
CVXOPT Documentation
Release 1.3.2

Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe

August 09, 2023





Contents

1 Copyright and License 3

2 Introduction 5

3 Dense and Sparse Matrices 7
3.1 Dense Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Indexing and Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Attributes and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Built-In Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Other Matrix Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Randomly Generated Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The BLAS Interface 23
4.1 Matrix Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Level 1 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Level 2 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Level 3 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 The LAPACK Interface 35
5.1 General Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Positive Definite Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Symmetric and Hermitian Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Triangular Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Least-Squares and Least-Norm Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Symmetric and Hermitian Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Generalized Symmetric Definite Eigenproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Schur and Generalized Schur Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 Example: Analytic Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Discrete Transforms 55
6.1 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Discrete Cosine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Discrete Sine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

i



7 Sparse Linear Equations 59
7.1 Matrix Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 General Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Positive Definite Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Example: Covariance Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Cone Programming 67
8.1 Linear Cone Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Quadratic Cone Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4 Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.5 Second-Order Cone Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.6 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.7 Exploiting Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.8 Optional Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.9 Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 Nonlinear Convex Optimization 95
9.1 Problems with Nonlinear Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 Problems with Linear Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3 Geometric Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.4 Exploiting Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.5 Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10 Modeling 111
10.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.4 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11 C API 123
11.1 Dense Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.2 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12 Matrix Formatting 127

Index 129

ii



CVXOPT Documentation, Release 1.3.2

Release 1.3.2 – Aug 9, 2023

Martin Andersen, Joachim Dahl, and Lieven Vandenberghe

Contents 1



CVXOPT Documentation, Release 1.3.2

2 Contents



CHAPTER 1

Copyright and License

2012-2023 M. Andersen and L. Vandenberghe.
2010-2011 L. Vandenberghe.
2004-2009 J. Dahl and L. Vandenberghe.

CVXOPT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

CVXOPT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

3

http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html


CVXOPT Documentation, Release 1.3.2

4 Chapter 1. Copyright and License



CHAPTER 2

Introduction

CVXOPT is a free software package for convex optimization based on the Python programming language. It can
be used with the interactive Python interpreter, on the command line by executing Python scripts, or integrated in
other software via Python extension modules. Its main purpose is to make the development of software for convex
optimization applications straightforward by building on Python’s extensive standard library and on the strengths of
Python as a high-level programming language.

CVXOPT extends the built-in Python objects with two matrix objects: a matrix object for dense matrices and an
spmatrix object for sparse matrices. These two matrix types are introduced in the chapter Dense and Sparse Ma-
trices, together with the arithmetic operations and functions defined for them. The following chapters (The BLAS
Interface and Sparse Linear Equations) describe interfaces to several libraries for dense and sparse matrix computa-
tions. The CVXOPT optimization routines are described in the chapters Cone Programming and Modeling. These
include convex optimization solvers written in Python, interfaces to a few other optimization libraries, and a modeling
tool for piecewise-linear convex optimization problems.

CVXOPT is organized in different modules.

cvxopt.blas Interface to most of the double-precision real and complex BLAS (The BLAS Interface).

cvxopt.lapack Interface to dense double-precision real and complex linear equation solvers and eigenvalue rou-
tines from LAPACK (The LAPACK Interface).

cvxopt.fftw An optional interface to the discrete transform routines from FFTW (Discrete Transforms).

cvxopt.amd Interface to the approximate minimum degree ordering routine from AMD (Matrix Orderings).

cvxopt.umfpack Interface to the sparse LU solver from UMFPACK (General Linear Equations).

cvxopt.cholmod Interface to the sparse Cholesky solver from CHOLMOD (Positive Definite Linear Equations).

cvxopt.solvers Convex optimization routines and optional interfaces to solvers from GLPK, MOSEK, and
DSDP5 (Cone Programming and Nonlinear Convex Optimization).

cvxopt.modeling Routines for specifying and solving linear programs and convex optimization problems with
piecewise-linear cost and constraint functions (Modeling).

cvxopt.info Defines a string version with the version number of the CVXOPT installation and a function
license that prints the CVXOPT license.

5



CVXOPT Documentation, Release 1.3.2

cvxopt.printing Contains functions and parameters that control how matrices are formatted.

The modules are described in detail in this manual and in the on-line Python help facility pydoc. Several example
scripts are included in the distribution.

6 Chapter 2. Introduction



CHAPTER 3

Dense and Sparse Matrices

This chapter describes the two CVXOPT matrix types: matrix objects, used for dense matrix computations, and
spmatrix objects, used for sparse matrix computations.

3.1 Dense Matrices

A dense matrix is created by calling the function matrix. The arguments specify the values of the coefficients, the
dimensions, and the type (integer, double, or complex) of the matrix.

cvxopt.matrix(x[, size[, tc]])
size is a tuple of length two with the matrix dimensions. The number of rows and/or the number of columns
can be zero.

tc stands for type code. The possible values are 'i', 'd', and 'z', for integer, real (double), and complex
matrices, respectively.

x can be a number, a sequence of numbers, a dense or sparse matrix, a one- or two-dimensional NumPy array,
or a list of lists of matrices and numbers.

• If x is a number (Python integer, float, or complex number), a matrix is created with the dimensions
specified by size and with all the coefficients equal to x. The default value of size is (1,1), and the
default value of tc is the type of x. If necessary, the type of x is converted (from integer to double when
used to create a matrix of type 'd', and from integer or double to complex when used to create a matrix
of type 'z').

>>> from cvxopt import matrix
>>> A = matrix(1, (1,4))
>>> print(A)
[ 1 1 1 1]
>>> A = matrix(1.0, (1,4))
>>> print(A)
[ 1.00e+00 1.00e+00 1.00e+00 1.00e+00]
>>> A = matrix(1+1j)

(continues on next page)

7



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

>>> print(A)
[ 1.00e+00+j1.00e+00]

• If x is a sequence of numbers (list, tuple, array, array array, . . . ), then the numbers are interpreted as the
coefficients of a matrix in column-major order. The length of x must be equal to the product of size[0]
and size[1]. If size is not specified, a matrix with one column is created. If tc is not specified, it
is determined from the elements of x (and if that is impossible, for example because x is an empty list, a
value 'i' is used). Type conversion takes place as for scalar x.

The following example shows several ways to define the same integer matrix.

>>> A = matrix([0, 1, 2, 3], (2,2))
>>> A = matrix((0, 1, 2, 3), (2,2))
>>> A = matrix(range(4), (2,2))
>>> from array import array
>>> A = matrix(array('i', [0,1,2,3]), (2,2))
>>> print(A)
[ 0 2]
[ 1 3]

In Python 2.7 the following also works.

>>> A = matrix(xrange(4), (2,2))

• If x is a dense or sparse matrix, then the coefficients of x are copied, in column-major order, to a new
matrix of the given size. The total number of elements in the new matrix (the product of size[0]
and size[1]) must be the same as the product of the dimensions of x. If size is not specified, the
dimensions of x are used. The default value of tc is the type of x. Type conversion takes place when the
type of x differs from tc, in a similar way as for scalar x.

>>> A = matrix([1., 2., 3., 4., 5., 6.], (2,3))
>>> print(A)
[ 1.00e+00 3.00e+00 5.00e+00]
[ 2.00e+00 4.00e+00 6.00e+00]
>>> B = matrix(A, (3,2))
>>> print(B)
[ 1.00e+00 4.00e+00]
[ 2.00e+00 5.00e+00]
[ 3.00e+00 6.00e+00]
>>> C = matrix(B, tc='z')
>>> print(C)
[ 1.00e+00-j0.00e+00 4.00e+00-j0.00e+00]
[ 2.00e+00-j0.00e+00 5.00e+00-j0.00e+00]
[ 3.00e+00-j0.00e+00 6.00e+00-j0.00e+00]

NumPy arrays can be converted to matrices.

>>> from numpy import array
>>> x = array([[1., 2., 3.], [4., 5., 6.]])
>>> x
array([[ 1. 2. 3.]

[ 4. 5. 6.]])
>>> print(matrix(x))
[ 1.00e+00 2.00e+00 3.00e+00]
[ 4.00e+00 5.00e+00 6.00e+00]

• If x is a list of lists of dense or sparse matrices and numbers (Python integer, float, or complex), then each

8 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

element of x is interpreted as a block-column stored in column-major order. If size is not specified, the
block-columns are juxtaposed to obtain a matrix with len(x) block-columns. If size is specified, then
the matrix with len(x) block-columns is resized by copying its elements in column-major order into a
matrix of the dimensions given by size. If tc is not specified, it is determined from the elements of x
(and if that is impossible, for example because x is a list of empty lists, a value 'i' is used). The same
rules for type conversion apply as for scalar x.

>>> print(matrix([[1., 2.], [3., 4.], [5., 6.]]))
[ 1.00e+00 3.00e+00 5.00e+00]
[ 2.00e+00 4.00e+00 6.00e+00]
>>> A1 = matrix([1, 2], (2,1))
>>> B1 = matrix([6, 7, 8, 9, 10, 11], (2,3))
>>> B2 = matrix([12, 13, 14, 15, 16, 17], (2,3))
>>> B3 = matrix([18, 19, 20], (1,3))
>>> C = matrix([[A1, 3.0, 4.0, 5.0], [B1, B2, B3]])
>>> print(C)
[ 1.00e+00 6.00e+00 8.00e+00 1.00e+01]
[ 2.00e+00 7.00e+00 9.00e+00 1.10e+01]
[ 3.00e+00 1.20e+01 1.40e+01 1.60e+01]
[ 4.00e+00 1.30e+01 1.50e+01 1.70e+01]
[ 5.00e+00 1.80e+01 1.90e+01 2.00e+01]

A matrix with a single block-column can be represented by a single list (i.e., if x is a list of lists, and has
length one, then the argument x can be replaced by x[0]).

>>> D = matrix([B1, B2, B3])
>>> print(D)
[ 6 8 10]
[ 7 9 11]
[ 12 14 16]
[ 13 15 17]
[ 18 19 20]

3.2 Sparse Matrices

A general spmatrix object can be thought of as a triplet description of a sparse matrix, i.e., a list of entries of the
matrix, with for each entry the value, row index, and column index. Entries that are not included in the list are assumed
to be zero. For example, the sparse matrix

𝐴 =

⎡⎢⎢⎣
0 2 0 0 3
2 0 0 0 0

−1 −2 0 4 0
0 0 1 0 0

⎤⎥⎥⎦
has the triplet description

(2, 1, 0), (−1, 2, 0), (2, 0, 1), (−2, 2, 1), (1, 3, 2), (4, 2, 3), (3, 0, 4).

The list may include entries with a zero value, so triplet descriptions are not necessarily unique. The list

(2, 1, 0), (−1, 2, 0), (0, 3, 0), (2, 0, 1), (−2, 2, 1), (1, 3, 2), (4, 2, 3), (3, 0, 4)

is another triplet description of the same matrix.

An spmatrix object corresponds to a particular triplet description of a sparse matrix. We will refer to the entries in
the triplet description as the nonzero entries of the object, even though they may have a numerical value zero.

3.2. Sparse Matrices 9



CVXOPT Documentation, Release 1.3.2

Three functions are provided to create sparse matrices. The first, spmatrix, constructs a sparse matrix from a triplet
description.

cvxopt.spmatrix(x, I, J[, size[, tc]])
I and J are sequences of integers (lists, tuples, array arrays, . . . ) or integer matrices (matrix objects with
typecode 'i'), containing the row and column indices of the nonzero entries. The lengths of I and J must
be equal. If they are matrices, they are treated as lists of indices stored in column-major order, i.e., as lists
list(I), respectively, list(J).

size is a tuple of nonnegative integers with the row and column dimensions of the matrix. The size argument
is only needed when creating a matrix with a zero last row or last column. If size is not specified, it is
determined from I and J: the default value for size[0] is max(I)+1 if I is nonempty and zero otherwise.
The default value for size[1] is max(J)+1 if J is nonempty and zero otherwise.

tc is the typecode, 'd' or 'z', for double and complex matrices, respectively. Integer sparse matrices are not
implemented.

x can be a number, a sequence of numbers, or a dense matrix. This argument specifies the numerical values of
the nonzero entries.

• If x is a number (Python integer, float, or complex), a matrix is created with the sparsity pattern defined by
I and J, and nonzero entries initialized to the value of x. The default value of tc is 'd' if x is integer or
float, and 'z' if x is complex.

The following code creates a 4 by 4 sparse identity matrix.

>>> from cvxopt import spmatrix
>>> A = spmatrix(1.0, range(4), range(4))
>>> print(A)

[ 1.00e+00 0 0 0 ]
[ 0 1.00e+00 0 0 ]
[ 0 0 1.00e+00 0 ]
[ 0 0 0 1.00e+00]

• If x is a sequence of numbers, a sparse matrix is created with the entries of x copied to the entries indexed
by I and J. The list x must have the same length as I and J. The default value of tc is determined from
the elements of x: 'd' if x contains integers and floating-point numbers or if x is an empty list, and 'z'
if x contains at least one complex number.

>>> A = spmatrix([2,-1,2,-2,1,4,3], [1,2,0,2,3,2,0], [0,0,1,1,2,3,4])
>>> print(A)

[ 0 2.00e+00 0 0 3.00e+00]
[ 2.00e+00 0 0 0 0 ]
[-1.00e+00 -2.00e+00 0 4.00e+00 0 ]
[ 0 0 1.00e+00 0 0 ]

• If x is a dense matrix, a sparse matrix is created with all the entries of x copied, in column-major order,
to the entries indexed by I and J. The matrix x must have the same length as I and J. The default value
of tc is 'd' if x is an 'i' or 'd' matrix, and 'z' otherwise. If I and J contain repeated entries, the
corresponding values of the coefficients are added.

The function sparse constructs a sparse matrix from a block-matrix description.

cvxopt.sparse(x[, tc])
tc is the typecode, 'd' or 'z', for double and complex matrices, respectively.

x can be a matrix, spmatrix, or a list of lists of matrices (matrix or spmatrix objects) and numbers
(Python integer, float, or complex).

10 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

• If x is a matrix or spmatrix object, then a sparse matrix of the same size and the same numerical value
is created. Numerical zeros in x are treated as structural zeros and removed from the triplet description of
the new sparse matrix.

• If x is a list of lists of matrices (matrix or spmatrix objects) and numbers (Python integer, float, or
complex) then each element of x is interpreted as a (block-)column matrix stored in colum-major order,
and a block-matrix is constructed by juxtaposing the len(x) block-columns (as in matrix). Numerical
zeros are removed from the triplet description of the new matrix.

>>> from cvxopt import matrix, spmatrix, sparse
>>> A = matrix([[1., 2., 0.], [2., 1., 2.], [0., 2., 1.]])
>>> print(A)
[ 1.00e+00 2.00e+00 0.00e+00]
[ 2.00e+00 1.00e+00 2.00e+00]
[ 0.00e+00 2.00e+00 1.00e+00]
>>> B = spmatrix([], [], [], (3,3))
>>> print(B)
[0 0 0]
[0 0 0]
[0 0 0]
>>> C = spmatrix([3, 4, 5], [0, 1, 2], [0, 1, 2])
>>> print(C)
[ 3.00e+00 0 0 ]
[ 0 4.00e+00 0 ]
[ 0 0 5.00e+00]
>>> D = sparse([[A, B], [B, C]])
>>> print(D)
[ 1.00e+00 2.00e+00 0 0 0 0 ]
[ 2.00e+00 1.00e+00 2.00e+00 0 0 0 ]
[ 0 2.00e+00 1.00e+00 0 0 0 ]
[ 0 0 0 3.00e+00 0 0 ]
[ 0 0 0 0 4.00e+00 0 ]
[ 0 0 0 0 0 5.00e+00]

A matrix with a single block-column can be represented by a single list.

>>> D = sparse([A, C])
>>> print(D)
[ 1.00e+00 2.00e+00 0 ]
[ 2.00e+00 1.00e+00 2.00e+00]
[ 0 2.00e+00 1.00e+00]
[ 3.00e+00 0 0 ]
[ 0 4.00e+00 0 ]
[ 0 0 5.00e+00]

The function spdiag constructs a block-diagonal sparse matrix from a list of matrices.

cvxopt.spdiag(x)
x is a dense or sparse matrix with a single row or column, or a list of square dense or sparse matrices or scalars.
If x is a matrix, a sparse diagonal matrix is returned with the entries of x on its diagonal. If x is list, a sparse
block-diagonal matrix is returned with the elements in the list as its diagonal blocks.

>>> from cvxopt import matrix, spmatrix, spdiag
>>> A = 3.0
>>> B = matrix([[1,-2],[-2,1]])
>>> C = spmatrix([1,1,1,1,1],[0,1,2,0,0,],[0,0,0,1,2])
>>> D = spdiag([A, B, C])
>>> print(D)

(continues on next page)

3.2. Sparse Matrices 11



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 3.00e+00 0 0 0 0 0 ]
[ 0 1.00e+00 -2.00e+00 0 0 0 ]
[ 0 -2.00e+00 1.00e+00 0 0 0 ]
[ 0 0 0 1.00e+00 1.00e+00 1.00e+00]
[ 0 0 0 1.00e+00 0 0 ]
[ 0 0 0 1.00e+00 0 0 ]

3.3 Arithmetic Operations

The following table lists the arithmetic operations defined for dense and sparse matrices. In the table A and B are dense
or sparse matrices of compatible dimensions, c is a scalar (a Python number or a dense 1 by 1 matrix), D is a dense
matrix, and e is a Python number.

Unary plus/minus +A, -A
Addition A + B, A + c, c + A
Subtraction A - B, A - c, c - A
Matrix multiplication A * B
Scalar multiplication and division c * A, A * c, A / c
Remainder after division D % c
Elementwise exponentiation D**e

The type of the result of these operations generally follows the Python conventions. For example, if A and c are
integer, then in Python 2 the division A/c is interpreted as integer division and results in a type 'i' matrix, while in
Python 3 it is interpreted as standard divison and results in a type 'd' matrix. An exception to the Python conventions
is elementwise exponentiation: if D is an integer matrix and e is an integer number than D**e is a matrix of type 'd'.

Addition, subtraction, and matrix multiplication with two matrix operands result in a sparse matrix if both matrices
are sparse, and in a dense matrix otherwise. The result of a scalar multiplication or division is dense if A is dense,
and sparse if A is sparse. Postmultiplying a matrix with a number c means the same as premultiplying, i.e., scalar
multiplication. Dividing a matrix by c means dividing all its entries by c.

If c in the expressions A+c, c+A, A-c, c-A is a number, then it is interpreted as a dense matrix with the same
dimensions as A, type given by the type of c, and all its entries equal to c. If c is a 1 by 1 dense matrix and A is not 1
by 1, then c is interpreted as a dense matrix with the same size of A and all entries equal to c[0].

If c is a 1 by 1 dense matrix, then, if possible, the products c*A and A*c are interpreted as matrix-matrix products. If
the product cannot be interpreted as a matrix-matrix product because the dimensions of A are incompatible, then the
product is interpreted as the scalar multiplication with c[0]. The division A/c and remainder A%c with c a 1 by 1
matrix are always interpreted as A/c[0], resp., A%c[0].

The following in-place operations are also defined, but only if they do not change the type (sparse or dense, integer,
real, or complex) of the matrix A. These in-place operations do not return a new matrix but modify the existing object
A.

In-place addition A += B, A += c
In-place subtraction A -= B, A -= c
In-place scalar multiplication and division A *= c, A /= c
In-place remainder A %= c

For example, if A has typecode 'i', then A += B is allowed if B has typecode 'i'. It is not allowed if B has
typecode 'd' or 'z' because the addition A+B results in a 'd' or 'z' matrix and therefore cannot be assigned to

12 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

A without changing its type. As another example, if A is a sparse matrix, then A += 1.0 is not allowed because the
operation A = A + 1.0 results in a dense matrix, so it cannot be assigned to A without changing its type.

In-place matrix-matrix products are not allowed. (Except when c is a 1 by 1 dense matrix, in which case A *= c is
interpreted as the scalar product A *= c[0].)

In-place remainder is only defined for dense A.

It is important to know when a matrix operation creates a new object. The following rules apply.

• A simple assignment (A = B) is given the standard Python interpretation, i.e., it assigns to the variable A a
reference (or pointer) to the object referenced by B.

>>> B = matrix([[1.,2.], [3.,4.]])
>>> print(B)
[ 1.00e+00 3.00e+00]
[ 2.00e+00 4.00e+00]
>>> A = B
>>> A[0,0] = -1
>>> print(B) # modifying A[0,0] also modified B[0,0]
[-1.00e+00 3.00e+00]
[ 2.00e+00 4.00e+00]

• The regular (i.e., not in-place) arithmetic operations always return new objects.

>>> B = matrix([[1.,2.], [3.,4.]])
>>> A = +B
>>> A[0,0] = -1
>>> print(B) # modifying A[0,0] does not modify B[0,0]
[ 1.00e+00 3.00e+00]
[ 2.00e+00 4.00e+00]

• The in-place operations directly modify the coefficients of the existing matrix object and do not create a new
object.

>>> B = matrix([[1.,2.], [3.,4.]])
>>> A = B
>>> A *= 2
>>> print(B) # in-place operation also changed B
[ 2.00e+00 6.00e+00]
[ 4.00e+00 8.00e+00]
>>> A = 2*A
>>> print(B) # regular operation creates a new A, so does not change B
[ 2.00e+00 6.00e+00]
[ 4.00e+00 8.00e+00]

3.4 Indexing and Slicing

Matrices can be indexed using one or two arguments. In single-argument indexing of a matrix A, the index runs from
-len(A) to len(A)-1, and is interpreted as an index in the one-dimensional array of coefficients of A in column-
major order. Negative indices have the standard Python interpretation: for negative k, A[k] is the same element as
A[len(A) + k].

Four different types of one-argument indexing are implemented.

1. The index can be a single integer. This returns a number, e.g., A[0] is the first element of A.

3.4. Indexing and Slicing 13



CVXOPT Documentation, Release 1.3.2

2. The index can be an integer matrix. This returns a column matrix: the command A[matrix([0,1,2,3])]
returns the 4 by 1 matrix consisting of the first four elements of A. The size of the index matrix is ignored:
A[matrix([0,1,2,3], (2,2))] returns the same 4 by 1 matrix.

3. The index can be a list of integers. This returns a column matrix, e.g., A[[0,1,2,3]] is the 4 by 1 matrix
consisting of elements 0, 1, 2, 3 of A.

4. The index can be a Python slice. This returns a matrix with one column (possibly 0 by 1, or 1 by 1). For
example, A[::2] is the column matrix defined by taking every other element of A, stored in column-major
order. A[0:0] is a matrix with size (0,1).

Thus, single-argument indexing returns a scalar (if the index is an integer), or a matrix with one column. This is
consistent with the interpretation that single-argument indexing accesses the matrix in column-major order.

Note that an index list or an index matrix are equivalent, but they are both useful, especially when we perform opera-
tions on index sets. For example, if I and J are lists then I+J is the concatenated list, and 2*I is I repeated twice. If
they are matrices, these operations are interpreted as arithmetic operations. For large index sets, indexing with integer
matrices is also faster than indexing with lists.

The following example illustrates one-argument indexing.

>>> from cvxopt import matrix, spmatrix
>>> A = matrix(range(16), (4,4), 'd')
>>> print(A)
[ 0.00e+00 4.00e+00 8.00e+00 1.20e+01]
[ 1.00e+00 5.00e+00 9.00e+00 1.30e+01]
[ 2.00e+00 6.00e+00 1.00e+01 1.40e+01]
[ 3.00e+00 7.00e+00 1.10e+01 1.50e+01]
>>> A[4]
4.0
>>> I = matrix([0, 5, 10, 15])
>>> print(A[I]) # the diagonal
[ 0.00e+00]
[ 5.00e+00]
[ 1.00e+01]
[ 1.50e+01]
>>> I = [0,2]; J = [1,3]
>>> print(A[2*I+J]) # duplicate I and append J
[ 0.00e+00]
[ 2.00e+00]
[ 0.00e+00]
[ 2.00e+00]
[ 1.00e+00]
[ 3.00e+00]
>>> I = matrix([0, 2]); J = matrix([1, 3])
>>> print(A[2*I+J]) # multiply I by 2 and add J
[ 1.00e+00]
[ 7.00e+00]
>>> print(A[4::4]) # get every fourth element skipping the first four
[ 4.00e+00]
[ 8.00e+00]
[ 1.20e+01]

In two-argument indexing the arguments can be any combinations of the four types listed above. The first argument
indexes the rows of the matrix and the second argument indexes the columns. If both indices are scalars, then a scalar
is returned. In all other cases, a matrix is returned. We continue the example.

>>> print(A[:,1])
[ 4.00e+00]

(continues on next page)

14 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 5.00e+00]
[ 6.00e+00]
[ 7.00e+00]
>>> J = matrix([0, 2])
>>> print(A[J,J])
[ 0.00e+00 8.00e+00]
[ 2.00e+00 1.00e+01]
>>> print(A[:2, -2:])
[ 8.00e+00 1.20e+01]
[ 9.00e+00 1.30e+01]
>>> A = spmatrix([0,2,-1,2,-2,1], [0,1,2,0,2,1], [0,0,0,1,1,2])
>>> print(A[:, [0,1]])
[ 0.00e+00 2.00e+00]
[ 2.00e+00 0 ]
[-1.00e+00 -2.00e+00]
>>> B = spmatrix([0,2*1j,0,-2], [1,2,1,2], [0,0,1,1,])
>>> print(B[-2:,-2:])
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00]
[ 0.00e+00+j2.00e+00 -2.00e+00-j0.00e+00]

Expressions of the form A[I] or A[I,J] can also appear on the left-hand side of an assignment. The right-hand
side must be a scalar (i.e., a number or a 1 by 1 dense matrix), a sequence of numbers, or a dense or sparse matrix. If
the right-hand side is a scalar, it is interpreted as a dense matrix with identical entries and the dimensions of the left-
hand side. If the right-hand side is a sequence of numbers (list, tuple, array array, range object, . . . ) its values are
interpreted as the coefficients of a dense matrix in column-major order. If the right-hand side is a matrix (matrix or
spmatrix), it must have the same size as the left-hand side. Sparse matrices are converted to dense in the assignment
to a dense matrix.

Indexed assignments are only allowed if they do not change the type of the matrix. For example, if A is a matrix with
type 'd', then A[I] = B is only permitted if B is an integer, a float, or a matrix of type 'i' or 'd'. If A is an
integer matrix, then A[I] = B is only permitted if B is an integer or an integer matrix.

The following examples illustrate indexed assignment.

>>> A = matrix(range(16), (4,4))
>>> A[::2,::2] = matrix([[-1, -2], [-3, -4]])
>>> print(A)
[ -1 4 -3 12]
[ 1 5 9 13]
[ -2 6 -4 14]
[ 3 7 11 15]
>>> A[::5] += 1
>>> print(A)
[ 0 4 -3 12]
[ 1 6 9 13]
[ -2 6 -3 14]
[ 3 7 11 16]
>>> A[0,:] = -1, 1, -1, 1
>>> print(A)
[ -1 1 -1 1]
[ 1 6 9 13]
[ -2 6 -3 14]
[ 3 7 11 16]
>>> A[2:,2:] = range(4)
>>> print(A)
[ -1 1 -1 1]
[ 1 6 9 13]

(continues on next page)

3.4. Indexing and Slicing 15



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ -2 6 0 2]
[ 3 7 1 3]
>>> A = spmatrix([0,2,-1,2,-2,1], [0,1,2,0,2,1], [0,0,0,1,1,2])
>>> print(A)
[ 0.00e+00 2.00e+00 0 ]
[ 2.00e+00 0 1.00e+00]
[-1.00e+00 -2.00e+00 0 ]
>>> C = spmatrix([10,-20,30], [0,2,1], [0,0,1])
>>> print(C)
[ 1.00e+01 0 ]
[ 0 3.00e+01]
[-2.00e+01 0 ]
>>> A[:,0] = C[:,0]
>>> print(A)
[ 1.00e+01 2.00e+00 0 ]
[ 0 0 1.00e+00]
[-2.00e+01 -2.00e+00 0 ]
>>> D = matrix(range(6), (3,2))
>>> A[:,0] = D[:,0]
>>> print(A)
[ 0.00e+00 2.00e+00 0 ]
[ 1.00e+00 0 1.00e+00]
[ 2.00e+00 -2.00e+00 0 ]
>>> A[:,0] = 1
>>> print(A)
[ 1.00e+00 2.00e+00 0 ]
[ 1.00e+00 0 1.00e+00]
[ 1.00e+00 -2.00e+00 0 ]
>>> A[:,0] = 0
>>> print(A)
[ 0.00e+00 2.00e+00 0 ]
[ 0.00e+00 0 1.00e+00]
[ 0.00e+00 -2.00e+00 0 ]

3.5 Attributes and Methods

Dense and sparse matrices have the following attributes.

size
A tuple with the dimensions of the matrix. The size of the matrix can be changed by altering this attribute, as
long as the number of elements in the matrix remains unchanged.

typecode
A character, either 'i', 'd', or 'z', for integer, real, and complex matrices, respectively. A read-only at-
tribute.

trans()
Returns the transpose of the matrix as a new matrix. One can also use A.T instead of A.trans().

ctrans()
Returns the conjugate transpose of the matrix as a new matrix. One can also use A.H instead of A.ctrans().

real()
For complex matrices, returns the real part as a real matrix. For integer and real matrices, returns a copy of the
matrix.

16 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

imag()
For complex matrices, returns the imaginary part as a real matrix. For integer and real matrices, returns an
integer or real zero matrix.

In addition, sparse matrices have the following attributes.

V
A single-column dense matrix containing the numerical values of the nonzero entries in column-major order.
Making an assignment to the attribute is an efficient way of changing the values of the sparse matrix, without
changing the sparsity pattern.

When the attribute V is read, a copy of V is returned, as a new dense matrix. This implies, for example, that an
indexed assignment A.V[I] = B does not work, or at least cannot be used to modify A. Instead the attribute
V will be read and returned as a new matrix; then the elements of this new matrix are modified.

I
A single-column integer dense matrix with the row indices of the entries in V . A read-only attribute.

J
A single-column integer dense matrix with the column indices of the entries in V . A read-only attribute.

CCS
A triplet (column pointers, row indices, values) with the compressed-column-storage representation of the ma-
trix. A read-only attribute. This attribute can be used to export sparse matrices to other packages such as
MOSEK.

The next example below illustrates assignments to V .

>>> from cvxopt import spmatrix, matrix
>>> A = spmatrix(range(5), [0,1,1,2,2], [0,0,1,1,2])
>>> print(A)
[ 0.00e+00 0 0 ]
[ 1.00e+00 2.00e+00 0 ]
[ 0 3.00e+00 4.00e+00]
>>> B = spmatrix(A.V, A.J, A.I, (4,4)) # transpose and add a zero row and column
>>> print(B)
[ 0.00e+00 1.00e+00 0 0 ]
[ 0 2.00e+00 3.00e+00 0 ]
[ 0 0 4.00e+00 0 ]
[ 0 0 0 0 ]
>>> B.V = matrix([1., 7., 8., 6., 4.]) # assign new values to nonzero entries
>>> print(B)
[ 1.00e+00 7.00e+00 0 0 ]
[ 0 8.00e+00 6.00e+00 0 ]
[ 0 0 4.00e+00 0 ]
[ 0 0 0 0 ]

The following attributes and methods are defined for dense matrices.

tofile(f)
Writes the elements of the matrix in column-major order to a binary file f.

fromfile(f)
Reads the contents of a binary file f into the matrix object.

The last two methods are illustrated in the following examples.

>>> from cvxopt import matrix, spmatrix
>>> A = matrix([[1.,2.,3.], [4.,5.,6.]])
>>> print(A)

(continues on next page)

3.5. Attributes and Methods 17



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 1.00e+00 4.00e+00]
[ 2.00e+00 5.00e+00]
[ 3.00e+00 6.00e+00]
>>> f = open('mat.bin','wb')
>>> A.tofile(f)
>>> f.close()
>>> B = matrix(0.0, (2,3))
>>> f = open('mat.bin','rb')
>>> B.fromfile(f)
>>> f.close()
>>> print(B)
[ 1.00e+00 3.00e+00 5.00e+00]
[ 2.00e+00 4.00e+00 6.00e+00]
>>> A = spmatrix(range(5), [0,1,1,2,2], [0,0,1,1,2])
>>> f = open('test.bin','wb')
>>> A.V.tofile(f)
>>> A.I.tofile(f)
>>> A.J.tofile(f)
>>> f.close()
>>> f = open('test.bin','rb')
>>> V = matrix(0.0, (5,1)); V.fromfile(f)
>>> I = matrix(0, (5,1)); I.fromfile(f)
>>> J = matrix(0, (5,1)); J.fromfile(f)
>>> B = spmatrix(V, I, J)
>>> print(B)
[ 0.00e+00 0 0 ]
[ 1.00e+00 2.00e+00 0 ]
[ 0 3.00e+00 4.00e+00]

Note that the dump and load functions in the pickle module offer a convenient alternative for writing matrices to
files and reading matrices from files.

3.6 Built-In Functions

Many Python built-in functions and operations can be used with matrix arguments. We list some useful examples.

len(x)
If x is a dense matrix, returns the product of the number of rows and the number of columns. If x is a sparse
matrix, returns the number of nonzero entries.

bool([x ])
Returns False if x is a zero matrix and True otherwise.

max(x)
If x is a dense matrix, returns the maximum element of x. If x is a sparse, returns the maximum nonzero element
of x.

min(x)
If x is a dense matrix, returns the minimum element of x. If x is a sparse matrix, returns the minimum nonzero
element of x.

abs(x)
Returns a matrix with the absolute values of the elements of x.

sum(x[, start = 0.0])
Returns the sum of start and the elements of x.

18 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

Dense and sparse matrices can be used as arguments to the list, tuple, zip, map, and filter functions de-
scribed in the Python Library Reference. However, one should note that when used with sparse matrix arguments,
these functions only consider the nonzero entries. For example, list(A) and tuple(A) construct a list, respec-
tively a tuple, from the elements of A if A is dense, and of the nonzero elements of A if A is sparse.

list(zip(A, B, ...)) returns a list of tuples, with the i-th tuple containing the i-th elements (or nonzero
elements) of A, B, . . . .

>>> from cvxopt import matrix
>>> A = matrix([[-11., -5., -20.], [-6., 0., 7.]])
>>> B = matrix(range(6), (3,2))
>>> list(A)
[-11.0, -5.0, -20.0, -6.0, 0.0, 7.0]
>>> tuple(B)
(0, 1, 2, 3, 4, 5)
>>> list(zip(A, B))
[(-11.0, 0), (-5.0, 1), (-20.0, 2), (-6.0, 3), (0.0, 4), (7.0, 5)]

list(map(f, A)), where f is a function and A is a dense matrix, returns a list constructed by applying f to
each element of A. If A is sparse, the function f is applied to each nonzero element of A. Multiple arguments can be
provided, for example, as in map(f, A, B), if f is a function with two arguments. In the following example, we
return an integer 0-1 matrix with the result of an elementwise comparison.

>>> A = matrix([ [0.5, -0.1, 2.0], [1.5, 0.2, -0.1], [0.3, 1.0, 0.0]])
>>> print(A)
[ 5.00e-01 1.50e+00 3.00e-01]
[-1.00e-01 2.00e-01 1.00e+00]
[ 2.00e+00 -1.00e-01 0.00e+00]
>>> print(matrix(list(map(lambda x: 0 <= x <= 1, A)), A.size))
[ 1 0 1]
[ 0 1 1]
[ 0 0 1]

list(filter(f, A)), where f is a function and A is a matrix, returns a list containing the elements of A (or
nonzero elements of A is A is sparse) for which f is true.

>>> A = matrix([[5, -4, 10, -7], [-1, -5, -6, 2], [6, 1, 5, 2], [-1, 2, -3, -7]])
>>> print(A)
[ 5 -1 6 -1]
[ -4 -5 1 2]
[ 10 -6 5 -3]
[ -7 2 2 -7]
>>> list(filter(lambda x: x%2, A)) # list of odd elements in A
[5, -7, -1, -5, 1, 5, -1, -3, -7]
>>> list(filter(lambda x: -2 < x < 3, A)) # list of elements between -2 and 3
[-1, 2, 1, 2, -1, 2]

It is also possible to iterate over matrix elements, as illustrated in the following example.

>>> A = matrix([[5, -3], [9, 11]])
>>> for x in A: print(max(x,0))
...
5
0
9
11
>>> [max(x,0) for x in A]
[5, 0, 9, 11]

3.6. Built-In Functions 19



CVXOPT Documentation, Release 1.3.2

The expression x in A returns True if an element of A (or a nonzero element of A if A is sparse) is equal to x and
False otherwise.

3.7 Other Matrix Functions

The following functions can be imported from CVXOPT.

cvxopt.sqrt(x)
The elementwise square root of a dense matrix x. The result is returned as a real matrix if x is an integer or
real matrix and as a complex matrix if x is a complex matrix. Raises an exception when x is an integer or real
matrix with negative elements.

