends the following message to the Scheduler:

{'op': 'update-graph',
 'tasks': {'z': (add, x, y)},
 'keys': ['z']}

The client then creates a Future object with the key `z` and returns that object back to the user. This happens even before the message has been received by the scheduler. The status of the future says 'pending'.

3.37.3 Step 2: Arrive in the Scheduler

A few milliseconds later, the scheduler receives this message on an open socket. The scheduler updates its state with this little graph that shows how to compute z:
The scheduler also updates a lot of other state. Notably, it has to identify that $x$ and $y$ are themselves variables, and connect all of those dependencies. This is a long and detail oriented process that involves updating roughly 10 sets and dictionaries. Interested readers should investigate `distributed/scheduler.py::update_state()`. While this is fairly complex and tedious to describe rest assured that it all happens in constant time and in about a millisecond.

### 3.37.4 Step 3: Select a Worker

Once the latter of $x$ and $y$ finishes, the scheduler notices that all of $z$’s dependencies are in memory and that $z$ itself may now run. Which worker should $z$ select? We consider a sequence of criteria:

1. First, we quickly downselect to only those workers that have either $x$ or $y$ in local memory.
2. Then, we select the worker that would have to gather the least number of bytes in order to get both $x$ and $y$ locally. E.g. if two different workers have $x$ and $y$ and if $y$ takes up more bytes than $x$ then we select the machine that holds $y$ so that we don’t have to communicate as much.
3. If there are multiple workers that require the minimum number of communication bytes then we select the worker that is the least busy.

$z$ considers the workers and chooses one based on the above criteria. In the common case the choice is pretty obvious after step 1. $z$ waits on a stack associated with the chosen worker. The worker may still be busy though, so $z$ may wait a while.

*Note: This policy is under flux and this part of this document is quite possibly out of date.*

### 3.37.5 Step 4: Transmit to the Worker

Eventually the worker finishes a task, has a spare core, and $z$ finds itself at the top of the stack (note, that this may be some time after the last section if other tasks placed themselves on top of the worker’s stack in the meantime.)

We place $z$ into a `worker_queue` associated with that worker and a `worker_core` coroutine pulls it out. $z$’s function, the keys associated to its arguments, and the locations of workers that hold those keys are packed up into a message that looks like this:

```json
{
 'op': 'compute',
 'function': execute_task,
 'args': ((add, 'x', 'y'),),
 'who_has': {'x': {(worker_host, port)},
 'y': {(worker_host, port), (worker_host, port)}},
 'key': 'z'
}
```

This message is serialized and sent across a TCP socket to the worker.

### 3.37.6 Step 5: Execute on the Worker

The worker unpacks the message, and notices that it needs to have both $x$ and $y$. If the worker does not already have both of these then it gathers them from the workers listed in the `who_has` dictionary also in the message. For each key that it doesn’t have it selects a valid worker from `who_has` at random and gathers data from it.

After this exchange, the worker has both the value for $x$ and the value for $y$. So it launches the computation `add(x, y)` in a local `ThreadPoolExecutor` and waits on the result.

*In the mean time the worker repeats this process concurrently for other tasks. Nothing blocks.*
Eventually the computation completes. The Worker stores this result in its local memory:

```python
data['x'] = ...
```

And transmits back a success, and the number of bytes of the result:

```
Worker: Hey Scheduler, 'z' worked great.
 I'm holding onto it.
 It takes up 64 bytes.
```

The worker does not transmit back the actual value for $z$.

### 3.37.7 Step 6: Scheduler Aftermath

The scheduler receives this message and does a few things:

1. It notes that the worker has a free core, and sends up another task if available
2. If $x$ or $y$ are no longer needed then it sends a message out to relevant workers to delete them from local memory.
3. It sends a message to all of the clients that $z$ is ready and so all client `Future` objects that are currently waiting should, wake up. In particular, this wakes up the `z.result()` command executed by the user originally.

### 3.37.8 Step 7: Gather

When the user calls `z.result()` they wait both on the completion of the computation and for the computation to be sent back over the wire to the local process. Usually this isn’t necessary, usually you don’t want to move data back to the local process but instead want to keep in on the cluster.

But perhaps the user really wanted to actually know this value, so they called `z.result()`.

The scheduler checks who has $z$ and sends them a message asking for the result. This message doesn’t wait in a queue or for other jobs to complete, it starts instantly. The value gets serialized, sent over TCP, and then deserialized and returned to the user (passing through a queue or two on the way.)

