
Dask-jobqueue Documentation
Release 0.4.1+15.g753683f

[’Dask-jobqueue Development Team’]

Jan 10, 2019

Getting Started

1 Example 3

2 Adaptivity 5

i

ii

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Easily deploy Dask on job queuing systems like PBS, Slurm, MOAB, SGE, and LSF.

The Dask-jobqueue project makes it easy to deploy Dask on common job queuing systems typically found in high
performance supercomputers, academic research institutions, and other clusters. It provides a convenient interface
that is accessible from interactive systems like Jupyter notebooks, or batch jobs.

Getting Started 1

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2 Getting Started

CHAPTER 1

Example

from dask_jobqueue import PBSCluster
cluster = PBSCluster()
cluster.scale(10) # Ask for ten workers

from dask.distributed import Client
client = Client(cluster) # Connect this local process to remote workers

wait for jobs to arrive, depending on the queue, this may take some time

import dask.array as da
x = ... # Dask commands now use these distributed resources

3

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

4 Chapter 1. Example

CHAPTER 2

Adaptivity

Dask jobqueue can also adapt the cluster size dynamically based on current load. This helps to scale up the cluster
when necessary but scale it down and save resources when not actively computing.

cluster.adapt(minimum=6, maximum=90) # auto-scale between 6 and 90 workers

2.1 Installing

You can install dask-jobqueue with pip, conda, or by installing from source.

2.1.1 Pip

Pip can be used to install both dask-jobqueue and its dependencies (e.g. dask, distributed, NumPy, Pandas, etc., that
are necessary for different workloads).:

pip install dask_jobqueue --upgrade # Install everything from last released version

2.1.2 Conda

To install the latest version of dask-jobqueue from the conda-forge repository using conda:

conda install dask-jobqueue -c conda-forge

2.1.3 Install from Source

To install dask-jobqueue from source, clone the repository from github:

5

https://conda-forge.github.io/
https://www.anaconda.com/downloads
https://github.com/dask/dask-jobqueue

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

git clone https://github.com/dask/dask-jobqueue.git
cd dask-jobqueue
python setup.py install

or use pip locally if you want to install all dependencies as well:

pip install -e .

You can also install directly from git master branch:

pip install git+https://github.com/dask/dask-jobqueue

2.1.4 Test

Test dask-jobqueue with py.test:

git clone https://github.com/dask/dask-jobqueue.git
cd dask-jobqueue
py.test dask_jobqueue

2.2 Interactive Use

Dask-jobqueue is most often used for interactive processing using tools like IPython or Jupyter notebooks. This page
provides instructions on how to launch an interactive Jupyter notebook server and Dask dashboard on your HPC
system.

2.2.1 Using Jupyter

It is convenient to run a Jupyter notebook server on the HPC for use with dask-jobqueue. You may already have a
Jupyterhub instance available on your system, which can be used as is. Otherwise, documentation for starting your
own Jupyter notebook server is available at Pangeo documentation.

Once Jupyter is installed and configured, using a Jupyter notebook is done by:

• Starting a Jupyter notebook server on the HPC (it is often good practice to run/submit this as a job to an
interactive queue, see Pangeo docs for more details).

$ jupyter notebook --no-browser --ip=`hostname` --port=8888

• Reading the output of the command above to get the ip or hostname of your notebook, and use SSH tunneling
on your local machine to access the notebook. This must only be done in the probable case where you don’t
have direct access to the notebook URL from your computer browser.

$ ssh -N -L 8888:x.x.x.x:8888 username@hpc_domain

Now you can go to http://localhost:8888 on your browser to access the notebook server.

2.2.2 Viewing the Dask Dashboard

Whether or not you are using dask-jobqueue in Jupyter, IPython or other tools, at one point you will want to have
access to Dask dashboard. Once you’ve started a cluster and connected a client to it using commands described in

6 Chapter 2. Adaptivity

http://pangeo-data.org/setup_guides/hpc.html#configure-jupyter

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

‘Example‘_), inspecting client object will give you the Dashboard URL, for example http://172.16.23.
102:8787/status. The Dask Dashboard may be accessible by clicking the link displayed, otherwise, you’ll have
to use SSH tunneling:

General syntax
$ ssh -fN your-login@scheduler-ip-address -L port-number:localhost:port-number
As applied to this example:
$ ssh -fN username@172.16.23.102 -L 8787:localhost:8787

Now, you can go to http://localhost:8787 on your browser to view the dashboard. Note that you can do SSH
tunneling for both Jupyter and Dashboard in one command.

A good example of using Jupyter along with dask-jobqueue and the Dashboard is availaible below:

2.2.3 Dask Dashboard with Jupyter

If you are using dask-jobqueue within Jupyter, one user friendly solution to see the Dashboard is to use nbserverproxy.
As the dashboard HTTP end point is launched inside the same node as Jupyter, this is a great solution for viewing it
without having to do SSH tunneling. You just need to install nbserverproxy in the Python environment you use
for launching the notebook, and activate it as indicated in the docs:

pip install nbserverproxy
jupyter serverextension enable --py nbserverproxy

Then, once started, the dashboard will be accessible from your notebook URL by adding the path /proxy/8787/
status, replacing 8787 by any other port you use or the dashboard is bind to if needed. Sor for example:

• http://localhost:8888/proxy/8787/status with the example above

• http://myjupyterhub.org/user/username/proxy/8787/status if using JupyterHub

Note that if using Jupyterhub, the service admin should deploy nbserverproxy on the environment used for starting
singleuser notebook, but each user may have to activate the nbserverproxy extension.