As an example we take the elementwise square root of the sparse matrix

𝐴 =

⎡⎢⎢⎣
0 2 0 0 3
2 0 0 0 0
1 2 0 4 0
0 0 1 0 0

⎤⎥⎥⎦
>>> from cvxopt import spmatrix, sqrt
>>> A = spmatrix([2,1,2,2,1,3,4], [1,2,0,2,3,0,2], [0,0,1,1,2,3,3])
>>> B = spmatrix(sqrt(A.V), A.I, A.J)
>>> print(B)
[ 0 1.41e+00 0 1.73e+00]
[ 1.41e+00 0 0 0 ]
[ 1.00e+00 1.41e+00 0 2.00e+00]
[ 0 0 1.00e+00 0 ]

cvxopt.sin(x)
The sine function applied elementwise to a dense matrix x. The result is returned as a real matrix if x is an
integer or real matrix and as a complex matrix otherwise.

cvxopt.cos(x)
The cosine function applied elementwise to a dense matrix x. The result is returned as a real matrix if x is an
integer or real matrix and as a complex matrix otherwise.

cvxopt.exp(x)
The exponential function applied elementwise to a dense matrix x. The result is returned as a real matrix if x is
an integer or real matrix and as a complex matrix otherwise.

cvxopt.log(x)
The natural logarithm applied elementwise to a dense matrix x. The result is returned as a real matrix if x is
an integer or real matrix and as a complex matrix otherwise. Raises an exception when x is an integer or real
matrix with nonpositive elements, or a complex matrix with zero elements.

cvxopt.mul(x0[, x1[, x2 ...]])
If the arguments are dense or sparse matrices of the same size, returns the elementwise product of its arguments.
The result is a sparse matrix if one or more of its arguments is sparse, and a dense matrix otherwise.

If the arguments include scalars, a scalar product with the scalar is made. (A 1 by 1 dense matrix is treated as a
scalar if the dimensions of the other arguments are not all 1 by 1.)

mul can also be called with an iterable (list, tuple, range object, or generator) as its single argument, if the
iterable generates a list of dense or sparse matrices or scalars.

20 Chapter 3. Dense and Sparse Matrices



CVXOPT Documentation, Release 1.3.2

>>> from cvxopt import matrix, spmatrix, mul
>>> A = matrix([[1.0, 2.0], [3.0, 4.0]])
>>> B = spmatrix([2.0, 3.0], [0, 1], [0, 1])
>>> print(mul(A, B, -1.0))
[-2.00e+00 0 ]
[ 0 -1.20e+01]
>>> print(mul( matrix([k, k+1]) for k in [1,2,3] ))
[ 6]
[ 24]

cvxopt.div(x, y)
Returns the elementwise division of x by y. x is a dense or sparse matrix, or a scalar (Python number of 1 by 1
dense matrix). y is a dense matrix or a scalar.

cvxopt.max(x0[, x1[, x2 ...]])
When called with a single matrix argument, returns the maximum of the elements of the matrix (including the
zero entries, if the matrix is sparse).

When called with multiple arguments, the arguments must be matrices of the same size, or scalars, and the
elementwise maximum is returned. A 1 by 1 dense matrix is treated as a scalar if the other arguments are not all
1 by 1. If one of the arguments is scalar, and the other arguments are not all 1 by 1, then the scalar argument is
interpreted as a dense matrix with all its entries equal to the scalar.

The result is a sparse matrix if all its arguments are sparse matrices. The result is a number if all its arguments
are numbers. The result is a dense matrix if at least one of the arguments is a dense matrix.

max can also be called with an iterable (list, tuple, range object, or generator) as its single argument, if the
iterable generates a list of dense or sparse matrices or scalars.

>>> from cvxopt import matrix, spmatrix, max
>>> A = spmatrix([2, -3], [0, 1], [0, 1])
>>> print(max(A, -A, 1))
[ 2.00e+00 1.00e+00]
[ 1.00e+00 3.00e+00]

It is important to note the difference between this max and the built-in max, explained in the previous section.

>>> from cvxopt import spmatrix
>>> A = spmatrix([-1.0, -2.0], [0,1], [0,1])
>>> max(A) # built-in max of a sparse matrix takes maximum over nonzero
→˓elements
-1.0
>>> max(A, -1.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NotImplementedError: matrix comparison not implemented
>>> from cvxopt import max
>>> max(A) # cvxopt.max takes maximum over all the elements
0.0
>>> print(max(A, -1.5))
[-1.00e+00 0.00e+00]
[ 0.00e+00 -1.50e+00]

cvxopt.min(x0[, x1[, x2 ...]])
When called with a single matrix argument, returns the minimum of the elements of the matrix (including the
zero entries, if the matrix is sparse).

When called with multiple arguments, the arguments must be matrices of the same size, or scalars, and the
elementwise maximum is returned. A 1 by 1 dense matrix is treated as a scalar if the other arguments are not all

3.7. Other Matrix Functions 21



CVXOPT Documentation, Release 1.3.2

1 by 1. If one of the arguments is scalar, and the other arguments are not all 1 by 1, then the scalar argument is
interpreted as a dense matrix with all its entries equal to the scalar.

min can also be called with an iterable (list, tuple, range object, or generator) as its single argument, if the
iterable generates a list of dense or sparse matrices or scalars.

3.8 Randomly Generated Matrices

The CVXOPT package provides two functions normal and uniform for generating randomly distributed matrices.
The default installation relies on the pseudo-random number generators in the Python standard library random. Al-
ternatively, the random number generators in the GNU Scientific Library (GSL) can be used, if this option is selected
during the installation of CVXOPT. The random matrix functions based on GSL are faster than the default functions
based on the random module.

cvxopt.normal(nrows[, ncols = 1[, mean = 0.0[, std = 1.0]]])
Returns a type 'd' dense matrix of size nrows by ncols with elements chosen from a normal distribution
with mean mean and standard deviation std.

cvxopt.uniform(nrows[, ncols = 1[, a = 0.0[, b = 1.0]]])
Returns a type 'd' dense matrix of size nrows by ncols matrix with elements uniformly distributed between
a and b.

cvxopt.setseed([value])
Sets the state of the random number generator. value must be an integer. If value is absent or equal to zero,
the value is taken from the system clock. If the Python random number generators are used, this is equivalent to
random.seed(value).

cvxopt.getseed()
Returns the current state of the random number generator. This function is only available if the GSL random
number generators are installed. (The state of the random number generators in the Python random module
can be managed via the functions random.getstate and random.setstate.)

22 Chapter 3. Dense and Sparse Matrices

http://www.gnu.org/software/gsl


CHAPTER 4

The BLAS Interface

The cvxopt.blas module provides an interface to the double-precision real and complex Basic Linear Algebra
Subprograms (BLAS). The names and calling sequences of the Python functions in the interface closely match the
corresponding Fortran BLAS routines (described in the references below) and their functionality is exactly the same.
Many of the operations performed by the BLAS routines can be implemented in a more straightforward way by using
the matrix arithmetic of the section Arithmetic Operations, combined with the slicing and indexing of the section
Indexing and Slicing. As an example, C = A * B gives the same result as the BLAS call gemm(A, B, C). The
BLAS interface offers two advantages. First, some of the functions it includes are not easily implemented using
the basic matrix arithmetic. For example, BLAS includes functions that efficiently exploit symmetry or triangular
matrix structure. Second, there is a performance difference that can be significant for large matrices. Although our
implementation of the basic matrix arithmetic makes internal calls to BLAS, it also often requires creating temporary
matrices to store intermediate results. The BLAS functions on the other hand always operate directly on their matrix
arguments and never require any copying to temporary matrices. Thus they can be viewed as generalizations of the
in-place matrix addition and scalar multiplication of the section Arithmetic Operations to more complicated operations.

See also:

• C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms for Fortran Use,
ACM Transactions on Mathematical Software, 5(3), 309-323, 1975.

• J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An Extended Set of Fortran Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software, 14(1), 1-17, 1988.

• J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A Set of Level 3 Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software, 16(1), 1-17, 1990.

4.1 Matrix Classes

The BLAS exploit several types of matrix structure: symmetric, Hermitian, triangular, and banded. We represent all
these matrix classes by dense real or complex matrix objects, with additional arguments that specify the structure.

Vector A real or complex 𝑛-vector is represented by a matrix of type 'd' or 'z' and length 𝑛, with the entries of
the vector stored in column-major order.

23



CVXOPT Documentation, Release 1.3.2

General matrix A general real or complex 𝑚 by 𝑛 matrix is represented by a real or complex matrix of size (𝑚,
𝑛).

Symmetric matrix A real or complex symmetric matrix of order 𝑛 is represented by a real or complex matrix of
size (𝑛, 𝑛), and a character argument uplo with two possible values: 'L' and 'U'. If uplo is 'L', the lower
triangular part of the symmetric matrix is stored; if uplo is 'U', the upper triangular part is stored. A square
matrix X of size (𝑛, 𝑛) can therefore be used to represent the symmetric matrices⎡⎢⎢⎢⎢⎢⎣

𝑋[0, 0] 𝑋[1, 0] 𝑋[2, 0] · · · 𝑋[𝑛− 1, 0]
𝑋[1, 0] 𝑋[1, 1] 𝑋[2, 1] · · · 𝑋[𝑛− 1, 1]
𝑋[2, 0] 𝑋[2, 1] 𝑋[2, 2] · · · 𝑋[𝑛− 1, 2]

...
...

...
. . .

...
𝑋[𝑛− 1, 0] 𝑋[𝑛− 1, 1] 𝑋[𝑛− 1, 2] · · · 𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’L’),

⎡⎢⎢⎢⎢⎢⎣
𝑋[0, 0] 𝑋[0, 1] 𝑋[0, 2] · · · 𝑋[0, 𝑛− 1]
𝑋[0, 1] 𝑋[1, 1] 𝑋[1, 2] · · · 𝑋[1, 𝑛− 1]
𝑋[0, 2] 𝑋[1, 2] 𝑋[2, 2] · · · 𝑋[2, 𝑛− 1]

...
...

...
. . .

...
𝑋[0, 𝑛− 1] 𝑋[1, 𝑛− 1] 𝑋[2, 𝑛− 1] · · · 𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = U’).

Complex Hermitian matrix A complex Hermitian matrix of order 𝑛 is represented by a matrix of type 'z' and
size (𝑛, 𝑛), and a character argument uplo with the same meaning as for symmetric matrices. A complex
matrix X of size (𝑛, 𝑛) can represent the Hermitian matrices⎡⎢⎢⎢⎢⎢⎣

ℜ𝑋[0, 0] �̄�[1, 0] �̄�[2, 0] · · · �̄�[𝑛− 1, 0]
𝑋[1, 0] ℜ𝑋[1, 1] �̄�[2, 1] · · · �̄�[𝑛− 1, 1]
𝑋[2, 0] 𝑋[2, 1] ℜ𝑋[2, 2] · · · �̄�[𝑛− 1, 2]

...
...

...
. . .

...
𝑋[𝑛− 1, 0] 𝑋[𝑛− 1, 1] 𝑋[𝑛− 1, 2] · · · ℜ𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’L’),

⎡⎢⎢⎢⎢⎢⎣
ℜ𝑋[0, 0] 𝑋[0, 1] 𝑋[0, 2] · · · 𝑋[0, 𝑛− 1]
�̄�[0, 1] ℜ𝑋[1, 1] 𝑋[1, 2] · · · 𝑋[1, 𝑛− 1]
�̄�[0, 2] �̄�[1, 2] ℜ𝑋[2, 2] · · · 𝑋[2, 𝑛− 1]

...
...

...
. . .

...
�̄�[0, 𝑛− 1] �̄�[1, 𝑛− 1] �̄�[2, 𝑛− 1] · · · ℜ𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’U’).

Triangular matrix A real or complex triangular matrix of order 𝑛 is represented by a real or complex matrix of
size (𝑛, 𝑛), and two character arguments: an argument uplo with possible values 'L' and 'U' to distinguish
between lower and upper triangular matrices, and an argument diag with possible values 'U' and 'N' to
distinguish between unit and non-unit triangular matrices. A square matrix X of size (𝑛, 𝑛) can represent the

24 Chapter 4. The BLAS Interface



CVXOPT Documentation, Release 1.3.2

triangular matrices⎡⎢⎢⎢⎢⎢⎣
𝑋[0, 0] 0 0 · · · 0
𝑋[1, 0] 𝑋[1, 1] 0 · · · 0
𝑋[2, 0] 𝑋[2, 1] 𝑋[2, 2] · · · 0

...
...

...
. . .

...
𝑋[𝑛− 1, 0] 𝑋[𝑛− 1, 1] 𝑋[𝑛− 1, 2] · · · 𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’L’, diag = ’N’),

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0

𝑋[1, 0] 1 0 · · · 0
𝑋[2, 0] 𝑋[2, 1] 1 · · · 0

...
...

...
. . .

...
𝑋[𝑛− 1, 0] 𝑋[𝑛− 1, 1] 𝑋[𝑛− 1, 2] · · · 1

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’L’, diag = ’U’),

⎡⎢⎢⎢⎢⎢⎣
𝑋[0, 0] 𝑋[0, 1] 𝑋[0, 2] · · · 𝑋[0, 𝑛− 1]

0 𝑋[1, 1] 𝑋[1, 2] · · · 𝑋[1, 𝑛− 1]
0 0 𝑋[2, 2] · · · 𝑋[2, 𝑛− 1]
...

...
...

. . .
...

0 0 0 · · · 𝑋[𝑛− 1, 𝑛− 1]

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’U’, diag = ’N’),

⎡⎢⎢⎢⎢⎢⎣
1 𝑋[0, 1] 𝑋[0, 2] · · · 𝑋[0, 𝑛− 1]
0 1 𝑋[1, 2] · · · 𝑋[1, 𝑛− 1]
0 0 1 · · · 𝑋[2, 𝑛− 1]
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ (uplo = ’U’, diag = ’U’).

General band matrix A general real or complex 𝑚 by 𝑛 band matrix with 𝑘𝑙 subdiagonals and 𝑘𝑢 superdiagonals
is represented by a real or complex matrix X of size (𝑘𝑙 + 𝑘𝑢 + 1, 𝑛), and the two integers 𝑚 and 𝑘𝑙. The
diagonals of the band matrix are stored in the rows of X, starting at the top diagonal, and shifted horizontally so
that the entries of column 𝑘 of the band matrix are stored in column 𝑘 of X. A matrix X of size (𝑘𝑙 + 𝑘𝑢 + 1,
𝑛) therefore represents the 𝑚 by 𝑛 band matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋[𝑘𝑢, 0] 𝑋[𝑘𝑢 − 1, 1] 𝑋[𝑘𝑢 − 2, 2] · · · 𝑋[0, 𝑘𝑢] 0 · · ·
𝑋[𝑘𝑢 + 1, 0] 𝑋[𝑘𝑢, 1] 𝑋[𝑘𝑢 − 1, 2] · · · 𝑋[1, 𝑘𝑢] 𝑋[0, 𝑘𝑢 + 1] · · ·
𝑋[𝑘𝑢 + 2, 0] 𝑋[𝑘𝑢 + 1, 1] 𝑋[𝑘𝑢, 2] · · · 𝑋[2, 𝑘𝑢] 𝑋[1, 𝑘𝑢 + 1] · · ·

...
...

...
. . .

...
...

. . .
𝑋[𝑘𝑢 + 𝑘𝑙, 0] 𝑋[𝑘𝑢 + 𝑘𝑙 − 1, 1] 𝑋[𝑘𝑢 + 𝑘𝑙 − 2, 2] · · ·

0 𝑋[𝑘𝑢 + 𝑘𝑙, 1] 𝑋[𝑘𝑢 + 𝑘𝑙 − 1, 2] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Symmetric band matrix A real or complex symmetric band matrix of order 𝑛 with 𝑘 subdiagonals, is represented by
a real or complex matrix X of size (𝑘+1, 𝑛), and an argument uplo to indicate whether the subdiagonals (uplo
is 'L') or superdiagonals (uplo is 'U') are stored. The 𝑘 + 1 diagonals are stored as rows of X, starting at
the top diagonal (i.e., the main diagonal if uplo is 'L', or the 𝑘-th superdiagonal if uplo is 'U') and shifted
horizontally so that the entries of the 𝑘-th column of the band matrix are stored in column 𝑘 of X. A matrix X

4.1. Matrix Classes 25



CVXOPT Documentation, Release 1.3.2

of size (𝑘 + 1, 𝑛) can therefore represent the band matrices⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋[0, 0] 𝑋[1, 0] 𝑋[2, 0] · · · 𝑋[𝑘, 0] 0 · · ·
𝑋[1, 0] 𝑋[0, 1] 𝑋[1, 1] · · · 𝑋[𝑘 − 1, 1] 𝑋[𝑘, 1] · · ·
𝑋[2, 0] 𝑋[1, 1] 𝑋[0, 2] · · · 𝑋[𝑘 − 2, 2] 𝑋[𝑘 − 1, 2] · · ·

...
...

...
. . .

...
...

. . .
𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · ·

0 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo = ’L’),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · · 𝑋[0, 𝑘] 0 · · ·
𝑋[𝑘 − 1, 1] 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · · 𝑋[1, 𝑘] 𝑋[0, 𝑘 + 1] · · ·
𝑋[𝑘 − 2, 2] 𝑋[𝑘 − 1, 2] 𝑋[𝑘, 2] · · · 𝑋[2, 𝑘] 𝑋[1, 𝑘 + 1] · · ·

...
...

...
. . .

...
...

. . .
𝑋[0, 𝑘] 𝑋[1, 𝑘] 𝑋[2, 𝑘] · · ·

0 𝑋[0, 𝑘 + 1] 𝑋[1, 𝑘 + 1] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo=’U’).

Hermitian band matrix A complex Hermitian band matrix of order 𝑛 with 𝑘 subdiagonals is represented by a com-
plex matrix of size (𝑘 + 1, 𝑛) and an argument uplo, with the same meaning as for symmetric band matrices.
A matrix X of size (𝑘 + 1, 𝑛) can represent the band matrices⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℜ𝑋[0, 0] �̄�[1, 0] �̄�[2, 0] · · · �̄�[𝑘, 0] 0 · · ·
𝑋[1, 0] ℜ𝑋[0, 1] �̄�[1, 1] · · · �̄�[𝑘 − 1, 1] �̄�[𝑘, 1] · · ·
𝑋[2, 0] 𝑋[1, 1] ℜ𝑋[0, 2] · · · �̄�[𝑘 − 2, 2] �̄�[𝑘 − 1, 2] · · ·

...
...

...
. . .

...
...

. . .
𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · ·

0 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo = ’L’),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℜ𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · · 𝑋[0, 𝑘] 0 · · ·
�̄�[𝑘 − 1, 1] ℜ𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · · 𝑋[1, 𝑘] 𝑋[0, 𝑘 + 1] · · ·
�̄�[𝑘 − 2, 2] �̄�[𝑘 − 1, 2] ℜ𝑋[𝑘, 2] · · · 𝑋[2, 𝑘] 𝑋[1, 𝑘 + 1] · · ·

...
...

...
. . .

...
...

. . .
�̄�[0, 𝑘] �̄�[1, 𝑘] �̄�[2, 𝑘] · · ·

0 �̄�[0, 𝑘 + 1] �̄�[1, 𝑘 + 1] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo=’U’).

Triangular band matrix A triangular band matrix of order 𝑛 with 𝑘 subdiagonals or superdiagonals is represented by
a real complex matrix of size (𝑘+ 1, 𝑛) and two character arguments uplo and diag, with similar conventions

26 Chapter 4. The BLAS Interface



CVXOPT Documentation, Release 1.3.2

as for symmetric band matrices. A matrix X of size (𝑘 + 1, 𝑛) can represent the band matrices⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋[0, 0] 0 0 · · ·
𝑋[1, 0] 𝑋[0, 1] 0 · · ·
𝑋[2, 0] 𝑋[1, 1] 𝑋[0, 2] · · ·

...
...

...
. . .

𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · ·
0 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 1] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo = ’L’, diag = ’N’),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · ·
𝑋[1, 0] 1 0 · · ·
𝑋[2, 0] 𝑋[1, 1] 1 · · ·

...
...

...
. . .

𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 2] · · ·
0 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(uplo = ’L’, diag = ’U’),

⎡⎢⎢⎢⎣
𝑋[𝑘, 0] 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 3] · · · 𝑋[0, 𝑘] 0 · · ·

0 𝑋[𝑘, 1] 𝑋[𝑘 − 1, 2] · · · 𝑋[1, 𝑘] 𝑋[0, 𝑘 + 1] · · ·
0 0 𝑋[𝑘, 2] · · · 𝑋[2, 𝑘] 𝑋[1, 𝑘 + 1] · · ·
...

...
...

. . .
...

...
. . .

⎤⎥⎥⎥⎦ (uplo = ’U’, diag = ’N’),

⎡⎢⎢⎢⎣
1 𝑋[𝑘 − 1, 1] 𝑋[𝑘 − 2, 3] · · · 𝑋[0, 𝑘] 0 · · ·
0 1 𝑋[𝑘 − 1, 2] · · · 𝑋[1, 𝑘] 𝑋[0, 𝑘 + 1] · · ·
0 0 1 · · · 𝑋[2, 𝑘] 𝑋[1, 𝑘 + 1] · · ·
...

...
...

. . .
...

...
. . .

⎤⎥⎥⎥⎦ (uplo = ’U’, diag = ’U’).

When discussing BLAS functions in the following sections we will omit several less important optional arguments that
can be used to select submatrices for in-place operations. The complete specification is documented in the docstrings
of the source code, and can be viewed with the pydoc help program.

4.2 Level 1 BLAS

The level 1 functions implement vector operations.

cvxopt.blas.scal(alpha, x)
Scales a vector by a constant:

𝑥 := 𝛼𝑥.

If x is a real matrix, the scalar argument alpha must be a Python integer or float. If x is complex, alpha
can be an integer, float, or complex.

cvxopt.blas.nrm2(x)
Euclidean norm of a vector: returns

‖𝑥‖2.

cvxopt.blas.asum(x)
1-Norm of a vector: returns

‖𝑥‖1 (𝑥 real), ‖ℜ𝑥‖1 + ‖ℑ𝑥‖1 (𝑥 complex).

4.2. Level 1 BLAS 27



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.iamax(x)
Returns

argmax
𝑘=0,...,𝑛−1

|𝑥𝑘| (𝑥 real), argmax
𝑘=0,...,𝑛−1

|ℜ𝑥𝑘| + |ℑ𝑥𝑘| (𝑥 complex).

If more than one coefficient achieves the maximum, the index of the first 𝑘 is returned.

cvxopt.blas.swap(x, y)
Interchanges two vectors:

𝑥 ↔ 𝑦.

x and y are matrices of the same type ('d' or 'z').

cvxopt.blas.copy(x, y)
Copies a vector to another vector:

𝑦 := 𝑥.

x and y are matrices of the same type ('d' or 'z').

cvxopt.blas.axpy(x, y[, alpha = 1.0])
Constant times a vector plus a vector:

𝑦 := 𝛼𝑥 + 𝑦.

x and y are matrices of the same type ('d' or 'z'). If x is real, the scalar argument alpha must be a Python
integer or float. If x is complex, alpha can be an integer, float, or complex.

cvxopt.blas.dot(x, y)
Returns

𝑥𝐻𝑦.

x and y are matrices of the same type ('d' or 'z').

cvxopt.blas.dotu(x, y)
Returns

𝑥𝑇 𝑦.

x and y are matrices of the same type ('d' or 'z').

4.3 Level 2 BLAS

The level 2 functions implement matrix-vector products and rank-1 and rank-2 matrix updates. Different types of
matrix structure can be exploited using the conventions of the section Matrix Classes.

cvxopt.blas.gemv(A, x, y[, trans = ’N’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a general matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦 (trans = ′N′),

𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦 (trans = ′T′),

𝑦 := 𝛼𝐴𝐻𝑥 + 𝛽𝑦 (trans = ′C′).

The arguments A, x, and y must have the same type ('d' or 'z'). Complex values of alpha and beta are
only allowed if A is complex.

28 Chapter 4. The BLAS Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.symv(A, x, y[, uplo = ’L’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

where 𝐴 is a real symmetric matrix. The arguments A, x, and y must have type 'd', and alpha and beta
must be real.

cvxopt.blas.hemv(A, x, y[, uplo = ’L’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric or complex Hermitian matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

where 𝐴 is real symmetric or complex Hermitian. The arguments A, x, y must have the same type ('d' or
'z'). Complex values of alpha and beta are only allowed if A is complex.

cvxopt.blas.trmv(A, x[, uplo = ’L’, trans = ’N’, diag = ’N’])
Matrix-vector product with a triangular matrix:

𝑥 := 𝐴𝑥 (trans = ′N′),

𝑥 := 𝐴𝑇𝑥 (trans = ′T′),

𝑥 := 𝐴𝐻𝑥 (trans = ′C′),

where 𝐴 is square and triangular. The arguments A and x must have the same type ('d' or 'z').

cvxopt.blas.trsv(A, x[, uplo = ’L’, trans = ’N’, diag = ’N’])
Solution of a nonsingular triangular set of linear equations:

𝑥 := 𝐴−1𝑥 (trans = ′N′),

𝑥 := 𝐴−𝑇𝑥 (trans = ′T′),

𝑥 := 𝐴−𝐻𝑥 (trans = ′C′),

where 𝐴 is square and triangular with nonzero diagonal elements. The arguments A and x must have the same
type ('d' or 'z').

cvxopt.blas.gbmv(A, m, kl, x, y[, trans = ’N’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a general band matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦 (trans = ′N′),

𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦 (trans = ′T′),

𝑦 := 𝛼𝐴𝐻𝑥 + 𝛽𝑦 (trans = ′C′),

where 𝐴 is a rectangular band matrix with 𝑚 rows and 𝑘𝑙 subdiagonals. The arguments A, x, y must have the
same type ('d' or 'z'). Complex values of alpha and beta are only allowed if A is complex.

cvxopt.blas.sbmv(A, x, y[, uplo = ’L’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric band matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

where 𝐴 is a real symmetric band matrix. The arguments A, x, y must have type 'd', and alpha and beta
must be real.

cvxopt.blas.hbmv(A, x, y[, uplo = ’L’, alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric or complex Hermitian band matrix:

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

where 𝐴 is a real symmetric or complex Hermitian band matrix. The arguments A, x, y must have the same
type ('d' or 'z'). Complex values of alpha and beta are only allowed if A is complex.

4.3. Level 2 BLAS 29



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.tbmv(A, x[, uplo = ’L’, trans = ’N’, diag = ’N’])
Matrix-vector product with a triangular band matrix:

𝑥 := 𝐴𝑥 (trans = ′N′),

𝑥 := 𝐴𝑇𝑥 (trans = ′T′),

𝑥 := 𝐴𝐻𝑥 (trans = ′C′).

The arguments A and x must have the same type ('d' or 'z').

cvxopt.blas.tbsv(A, x[, uplo = ’L’, trans = ’N’, diag = ’N’])
Solution of a triangular banded set of linear equations:

𝑥 := 𝐴−1𝑥 (trans = ′N′),

𝑥 := 𝐴−𝑇𝑥 (trans = ′T′),

𝑥 := 𝐴−𝐻𝑥 (trans = ′T′),

where 𝐴 is a triangular band matrix of with nonzero diagonal elements. The arguments A and x must have the
same type ('d' or 'z').

cvxopt.blas.ger(x, y, A[, alpha = 1.0])
General rank-1 update:

𝐴 := 𝐴 + 𝛼𝑥𝑦𝐻 ,

where 𝐴 is a general matrix. The arguments A, x, and y must have the same type ('d' or 'z'). Complex
values of alpha are only allowed if A is complex.

cvxopt.blas.geru(x, y, A[, alpha = 1.0])
General rank-1 update:

𝐴 := 𝐴 + 𝛼𝑥𝑦𝑇 ,

where 𝐴 is a general matrix. The arguments A, x, and y must have the same type ('d' or 'z'). Complex
values of alpha are only allowed if A is complex.

cvxopt.blas.syr(x, A[, uplo = ’L’, alpha = 1.0])
Symmetric rank-1 update:

𝐴 := 𝐴 + 𝛼𝑥𝑥𝑇 ,

where 𝐴 is a real symmetric matrix. The arguments A and xmust have type 'd'. alphamust be a real number.

cvxopt.blas.her(x, A[, uplo = ’L’, alpha = 1.0])
Hermitian rank-1 update:

𝐴 := 𝐴 + 𝛼𝑥𝑥𝐻 ,

where 𝐴 is a real symmetric or complex Hermitian matrix. The arguments A and x must have the same type
('d' or 'z'). alpha must be a real number.

cvxopt.blas.syr2(x, y, A[, uplo = ’L’, alpha = 1.0])
Symmetric rank-2 update:

𝐴 := 𝐴 + 𝛼(𝑥𝑦𝑇 + 𝑦𝑥𝑇 ),

where 𝐴 is a real symmetric matrix. The arguments A, x, and y must have type 'd'. alpha must be real.

30 Chapter 4. The BLAS Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.her2(x, y, A[, uplo = ’L’, alpha = 1.0])
Symmetric rank-2 update:

𝐴 := 𝐴 + 𝛼𝑥𝑦𝐻 + �̄�𝑦𝑥𝐻 ,

where 𝐴 is a a real symmetric or complex Hermitian matrix. The arguments A, x, and y must have the same
type ('d' or 'z'). Complex values of alpha are only allowed if A is complex.

As an example, the following code multiplies the tridiagonal matrix

𝐴 =

⎡⎣ 1 6 0 0
2 −4 3 0
0 −3 −1 1

⎤⎦
with the vector 𝑥 = (1,−1, 2,−2).

>>> from cvxopt import matrix
>>> from cvxopt.blas import gbmv
>>> A = matrix([[0., 1., 2.], [6., -4., -3.], [3., -1., 0.], [1., 0., 0.]])
>>> x = matrix([1., -1., 2., -2.])
>>> y = matrix(0., (3,1))
>>> gbmv(A, 3, 1, x, y)
>>> print(y)
[-5.00e+00]
[ 1.20e+01]
[-1.00e+00]

The following example illustrates the use of tbsv .

>>> from cvxopt import matrix
>>> from cvxopt.blas import tbsv
>>> A = matrix([-6., 5., -1., 2.], (1,4))
>>> x = matrix(1.0, (4,1))
>>> tbsv(A, x) # x := diag(A)^{-1}*x
>>> print(x)
[-1.67e-01]
[ 2.00e-01]
[-1.00e+00]
[ 5.00e-01]

4.4 Level 3 BLAS

The level 3 BLAS include functions for matrix-matrix multiplication.

cvxopt.blas.gemm(A, B, C[, transA = ’N’, transB = ’N’, alpha = 1.0, beta = 0.0])
Matrix-matrix product of two general matrices:

𝐶 := 𝛼 op(𝐴) op(𝐵) + 𝛽𝐶

where

op(𝐴) =

⎧⎨⎩ 𝐴 transA = ′N′

𝐴𝑇 transA = ′T′

𝐴𝐻 transA = ′C′
op(𝐵) =

⎧⎨⎩ 𝐵 transB = ′N′

𝐵𝑇 transB = ′T′

𝐵𝐻 transB = ′C′.

The arguments A, B, and C must have the same type ('d' or 'z'). Complex values of alpha and beta are
only allowed if A is complex.

4.4. Level 3 BLAS 31



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.symm(A, B, C[, side = ’L’, uplo = ’L’, alpha =1.0, beta = 0.0])
Product of a real or complex symmetric matrix 𝐴 and a general matrix 𝐵:

𝐶 := 𝛼𝐴𝐵 + 𝛽𝐶 (side = ′L′),

𝐶 := 𝛼𝐵𝐴 + 𝛽𝐶 (side = ′R′).

The arguments A, B, and C must have the same type ('d' or 'z'). Complex values of alpha and beta are
only allowed if A is complex.

cvxopt.blas.hemm(A, B, C[, side = ’L’, uplo = ’L’, alpha = 1.0, beta = 0.0])
Product of a real symmetric or complex Hermitian matrix 𝐴 and a general matrix 𝐵:

𝐶 := 𝛼𝐴𝐵 + 𝛽𝐶 (side = ′L′),

𝐶 := 𝛼𝐵𝐴 + 𝛽𝐶 (side = ′R′).

The arguments A, B, and C must have the same type ('d' or 'z'). Complex values of alpha and beta are
only allowed if A is complex.

cvxopt.blas.trmm(A, B[, side = ’L’, uplo = ’L’, transA = ’N’, diag = ’N’, alpha = 1.0])
Product of a triangular matrix 𝐴 and a general matrix 𝐵:

𝐵 := 𝛼 op(𝐴)𝐵 (side = ′L′),

𝐵 := 𝛼𝐵 op(𝐴) (side = ′R′)

where

op(𝐴) =

⎧⎨⎩ 𝐴 transA = ′N′

𝐴𝑇 transA = ′T′

𝐴𝐻 transA = ′C′.

The arguments A and B must have the same type ('d' or 'z'). Complex values of alpha are only allowed if
A is complex.

cvxopt.blas.trsm(A, B[, side = ’L’, uplo = ’L’, transA = ’N’, diag = ’N’, alpha = 1.0])
Solution of a nonsingular triangular system of equations:

𝐵 := 𝛼 op(𝐴)−1𝐵 (side = ′L′),

𝐵 := 𝛼𝐵 op(𝐴)−1 (side = ′R′),

where

op(𝐴) =

⎧⎨⎩ 𝐴 transA = ′N′

𝐴𝑇 transA = ′T′

𝐴𝐻 transA = ′C′,

𝐴 is triangular and 𝐵 is a general matrix. The arguments A and B must have the same type ('d' or 'z').
Complex values of alpha are only allowed if A is complex.

cvxopt.blas.syrk(A, C[, uplo = ’L’, trans = ’N’, alpha = 1.0, beta = 0.0])
Rank-𝑘 update of a real or complex symmetric matrix 𝐶:

𝐶 := 𝛼𝐴𝐴𝑇 + 𝛽𝐶 (trans = ′N′),

𝐶 := 𝛼𝐴𝑇𝐴 + 𝛽𝐶 (trans = ′T′),

where 𝐴 is a general matrix. The arguments A and C must have the same type ('d' or 'z'). Complex values
of alpha and beta are only allowed if A is complex.

32 Chapter 4. The BLAS Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.blas.herk(A, C[, uplo = ’L’, trans = ’N’, alpha = 1.0, beta = 0.0])
Rank-𝑘 update of a real symmetric or complex Hermitian matrix 𝐶:

𝐶 := 𝛼𝐴𝐴𝐻 + 𝛽𝐶 (trans = ′N′),

𝐶 := 𝛼𝐴𝐻𝐴 + 𝛽𝐶 (trans = ′C′),

where 𝐴 is a general matrix. The arguments A and C must have the same type ('d' or 'z'). alpha and beta
must be real.

cvxopt.blas.syr2k(A, B, C[, uplo = ’L’, trans = ’N’, alpha = 1.0, beta = 0.0])
Rank-2𝑘 update of a real or complex symmetric matrix 𝐶:

𝐶 := 𝛼(𝐴𝐵𝑇 + 𝐵𝐴𝑇 ) + 𝛽𝐶 (trans = ′N′),

𝐶 := 𝛼(𝐴𝑇𝐵 + 𝐵𝑇𝐴) + 𝛽𝐶 (trans = ′T′).

𝐴 and 𝐵 are general real or complex matrices. The arguments A, B, and C must have the same type. Complex
values of alpha and beta are only allowed if A is complex.

cvxopt.blas.her2k(A, B, C[, uplo = ’L’, trans = ’N’, alpha = 1.0, beta = 0.0])
Rank-2𝑘 update of a real symmetric or complex Hermitian matrix 𝐶:

𝐶 := 𝛼𝐴𝐵𝐻 + �̄�𝐵𝐴𝐻 + 𝛽𝐶 (trans = ′N′),

𝐶 := 𝛼𝐴𝐻𝐵 + �̄�𝐵𝐻𝐴 + 𝛽𝐶 (trans = ′C′),

where 𝐴 and 𝐵 are general matrices. The arguments A, B, and C must have the same type ('d' or 'z').
Complex values of alpha are only allowed if A is complex. beta must be real.

4.4. Level 3 BLAS 33



CVXOPT Documentation, Release 1.3.2

34 Chapter 4. The BLAS Interface



CHAPTER 5

The LAPACK Interface

The module cvxopt.lapack includes functions for solving dense sets of linear equations, for the corresponding
matrix factorizations (LU, Cholesky, ), for solving least-squares and least-norm problems, for QR factorization, for
symmetric eigenvalue problems, singular value decomposition, and Schur factorization.

In this chapter we briefly describe the Python calling sequences. For further details on the underlying LAPACK
functions we refer to the LAPACK Users’ Guide and manual pages.

The BLAS conventional storage scheme of the section Matrix Classes is used. As in the previous chapter, we omit from
the function definitions less important arguments that are useful for selecting submatrices. The complete definitions
are documented in the docstrings in the source code.