### 3.37.9 Step 8: Garbage Collection

The user leaves this part of their code and the local variable $z$ goes out of scope. The Python garbage collector cleans it up. This triggers a decremented reference on the client (we didn’t mention this, but when we created the `Future` we also started a reference count.) If this is the only instance of a Future pointing to $z$ then we send a message up to the scheduler that it is OK to release $z$. The user no longer requires it to persist.

The scheduler receives this message and, if there are no computations that might depend on $z$ in the immediate future, it removes elements of this key from local scheduler state and adds the key to a list of keys to be deleted periodically. Every 500 ms a message goes out to relevant workers telling them which keys they can delete from their local memory. The graph/recipe to create the result of $z$ persists in the scheduler for all time.

### 3.37.10 Overhead

The user experiences this in about 10 milliseconds, depending on network latency.
3.38 Protocol

The scheduler, workers, and clients pass messages between each other. Semantically these messages encode commands, status updates, and data, like the following:

- Please compute the function `sum` on the data `x` and store in `y`
- The computation `y` has been completed
- Be advised that a new worker named `alice` is available for use
- Here is the data for the keys `x`, and `y`

In practice we represent these messages with dictionaries/mappings:

```
{'op': 'compute',
 'function': ...
 'args': ['x']}

{'op': 'task-complete',
 'key': 'y',
 'nbytes': 26}

{'op': 'register-worker',
 'address': '192.168.1.42',
 'name': 'alice',
 'ncore': 4}

{'x': b'...',
 'y': b'...'}
```

When we communicate these messages between nodes we need to serialize these messages down to a string of bytes that can then be deserialized on the other end to their in-memory dictionary form. For simple cases several options exist like JSON, MsgPack, Protobuffers, and Thrift. The situation is made more complex by concerns like serializing Python functions and Python objects, optional compression, cross-language support, large messages, and efficiency.

This document describes the protocol used by dask.distributed today. Be advised that this protocol changes rapidly as we continue to optimize for performance.

3.38.1 Overview

We may split a single message into multiple message-part to suit different protocols. Generally small bits of data are encoded with MsgPack while large bytestrings and complex datatypes are handled by a custom format. Each message-part gets its own header, which is always encoded as msgpack. After serializing all message parts we have a sequence of bytestrings or frames which we send along the wire, prepended with length information.

The application doesn’t know any of this, it just sends us Python dictionaries with various datatypes and we produce a list of bytestrings that get written to a socket. This format is fast both for many frequent messages and for large messages.

3.38.2 MsgPack for Messages

Most messages are encoded with MsgPack, a self describing semi-structured serialization format that is very similar to JSON, but smaller, faster, not human-readable, and supporting of bytestrings and (soon) timestamps. We chose MsgPack as a base serialization format for the following reasons:
- It does not require separate headers, and so is easy and flexible to use which is particularly important in an early stage project like dask.distributed
- It is very fast, much faster than JSON, and there are nicely optimized implementations. With few exceptions (described later) MsgPack does not come anywhere near being a bottleneck, even under heavy use.
- Unlike JSON it supports bytestrings
- It covers the standard set of types necessary to encode most information
- It is widely implemented in a number of languages (see cross language section below)

However, MsgPack fails (correctly) in the following ways:
- It does not provide any way for us to encode Python functions or user defined data types
- It does not support bytestrings greater than 4GB and is generally inefficient for very large messages.

Because of these failings we supplement it with a language-specific protocol and a special case for large bytestrings.

### 3.38.3 CloudPickle for Functions and Some Data

Pickle and CloudPickle are Python libraries to serialize almost any Python object, including functions. We use these libraries to transform the users' functions and data into bytes before we include them in the dictionary/map that we pass off to msgpack. In the introductory example you may have noticed that we skipped providing an example for the function argument:

```python
{'op': 'compute',
 'function': ...
 'args': ['x']}
```

That is because this value ... will actually be the result of calling `cloudpickle.dumps(myfunction)`. Those bytes will then be included in the dictionary that we send off to msgpack, which will only have to deal with bytes rather than obscure Python functions.