Finally, you may want to update the dashboard link that is displayed in the notebook, shown from Cluster and Client
objects. In order to do this, edit dask config file, either ~/.config/dask/jobqueue.yaml or ~/.config/
dask/distributed.yaml, and add the following:

distributed.dashboard.link: "/proxy/{port}/status" # for user launched notebook
distributed.dashboard.link: "/user/{JUPYTERHUB_USER}/proxy/{port}/status" # for
→˓jupyterhub launched notebook

2.3 How this works

2.3.1 Scheduler and jobs

Dask-jobqueue creates a Dask Scheduler in the Python process where the cluster object is instantiated:

cluster = PBSCluster(# <-- scheduler started here
cores=24,
memory='100GB',
shebang='#!/usr/bin/env zsh', # default is bash
processes=6,
local_directory='$TMPDIR',

(continues on next page)

2.3. How this works 7

https://github.com/jupyterhub/nbserverproxy

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

(continued from previous page)

resource_spec='select=1:ncpus=24:mem=100GB',
queue='regular',
project='my-project',
walltime='02:00:00',

)

You then ask for more workers using the scale command:

cluster.scale(36)

The cluster generates a traditional job script and submits that an appropriate number of times to the job queue. You
can see the job script that it will generate as follows:

>>> print(cluster.job_script())

#!/usr/bin/env zsh

#PBS -N dask-worker
#PBS -q regular
#PBS -A P48500028
#PBS -l select=1:ncpus=24:mem=100G
#PBS -l walltime=02:00:00

/home/username/path/to/bin/dask-worker tcp://127.0.1.1:43745
--nthreads 4 --nprocs 6 --memory-limit 18.66GB --name dask-worker-3
--death-timeout 60

Each of these jobs are sent to the job queue independently and, once that job starts, a dask-worker process will start
up and connect back to the scheduler running within this process.

If the job queue is busy then it’s possible that the workers will take a while to get through or that not all of them arrive.
In practice we find that because dask-jobqueue submits many small jobs rather than a single large one workers are
often able to start relatively quickly. This will depend on the state of your cluster’s job queue though.

When the cluster object goes away, either because you delete it or because you close your Python program, it will
send a signal to the workers to shut down. If for some reason this signal does not get through then workers will kill
themselves after 60 seconds of waiting for a non-existent scheduler.

2.3.2 Workers vs Jobs

In dask-distributed, a Worker is a Python object and node in a dask Cluster that serves two purposes, 1) serve
data, and 2) perform computations. Jobs are resources submitted to, and managed by, the job queueing system (e.g.
PBS, SGE, etc.). In dask-jobqueue, a single Job may include one or more Workers.

2.4 Configuration

Dask-jobqueue should be configured for your cluster so that it knows how many resources to request of each job
and how to break up those resources. You can specify configuration either with keyword arguments when creating a
Cluster object, or with a configuration file.

8 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2.4.1 Keyword Arguments

You can pass keywords to the Cluster objects to define how Dask-jobqueue should define a single job:

cluster = PBSCluster(
Dask-worker specific keywords
cores=24, # Number of cores per job
memory='100GB', # Amount of memory per job
shebang='#!/usr/bin/env zsh', # Interpreter for your batch script (default is

→˓bash)
processes=6, # Number of Python processes to cut up each job
local_directory='$TMPDIR', # Location to put temporary data if necessary
Job scheduler specific keywords
resource_spec='select=1:ncpus=24:mem=100GB',
queue='regular',
project='my-project',
walltime='02:00:00',

)

Note that the cores and memory keywords above correspond not to your full desired deployment, but rather to the
size of a single job which should be no larger than the size of a single machine in your cluster. Separately you will
specify how many jobs to deploy using the scale method.

cluster.scale(12) # launch 12 workers (2 jobs of 6 workers each) of the
→˓specification provided above

2.4.2 Configuration Files

Specifying all parameters to the Cluster constructor every time can be error prone, especially when sharing this work-
flow with new users. Instead, we recommend using a configuration file like the following:

jobqueue.yaml file
jobqueue:

pbs:
cores: 24
memory: 100GB
processes: 6
shebang: "#!/usr/bin/env zsh"

interface: ib0
local-directory: $TMPDIR

resource-spec: "select=1:ncpus=24:mem=100GB"
queue: regular
project: my-project
walltime: 00:30:00

See Configuration Examples for real-world examples.

If you place this in your ~/.config/dask/ directory then Dask-jobqueue will use these values by default. You
can then construct a cluster object without keyword arguments and these parameters will be used by default.

cluster = PBSCluster()

You can still override configuration values with keyword arguments

2.4. Configuration 9

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

cluster = PBSCluster(processes=12)

If you have imported dask_jobqueue then a blank jobqueue.yaml will be added automatically to ~/.
config/dask/jobqueue.yaml. You should use the section of that configuation file that corresponds to your
job scheduler. Above we used PBS, but other job schedulers operate the same way. You should be able to share these
with colleagues. If you can convince your IT staff you can also place such a file in /etc/dask/ and it will affect all
people on the cluster automatically.

For more information about configuring Dask, see the Dask configuration documentation

2.5 Configure Dask-Jobqueue

To properly use Dask and Dask-Jobqueue on an HPC system you need to provide a bit of information about that system
and how you plan to use it.

You provide this information either as keyword arguments to the constructor:

cluster = PBSCluster(cores=36, memory='100GB', queue='regular', ...)

Or as part of a configuration file:

jobqueue:
pbs:
cores: 36
memory: 100GB
queue: regular
...

cluster = PBSCluster()

For more information on handling configuration files see Dask configuration documentation.

This page explains what these parameters mean and how to find out information about them.

2.5.1 Cores and Memory

These numbers correspond to the size of a single job, which is typically the size of a single node on your cluster. It
does not mean the total amount of cores or memory that you want for your full deployment. Recall that dask-jobqueue
will launch several jobs in normal operation.

Cores should be provided as an integer, while memory is typically provided as a string, like “100 GB”.

cores: 36
memory: 100GB

2.5.2 Processes

By default Dask will run one Python process per job. However, you can optionally choose to cut up that job into
multiple processes using the processes configuration value. This can be advantageous if your computations are
bound by the GIL, but disadvantageous if you plan to communicate a lot between processes. Typically we find that for
pure Numpy workloads a low number of processes (like one) is best, while for pure Python workloads a high number
of processes (like one process per two cores) is best. If you are unsure then you might want to experiment a bit, or just
choose a moderate number, like one process per four cores.