See also:

LAPACK Users’ Guide, Third Edition, SIAM, 1999

5.1 General Linear Equations

cvxopt.lapack.gesv(A, B[, ipiv = None])
Solves

𝐴𝑋 = 𝐵,

where 𝐴 and 𝐵 are real or complex matrices, with 𝐴 square and nonsingular.

The arguments A and B must have the same type ('d' or 'z'). On entry, B contains the right-hand side 𝐵; on
exit it contains the solution 𝑋 . The optional argument ipiv is an integer matrix of length at least 𝑛. If ipiv is
provided, then gesv solves the system, replaces A with the triangular factors in an LU factorization, and returns
the permutation matrix in ipiv. If ipiv is not specified, then gesv solves the system but does not return the
LU factorization and does not modify A.

Raises an ArithmeticError if the matrix is singular.

35

http://www.netlib.org/lapack/lug/lapack_lug.html


CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.getrf(A, ipiv)
LU factorization of a general, possibly rectangular, real or complex matrix,

𝐴 = 𝑃𝐿𝑈,

where 𝐴 is 𝑚 by 𝑛.

The argument ipiv is an integer matrix of length at least min{𝑚, 𝑛}. On exit, the lower triangular part of A is
replaced by 𝐿, the upper triangular part by 𝑈 , and the permutation matrix is returned in ipiv.

Raises an ArithmeticError if the matrix is not full rank.

cvxopt.lapack.getrs(A, ipiv, B[, trans = ’N’])
Solves a general set of linear equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

given the LU factorization computed by gesv or getrf.

On entry, A and ipiv must contain the factorization as computed by gesv or getrf. On entry, B contains
the right-hand side 𝐵; on exit it contains the solution 𝑋 . B must have the same type as A.

cvxopt.lapack.getri(A, ipiv)
Computes the inverse of a matrix.

On entry, A and ipiv must contain the factorization as computed by gesv or getrf. On exit, A contains the
matrix inverse.

In the following example we compute

𝑥 = (𝐴−1 + 𝐴−𝑇 )𝑏

for randomly generated problem data, factoring the coefficient matrix once.

>>> from cvxopt import matrix, normal
>>> from cvxopt.lapack import gesv, getrs
>>> n = 10
>>> A = normal(n,n)
>>> b = normal(n)
>>> ipiv = matrix(0, (n,1))
>>> x = +b
>>> gesv(A, x, ipiv) # x = A^{-1}*b
>>> x2 = +b
>>> getrs(A, ipiv, x2, trans='T') # x2 = A^{-T}*b
>>> x += x2

Separate functions are provided for equations with band matrices.

cvxopt.lapack.gbsv(A, kl, B[, ipiv = None])
Solves

𝐴𝑋 = 𝐵,

where 𝐴 and 𝐵 are real or complex matrices, with 𝐴 𝑛 by 𝑛 and banded with 𝑘𝑙 subdiagonals.

The arguments A and B must have the same type ('d' or 'z'). On entry, B contains the right-hand side 𝐵;
on exit it contains the solution 𝑋 . The optional argument ipiv is an integer matrix of length at least 𝑛. If
ipiv is provided, then A must have 2𝑘𝑙 + 𝑘𝑢 + 1 rows. On entry the diagonals of 𝐴 are stored in rows 𝑘𝑙 + 1

36 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

to 2𝑘𝑙 + 𝑘𝑢 + 1 of A, using the BLAS format for general band matrices (see the section Matrix Classes). On
exit, the factorization is returned in A and ipiv. If ipiv is not provided, then A must have 𝑘𝑙 + 𝑘𝑢 + 1 rows.
On entry the diagonals of 𝐴 are stored in the rows of A, following the standard BLAS format for general band
matrices. In this case, gbsv does not modify A and does not return the factorization.

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.gbtrf(A, m, kl, ipiv)
LU factorization of a general 𝑚 by 𝑛 real or complex band matrix with 𝑘𝑙 subdiagonals.

The matrix is stored using the BLAS format for general band matrices (see the section Matrix Classes), by
providing the diagonals (stored as rows of a 𝑘𝑢 + 𝑘𝑙 + 1 by 𝑛 matrix A), the number of rows 𝑚, and the number
of subdiagonals 𝑘𝑙. The argument ipiv is an integer matrix of length at least min{𝑚, 𝑛}. On exit, A and ipiv
contain the details of the factorization.

Raises an ArithmeticError if the matrix is not full rank.

cvxopt.lapack.gbtrs({A, kl, ipiv, B[, trans = ’N’])
Solves a set of linear equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

with 𝐴 a general band matrix with 𝑘𝑙 subdiagonals, given the LU factorization computed by gbsv or gbtrf.

On entry, A and ipiv must contain the factorization as computed by gbsv or gbtrf. On entry, B contains
the right-hand side 𝐵; on exit it contains the solution 𝑋 . B must have the same type as A.

As an example, we solve a linear equation with

𝐴 =

⎡⎢⎢⎣
1 2 0 0
3 4 5 0
6 7 8 9
0 10 11 12

⎤⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ .

>>> from cvxopt import matrix
>>> from cvxopt.lapack import gbsv, gbtrf, gbtrs
>>> n, kl, ku = 4, 2, 1
>>> A = matrix([[0., 1., 3., 6.], [2., 4., 7., 10.], [5., 8., 11., 0.], [9., 12., 0.,
→˓0.]])
>>> x = matrix(1.0, (n,1))
>>> gbsv(A, kl, x)
>>> print(x)
[ 7.14e-02]
[ 4.64e-01]
[-2.14e-01]
[-1.07e-01]

The code below illustrates how one can reuse the factorization returned by gbsv .

>>> Ac = matrix(0.0, (2*kl+ku+1,n))
>>> Ac[kl:,:] = A
>>> ipiv = matrix(0, (n,1))
>>> x = matrix(1.0, (n,1))
>>> gbsv(Ac, kl, x, ipiv) # solves A*x = 1
>>> print(x)
[ 7.14e-02]

(continues on next page)

5.1. General Linear Equations 37



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 4.64e-01]
[-2.14e-01]
[-1.07e-01]
>>> x = matrix(1.0, (n,1))
>>> gbtrs(Ac, kl, ipiv, x, trans='T') # solve A^T*x = 1
>>> print(x)
[ 7.14e-02]
[ 2.38e-02]
[ 1.43e-01]
[-2.38e-02]

An alternative method uses gbtrf for the factorization.

>>> Ac[kl:,:] = A
>>> gbtrf(Ac, n, kl, ipiv)
>>> x = matrix(1.0, (n,1))
>>> gbtrs(Ac, kl, ipiv, x) # solve A^T*x = 1
>>> print(x)
[ 7.14e-02]
[ 4.64e-01]
[-2.14e-01]
[-1.07e-01]
>>> x = matrix(1.0, (n,1))
>>> gbtrs(Ac, kl, ipiv, x, trans='T') # solve A^T*x = 1
>>> print(x)
[ 7.14e-02]
[ 2.38e-02]
[ 1.43e-01]
[-2.38e-02]

The following functions can be used for tridiagonal matrices. They use a simpler matrix format, with the diagonals
stored in three separate vectors.

cvxopt.lapack.gtsv(dl, d, du, B))
Solves

𝐴𝑋 = 𝐵,

where 𝐴 is an 𝑛 by 𝑛 tridiagonal matrix.

The subdiagonal of 𝐴 is stored as a matrix dl of length 𝑛− 1, the diagonal is stored as a matrix d of length 𝑛,
and the superdiagonal is stored as a matrix du of length 𝑛 − 1. The four arguments must have the same type
('d' or 'z'). On exit dl, d, du are overwritten with the details of the LU factorization of 𝐴. On entry, B
contains the right-hand side 𝐵; on exit it contains the solution 𝑋 .

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.gttrf(dl, d, du, du2, ipiv)
LU factorization of an 𝑛 by 𝑛 tridiagonal matrix.

The subdiagonal of 𝐴 is stored as a matrix dl of length 𝑛− 1, the diagonal is stored as a matrix d of length 𝑛,
and the superdiagonal is stored as a matrix du of length 𝑛 − 1. dl, d and du must have the same type. du2
is a matrix of length 𝑛 − 2, and of the same type as dl. ipiv is an 'i' matrix of length 𝑛. On exit, the five
arguments contain the details of the factorization.

Raises an ArithmeticError if the matrix is singular.

38 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.gttrs(dl, d, du, du2, ipiv, B[, trans = ’N’])
Solves a set of linear equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

where 𝐴 is an 𝑛 by 𝑛 tridiagonal matrix.

The arguments dl, d, du, du2, and ipiv contain the details of the LU factorization as returned by gttrf.
On entry, B contains the right-hand side 𝐵; on exit it contains the solution 𝑋 . B must have the same type as the
other arguments.

5.2 Positive Definite Linear Equations

cvxopt.lapack.posv(A, B[, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵,

where 𝐴 is a real symmetric or complex Hermitian positive definite matrix.

On exit, B is replaced by the solution, and A is overwritten with the Cholesky factor. The matrices A and B must
have the same type ('d' or 'z').

Raises an ArithmeticError if the matrix is not positive definite.

cvxopt.lapack.potrf(A[, uplo = ’L’])
Cholesky factorization

𝐴 = 𝐿𝐿𝑇 or 𝐴 = 𝐿𝐿𝐻

of a positive definite real symmetric or complex Hermitian matrix 𝐴.

On exit, the lower triangular part of A (if uplo is 'L') or the upper triangular part (if uplo is 'U') is
overwritten with the Cholesky factor or its (conjugate) transpose.

Raises an ArithmeticError if the matrix is not positive definite.

cvxopt.lapack.potrs(A, B[, uplo = ’L’])
Solves a set of linear equations

𝐴𝑋 = 𝐵

with a positive definite real symmetric or complex Hermitian matrix, given the Cholesky factorization computed
by posv or potrf.

On entry, A contains the triangular factor, as computed by posv or potrf. On exit, B is replaced by the
solution. B must have the same type as A.

cvxopt.lapack.potri(A[, uplo = ’L’])
Computes the inverse of a positive definite matrix.

On entry, A contains the Cholesky factorization computed by potrf or posv . On exit, it contains the matrix
inverse.

5.2. Positive Definite Linear Equations 39



CVXOPT Documentation, Release 1.3.2

As an example, we use posv to solve the linear system[︂
−diag(𝑑)2 𝐴

𝐴𝑇 0

]︂ [︂
𝑥1

𝑥2

]︂
=

[︂
𝑏1
𝑏2

]︂
(5.1)

by block-elimination. We first pick a random problem.

>>> from cvxopt import matrix, div, normal, uniform
>>> from cvxopt.blas import syrk, gemv
>>> from cvxopt.lapack import posv
>>> m, n = 100, 50
>>> A = normal(m,n)
>>> b1, b2 = normal(m), normal(n)
>>> d = uniform(m)

We then solve the equations

𝐴𝑇 diag(𝑑)−2𝐴𝑥2 = 𝑏2 + 𝐴𝑇 diag(𝑑)−2𝑏1

diag(𝑑)2𝑥1 = 𝐴𝑥2 − 𝑏1.

>>> Asc = div(A, d[:, n*[0]]) # Asc := diag(d)^{-1}*A
>>> B = matrix(0.0, (n,n))
>>> syrk(Asc, B, trans='T') # B := Asc^T * Asc = A^T * diag(d)^{-2}
→˓* A
>>> x1 = div(b1, d) # x1 := diag(d)^{-1}*b1
>>> x2 = +b2
>>> gemv(Asc, x1, x2, trans='T', beta=1.0) # x2 := x2 + Asc^T*x1 = b2 + A^T*diag(d)^
→˓{-2}*b1
>>> posv(B, x2) # x2 := B^{-1}*x2 = B^{-1}*(b2 + A^
→˓T*diag(d)^{-2}*b1)
>>> gemv(Asc, x2, x1, beta=-1.0) # x1 := Asc*x2 - x1 = diag(d)^{-1} *
→˓(A*x2 - b1)
>>> x1 = div(x1, d) # x1 := diag(d)^{-1}*x1 = diag(d)^{-2} *
→˓(A*x2 - b1)

There are separate routines for equations with positive definite band matrices.

cvxopt.lapack.pbsv(A, B[, uplo=’L’])
Solves

𝐴𝑋 = 𝐵

where 𝐴 is a real symmetric or complex Hermitian positive definite band matrix.

On entry, the diagonals of 𝐴 are stored in A, using the BLAS format for symmetric or Hermitian band matrices
(see section Matrix Classes). On exit, B is replaced by the solution, and A is overwritten with the Cholesky
factor (in the BLAS format for triangular band matrices). The matrices A and B must have the same type ('d'
or 'z').

Raises an ArithmeticError if the matrix is not positive definite.

cvxopt.lapack.pbtrf(A[, uplo = ’L’])
Cholesky factorization

𝐴 = 𝐿𝐿𝑇 or 𝐴 = 𝐿𝐿𝐻

of a positive definite real symmetric or complex Hermitian band matrix 𝐴.

On entry, the diagonals of 𝐴 are stored in A, using the BLAS format for symmetric or Hermitian band matrices.
On exit, A contains the Cholesky factor, in the BLAS format for triangular band matrices.

Raises an ArithmeticError if the matrix is not positive definite.

40 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.pbtrs(A, B[, uplo = ’L’])
Solves a set of linear equations

𝐴𝑋 = 𝐵

with a positive definite real symmetric or complex Hermitian band matrix, given the Cholesky factorization
computed by pbsv or pbtrf.

On entry, A contains the triangular factor, as computed by pbsv or pbtrf. On exit, B is replaced by the
solution. B must have the same type as A.

The following functions are useful for tridiagonal systems.

cvxopt.lapack.ptsv(d, e, B)
Solves

𝐴𝑋 = 𝐵,

where 𝐴 is an 𝑛 by 𝑛 positive definite real symmetric or complex Hermitian tridiagonal matrix.

The diagonal of 𝐴 is stored as a 'd' matrix d of length 𝑛 and its subdiagonal as a 'd' or 'z' matrix e of
length 𝑛− 1. The arguments e and B must have the same type. On exit d contains the diagonal elements of 𝐷
in the

or

factorization of 𝐴, and e contains the subdiagonal elements of the unit lower bidiagonal matrix 𝐿. B is over-
written with the solution 𝑋 . Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.pttrf(d, e)
or

factorization of an 𝑛 by 𝑛 positive definite real symmetric or complex Hermitian tridiagonal matrix 𝐴.

On entry, the argument d is a 'd' matrix with the diagonal elements of 𝐴. The argument e is 'd' or 'z'
matrix containing the subdiagonal of 𝐴. On exit d contains the diagonal elements of 𝐷, and e contains the
subdiagonal elements of the unit lower bidiagonal matrix 𝐿.

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.pttrs(d, e, B[, uplo = ’L’])
Solves a set of linear equations

𝐴𝑋 = 𝐵

where 𝐴 is an 𝑛 by 𝑛 positive definite real symmetric or complex Hermitian tridiagonal matrix, given its

or

factorization.

The argument d is the diagonal of the diagonal matrix 𝐷. The argument uplo only matters for complex
matrices. If uplo is 'L', then on exit e contains the subdiagonal elements of the unit bidiagonal matrix 𝐿. If
uplo is 'U', then e contains the complex conjugates of the elements of the unit bidiagonal matrix 𝐿. On exit,
B is overwritten with the solution 𝑋 . B must have the same type as e.

5.3 Symmetric and Hermitian Linear Equations

cvxopt.lapack.sysv(A, B[, ipiv = None, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵

5.3. Symmetric and Hermitian Linear Equations 41



CVXOPT Documentation, Release 1.3.2

where 𝐴 is a real or complex symmetric matrix of order 𝑛.

On exit, B is replaced by the solution. The matrices A and B must have the same type ('d' or 'z'). The
optional argument ipiv is an integer matrix of length at least equal to 𝑛. If ipiv is provided, sysv solves the
system and returns the factorization in A and ipiv. If ipiv is not specified, sysv solves the system but does
not return the factorization and does not modify A.

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.sytrf(A, ipiv[, uplo = ’L’])
factorization

𝑃𝐴𝑃𝑇 = 𝐿𝐷𝐿𝑇

of a real or complex symmetric matrix 𝐴 of order 𝑛.

ipiv is an 'i' matrix of length at least 𝑛. On exit, A and ipiv contain the factorization.

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.sytrs(A, ipiv, B[, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵

given the

factorization computed by sytrf or sysv . B must have the same type as A.

cvxopt.lapack.sytri(A, ipiv[, uplo = ’L’])
Computes the inverse of a real or complex symmetric matrix.

On entry, A and ipiv contain the

factorization computed by sytrf or sysv . On exit, A contains the inverse.

cvxopt.lapack.hesv(A, B[, ipiv = None, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵

where 𝐴 is a real symmetric or complex Hermitian of order 𝑛.

On exit, B is replaced by the solution. The matrices A and B must have the same type ('d' or 'z'). The
optional argument ipiv is an integer matrix of length at least 𝑛. If ipiv is provided, then hesv solves the
system and returns the factorization in A and ipiv. If ipiv is not specified, then hesv solves the system but
does not return the factorization and does not modify A.

Raises an ArithmeticError if the matrix is singular.

cvxopt.lapack.hetrf(A, ipiv[, uplo = ’L’])
factorization

𝑃𝐴𝑃𝑇 = 𝐿𝐷𝐿𝐻

of a real symmetric or complex Hermitian matrix of order 𝑛. ipiv is an 'i' matrix of length at least 𝑛. On
exit, A and ipiv contain the factorization.

Raises an ArithmeticError if the matrix is singular.

42 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.hetrs(A, ipiv, B[, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵

given the

factorization computed by hetrf or hesv .

cvxopt.lapack.hetri(A, ipiv[, uplo = ’L’])
Computes the inverse of a real symmetric or complex Hermitian matrix.

On entry, A and ipiv contain the

factorization computed by hetrf or hesv . On exit, A contains the inverse.

As an example we solve the KKT system (5.1).

>>> from cvxopt.lapack import sysv
>>> K = matrix(0.0, (m+n,m+n))
>>> K[: (m+n)*m : m+n+1] = -d**2
>>> K[:m, m:] = A
>>> x = matrix(0.0, (m+n,1))
>>> x[:m], x[m:] = b1, b2
>>> sysv(K, x, uplo='U')

5.4 Triangular Linear Equations

cvxopt.lapack.trtrs(A, B[, uplo = ’L’, trans = ’N’, diag = ’N’])
Solves a triangular set of equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

where 𝐴 is real or complex and triangular of order 𝑛, and 𝐵 is a matrix with 𝑛 rows.

A and B are matrices with the same type ('d' or 'z'). trtrs is similar to blas.trsm, except that it raises
an ArithmeticError if a diagonal element of A is zero (whereas blas.trsm returns inf values).

cvxopt.lapack.trtri(A[, uplo = ’L’, diag = ’N’])
Computes the inverse of a real or complex triangular matrix 𝐴. On exit, A contains the inverse.

cvxopt.lapack.tbtrs(A, B[, uplo = ’L’, trans = ’T’, diag = ’N’])
Solves a triangular set of equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

where 𝐴 is real or complex triangular band matrix of order 𝑛, and 𝐵 is a matrix with 𝑛 rows.

The diagonals of 𝐴 are stored in A using the BLAS conventions for triangular band matrices. A and B are
matrices with the same type ('d' or 'z'). On exit, B is replaced by the solution 𝑋 .

5.4. Triangular Linear Equations 43



CVXOPT Documentation, Release 1.3.2

5.5 Least-Squares and Least-Norm Problems

cvxopt.lapack.gels(A, B[, trans = ’N’])
Solves least-squares and least-norm problems with a full rank 𝑚 by 𝑛 matrix 𝐴.

1. trans is 'N'. If 𝑚 is greater than or equal to 𝑛, gels solves the least-squares problem

minimize ‖𝐴𝑋 −𝐵‖𝐹 .

If 𝑚 is less than or equal to 𝑛, gels solves the least-norm problem

minimize ‖𝑋‖𝐹
subject to 𝐴𝑋 = 𝐵.

2. trans is 'T' or 'C' and A and B are real. If 𝑚 is greater than or equal to 𝑛, gels solves the least-norm
problem

minimize ‖𝑋‖𝐹
subject to 𝐴𝑇𝑋 = 𝐵.

If 𝑚 is less than or equal to 𝑛, gels solves the least-squares problem

minimize ‖𝐴𝑇𝑋 −𝐵‖𝐹 .

3. trans is 'C' and A and B are complex. If 𝑚 is greater than or equal to 𝑛, gels solves the least-norm
problem

minimize ‖𝑋‖𝐹
subject to 𝐴𝐻𝑋 = 𝐵.

If 𝑚 is less than or equal to 𝑛, gels solves the least-squares problem

minimize ‖𝐴𝐻𝑋 −𝐵‖𝐹 .

A and B must have the same typecode ('d' or 'z'). trans = 'T' is not allowed if A is complex. On exit, the
solution 𝑋 is stored as the leading submatrix of B. The matrix A is overwritten with details of the QR or the LQ
factorization of 𝐴.

Note that gels does not check whether 𝐴 is full rank.

The following functions compute QR and LQ factorizations.

cvxopt.lapack.geqrf(A, tau)
QR factorization of a real or complex matrix A:

𝐴 = 𝑄𝑅.

If 𝐴 is 𝑚 by 𝑛, then 𝑄 is 𝑚 by 𝑚 and orthogonal/unitary, and 𝑅 is 𝑚 by 𝑛 and upper triangular (if 𝑚 is greater
than or equal to 𝑛), or upper trapezoidal (if 𝑚 is less than or equal to 𝑛).

tau is a matrix of the same type as A and of length min{𝑚, 𝑛}. On exit, 𝑅 is stored in the upper triangu-
lar/trapezoidal part of A. The matrix 𝑄 is stored as a product of min{𝑚, 𝑛} elementary reflectors in the first
min{𝑚, 𝑛} columns of A and in tau.

44 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.gelqf(A, tau)
LQ factorization of a real or complex matrix A:

𝐴 = 𝐿𝑄.

If 𝐴 is 𝑚 by 𝑛, then 𝑄 is 𝑛 by 𝑛 and orthogonal/unitary, and 𝐿 is 𝑚 by 𝑛 and lower triangular (if 𝑚 is less than
or equal to 𝑛), or lower trapezoidal (if 𝑚 is greater than or equal to 𝑛).

tau is a matrix of the same type as A and of length min{𝑚, 𝑛}. On exit, 𝐿 is stored in the lower triangu-
lar/trapezoidal part of A. The matrix 𝑄 is stored as a product of min{𝑚, 𝑛} elementary reflectors in the first
min{𝑚, 𝑛} rows of A and in tau.

cvxopt.lapack.geqp3(A, jpvt, tau)
QR factorization with column pivoting of a real or complex matrix 𝐴:

𝐴𝑃 = 𝑄𝑅.

If 𝐴 is 𝑚 by 𝑛, then 𝑄 is 𝑚 by 𝑚 and orthogonal/unitary, and 𝑅 is 𝑚 by 𝑛 and upper triangular (if 𝑚 is greater
than or equal to 𝑛), or upper trapezoidal (if 𝑚 is less than or equal to 𝑛).

tau is a matrix of the same type as A and of length min{𝑚, 𝑛}. jpvt is an integer matrix of length 𝑛. On
entry, if jpvt[k] is nonzero, then column 𝑘 of 𝐴 is permuted to the front of 𝐴𝑃 . Otherwise, column 𝑘 is a
free column.

On exit, jpvt contains the permutation 𝑃 : the operation 𝐴𝑃 is equivalent to A[:, jpvt-1]. 𝑅 is stored
in the upper triangular/trapezoidal part of A. The matrix 𝑄 is stored as a product of min{𝑚, 𝑛} elementary
reflectors in the first min{𝑚,:math:n} columns of A and in tau.

In most applications, the matrix 𝑄 is not needed explicitly, and it is sufficient to be able to make products with 𝑄 or
its transpose. The functions unmqr and ormqr multiply a matrix with the orthogonal matrix computed by geqrf.

cvxopt.lapack.unmqr(A, tau, C[, side = ’L’, trans = ’N’])
Product with a real orthogonal or complex unitary matrix:

𝐶 := op(𝑄)𝐶 (side = ′L′),

𝐶 := 𝐶 op(𝑄) (side = ′R′),

where

op(𝑄) =

⎧⎨⎩ 𝑄 trans = ′N′

𝑄𝑇 trans = ′T′

𝑄𝐻 trans = ′C′.

If A is 𝑚 by 𝑛, then 𝑄 is square of order 𝑚 and orthogonal or unitary. 𝑄 is stored in the first min{𝑚, 𝑛} columns
of A and in tau as a product of min{𝑚, 𝑛} elementary reflectors, as computed by geqrf. The matrices A,
tau, and C must have the same type. trans = 'T' is only allowed if the typecode is 'd'.

cvxopt.lapack.ormqr(A, tau, C[, side = ’L’, trans = ’N’])
Identical to unmqr but works only for real matrices, and the possible values of trans are 'N' and 'T'.

As an example, we solve a least-squares problem by a direct call to gels, and by separate calls to geqrf, ormqr,
and trtrs.

>>> from cvxopt import blas, lapack, matrix, normal
>>> m, n = 10, 5
>>> A, b = normal(m,n), normal(m,1)
>>> x1 = +b
>>> lapack.gels(+A, x1) # x1[:n] minimizes || A*x - b ||_2
>>> tau = matrix(0.0, (n,1))

(continues on next page)

5.5. Least-Squares and Least-Norm Problems 45



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

>>> lapack.geqrf(A, tau) # A = [Q1, Q2] * [R1; 0]
>>> x2 = +b
>>> lapack.ormqr(A, tau, x2, trans='T') # x2 := [Q1, Q2]' * x2
>>> lapack.trtrs(A[:n,:], x2, uplo='U') # x2[:n] := R1^{-1} * x2[:n]
>>> blas.nrm2(x1[:n] - x2[:n])
3.0050798580569307e-16

The next two functions make products with the orthogonal matrix computed by gelqf.

cvxopt.lapack.unmlq(A, tau, C[, side = ’L’, trans = ’N’])
Product with a real orthogonal or complex unitary matrix:

𝐶 := op(𝑄)𝐶 (side = ′L′),

𝐶 := 𝐶 op(𝑄) (side = ′R′),

where

op(𝑄) =

⎧⎨⎩ 𝑄 trans = ′N′,
𝑄𝑇 trans = ′T′,
𝑄𝐻 trans = ′C′.

If A is 𝑚 by 𝑛, then 𝑄 is square of order 𝑛 and orthogonal or unitary. 𝑄 is stored in the first min{𝑚, 𝑛} rows of
A and in tau as a product of min{𝑚, 𝑛} elementary reflectors, as computed by gelqf. The matrices A, tau,
and C must have the same type. trans = 'T' is only allowed if the typecode is 'd'.

cvxopt.lapack.ormlq(A, tau, C[, side = ’L’, trans = ’N’])
Identical to unmlq but works only for real matrices, and the possible values of trans or 'N' and 'T'.

As an example, we solve a least-norm problem by a direct call to gels, and by separate calls to gelqf, ormlq , and
trtrs.

>>> from cvxopt import blas, lapack, matrix, normal
>>> m, n = 5, 10
>>> A, b = normal(m,n), normal(m,1)
>>> x1 = matrix(0.0, (n,1))
>>> x1[:m] = b
>>> lapack.gels(+A, x1) # x1 minimizes ||x||_2 subject to A*x = b
>>> tau = matrix(0.0, (m,1))
>>> lapack.gelqf(A, tau) # A = [L1, 0] * [Q1; Q2]
>>> x2 = matrix(0.0, (n,1))
>>> x2[:m] = b # x2 = [b; 0]
>>> lapack.trtrs(A[:,:m], x2) # x2[:m] := L1^{-1} * x2[:m]
>>> lapack.ormlq(A, tau, x2, trans='T') # x2 := [Q1, Q2]' * x2
>>> blas.nrm2(x1 - x2)
0.0

Finally, if the matrix 𝑄 is needed explicitly, it can be generated from the output of geqrf and gelqf using one of
the following functions.

cvxopt.lapack.ungqr(A, tau)
If A has size 𝑚 by 𝑛, and tau has length 𝑘, then, on entry, the first k columns of the matrix A and the entries
of tau contai an unitary or orthogonal matrix 𝑄 of order 𝑚, as computed by geqrf. On exit, the first min{𝑚,
𝑛} columns of 𝑄 are contained in the leading columns of A.

cvxopt.lapack.orgqr(A, tau)
Identical to ungqr but works only for real matrices.

cvxopt.lapack.unglq(A, tau)
If A has size 𝑚 by 𝑛, and tau has length 𝑘, then, on entry, the first k rows of the matrix A and the entries of

46 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

tau contain a unitary or orthogonal matrix 𝑄 of order 𝑛, as computed by gelqf. On exit, the first min{𝑚, 𝑛}
rows of 𝑄 are contained in the leading rows of A.

cvxopt.lapack.orglq(A, tau)
Identical to unglq but works only for real matrices.

We illustrate this with the QR factorization of the matrix

𝐴 =

⎡⎢⎢⎣
6 −5 4
6 3 −4

19 −2 7
6 −10 −5

⎤⎥⎥⎦ =
[︀
𝑄1 𝑄2

]︀ [︂ 𝑅
0

]︂
.

>>> from cvxopt import matrix, lapack
>>> A = matrix([ [6., 6., 19., 6.], [-5., 3., -2., -10.], [4., -4., 7., -5] ])
>>> m, n = A.size
>>> tau = matrix(0.0, (n,1))
>>> lapack.geqrf(A, tau)
>>> print(A[:n, :]) # Upper triangular part is R.
[-2.17e+01 5.08e+00 -4.76e+00]
[ 2.17e-01 -1.06e+01 -2.66e+00]
[ 6.87e-01 3.12e-01 -8.74e+00]
>>> Q1 = +A
>>> lapack.orgqr(Q1, tau)
>>> print(Q1)
[-2.77e-01 3.39e-01 -4.10e-01]
[-2.77e-01 -4.16e-01 7.35e-01]
[-8.77e-01 -2.32e-01 -2.53e-01]
[-2.77e-01 8.11e-01 4.76e-01]
>>> Q = matrix(0.0, (m,m))
>>> Q[:, :n] = A
>>> lapack.orgqr(Q, tau)
>>> print(Q) # Q = [ Q1, Q2]
[-2.77e-01 3.39e-01 -4.10e-01 -8.00e-01]
[-2.77e-01 -4.16e-01 7.35e-01 -4.58e-01]
[-8.77e-01 -2.32e-01 -2.53e-01 3.35e-01]
[-2.77e-01 8.11e-01 4.76e-01 1.96e-01]

The orthogonal matrix in the factorization

𝐴 =

⎡⎣ 3 −16 −10 −1
−2 −12 −3 4

9 19 6 −6

⎤⎦ = 𝑄
[︀
𝑅1 𝑅2

]︀
can be generated as follows.

>>> A = matrix([ [3., -2., 9.], [-16., -12., 19.], [-10., -3., 6.], [-1., 4., -6.] ])
>>> m, n = A.size
>>> tau = matrix(0.0, (m,1))
>>> lapack.geqrf(A, tau)
>>> R = +A
>>> print(R) # Upper trapezoidal part is [R1, R2].
[-9.70e+00 -1.52e+01 -3.09e+00 6.70e+00]
[-1.58e-01 2.30e+01 1.14e+01 -1.92e+00]
[ 7.09e-01 -5.57e-01 2.26e+00 2.09e+00]
>>> lapack.orgqr(A, tau)
>>> print(A[:, :m]) # Q is in the first m columns of A.
[-3.09e-01 -8.98e-01 -3.13e-01]

(continues on next page)

5.5. Least-Squares and Least-Norm Problems 47



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 2.06e-01 -3.85e-01 9.00e-01]
[-9.28e-01 2.14e-01 3.04e-01]

5.6 Symmetric and Hermitian Eigenvalue Decomposition

The first four routines compute all or selected eigenvalues and eigenvectors of a real symmetric matrix 𝐴:

𝐴 = 𝑉 diag(𝜆)𝑉 𝑇 , 𝑉 𝑇𝑉 = 𝐼.

cvxopt.lapack.syev(A, W[, jobz = ’N’, uplo = ’L’])
Eigenvalue decomposition of a real symmetric matrix of order 𝑛.

W is a real matrix of length at least 𝑛. On exit, W contains the eigenvalues in ascending order. If jobz is 'V',
the eigenvectors are also computed and returned in A. If jobz is 'N', the eigenvectors are not returned and the
contents of A are destroyed.

Raises an ArithmeticError if the eigenvalue decomposition fails.

cvxopt.lapack.syevd(A, W[, jobz = ’N’, uplo = ’L’])
This is an alternative to syev , based on a different algorithm. It is faster on large problems, but also uses more
memory.

cvxopt.lapack.syevx(A, W[, jobz = ’N’, range = ’A’, uplo = ’L’, vl = 0.0, vu = 0.0, il = 1, iu = 1, Z =
None])

Computes selected eigenvalues and eigenvectors of a real symmetric matrix of order 𝑛.

W is a real matrix of length at least 𝑛. On exit, W contains the eigenvalues in ascending order. If range
is 'A', all the eigenvalues are computed. If range is 'I', eigenvalues 𝑖𝑙 through 𝑖𝑢 are computed, where
1 ≤ 𝑖𝑙 ≤ 𝑖𝑢 ≤ 𝑛. If range is 'V', the eigenvalues in the interval (𝑣𝑙, 𝑣𝑢] are computed.

If jobz is 'V', the (normalized) eigenvectors are computed, and returned in Z. If jobz is 'N', the eigenvectors
are not computed. In both cases, the contents of A are destroyed on exit.

Z is optional (and not referenced) if jobz is 'N'. It is required if jobz is 'V' and must have at least 𝑛 columns
if range is 'A' or 'V' and at least 𝑖𝑢 − 𝑖𝑙 + 1 columns if range is 'I'.

syevx returns the number of computed eigenvalues.

cvxopt.lapack.syevr(A, W[, jobz = ’N’, range = ’A’, uplo = ’L’, vl = 0.0, vu = 0.0, il = 1, iu = n, Z =
None])

This is an alternative to syevx. syevr is the most recent LAPACK routine for symmetric eigenvalue problems,
and expected to supersede the three other routines in future releases.

The next four routines can be used to compute eigenvalues and eigenvectors for complex Hermitian matrices:

𝐴 = 𝑉 diag(𝜆)𝑉 𝐻 , 𝑉 𝐻𝑉 = 𝐼.

For real symmetric matrices they are identical to the corresponding syev* routines.

cvxopt.lapack.heev(A, W[, jobz = ’N’, uplo = ’L’])
Eigenvalue decomposition of a real symmetric or complex Hermitian matrix of order 𝑛.

The calling sequence is identical to syev , except that A can be real or complex.

cvxopt.lapack.heevd(A, W[, jobz = ’N’[, uplo = ’L’]])
This is an alternative to heev .

48 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.heevx(A, W[, jobz = ’N’, range = ’A’, uplo = ’L’, vl = 0.0, vu = 0.0, il = 1, iu = n, Z =
None])

Computes selected eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix.

The calling sequence is identical to syevx, except that A can be real or complex. Z must have the same type as
A.

cvxopt.lapack.heevr(A, W[, jobz = ’N’, range = ’A’, uplo = ’L’, vl = 0.0, vu = 0.0, il = 1, iu = n, Z =
None])

This is an alternative to heevx.

5.7 Generalized Symmetric Definite Eigenproblems

Three types of generalized eigenvalue problems can be solved:

𝐴𝑍 = 𝐵𝑍 diag(𝜆) (type 1),
𝐴𝐵𝑍 = 𝑍 diag(𝜆) (type 2),
𝐵𝐴𝑍 = 𝑍 diag(𝜆) (type 3),

(5.2)

with 𝐴 and 𝐵 real symmetric or complex Hermitian, and 𝐵 is positive definite. The matrix of eigenvectors is normal-
ized as follows:

𝑍𝐻𝐵𝑍 = 𝐼 (types 1 and 2), 𝑍𝐻𝐵−1𝑍 = 𝐼 (type 3).

cvxopt.lapack.sygv(A, B, W[, itype = 1, jobz = ’N’, uplo = ’L’])
Solves the generalized eigenproblem (5.2) for real symmetric matrices of order 𝑛, stored in real matrices A and
B. itype is an integer with possible values 1, 2, 3, and specifies the type of eigenproblem. W is a real matrix of
length at least 𝑛. On exit, it contains the eigenvalues in ascending order. On exit, B contains the Cholesky factor
of 𝐵. If jobz is 'V', the eigenvectors are computed and returned in A. If jobz is 'N', the eigenvectors are
not returned and the contents of A are destroyed.

cvxopt.lapack.hegv(A, B, W[, itype = 1, jobz = ’N’, uplo = ’L’])
Generalized eigenvalue problem (5.2) of real symmetric or complex Hermitian matrix of order 𝑛. The calling
sequence is identical to sygv , except that A and B can be real or complex.