*Note: we actually call some combination of pickle and cloudpickle, depending on the situation. This is for performance reasons.*

### 3.38.4 Cross Language Specialization

The Client and Workers must agree on a language-specific serialization format. In the standard dask.distributed client and worker objects this ends up being the following:

```python
bytes = cloudpickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL)
obj = cloudpickle.loads(bytes)
```

This varies between Python 2 and 3 and so your client and workers must match their Python versions and software environments.

However, the Scheduler never uses the language-specific serialization and instead only deals with MsgPack. If the client sends a pickled function up to the scheduler the scheduler will not unpack function but will instead keep it as bytes. Eventually those bytes will be sent to a worker, which will then unpack the bytes into a proper Python function. Because the Scheduler never unpacks language-specific serialized bytes it may be in a different language.

*The client and workers must share the same language and software environment, the scheduler may differ.*

This has a few advantages:

1. The Scheduler is protected from unpickling unsafe code
2. The Scheduler can be run under **pypy** for improved performance. This is only useful for larger clusters.

3. We could conceivably implement workers and clients for other languages (like R or Julia) and reuse the Python scheduler. The worker and client code is fairly simple and much easier to reimplement than the scheduler, which is complex.

4. The scheduler might some day be rewritten in more heavily optimized C or Go

### 3.38.5 Compression

Fast compression libraries like LZ4 or Snappy may increase effective bandwidth by compressing data before sending and decompressing it after reception. This is especially valuable on lower-bandwidth networks.

If either of these libraries is available (we prefer LZ4 to Snappy) then for every message greater than 1kB we try to compress the message and, if the compression is at least a 10% improvement, we send the compressed bytes rather than the original payload. We record the compression used within the header as a string like 'lz4' or 'snappy'.

To avoid compressing large amounts of uncompressable data we first try to compress a sample. We take 10kB chunks from five locations in the dataset, arrange them together, and try compressing the result. If this doesn’t result in significant compression then we don’t try to compress the full result.

### 3.38.6 Header

The header is a small dictionary encoded in msgpack that includes some metadata about the message, such as compression.

### 3.38.7 Serializing Data

For administrative messages like updating status msgpack is sufficient. However for large results or Python specific data, like NumPy arrays or Pandas Dataframes, or for larger results we need to use something else to convert Python objects to bytestrings. Exactly how we do this is described more in the *Serialization documentation*.

The application code marks Python specific results with the `to_serialize` function:

```python
>>> import numpy as np
>>> x = np.ones(5)

>>> from distributed.protocol import to_serialize

>>> msg = {'status': 'OK', 'data': to_serialize(x)}

>>> msg
{'data': <Serialize: [1. 1. 1. 1. 1.]>, 'status': 'OK'}
```

We separate the message into two messages, one encoding all of the data to be serialized and, and one encoding everything else:

```json
{'key': 'x', 'address': 'alice'}

{'data': <Serialize: [1. 1. 1. 1. 1.]>}
```

The first message we pass normally with msgpack. The second we pass in multiple parts, one part for each serialized piece of data (see *serialization*) and one header including types, compression, etc. used for each value:

```json
{'keys': ['data'], 'compression': ['lz4']}
b'...'b'...'
```
### 3.38.8 Frames

At the end of the pipeline we have a sequence of bytestrings or frames. We need to tell the receiving end how many frames there are and how long each these frames are. We order the frames and lengths of frames as follows:

1. The number of frames, stored as an 8 byte unsigned integer
2. The length of each frame, each stored as an 8 byte unsigned integer
3. Each of the frames

In the following sections we describe how we create these frames.

### 3.38.9 Technical Version

A message is broken up into the following components:

1. 8 bytes encoding how many frames there are in the message (N) as a `uint64`
2. $8 \times N$ frames encoding the length of each frame as `uint64`
3. Header for the administrative message
4. The administrative message, msgpack encoded, possibly compressed
5. Header for all payload messages
6. Payload messages

**Header for Administrative Message**

The administrative message is arbitrary msgpack-encoded data. Usually a dictionary. It may optionally be compressed. If so the compression type will be in the header.

**Payload frames and Header**

These frames are optional.

Payload frames are used to send large or language-specific data. These values will be inserted into the administrative message after they are decoded. The header is msgpack encoded and contains encoding and compression information for the all subsequent payload messages.

A Payload may be spread across many frames. Each frame may be separately compressed.