10 Chapter 2. Adaptivity

https://docs.dask.org/en/latest/configuration.html
https://docs.dask.org/en/latest/configuration.html

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

cores: 36
memory: 100GB
processes: 9

2.5.3 Queue

Many HPC systems have a variety of different queues to which you can submit jobs. These typically have names like
“regular”, “debug”, and “priority”. These are set up by your cluster administrators to help direct certain jobs based on
their size and urgency.

queue: regular

If you are unfamiliar with using queues on your system you should leave this blank, or ask your IT administrator.

2.5.4 Project

You may have an allocation on your HPC system that is referenced by a project. This is typically a short bit of text
that references your group or a particular project. This is typically given to you by your IT administrator when they
give you an allocation of hours on the HPC system.

project: XYZW-1234

If this sounds foreign to you or if you don’t use project codes then you should leave this blank, or ask your IT
administrator.

2.5.5 Local Storage

When Dask workers run out of memory they typically start writing data to disk. This is often a wise choice on personal
computers or analysis clusters, but can be unwise on HPC systems if they lack local storage. When Dask workers try
to write excess data to disk on systems that lack local storage this can cause the Dask process to die in unexpected
ways.

If your nodes have fast locally attached storage mounted somewhere then you should direct dask-jobqueue to use that
location.

local-directory: /scratch

Sometimes your job scheduler will give this location to you as an environment variable. If so you should include that
environment variable, prepended with the $ sign and it will be expanded appropriately after the jobs start.

local-directory: $LOCAL_STORAGE

2.5.6 No Local Storage

If your nodes do not have locally attached storage then we recommend that you turn off Dask’s policy to write excess
data to disk. This must be done in a configuration file and must be separate from the jobqueue configuration section
(though it is fine to include it in the same file).

2.5. Configure Dask-Jobqueue 11

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

jobqueue:
pbs:
cores: 36
memory: 100GB
...

distributed:
worker:
memory:

target: False # Avoid spilling to disk
spill: False # Avoid spilling to disk
pause: .80 # Pause worker threads at 80% use
terminate: 0.95 # Restart workers at 95% use

2.5.7 Network Interface

HPC systems often have advanced networking hardware like Infiniband. Dask workers can take use of this network
using TCP-over-Infiniband, this can yield improved bandwidth during data transfers. To get this increased speed you
often have to specify the network interface of your accelerated hardware. If you have sufficient permissions then you
can find a list of all network interfaces using the ifconfig UNIX command

$ ifconfig
lo Link encap:Local Loopback # Localhost

inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host

eth0 Link encap:Ethernet HWaddr XX:XX:XX:XX:XX:XX # Ethernet
inet addr:192.168.0.101
...

ib0 Link encap:Infiniband # Fast InfiniBand
inet addr:172.42.0.101

Alternatively, your IT administrators will have this information.

2.5.8 Managing Configuration files

By default when dask-jobqueue is first imported it places a file at ~/.config/dask/jobqueue.yaml with a
commented out version of many different job schedulers. You may want to do a few things to clean this up:

1. Remove all of the commented out portions that don’t apply to you. For example if you use only PBS, then
consider removing the entries under SGE, SLURM, etc..

2. Feel free to rename the file or to include other configuration options in the file for other parts of Dask. The
jobqueue.yaml filename is not special, nor is it special that each component of Dask has its own configura-
tion file. It is ok to combine or split up configuration files as suits your group.

3. Ask your IT administrator to place a generic file in /etc/dask for global use. Dask will look first in /etc/
dask and then in ~/.config/dask for any .yaml files preferring those in the user’s home directory to
those in the /etc/dask. By providing a global file IT should be able to provide sane settings for everyone on
the same system

12 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2.6 Example Deployments

Deploying dask-jobqueue on different clusters requires a bit of customization. Below, we provide a few examples
from real deployments in the wild:

Additional examples from other cluster welcome here.

2.6.1 PBS Deployments

from dask_jobqueue import PBSCluster

cluster = PBSCluster(queue='regular',
project='DaskOnPBS',
local_directory='$TMPDIR',
threads=4,
processes=6,
memory='16GB',
resource_spec='select=1:ncpus=24:mem=100GB')

cluster = PBSCluster(processes=18,
threads=4,
shebang='#!/usr/bin/env zsh',
memory="6GB",
project='P48500028',
queue='premium',
resource_spec='select=1:ncpus=36:mem=109G',
walltime='02:00:00',
interface='ib0')

Moab Deployments

On systems which use the Moab Workload Manager, a subclass of PBSCluster can be used, called MoabCluster:

import os
from dask_jobqueue import MoabCluster

cluster = MoabCluster(processes=6,
threads=1,
project='gfdl_m',
memory='16G',
resource_spec='pmem=96G',
job_extra=['-d /home/First.Last', '-M none'],
local_directory=os.getenv('TMPDIR', '/tmp'))

2.6.2 SGE Deployments

On systems which use SGE as the scheduler, SGECluster can be used:

from dask_jobqueue import SGECluster

cluster = SGECluster(queue='default.q',
walltime="1500000",

(continues on next page)

2.6. Example Deployments 13

https://github.com/dask/dask-jobqueue/issues/40

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

(continued from previous page)

processes=10,
memory='20GB')

2.6.3 LSF Deployments

from dask_jobqueue import LSFCluster

cluster = LSFCluster(queue='general',
project='cpp',
walltime='00:30',
cores=15,
memory='25GB')

2.6.4 SLURM Deployments

from dask_jobqueue import SLURMCluster

cluster = SLURMCluster(processes=4,
threads=2,
memory="16GB",
project="woodshole",
walltime="01:00:00",
queue="normal")

2.6.5 SLURM Deployment: Low-priority node usage

from dask_jobqueue import SLURMCluster

cluster = SLURMCluster(processes=6,
threads=4,
memory="16GB",
project="co_laika",
queue='savio2_bigmem',
env_extra=['export LANG="en_US.utf8"',

'export LANGUAGE="en_US.utf8"',
'export LC_ALL="en_US.utf8"'],

job_extra=['--qos="savio_lowprio"'])