5.8 Singular Value Decomposition

cvxopt.lapack.gesvd(A, S[, jobu = ’N’, jobvt = ’N’, U = None, Vt = None])
Singular value decomposition

𝐴 = 𝑈Σ𝑉 𝑇 , 𝐴 = 𝑈Σ𝑉 𝐻

of a real or complex 𝑚 by 𝑛 matrix 𝐴.

S is a real matrix of length at least min{𝑚, 𝑛}. On exit, its first min{𝑚, 𝑛} elements are the singular values in
descending order.

The argument jobu controls how many left singular vectors are computed. The possible values are 'N', 'A',
'S' and 'O'. If jobu is 'N', no left singular vectors are computed. If jobu is 'A', all left singular vectors
are computed and returned as columns of U. If jobu is 'S', the first min{𝑚, 𝑛} left singular vectors are
computed and returned as columns of U. If jobu is 'O', the first min{𝑚, 𝑛} left singular vectors are computed
and returned as columns of A. The argument U is None(if jobu is 'N' or 'A') or a matrix of the same type as
A.

5.7. Generalized Symmetric Definite Eigenproblems 49



CVXOPT Documentation, Release 1.3.2

The argument jobvt controls how many right singular vectors are computed. The possible values are 'N',
'A', 'S' and 'O'. If jobvt is 'N', no right singular vectors are computed. If jobvt is 'A', all right
singular vectors are computed and returned as rows of Vt. If jobvt is 'S', the first min{𝑚, 𝑛} right singular
vectors are computed and their (conjugate) transposes are returned as rows of Vt. If jobvt is 'O', the first
min{𝑚, 𝑛} right singular vectors are computed and their (conjugate) transposes are returned as rows of A. Note
that the (conjugate) transposes of the right singular vectors (i.e., the matrix 𝑉 𝐻 ) are returned in Vt or A. The
argument Vt can be None (if jobvt is 'N' or 'A') or a matrix of the same type as A.

On exit, the contents of A are destroyed.

cvxopt.lapack.gesdd(A, S[, jobz = ’N’, U = None, Vt = None])
Singular value decomposition of a real or complex 𝑚 by 𝑛 matrix.. This function is based on a divide-and-
conquer algorithm and is faster than gesvd.

S is a real matrix of length at least min{𝑚, 𝑛}. On exit, its first min{𝑚, 𝑛} elements are the singular values in
descending order.

The argument jobz controls how many singular vectors are computed. The possible values are 'N', 'A', 'S'
and 'O'. If jobz is 'N', no singular vectors are computed. If jobz is 'A', all 𝑚 left singular vectors are
computed and returned as columns of U and all 𝑛 right singular vectors are computed and returned as rows of
Vt. If jobz is 'S', the first min{𝑚, 𝑛} left and right singular vectors are computed and returned as columns
of U and rows of Vt. If jobz is 'O' and 𝑚 is greater than or equal to 𝑛, the first 𝑛 left singular vectors are
returned as columns of A and the 𝑛 right singular vectors are returned as rows of Vt. If jobz is 'O' and 𝑚 is
less than 𝑛, the 𝑚 left singular vectors are returned as columns of U and the first 𝑚 right singular vectors are
returned as rows of A. Note that the (conjugate) transposes of the right singular vectors are returned in Vt or A.

The argument U can be None (if jobz is 'N' or 'A' of jobz is 'O' and 𝑚 is greater than or equal to 𝑛)
or a matrix of the same type as A. The argument Vt can be None(if jobz is 'N' or 'A' or jobz is 'O' and
:math‘m‘ is less than 𝑛) or a matrix of the same type as A.

On exit, the contents of A are destroyed.

5.9 Schur and Generalized Schur Factorization

cvxopt.lapack.gees(A[, w = None, V = None, select = None])
Computes the Schur factorization

𝐴 = 𝑉 𝑆𝑉 𝑇 (𝐴 real), 𝐴 = 𝑉 𝑆𝑉 𝐻 (𝐴 complex)

of a real or complex 𝑛 by 𝑛 matrix 𝐴.

If 𝐴 is real, the matrix of Schur vectors 𝑉 is orthogonal, and 𝑆 is a real upper quasi-triangular matrix with 1
by 1 or 2 by 2 diagonal blocks. The 2 by 2 blocks correspond to complex conjugate pairs of eigenvalues of 𝐴.
If 𝐴 is complex, the matrix of Schur vectors 𝑉 is unitary, and 𝑆 is a complex upper triangular matrix with the
eigenvalues of 𝐴 on the diagonal.

The optional argument w is a complex matrix of length at least 𝑛. If it is provided, the eigenvalues of A are
returned in w. The optional argument V is an 𝑛 by 𝑛 matrix of the same type as A. If it is provided, then the
Schur vectors are returned in V.

The argument select is an optional ordering routine. It must be a Python function that can be called as f(s)
with a complex argument s, and returns True or False. The eigenvalues for which select returns True
will be selected to appear first along the diagonal. (In the real Schur factorization, if either one of a complex
conjugate pair of eigenvalues is selected, then both are selected.)

On exit, A is replaced with the matrix 𝑆. The function gees returns an integer equal to the number of eigenval-
ues that were selected by the ordering routine. If select is None, then gees returns 0.

50 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

As an example we compute the complex Schur form of the matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
−7 −11 −6 −4 11

5 −3 3 −12 0
11 11 −5 −14 9
−4 8 0 8 6
13 −19 −12 −8 10

⎤⎥⎥⎥⎥⎦ .

>>> A = matrix([[-7., 5., 11., -4., 13.], [-11., -3., 11., 8., -19.], [-6., 3., -5.,
→˓0., -12.],

[-4., -12., -14., 8., -8.], [11., 0., 9., 6., 10.]])
>>> S = matrix(A, tc='z')
>>> w = matrix(0.0, (5,1), 'z')
>>> lapack.gees(S, w)
0
>>> print(S)
[ 5.67e+00+j1.69e+01 -2.13e+01+j2.85e+00 1.40e+00+j5.88e+00 -4.19e+00+j2.05e-01 3.
→˓19e+00-j1.01e+01]
[ 0.00e+00-j0.00e+00 5.67e+00-j1.69e+01 1.09e+01+j5.93e-01 -3.29e+00-j1.26e+00 -1.
→˓26e+01+j7.80e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 1.27e+01+j3.43e-17 -6.83e+00+j2.18e+00 5.
→˓31e+00-j1.69e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 -1.31e+01-j0.00e+00 -2.
→˓60e-01-j0.00e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 -7.
→˓86e+00-j0.00e+00]
>>> print(w)
[ 5.67e+00+j1.69e+01]
[ 5.67e+00-j1.69e+01]
[ 1.27e+01+j3.43e-17]
[-1.31e+01-j0.00e+00]
[-7.86e+00-j0.00e+00]

An ordered Schur factorization with the eigenvalues in the left half of the complex plane ordered first, can be computed
as follows.

>>> S = matrix(A, tc='z')
>>> def F(x): return (x.real < 0.0)
...
>>> lapack.gees(S, w, select = F)
2
>>> print(S)
[-1.31e+01-j0.00e+00 -1.72e-01+j7.93e-02 -2.81e+00+j1.46e+00 3.79e+00-j2.67e-01 5.
→˓14e+00-j4.84e+00]
[ 0.00e+00-j0.00e+00 -7.86e+00-j0.00e+00 -1.43e+01+j8.31e+00 5.17e+00+j8.79e+00 2.
→˓35e+00-j7.86e-01]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 5.67e+00+j1.69e+01 -1.71e+01-j1.41e+01 1.
→˓83e+00-j4.63e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 5.67e+00-j1.69e+01 -8.
→˓75e+00+j2.88e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 1.
→˓27e+01+j3.43e-17]
>>> print(w)
[-1.31e+01-j0.00e+00]
[-7.86e+00-j0.00e+00]
[ 5.67e+00+j1.69e+01]
[ 5.67e+00-j1.69e+01]
[ 1.27e+01+j3.43e-17]

5.9. Schur and Generalized Schur Factorization 51



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.gges(A, B[, a = None, b = None, Vl = None, Vr = None, select = None])
Computes the generalized Schur factorization

𝐴 = 𝑉𝑙𝑆𝑉
𝑇
𝑟 , 𝐵 = 𝑉𝑙𝑇𝑉

𝑇
𝑟 (𝐴 and 𝐵 real),

𝐴 = 𝑉𝑙𝑆𝑉
𝐻
𝑟 , 𝐵 = 𝑉𝑙𝑇𝑉

𝐻
𝑟 , (𝐴 and 𝐵 complex)

of a pair of real or complex 𝑛 by 𝑛 matrices 𝐴, 𝐵.

If 𝐴 and 𝐵 are real, then the matrices of left and right Schur vectors 𝑉𝑙 and 𝑉𝑟 are orthogonal, 𝑆 is a real upper
quasi-triangular matrix with 1 by 1 or 2 by 2 diagonal blocks, and 𝑇 is a real triangular matrix with nonnegative
diagonal. The 2 by 2 blocks along the diagonal of 𝑆 correspond to complex conjugate pairs of generalized
eigenvalues of 𝐴, 𝐵. If 𝐴 and 𝐵 are complex, the matrices of left and right Schur vectors 𝑉𝑙 and 𝑉𝑟 are unitary,
𝑆 is complex upper triangular, and 𝑇 is complex upper triangular with nonnegative real diagonal.

The optional arguments a and b are 'z' and 'd' matrices of length at least 𝑛. If these are provided, the
generalized eigenvalues of A, B are returned in a and b. (The generalized eigenvalues are the ratios a[k] /
b[k].) The optional arguments Vl and Vr are 𝑛 by 𝑛 matrices of the same type as A and B. If they are provided,
then the left Schur vectors are returned in Vl and the right Schur vectors are returned in Vr.

The argument select is an optional ordering routine. It must be a Python function that can be called as f(x,
y) with a complex argument x and a real argument y, and returns True or False. The eigenvalues for which
select returns True will be selected to appear first on the diagonal. (In the real Schur factorization, if either
one of a complex conjugate pair of eigenvalues is selected, then both are selected.)

On exit, A is replaced with the matrix 𝑆 and B is replaced with the matrix 𝑇 . The function gges returns an
integer equal to the number of eigenvalues that were selected by the ordering routine. If select is None, then
gges returns 0.

As an example, we compute the generalized complex Schur form of the matrix 𝐴 of the previous example, and

𝐵 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

>>> A = matrix([[-7., 5., 11., -4., 13.], [-11., -3., 11., 8., -19.], [-6., 3., -5.,
→˓0., -12.],

[-4., -12., -14., 8., -8.], [11., 0., 9., 6., 10.]])
>>> B = matrix(0.0, (5,5))
>>> B[:19:6] = 1.0
>>> S = matrix(A, tc='z')
>>> T = matrix(B, tc='z')
>>> a = matrix(0.0, (5,1), 'z')
>>> b = matrix(0.0, (5,1))
>>> lapack.gges(S, T, a, b)
0
>>> print(S)
[ 6.64e+00-j8.87e+00 -7.81e+00-j7.53e+00 6.16e+00-j8.51e-01 1.18e+00+j9.17e+00 5.
→˓88e+00-j4.51e+00]
[ 0.00e+00-j0.00e+00 8.48e+00+j1.13e+01 -2.12e-01+j1.00e+01 5.68e+00+j2.40e+00 -2.
→˓47e+00+j9.38e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 -1.39e+01-j0.00e+00 6.78e+00-j0.00e+00 1.
→˓09e+01-j0.00e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 -6.62e+00-j0.00e+00 -2.
→˓28e-01-j0.00e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 -2.
→˓89e+01-j0.00e+00]

(continues on next page)

52 Chapter 5. The LAPACK Interface



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

>>> print(T)
[ 6.46e-01-j0.00e+00 4.29e-01-j4.79e-02 2.02e-01-j3.71e-01 1.08e-01-j1.98e-01 -1.
→˓95e-01+j3.58e-01]
[ 0.00e+00-j0.00e+00 8.25e-01-j0.00e+00 -2.17e-01+j3.11e-01 -1.16e-01+j1.67e-01 2.
→˓10e-01-j3.01e-01]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 7.41e-01-j0.00e+00 -3.25e-01-j0.00e+00 5.
→˓87e-01-j0.00e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 8.75e-01-j0.00e+00 4.
→˓84e-01-j0.00e+00]
[ 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.00e+00-j0.00e+00 0.
→˓00e+00-j0.00e+00]
>>> print(a)
[ 6.64e+00-j8.87e+00]
[ 8.48e+00+j1.13e+01]
[-1.39e+01-j0.00e+00]
[-6.62e+00-j0.00e+00]
[-2.89e+01-j0.00e+00]
>>> print(b)
[ 6.46e-01]
[ 8.25e-01]
[ 7.41e-01]
[ 8.75e-01]
[ 0.00e+00]

5.10 Example: Analytic Centering

The analytic centering problem is defined as

minimize −
𝑚∑︀
𝑖=1

log(𝑏𝑖 − 𝑎𝑇𝑖 𝑥).

In the code below we solve the problem using Newton’s method. At each iteration the Newton direction is computed
by solving a positive definite set of linear equations

𝐴𝑇 diag(𝑏−𝐴𝑥)−2𝐴𝑣 = −diag(𝑏−𝐴𝑥)−11

(where 𝐴 has rows 𝑎𝑇𝑖 ), and a suitable step size is determined by a backtracking line search.

We use the level-3 BLAS function blas.syrk to form the Hessian matrix and the LAPACK function posv to solve
the Newton system. The code can be further optimized by replacing the matrix-vector products with the level-2 BLAS
function blas.gemv .

from cvxopt import matrix, log, mul, div, blas, lapack
from math import sqrt

def acent(A,b):
"""
Returns the analytic center of A*x <= b.
We assume that b > 0 and the feasible set is bounded.
"""

MAXITERS = 100
ALPHA = 0.01
BETA = 0.5

(continues on next page)

5.10. Example: Analytic Centering 53



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

TOL = 1e-8

m, n = A.size
x = matrix(0.0, (n,1))
H = matrix(0.0, (n,n))

for iter in xrange(MAXITERS):

# Gradient is g = A^T * (1./(b-A*x)).
d = (b - A*x)**-1
g = A.T * d

# Hessian is H = A^T * diag(d)^2 * A.
Asc = mul( d[:,n*[0]], A )
blas.syrk(Asc, H, trans='T')

# Newton step is v = -H^-1 * g.
v = -g
lapack.posv(H, v)

# Terminate if Newton decrement is less than TOL.
lam = blas.dot(g, v)
if sqrt(-lam) < TOL: return x

# Backtracking line search.
y = mul(A*v, d)
step = 1.0
while 1-step*max(y) < 0: step *= BETA
while True:

if -sum(log(1-step*y)) < ALPHA*step*lam: break
step *= BETA

x += step*v

54 Chapter 5. The LAPACK Interface



CHAPTER 6

Discrete Transforms

The cvxopt.fftw module is an interface to the FFTW library and contains routines for discrete Fourier, cosine,
and sine transforms. This module is optional, and only installed when the FFTW library is made available during the
CVXOPT installation.

See also:

FFTW3 code, documentation, copyright and license

6.1 Discrete Fourier Transform

cvxopt.fftw.dft(X)
Replaces the columns of a dense complex matrix with their discrete Fourier transforms: if X has 𝑛 rows,

𝑋[𝑘, :] :=

𝑛−1∑︁
𝑗=0

𝑒−2𝜋𝑗𝑘
√
−1/𝑛𝑋[𝑗, :], 𝑘 = 0, . . . , 𝑛− 1.

cvxopt.fftw.idft(X)
Replaces the columns of a dense complex matrix with their inverse discrete Fourier transforms: if X has 𝑛 rows,

𝑋[𝑘, :] :=
1

𝑛

𝑛−1∑︁
𝑗=0

𝑒2𝜋𝑗𝑘
√
−1/𝑛𝑋[𝑗, :], 𝑘 = 0, . . . , 𝑛− 1.

The module also includes a discrete N-dimensional Fourier transform. The input matrix is interpreted as an N-
dimensional matrix stored in column-major order. The discrete N-dimensional Fourier transform computes the cor-
responding one-dimensional transform along each dimension. For example, the two-dimensional transform applies a
one-dimensional transform to all the columns of the matrix, followed by a one-dimensional transform to all the rows
of the matrix.

cvxopt.fftw.dftn(X[, dims = X.size])
Replaces a dense complex matrix with its N-dimensional discrete Fourier transform. The dimensions of the N-
dimensional matrix are given by the N-tuple dims. The two-dimensional transform is computed as dftn(X,
X.size).

55

http://www.fftw.org


CVXOPT Documentation, Release 1.3.2

cvxopt.fftw.idftn(X[, dims = X.size])
Replaces a dense complex N-dimensional matrix with its inverse N-dimensional discrete Fourier transform. The
dimensions of the matrix are given by the tuple dims. The two-dimensional inverse transform is computed as
idftn(X, X.size).

6.2 Discrete Cosine Transform

cvxopt.fftw.dct(X[, type = 2])
Replaces the columns of a dense real matrix with their discrete cosine transforms. The second argument, an
integer between 1 and 4, denotes the type of transform (DCT-I, DCT-II, DCT-III, DCT-IV). The DCT-I transform
requires that the row dimension of X is at least 2. These transforms are defined as follows (for a matrix with 𝑛
rows).

DCT-I: 𝑋[𝑘, :] := 𝑋[0, :] + (−1)𝑘𝑋[𝑛− 1, :] + 2

𝑛−2∑︁
𝑗=1

𝑋[𝑗, :] cos(𝜋𝑗𝑘/(𝑛− 1)), 𝑘 = 0, . . . , 𝑛− 1.

DCT-II: 𝑋[𝑘, :] := 2

𝑛−1∑︁
𝑗=0

𝑋[𝑗, :] cos(𝜋(𝑗 + 1/2)𝑘/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

DCT-III: 𝑋[𝑘, :] := 𝑋[0, :] + 2

𝑛−1∑︁
𝑗=1

𝑋[𝑗, :] cos(𝜋𝑗(𝑘 + 1/2)/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

DCT-IV: 𝑋[𝑘, :] := 2

𝑛−1∑︁
𝑗=0

𝑋[𝑗, :] cos(𝜋(𝑗 + 1/2)(𝑘 + 1/2)/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

cvxopt.fftw.idct(X[, type = 2])
Replaces the columns of a dense real matrix with the inverses of the discrete cosine transforms defined above.

The module also includes a discrete N-dimensional cosine transform. The input matrix is interpreted as an N-
dimensional matrix stored in column-major order. The discrete N-dimensional cosine transform computes the cor-
responding one-dimensional transform along each dimension. For example, the two-dimensional transform applies a
one-dimensional transform to all the rows of the matrix, followed by a one-dimensional transform to all the columns
of the matrix.

cvxopt.fftw.dctn(X[, dims = X.size, type = 2])
Replaces a dense real matrix with its N-dimensional discrete cosine transform. The dimensions of the N-
dimensional matrix are given by the N-tuple dims. The two-dimensional transform is computed as dctn(X,
X.size).

cvxopt.fftw.idctn(X[, dims = X.size, type = 2])
Replaces a dense real N-dimensional matrix with its inverse N-dimensional discrete cosine transform. The
dimensions of the matrix are given by the tuple dims. The two-dimensional inverse transform is computed as
idctn(X, X.size).

6.3 Discrete Sine Transform

cvxopt.fftw.dst(X, dims[, type = 1])
Replaces the columns of a dense real matrix with their discrete sine transforms. The second argument, an integer
between 1 and 4, denotes the type of transform (DST-I, DST-II, DST-III, DST-IV). These transforms are defined

56 Chapter 6. Discrete Transforms



CVXOPT Documentation, Release 1.3.2

as follows (for a matrix with 𝑛 rows).

DST-I: 𝑋[𝑘, :] := 2

𝑛−1∑︁
𝑗=0

𝑋[𝑗, :] sin(𝜋(𝑗 + 1)(𝑘 + 1)/(𝑛 + 1)), 𝑘 = 0, . . . , 𝑛− 1.

DST-II: 𝑋[𝑘, :] := 2

𝑛−1∑︁
𝑗=0

𝑋[𝑗, :] sin(𝜋(𝑗 + 1/2)(𝑘 + 1)/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

DST-III: 𝑋[𝑘, :] := (−1)𝑘𝑋[𝑛− 1, :] + 2

𝑛−2∑︁
𝑗=0

𝑋[𝑗, :] sin(𝜋(𝑗 + 1)(𝑘 + 1/2)/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

DST-IV: 𝑋[𝑘, :] := 2

𝑛−1∑︁
𝑗=0

𝑋[𝑗, :] sin(𝜋(𝑗 + 1/2)(𝑘 + 1/2)/𝑛), 𝑘 = 0, . . . , 𝑛− 1.

cvxopt.fftw.idst(X, dims[, type = 1])
Replaces the columns of a dense real matrix with the inverses of the discrete sine transforms defined above.

The module also includes a discrete N-dimensional sine transform. The input matrix is interpreted as an N-dimensional
matrix stored in column-major order. The discrete N-dimensional sine transform computes the corresponding one-
dimensional transform along each dimension. For example, the two-dimensional transform applies a one-dimensional
transform to all the rows of the matrix, followed by a one-dimensional transform to all the columns of the matrix.

cvxopt.fftw.dstn(X[, dims = X.size, type = 2])
Replaces a dense real matrix with its N-dimensional discrete sine transform. The dimensions of the N-
dimensional matrix are given by the N-tuple dims. The two-dimensional transform is computed as dstn(X,
X.size).

cvxopt.fftw.idstn(X[, dims = X.size, type = 2])
Replaces a dense real N-dimensional matrix with its inverse N-dimensional discrete sine transform. The di-
mensions of the matrix are given by the tuple dims. The two-dimensional inverse transform is computed as
idstn(X, X.size).

6.3. Discrete Sine Transform 57



CVXOPT Documentation, Release 1.3.2

58 Chapter 6. Discrete Transforms



CHAPTER 7

Sparse Linear Equations

In this section we describe routines for solving sparse sets of linear equations.

A real symmetric or complex Hermitian sparse matrix is stored as an spmatrix object X of size (𝑛, 𝑛) and an
additional character argument uplo with possible values 'L' and 'U'. If uplo is 'L', the lower triangular part
of X contains the lower triangular part of the symmetric or Hermitian matrix, and the upper triangular matrix of X is
ignored. If uplo is 'U', the upper triangular part of X contains the upper triangular part of the matrix, and the lower
triangular matrix of X is ignored.

A general sparse square matrix of order 𝑛 is represented by an spmatrix object of size (𝑛, 𝑛).

Dense matrices, which appear as right-hand sides of equations, are stored using the same conventions as in the BLAS
and LAPACK modules.

7.1 Matrix Orderings

CVXOPT includes an interface to the AMD library for computing approximate minimum degree orderings of sparse
matrices.

See also:

• P. R. Amestoy, T. A. Davis, I. S. Duff, Algorithm 837: AMD, An Approximate Minimum Degree Ordering
Algorithm, ACM Transactions on Mathematical Software, 30(3), 381-388, 2004.

cvxopt.amd.order(A[, uplo = ’L’])
Computes the approximate mimimum degree ordering of a symmetric sparse matrix 𝐴. The ordering is returned
as an integer dense matrix with length equal to the order of 𝐴. Its entries specify a permutation that reduces
fill-in during the Cholesky factorization. More precisely, if p = order(A) , then A[p, p] has sparser
Cholesky factors than A.

As an example we consider the matrix ⎡⎢⎢⎣
10 0 3 0
0 5 0 −2
3 0 5 0
0 −2 0 2

⎤⎥⎥⎦ .

59



CVXOPT Documentation, Release 1.3.2

>>> from cvxopt import spmatrix, amd
>>> A = spmatrix([10,3,5,-2,5,2], [0,2,1,2,2,3], [0,0,1,1,2,3])
>>> P = amd.order(A)
>>> print(P)
[ 1]
[ 0]
[ 2]
[ 3]

7.2 General Linear Equations

The module cvxopt.umfpack includes four functions for solving sparse non-symmetric sets of linear equations.
They call routines from the UMFPACK library, with all control options set to the default values described in the
UMFPACK user guide.

See also:

• T. A. Davis, Algorithm 832: UMFPACK – an unsymmetric-pattern multifrontal method with a column pre-
ordering strategy, ACM Transactions on Mathematical Software, 30(2), 196-199, 2004.

cvxopt.umfpack.linsolve(A, B[, trans = ’N’])
Solves a sparse set of linear equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

where 𝐴 is a sparse matrix and 𝐵 is a dense matrix. The arguments A and B must have the same type ('d' or
'z') as A. On exit B contains the solution. Raises an ArithmeticError if the coefficient matrix is singular.

In the following example we solve an equation with coefficient matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

⎤⎥⎥⎥⎥⎦ . (7.1)

>>> from cvxopt import spmatrix, matrix, umfpack
>>> V = [2, 3, 3, -1, 4, 4, -3, 1, 2, 2, 6, 1]
>>> I = [0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4]
>>> J = [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4]
>>> A = spmatrix(V,I,J)
>>> B = matrix(1.0, (5,1))
>>> umfpack.linsolve(A,B)
>>> print(B)
[ 5.79e-01]
[-5.26e-02]
[ 1.00e+00]
[ 1.97e+00]
[-7.89e-01]

The function linsolve is equivalent to the following three functions called in sequence.

60 Chapter 7. Sparse Linear Equations



CVXOPT Documentation, Release 1.3.2

cvxopt.umfpack.symbolic(A)
Reorders the columns of A to reduce fill-in and performs a symbolic LU factorization. A is a sparse, possibly
rectangular, matrix. Returns the symbolic factorization as an opaque C object that can be passed on to numeric.

cvxopt.umfpack.numeric(A, F)
Performs a numeric LU factorization of a sparse, possibly rectangular, matrix A. The argument F is the symbolic
factorization computed by symbolic applied to the matrix A, or another sparse matrix with the same sparsity
pattern, dimensions, and type. The numeric factorization is returned as an opaque C object that that can be
passed on to solve. Raises an ArithmeticError if the matrix is singular.

cvxopt.umfpack.solve(A, F, B[, trans = ’N’])
Solves a set of linear equations

𝐴𝑋 = 𝐵 (trans = ′N′),

𝐴𝑇𝑋 = 𝐵 (trans = ′T′),

𝐴𝐻𝑋 = 𝐵 (trans = ′C′),

where 𝐴 is a sparse matrix and 𝐵 is a dense matrix. The arguments A and B must have the same type. The
argument F is a numeric factorization computed by numeric. On exit B is overwritten by the solution.

These separate functions are useful for solving several sets of linear equations with the same coefficient matrix and
different right-hand sides, or with coefficient matrices that share the same sparsity pattern. The symbolic factorization
depends only on the sparsity pattern of the matrix, and not on the numerical values of the nonzero coefficients. The
numerical factorization on the other hand depends on the sparsity pattern of the matrix and on its the numerical values.

As an example, suppose 𝐴 is the matrix (7.1) and

𝐵 =

⎡⎢⎢⎢⎢⎣
4 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 2

⎤⎥⎥⎥⎥⎦ ,

which differs from 𝐴 in its first and last entries. The following code computes

𝑥 = 𝐴−𝑇𝐵−1𝐴−11.

>>> from cvxopt import spmatrix, matrix, umfpack
>>> VA = [2, 3, 3, -1, 4, 4, -3, 1, 2, 2, 6, 1]
>>> VB = [4, 3, 3, -1, 4, 4, -3, 1, 2, 2, 6, 2]
>>> I = [0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4]
>>> J = [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4]
>>> A = spmatrix(VA, I, J)
>>> B = spmatrix(VB, I, J)
>>> x = matrix(1.0, (5,1))
>>> Fs = umfpack.symbolic(A)
>>> FA = umfpack.numeric(A, Fs)
>>> FB = umfpack.numeric(B, Fs)
>>> umfpack.solve(A, FA, x)
>>> umfpack.solve(B, FB, x)
>>> umfpack.solve(A, FA, x, trans='T')
>>> print(x)
[ 5.81e-01]
[-2.37e-01]
[ 1.63e+00]
[ 8.07e+00]
[-1.31e-01]

7.2. General Linear Equations 61



CVXOPT Documentation, Release 1.3.2

7.3 Positive Definite Linear Equations

cvxopt.cholmod is an interface to the Cholesky factorization routines of the CHOLMOD package. It includes
functions for Cholesky factorization of sparse positive definite matrices, and for solving sparse sets of linear equations
with positive definite matrices. The routines can also be used for computing

(or

factorizations of symmetric indefinite matrices (with 𝐿 unit lower-triangular and 𝐷 diagonal and nonsingular) if such
a factorization exists.

See also:

• Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD, Supernodal Sparse
Cholesky Factorization and Update/Downdate, ACM Transactions on Mathematical Software, 35(3), 22:1-
22:14, 2008.

cvxopt.cholmod.linsolve(A, B[, p = None, uplo = ’L’])
Solves

𝐴𝑋 = 𝐵

with 𝐴 sparse and real symmetric or complex Hermitian.

B is a dense matrix of the same type as A. On exit it is overwritten with the solution. The argument p is an
integer matrix with length equal to the order of 𝐴, and specifies an optional reordering. See the comment on
options['nmethods'] for details on which ordering is used by CHOLMOD.

Raises an ArithmeticError if the factorization does not exist.

As an example, we solve ⎡⎢⎢⎣
10 0 3 0
0 5 0 −2
3 0 5 0
0 −2 0 2

⎤⎥⎥⎦𝑋 =

⎡⎢⎢⎣
0 4
1 5
2 6
3 7

⎤⎥⎥⎦ . (7.2)

>>> from cvxopt import matrix, spmatrix, cholmod
>>> A = spmatrix([10, 3, 5, -2, 5, 2], [0, 2, 1, 3, 2, 3], [0, 0, 1, 1, 2, 3])
>>> X = matrix(range(8), (4,2), 'd')
>>> cholmod.linsolve(A,X)
>>> print(X)
[-1.46e-01 4.88e-02]
[ 1.33e+00 4.00e+00]
[ 4.88e-01 1.17e+00]
[ 2.83e+00 7.50e+00]

cvxopt.cholmod.splinsolve(A, B[, p = None, uplo = ’L’])
Similar to linsolve except that B is an spmatrix and that the solution is returned as an output argument (as
a new spmatrix). B is not modified. See the comment on options['nmethods'] for details on which
ordering is used by CHOLMOD.

The following code computes the inverse of the coefficient matrix in (7.2) as a sparse matrix.

>>> X = cholmod.splinsolve(A, spmatrix(1.0,range(4),range(4)))
>>> print(X)
[ 1.22e-01 0 -7.32e-02 0 ]
[ 0 3.33e-01 0 3.33e-01]
[-7.32e-02 0 2.44e-01 0 ]
[ 0 3.33e-01 0 8.33e-01]

62 Chapter 7. Sparse Linear Equations



CVXOPT Documentation, Release 1.3.2

The functions linsolve and splinsolve are equivalent to symbolic and numeric called in sequence, fol-
lowed by solve, respectively, spsolve.

cvxopt.cholmod.symbolic(A[, p = None, uplo = ’L’])
Performs a symbolic analysis of a sparse real symmetric or complex Hermitian matrix 𝐴 for one of the two
factorizations:

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 , 𝑃𝐴𝑃𝑇 = 𝐿𝐿𝐻 , (7.3)

and

𝑃𝐴𝑃𝑇 = 𝐿𝐷𝐿𝑇 , 𝑃𝐴𝑃𝑇 = 𝐿𝐷𝐿𝐻 , (7.4)

where 𝑃 is a permutation matrix, 𝐿 is lower triangular (unit lower triangular in the second factorization), and 𝐷
is nonsingular diagonal. The type of factorization depends on the value of options['supernodal'] (see
below).

If uplo is 'L', only the lower triangular part of A is accessed and the upper triangular part is ignored. If uplo
is 'U', only the upper triangular part of A is accessed and the lower triangular part is ignored.

The symbolic factorization is returned as an opaque C object that can be passed to numeric.

See the comment on options['nmethods'] for details on which ordering is used by CHOLMOD.

cvxopt.cholmod.numeric(A, F)
Performs a numeric factorization of a sparse symmetric matrix as (7.3) or (7.4). The argument F is the symbolic
factorization computed by symbolic applied to the matrix A, or to another sparse matrix with the same sparsity
pattern and typecode, or by numeric applied to a matrix with the same sparsity pattern and typecode as A.

If F was created by a symbolic with uplo equal to 'L', then only the lower triangular part of A is accessed
and the upper triangular part is ignored. If it was created with uplo equal to 'U', then only the upper triangular
part of A is accessed and the lower triangular part is ignored.

On successful exit, the factorization is stored in F. Raises an ArithmeticError if the factorization does not
exist.

cvxopt.cholmod.solve(F, B[, sys = 0])
Solves one of the following linear equations where B is a dense matrix and F is the numeric factorization (7.3)
or (7.4) computed by numeric. sys is an integer with values between 0 and 8.

sys equation
0 𝐴𝑋 = 𝐵
1 𝐿𝐷𝐿𝑇𝑋 = 𝐵
2 𝐿𝐷𝑋 = 𝐵
3 𝐷𝐿𝑇𝑋 = 𝐵
4 𝐿𝑋 = 𝐵
5 𝐿𝑇𝑋 = 𝐵
6 𝐷𝑋 = 𝐵
7 𝑃𝑇𝑋 = 𝐵
8 𝑃𝑋 = 𝐵

(If F is a Cholesky factorization of the form (7.3), 𝐷 is an identity matrix in this table. If A is complex, 𝐿𝑇

should be replaced by 𝐿𝐻 .)

The matrix B is a dense 'd' or 'z' matrix, with the same type as A. On exit it is overwritten by the solution.

cvxopt.cholmod.spsolve(F, B[, sys = 0])
Similar to solve, except that B is a class:spmatrix, and the solution is returned as an output argument (as an
spmatrix). B must have the same typecode as A.

7.3. Positive Definite Linear Equations 63



CVXOPT Documentation, Release 1.3.2

For the same example as above:

>>> X = matrix(range(8), (4,2), 'd')
>>> F = cholmod.symbolic(A)
>>> cholmod.numeric(A, F)
>>> cholmod.solve(F, X)
>>> print(X)
[-1.46e-01 4.88e-02]
[ 1.33e+00 4.00e+00]
[ 4.88e-01 1.17e+00]
[ 2.83e+00 7.50e+00]

cvxopt.cholmod.diag(F)
Returns the diagonal elements of the Cholesky factor 𝐿 in (7.3), as a dense matrix of the same type as A. Note
that this only applies to Cholesky factorizations. The matrix 𝐷 in an factorization can be retrieved via solve
with sys equal to 6.

In the functions listed above, the default values of the control parameters described in the CHOLMOD user guide are
used, except for Common.print which is set to 0 instead of 3 and Common.supernodal which is set to 2 instead
of 1. These parameters (and a few others) can be modified by making an entry in the dictionary cholmod.options.
The meaning of the options options['supernodal'] and options['nmethods'] is summarized as follows
(and described in detail in the CHOLMOD user guide).

options['supernodal'] If equal to 0, a factorization (7.4) is computed using a simplicial algorithm. If equal
to 2, a factorization (7.3) is computed using a supernodal algorithm. If equal to 1, the most efficient of the two
factorizations is selected, based on the sparsity pattern. Default: 2.

options['nmethods'] The default ordering used by the CHOLMOD is the ordering in the AMD library, but
depending on the value of options['nmethods']. other orderings are also considered. If nmethods
is equal to 2, the ordering specified by the user and the AMD ordering are compared, and the best of the
two orderings is used. If the user does not specify an ordering, the AMD ordering is used. If equal to 1,
the user must specify an ordering, and the ordering provided by the user is used. If equal to 0, all available
orderings are compared and the best ordering is used. The available orderings include the AMD ordering, the
ordering specified by the user (if any), and possibly other orderings if they are installed during the CHOLMOD
installation. Default: 0.

As an example that illustrates diag and the use of cholmod.options, we compute the logarithm of the determi-
nant of the coefficient matrix in (7.2) by two methods.

>>> import math
>>> from cvxopt.cholmod import options
>>> from cvxopt import log
>>> F = cholmod.symbolic(A)
>>> cholmod.numeric(A, F)
>>> print(2.0 * sum(log(cholmod.diag(F))))
5.50533153593
>>> options['supernodal'] = 0
>>> F = cholmod.symbolic(A)
>>> cholmod.numeric(A, F)
>>> Di = matrix(1.0, (4,1))
>>> cholmod.solve(F, Di, sys=6)
>>> print(-sum(log(Di)))
5.50533153593

64 Chapter 7. Sparse Linear Equations



CVXOPT Documentation, Release 1.3.2

7.4 Example: Covariance Selection

This example illustrates the use of the routines for sparse Cholesky factorization. We consider the problem

minimize − log det𝐾 + tr(𝐾𝑌 )
subject to 𝐾𝑖𝑗 = 0, (𝑖, 𝑗) ̸∈ 𝑆.

(7.5)

The optimization variable is a symmetric matrix 𝐾 of order 𝑛 and the domain of the problem is the set of positive
definite matrices. The matrix 𝑌 and the index set 𝑆 are given. We assume that all the diagonal positions are included in
𝑆. This problem arises in maximum likelihood estimation of the covariance matrix of a zero-mean normal distribution,
with constraints that specify that pairs of variables are conditionally independent.