**Simple Example**

This simple example shows a minimal message. There is only an empty header and a small msgpack message. There are no additional payload frames

**Message:** 

```
{ 'status': 'OK' }
```

**Frames:**

- **Header:** 
  
- **Administrative Message:** 
  ```
 { 'status': 'OK' }
  ```
Example with Custom Data

This example contains a single payload message composed of a single frame. It uses a special serialization for NumPy arrays.

Message: {'op': 'get-data', 'data': np.ones(5)}

Frames:

- Header: {}
- Administrative Message: {'op': 'get-data'}
- Payload header:

```
{
'type': 'numpy.ndarray',
'compression': 'lz4',
'count': 1,
'lengths': [40],
'dtype': '<f8',
'strides': (8,),
'shape': (5,)}}
```

- Payload Frame: b'\x00\x00\x00\x00\x11\x00\x01\x01\x07\x0f\x00\x0f\x08\x00\x03\x00\x00\x00\x00\x00'

3.39 Serialization

When we communicate data between computers we first convert that data into a sequence of bytes that can be communicated across the network. Choices made in serialization can affect performance and security.

The standard Python solution to this, Pickle, is often but not always the right solution. Dask uses a number of different serialization schemes in different situations. These are extensible to allow users to control in sensitive situations and also to enable library developers to plug in more performant serialization solutions.

This document first describes Dask’s default solution for serialization and then discusses ways to control and extend that serialization.

3.39.1 Defaults

There are three kinds of messages passed through the Dask network:

1. Small administrative messages like “Worker A has finished task X” or “I’m running out of memory”. These are always serialized with msgpack.

2. Movement of program data, such as NumPy arrays and Pandas dataframes. This uses a combination of pickle and custom serializers and is the topic of the next section.

3. Computational tasks like \( f(x) \) that are defined and serialized on client processes and deserialized and run on worker processes. These are serialized using a fixed scheme decided on by those libraries. Today this is a combination of pickle and cloudpickle.
### 3.39.2 Serialization families

#### Use

For the movement of program data (item 2 above) we can use a few different families of serializers. By default the following families are built in:

1. Pickle and cloudpickle
2. Msgpack
3. Custom per-type serializers that come with Dask for the special serialization of important classes of data like Numpy arrays

You can choose which families you want to use to serialize data and to deserialize data when you create a Client

```python
from dask.distributed import Client
client = Client('tcp://scheduler-address:8786',
 serializers=['dask', 'pickle'],
 deserializers=['dask', 'msgpack'])
```

This can be useful if, for example, you are sensitive about receiving Pickle-serialized data for security reasons.

Dask uses the serializers ['dask', 'pickle'] by default, trying to use dask custom serializers (described below) if they work and then falling back to pickle/cloudpickle.

#### Extend

These families can be extended by creating two functions, dumps and loads, which return and consume a msgpack-encodable header, and a list of byte-like objects. These must then be included in the `distributed.protocol.serialize` dictionary with an appropriate name. Here is the definition of `pickle_dumps` and `pickle_loads` to serve as an example.

```python
import pickle

def pickle_dumps(x):
 header = {'serializer': 'pickle'}
 frames = [pickle.dumps(x)]
 return header, frames

def pickle_loads(header, frames):
 if len(frames) > 1:
 # this may be cut up for network reasons
 frame = ''.join(frames)
 else:
 frame = frames[0]
 return pickle.loads(frame)

from distributed.protocol.serialize import register_serialization_family
register_serialization_family('pickle', pickle_dumps, pickle_loads)
```

After this the name 'pickle' can be used in the `serializers=` and `deserializers=` keywords in `Client` and other parts of Dask.

#### Communication Context
Dask can provide additional context to serialization family functions if they provide a `context=` keyword. This allows serialization to behave differently according to how it is being used.

```python
def my_dumps(x, context=None):
 if context and 'recipient' in context:
 # check if we're sending to the same host or not
```

The context depends on the kind of communication. For example when sending over TCP, the address of the sender (us) and the recipient are available in a dictionary.

```python
>>> context
{'sender': 'tcp://127.0.0.1:1234', 'recipient': 'tcp://127.0.0.1:5678'}
```

Other comms may provide other information.

### 3.39.3 Dask Serialization Family

#### Use

Dask maintains its own custom serialization family that special cases a few important types, like Numpy arrays. These serializers either operate more efficiently than Pickle, or serialize types that Pickle can not handle.

You don’t need to do anything special to use this family of serializers. It is on by default (along with pickle). Note that Dask custom serializers may use pickle internally in some cases. It should not be considered more secure.