2.6.6 SLURM Deployment: Providing additional arguments to the dask-workers

Keyword arguments can be passed through to dask-workers. An example of such an argument is for the specification
of abstract resources, described here. This could be used to specify special hardware availibility that the scheduler is
not aware of, for example GPUs. Below, the arbitrary resources “ssdGB” and “GPU” are specified. Notice that the
extra keyword is used to pass through arguments to the dask-workers.

from dask_jobqueue import SLURMCluster
from distributed import Client
from dask import delayed

(continues on next page)

14 Chapter 2. Adaptivity

http://distributed.dask.org/en/latest/resources.html

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

(continued from previous page)

cluster = SLURMCluster(memory='8g',
processes=1,
cores=2,
extra=['--resources ssdGB=200,GPU=2'])

cluster.start_workers(2)
client = Client(cluster)

The client can then be used as normal. Additionally, required resources can be specified for certain steps in the
processing. For example:

def step_1_w_single_GPU(data):
return "Step 1 done for: %s" % data

def step_2_w_local_IO(data):
return "Step 2 done for: %s" % data

stage_1 = [delayed(step_1_w_single_GPU)(i) for i in range(10)]
stage_2 = [delayed(step_2_w_local_IO)(s2) for s2 in stage_1]

result_stage_2 = client.compute(stage_2,
resources={tuple(stage_1): {'GPU': 1},

tuple(stage_2): {'ssdGB': 100}})

2.7 Configuration Examples

We include configuration files for known supercomputers. Hopefully these help both other users that use those ma-
chines and new users who want to see examples for similar clusters.

Additional examples from other cluster welcome here.

2.7.1 Cheyenne

NCAR’s Cheyenne Supercomputer uses both PBS (for Cheyenne itself) and Slurm (for the attached DAV clusters
Geyser/Caldera).

distributed:
scheduler:
bandwidth: 1000000000 # GB MB/s estimated worker-worker bandwidth

worker:
memory:

target: 0.90 # Avoid spilling to disk
spill: False # Avoid spilling to disk
pause: 0.80 # fraction at which we pause worker threads
terminate: 0.95 # fraction at which we terminate the worker

comm:
compression: null

jobqueue:
pbs:

(continues on next page)

2.7. Configuration Examples 15

https://github.com/dask/dask-jobqueue/issues/40
https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

(continued from previous page)

name: dask-worker
cores: 36 # Total number of cores per job
memory: '109 GB' # Total amount of memory per job
processes: 9 # Number of Python processes per job
interface: ib0 # Network interface to use like eth0 or ib0

queue: regular
walltime: '00:30:00'
resource-spec: select=1:ncpus=36:mem=109GB

slurm:
name: dask-worker

Dask worker options
cores: 1 # Total number of cores per job
memory: '25 GB' # Total amount of memory per job
processes: 1 # Number of Python processes per job

interface: ib0

project: PXYZ123
walltime: '00:30:00'
job-extra: {-C geyser}

2.7.2 NERSC Cori

NERSC Cori Supercomputer

It should be noted that the the following config file assumes you are running the scheduler on a worker node. Currently
the login node appears unable to talk to the worker nodes bidirectionally. As such you need to request an interactive
node with the following:

$ salloc -N 1 -C haswell --qos=interactive -t 04:00:00

Then you will run dask jobqueue directly on that interactive node. Note the distributed section that is set up to avoid
having dask write to disk. This was due to some weird behavior with the local filesystem.

Alternatively you may use the experimental NERSC jupyterhub which will launch a notebook server on a reserved
large memory node of Cori. In this case no special interactive session is needed and dask jobqueue will perform as
expected.

distributed:
worker:
memory:

target: False # Avoid spilling to disk
spill: False # Avoid spilling to disk
pause: 0.80 # fraction at which we pause worker threads
terminate: 0.95 # fraction at which we terminate the worker

jobqueue:
slurm:

cores: 64
memory: 128GB
processes: 4
queue: debug

(continues on next page)

16 Chapter 2. Adaptivity

https://www.nersc.gov/systems/cori
https://jupyter-dev.nersc.gov/

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

(continued from previous page)

walltime: '00:10:00'
job-extra: ['-C haswell', '-L project, SCRATCH, cscratch1']

2.7.3 ARM Stratus

Department of Energy Atmospheric Radiation Measurement (DOE-ARM) Stratus Supercomputer.

jobqueue:
pbs:
name: dask-worker
cores: 36
memory: 270GB
processes: 6
interface: ib0
local-directory: $localscratch
queue: high_mem # Can also select batch or gpu_ssd
project: arm
walltime: 00:30:00 #Adjust this to job size
job-extra: ['-W group_list=cades-arm']

2.8 API

LSFCluster([queue, project, ncpus, mem, . . .]) Launch Dask on a LSF cluster
MoabCluster([queue, project, resource_spec, . . .]) Launch Dask on a Moab cluster
PBSCluster([queue, project, resource_spec, . . .]) Launch Dask on a PBS cluster
SGECluster([queue, project, resource_spec, . . .]) Launch Dask on a SGE cluster
SLURMCluster([queue, project, walltime, . . .]) Launch Dask on a SLURM cluster

2.8.1 dask_jobqueue.LSFCluster

class dask_jobqueue.LSFCluster(queue=None, project=None, ncpus=None, mem=None, wall-
time=None, job_extra=None, config_name=’lsf’, **kwargs)

Launch Dask on a LSF cluster

Parameters

queue [str] Destination queue for each worker job. Passed to #BSUB -q option.

project [str] Accounting string associated with each worker job. Passed to #BSUB -P option.

ncpus [int] Number of cpus. Passed to #BSUB -n option.

mem [int] Request memory in bytes. Passed to #BSUB -M option.

walltime [str] Walltime for each worker job in HH:MM. Passed to #BSUB -W option.

job_extra [list] List of other LSF options, for example -u. Each option will be prepended with
the #LSF prefix.

name [str] Name of Dask workers.