We can express 𝐾 as

𝐾(𝑥) = 𝐸1 diag(𝑥)𝐸𝑇
2 + 𝐸2 diag(𝑥)𝐸𝑇

1

where 𝑥 are the nonzero elements in the lower triangular part of 𝐾, with the diagonal elements scaled by 1/2, and

𝐸1 =
[︀
𝑒𝑖1 𝑒𝑖2 · · · 𝑒𝑖𝑞

]︀
, 𝐸2 =

[︀
𝑒𝑗1 𝑒𝑗2 · · · 𝑒𝑗𝑞

]︀
,

where (𝑖𝑘, 𝑗𝑘) are the positions of the nonzero entries in the lower-triangular part of 𝐾. With this notation, we can
solve problem (7.5) by solving the unconstrained problem

minimize 𝑓(𝑥) = − log det𝐾(𝑥) + tr(𝐾(𝑥)𝑌 ).

The code below implements Newton’s method with a backtracking line search. The gradient and Hessian of the
objective function are given by

∇𝑓(𝑥) = 2diag(𝐸𝑇
1 (𝑌 −𝐾(𝑥)−1)𝐸2))

= 2diag(𝑌𝐼𝐽 −
(︀
𝐾(𝑥)−1

)︀
𝐼𝐽

)

∇2𝑓(𝑥) = 2(𝐸𝑇
1 𝐾(𝑥)−1𝐸1) ∘ (𝐸𝑇

2 𝐾(𝑥)−1𝐸2) + 2(𝐸𝑇
1 𝐾(𝑥)−1𝐸2) ∘ (𝐸𝑇

2 𝐾(𝑥)−1𝐸1)

= 2
(︀
𝐾(𝑥)−1

)︀
𝐼𝐼

∘
(︀
𝐾(𝑥)−1

)︀
𝐽𝐽

+ 2
(︀
𝐾(𝑥)−1

)︀
𝐼𝐽

∘
(︀
𝐾(𝑥)−1

)︀
𝐽𝐼

,

where ∘ denotes Hadamard product.

from cvxopt import matrix, spmatrix, log, mul, blas, lapack, amd, cholmod

def covsel(Y):
"""
Returns the solution of

minimize -log det K + Tr(KY)
subject to K_{ij}=0, (i,j) not in indices listed in I,J.

Y is a symmetric sparse matrix with nonzero diagonal elements.
I = Y.I, J = Y.J.
"""

I, J = Y.I, Y.J
n, m = Y.size[0], len(I)
N = I + J*n # non-zero positions for one-argument indexing
D = [k for k in range(m) if I[k]==J[k]] # position of diagonal elements

# starting point: symmetric identity with nonzero pattern I,J
K = spmatrix(0.0, I, J)

(continues on next page)

7.4. Example: Covariance Selection 65



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

K[::n+1] = 1.0

# Kn is used in the line search
Kn = spmatrix(0.0, I, J)

# symbolic factorization of K
F = cholmod.symbolic(K)

# Kinv will be the inverse of K
Kinv = matrix(0.0, (n,n))

for iters in range(100):

# numeric factorization of K
cholmod.numeric(K, F)
d = cholmod.diag(F)

# compute Kinv by solving K*X = I
Kinv[:] = 0.0
Kinv[::n+1] = 1.0
cholmod.solve(F, Kinv)

# solve Newton system
grad = 2*(Y.V - Kinv[N])
hess = 2*(mul(Kinv[I,J],Kinv[J,I]) + mul(Kinv[I,I],Kinv[J,J]))
v = -grad
lapack.posv(hess,v)

# stopping criterion
sqntdecr = -blas.dot(grad,v)
print("Newton decrement squared:%- 7.5e" %sqntdecr)
if (sqntdecr < 1e-12):

print("number of iterations: ", iters+1)
break

# line search
dx = +v
dx[D] *= 2 # scale the diagonal elems
f = -2.0 * sum(log(d)) # f = -log det K
s = 1
for lsiter in range(50):

Kn.V = K.V + s*dx
try:

cholmod.numeric(Kn, F)
except ArithmeticError:

s *= 0.5
else:

d = cholmod.diag(F)
fn = -2.0 * sum(log(d)) + 2*s*blas.dot(v,Y.V)
if (fn < f - 0.01*s*sqntdecr):

break
s *= 0.5

K.V = Kn.V

return K

66 Chapter 7. Sparse Linear Equations



CHAPTER 8

Cone Programming

In this chapter we consider convex optimization problems of the form

minimize (1/2)𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥
subject to 𝐺𝑥 ⪯ ℎ

𝐴𝑥 = 𝑏.

The linear inequality is a generalized inequality with respect to a proper convex cone. It may include componentwise
vector inequalities, second-order cone inequalities, and linear matrix inequalities.

The main solvers are conelp and coneqp, described in the sections Linear Cone Programs and Quadratic Cone
Programs. The function conelp is restricted to problems with linear cost functions, and can detect primal and dual
infeasibility. The function coneqp solves the general quadratic problem, but requires the problem to be strictly
primal and dual feasible. For convenience (and backward compatibility), simpler interfaces to these function are
also provided that handle pure linear programs, quadratic programs, second-order cone programs, and semidefinite
programs. These are described in the sections Linear Programming, Quadratic Programming, Second-Order Cone
Programming, Semidefinite Programming. In the section Exploiting Structure we explain how custom solvers can be
implemented that exploit structure in cone programs. The last two sections describe optional interfaces to external
solvers, and the algorithm parameters that control the cone programming solvers.

8.1 Linear Cone Programs

cvxopt.solvers.conelp(c, G, h[, dims[, A, b[, primalstart[, dualstart[, kktsolver ]]]]])
Solves a pair of primal and dual cone programs

minimize 𝑐𝑇𝑥
subject to 𝐺𝑥 + 𝑠 = ℎ

𝐴𝑥 = 𝑏
𝑠 ⪰ 0

maximize −ℎ𝑇 𝑧 − 𝑏𝑇 𝑦
subject to 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑐 = 0

𝑧 ⪰ 0.

The primal variables are 𝑥 and 𝑠. The dual variables are 𝑦, 𝑧. The inequalities are interpreted as 𝑠 ∈ 𝐶, 𝑧 ∈ 𝐶,
where 𝐶 is a cone defined as a Cartesian product of a nonnegative orthant, a number of second-order cones, and

67



CVXOPT Documentation, Release 1.3.2

a number of positive semidefinite cones:

𝐶 = 𝐶0 × 𝐶1 × · · · × 𝐶𝑀 × 𝐶𝑀+1 × · · · × 𝐶𝑀+𝑁

with

𝐶0 = {𝑢 ∈ R𝑙 | 𝑢𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑙},
𝐶𝑘+1 = {(𝑢0, 𝑢1) ∈ R × R𝑟𝑘−1 | 𝑢0 ≥ ‖𝑢1‖2}, 𝑘 = 0, . . . ,𝑀 − 1,

𝐶𝑘+𝑀+1 =
{︀
vec(𝑢) | 𝑢 ∈ S𝑡𝑘

+

}︀
, 𝑘 = 0, . . . , 𝑁 − 1.

In this definition, vec(𝑢) denotes a symmetric matrix 𝑢 stored as a vector in column major order. The structure
of 𝐶 is specified by dims. This argument is a dictionary with three fields.

dims['l']: 𝑙, the dimension of the nonnegative orthant (a nonnegative integer).

dims['q']: [𝑟0, . . . , 𝑟𝑀−1], a list with the dimensions of the second-order cones (positive integers).

dims['s']: [𝑡0, . . . , 𝑡𝑁−1], a list with the dimensions of the positive semidefinite cones (nonnegative inte-
gers).

The default value of dims is {'l': G.size[0], 'q': [], 's': []}, i.e., by default the in-
equality is interpreted as a componentwise vector inequality.

The arguments c, h, and b are real single-column dense matrices. G and A are real dense or sparse matrices.
The number of rows of G and h is equal to

𝐾 = 𝑙 +

𝑀−1∑︁
𝑘=0

𝑟𝑘 +

𝑁−1∑︁
𝑘=0

𝑡2𝑘.

The columns of G and h are vectors in

R𝑙 × R𝑟0 × · · · × R𝑟𝑀−1 × R𝑡20 × · · · × R𝑡2𝑁−1 ,

where the last 𝑁 components represent symmetric matrices stored in column major order. The strictly upper
triangular entries of these matrices are not accessed (i.e., the symmetric matrices are stored in the 'L'-type
column major order used in the blas and lapack modules). The default values for A and b are matrices with
zero rows, meaning that there are no equality constraints.

primalstart is a dictionary with keys 'x' and 's', used as an optional primal starting point.
primalstart['x'] and primalstart['s'] are real dense matrices of size (𝑛, 1) and (𝐾, 1), respec-
tively, where 𝑛 is the length of c. The vector primalstart['s'] must be strictly positive with respect to
the cone 𝐶.

dualstart is a dictionary with keys 'y' and 'z', used as an optional dual starting point.
dualstart['y'] and dualstart['z'] are real dense matrices of size (𝑝, 1) and (𝐾, 1), respectively,
where 𝑝 is the number of rows in A. The vector dualstart['s'] must be strictly positive with respect to the
cone 𝐶.

The role of the optional argument kktsolver is explained in the section Exploiting Structure.

conelp returns a dictionary that contains the result and information about the accuracy of the solution. The
most important fields have keys 'status', 'x', 's', 'y', 'z'. The 'status' field is a string with
possible values 'optimal', 'primal infeasible', 'dual infeasible', and 'unknown'. The
meaning of the 'x', 's', 'y', 'z' fields depends on the value of 'status'.

'optimal' In this case the 'x', 's', 'y', and 'z' entries contain the primal and dual solutions, which
approximately satisfy

𝐺𝑥 + 𝑠 = ℎ, 𝐴𝑥 = 𝑏, 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑐 = 0,

𝑠 ⪰ 0, 𝑧 ⪰ 0, 𝑠𝑇 𝑧 = 0.

68 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

The other entries in the output dictionary summarize the accuracy with which these optimality conditions
are satisfied. The fields 'primal objective', 'dual objective', and 'gap' give the primal
objective 𝑐𝑇𝑥, dual objective −ℎ𝑇 𝑧− 𝑏𝑇 𝑦, and the gap 𝑠𝑇 𝑧. The field 'relative gap' is the relative
gap, defined as

𝑠𝑇 𝑧

max{−𝑐𝑇𝑥,−ℎ𝑇 𝑧 − 𝑏𝑇 𝑦}
if max{−𝑐𝑇𝑥,−ℎ𝑇 𝑧 − 𝑏𝑇 𝑦} > 0

and None otherwise. The fields 'primal infeasibility' and 'dual infeasibility' are
the residuals in the primal and dual equality constraints, defined as

max{‖𝐺𝑥 + 𝑠− ℎ‖2
max{1, ‖ℎ‖2}

,
‖𝐴𝑥− 𝑏‖2

max{1, ‖𝑏‖2}
}, ‖𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑐‖2

max{1, ‖𝑐‖2}
,

respectively.

'primal infeasible' The 'x' and 's' entries are None, and the 'y', 'z' entries provide an approx-
imate certificate of infeasibility, i.e., vectors that approximately satisfy

𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 = 0, ℎ𝑇 𝑧 + 𝑏𝑇 𝑦 = −1, 𝑧 ⪰ 0.

The field 'residual as primal infeasibility certificate' gives the residual

‖𝐺𝑇 𝑧 + 𝐴𝑇 𝑦‖2
max{1, ‖𝑐‖2}

.

'dual infeasible' The 'y' and 'z' entries are None, and the 'x' and 's' entries contain an approx-
imate certificate of dual infeasibility

𝐺𝑥 + 𝑠 = 0, 𝐴𝑥 = 0, 𝑐𝑇𝑥 = −1, 𝑠 ⪰ 0.

The field 'residual as dual infeasibility certificate' gives the residual

max{ ‖𝐺𝑥 + 𝑠‖2
max{1, ‖ℎ‖2}

,
‖𝐴𝑥‖2

max{1, ‖𝑏‖2}
}.

'unknown' This indicates that the algorithm terminated early due to numerical difficulties or because the
maximum number of iterations was reached. The 'x', 's', 'y', 'z' entries contain the iterates when
the algorithm terminated. Whether these entries are useful, as approximate solutions or certificates of
primal and dual infeasibility, can be determined from the other fields in the dictionary.

The fields 'primal objective', 'dual objective', 'gap', 'relative gap', 'primal
infeasibility', 'dual infeasibility' are defined as when 'status' is 'optimal'.
The field 'residual as primal infeasibility certificate' is defined as

‖𝐺𝑇 𝑧 + 𝐴𝑇 𝑦‖2
−(ℎ𝑇 𝑧 + 𝑏𝑇 𝑦) max{1, ‖ℎ‖2}

.

if ℎ𝑇 𝑧 + 𝑏𝑇 𝑦 < 0, and None otherwise. A small value of this residual indicates that 𝑦 and 𝑧, divided
by −ℎ𝑇 𝑧 − 𝑏𝑇 𝑦, are an approximate proof of primal infeasibility. The field 'residual as dual
infeasibility certificate' is defined as

max{ ‖𝐺𝑥 + 𝑠‖2
−𝑐𝑇𝑥max{1, ‖ℎ‖2}

,
‖𝐴𝑥‖2

−𝑐𝑇𝑥max{1, ‖𝑏‖2}
}

if 𝑐𝑇𝑥 < 0, and as None otherwise. A small value indicates that 𝑥 and 𝑠, divided by −𝑐𝑇𝑥 are an
approximate proof of dual infeasibility.

8.1. Linear Cone Programs 69



CVXOPT Documentation, Release 1.3.2

It is required that

rank(𝐴) = 𝑝, rank(

[︂
𝐺
𝐴

]︂
) = 𝑛,

where 𝑝 is the number or rows of 𝐴 and 𝑛 is the number of columns of 𝐺 and 𝐴.

As an example we solve the problem

minimize −6𝑥1 − 4𝑥2 − 5𝑥3

subject to 16𝑥1 − 14𝑥2 + 5𝑥3 ≤ −3

7𝑥1 + 2𝑥2 ≤ 5⃦⃦⃦⃦
⃦⃦
⎡⎣ 8𝑥1 + 13𝑥2 − 12𝑥3 − 2

−8𝑥1 + 18𝑥2 + 6𝑥3 − 14
𝑥1 − 3𝑥2 − 17𝑥3 − 13

⎤⎦⃦⃦⃦⃦⃦⃦
2

≤ −24𝑥1 − 7𝑥2 + 15𝑥3 + 12⃦⃦⃦⃦
⃦⃦
⎡⎣ 𝑥1

𝑥2

𝑥3

⎤⎦⃦⃦⃦⃦⃦⃦
2

≤ 10⎡⎣ 7𝑥1 + 3𝑥2 + 9𝑥3 −5𝑥1 + 13𝑥2 + 6𝑥3 𝑥1 − 6𝑥2 − 6𝑥3

−5𝑥1 + 13𝑥2 + 6𝑥3 𝑥1 + 12𝑥2 − 7𝑥3 −7𝑥1 − 10𝑥2 − 7𝑥3

𝑥1 − 6𝑥2 − 6𝑥3 −7𝑥1 − 10𝑥2 − 7𝑥3 −4𝑥1 − 28𝑥2 − 11𝑥3

⎤⎦ ⪯

⎡⎣ 68 −30 −19
−30 99 23
−19 23 10

⎤⎦ .

>>> from cvxopt import matrix, solvers
>>> c = matrix([-6., -4., -5.])
>>> G = matrix([[ 16., 7., 24., -8., 8., -1., 0., -1., 0., 0.,

7., -5., 1., -5., 1., -7., 1., -7., -4.],
[-14., 2., 7., -13., -18., 3., 0., 0., -1., 0.,

3., 13., -6., 13., 12., -10., -6., -10., -28.],
[ 5., 0., -15., 12., -6., 17., 0., 0., 0., -1.,

9., 6., -6., 6., -7., -7., -6., -7., -11.]])
>>> h = matrix( [ -3., 5., 12., -2., -14., -13., 10., 0., 0., 0.,

68., -30., -19., -30., 99., 23., -19., 23., 10.] )
>>> dims = {'l': 2, 'q': [4, 4], 's': [3]}
>>> sol = solvers.conelp(c, G, h, dims)
>>> sol['status']
'optimal'
>>> print(sol['x'])
[-1.22e+00]
[ 9.66e-02]
[ 3.58e+00]
>>> print(sol['z'])
[ 9.30e-02]
[ 2.04e-08]
[ 2.35e-01]
[ 1.33e-01]
[-4.74e-02]
[ 1.88e-01]
[ 2.79e-08]
[ 1.85e-09]
[-6.32e-10]
[-7.59e-09]
[ 1.26e-01]
[ 8.78e-02]
[-8.67e-02]
[ 8.78e-02]
[ 6.13e-02]

(continues on next page)

70 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[-6.06e-02]
[-8.67e-02]
[-6.06e-02]
[ 5.98e-02]

Only the entries of G and h defining the lower triangular portions of the coefficients in the linear matrix inequalities
are accessed. We obtain the same result if we define G and h as below.

>>> G = matrix([[ 16., 7., 24., -8., 8., -1., 0., -1., 0., 0.,
7., -5., 1., 0., 1., -7., 0., 0., -4.],

[-14., 2., 7., -13., -18., 3., 0., 0., -1., 0.,
3., 13., -6., 0., 12., -10., 0., 0., -28.],

[ 5., 0., -15., 12., -6., 17., 0., 0., 0., -1.,
9., 6., -6., 0., -7., -7., 0., 0., -11.]])

>>> h = matrix( [ -3., 5., 12., -2., -14., -13., 10., 0., 0., 0.,
68., -30., -19., 0., 99., 23., 0., 0., 10.] )

8.2 Quadratic Cone Programs

cvxopt.solvers.coneqp(P, q[, G, h[, dims[, A, b[, initvals[, kktsolver ]]]]])
Solves a pair of primal and dual quadratic cone programs

minimize (1/2)𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥
subject to 𝐺𝑥 + 𝑠 = ℎ

𝐴𝑥 = 𝑏
𝑠 ⪰ 0

and

maximize −(1/2)(𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦)𝑇𝑃 †(𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦) − ℎ𝑇 𝑧 − 𝑏𝑇 𝑦
subject to 𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 ∈ range(𝑃 )

𝑧 ⪰ 0.

The primal variables are 𝑥 and the slack variable 𝑠. The dual variables are 𝑦 and 𝑧. The inequalities are
interpreted as 𝑠 ∈ 𝐶, 𝑧 ∈ 𝐶, where 𝐶 is a cone defined as a Cartesian product of a nonnegative orthant, a
number of second-order cones, and a number of positive semidefinite cones:

𝐶 = 𝐶0 × 𝐶1 × · · · × 𝐶𝑀 × 𝐶𝑀+1 × · · · × 𝐶𝑀+𝑁

with

𝐶0 = {𝑢 ∈ R𝑙 | 𝑢𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑙},
𝐶𝑘+1 = {(𝑢0, 𝑢1) ∈ R × R𝑟𝑘−1 | 𝑢0 ≥ ‖𝑢1‖2}, 𝑘 = 0, . . . ,𝑀 − 1,

𝐶𝑘+𝑀+1 =
{︀
vec(𝑢) | 𝑢 ∈ S𝑡𝑘

+

}︀
, 𝑘 = 0, . . . , 𝑁 − 1.

In this definition, vec(𝑢) denotes a symmetric matrix 𝑢 stored as a vector in column major order. The structure
of 𝐶 is specified by dims. This argument is a dictionary with three fields.

dims['l']: 𝑙, the dimension of the nonnegative orthant (a nonnegative integer).

dims['q']: [𝑟0, . . . , 𝑟𝑀−1], a list with the dimensions of the second-order cones (positive integers).

dims['s']: [𝑡0, . . . , 𝑡𝑁−1], a list with the dimensions of the positive semidefinite cones (nonnegative inte-
gers).

8.2. Quadratic Cone Programs 71



CVXOPT Documentation, Release 1.3.2

The default value of dims is {'l': G.size[0], 'q': [], 's': []}, i.e., by default the in-
equality is interpreted as a componentwise vector inequality.

P is a square dense or sparse real matrix, representing a positive semidefinite symmetric matrix in 'L' storage,
i.e., only the lower triangular part of P is referenced. q is a real single-column dense matrix.

The arguments h and b are real single-column dense matrices. G and A are real dense or sparse matrices. The
number of rows of G and h is equal to

𝐾 = 𝑙 +

𝑀−1∑︁
𝑘=0

𝑟𝑘 +

𝑁−1∑︁
𝑘=0

𝑡2𝑘.

The columns of G and h are vectors in

R𝑙 × R𝑟0 × · · · × R𝑟𝑀−1 × R𝑡20 × · · · × R𝑡2𝑁−1 ,

where the last 𝑁 components represent symmetric matrices stored in column major order. The strictly upper
triangular entries of these matrices are not accessed (i.e., the symmetric matrices are stored in the 'L'-type
column major order used in the blas and lapack modules). The default values for G, h, A, and b are matrices
with zero rows, meaning that there are no inequality or equality constraints.

initvals is a dictionary with keys 'x', 's', 'y', 'z' used as an optional starting point. The vectors
initvals['s'] and initvals['z'] must be strictly positive with respect to the cone 𝐶. If the argument
initvals or any the four entries in it are missing, default starting points are used for the corresponding
variables.

The role of the optional argument kktsolver is explained in the section Exploiting Structure.

coneqp returns a dictionary that contains the result and information about the accuracy of the solution. The
most important fields have keys 'status', 'x', 's', 'y', 'z'. The 'status' field is a string with
possible values 'optimal' and 'unknown'.

'optimal' In this case the 'x', 's', 'y', and 'z' entries contain primal and dual solutions, which ap-
proximately satisfy

𝐺𝑥 + 𝑠 = ℎ, 𝐴𝑥 = 𝑏, 𝑃𝑥 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑞 = 0,

𝑠 ⪰ 0, 𝑧 ⪰ 0, 𝑠𝑇 𝑧 = 0.

'unknown' This indicates that the algorithm terminated early due to numerical difficulties or because the
maximum number of iterations was reached. The 'x', 's', 'y', 'z' entries contain the iterates when
the algorithm terminated.

The other entries in the output dictionary summarize the accuracy with which the optimality conditions are
satisfied. The fields 'primal objective', 'dual objective', and 'gap' give the primal objective
𝑐𝑇𝑥, the dual objective calculated as

(1/2)𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑧𝑇 (𝐺𝑥− ℎ) + 𝑦𝑇 (𝐴𝑥− 𝑏)

and the gap 𝑠𝑇 𝑧. The field 'relative gap' is the relative gap, defined as

𝑠𝑇 𝑧

−primal objective
if primal objective < 0,

𝑠𝑇 𝑧

dual objective
if dual objective > 0,

and None otherwise. The fields 'primal infeasibility' and 'dual infeasibility' are the
residuals in the primal and dual equality constraints, defined as

max{‖𝐺𝑥 + 𝑠− ℎ‖2
max{1, ‖ℎ‖2}

,
‖𝐴𝑥− 𝑏‖2

max{1, ‖𝑏‖2}
}, ‖𝑃𝑥 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑞‖2

max{1, ‖𝑞‖2}
,

72 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

respectively.

It is required that the problem is solvable and that

rank(𝐴) = 𝑝, rank(

⎡⎣ 𝑃
𝐺
𝐴

⎤⎦) = 𝑛,

where 𝑝 is the number or rows of 𝐴 and 𝑛 is the number of columns of 𝐺 and 𝐴.

As an example, we solve a constrained least-squares problem

minimize ‖𝐴𝑥− 𝑏‖22
subject to 𝑥 ⪰ 0

‖𝑥‖2 ≤ 1

with

𝐴 =

⎡⎢⎢⎢⎢⎣
0.3 0.6 −0.3

−0.4 1.2 0.0
−0.2 −1.7 0.6
−0.4 0.3 −1.2

1.3 −0.3 −2.0

⎤⎥⎥⎥⎥⎦ , 𝑏 =

⎡⎢⎢⎢⎢⎣
1.5
0.0

−1.2
−0.7

0.0

⎤⎥⎥⎥⎥⎦ .

>>> from cvxopt import matrix, solvers
>>> A = matrix([ [ .3, -.4, -.2, -.4, 1.3 ],

[ .6, 1.2, -1.7, .3, -.3 ],
[-.3, .0, .6, -1.2, -2.0 ] ])

>>> b = matrix([ 1.5, .0, -1.2, -.7, .0])
>>> m, n = A.size
>>> I = matrix(0.0, (n,n))
>>> I[::n+1] = 1.0
>>> G = matrix([-I, matrix(0.0, (1,n)), I])
>>> h = matrix(n*[0.0] + [1.0] + n*[0.0])
>>> dims = {'l': n, 'q': [n+1], 's': []}
>>> x = solvers.coneqp(A.T*A, -A.T*b, G, h, dims)['x']
>>> print(x)
[ 7.26e-01]
[ 6.18e-01]
[ 3.03e-01]

8.3 Linear Programming

The function lp is an interface to conelp for linear programs. It also provides the option of using the linear pro-
gramming solvers from GLPK or MOSEK.

cvxopt.solvers.lp(c, G, h[, A, b[, solver[, primalstart[, dualstart ]]]])
Solves the pair of primal and dual linear programs

minimize 𝑐𝑇𝑥
subject to 𝐺𝑥 + 𝑠 = ℎ

𝐴𝑥 = 𝑏
𝑠 ⪰ 0

maximize −ℎ𝑇 𝑧 − 𝑏𝑇 𝑦
subject to 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑐 = 0

𝑧 ⪰ 0.

The inequalities are componentwise vector inequalities.

The solver argument is used to choose among three solvers. When it is omitted or None, the CVXOPT
function conelp is used. The external solvers GLPK and MOSEK (if installed) can be selected by setting

8.3. Linear Programming 73



CVXOPT Documentation, Release 1.3.2

solver to 'glpk' or 'mosek'; see the section Optional Solvers. The meaning of the other arguments and
the return value are the same as for conelp called with dims equal to {'l': G.size[0], 'q': [],
's': []}.

The initial values are ignored when solver is 'mosek' or 'glpk'. With the GLPK option, the solver
does not return certificates of primal or dual infeasibility: if the status is 'primal infeasible' or 'dual
infeasible', all entries of the output dictionary are None. If the GLPK or MOSEK solvers are used, and
the code returns with status 'unknown', all the other fields in the output dictionary are None.

As a simple example we solve the LP

minimize −4𝑥1 − 5𝑥2

subject to 2𝑥1 + 𝑥2 ≤ 3
𝑥1 + 2𝑥2 ≤ 3
𝑥1 ≥ 0, 𝑥2 ≥ 0.

>>> from cvxopt import matrix, solvers
>>> c = matrix([-4., -5.])
>>> G = matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])
>>> sol = solvers.lp(c, G, h)
>>> print(sol['x'])
[ 1.00e+00]
[ 1.00e+00]

8.4 Quadratic Programming

The function qp is an interface to coneqp for quadratic programs. It also provides the option of using the quadratic
programming solver from MOSEK.

cvxopt.solvers.qp(P, q[, G, h[, A, b[, solver[, initvals]]]])
Solves the pair of primal and dual convex quadratic programs

minimize (1/2)𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥
subject to 𝐺𝑥 ⪯ ℎ

𝐴𝑥 = 𝑏

and

maximize −(1/2)(𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦)𝑇𝑃 †(𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦) − ℎ𝑇 𝑧 − 𝑏𝑇 𝑦
subject to 𝑞 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 ∈ range(𝑃 )

𝑧 ⪰ 0.

The inequalities are componentwise vector inequalities.

The default CVXOPT solver is used when the solver argument is absent or None. The MOSEK solver (if
installed) can be selected by setting solver to 'mosek'; see the section Optional Solvers. The meaning of
the other arguments and the return value is the same as for coneqp called with dims equal to {'l': G.
size[0], 'q': [], 's': []}.

When solver is 'mosek', the initial values are ignored, and the 'status' string in the solution dic-
tionary can take four possible values: 'optimal', 'unknown'. 'primal infeasible', 'dual
infeasible'.

'primal infeasible' This means that a certificate of primal infeasibility has been found. The 'x' and
's' entries are None, and the 'z' and 'y' entries are vectors that approximately satisfy

𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 = 0, ℎ𝑇 𝑧 + 𝑏𝑇 𝑦 = −1, 𝑧 ⪰ 0.

74 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

'dual infeasible' This means that a certificate of dual infeasibility has been found. The 'z' and 'y'
entries are None, and the 'x' and 's' entries are vectors that approximately satisfy

𝑃𝑥 = 0, 𝑞𝑇𝑥 = −1, 𝐺𝑥 + 𝑠 = 0, 𝐴𝑥 = 0, 𝑠 ⪰ 0.

As an example we compute the trade-off curve on page 187 of the book Convex Optimization, by solving the quadratic
program

minimize −𝑝𝑇𝑥 + 𝜇𝑥𝑇𝑆𝑥
subject to 1𝑇𝑥 = 1, 𝑥 ⪰ 0

for a sequence of positive values of 𝜇. The code below computes the trade-off curve and produces two figures using
the Matplotlib package.

8.4. Quadratic Programming 75

http://www.stanford.edu/~boyd/cvxbook
http://matplotlib.sourceforge.net


CVXOPT Documentation, Release 1.3.2

from math import sqrt
from cvxopt import matrix
from cvxopt.blas import dot
from cvxopt.solvers import qp
import pylab

# Problem data.
n = 4
S = matrix([[ 4e-2, 6e-3, -4e-3, 0.0 ],

[ 6e-3, 1e-2, 0.0, 0.0 ],
[-4e-3, 0.0, 2.5e-3, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0 ]])

pbar = matrix([.12, .10, .07, .03])
G = matrix(0.0, (n,n))
G[::n+1] = -1.0
h = matrix(0.0, (n,1))
A = matrix(1.0, (1,n))
b = matrix(1.0)

# Compute trade-off.
N = 100
mus = [ 10**(5.0*t/N-1.0) for t in range(N) ]
portfolios = [ qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus ]
returns = [ dot(pbar,x) for x in portfolios ]
risks = [ sqrt(dot(x, S*x)) for x in portfolios ]

# Plot trade-off curve and optimal allocations.
pylab.figure(1, facecolor='w')
pylab.plot(risks, returns)
pylab.xlabel('standard deviation')
pylab.ylabel('expected return')
pylab.axis([0, 0.2, 0, 0.15])
pylab.title('Risk-return trade-off curve (fig 4.12)')
pylab.yticks([0.00, 0.05, 0.10, 0.15])

pylab.figure(2, facecolor='w')
c1 = [ x[0] for x in portfolios ]
c2 = [ x[0] + x[1] for x in portfolios ]
c3 = [ x[0] + x[1] + x[2] for x in portfolios ]
c4 = [ x[0] + x[1] + x[2] + x[3] for x in portfolios ]
pylab.fill(risks + [.20], c1 + [0.0], '#F0F0F0')
pylab.fill(risks[-1::-1] + risks, c2[-1::-1] + c1, facecolor = '#D0D0D0')
pylab.fill(risks[-1::-1] + risks, c3[-1::-1] + c2, facecolor = '#F0F0F0')
pylab.fill(risks[-1::-1] + risks, c4[-1::-1] + c3, facecolor = '#D0D0D0')
pylab.axis([0.0, 0.2, 0.0, 1.0])
pylab.xlabel('standard deviation')
pylab.ylabel('allocation')
pylab.text(.15,.5,'x1')
pylab.text(.10,.7,'x2')
pylab.text(.05,.7,'x3')
pylab.text(.01,.7,'x4')
pylab.title('Optimal allocations (fig 4.12)')
pylab.show()

76 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

8.5 Second-Order Cone Programming

The function socp is a simpler interface to conelp for cone programs with no linear matrix inequality constraints.

cvxopt.solvers.socp(c[, Gl, hl[, Gq, hq[, A, b[, solver[, primalstart[, dualstart ]]]]]])
Solves the pair of primal and dual second-order cone programs

minimize 𝑐𝑇𝑥
subject to 𝐺𝑘𝑥 + 𝑠𝑘 = ℎ𝑘, 𝑘 = 0, . . . ,𝑀

𝐴𝑥 = 𝑏
𝑠0 ⪰ 0
𝑠𝑘0 ≥ ‖𝑠𝑘1‖2, 𝑘 = 1, . . . ,𝑀

and

maximize −
∑︀𝑀

𝑘=0 ℎ
𝑇
𝑘 𝑧𝑘 − 𝑏𝑇 𝑦

subject to
∑︀𝑀

𝑘=0 𝐺
𝑇
𝑘 𝑧𝑘 + 𝐴𝑇 𝑦 + 𝑐 = 0

𝑧0 ⪰ 0
𝑧𝑘0 ≥ ‖𝑧𝑘1‖2, 𝑘 = 1, . . . ,𝑀.

The inequalities

𝑠0 ⪰ 0, 𝑧0 ⪰ 0

are componentwise vector inequalities. In the other inequalities, it is assumed that the variables are partitioned
as

𝑠𝑘 = (𝑠𝑘0, 𝑠𝑘1) ∈ R × R𝑟𝑘−1, 𝑧𝑘 = (𝑧𝑘0, 𝑧𝑘1) ∈ R × R𝑟𝑘−1, 𝑘 = 1, . . . ,𝑀.

The input argument c is a real single-column dense matrix. The arguments Gl and hl are the coefficient matrix
𝐺0 and the right-hand side ℎ0 of the componentwise inequalities. Gl is a real dense or sparse matrix; hl is a
real single-column dense matrix. The default values for Gl and hl are matrices with zero rows.

The argument Gq is a list of 𝑀 dense or sparse matrices 𝐺1, . . . , 𝐺𝑀 . The argument hq is a list of 𝑀 dense
single-column matrices ℎ1, . . . , ℎ𝑀 . The elements of Gq and hq must have at least one row. The default values
of Gq and hq are empty lists.

A is dense or sparse matrix and b is a single-column dense matrix. The default values for A and b are matrices
with zero rows.

The solver argument is used to choose between two solvers: the CVXOPT conelp solver (used when
solver is absent or equal to None and the external solver MOSEK (solver is 'mosek'); see the section
Optional Solvers. With the 'mosek' option the code does not accept problems with equality constraints.

primalstart and dualstart are dictionaries with optional primal, respectively, dual starting points.
primalstart has elements 'x', 'sl', 'sq'. primalstart['x'] and primalstart['sl'] are
single-column dense matrices with the initial values of 𝑥 and 𝑠0; primalstart['sq'] is a list of single-
column matrices with the initial values of 𝑠1, . . . , 𝑠𝑀 . The initial values must satisfy the inequalities in the
primal problem strictly, but not necessarily the equality constraints.

dualstart has elements 'y', 'zl', 'zq'. dualstart['y'] and dualstart['zl'] are single-
column dense matrices with the initial values of 𝑦 and 𝑧0. dualstart['zq'] is a list of single-column
matrices with the initial values of 𝑧1, . . . , 𝑧𝑀 . These values must satisfy the dual inequalities strictly, but not
necessarily the equality constraint.

The arguments primalstart and dualstart are ignored when the MOSEK solver is used.

socp returns a dictionary that include entries with keys 'status', 'x', 'sl', 'sq', 'y', 'zl', 'zq'.
The 'sl' and 'zl' fields are matrices with the primal slacks and dual variables associated with the com-
ponentwise linear inequalities. The 'sq' and 'zq' fields are lists with the primal slacks and dual variables

8.5. Second-Order Cone Programming 77



CVXOPT Documentation, Release 1.3.2

associated with the second-order cone inequalities. The other entries in the output dictionary have the same
meaning as in the output of conelp.

As an example, we solve the second-order cone program

minimize −2𝑥1 + 𝑥2 + 5𝑥3

subject to
⃦⃦⃦⃦[︂

−13𝑥1 + 3𝑥2 + 5𝑥3 − 3
−12𝑥1 + 12𝑥2 − 6𝑥3 − 2

]︂⃦⃦⃦⃦
2

≤ −12𝑥1 − 6𝑥2 + 5𝑥3 − 12⃦⃦⃦⃦
⃦⃦
⎡⎣ −3𝑥1 + 6𝑥2 + 2𝑥3

𝑥1 + 9𝑥2 + 2𝑥3 + 3
−𝑥1 − 19𝑥2 + 3𝑥3 − 42

⎤⎦⃦⃦⃦⃦⃦⃦
2

≤ −3𝑥1 + 6𝑥2 − 10𝑥3 + 27.