#### Extend

Dask serialization families in general, the Dask family in particular is also extensible. This is a good way to support custom serialization of a single type of object. The method is similar, you create serialize and deserialize function that create and consume a header and frames, and then register them with Dask.

```python
class Human(object):
 def __init__(self, name):
 self.name = name

from distributed.protocol import dask_serialize, dask_deserialize
@dask_serialize.register(Human)
def serialize(human: Human) -> Tuple[Dict, List[bytes]]:
 header = {}
 frames = [human.name.encode()]
 return header, frames
@dask_deserialize.register(Human)
def deserialize(header: Dict, frames: List[bytes]) -> Human:
 return Human(frames[0].decode())
```
Traverse attributes

\texttt{register\_generic}(cls) \hspace{1cm} \text{Register dask\_\(\text{de}\)serialize to traverse through \_dict\_}

A common case is that your object just wraps Numpy arrays or other objects that Dask already serializes well. For example, Scikit-Learn estimators mostly surround Numpy arrays with a bit of extra metadata. In these cases you can register your class for custom Dask serialization with the \texttt{register\_generic} function.

### 3.39.4 API

\begin{verbatim}
\texttt{serialize}(x[, serializers, on\_error, context]) \hspace{1cm} \text{Convert object to a header and list of bytestrings}
\texttt{deserialize}(header, frames[, deserializers]) \hspace{1cm} \text{Convert serialized header and list of bytestrings back to a Python object}
\texttt{dask\_serialize} \hspace{1cm} \text{Single Dispatch for dask\_serialize}
\texttt{dask\_deserialize} \hspace{1cm} \text{Single Dispatch for dask\_deserialize}
\texttt{register\_generic}(cls) \hspace{1cm} \text{Register dask\_\(\text{de}\)serialize to traverse through \_dict\_}
\end{verbatim}

\begin{verbatim}
distributed.protocol.serialize.\texttt{serialize}(x, serializers=None, on\_error='message', context=None)
\end{verbatim}

Convert object to a header and list of bytestrings

This takes in an arbitrary Python object and returns a msgpack serializable header and a list of bytes or memoryview objects.

The serialization protocols to use are configurable: a list of names define the set of serializers to use, in order. These names are keys in the serializer\_registry dict (e.g., 'pickle', 'msgpack'), which maps to the de/serialize functions. The name 'dask' is special, and will use the per-class serialization methods. None gives the default list ['dask', 'pickle'].

**Returns**

- \texttt{header}: dictionary containing any msgpack-serializable metadata
- \texttt{frames}: list of bytes or memoryviews, commonly of length one

**See also:**

- \texttt{deserialize} Convert header and frames back to object
- \texttt{to\_serialize} Mark that data in a message should be serialized
- \texttt{register\_serialization} Register custom serialization functions

**Examples**

```py
>>> serialize(1)
({}, [b'\x80\x04\x95\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00K\x01.'])
```

```py
>>> serialize(b'123') # some special types get custom treatment
({'type': 'builtins.bytes'}, [b'123'])
```

```py
>>> deserialize(*serialize(1))
1
```
distributed.protocol.serialize.deserialize(header, frames, deserializers=None)
   Convert serialized header and list of bytestrings back to a Python object
   
   Parameters
   header: dict
   frames: list of bytes
   
   See also:
   serialize

distributed.protocol.serialize.dask_serialize(arg, *args, **kwargs)
   Single Dispatch for dask_serialize

distributed.protocol.serialize.dask_deserialize(arg, *args, **kwargs)
   Single Dispatch for dask_deserialize

distributed.protocol.serialize.register_generic(cls)
   Register dask_(de)serialize to traverse through __dict__
   
   Normally when registering new classes for Dask’s custom serialization you need to manage headers and frames,
   which can be tedious. If all you want to do is traverse through your object and apply serialize to all of your
   object’s attributes then this function may provide an easier path.
   
   This registers a class for the custom Dask serialization family. It serializes it by traversing through its __dict__
   of attributes and applying serialize and deserialize recursively. It collects a set of frames and keeps
   small attributes in the header. Deserialization reverses this process.
   