cores [int] Total number of cores per job

memory: str Total amount of memory per job

2.8. API 17

https://adc.arm.gov/tutorials/cluster/stratusclusterquickstart.html

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

processes [int] Number of processes per job

interface [str] Network interface like ‘eth0’ or ‘ib0’.

death_timeout [float] Seconds to wait for a scheduler before closing workers

local_directory [str] Dask worker local directory for file spilling.

extra [list] Additional arguments to pass to dask-worker

env_extra [list] Other commands to add to script before launching worker.

python [str] Python executable used to launch Dask workers.

shebang [str] Path to desired interpreter for your batch submission script.

kwargs [dict] Additional keyword arguments to pass to LocalCluster

Examples

>>> from dask_jobqueue import LSFCluster
>>> cluster = LSFcluster(queue='general', project='DaskonLSF',
... cores=15, memory='25GB')
>>> cluster.scale(10) # this may take a few seconds to launch

>>> from dask.distributed import Client
>>> client = Client(cluster)

This also works with adaptive clusters. This automatically launches and kill workers based on load.

>>> cluster.adapt()

__init__(queue=None, project=None, ncpus=None, mem=None, walltime=None, job_extra=None,
config_name=’lsf’, **kwargs)

Methods

__init__([queue, project, ncpus, mem, . . .])
adapt([minimum_cores, maximum_cores, . . .]) Turn on adaptivity For keyword arguments see

dask.distributed.Adaptive Instead of minimum
and maximum parameters which apply to the
number of worker, If Cluster object implements
worker_spec attribute, one can use the following
parameters: Parameters ———- minimum_cores:
int Minimum number of cores for the cluster maxi-
mum_cores: int Maximum number of cores for the
cluster minimum_memory: str Minimum amount
of memory for the cluster maximum_memory:
str Maximum amount of memory for the cluster
Examples ——– >>> cluster.adapt(minimum=0,
maximum=10, interval=‘500ms’) >>> clus-
ter.adapt(minimum_cores=24, maximum_cores=96)
>>> cluster.adapt(minimum_memory=‘60 GB’,
maximum_memory= ‘1 TB’)

Continued on next page

18 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Table 2 – continued from previous page
close(**kwargs) Stops all running and pending jobs and stops sched-

uler
job_file() Write job submission script to temporary file
job_script() Construct a job submission script
scale([n, cores, memory]) Scale cluster to n workers or to the given number of

cores or memory number of cores and memory are
converted into number of workers using worker_spec
attribute.

scale_down(workers[, n]) Close the workers with the given addresses
scale_up(n, **kwargs) Brings total worker count up to n
start_workers([n]) Start workers and point them to our local scheduler
stop_all_jobs() Stops all running and pending jobs
stop_jobs(jobs) Stop a list of jobs
stop_workers(workers) Stop a list of workers

Attributes

cancel_command
dashboard_link
finished_jobs Jobs that have finished
job_id_regexp
pending_jobs Jobs pending in the queue
running_jobs Jobs with currenly active workers
scheduler The scheduler of this cluster
scheduler_address
LSFCluster.scheduler_name
submit_command
LSFCluster.worker_threads

2.8.2 dask_jobqueue.MoabCluster

class dask_jobqueue.MoabCluster(queue=None, project=None, resource_spec=None, wall-
time=None, job_extra=None, config_name=’pbs’, **kwargs)

Launch Dask on a Moab cluster

Parameters

queue [str] Destination queue for each worker job. Passed to #PBS -q option.

project [str] Accounting string associated with each worker job. Passed to #PBS -A option.

resource_spec [str] Request resources and specify job placement. Passed to #PBS -l option.

walltime [str] Walltime for each worker job.

job_extra [list] List of other PBS options, for example -j oe. Each option will be prepended
with the #PBS prefix.

name [str] Name of Dask workers.

cores [int] Total number of cores per job

memory: str Total amount of memory per job

processes [int] Number of processes per job

2.8. API 19

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

interface [str] Network interface like ‘eth0’ or ‘ib0’.

death_timeout [float] Seconds to wait for a scheduler before closing workers

local_directory [str] Dask worker local directory for file spilling.

extra [list] Additional arguments to pass to dask-worker

env_extra [list] Other commands to add to script before launching worker.

python [str] Python executable used to launch Dask workers.

shebang [str] Path to desired interpreter for your batch submission script.

kwargs [dict] Additional keyword arguments to pass to LocalCluster

Examples

>>> import os
>>> from dask_jobqueue import MoabCluster
>>> cluster = MoabCluster(processes=6, cores=6, project='gfdl_m',

memory='96G', resource_spec='96G',
job_extra=['-d /home/First.Last', '-M none'],
local_directory=os.getenv('TMPDIR', '/tmp'))

>>> cluster.scale(60) # submit enough jobs to deploy 10 workers

>>> from dask.distributed import Client
>>> client = Client(cluster)

This also works with adaptive clusters. This automatically launches and kill workers based on load.

>>> cluster.adapt()

__init__(queue=None, project=None, resource_spec=None, walltime=None, job_extra=None, con-
fig_name=’pbs’, **kwargs)

Methods

__init__([queue, project, resource_spec, . . .])
adapt([minimum_cores, maximum_cores, . . .]) Turn on adaptivity For keyword arguments see

dask.distributed.Adaptive Instead of minimum
and maximum parameters which apply to the
number of worker, If Cluster object implements
worker_spec attribute, one can use the following
parameters: Parameters ———- minimum_cores:
int Minimum number of cores for the cluster maxi-
mum_cores: int Maximum number of cores for the
cluster minimum_memory: str Minimum amount
of memory for the cluster maximum_memory:
str Maximum amount of memory for the cluster
Examples ——– >>> cluster.adapt(minimum=0,
maximum=10, interval=‘500ms’) >>> clus-
ter.adapt(minimum_cores=24, maximum_cores=96)
>>> cluster.adapt(minimum_memory=‘60 GB’,
maximum_memory= ‘1 TB’)