>>> from cvxopt import matrix, solvers
>>> c = matrix([-2., 1., 5.])
>>> G = [ matrix( [[12., 13., 12.], [6., -3., -12.], [-5., -5., 6.]] ) ]
>>> G += [ matrix( [[3., 3., -1., 1.], [-6., -6., -9., 19.], [10., -2., -2., -3.]] ) ]
>>> h = [ matrix( [-12., -3., -2.] ), matrix( [27., 0., 3., -42.] ) ]
>>> sol = solvers.socp(c, Gq = G, hq = h)
>>> sol['status']
optimal
>>> print(sol['x'])
[-5.02e+00]
[-5.77e+00]
[-8.52e+00]
>>> print(sol['zq'][0])
[ 1.34e+00]
[-7.63e-02]
[-1.34e+00]
>>> print(sol['zq'][1])
[ 1.02e+00]
[ 4.02e-01]
[ 7.80e-01]
[-5.17e-01]

8.6 Semidefinite Programming

The function sdp is a simple interface to conelp for cone programs with no second-order cone constraints. It also
provides the option of using the DSDP semidefinite programming solver.

cvxopt.solvers.sdp(c[, Gl, hl[, Gs, hs[, A, b[, solver[, primalstart[, dualstart ]]]]]])
Solves the pair of primal and dual semidefinite programs

minimize 𝑐𝑇𝑥
subject to 𝐺0𝑥 + 𝑠0 = ℎ0

𝐺𝑘𝑥 + vec (𝑠𝑘) = vec (ℎ𝑘), 𝑘 = 1, . . . , 𝑁
𝐴𝑥 = 𝑏
𝑠0 ⪰ 0
𝑠𝑘 ⪰ 0, 𝑘 = 1, . . . , 𝑁

and

maximize −ℎ𝑇
0 𝑧0 −

∑︀𝑁
𝑘=1 tr(ℎ𝑘𝑧𝑘) − 𝑏𝑇 𝑦

subject to 𝐺𝑇
0 𝑧0 +

∑︀𝑁
𝑘=1 𝐺

𝑇
𝑘 vec(𝑧𝑘) + 𝐴𝑇 𝑦 + 𝑐 = 0

𝑧0 ⪰ 0
𝑧𝑘 ⪰ 0, 𝑘 = 1, . . . , 𝑁.

78 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

The inequalities

𝑠0 ⪰ 0, 𝑧0 ⪰ 0

are componentwise vector inequalities. The other inequalities are matrix inequalities (ie, the require the left-
hand sides to be positive semidefinite). We use the notation vec(𝑧) to denote a symmetric matrix 𝑧 stored in
column major order as a column vector.

The input argument c is a real single-column dense matrix. The arguments Gl and hl are the coefficient matrix
𝐺0 and the right-hand side ℎ0 of the componentwise inequalities. Gl is a real dense or sparse matrix; hl is a
real single-column dense matrix. The default values for Gl and hl are matrices with zero rows.

Gs and hs are lists of length 𝑁 that specify the linear matrix inequality constraints. Gs is a list of 𝑁 dense
or sparse real matrices 𝐺1, . . . , 𝐺𝑀 . The columns of these matrices can be interpreted as symmetric matrices
stored in column major order, using the BLAS 'L'-type storage (i.e., only the entries corresponding to lower
triangular positions are accessed). hs is a list of 𝑁 dense symmetric matrices ℎ1, . . . , ℎ𝑁 . Only the lower
triangular elements of these matrices are accessed. The default values for Gs and hs are empty lists.

A is a dense or sparse matrix and b is a single-column dense matrix. The default values for A and b are matrices
with zero rows.

The solver argument is used to choose between two solvers: the CVXOPT conelp solver (used when
solver is absent or equal to None) and the external solver DSDP5 (solver is 'dsdp'); see the section
Optional Solvers. With the 'dsdp' option the code does not accept problems with equality constraints.

The optional argument primalstart is a dictionary with keys 'x', 'sl', and 'ss', used as an optional
primal starting point. primalstart['x'] and primalstart['sl'] are single-column dense matrices
with the initial values of 𝑥 and 𝑠0; primalstart['ss'] is a list of square matrices with the initial values of
𝑠1, . . . , 𝑠𝑁 . The initial values must satisfy the inequalities in the primal problem strictly, but not necessarily the
equality constraints.

dualstart is a dictionary with keys 'y', 'zl', 'zs', used as an optional dual starting point.
dualstart['y'] and dualstart['zl'] are single-column dense matrices with the initial values of
𝑦 and 𝑧0. dualstart['zs'] is a list of square matrices with the initial values of 𝑧1, . . . , 𝑧𝑁 . These values
must satisfy the dual inequalities strictly, but not necessarily the equality constraint.

The arguments primalstart and dualstart are ignored when the DSDP solver is used.

sdp returns a dictionary that includes entries with keys 'status', 'x', 'sl', 'ss', 'y', 'zl', 'ss'.
The 'sl' and 'zl' fields are matrices with the primal slacks and dual variables associated with the com-
ponentwise linear inequalities. The 'ss' and 'zs' fields are lists with the primal slacks and dual variables
associated with the second-order cone inequalities. The other entries in the output dictionary have the same
meaning as in the output of conelp.

We illustrate the calling sequence with a small example.

minimize 𝑥1 − 𝑥2 + 𝑥3

subject to 𝑥1

[︂
−7 −11
−11 3

]︂
+ 𝑥2

[︂
7 −18

−18 8

]︂
+ 𝑥3

[︂
−2 −8
−8 1

]︂
⪯

[︂
33 −9
−9 26

]︂
𝑥1

⎡⎣ −21 −11 0
−11 10 8

0 8 5

⎤⎦ + 𝑥2

⎡⎣ 0 10 16
10 −10 −10
16 −10 3

⎤⎦ + 𝑥3

⎡⎣ −5 2 −17
2 −6 8

−17 8 6

⎤⎦ ⪯

⎡⎣ 14 9 40
9 91 10
40 10 15

⎤⎦
>>> from cvxopt import matrix, solvers
>>> c = matrix([1.,-1.,1.])
>>> G = [ matrix([[-7., -11., -11., 3.],

[ 7., -18., -18., 8.],

(continues on next page)

8.6. Semidefinite Programming 79



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[-2., -8., -8., 1.]]) ]
>>> G += [ matrix([[-21., -11., 0., -11., 10., 8., 0., 8., 5.],

[ 0., 10., 16., 10., -10., -10., 16., -10., 3.],
[ -5., 2., -17., 2., -6., 8., -17., 8., 6.]]) ]

>>> h = [ matrix([[33., -9.], [-9., 26.]]) ]
>>> h += [ matrix([[14., 9., 40.], [9., 91., 10.], [40., 10., 15.]]) ]
>>> sol = solvers.sdp(c, Gs=G, hs=h)
>>> print(sol['x'])
[-3.68e-01]
[ 1.90e+00]
[-8.88e-01]
>>> print(sol['zs'][0])
[ 3.96e-03 -4.34e-03]
[-4.34e-03 4.75e-03]
>>> print(sol['zs'][1])
[ 5.58e-02 -2.41e-03 2.42e-02]
[-2.41e-03 1.04e-04 -1.05e-03]
[ 2.42e-02 -1.05e-03 1.05e-02]

Only the entries in Gs and hs that correspond to lower triangular entries need to be provided, so in the example h and
G may also be defined as follows.

>>> G = [ matrix([[-7., -11., 0., 3.],
[ 7., -18., 0., 8.],
[-2., -8., 0., 1.]]) ]

>>> G += [ matrix([[-21., -11., 0., 0., 10., 8., 0., 0., 5.],
[ 0., 10., 16., 0., -10., -10., 0., 0., 3.],
[ -5., 2., -17., 0., -6., 8., 0., 0., 6.]]) ]

>>> h = [ matrix([[33., -9.], [0., 26.]]) ]
>>> h += [ matrix([[14., 9., 40.], [0., 91., 10.], [0., 0., 15.]]) ]

8.7 Exploiting Structure

By default, the functions conelp and coneqp exploit no problem structure except (to some limited extent) sparsity.
Two mechanisms are provided for implementing customized solvers that take advantage of problem structure.

Providing a function for solving KKT equations The most expensive step of each iteration of conelp or coneqp
is the solution of a set of linear equations (KKT equations) of the form⎡⎣ 𝑃 𝐴𝑇 𝐺𝑇

𝐴 0 0
𝐺 0 −𝑊𝑇𝑊

⎤⎦⎡⎣ 𝑢𝑥

𝑢𝑦

𝑢𝑧

⎤⎦ =

⎡⎣ 𝑏𝑥
𝑏𝑦
𝑏𝑧

⎤⎦ (8.1)

(with 𝑃 = 0 in conelp). The matrix 𝑊 depends on the current iterates and is defined as follows. We use the
notation of the sections Linear Cone Programs and Quadratic Cone Programs. Let

𝑢 = (𝑢l, 𝑢q,0, . . . , 𝑢q,𝑀−1, vec (𝑢s,0), . . . , vec (𝑢s,𝑁−1)) ,

𝑢l ∈ R𝑙, 𝑢q,𝑘 ∈ R𝑟𝑘 , 𝑘 = 0, . . . ,𝑀 − 1, 𝑢s,𝑘 ∈ S𝑡𝑘 , 𝑘 = 0, . . . , 𝑁 − 1.

Then 𝑊 is a block-diagonal matrix,

𝑊𝑢 = (𝑊l𝑢l, 𝑊q,0𝑢q,0, . . . , 𝑊q,𝑀−1𝑢q,𝑀−1, 𝑊s,0 vec (𝑢s,0), . . . , 𝑊s,𝑁−1 vec (𝑢s,𝑁−1))

with the following diagonal blocks.

80 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

• The first block is a positive diagonal scaling with a vector 𝑑:

𝑊l = diag (𝑑), 𝑊−1
l = diag (𝑑)−1.

This transformation is symmetric:

𝑊𝑇
l = 𝑊l.

• The next 𝑀 blocks are positive multiples of hyperbolic Householder transformations:

𝑊q,𝑘 = 𝛽𝑘(2𝑣𝑘𝑣
𝑇
𝑘 − 𝐽), 𝑊−1

q,𝑘 =
1

𝛽𝑘
(2𝐽𝑣𝑘𝑣

𝑇
𝑘 𝐽 − 𝐽), 𝑘 = 0, . . . ,𝑀 − 1,

where

𝛽𝑘 > 0, 𝑣𝑘0 > 0, 𝑣𝑇𝑘 𝐽𝑣𝑘 = 1, 𝐽 =

[︂
1 0
0 −𝐼

]︂
.

These transformations are also symmetric:

𝑊𝑇
q,𝑘 = 𝑊q,𝑘.

• The last 𝑁 blocks are congruence transformations with nonsingular matrices:

𝑊s,𝑘 vec (𝑢s,𝑘) = vec (𝑟𝑇𝑘 𝑢s,𝑘𝑟𝑘), 𝑊−1
s,𝑘 vec (𝑢s,𝑘) = vec (𝑟−𝑇

𝑘 𝑢s,𝑘𝑟
−1
𝑘 ), 𝑘 = 0, . . . , 𝑁 − 1.

In general, this operation is not symmetric:

𝑊𝑇
s,𝑘 vec (𝑢s,𝑘) = vec (𝑟𝑘𝑢s,𝑘𝑟

𝑇
𝑘 ), 𝑊−𝑇

s,𝑘 vec (𝑢s,𝑘) = vec (𝑟−1
𝑘 𝑢s,𝑘𝑟

−𝑇
𝑘 ), 𝑘 = 0, . . . , 𝑁 − 1.

It is often possible to exploit problem structure to solve (8.1) faster than by standard methods. The last argu-
ment kktsolver of conelp and coneqp allows the user to supply a Python function for solving the KKT
equations. This function will be called as f = kktsolver(W), where W is a dictionary that contains the
parameters of the scaling:

• W['d'] is the positive vector that defines the diagonal scaling. W['di'] is its componentwise inverse.

• W['beta'] and W['v'] are lists of length 𝑀 with the coefficients and vectors that define the hyperbolic
Householder transformations.

• W['r'] is a list of length 𝑁 with the matrices that define the the congruence transformations. W['rti']
is a list of length 𝑁 with the transposes of the inverses of the matrices in W['r'].

The function call f = kktsolver(W) should return a routine for solving the KKT system (8.1) defined by
W. It will be called as f(bx, by, bz). On entry, bx, by, bz contain the right-hand side. On exit, they
should contain the solution of the KKT system, with the last component scaled, i.e., on exit,

𝑏𝑥 := 𝑢𝑥, 𝑏𝑦 := 𝑢𝑦, 𝑏𝑧 := 𝑊𝑢𝑧.

In other words, the function returns the solution of⎡⎣ 𝑃 𝐴𝑇 𝐺𝑇𝑊−1

𝐴 0 0
𝐺 0 −𝑊𝑇

⎤⎦⎡⎣ �̂�𝑥

�̂�𝑦

�̂�𝑧

⎤⎦ =

⎡⎣ 𝑏𝑥
𝑏𝑦
𝑏𝑧

⎤⎦ .

Specifying constraints via Python functions In the default use of conelp and coneqp, the linear constraints and
the quadratic term in the objective are parameterized by CVXOPT matrices G, A, P. It is possible to specify
these parameters via Python functions that evaluate the corresponding matrix-vector products and their adjoints.

8.7. Exploiting Structure 81



CVXOPT Documentation, Release 1.3.2

• If the argument G of conelp or coneqp is a Python function, then G(x, y[, alpha = 1.0,
beta = 0.0, trans = 'N']) should evaluate the matrix-vector products

𝑦 := 𝛼𝐺𝑥 + 𝛽𝑦 (trans = ′N′), 𝑦 := 𝛼𝐺𝑇𝑥 + 𝛽𝑦 (trans = ′T′).

• Similarly, if the argument A is a Python function, then A(x, y[, alpha = 1.0, beta = 0.0,
trans = 'N']) should evaluate the matrix-vector products

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦 (trans = ′N′), 𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦 (trans = ′T′).

• If the argument P of coneqp is a Python function, then P(x, y[, alpha = 1.0, beta = 0.
0]) should evaluate the matrix-vector products

𝑦 := 𝛼𝑃𝑥 + 𝛽𝑦.

If G, A, or P are Python functions, then the argument kktsolver must also be provided.

We illustrate these features with three applications.

Example: 1-norm approximation

The optimization problem

minimize ‖𝑃𝑢− 𝑞‖1

can be formulated as a linear program

minimize 1𝑇 𝑣
subject to −𝑣 ⪯ 𝑃𝑢− 𝑞 ⪯ 𝑣.

By exploiting the structure in the inequalities, the cost of an iteration of an interior-point method can be
reduced to the cost of least-squares problem of the same dimensions. (See section 11.8.2 in the book
Convex Optimization.) The code below takes advantage of this fact.

from cvxopt import blas, lapack, solvers, matrix, spmatrix, mul, div

def l1(P, q):
"""

Returns the solution u, w of the l1 approximation problem

(primal) minimize ||P*u - q||_1

(dual) maximize q'*w
subject to P'*w = 0

||w||_infty <= 1.
"""

m, n = P.size

# Solve the equivalent LP
#

(continues on next page)

82 Chapter 8. Cone Programming

http://www.stanford.edu/~boyd/cvxbook


CVXOPT Documentation, Release 1.3.2

(continued from previous page)

# minimize [0; 1]' * [u; v]
# subject to [P, -I; -P, -I] * [u; v] <= [q; -q]
#
# maximize -[q; -q]' * z
# subject to [P', -P']*z = 0
# [-I, -I]*z + 1 = 0
# z >= 0.

c = matrix(n*[0.0] + m*[1.0])

def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):

if trans=='N':
# y := alpha * [P, -I; -P, -I] * x + beta*y
u = P*x[:n]
y[:m] = alpha * ( u - x[n:]) + beta * y[:m]
y[m:] = alpha * (-u - x[n:]) + beta * y[m:]

else:
# y := alpha * [P', -P'; -I, -I] * x + beta*y
y[:n] = alpha * P.T * (x[:m] - x[m:]) + beta * y[:n]
y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

h = matrix([q, -q])
dims = {'l': 2*m, 'q': [], 's': []}

def F(W):

"""
Returns a function f(x, y, z) that solves

[ 0 0 P' -P' ] [ x[:n] ] [ bx[:n] ]
[ 0 0 -I -I ] [ x[n:] ] [ bx[n:] ]
[ P -I -D1^{-1} 0 ] [ z[:m] ] = [ bz[:m] ]
[-P -I 0 -D2^{-1} ] [ z[m:] ] [ bz[m:] ]

where D1 = diag(di[:m])^2, D2 = diag(di[m:])^2 and di = W['di'].
"""

# Factor A = 4*P'*D*P where D = d1.*d2 ./(d1+d2) and
# d1 = di[:m].^2, d2 = di[m:].^2.

di = W['di']
d1, d2 = di[:m]**2, di[m:]**2
D = div( mul(d1,d2), d1+d2 )
A = P.T * spmatrix(4*D, range(m), range(m)) * P
lapack.potrf(A)

def f(x, y, z):

"""
On entry bx, bz are stored in x, z. On exit x, z contain the

→˓solution,
with z scaled: z./di is returned instead of z.
""""

# Solve for x[:n]:
(continues on next page)

8.7. Exploiting Structure 83



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

#
# A*x[:n] = bx[:n] + P' * ( ((D1-D2)*(D1+D2)^{-1})*bx[n:]
# + (2*D1*D2*(D1+D2)^{-1}) * (bz[:m] - bz[m:]) ).

x[:n] += P.T * ( mul(div(d1-d2, d1+d2), x[n:]) + mul(2*D, z[:m]-
→˓z[m:]) )

lapack.potrs(A, x)

# x[n:] := (D1+D2)^{-1} * (bx[n:] - D1*bz[:m] - D2*bz[m:] + (D1-
→˓D2)*P*x[:n])

u = P*x[:n]
x[n:] = div(x[n:] - mul(d1, z[:m]) - mul(d2, z[m:]) + mul(d1-d2,

→˓ u), d1+d2)

# z[:m] := d1[:m] .* ( P*x[:n] - x[n:] - bz[:m])
# z[m:] := d2[m:] .* (-P*x[:n] - x[n:] - bz[m:])

z[:m] = mul(di[:m], u - x[n:] - z[:m])
z[m:] = mul(di[m:], -u - x[n:] - z[m:])

return f

sol = solvers.conelp(c, G, h, dims, kktsolver = F)
return sol['x'][:n], sol['z'][m:] - sol['z'][:m]

Example: SDP with diagonal linear term

The SDP

minimize 1𝑇𝑥
subject to 𝑊 + diag (𝑥) ⪰ 0

can be solved efficiently by exploiting properties of the diag operator.

from cvxopt import blas, lapack, solvers, matrix

def mcsdp(w):
"""
Returns solution x, z to

(primal) minimize sum(x)
subject to w + diag(x) >= 0

(dual) maximize -tr(w*z)
subject to diag(z) = 1

z >= 0.
"""

n = w.size[0]
c = matrix(1.0, (n,1))

def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):
"""

y := alpha*(-diag(x)) + beta*y.
"""

if trans=='N':

(continues on next page)

84 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

# x is a vector; y is a symmetric matrix in column major order.
y *= beta
y[::n+1] -= alpha * x

else:
# x is a symmetric matrix in column major order; y is a vector.
y *= beta
y -= alpha * x[::n+1]

def cngrnc(r, x, alpha = 1.0):
"""
Congruence transformation

x := alpha * r'*x*r.

r and x are square matrices.
"""

# Scale diagonal of x by 1/2.
x[::n+1] *= 0.5

# a := tril(x)*r
a = +r
tx = matrix(x, (n,n))
blas.trmm(tx, a, side = 'L')

# x := alpha*(a*r' + r*a')
blas.syr2k(r, a, tx, trans = 'T', alpha = alpha)
x[:] = tx[:]

dims = {'l': 0, 'q': [], 's': [n]}

def F(W):
"""
Returns a function f(x, y, z) that solves

-diag(z) = bx
-diag(x) - r*r'*z*r*r' = bz

where r = W['r'][0] = W['rti'][0]^{-T}.
"""

rti = W['rti'][0]

# t = rti*rti' as a nonsymmetric matrix.
t = matrix(0.0, (n,n))
blas.gemm(rti, rti, t, transB = 'T')

# Cholesky factorization of tsq = t.*t.
tsq = t**2
lapack.potrf(tsq)

def f(x, y, z):
"""
On entry, x contains bx, y is empty, and z contains bz stored
in column major order.

(continues on next page)

8.7. Exploiting Structure 85



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

On exit, they contain the solution, with z scaled
(vec(r'*z*r) is returned instead of z).

We first solve

((rti*rti') .* (rti*rti')) * x = bx - diag(t*bz*t)

and take z = - rti' * (diag(x) + bz) * rti.
"""

# tbst := t * bz * t
tbst = +z
cngrnc(t, tbst)

# x := x - diag(tbst) = bx - diag(rti*rti' * bz * rti*rti')
x -= tbst[::n+1]

# x := (t.*t)^{-1} * x = (t.*t)^{-1} * (bx - diag(t*bz*t))
lapack.potrs(tsq, x)

# z := z + diag(x) = bz + diag(x)
z[::n+1] += x

# z := -vec(rti' * z * rti)
# = -vec(rti' * (diag(x) + bz) * rti
cngrnc(rti, z, alpha = -1.0)

return f

sol = solvers.conelp(c, G, w[:], dims, kktsolver = F)
return sol['x'], sol['z']

Example: Minimizing 1-norm subject to a 2-norm constraint In the second example, we use a similar trick to
solve the problem

minimize ‖𝑢‖1
subject to ‖𝐴𝑢− 𝑏‖2 ≤ 1.

The code below is efficient, if we assume that the number of rows in 𝐴 is greater than or equal to the number of
columns.

def qcl1(A, b):
"""
Returns the solution u, z of

(primal) minimize || u ||_1
subject to || A * u - b ||_2 <= 1

(dual) maximize b^T z - ||z||_2
subject to || A'*z ||_inf <= 1.

Exploits structure, assuming A is m by n with m >= n.
"""

m, n = A.size

# Solve equivalent cone LP with variables x = [u; v].

(continues on next page)

86 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

#
# minimize [0; 1]' * x
# subject to [ I -I ] * x <= [ 0 ] (componentwise)
# [-I -I ] * x <= [ 0 ] (componentwise)
# [ 0 0 ] * x <= [ 1 ] (SOC)
# [-A 0 ] [ -b ]
#
# maximize -t + b' * w
# subject to z1 - z2 = A'*w
# z1 + z2 = 1
# z1 >= 0, z2 >=0, ||w||_2 <= t.

c = matrix(n*[0.0] + n*[1.0])
h = matrix( 0.0, (2*n + m + 1, 1))
h[2*n] = 1.0
h[2*n+1:] = -b

def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):
y *= beta
if trans=='N':

# y += alpha * G * x
y[:n] += alpha * (x[:n] - x[n:2*n])
y[n:2*n] += alpha * (-x[:n] - x[n:2*n])
y[2*n+1:] -= alpha * A*x[:n]

else:
# y += alpha * G'*x
y[:n] += alpha * (x[:n] - x[n:2*n] - A.T * x[-m:])
y[n:] -= alpha * (x[:n] + x[n:2*n])

def Fkkt(W):
"""
Returns a function f(x, y, z) that solves

[ 0 G' ] [ x ] = [ bx ]
[ G -W'*W ] [ z ] [ bz ].

"""

# First factor
#
# S = G' * W**-1 * W**-T * G
# = [0; -A]' * W3^-2 * [0; -A] + 4 * (W1**2 + W2**2)**-1
#
# where
#
# W1 = diag(d1) with d1 = W['d'][:n] = 1 ./ W['di'][:n]
# W2 = diag(d2) with d2 = W['d'][n:] = 1 ./ W['di'][n:]
# W3 = beta * (2*v*v' - J), W3^-1 = 1/beta * (2*J*v*v'*J - J)
# with beta = W['beta'][0], v = W['v'][0], J = [1, 0; 0, -I].

# As = W3^-1 * [ 0 ; -A ] = 1/beta * ( 2*J*v * v' - I ) * [0; A]
beta, v = W['beta'][0], W['v'][0]
As = 2 * v * (v[1:].T * A)
As[1:,:] *= -1.0
As[1:,:] -= A
As /= beta

(continues on next page)

8.7. Exploiting Structure 87



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

# S = As'*As + 4 * (W1**2 + W2**2)**-1
S = As.T * As
d1, d2 = W['d'][:n], W['d'][n:]
d = 4.0 * (d1**2 + d2**2)**-1
S[::n+1] += d
lapack.potrf(S)

def f(x, y, z):

# z := - W**-T * z
z[:n] = -div( z[:n], d1 )
z[n:2*n] = -div( z[n:2*n], d2 )
z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) )
z[2*n+1:] *= -1.0
z[2*n:] /= beta

# x := x - G' * W**-1 * z
x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
x[n:] += div(z[:n], d1) + div(z[n:2*n], d2)

# Solve for x[:n]:
#
# S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]

x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:])
lapack.potrs(S, x)

# Solve for x[n:]:
#
# (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]

x[n:] += mul( d1**-2 - d2**-2, x[:n])
x[n:] = div( x[n:], d1**-2 + d2**-2)

# z := z + W^-T * G*x
z[:n] += div( x[:n] - x[n:2*n], d1)
z[n:2*n] += div( -x[:n] - x[n:2*n], d2)
z[2*n:] += As*x[:n]

return f

dims = {'l': 2*n, 'q': [m+1], 's': []}
sol = solvers.conelp(c, G, h, dims, kktsolver = Fkkt)
if sol['status'] == 'optimal':

return sol['x'][:n], sol['z'][-m:]
else:

return None, None

Example: 1-norm regularized least-squares As an example that illustrates how structure can be exploited in
coneqp, we consider the 1-norm regularized least-squares problem

minimize ‖𝐴𝑥− 𝑦‖22 + ‖𝑥‖1

with variable 𝑥. The problem is equivalent to the quadratic program

minimize ‖𝐴𝑥− 𝑦‖22 + 1𝑇𝑢
subject to −𝑢 ⪯ 𝑥 ⪯ 𝑢

88 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

with variables 𝑥 and 𝑢. The implementation below is efficient when 𝐴 has many more columns than rows.

from cvxopt import matrix, spdiag, mul, div, blas, lapack, solvers, sqrt
import math

def l1regls(A, y):
"""

Returns the solution of l1-norm regularized least-squares problem

minimize || A*x - y ||_2^2 + || x ||_1.

"""

m, n = A.size
q = matrix(1.0, (2*n,1))
q[:n] = -2.0 * A.T * y

def P(u, v, alpha = 1.0, beta = 0.0 ):
"""

v := alpha * 2.0 * [ A'*A, 0; 0, 0 ] * u + beta * v
"""
v *= beta
v[:n] += alpha * 2.0 * A.T * (A * u[:n])

def G(u, v, alpha=1.0, beta=0.0, trans='N'):
"""

v := alpha*[I, -I; -I, -I] * u + beta * v (trans = 'N' or 'T')
"""

v *= beta
v[:n] += alpha*(u[:n] - u[n:])
v[n:] += alpha*(-u[:n] - u[n:])

h = matrix(0.0, (2*n,1))

# Customized solver for the KKT system
#
# [ 2.0*A'*A 0 I -I ] [x[:n] ] [bx[:n] ]
# [ 0 0 -I -I ] [x[n:] ] = [bx[n:] ].
# [ I -I -D1^-1 0 ] [zl[:n]] [bzl[:n]]
# [ -I -I 0 -D2^-1 ] [zl[n:]] [bzl[n:]]
#
# where D1 = W['di'][:n]**2, D2 = W['di'][n:]**2.
#
# We first eliminate zl and x[n:]:
#
# ( 2*A'*A + 4*D1*D2*(D1+D2)^-1 ) * x[:n] =
# bx[:n] - (D2-D1)*(D1+D2)^-1 * bx[n:] +
# D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] -
# D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:]
#
# x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n] - D2*bzl[n:] )
# - (D2-D1)*(D1+D2)^-1 * x[:n]
#
# zl[:n] = D1 * ( x[:n] - x[n:] - bzl[:n] )

(continues on next page)

8.7. Exploiting Structure 89



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

# zl[n:] = D2 * (-x[:n] - x[n:] - bzl[n:] ).
#
# The first equation has the form
#
# (A'*A + D)*x[:n] = rhs
#
# and is equivalent to
#
# [ D A' ] [ x:n] ] = [ rhs ]
# [ A -I ] [ v ] [ 0 ].
#
# It can be solved as
#
# ( A*D^-1*A' + I ) * v = A * D^-1 * rhs
# x[:n] = D^-1 * ( rhs - A'*v ).

S = matrix(0.0, (m,m))
Asc = matrix(0.0, (m,n))
v = matrix(0.0, (m,1))

def Fkkt(W):

# Factor
#
# S = A*D^-1*A' + I
#
# where D = 2*D1*D2*(D1+D2)^-1, D1 = d[:n]**-2, D2 = d[n:]**-2.

d1, d2 = W['di'][:n]**2, W['di'][n:]**2

# ds is square root of diagonal of D
ds = math.sqrt(2.0) * div( mul( W['di'][:n], W['di'][n:]), sqrt(d1+d2) )
d3 = div(d2 - d1, d1 + d2)

# Asc = A*diag(d)^-1/2
Asc = A * spdiag(ds**-1)

# S = I + A * D^-1 * A'
blas.syrk(Asc, S)
S[::m+1] += 1.0
lapack.potrf(S)

def g(x, y, z):

x[:n] = 0.5 * ( x[:n] - mul(d3, x[n:]) +
mul(d1, z[:n] + mul(d3, z[:n])) - mul(d2, z[n:] -
mul(d3, z[n:])) )

x[:n] = div( x[:n], ds)

# Solve
#
# S * v = 0.5 * A * D^-1 * ( bx[:n] -
# (D2-D1)*(D1+D2)^-1 * bx[n:] +
# D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] -
# D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:] )

blas.gemv(Asc, x, v)
(continues on next page)

90 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

lapack.potrs(S, v)

# x[:n] = D^-1 * ( rhs - A'*v ).
blas.gemv(Asc, v, x, alpha=-1.0, beta=1.0, trans='T')
x[:n] = div(x[:n], ds)

# x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n] - D2*bzl[n:] )
# - (D2-D1)*(D1+D2)^-1 * x[:n]
x[n:] = div( x[n:] - mul(d1, z[:n]) - mul(d2, z[n:]), d1+d2 )\

- mul( d3, x[:n] )

# zl[:n] = D1^1/2 * ( x[:n] - x[n:] - bzl[:n] )
# zl[n:] = D2^1/2 * ( -x[:n] - x[n:] - bzl[n:] ).
z[:n] = mul( W['di'][:n], x[:n] - x[n:] - z[:n] )
z[n:] = mul( W['di'][n:], -x[:n] - x[n:] - z[n:] )

return g

return solvers.coneqp(P, q, G, h, kktsolver = Fkkt)['x'][:n]

8.8 Optional Solvers

CVXOPT includes optional interfaces to several other optimization libraries.

GLPK lp with the solver option set to 'glpk' uses the simplex algorithm in GLPK (GNU Linear Programming
Kit).

MOSEK lp, socp, and qp with the solver option set to 'mosek' option use MOSEK version 5.

DSDP sdp with the solver option set to 'dsdp' uses the DSDP5.8.

GLPK, MOSEK and DSDP are not included in the CVXOPT distribution and need to be installed separately.

8.9 Algorithm Parameters

In this section we list some algorithm control parameters that can be modified without editing the source code. These
control parameters are accessible via the dictionary solvers.options. By default the dictionary is empty and the
default values of the parameters are used.

One can change the parameters in the default solvers by adding entries with the following key values.

'show_progress' True or False; turns the output to the screen on or off (default: True).

'maxiters' maximum number of iterations (default: 100).

'abstol' absolute accuracy (default: 1e-7).

'reltol' relative accuracy (default: 1e-6).

'feastol' tolerance for feasibility conditions (default: 1e-7).

'refinement' number of iterative refinement steps when solving KKT equations (default: 0 if the problem has
no second-order cone or matrix inequality constraints; 1 otherwise).

For example the command

8.8. Optional Solvers 91

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.mosek.com
http://www-unix.mcs.anl.gov/DSDP


CVXOPT Documentation, Release 1.3.2

>>> from cvxopt import solvers
>>> solvers.options['show_progress'] = False

turns off the screen output during calls to the solvers.

The tolerances 'abstol', 'reltol' and 'feastol' have the following meaning. conelp terminates with
status 'optimal' if

𝑠 ⪰ 0,
‖𝐺𝑥 + 𝑠− ℎ‖2
max{1, ‖ℎ‖2}

≤ 𝜖feas,
‖𝐴𝑥− 𝑏‖2

max{1, ‖𝑏‖2}
≤ 𝜖feas,

and

𝑧 ⪰ 0,
‖𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑐‖2

max{1, ‖𝑐‖2}
≤ 𝜖feas,

and

𝑠𝑇 𝑧 ≤ 𝜖abs or
(︂

min
{︀
𝑐𝑇𝑥, ℎ𝑇 𝑧 + 𝑏𝑇 𝑦

}︀
< 0 and

𝑠𝑇 𝑧

−min{𝑐𝑇𝑥, ℎ𝑇 𝑧 + 𝑏𝑇 𝑦}
≤ 𝜖rel

)︂
.

It returns with status 'primal infeasible' if

𝑧 ⪰ 0,
‖𝐺𝑇 𝑧 + 𝐴𝑇 𝑦‖2
max{1, ‖𝑐‖2}

≤ 𝜖feas, ℎ𝑇 𝑧 + 𝑏𝑇 𝑦 = −1.

It returns with status 'dual infeasible' if

𝑠 ⪰ 0,
‖𝐺𝑥 + 𝑠‖2

max{1, ‖ℎ‖2}
≤ 𝜖feas,

‖𝐴𝑥‖2
max{1, ‖𝑏‖2}

≤ 𝜖feas, 𝑐𝑇𝑥 = −1.

The functions lp <cvxopt.solvers.lp, socp and sdp call conelp and hence use the same stopping criteria.

The function coneqp terminates with status 'optimal' if

𝑠 ⪰ 0,
‖𝐺𝑥 + 𝑠− ℎ‖2
max{1, ‖ℎ‖2}

≤ 𝜖feas,
‖𝐴𝑥− 𝑏‖2

max{1, ‖𝑏‖2}
≤ 𝜖feas,

and

𝑧 ⪰ 0,
‖𝑃𝑥 + 𝐺𝑇 𝑧 + 𝐴𝑇 𝑦 + 𝑞‖2

max{1, ‖𝑞‖2}
≤ 𝜖feas,

and at least one of the following three conditions is satisfied:

𝑠𝑇 𝑧 ≤ 𝜖abs

or (︂
1

2
𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 < 0, and

𝑠𝑇 𝑧

−(1/2)𝑥𝑇𝑃𝑥− 𝑞𝑇𝑥
≤ 𝜖rel

)︂
or (︂

𝐿(𝑥, 𝑦, 𝑧) > 0 and
𝑠𝑇 𝑧

𝐿(𝑥, 𝑦, 𝑧)
≤ 𝜖rel

)︂
.

Here

𝐿(𝑥, 𝑦, 𝑧) =
1

2
𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑧𝑇 (𝐺𝑥− ℎ) + 𝑦𝑇 (𝐴𝑥− 𝑏).

The function qp calls coneqp and hence uses the same stopping criteria.

The control parameters listed in the GLPK documentation are set to their default values and can be customized by
making an entry in solvers.options['glpk']. The entry must be a dictionary in which the key/value pairs are
GLPK parameter names and values. For example, the command

92 Chapter 8. Cone Programming



CVXOPT Documentation, Release 1.3.2

>>> from cvxopt import solvers
>>> solvers.options['glpk'] = {'msg_lev' : 'GLP_MSG_OFF'}

turns off the screen output in subsequent lp calls with the 'glpk' option.

The MOSEK interior-point algorithm parameters are set to their default values. They can be modified by adding an
entry solvers.options['mosek']. This entry is a dictionary with MOSEK parameter/value pairs, with the
parameter names imported from mosek. For details see Section 15 of the MOSEK Python API Manual.

For example, the commands

>>> from cvxopt import solvers
>>> import mosek
>>> solvers.options['mosek'] = {mosek.iparam.log: 0}

turn off the screen output during calls of lp or socp with the 'mosek' option.

The following control parameters in solvers.options['dsdp'] affect the execution of the DSDP algorithm:

'DSDP_Monitor' the interval (in number of iterations) at which output is printed to the screen (default: 0).

'DSDP_MaxIts' maximum number of iterations.

'DSDP_GapTolerance' relative accuracy (default: 1e-5).

It is also possible to override the options specified in the dictionary solvers.options by passing a dictionary with
options as a keyword argument. For example, the commands

>>> from cvxopt import solvers
>>> opts = {'maxiters' : 50}
>>> solvers.conelp(c, G, h, options = opts)

override the options specified in the dictionary solvers.options and use the options in the dictionary opts
instead. This is useful e.g. when several problem instances should be solved in parallel, but using different options.

8.9. Algorithm Parameters 93



CVXOPT Documentation, Release 1.3.2

94 Chapter 8. Cone Programming



CHAPTER 9

Nonlinear Convex Optimization

In this chapter we consider nonlinear convex optimization problems of the form

minimize 𝑓0(𝑥)
subject to 𝑓𝑘(𝑥) ≤ 0, 𝑘 = 1, . . . ,𝑚

𝐺𝑥 ⪯ ℎ
𝐴𝑥 = 𝑏.