   This is a good idea if the following hold:
   1. Most of the bytes of your object are composed of data types that Dask’s custom serialization already handles
      well, like Numpy arrays.
   2. Your object doesn’t require any special constructor logic, other than object.__new__(cls)

   See also:
   dask_serialize, dask_deserialize

Examples

>>> import sklearn.base
>>> from distributed.protocol import register_generic
>>> register_generic(sklearn.base.BaseEstimator)

3.40 Scheduler Plugins

class distributed.diagnostics.plugin.SchedulerPlugin
   Interface to extend the Scheduler
   
   The scheduler operates by triggering and responding to events like task_finished, update_graph, task_erred, etc.
   
   A plugin enables custom code to run at each of those same events. The scheduler will run the analogous
   methods on this class when each event is triggered. This runs user code within the scheduler thread that can
   perform arbitrary operations in synchrony with the scheduler itself.
Plugins are often used for diagnostics and measurement, but have full access to the scheduler and could in principle affect core scheduling.

To implement a plugin implement some of the methods of this class and add the plugin to the scheduler with `Scheduler.add_plugin(myplugin)`.

**Examples**

```python
>>> class Counter(SchedulerPlugin):
... def __init__(self):
... self.counter = 0
... def transition(self, key, start, finish, *args, **kwargs):
... if start == 'processing' and finish == 'memory':
... self.counter += 1
... def restart(self, scheduler):
... self.counter = 0

>>> c = Counter()
>>> scheduler.add_plugin(c)
```

- **add_worker**(scheduler=None, worker=None, **kwargs)
  
  Run when a new worker enters the cluster

- **remove_worker**(scheduler=None, worker=None, **kwargs)
  
  Run when a worker leaves the cluster

- **restart**(scheduler, **kwargs)
  
  Run when the scheduler restarts itself

- **transition**(key, start, finish, *args, **kwargs)
  
  Run whenever a task changes state

  **Parameters**

  - **key**: string

  - **start**: string  Start state of the transition. One of released, waiting, processing, memory, error.

  - **finish**: string  Final state of the transition.

  - *args, **kwargs: More options passed when transitioning  This may include worker ID, compute time, etc.

- **update_graph**(scheduler, dsk=None, keys=None, restrictions=None, **kwargs)
  
  Run when a new graph / tasks enter the scheduler
Index

A
abort() (distributed.comm.Comm method), 146
acquire() (distributed.Lock method), 47
Adaptive (class in distributed.deploy), 51
add_client() (distributed.scheduler.Scheduler method), 82
add_done_callback() (distributed.Future method), 41
add_keys() (distributed.scheduler.Scheduler method), 82
add_plugin() (distributed.scheduler.Scheduler method), 82
add_worker() (distributed.diagnostics.plugin.SchedulerPlugin method), 165
add_worker() (distributed.scheduler.Scheduler method), 82
address (distributed.scheduler.WorkerState attribute), 77
AioClient (class in distributed.asyncio), 49
as_completed() (in module distributed), 42
asynchronous (distributed.Client attribute), 20

B
Backend (class in distributed.comm.registry), 147
broadcast() (distributed.scheduler.Scheduler method), 82

C
call_stack() (distributed.Client method), 21
cancel() (distributed.Client method), 21
cancel() (distributed.Future method), 41
cancel_key() (distributed.scheduler.Scheduler method), 82
cancelled() (distributed.Future method), 41
close() (distributed.deploy.local.LocalCluster method), 108
close() (distributed.scheduler.Scheduler method), 82
close() (distributed.comm.Comm method), 146
close() (distributeddeploy.local.LocalCluster method), 108
close() (distributed.scheduler.Scheduler method), 82
closed() (distributed.comm.Comm method), 146
closed() (distributed.scheduler.Scheduler method), 82
core_address() (distributed.scheduler.Scheduler method), 83
core_hostname() (distributed.scheduler.Scheduler method), 83
Comm (class in distributed.comm), 146
compute() (distributed.Client method), 21
connect() (in module distributed.comm), 146
current() (distributed.Client class method), 22

current() (in module distributed.comm.core.Listener attribute), 147

dask_deserialize() (in module distributed.protocol.serialize), 164
dask_serialize() (in module distributed.protocol.serialize), 164
decide_worker() (distributed.scheduler.Scheduler method), 83
decide_worker() (in module distributed.scheduler), 87
delete() (distributed.Variable method), 48
deserialize() (in module distributed.protocol.serialize), 163
done() (distributed.Future method), 41
e
exception() (distributed.Future method), 41
extra_info (distributed.comm.Comm attribute), 146