Continued on next page

20 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Table 4 – continued from previous page
close(**kwargs) Stops all running and pending jobs and stops sched-

uler
job_file() Write job submission script to temporary file
job_script() Construct a job submission script
scale([n, cores, memory]) Scale cluster to n workers or to the given number of

cores or memory number of cores and memory are
converted into number of workers using worker_spec
attribute.

scale_down(workers[, n]) Close the workers with the given addresses
scale_up(n, **kwargs) Brings total worker count up to n
start_workers([n]) Start workers and point them to our local scheduler
stop_all_jobs() Stops all running and pending jobs
stop_jobs(jobs) Stop a list of jobs
stop_workers(workers) Stop a list of workers

Attributes

cancel_command
dashboard_link
finished_jobs Jobs that have finished
job_id_regexp
pending_jobs Jobs pending in the queue
running_jobs Jobs with currenly active workers
scheduler The scheduler of this cluster
scheduler_address
scheduler_name
submit_command
MoabCluster.worker_threads

2.8.3 dask_jobqueue.PBSCluster

class dask_jobqueue.PBSCluster(queue=None, project=None, resource_spec=None, wall-
time=None, job_extra=None, config_name=’pbs’, **kwargs)

Launch Dask on a PBS cluster

Parameters

queue [str] Destination queue for each worker job. Passed to #PBS -q option.

project [str] Accounting string associated with each worker job. Passed to #PBS -A option.

resource_spec [str] Request resources and specify job placement. Passed to #PBS -l option.

walltime [str] Walltime for each worker job.

job_extra [list] List of other PBS options, for example -j oe. Each option will be prepended
with the #PBS prefix.

name [str] Name of Dask workers.

cores [int] Total number of cores per job

memory: str Total amount of memory per job

processes [int] Number of processes per job

2.8. API 21

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

interface [str] Network interface like ‘eth0’ or ‘ib0’.

death_timeout [float] Seconds to wait for a scheduler before closing workers

local_directory [str] Dask worker local directory for file spilling.

extra [list] Additional arguments to pass to dask-worker

env_extra [list] Other commands to add to script before launching worker.

python [str] Python executable used to launch Dask workers.

shebang [str] Path to desired interpreter for your batch submission script.

kwargs [dict] Additional keyword arguments to pass to LocalCluster

Examples

>>> from dask_jobqueue import PBSCluster
>>> cluster = PBSCluster(queue='regular', project='DaskOnPBS', cores=12)
>>> cluster.scale(10) # this may take a few seconds to launch

>>> from dask.distributed import Client
>>> client = Client(cluster)

This also works with adaptive clusters. This automatically launches and kill workers based on load.

>>> cluster.adapt()

It is a good practice to define local_directory to your PBS system scratch directory:

>>> cluster = PBSCluster(queue='regular', project='DaskOnPBS',
... local_directory='$TMPDIR',
... cores=24, processes=6, memory='100GB')

__init__(queue=None, project=None, resource_spec=None, walltime=None, job_extra=None, con-
fig_name=’pbs’, **kwargs)

Methods

__init__([queue, project, resource_spec, . . .])
Continued on next page

22 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Table 6 – continued from previous page
adapt([minimum_cores, maximum_cores, . . .]) Turn on adaptivity For keyword arguments see

dask.distributed.Adaptive Instead of minimum
and maximum parameters which apply to the
number of worker, If Cluster object implements
worker_spec attribute, one can use the following
parameters: Parameters ———- minimum_cores:
int Minimum number of cores for the cluster maxi-
mum_cores: int Maximum number of cores for the
cluster minimum_memory: str Minimum amount
of memory for the cluster maximum_memory:
str Maximum amount of memory for the cluster
Examples ——– >>> cluster.adapt(minimum=0,
maximum=10, interval=‘500ms’) >>> clus-
ter.adapt(minimum_cores=24, maximum_cores=96)
>>> cluster.adapt(minimum_memory=‘60 GB’,
maximum_memory= ‘1 TB’)

close(**kwargs) Stops all running and pending jobs and stops sched-
uler

job_file() Write job submission script to temporary file
job_script() Construct a job submission script
scale([n, cores, memory]) Scale cluster to n workers or to the given number of

cores or memory number of cores and memory are
converted into number of workers using worker_spec
attribute.

scale_down(workers[, n]) Close the workers with the given addresses
scale_up(n, **kwargs) Brings total worker count up to n
start_workers([n]) Start workers and point them to our local scheduler
stop_all_jobs() Stops all running and pending jobs
stop_jobs(jobs) Stop a list of jobs
stop_workers(workers) Stop a list of workers

Attributes

cancel_command
dashboard_link
finished_jobs Jobs that have finished
job_id_regexp
pending_jobs Jobs pending in the queue
running_jobs Jobs with currenly active workers
scheduler The scheduler of this cluster
scheduler_address
PBSCluster.scheduler_name
submit_command
PBSCluster.worker_threads

2.8.4 dask_jobqueue.SGECluster

class dask_jobqueue.SGECluster(queue=None, project=None, resource_spec=None, wall-
time=None, config_name=’sge’, **kwargs)

Launch Dask on a SGE cluster

2.8. API 23

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Parameters

queue [str] Destination queue for each worker job. Passed to #$ -q option.

project [str] Accounting string associated with each worker job. Passed to #$ -A option.

resource_spec [str] Request resources and specify job placement. Passed to #$ -l option.

walltime [str] Walltime for each worker job.

name [str] Name of Dask workers.

cores [int] Total number of cores per job

memory: str Total amount of memory per job

processes [int] Number of processes per job

interface [str] Network interface like ‘eth0’ or ‘ib0’.

death_timeout [float] Seconds to wait for a scheduler before closing workers

local_directory [str] Dask worker local directory for file spilling.

extra [list] Additional arguments to pass to dask-worker

env_extra [list] Other commands to add to script before launching worker.

python [str] Python executable used to launch Dask workers.

shebang [str] Path to desired interpreter for your batch submission script.

kwargs [dict] Additional keyword arguments to pass to LocalCluster

Examples

>>> from dask_jobqueue import SGECluster
>>> cluster = SGECluster(queue='regular')
>>> cluster.scale(10) # this may take a few seconds to launch

>>> from dask.distributed import Client
>>> client = Client(cluster)

This also works with adaptive clusters. This automatically launches and kill workers based on load.