The functions 𝑓𝑘 are convex and twice differentiable and the linear inequalities are generalized inequalities with respect
to a proper convex cone, defined as a product of a nonnegative orthant, second-order cones, and positive semidefinite
cones.

The basic functions are cp and cpl, described in the sections Problems with Nonlinear Objectives and Problems with
Linear Objectives. A simpler interface for geometric programming problems is discussed in the section Geometric
Programming. In the section Exploiting Structure we explain how custom solvers can be implemented that exploit
structure in specific classes of problems. The last section describes the algorithm parameters that control the solvers.

9.1 Problems with Nonlinear Objectives

cvxopt.solvers.cp(F[, G, h[, dims[, A, b[, kktsolver ]]]])
Solves a convex optimization problem

minimize 𝑓0(𝑥)
subject to 𝑓𝑘(𝑥) ≤ 0, 𝑘 = 1, . . . ,𝑚

𝐺𝑥 ⪯ ℎ
𝐴𝑥 = 𝑏.

(9.1)

The argument F is a function that evaluates the objective and nonlinear constraint functions. It must handle the
following calling sequences.

• F() returns a tuple (m, x0), where 𝑚 is the number of nonlinear constraints and 𝑥0 is a point in the domain
of 𝑓 . x0 is a dense real matrix of size (𝑛, 1).

95



CVXOPT Documentation, Release 1.3.2

• F(x), with x a dense real matrix of size (𝑛, 1), returns a tuple (f, Df). f is a dense real matrix of size
(𝑚+ 1, 1), with f[k] equal to 𝑓𝑘(𝑥). (If 𝑚 is zero, f can also be returned as a number.) Df is a dense or
sparse real matrix of size (𝑚 + 1, 𝑛) with Df[k,:] equal to the transpose of the gradient ∇𝑓𝑘(𝑥). If 𝑥 is
not in the domain of 𝑓 , F(x) returns None or a tuple (None, None).

• F(x,z), with x a dense real matrix of size (𝑛, 1) and z a positive dense real matrix of size (𝑚 + 1, 1)
returns a tuple (f, Df, H). f and Df are defined as above. H is a square dense or sparse real matrix of size
(𝑛, 𝑛), whose lower triangular part contains the lower triangular part of

𝑧0∇2𝑓0(𝑥) + 𝑧1∇2𝑓1(𝑥) + · · · + 𝑧𝑚∇2𝑓𝑚(𝑥).

If F is called with two arguments, it can be assumed that 𝑥 is in the domain of 𝑓 .

The linear inequalities are with respect to a cone 𝐶 defined as a Cartesian product of a nonnegative orthant, a
number of second-order cones, and a number of positive semidefinite cones:

𝐶 = 𝐶0 × 𝐶1 × · · · × 𝐶𝑀 × 𝐶𝑀+1 × · · · × 𝐶𝑀+𝑁

with

𝐶0 = {𝑢 ∈ R𝑙 | 𝑢𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑙},
𝐶𝑘+1 = {(𝑢0, 𝑢1) ∈ R × R𝑟𝑘−1 | 𝑢0 ≥ ‖𝑢1‖2}, 𝑘 = 0, . . . ,𝑀 − 1,

𝐶𝑘+𝑀+1 =
{︀
vec(𝑢) | 𝑢 ∈ S𝑡𝑘

+

}︀
, 𝑘 = 0, . . . , 𝑁 − 1.

Here vec(𝑢) denotes a symmetric matrix 𝑢 stored as a vector in column major order.

The arguments h and b are real single-column dense matrices. G and A are real dense or sparse matrices. The
default values for A and b are sparse matrices with zero rows, meaning that there are no equality constraints.
The number of rows of G and h is equal to

𝐾 = 𝑙 +

𝑀−1∑︁
𝑘=0

𝑟𝑘 +

𝑁−1∑︁
𝑘=0

𝑡2𝑘.

The columns of G and h are vectors in

R𝑙 × R𝑟0 × · · · × R𝑟𝑀−1 × R𝑡20 × · · · × R𝑡2𝑁−1 ,

where the last 𝑁 components represent symmetric matrices stored in column major order. The strictly upper
triangular entries of these matrices are not accessed (i.e., the symmetric matrices are stored in the 'L'-type
column major order used in the blas and lapack modules).

The argument dims is a dictionary with the dimensions of the cones. It has three fields.

dims['l']: 𝑙, the dimension of the nonnegative orthant (a nonnegative integer).

dims['q']: [𝑟0, . . . , 𝑟𝑀−1], a list with the dimensions of the second-order cones (positive integers).

dims['s']: [𝑡0, . . . , 𝑡𝑁−1], a list with the dimensions of the positive semidefinite cones (nonnegative inte-
gers).

The default value of dims is {'l': h.size[0], 'q': [], 's': []}, i.e., the default assump-
tion is that the linear inequalities are componentwise inequalities.

The role of the optional argument kktsolver is explained in the section Exploiting Structure.

cp returns a dictionary that contains the result and information about the accuracy of the solution. The most
important fields have keys 'status', 'x', 'snl', 'sl', 'y', 'znl', 'zl'. The possible values of the
'status' key are:

96 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

'optimal' In this case the 'x' entry of the dictionary is the primal optimal solution, the 'snl' and 'sl'
entries are the corresponding slacks in the nonlinear and linear inequality constraints, and the 'znl',
'zl' and 'y' entries are the optimal values of the dual variables associated with the nonlinear inequal-
ities, the linear inequalities, and the linear equality constraints. These vectors approximately satisfy the
Karush-Kuhn-Tucker (KKT) conditions

∇𝑓0(𝑥) + 𝐷𝑓(𝑥)𝑇 𝑧nl + 𝐺𝑇 𝑧l + 𝐴𝑇 𝑦 = 0,

𝑓(𝑥) + 𝑠nl = 0, 𝑘 = 1, . . . ,𝑚, 𝐺𝑥 + 𝑠l = ℎ, 𝐴𝑥 = 𝑏,

𝑠nl ⪰ 0, 𝑠l ⪰ 0, 𝑧nl ⪰ 0, 𝑧l ⪰ 0,

𝑠𝑇nl𝑧nl + 𝑠𝑇l 𝑧l = 0

where 𝑓 = (𝑓1, . . . , 𝑓𝑚).

'unknown' This indicates that the algorithm terminated before a solution was found, due to numerical dif-
ficulties or because the maximum number of iterations was reached. The 'x', 'snl', 'sl', 'y',
'znl', and 'zl' entries contain the iterates when the algorithm terminated.

cp solves the problem by applying cpl to the epigraph form problem

minimize 𝑡
subject to 𝑓0(𝑥) ≤ 𝑡

𝑓𝑘(𝑥) ≤ 0, 𝑘 = 1, . . . ,𝑚
𝐺𝑥 ⪯ ℎ
𝐴𝑥 = 𝑏.

The other entries in the output dictionary of cp describe the accuracy of the solution and are copied from the
output of cpl applied to this epigraph form problem.

cp requires that the problem is strictly primal and dual feasible and that

rank(𝐴) = 𝑝, rank
(︀[︀ ∑︀𝑚

𝑘=0 𝑧𝑘∇2𝑓𝑘(𝑥) 𝐴𝑇 ∇𝑓1(𝑥) · · · ∇𝑓𝑚(𝑥) 𝐺𝑇
]︀)︀

= 𝑛,

for all 𝑥 and all positive 𝑧.

Example: equality constrained analytic centering The equality constrained analytic centering problem is defined
as

minimize −
𝑚∑︀
𝑖=1

log 𝑥𝑖

subject to 𝐴𝑥 = 𝑏.

The function acent defined below solves the problem, assuming it is solvable.

from cvxopt import solvers, matrix, spdiag, log

def acent(A, b):
m, n = A.size
def F(x=None, z=None):

if x is None: return 0, matrix(1.0, (n,1))
if min(x) <= 0.0: return None
f = -sum(log(x))
Df = -(x**-1).T
if z is None: return f, Df
H = spdiag(z[0] * x**-2)
return f, Df, H

return solvers.cp(F, A=A, b=b)['x']

9.1. Problems with Nonlinear Objectives 97



CVXOPT Documentation, Release 1.3.2

Example: robust least-squares The function robls defined below solves the unconstrained problem

minimize
𝑚∑︀

𝑘=1

𝜑((𝐴𝑥− 𝑏)𝑘), 𝜑(𝑢) =
√︀
𝜌 + 𝑢2,

where 𝐴 ∈ R𝑚×𝑛.

from cvxopt import solvers, matrix, spdiag, sqrt, div

def robls(A, b, rho):
m, n = A.size
def F(x=None, z=None):

if x is None: return 0, matrix(0.0, (n,1))
y = A*x-b
w = sqrt(rho + y**2)
f = sum(w)
Df = div(y, w).T * A
if z is None: return f, Df
H = A.T * spdiag(z[0]*rho*(w**-3)) * A
return f, Df, H

return solvers.cp(F)['x']

Example: analytic centering with cone constraints

minimize − log(1 − 𝑥2
1) − log(1 − 𝑥2

2) − log(1 − 𝑥2
3)

subject to ‖𝑥‖2 ≤ 1

𝑥1

⎡⎣ −21 −11 0
−11 10 8

0 8 5

⎤⎦ + 𝑥2

⎡⎣ 0 10 16
10 −10 −10
16 −10 3

⎤⎦ + 𝑥3

⎡⎣ −5 2 −17
2 −6 8

−17 −7 6

⎤⎦ ⪯

⎡⎣ 20 10 40
10 80 10
40 10 15

⎤⎦ .

from cvxopt import matrix, log, div, spdiag, solvers

def F(x = None, z = None):
if x is None: return 0, matrix(0.0, (3,1))
if max(abs(x)) >= 1.0: return None
u = 1 - x**2
val = -sum(log(u))
Df = div(2*x, u).T
if z is None: return val, Df
H = spdiag(2 * z[0] * div(1 + x**2, u**2))
return val, Df, H

G = matrix([ [0., -1., 0., 0., -21., -11., 0., -11., 10., 8., 0.,
→˓8., 5.],

[0., 0., -1., 0., 0., 10., 16., 10., -10., -10., 16., -
→˓10., 3.],

[0., 0., 0., -1., -5., 2., -17., 2., -6., 8., -17., -
→˓7., 6.] ])
h = matrix([1.0, 0.0, 0.0, 0.0, 20., 10., 40., 10., 80., 10., 40., 10., 15.])
dims = {'l': 0, 'q': [4], 's': [3]}
sol = solvers.cp(F, G, h, dims)
print(sol['x'])
[ 4.11e-01]
[ 5.59e-01]
[-7.20e-01]

98 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

9.2 Problems with Linear Objectives

cvxopt.solvers.cpl(c, F[, G, h[, dims[, A, b[, kktsolver ]]]])
Solves a convex optimization problem with a linear objective

minimize 𝑐𝑇𝑥
subject to 𝑓𝑘(𝑥) ≤ 0, 𝑘 = 0, . . . ,𝑚− 1

𝐺𝑥 ⪯ ℎ
𝐴𝑥 = 𝑏.

c is a real single-column dense matrix.

F is a function that evaluates the nonlinear constraint functions. It must handle the following calling sequences.

• F() returns a tuple (m, x0), where m is the number of nonlinear constraints and x0 is a point in the domain
of 𝑓 . x0 is a dense real matrix of size (𝑛, 1).

• F(x), with x a dense real matrix of size (𝑛, 1), returns a tuple (f, Df). f is a dense real matrix of size (𝑚,
1), with f[k] equal to 𝑓𝑘(𝑥). Df is a dense or sparse real matrix of size (𝑚, 𝑛) with Df[k,:] equal to
the transpose of the gradient ∇𝑓𝑘(𝑥). If 𝑥 is not in the domain of 𝑓 , F(x) returns None or a tuple (None,
None).

• F(x,z), with x a dense real matrix of size (𝑛, 1) and z a positive dense real matrix of size (𝑚, 1) returns
a tuple (f, Df, H). f and Df are defined as above. H is a square dense or sparse real matrix of size (𝑛, 𝑛),
whose lower triangular part contains the lower triangular part of

𝑧0∇2𝑓0(𝑥) + 𝑧1∇2𝑓1(𝑥) + · · · + 𝑧𝑚−1∇2𝑓𝑚−1(𝑥).

If F is called with two arguments, it can be assumed that 𝑥 is in the domain of 𝑓 .

The linear inequalities are with respect to a cone 𝐶 defined as a Cartesian product of a nonnegative orthant, a
number of second-order cones, and a number of positive semidefinite cones:

𝐶 = 𝐶0 × 𝐶1 × · · · × 𝐶𝑀 × 𝐶𝑀+1 × · · · × 𝐶𝑀+𝑁

with

𝐶0 = {𝑢 ∈ R𝑙 | 𝑢𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑙},
𝐶𝑘+1 = {(𝑢0, 𝑢1) ∈ R × R𝑟𝑘−1 | 𝑢0 ≥ ‖𝑢1‖2}, 𝑘 = 0, . . . ,𝑀 − 1,

𝐶𝑘+𝑀+1 =
{︀
vec(𝑢) | 𝑢 ∈ S𝑡𝑘

+

}︀
, 𝑘 = 0, . . . , 𝑁 − 1.

Here vec(𝑢) denotes a symmetric matrix 𝑢 stored as a vector in column major order.

The arguments h and b are real single-column dense matrices. G and A are real dense or sparse matrices. The
default values for A and b are sparse matrices with zero rows, meaning that there are no equality constraints.
The number of rows of G and h is equal to

𝐾 = 𝑙 +

𝑀−1∑︁
𝑘=0

𝑟𝑘 +

𝑁−1∑︁
𝑘=0

𝑡2𝑘.

The columns of G and h are vectors in

R𝑙 × R𝑟0 × · · · × R𝑟𝑀−1 × R𝑡20 × · · · × R𝑡2𝑁−1 ,

where the last 𝑁 components represent symmetric matrices stored in column major order. The strictly upper
triangular entries of these matrices are not accessed (i.e., the symmetric matrices are stored in the 'L'-type
column major order used in the blas and lapack modules.

The argument dims is a dictionary with the dimensions of the cones. It has three fields.

9.2. Problems with Linear Objectives 99



CVXOPT Documentation, Release 1.3.2

dims['l']: 𝑙, the dimension of the nonnegative orthant (a nonnegative integer).

dims['q']: [𝑟0, . . . , 𝑟𝑀−1], a list with the dimensions of the second-order cones (positive integers).

dims['s']: [𝑡0, . . . , 𝑡𝑁−1], a list with the dimensions of the positive semidefinite cones (nonnegative inte-
gers).

The default value of dims is {'l': h.size[0], 'q': [], 's': []}, i.e., the default assump-
tion is that the linear inequalities are componentwise inequalities.

The role of the optional argument kktsolver is explained in the section Exploiting Structure.

cpl returns a dictionary that contains the result and information about the accuracy of the solution. The most
important fields have keys 'status', 'x', 'snl', 'sl', 'y', 'znl', 'zl'. The possible values of the
'status' key are:

'optimal' In this case the 'x' entry of the dictionary is the primal optimal solution, the 'snl' and 'sl'
entries are the corresponding slacks in the nonlinear and linear inequality constraints, and the 'znl',
'zl', and 'y' entries are the optimal values of the dual variables associated with the nonlinear inequal-
ities, the linear inequalities, and the linear equality constraints. These vectors approximately satisfy the
Karush-Kuhn-Tucker (KKT) conditions

𝑐 + 𝐷𝑓(𝑥)𝑇 𝑧nl + 𝐺𝑇 𝑧l + 𝐴𝑇 𝑦 = 0,

𝑓(𝑥) + 𝑠nl = 0, 𝑘 = 1, . . . ,𝑚, 𝐺𝑥 + 𝑠l = ℎ, 𝐴𝑥 = 𝑏,

𝑠nl ⪰ 0, 𝑠l ⪰ 0, 𝑧nl ⪰ 0, 𝑧l ⪰ 0,

𝑠𝑇nl𝑧nl + 𝑠𝑇l 𝑧l = 0.

'unknown' This indicates that the algorithm terminated before a solution was found, due to numerical dif-
ficulties or because the maximum number of iterations was reached. The 'x', 'snl', 'sl', 'y',
'znl', and 'zl' entries contain the iterates when the algorithm terminated.

The other entries in the output dictionary describe the accuracy of the solution. The entries 'primal
objective', 'dual objective', 'gap', and 'relative gap' give the primal objective 𝑐𝑇𝑥, the
dual objective, calculated as

𝑐𝑇𝑥 + 𝑧𝑇nl𝑓(𝑥) + 𝑧𝑇l (𝐺𝑥− ℎ) + 𝑦𝑇 (𝐴𝑥− 𝑏),

the duality gap

𝑠𝑇nl𝑧nl + 𝑠𝑇l 𝑧l,

and the relative gap. The relative gap is defined as
gap

−primal objective
if primal objective < 0,

gap
dual objective

if dual objective > 0,

and None otherwise. The entry with key 'primal infeasibility' gives the residual in the primal
constraints,

‖(𝑓(𝑥) + 𝑠nl, 𝐺𝑥 + 𝑠l − ℎ,𝐴𝑥− 𝑏)‖2
max{1, ‖(𝑓(𝑥0) + 1, 𝐺𝑥0 + 1− ℎ,𝐴𝑥0 − 𝑏)‖2}

where 𝑥0 is the point returned by F(). The entry with key 'dual infeasibility' gives the residual

‖𝑐 + 𝐷𝑓(𝑥)𝑇 𝑧nl + 𝐺𝑇 𝑧l + 𝐴𝑇 𝑦‖2
max{1, ‖𝑐 + 𝐷𝑓(𝑥0)𝑇1 + 𝐺𝑇1‖2}

.

cpl requires that the problem is strictly primal and dual feasible and that

rank(𝐴) = 𝑝, rank
(︀[︀ ∑︀𝑚−1

𝑘=0 𝑧𝑘∇2𝑓𝑘(𝑥) 𝐴𝑇 ∇𝑓0(𝑥) · · · ∇𝑓𝑚−1(𝑥) 𝐺𝑇
]︀)︀

= 𝑛,

for all 𝑥 and all positive 𝑧.

100 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

Example: floor planning This example is the floor planning problem of section 8.8.2 in the book Convex Optimiza-
tion:

minimize 𝑊 + 𝐻
subject to 𝐴min,𝑘/ℎ𝑘 − 𝑤𝑘 ≤ 0, 𝑘 = 1, . . . , 5

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥4 ≥ 0
𝑥1 + 𝑤1 + 𝜌 ≤ 𝑥3, 𝑥2 + 𝑤2 + 𝜌 ≤ 𝑥3, 𝑥3 + 𝑤3 + 𝜌 ≤ 𝑥5,
𝑥4 + 𝑤4 + 𝜌 ≤ 𝑥5, 𝑥5 + 𝑤5 ≤ 𝑊
𝑦2 ≥ 0, 𝑦3 ≥ 0, 𝑦5 ≥ 0
𝑦2 + ℎ2 + 𝜌 ≤ 𝑦1, 𝑦1 + ℎ1 + 𝜌 ≤ 𝑦4, 𝑦3 + ℎ3 + 𝜌 ≤ 𝑦4,
𝑦4 + ℎ4 ≤ 𝐻, 𝑦5 + ℎ5 ≤ 𝐻
ℎ𝑘/𝛾 ≤ 𝑤𝑘 ≤ 𝛾ℎ𝑘, 𝑘 = 1, . . . , 5.

This problem has 22 variables

𝑊, 𝐻, 𝑥 ∈ R5, 𝑦 ∈ R5, 𝑤 ∈ R5, ℎ ∈ R5,

5 nonlinear inequality constraints, and 26 linear inequality constraints. The code belows defines a function
floorplan that solves the problem by calling cp, then applies it to 4 instances, and creates a figure.

import pylab
from cvxopt import solvers, matrix, spmatrix, mul, div

def floorplan(Amin):

# minimize W+H
# subject to Amink / hk <= wk, k = 1,..., 5
# x1 >= 0, x2 >= 0, x4 >= 0
# x1 + w1 + rho <= x3
# x2 + w2 + rho <= x3
# x3 + w3 + rho <= x5
# x4 + w4 + rho <= x5
# x5 + w5 <= W
# y2 >= 0, y3 >= 0, y5 >= 0
# y2 + h2 + rho <= y1
# y1 + h1 + rho <= y4
# y3 + h3 + rho <= y4
# y4 + h4 <= H
# y5 + h5 <= H
# hk/gamma <= wk <= gamma*hk, k = 1, ..., 5
#
# 22 Variables W, H, x (5), y (5), w (5), h (5).
#
# W, H: scalars; bounding box width and height
# x, y: 5-vectors; coordinates of bottom left corners of blocks
# w, h: 5-vectors; widths and heights of the 5 blocks

rho, gamma = 1.0, 5.0 # min spacing, min aspect ratio

# The objective is to minimize W + H. There are five nonlinear
# constraints
#
# -wk + Amink / hk <= 0, k = 1, ..., 5

c = matrix(2*[1.0] + 20*[0.0])

def F(x=None, z=None):
if x is None: return 5, matrix(17*[0.0] + 5*[1.0])

(continues on next page)

9.2. Problems with Linear Objectives 101

http://www.stanford.edu/~boyd/cvxbook
http://www.stanford.edu/~boyd/cvxbook


CVXOPT Documentation, Release 1.3.2

(continued from previous page)

if min(x[17:]) <= 0.0: return None
f = -x[12:17] + div(Amin, x[17:])
Df = matrix(0.0, (5,22))
Df[:,12:17] = spmatrix(-1.0, range(5), range(5))
Df[:,17:] = spmatrix(-div(Amin, x[17:]**2), range(5), range(5))
if z is None: return f, Df
H = spmatrix( 2.0* mul(z, div(Amin, x[17::]**3)), range(17,22), range(17,

→˓22) )
return f, Df, H

G = matrix(0.0, (26,22))
h = matrix(0.0, (26,1))
G[0,2] = -1.0 # -x1 <= 0
G[1,3] = -1.0 # -x2 <= 0
G[2,5] = -1.0 # -x4 <= 0
G[3, [2, 4, 12]], h[3] = [1.0, -1.0, 1.0], -rho # x1 - x3 + w1 <= -rho
G[4, [3, 4, 13]], h[4] = [1.0, -1.0, 1.0], -rho # x2 - x3 + w2 <= -rho
G[5, [4, 6, 14]], h[5] = [1.0, -1.0, 1.0], -rho # x3 - x5 + w3 <= -rho
G[6, [5, 6, 15]], h[6] = [1.0, -1.0, 1.0], -rho # x4 - x5 + w4 <= -rho
G[7, [0, 6, 16]] = -1.0, 1.0, 1.0 # -W + x5 + w5 <= 0
G[8,8] = -1.0 # -y2 <= 0
G[9,9] = -1.0 # -y3 <= 0
G[10,11] = -1.0 # -y5 <= 0
G[11, [7, 8, 18]], h[11] = [-1.0, 1.0, 1.0], -rho # -y1 + y2 + h2 <= -rho
G[12, [7, 10, 17]], h[12] = [1.0, -1.0, 1.0], -rho # y1 - y4 + h1 <= -rho
G[13, [9, 10, 19]], h[13] = [1.0, -1.0, 1.0], -rho # y3 - y4 + h3 <= -rho
G[14, [1, 10, 20]] = -1.0, 1.0, 1.0 # -H + y4 + h4 <= 0
G[15, [1, 11, 21]] = -1.0, 1.0, 1.0 # -H + y5 + h5 <= 0
G[16, [12, 17]] = -1.0, 1.0/gamma # -w1 + h1/gamma <= 0
G[17, [12, 17]] = 1.0, -gamma # w1 - gamma * h1 <= 0
G[18, [13, 18]] = -1.0, 1.0/gamma # -w2 + h2/gamma <= 0
G[19, [13, 18]] = 1.0, -gamma # w2 - gamma * h2 <= 0
G[20, [14, 19]] = -1.0, 1.0/gamma # -w3 + h3/gamma <= 0
G[21, [14, 19]] = 1.0, -gamma # w3 - gamma * h3 <= 0
G[22, [15, 20]] = -1.0, 1.0/gamma # -w4 + h4/gamma <= 0
G[23, [15, 20]] = 1.0, -gamma # w4 - gamma * h4 <= 0
G[24, [16, 21]] = -1.0, 1.0/gamma # -w5 + h5/gamma <= 0
G[25, [16, 21]] = 1.0, -gamma # w5 - gamma * h5 <= 0.0

# solve and return W, H, x, y, w, h
sol = solvers.cpl(c, F, G, h)
return sol['x'][0], sol['x'][1], sol['x'][2:7], sol['x'][7:12], sol['x

→˓'][12:17], sol['x'][17:]

pylab.figure(facecolor='w')
pylab.subplot(221)
Amin = matrix([100., 100., 100., 100., 100.])
W, H, x, y, w, h = floorplan(Amin)
for k in range(5):

pylab.fill([x[k], x[k], x[k]+w[k], x[k]+w[k]],
[y[k], y[k]+h[k], y[k]+h[k], y[k]], facecolor = '#D0D0D0')

pylab.text(x[k]+.5*w[k], y[k]+.5*h[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.subplot(222)
(continues on next page)

102 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

Amin = matrix([20., 50., 80., 150., 200.])
W, H, x, y, w, h = floorplan(Amin)
for k in range(5):

pylab.fill([x[k], x[k], x[k]+w[k], x[k]+w[k]],
[y[k], y[k]+h[k], y[k]+h[k], y[k]], 'facecolor = #D0D0D0')

pylab.text(x[k]+.5*w[k], y[k]+.5*h[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.subplot(223)
Amin = matrix([180., 80., 80., 80., 80.])
W, H, x, y, w, h = floorplan(Amin)
for k in range(5):

pylab.fill([x[k], x[k], x[k]+w[k], x[k]+w[k]],
[y[k], y[k]+h[k], y[k]+h[k], y[k]], 'facecolor = #D0D0D0')

pylab.text(x[k]+.5*w[k], y[k]+.5*h[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.subplot(224)
Amin = matrix([20., 150., 20., 200., 110.])
W, H, x, y, w, h = floorplan(Amin)
for k in range(5):

pylab.fill([x[k], x[k], x[k]+w[k], x[k]+w[k]],
[y[k], y[k]+h[k], y[k]+h[k], y[k]], 'facecolor = #D0D0D0')

pylab.text(x[k]+.5*w[k], y[k]+.5*h[k], "%d" %(k+1))
pylab.axis([-1.0, 26, -1.0, 26])
pylab.xticks([])
pylab.yticks([])

pylab.show()

9.2. Problems with Linear Objectives 103



CVXOPT Documentation, Release 1.3.2

9.3 Geometric Programming

cvxopt.solvers.gp(K, F, g[, G, h[, A, b]])
Solves a geometric program in convex form

minimize 𝑓0(𝑥) = lse(𝐹0𝑥 + 𝑔0)
subject to 𝑓𝑖(𝑥) = lse(𝐹𝑖𝑥 + 𝑔𝑖) ≤ 0, 𝑖 = 1, . . . ,𝑚

𝐺𝑥 ⪯ ℎ
𝐴𝑥 = 𝑏

where

lse(𝑢) = log
∑︁
𝑘

exp(𝑢𝑘), 𝐹 =
[︀
𝐹𝑇
0 𝐹𝑇

1 · · · 𝐹𝑇
𝑚

]︀𝑇
, 𝑔 =

[︀
𝑔𝑇0 𝑔𝑇1 · · · 𝑔𝑇𝑚

]︀𝑇
,

and the vector inequality denotes componentwise inequality. K is a list of 𝑚 + 1 positive integers with K[i]
equal to the number of rows in 𝐹𝑖. F is a dense or sparse real matrix of size (sum(K), n). g is a dense real
matrix with one column and the same number of rows as F. G and A are dense or sparse real matrices. Their
default values are sparse matrices with zero rows. h and b are dense real matrices with one column. Their
default values are matrices of size (0, 1).

gp returns a dictionary with keys 'status', 'x', 'snl', 'sl', 'y', 'znl', and 'zl'. The possible
values of the 'status' key are:

'optimal' In this case the 'x' entry is the primal optimal solution, the 'snl' and 'sl' entries are the
corresponding slacks in the nonlinear and linear inequality constraints. The 'znl', 'zl', and 'y'

104 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

entries are the optimal values of the dual variables associated with the nonlinear and linear inequality
constraints and the linear equality constraints. These values approximately satisfy

∇𝑓0(𝑥) +

𝑚∑︁
𝑘=1

𝑧nl,𝑘∇𝑓𝑘(𝑥) + 𝐺𝑇 𝑧l + 𝐴𝑇 𝑦 = 0,

𝑓𝑘(𝑥) + 𝑠nl,𝑘 = 0, 𝑘 = 1, . . . ,𝑚 𝐺𝑥 + 𝑠l = ℎ, 𝐴𝑥 = 𝑏,

𝑠nl ⪰ 0, 𝑠l ⪰ 0, 𝑧nl ⪰ 0, 𝑧l ⪰ 0,

𝑠𝑇nl𝑧nl + 𝑠𝑇l 𝑧l = 0.

'unknown' This indicates that the algorithm terminated before a solution was found, due to numerical dif-
ficulties or because the maximum number of iterations was reached. The 'x', 'snl', 'sl', 'y',
'znl', and 'zl' contain the iterates when the algorithm terminated.

The other entries in the output dictionary describe the accuracy of the solution, and are taken from the output of
cp.

gp requires that the problem is strictly primal and dual feasible and that

rank(𝐴) = 𝑝, rank
(︀[︀ ∑︀𝑚

𝑘=0 𝑧𝑘∇2𝑓𝑘(𝑥) 𝐴𝑇 ∇𝑓1(𝑥) · · · ∇𝑓𝑚(𝑥) 𝐺𝑇
]︀)︀

= 𝑛,

for all 𝑥 and all positive 𝑧.

As an example, we solve the small GP of section 2.4 of the paper A Tutorial on Geometric Programming. The
posynomial form of the problem is

minimize 𝑤−1ℎ−1𝑑−1

subject to (2/𝐴wall)ℎ𝑤 + (2/𝐴wall)ℎ𝑑 ≤ 1
(1/𝐴flr)𝑤𝑑 ≤ 1
𝛼𝑤ℎ−1 ≤ 1
(1/𝛽)ℎ𝑤−1 ≤ 1
𝛾𝑤𝑑−1 ≤ 1
(1/𝛿)𝑑𝑤−1 ≤ 1

with variables ℎ, 𝑤, 𝑑.

from cvxopt import matrix, log, exp, solvers

Aflr = 1000.0
Awall = 100.0
alpha = 0.5
beta = 2.0
gamma = 0.5
delta = 2.0

F = matrix( [[-1., 1., 1., 0., -1., 1., 0., 0.],
[-1., 1., 0., 1., 1., -1., 1., -1.],
[-1., 0., 1., 1., 0., 0., -1., 1.]])

g = log( matrix( [1.0, 2/Awall, 2/Awall, 1/Aflr, alpha, 1/beta, gamma, 1/delta]) )
K = [1, 2, 1, 1, 1, 1, 1]
h, w, d = exp( solvers.gp(K, F, g)['x'] )

9.4 Exploiting Structure

By default, the functions cp and cpl do not exploit problem structure. Two mechanisms are provided for implement-
ing customized solvers that take advantage of problem structure.

9.4. Exploiting Structure 105

http://www.stanford.edu/~boyd/gp_tutorial.html


CVXOPT Documentation, Release 1.3.2

Providing a function for solving KKT equations The most expensive step of each iteration of cp is the solution of
a set of linear equations (KKT equations) of the form⎡⎣ 𝐻 𝐴𝑇 �̃�𝑇

𝐴 0 0

�̃� 0 −𝑊𝑇𝑊

⎤⎦⎡⎣ 𝑢𝑥

𝑢𝑦

𝑢𝑧

⎤⎦ =

⎡⎣ 𝑏𝑥
𝑏𝑦
𝑏𝑧

⎤⎦ , (9.2)

where

𝐻 =

𝑚∑︁
𝑘=0

𝑧𝑘∇2𝑓𝑘(𝑥), �̃� =
[︀
∇𝑓1(𝑥) · · · ∇𝑓𝑚(𝑥) 𝐺𝑇

]︀𝑇
.

The matrix 𝑊 depends on the current iterates and is defined as follows. Suppose

𝑢 = (𝑢nl, 𝑢l, 𝑢q,0, . . . , 𝑢q,𝑀−1, vec (𝑢s,0), . . . , vec (𝑢s,𝑁−1)) ,

where

𝑢nl ∈ R𝑚, 𝑢l ∈ R𝑙, 𝑢q,𝑘 ∈ R𝑟𝑘 , 𝑘 = 0, . . . ,𝑀 − 1, 𝑢s,𝑘 ∈ S𝑡𝑘 , 𝑘 = 0, . . . , 𝑁 − 1.

Then 𝑊 is a block-diagonal matrix,

𝑊𝑢 = (𝑊nl𝑢nl, 𝑊l𝑢l, 𝑊q,0𝑢q,0, . . . , 𝑊q,𝑀−1𝑢q,𝑀−1, 𝑊s,0 vec (𝑢s,0), . . . , 𝑊s,𝑁−1 vec (𝑢s,𝑁−1))

with the following diagonal blocks.

• The first block is a positive diagonal scaling with a vector 𝑑nl:

𝑊nl = diag (𝑑nl), 𝑊−1
nl = diag (𝑑nl)

−1.

This transformation is symmetric:

𝑊𝑇
nl = 𝑊nl.

• The second block is a positive diagonal scaling with a vector 𝑑l:

𝑊l = diag (𝑑l), 𝑊−1
l = diag (𝑑l)

−1.

This transformation is symmetric:

𝑊𝑇
l = 𝑊l.

• The next 𝑀 blocks are positive multiples of hyperbolic Householder transformations:

𝑊q,𝑘 = 𝛽𝑘(2𝑣𝑘𝑣
𝑇
𝑘 − 𝐽), 𝑊−1

q,𝑘 =
1

𝛽𝑘
(2𝐽𝑣𝑘𝑣

𝑇
𝑘 𝐽 − 𝐽), 𝑘 = 0, . . . ,𝑀 − 1,

where

𝛽𝑘 > 0, 𝑣𝑘0 > 0, 𝑣𝑇𝑘 𝐽𝑣𝑘 = 1, 𝐽 =

[︂
1 0
0 −𝐼

]︂
.

These transformations are also symmetric:

𝑊𝑇
q,𝑘 = 𝑊q,𝑘.

106 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

• The last 𝑁 blocks are congruence transformations with nonsingular matrices:

𝑊s,𝑘 vec (𝑢s,𝑘) = vec (𝑟𝑇𝑘 𝑢s,𝑘𝑟𝑘), 𝑊−1
s,𝑘 vec (𝑢s,𝑘) = vec (𝑟−𝑇

𝑘 𝑢s,𝑘𝑟
−1
𝑘 ), 𝑘 = 0, . . . , 𝑁 − 1.

In general, this operation is not symmetric, and

𝑊𝑇
s,𝑘 vec (𝑢s,𝑘) = vec (𝑟𝑘𝑢s,𝑘𝑟

𝑇
𝑘 ), 𝑊−𝑇

s,𝑘 vec (𝑢s,𝑘) = vec (𝑟−1
𝑘 𝑢s,𝑘𝑟

−𝑇
𝑘 ), 𝑘 = 0, . . . , 𝑁 − 1.

It is often possible to exploit problem structure to solve (9.2) faster than by standard methods. The last argument
kktsolver of cp allows the user to supply a Python function for solving the KKT equations. This function
will be called as f = kktsolver(x, z, W). The argument x is the point at which the derivatives in the
KKT matrix are evaluated. z is a positive vector of length it 𝑚 + 1, containing the coefficients in the 1,1 block
𝐻 . W is a dictionary that contains the parameters of the scaling:

• W['dnl'] is the positive vector that defines the diagonal scaling for the nonlinear inequalities.
W['dnli'] is its componentwise inverse.

• W['d'] is the positive vector that defines the diagonal scaling for the componentwise linear inequalities.
W['di'] is its componentwise inverse.

• W['beta'] and W['v'] are lists of length 𝑀 with the coefficients and vectors that define the hyperbolic
Householder transformations.

• W['r'] is a list of length 𝑁 with the matrices that define the the congruence transformations. W['rti']
is a list of length 𝑁 with the transposes of the inverses of the matrices in W['r'].

The function call f = kktsolver(x, z, W) should return a routine for solving the KKT system (9.2)
defined by x, z, W. It will be called as f(bx, by, bz). On entry, bx, by, bz contain the right-hand side.
On exit, they should contain the solution of the KKT system, with the last component scaled, i.e., on exit,

𝑏𝑥 := 𝑢𝑥, 𝑏𝑦 := 𝑢𝑦, 𝑏𝑧 := 𝑊𝑢𝑧.