F
feed() (distributed.scheduler.Scheduler method), 83
finished() (distributed.scheduler.Scheduler method), 83
fire_and_forget() (in module distributed), 43
Future (class in distributed), 40

167
futures_of() (in module distributed), 44

G

gather() (distributed.Client method), 22
gather() (distributed.scheduler.Scheduler method), 83
get() (distributed.asyncio.AioClient method), 50
get() (distributed.Client method), 23
get() (distributed.Queue method), 48
get() (distributed.Variable method), 49
get_address_host() (distributed.comm.registry.Backend method), 147
get_address_host() (in module distributed.comm), 145
get_address_host_port() (distributed.comm.registry.Backend method), 147
get_client() (in module distributed), 45
get_comm_cost() (distributed.scheduler.Scheduler method), 83
get_connector() (distributed.comm.registry.Backend method), 147
get_dataset() (distributed.Client method), 23
get_executor() (distributed.Client method), 23
get_futures_error() (distributed.recreate_exceptions.ReplayExceptionClient method), 39
get_listener() (distributed.comm.registry.Backend method), 147
get_local_address_for() (distributed.comm.registry.Backend method), 147
get_metadata() (distributed.Client method), 24
get_restrictions() (distributed.Client class method), 24
get_scale_up_kwargs() (distributed.deploy.Adaptive method), 52
get_scheduler_logs() (distributed.Client method), 24
get_task_duration() (distributed.scheduler.Scheduler method), 83
get_task_stream (class in distributed), 46
get_task_stream() (distributed.Client method), 24
get_versions() (distributed.Client method), 25
get_worker() (in module distributed), 44
get_worker_logs() (distributed.Client method), 25
get_worker_service_addr() (distributed.scheduler.Scheduler method), 83

H

handle_long_running() (distributed.scheduler.Scheduler method), 83
handle_worker() (distributed.scheduler.Scheduler method), 83
has_what() (distributed.Client method), 26
identity() (distributed.scheduler.Scheduler method), 83

L

list_datasets() (distributed.Client method), 26
listen() (in module distributed.comm), 146
listen_address (distributed.comm.core.Listener attribute), 147
Listener (class in distributed.comm.core), 147
local_address (distributed.comm.Comm attribute), 146
LocalCluster (class in distributed.deploy.local), 107
Lock (class in distributed), 47

M

map() (distributed.Client method), 26

N

nbytes() (distributed.Client method), 27
ncores() (distributed.Client method), 27
needs_cpu() (distributed.deploy.Adaptive method), 52
needs_memory() (distributed.deploy.Adaptive method), 52
normalize_address() (in module distributed.comm), 145
normalize_collection() (distributed.Client method), 27

P

parse_address() (in module distributed.comm), 145
peer_address (distributed.comm.Comm attribute), 146
persist() (distributed.Client method), 28
processing() (distributed.Client method), 29
profile() (distributed.Client method), 29
progress() (in module distributed.diagnostics), 43
proxy() (distributed.scheduler.Scheduler method), 83
publish_dataset() (distributed.Client method), 29
put() (distributed.Queue method), 48
Python Enhancement Proposals
PEP 3184, 70

Q

qsize() (distributed.Queue method), 48
Queue (class in distributed), 47

R

read() (distributed.comm.Comm method), 146
rebalance() (distributed.Client method), 30
rebalance() (distributed.scheduler.Scheduler method), 84
recreate_error_locally() (distributed.recreate_exceptions.ReplayExceptionClient method), 39
reevaluate_occupancy() (distributed.scheduler.Scheduler method), 84
register_generic() (in module distributed.protocol.serialize), 164
register_worker_callbacks() (distributed.Client method), 30
W

wait() (in module distributed), 43
who_has() (distributed.Client method), 38
Worker (class in distributed.worker), 91
worker_client() (in module distributed), 44
worker_objective() (distributed.scheduler.Scheduler method), 86
worker_send() (distributed.scheduler.Scheduler method), 86
workers_list() (distributed.scheduler.Scheduler method), 87
workers_to_close() (distributed.deploy.Adaptive method), 53
workers_to_close() (distributed.scheduler.Scheduler method), 87
WorkerState (class in distributed.scheduler), 77
write() (distributed.comm.Comm method), 146
write_scheduler_file() (distributed.Client method), 39