>>> cluster.adapt()

__init__(queue=None, project=None, resource_spec=None, walltime=None, config_name=’sge’,
**kwargs)

Methods

__init__([queue, project, resource_spec, . . .])
Continued on next page

24 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Table 8 – continued from previous page
adapt([minimum_cores, maximum_cores, . . .]) Turn on adaptivity For keyword arguments see

dask.distributed.Adaptive Instead of minimum
and maximum parameters which apply to the
number of worker, If Cluster object implements
worker_spec attribute, one can use the following
parameters: Parameters ———- minimum_cores:
int Minimum number of cores for the cluster maxi-
mum_cores: int Maximum number of cores for the
cluster minimum_memory: str Minimum amount
of memory for the cluster maximum_memory:
str Maximum amount of memory for the cluster
Examples ——– >>> cluster.adapt(minimum=0,
maximum=10, interval=‘500ms’) >>> clus-
ter.adapt(minimum_cores=24, maximum_cores=96)
>>> cluster.adapt(minimum_memory=‘60 GB’,
maximum_memory= ‘1 TB’)

close(**kwargs) Stops all running and pending jobs and stops sched-
uler

job_file() Write job submission script to temporary file
job_script() Construct a job submission script
scale([n, cores, memory]) Scale cluster to n workers or to the given number of

cores or memory number of cores and memory are
converted into number of workers using worker_spec
attribute.

scale_down(workers[, n]) Close the workers with the given addresses
scale_up(n, **kwargs) Brings total worker count up to n
start_workers([n]) Start workers and point them to our local scheduler
stop_all_jobs() Stops all running and pending jobs
stop_jobs(jobs) Stop a list of jobs
stop_workers(workers) Stop a list of workers

Attributes

cancel_command
dashboard_link
finished_jobs Jobs that have finished
job_id_regexp
pending_jobs Jobs pending in the queue
running_jobs Jobs with currenly active workers
scheduler The scheduler of this cluster
scheduler_address
SGECluster.scheduler_name
submit_command
SGECluster.worker_threads

2.8.5 dask_jobqueue.SLURMCluster

class dask_jobqueue.SLURMCluster(queue=None, project=None, walltime=None, job_cpu=None,
job_mem=None, job_extra=None, config_name=’slurm’,
**kwargs)

Launch Dask on a SLURM cluster

2.8. API 25

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Parameters

queue [str] Destination queue for each worker job. Passed to #SBATCH -p option.

project [str] Accounting string associated with each worker job. Passed to #SBATCH -A option.

walltime [str] Walltime for each worker job.

job_cpu [int] Number of cpu to book in SLURM, if None, defaults to worker threads * pro-
cesses

job_mem [str] Amount of memory to request in SLURM. If None, defaults to worker processes
* memory

job_extra [list] List of other Slurm options, for example -j oe. Each option will be prepended
with the #SBATCH prefix.

name [str] Name of Dask workers.

cores [int] Total number of cores per job

memory: str Total amount of memory per job

processes [int] Number of processes per job

interface [str] Network interface like ‘eth0’ or ‘ib0’.

death_timeout [float] Seconds to wait for a scheduler before closing workers

local_directory [str] Dask worker local directory for file spilling.

extra [list] Additional arguments to pass to dask-worker

env_extra [list] Other commands to add to script before launching worker.

python [str] Python executable used to launch Dask workers.

shebang [str] Path to desired interpreter for your batch submission script.

kwargs [dict] Additional keyword arguments to pass to LocalCluster

Examples

>>> from dask_jobqueue import SLURMCluster
>>> cluster = SLURMCluster(processes=6, cores=24, memory="120GB",

env_extra=['export LANG="en_US.utf8"',
'export LANGUAGE="en_US.utf8"',
'export LC_ALL="en_US.utf8"'])

>>> cluster.scale(10) # this may take a few seconds to launch

>>> from dask.distributed import Client
>>> client = Client(cluster)

This also works with adaptive clusters. This automatically launches and kill workers based on load.

>>> cluster.adapt()

__init__(queue=None, project=None, walltime=None, job_cpu=None, job_mem=None,
job_extra=None, config_name=’slurm’, **kwargs)

26 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

Methods

__init__([queue, project, walltime, . . .])
adapt([minimum_cores, maximum_cores, . . .]) Turn on adaptivity For keyword arguments see

dask.distributed.Adaptive Instead of minimum
and maximum parameters which apply to the
number of worker, If Cluster object implements
worker_spec attribute, one can use the following
parameters: Parameters ———- minimum_cores:
int Minimum number of cores for the cluster maxi-
mum_cores: int Maximum number of cores for the
cluster minimum_memory: str Minimum amount
of memory for the cluster maximum_memory:
str Maximum amount of memory for the cluster
Examples ——– >>> cluster.adapt(minimum=0,
maximum=10, interval=‘500ms’) >>> clus-
ter.adapt(minimum_cores=24, maximum_cores=96)
>>> cluster.adapt(minimum_memory=‘60 GB’,
maximum_memory= ‘1 TB’)

close(**kwargs) Stops all running and pending jobs and stops sched-
uler

job_file() Write job submission script to temporary file
job_script() Construct a job submission script
scale([n, cores, memory]) Scale cluster to n workers or to the given number of

cores or memory number of cores and memory are
converted into number of workers using worker_spec
attribute.

scale_down(workers[, n]) Close the workers with the given addresses
scale_up(n, **kwargs) Brings total worker count up to n
start_workers([n]) Start workers and point them to our local scheduler
stop_all_jobs() Stops all running and pending jobs
stop_jobs(jobs) Stop a list of jobs
stop_workers(workers) Stop a list of workers

Attributes

cancel_command
dashboard_link
finished_jobs Jobs that have finished
job_id_regexp
pending_jobs Jobs pending in the queue
running_jobs Jobs with currenly active workers
scheduler The scheduler of this cluster
scheduler_address
SLURMCluster.scheduler_name
submit_command
SLURMCluster.worker_threads

2.8. API 27

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2.9 How to debug

Dask jobqueue has been developed and tested by several contributors, each having a given HPC system setup to work
on: a job scheduler in a given version running on a given OS. Thus, in some specific cases, it might not work out of
the box on your system. This section provides some hints to help you determine what may be going wrong.

2.9.1 Checking job script

Dask-jobqueue submits “job scripts” to your queueing system (see How this works). Inspecting these scripts often
reveals errors in the configuration of your Cluster object or maybe directives unexpected by your job scheduler, in
particular the header containing #PBS, #SBATCH or equivalent lines. This can be done easily once you’ve created a
cluster object:

print(cluster.job_script())

If everything in job script appears correct, the next step is to try to submit a test job using the script. You can simply
copy and paste printed content to a real job script file, and submit it using qsub, sbatch, bsub or what is appropriate
for you job queuing system.

To correct any problem detected at this point, you could try to use job_extra or env_extra kwargs when initial-
izing your cluster object.

2.9.2 Activate debug mode

Dask-jobqueue uses the Python logging module. To understand better what is happening under the hood, you may
want to activate logging display. This can be done by running this line of python code in your script or notebook:

import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)

2.9.3 Interact with your job queuing system

Every worker is launched inside a batch job, as explained above. It can be very helpful to query your job queuing
system. Some things you might want to check:

• are there running jobs related to dask-jobqueue?

• are there finished jobs, error jobs?

• what is the stdout or stderr of dask-jobqueue jobs?

2.9.4 Other things you might look at

From here it gets a little more complicated. A couple of other already seen problems are the following:

• The submit command used in dask-jobqueue (qsub or equivalent) doesn’t correspond to the one that you use.
Check in the given JobQueueCluster implementation that job submission command and arguments look
familiar to you, eventually try them.

• The submit command output is not the same as the one expected by dask-jobqueue. We use submit command
stdout to parse the job_id corresponding to the launched group of worker. If the parsing fails, then dask-
jobqueue won’t work as expected and may throw exceptions. You can have a look at the parsing function
JobQueueCluster._job_id_from_submit_output.

28 Chapter 2. Adaptivity

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2.10 Changelog

2.10.1 0.4.1 / 2018-10-18

• Handle worker restart with clearer message (GH#138)

• Better error handling on job submission failure (GH#146)

• Fixed Python 2.7 error when starting workers (GH#155)

• Better handling of extra scheduler options (GH#160)

• Correct testing of Python 2.7 compatibility (GH#154)

• Add ability to override python used to start workers (GH#167)

• Internal improvements and edge cases handling (GH#97)

• Possibility to specify a folder to store every job logs file (GH#145)

• Require all cores on the same node for LSF (GH#177)

2.10.2 0.4.0 / 2018-09-06

• Use number of worker processes as an argument to scale instead of number of jobs.

• Bind scheduler bokeh UI to every network interfaces by default.

• Adds an OAR job queue system implementation.

• Adds an LSF job queue system implementation.

• Adds some convenient methods to JobQueueCluster objetcs: __repr__, stop_jobs(), close().

2.11 Development Guidelines

This repository is part of the Dask projects. General development guidelines including where to ask for help, a layout
of repositories, testing practices, and documentation and style standards are available at the Dask developer guidelines
in the main documentation.

2.11.1 Install

After setting up an environment as described in the Dask developer guidelines you can clone this repository with git:

git clone git@github.com:dask/dask-jobqueue.git

and install it from source:

cd dask-jobqueue
python setup.py install

2.10. Changelog 29

https://github.com/dask/dask-jobqueue/pull/138
https://github.com/dask/dask-jobqueue/pull/146
https://github.com/dask/dask-jobqueue/pull/155
https://github.com/dask/dask-jobqueue/pull/160
https://github.com/dask/dask-jobqueue/pull/154
https://github.com/dask/dask-jobqueue/pull/167
https://github.com/dask/dask-jobqueue/pull/97
https://github.com/dask/dask-jobqueue/pull/145
https://github.com/dask/dask-jobqueue/pull/177
https://dask.org
https://docs.dask.org/en/latest/develop.html
https://docs.dask.org/en/latest/develop.html

Dask-jobqueue Documentation, Release 0.4.1+15.g753683f

2.11.2 Test

Test using py.test:

py.test dask-jobqueue --verbose

2.11.3 Test with Job scheduler

Some tests require to have a fully functional job queue cluster running, this is done through Docker and Docker
compose tools. You must thus have them installed on your system following their docs.

You can then use the same commands as Travis CI does for your local testing, for example with pbs:

source ci/pbs.sh
jobqueue_before_install
jobqueue_install
jobqueue_script

2.12 History

This package came out of the Pangeo collaboration and was copy-pasted from a live repository at this commit. Unfor-
tunately, development history was not preserved.

Original developers from that repository include the following:

• Jim Edwards

• Joe Hamman

• Matthew Rocklin

30 Chapter 2. Adaptivity

https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://pangeo-data.github.io/
https://github.com/pangeo-data/pangeo/commit/28f86b9c836bd622daa14d5c9b48ab73bbed4c73
https://github.com/jedwards4b
https://github.com/jhamman
https://github.com/mrocklin

Index

Symbols
__init__() (dask_jobqueue.LSFCluster method), 18
__init__() (dask_jobqueue.MoabCluster method), 20
__init__() (dask_jobqueue.PBSCluster method), 22
__init__() (dask_jobqueue.SGECluster method), 24
__init__() (dask_jobqueue.SLURMCluster method),

26

L
LSFCluster (class in dask_jobqueue), 17

M
MoabCluster (class in dask_jobqueue), 19

P
PBSCluster (class in dask_jobqueue), 21

S
SGECluster (class in dask_jobqueue), 23
SLURMCluster (class in dask_jobqueue), 25

31

	Example
	Adaptivity