The role of the argument kktsolver in the function cpl is similar, except that in (9.2),

𝐻 =

𝑚−1∑︁
𝑘=0

𝑧𝑘∇2𝑓𝑘(𝑥), �̃� =
[︀
∇𝑓0(𝑥) · · · ∇𝑓𝑚−1(𝑥) 𝐺𝑇

]︀𝑇
.

Specifying constraints via Python functions In the default use of cp, the arguments G and A are the coefficient
matrices in the constraints of (9.2). It is also possible to specify these matrices by providing Python functions
that evaluate the corresponding matrix-vector products and their adjoints.

• If the argument G of cp is a Python function, then G(u, v[, alpha = 1.0, beta = 0.0,
trans = 'N']) should evaluates the matrix-vector products

𝑣 := 𝛼𝐺𝑢 + 𝛽𝑣 (trans = ′N′), 𝑣 := 𝛼𝐺𝑇𝑢 + 𝛽𝑣 (trans = ′T′).

• Similarly, if the argument A is a Python function, then A(u, v[, alpha = 1.0, beta = 0.0,
trans = 'N']) should evaluate the matrix-vector products

𝑣𝛼𝐴𝑢 + 𝛽𝑣 (trans = ′N′), 𝑣 := 𝛼𝐴𝑇𝑢 + 𝛽𝑣 (trans = ′T′).

• In a similar way, when the first argument F of cp returns matrices of first derivatives or second derivatives
Df, H, these matrices can be specified as Python functions. If Df is a Python function, then Df(u, v[,
alpha = 1.0, beta = 0.0, trans = 'N']) should evaluate the matrix-vector products

9.4. Exploiting Structure 107



CVXOPT Documentation, Release 1.3.2

𝑣 := 𝛼𝐷𝑓(𝑥)𝑢 + 𝛽𝑣 (trans = ′N′), 𝑣 := 𝛼𝐷𝑓(𝑥)𝑇𝑢 + 𝛽𝑣 (trans = ′T′).

If H is a Python function, then H(u, v[, alpha, beta]) should evaluate the matrix-vector product

𝑣 := 𝛼𝐻𝑢 + 𝛽𝑣.

If G, A, Df, or H are Python functions, then the argument kktsolver must also be provided.

As an example, we consider the unconstrained problem

minimize (1/2)‖𝐴𝑥− 𝑏‖22 −
∑︀𝑛

𝑖=1 log(1 − 𝑥2
𝑖 )

where 𝐴 is an 𝑚 by 𝑛 matrix with 𝑚 less than 𝑛. The Hessian of the objective is diagonal plus a low-rank term:

𝐻 = 𝐴𝑇𝐴 + diag (𝑑), 𝑑𝑖 =
2(1 + 𝑥2

𝑖 )

(1 − 𝑥2
𝑖 )2

.

We can exploit this property when solving (9.2) by applying the matrix inversion lemma. We first solve

(𝐴diag (𝑑)−1𝐴𝑇 + 𝐼)𝑣 = (1/𝑧0)𝐴diag (𝑑)−1𝑏𝑥,

and then obtain

𝑢𝑥 = diag (𝑑)−1(𝑏𝑥/𝑧0 −𝐴𝑇 𝑣).

The following code follows this method. It also uses BLAS functions for matrix-matrix and matrix-vector products.

from cvxopt import matrix, spdiag, mul, div, log, blas, lapack, solvers, base

def l2ac(A, b):
"""
Solves

minimize (1/2) * ||A*x-b||_2^2 - sum log (1-xi^2)

assuming A is m x n with m << n.
"""

m, n = A.size
def F(x = None, z = None):

if x is None:
return 0, matrix(0.0, (n,1))

if max(abs(x)) >= 1.0:
return None

# r = A*x - b
r = -b
blas.gemv(A, x, r, beta = -1.0)
w = x**2
f = 0.5 * blas.nrm2(r)**2 - sum(log(1-w))
# gradf = A'*r + 2.0 * x ./ (1-w)
gradf = div(x, 1.0 - w)
blas.gemv(A, r, gradf, trans = 'T', beta = 2.0)
if z is None:

(continues on next page)

108 Chapter 9. Nonlinear Convex Optimization



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

return f, gradf.T
else:

def Hf(u, v, alpha = 1.0, beta = 0.0):
# v := alpha * (A'*A*u + 2*((1+w)./(1-w)).*u + beta *v
v *= beta
v += 2.0 * alpha * mul(div(1.0+w, (1.0-w)**2), u)
blas.gemv(A, u, r)
blas.gemv(A, r, v, alpha = alpha, beta = 1.0, trans = 'T')

return f, gradf.T, Hf

# Custom solver for the Newton system
#
# z[0]*(A'*A + D)*x = bx
#
# where D = 2 * (1+x.^2) ./ (1-x.^2).^2. We apply the matrix inversion
# lemma and solve this as
#
# (A * D^-1 *A' + I) * v = A * D^-1 * bx / z[0]
# D * x = bx / z[0] - A'*v.

S = matrix(0.0, (m,m))
v = matrix(0.0, (m,1))
def Fkkt(x, z, W):

ds = (2.0 * div(1 + x**2, (1 - x**2)**2))**-0.5
Asc = A * spdiag(ds)
blas.syrk(Asc, S)
S[::m+1] += 1.0
lapack.potrf(S)
a = z[0]
def g(x, y, z):

x[:] = mul(x, ds) / a
blas.gemv(Asc, x, v)
lapack.potrs(S, v)
blas.gemv(Asc, v, x, alpha = -1.0, beta = 1.0, trans = 'T')
x[:] = mul(x, ds)

return g

return solvers.cp(F, kktsolver = Fkkt)['x']

9.5 Algorithm Parameters

The following algorithm control parameters are accessible via the dictionary solvers.options. By default the
dictionary is empty and the default values of the parameters are used.

One can change the parameters in the default solvers by adding entries with the following key values.

'show_progress' True or False; turns the output to the screen on or off (default: True).

'maxiters' maximum number of iterations (default: 100).

'abstol' absolute accuracy (default: 1e-7).

'reltol' relative accuracy (default: 1e-6).

'feastol' tolerance for feasibility conditions (default: 1e-7).

9.5. Algorithm Parameters 109



CVXOPT Documentation, Release 1.3.2

'refinement' number of iterative refinement steps when solving KKT equations (default: 1).

For example the command

>>> from cvxopt import solvers
>>> solvers.options['show_progress'] = False

turns off the screen output during calls to the solvers. The tolerances abstol, reltol and feastol have the
following meaning in cpl.

cpl returns with status 'optimal' if

‖𝑐 + 𝐷𝑓(𝑥)𝑇 𝑧nl + 𝐺𝑇 𝑧l + 𝐴𝑇 𝑦‖2
max{1, ‖𝑐 + 𝐷𝑓(𝑥0)𝑇1 + 𝐺𝑇1‖2}

≤ 𝜖feas,
‖(𝑓(𝑥) + 𝑠nl, 𝐺𝑥 + 𝑠l − ℎ,𝐴𝑥− 𝑏)‖2

max{1, ‖(𝑓(𝑥0) + 1, 𝐺𝑥0 + 1− ℎ,𝐴𝑥0 − 𝑏)‖2}
≤ 𝜖feas

where 𝑥0 is the point returned by F(), and

gap ≤ 𝜖abs or
(︂
𝑐𝑇𝑥 < 0,

gap

−𝑐𝑇𝑥
≤ 𝜖rel

)︂
or

(︂
𝐿(𝑥, 𝑦, 𝑧) > 0,

gap

𝐿(𝑥, 𝑦, 𝑧)
≤ 𝜖rel

)︂
where

gap =

[︂
𝑠nl
𝑠l

]︂𝑇 [︂
𝑧nl
𝑧l

]︂
, 𝐿(𝑥, 𝑦, 𝑧) = 𝑐𝑇𝑥 + 𝑧𝑇nl𝑓(𝑥) + 𝑧𝑇l (𝐺𝑥− ℎ) + 𝑦𝑇 (𝐴𝑥− 𝑏).

The functions cp and gp call cpl and hence use the same stopping criteria (with 𝑥0 = 0 for gp).

110 Chapter 9. Nonlinear Convex Optimization



CHAPTER 10

Modeling

The module cvxopt.modeling can be used to specify and solve optimization problems with convex piecewise-
linear objective and constraint functions. Using this modeling tool, one can specify an optimization problem by
first defining the optimization variables (see the section Variables), and then specifying the objective and constraint
functions using linear operations (vector addition and subtraction, matrix-vector multiplication, indexing and slicing)
and nested evaluations of max, min, abs and sum (see the section Functions).

A more general Python convex modeling package is CVXPY.

10.1 Variables

Optimization variables are represented by variable objects.

cvxopt.modeling.variable([size[, name]])
A vector variable. The first argument is the dimension of the vector (a positive integer with default value 1).
The second argument is a string with a name for the variable. The name is optional and has default value "".
It is only used when displaying variables (or objects that depend on variables, such as functions or constraints)
using print statements, when calling the built-in functions repr or str, or when writing linear programs to
MPS files.

The function len returns the length of a variable. A variable x has two attributes.

variable.name
The name of the variable.

variable.value
Either None or a dense 'd' matrix of size len(x) by 1.

The attribute x.value is set to None when the variable x is created. It can be given a numerical value later,
typically by solving an LP that has x as one of its variables. One can also make an explicit assignment x.value
= y. The assigned value y must be an integer or float, or a dense 'd' matrix of size (len(x), 1). If y is
an integer or float, all the elements of x.value are set to the value of y.

111

http://cvxpy.org


CVXOPT Documentation, Release 1.3.2

>>> from cvxopt import matrix
>>> from cvxopt.modeling import variable
>>> x = variable(3,'a')
>>> len(x)
3
>>> print(x.name)
a
>>> print(x.value)
None
>>> x.value = matrix([1.,2.,3.])
>>> print(x.value)
[ 1.00e+00]
[ 2.00e+00]
[ 3.00e+00]
>>> x.value = 1
>>> print(x.value)
[ 1.00e+00]
[ 1.00e+00]
[ 1.00e+00]

10.2 Functions

Objective and constraint functions can be defined via overloaded operations on variables and other functions. A
function f is interpreted as a column vector, with length len(f) and with a value that depends on the values of its
variables. Functions have two public attributes.

variables
Returns a copy of the list of variables of the function.

value
The function value. If any of the variables of f has value None, then f.value() returns None. Otherwise, it
returns a dense 'd' matrix of size (len(f),1) with the function value computed from the value attributes
of the variables of f.

Three types of functions are supported: affine, convex piecewise-linear, and concave piecewise-linear.

Affine functions represent vector valued functions of the form

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝐴1𝑥1 + · · · + 𝐴𝑛𝑥𝑛 + 𝑏.

The coefficients can be scalars or dense or sparse matrices. The constant term is a scalar or a column vector.

Affine functions result from the following operations.

Unary operations For a variable x, the unary operation +x results in an affine function with x as variable, coefficient
1.0, and constant term 0.0. The unary operation -x returns an affine function with x as variable, coefficient -1.0,
and constant term 0.0. For an affine function f, +f is a copy of f, and -f is a copy of f with the signs of its
coefficients and constant term reversed.

Addition and subtraction Sums and differences of affine functions, variables and constants result in new affine func-
tions. The constant terms in the sum can be of type integer or float, or dense or sparse 'd' matrices with one
column.

The rules for addition and subtraction follow the conventions for matrix addition and subtraction in the section
Arithmetic Operations, with variables and affine functions interpreted as dense 'd' matrices with one column.
In particular, a scalar term (integer, float, 1 by 1 dense 'd' matrix, variable of length 1, or affine function of
length 1) can be added to an affine function or variable of length greater than 1.

112 Chapter 10. Modeling



CVXOPT Documentation, Release 1.3.2

Multiplication Suppose v is an affine function or a variable, and a is an integer, float, sparse or dense 'd' matrix.
The products a * v and v * a are valid affine functions whenever the product is allowed under the rules for
matrix and scalar multiplication of the section Arithmetic Operations, with v interpreted as a 'd' matrix with
one column. In particular, the product a * v is defined if a is a scalar (integer, float, or 1 by 1 dense 'd'
matrix), or a matrix (dense or sparse) with a.size[1] equal to len(v). The operation v * a is defined if
a is scalar, or if len(v) is 1 and a is a matrix with one column.

Inner products The following two functions return scalar affine functions defined as inner products of a constant
vector with a variable or affine function.

cvxopt.modeling.sum(v)
The argument is an affine function or a variable. The result is an affine function of length 1, with the sum
of the components of the argument v.

cvxopt.modeling.dot(u, v)
If v is a variable or affine function and u is a 'd' matrix of size (len(v), 1), then dot(u, v) and
dot(v, u) are equivalent to u.trans() * v.

If u and v are dense matrices, then dot is equivalent to the function blas.dot, i.e., it returns the inner
product of the two matrices.

In the following example, the variable x has length 1 and y has length 2. The functions f and g are given by

𝑓(𝑥, 𝑦) =

[︂
2
2

]︂
𝑥 + 𝑦 +

[︂
3
3

]︂
,

𝑔(𝑥, 𝑦) =

[︂
1 3
2 4

]︂
𝑓(𝑥, 𝑦) +

[︂
1 1
1 1

]︂
𝑦 +

[︂
1
−1

]︂
=

[︂
8
12

]︂
𝑥 +

[︂
2 4
3 5

]︂
𝑦 +

[︂
13
17

]︂
.

>>> from cvxopt.modeling import variable
>>> x = variable(1,'x')
>>> y = variable(2,'y')
>>> f = 2*x + y + 3
>>> A = matrix([[1., 2.], [3.,4.]])
>>> b = matrix([1.,-1.])
>>> g = A*f + sum(y) + b
>>> print(g)
affine function of length 2
constant term:
[ 1.30e+01]
[ 1.70e+01]
linear term: linear function of length 2
coefficient of variable(2,'y'):
[ 2.00e+00 4.00e+00]
[ 3.00e+00 5.00e+00]
coefficient of variable(1,'x'):
[ 8.00e+00]
[ 1.20e+01]

In-place operations For an affine function f the operations f += u and f -= u, with u a constant, a variable or
an affine function, are allowed if they do not change the length of f, i.e., if u has length len(f) or length 1.
In-place multiplication f *= u and division f /= u are allowed if u is an integer, float, or 1 by 1 matrix.

Indexing and slicing Variables and affine functions admit single-argument indexing of the four types described in the
section Indexing and Slicing. The result of an indexing or slicing operation is an affine function.

10.2. Functions 113



CVXOPT Documentation, Release 1.3.2

>>> x = variable(4,'x')
>>> f = x[::2]
>>> print(f)
linear function of length 2
linear term: linear function of length 2
coefficient of variable(4,'x'):
[ 1.00e+00 0 0 0 ]
[ 0 0 1.00e+00 0 ]
>>> y = variable(3,'x')
>>> g = matrix(range(12),(3,4),'d')*x - 3*y + 1
>>> print(g[0] + g[2])
affine function of length 1
constant term:
[ 2.00e+00]
linear term: linear function of length 1
coefficient of variable(4,'x'):
[ 2.00e+00 8.00e+00 1.40e+01 2.00e+01]
coefficient of variable(3,'x'):
[-3.00e+00 0 -3.00e+00]

The general expression of a convex piecewise-linear function is

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑏 + 𝐴1𝑥1 + · · · + 𝐴𝑛𝑥𝑛 +

𝐾∑︁
𝑘=1

max(𝑦1, 𝑦2, . . . , 𝑦𝑚𝑘
).

The maximum in this expression is a componentwise maximum of its vector arguments, which can be constant vectors,
variables, affine functions or convex piecewise-linear functions. The general expression for a concave piecewise-
linear function is

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑏 + 𝐴1𝑥1 + · · · + 𝐴𝑛𝑥𝑛 +

𝐾∑︁
𝑘=1

min(𝑦1, 𝑦2, . . . , 𝑦𝑚𝑘
).

Here the arguments of the min can be constants, variables, affine functions or concave piecewise-linear functions.

Piecewise-linear functions can be created using the following operations.

Maximum If the arguments in f = max(y1, y2, ...) do not include any variables or functions, then the
Python built-in max is evaluated.

If one or more of the arguments are variables or functions, max returns a piecewise-linear function defined as
the elementwise maximum of its arguments. In other words, f[k] = max(y1[k], y2[k], ...) for k =
0, . . . , len(f) - 1. The length of f is equal to the maximum of the lengths of the arguments. Each argument
must have length equal to len(f) or length one. Arguments with length one are interpreted as vectors of length
len(f) with identical entries.

The arguments can be scalars of type integer or float, dense 'd' matrices with one column, variables, affine
functions or convex piecewise-linear functions.

With one argument, f = max(u) is interpreted as f = max(u[0], u[1], ..., u[len(u)-1]).

Minimum Similar to max but returns a concave piecewise-linear function. The arguments can be scalars of type
integer or float, dense 'd' matrices with one column, variables, affine functions or concave piecewise-linear
functions.

Absolute value If u is a variable or affine function then f = abs(u) returns the convex piecewise-linear function
max(u, -u).

Unary plus and minus +f creates a copy of f. -f is a concave piecewise-linear function if f is convex and a convex
piecewise-linear function if f is concave.

114 Chapter 10. Modeling



CVXOPT Documentation, Release 1.3.2

Addition and subtraction Sums and differences involving piecewise-linear functions are allowed if they result in
convex or concave functions. For example, one can add two convex or two concave functions, but not a convex
and a concave function. The command sum(f) is equivalent to f[0] + f[1] + ... + f[len(f) -
1].

Multiplication Scalar multiplication a * f of a piecewise-linear function f is defined if a is an integer, float, 1 by
1 'd' matrix. Matrix-matrix multiplications a * f or f * a are only defined if a is a dense or sparse 1 by 1
matrix.

Indexing and slicing Piecewise-linear functions admit single-argument indexing of the four types described in the
section Indexing and Slicing. The result of an indexing or slicing operation is a new piecewise-linear function.

In the following example, f is the 1-norm of a vector variable x of length 10, g is its infinity-norm, and h is the
function

ℎ(𝑥) =
∑︁
𝑘

𝜑(𝑥[𝑘]), 𝜑(𝑢) =

⎧⎨⎩ 0 |𝑢| ≤ 1
|𝑢| − 1 1 ≤ |𝑢| ≤ 2
2|𝑢| − 3 |𝑢| ≥ 2.

>>> from cvxopt.modeling import variable, max
>>> x = variable(10, 'x')
>>> f = sum(abs(x))
>>> g = max(abs(x))
>>> h = sum(max(0, abs(x)-1, 2*abs(x)-3))

In-place operations If f is piecewise-linear then the in-place operations f += u, f -= u, f *= u, f /= u are
defined if the corresponding expanded operations f = f + u, f = f - u, f = f * u, and f = f/u
are defined and if they do not change the length of f.

10.3 Constraints

Linear equality and inequality constraints of the form

𝑓(𝑥1, . . . , 𝑥𝑛) = 0, 𝑓(𝑥1, . . . , 𝑥𝑛) ⪯ 0,

where 𝑓 is a convex function, are represented by constraint objects. Equality constraints are created by expres-
sions of the form

f1 == f2

Here f1 and f2 can be any objects for which the difference f1 - f2 yields an affine function. Inequality constraints
are created by expressions of the form

f1 <= f2
f2 >= f1

where f1 and f2 can be any objects for which the difference f1 - f2 yields a convex piecewise-linear function.
The comparison operators first convert the expressions to f1 - f2 == 0, resp., f1 - f2 <= 0, and then return
a new constraint object with constraint function f1 - f2.

In the following example we create three constraints

0 ⪯ 𝑥 ⪯ 1, 1𝑇𝑥 = 2,

for a variable of length 5.

10.3. Constraints 115



CVXOPT Documentation, Release 1.3.2

>>> x = variable(5,'x')
>>> c1 = (x <= 1)
>>> c2 = (x >= 0)
>>> c3 = (sum(x) == 2)

The built-in function len returns the dimension of the constraint function.

Constraints have four public attributes.

constraint.type
Returns '=' if the constraint is an equality constraint, and ‘<’ if the constraint is an inequality constraint.

constraint.value
Returns the value of the constraint function.

constraint.multiplier
For a constraint c, c.multiplier is a variable object of dimension len(c). It is used to represent the
Lagrange multiplier or dual variable associated with the constraint. Its value is initialized as None, and can be
modified by making an assignment to c.multiplier.value.

constraint.name
The name of the constraint. Changing the name of a constraint also changes the name of the multi-
plier of c. For example, the command c.name = 'newname' also changes c.multiplier.name to
'newname_mul'.

10.4 Optimization Problems

Optimization problems are be constructed by calling the following function.

cvxopt.modeling.op([objective[, constraints[, name]]])
The first argument specifies the objective function to be minimized. It can be an affine or convex piecewise-
linear function with length 1, a variable with length 1, or a scalar constant (integer, float, or 1 by 1 dense
'd' matrix). The default value is 0.0.

The second argument is a single constraint, or a list of constraint objects. The default value is an
empty list.

The third argument is a string with a name for the problem. The default value is the empty string.

The following attributes and methods are useful for examining and modifying optimization problems.

op.objective
The objective or cost function. One can write to this attribute to change the objective of an existing problem.

op.variables()
Returns a list of the variables of the problem.

op.constraints()
Returns a list of the constraints.

op.inequalities()
Returns a list of the inequality constraints.

op.equalities()
Returns a list of the equality constraints.

op.delconstraint(c)
Deletes constraint c from the problem.

116 Chapter 10. Modeling



CVXOPT Documentation, Release 1.3.2

op.addconstraint(c)
Adds constraint c to the problem.

An optimization problem with convex piecewise-linear objective and constraints can be solved by calling the method
solve.

op.solve([format[, solver ]])
This function converts the optimization problem to a linear program in matrix form and then solves it using the
solver described in the section Linear Programming.

The first argument is either 'dense' or 'sparse', and denotes the matrix types used in the matrix represen-
tation of the LP. The default value is 'dense'.

The second argument is either None, 'glpk', or 'mosek', and selects one of three available LP solvers: the
default solver written in Python, the GLPK solver (if installed) or the MOSEK LP solver (if installed); see the
section Linear Programming. The default value is None.

The solver reports the outcome of optimization by setting the attribute self.status and by modifying the
value attributes of the variables and the constraint multipliers of the problem.

• If the problem is solved to optimality, self.status is set to 'optimal'. The value attributes of the
variables in the problem are set to their computed solutions, and the value attributes of the multipliers of
the constraints of the problem are set to the computed dual optimal solution.

• If it is determined that the problem is infeasible, self.status is set to 'primal infeasible'.
The value attributes of the variables are set to None. The value attributes of the multipliers of the
constraints of the problem are set to a certificate of primal infeasibility. With the 'glpk' option, solve
does not provide certificates of infeasibility.

• If it is determined that the problem is dual infeasible, self.status is set to 'dual infeasible'.
The value attributes of the multipliers of the constraints of the problem are set to None. The value
attributes of the variables are set to a certificate of dual infeasibility. With the 'glpk' option, solve
does not provide certificates of infeasibility.

• If the problem was not solved successfully, self.status is set to 'unknown'. The value attributes
of the variables and the constraint multipliers are set to None.

We refer to the section Linear Programming for details on the algorithms and the different solver options.

As an example we solve the LP

minimize −4𝑥− 5𝑦
subject to 2𝑥 + 𝑦 ≤ 3

𝑥 + 2𝑦 ≤ 3
𝑥 ≥ 0, 𝑦 ≥ 0.

>>> from cvxopt.modeling import op
>>> x = variable()
>>> y = variable()
>>> c1 = ( 2*x+y <= 3 )
>>> c2 = ( x+2*y <= 3 )
>>> c3 = ( x >= 0 )
>>> c4 = ( y >= 0 )
>>> lp1 = op(-4*x-5*y, [c1,c2,c3,c4])
>>> lp1.solve()
>>> lp1.status
'optimal'
>>> print(lp1.objective.value())
[-9.00e+00]
>>> print(x.value)

(continues on next page)

10.4. Optimization Problems 117



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 1.00e+00]
>>> print(y.value)
[ 1.00e+00]
>>> print(c1.multiplier.value)
[ 1.00e+00]
>>> print(c2.multiplier.value)
[ 2.00e+00]
>>> print(c3.multiplier.value)
[ 2.87e-08]
>>> print(c4.multiplier.value)
[ 2.80e-08]

We can solve the same LP in matrix form as follows.

>>> from cvxopt.modeling import op, dot
>>> x = variable(2)
>>> A = matrix([[2.,1.,-1.,0.], [1.,2.,0.,-1.]])
>>> b = matrix([3.,3.,0.,0.])
>>> c = matrix([-4.,-5.])
>>> ineq = ( A*x <= b )
>>> lp2 = op(dot(c,x), ineq)
>>> lp2.solve()
>>> print(lp2.objective.value())
[-9.00e+00]
>>> print(x.value)
[ 1.00e+00]
[ 1.00e+00]
>>> print(ineq.multiplier.value)
[1.00e+00]
[2.00e+00]
[2.87e-08]
[2.80e-08]

The op class also includes two methods for writing and reading files in MPS format.

tofile(filename) :noindex:
If the problem is an LP, writes it to the file filename using the MPS format. Row and column labels are assigned
based on the variable and constraint names in the LP.

fromfile(filename) :noindex:
Reads the LP from the file filename. The file must be a fixed-format MPS file. Some features of the MPS format
are not supported: comments beginning with dollar signs, the row types ‘DE’, ‘DL’, ‘DG’, and ‘DN’, and the
capability of reading multiple righthand side, bound or range vectors.

10.5 Examples

Norm and Penalty Approximation

In the first example we solve the norm approximation problems

minimize ‖𝐴𝑥− 𝑏‖∞, minimize ‖𝐴𝑥− 𝑏‖1 ,

and the penalty approximation problem

minimize
∑︀

𝑘 𝜑((𝐴𝑥− 𝑏)𝑘), 𝜑(𝑢) =

⎧⎨⎩ 0 |𝑢| ≤ 3/4
|𝑢| − 3/4 3/4 ≤ |𝑢| ≤ 3/2
2|𝑢| − 9/4 |𝑢| ≥ 3/2.

118 Chapter 10. Modeling

http://lpsolve.sourceforge.net/5.5/mps-format.htm


CVXOPT Documentation, Release 1.3.2

We use randomly generated data.

The code uses the Matplotlib package for plotting the histograms of the residual vectors for the two
solutions. It generates the figure shown below.

from cvxopt import normal
from cvxopt.modeling import variable, op, max, sum
import pylab

m, n = 500, 100
A = normal(m,n)
b = normal(m)

x1 = variable(n)
op(max(abs(A*x1-b))).solve()

x2 = variable(n)
op(sum(abs(A*x2-b))).solve()

x3 = variable(n)
op(sum(max(0, abs(A*x3-b)-0.75, 2*abs(A*x3-b)-2.25))).solve()

pylab.subplot(311)
pylab.hist(A*x1.value-b, m/5)
pylab.subplot(312)
pylab.hist(A*x2.value-b, m/5)
pylab.subplot(313)
pylab.hist(A*x3.value-b, m/5)
pylab.show()

10.5. Examples 119

http://matplotlib.sourceforge.net


CVXOPT Documentation, Release 1.3.2

Equivalently, we can formulate and solve the problems as LPs.

t = variable()
x1 = variable(n)
op(t, [-t <= A*x1-b, A*x1-b<=t]).solve()

u = variable(m)
x2 = variable(n)
op(sum(u), [-u <= A*x2+b, A*x2+b <= u]).solve()

v = variable(m)
x3 = variable(n)
op(sum(v), [v >= 0, v >= A*x3+b-0.75, v >= -(A*x3+b)-0.75, v >= 2*(A*x3-b)-2.
→˓25, v >= -2*(A*x3-b)-2.25]).solve()

Robust Linear Programming

The robust LP

minimize 𝑐𝑇𝑥
subject to sup‖𝑣‖∞≤1(𝑎𝑖 + 𝑣)𝑇𝑥 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚

is equivalent to the problem

minimize 𝑐𝑇𝑥
subject to 𝑎𝑇𝑖 𝑥 + ‖𝑥‖1 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚.

120 Chapter 10. Modeling



CVXOPT Documentation, Release 1.3.2

The following code computes the solution and the solution of the equivalent LP

minimize 𝑐𝑇𝑥
subject to 𝑎𝑇𝑖 𝑥 + 1𝑇 𝑦 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚

−𝑦 ⪯ 𝑥 ⪯ 𝑦

for randomly generated data.

from cvxopt import normal, uniform
from cvxopt.modeling import variable, dot, op, sum

m, n = 500, 100
A = normal(m,n)
b = uniform(m)
c = normal(n)

x = variable(n)
op(dot(c,x), A*x+sum(abs(x)) <= b).solve()

x2 = variable(n)
y = variable(n)
op(dot(c,x2), [A*x2+sum(y) <= b, -y <= x2, x2 <= y]).solve()

1-Norm Support Vector Classifier

The following problem arises in classification:

minimize ‖𝑥‖1 + 1𝑇𝑢
subject to 𝐴𝑥 ⪰ 1− 𝑢

𝑢 ⪰ 0.

It can be solved as follows.

x = variable(A.size[1],'x')
u = variable(A.size[0],'u')
op(sum(abs(x)) + sum(u), [A*x >= 1-u, u >= 0]).solve()

An equivalent unconstrained formulation is

x = variable(A.size[1],'x')
op(sum(abs(x)) + sum(max(0,1-A*x))).solve()

10.5. Examples 121



CVXOPT Documentation, Release 1.3.2

122 Chapter 10. Modeling



CHAPTER 11

C API

The API can be used to extend CVXOPT with interfaces to external C routines and libraries. A C program that creates
or manipulates the dense or sparse matrix objects defined in CVXOPT must include the cvxopt.h header file in the
src directory of the distribution.

Before the C API can be used in an extension module it must be initialized by calling the macro import_cvxopt.
As an example we show the module initialization from the cvxopt.blas module, which itself uses the API:

#if PY_MAJOR_VERSION >= 3

static PyModuleDef blas_module = {
PyModuleDef_HEAD_INIT,
"blas",
blas__doc__,
-1,
blas_functions,
NULL, NULL, NULL, NULL

};

PyMODINIT_FUNC PyInit_blas(void)
{

PyObject *m;
if (!(m = PyModule_Create(&blas_module))) return NULL;
if (import_cvxopt() < 0) return NULL;
return m;

}

#else

PyMODINIT_FUNC initblas(void)
{

PyObject *m;
m = Py_InitModule3("cvxopt.blas", blas_functions, blas__doc__);
if (import_cvxopt() < 0) return ;

}

(continues on next page)

123



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

#endif

11.1 Dense Matrices

As can be seen from the header file cvxopt.h, a matrix is essentially a structure with four fields. The fields
nrows and ncols are two integers that specify the dimensions. The id field controls the type of the matrix and can
have values DOUBLE, INT, and COMPLEX. The buffer field is an array that contains the matrix elements stored
contiguously in column-major order.

The following C functions can be used to create matrices.

matrix * Matrix_New(int nrows, int ncols, int id)
Returns a matrix object of type id with nrows rows and ncols columns. The elements of the matrix are
uninitialized.

matrix * Matrix_NewFromMatrix(matrix *src, int id)
Returns a copy of the matrix src converted to type id. The following type conversions are allowed: 'i' to 'd',
'i' to 'z', and 'd' to 'z'.

matrix * Matrix_NewFromSequence(PyListObject *x, int id)
Creates a matrix of type id from the Python sequence type x. The returned matrix has size (len(x), 1). The
size can be changed by modifying the nrows and ncols fields of the returned matrix.

To illustrate the creation and manipulation of dense matrices (as well as the Python C API), we show the code for the
cvxopt.uniform function described in the section Randomly Generated Matrices.

PyObject * uniform(PyObject *self, PyObject *args, PyObject *kwrds)
{

matrix *obj;
int i, nrows, ncols = 1;
double a = 0, b = 1;
char *kwlist[] = {"nrows", "ncols", "a", "b", NULL};

if (!PyArg_ParseTupleAndKeywords(args, kwrds, "i|idd", kwlist,
&nrows, &ncols, &a, &b)) return NULL;

if ((nrows<0) || (ncols<0)) {
PyErr_SetString(PyExc_TypeError, "dimensions must be non-negative");
return NULL;

}

if (!(obj = Matrix_New(nrows, ncols, DOUBLE)))
return PyErr_NoMemory();

for (i = 0; i < nrows*ncols; i++)
MAT_BUFD(obj)[i] = Uniform(a,b);

return (PyObject *)obj;
}

124 Chapter 11. C API



CVXOPT Documentation, Release 1.3.2

11.2 Sparse Matrices

Sparse matrices are stored in compressed column storage (CCS) format. For a general nrows by ncols sparse matrix
with nnz nonzero entries this means the following. The sparsity pattern and the nonzero values are stored in three
fields:

values An array of floating-point numbers of length nnz with the nonzero entries of the matrix stored columnwise.

rowind An array of integers of length nnz containing the row indices of the nonzero entries, stored in the same order
as values.

colptr An array of integers of length ncols + 1 with for each column of the matrix the index of the first element in
values from that column. More precisely, colptr[0] is 0, and for k = 0, 1, . . . , ncols - 1, colptr[k+1]
is equal to colptr[k] plus the number of nonzeros in column k of the matrix. Thus, colptr[ncols] is
equal to nnz, the number of nonzero entries.

For example, for the matrix

𝐴 =

⎡⎢⎢⎣
1 0 0 5
2 0 4 0
0 0 0 6
3 0 0 0

⎤⎥⎥⎦
the elements of values, rowind, and colptr are:

values: 1.0, 2.0, 3.0, 4.0, 5.0, 6.0

rowind: 0, 1,3, 1, 0, 2

colptr: 0, 3, 3, 4, 6.

It is crucial that for each column the row indices in rowind are sorted; the equivalent representation

values: 3.0, 2.0, 1.0, 4.0, 5.0, 6.0

rowind: 3, 1, 0, 1, 0, 2

colptr: 0, 3, 3, 4, 6

is not allowed (and will likely cause the program to crash).

The nzmax field specifies the number of non-zero elements the matrix can store. It is equal to the length of rowind
and values; this number can be larger that colptr[nrows], but never less. This field makes it possible to
preallocate a certain amount of memory to avoid reallocations if the matrix is constructed sequentially by filling in
elements. In general the nzmax field can safely be ignored, however, since it will always be adjusted automatically as
the number of non-zero elements grows.

The id field controls the type of the matrix and can have values DOUBLE and COMPLEX.

Sparse matrices are created using the following functions from the API.

spmatrix * SpMatrix_New(int_t nrows, int_t ncols, int_t nzmax, int id)
Returns a sparse zero matrix with nrows rows and ncols columns. nzmax is the number of elements that will be
allocated (the length of the values and rowind fields).

spmatrix * SpMatrix_NewFromMatrix(spmatrix *src, int id)
Returns a copy the sparse matrix var{src}.

spmatrix * SpMatrix_NewFromIJV(matrix *I, matrix *J, matrix *V, int_t nrows, int_t ncols, int id)
Creates a sparse matrix with nrows rows and ncols columns from a triplet description. I and J must be integer
matrices and V either a double or complex matrix, or NULL. If V is NULL the values of the entries in the matrix
are undefined, otherwise they are specified by V. Repeated entries in V are summed. The number of allocated
elements is given by nzmax, which is adjusted if it is smaller than the required amount.

11.2. Sparse Matrices 125



CVXOPT Documentation, Release 1.3.2

We illustrate use of the sparse matrix class by listing the source code for the real method, which returns the real part
of a sparse matrix:

static PyObject * spmatrix_real(spmatrix *self) {

if (SP_ID(self) != COMPLEX)
return (PyObject *)SpMatrix_NewFromMatrix(self, 0, SP_ID(self));

spmatrix *ret = SpMatrix_New(SP_NROWS(self), SP_NCOLS(self),
SP_NNZ(self), DOUBLE);

if (!ret) return PyErr_NoMemory();

int i;
for (i=0; i < SP_NNZ(self); i++)
SP_VALD(ret)[i] = creal(SP_VALZ(self)[i]);

memcpy(SP_COL(ret), SP_COL(self), (SP_NCOLS(self)+1)*sizeof(int_t));
memcpy(SP_ROW(ret), SP_ROW(self), SP_NNZ(self)*sizeof(int_t));
return (PyObject *)ret;

}

126 Chapter 11. C API



CHAPTER 12

Matrix Formatting

This appendix describes ways to customize the formatting of CVXOPT matrices.

As with other Python objects, the functions repr and str return strings with printable representations of matrices.
The command ‘print A’ executes ‘str(A)’, whereas the command ‘A’ calls ‘repr(A)’. The following example
illustrates the default formatting of dense matrices.

>>> from cvxopt import matrix
>>> A = matrix(range(50), (5,10), 'd')
>>> A
<5x10 matrix, tc='d'>
>>> print(A)
[ 0.00e+00 5.00e+00 1.00e+01 1.50e+01 2.00e+01 2.50e+01 3.00e+01 ... ]
[ 1.00e+00 6.00e+00 1.10e+01 1.60e+01 2.10e+01 2.60e+01 3.10e+01 ... ]
[ 2.00e+00 7.00e+00 1.20e+01 1.70e+01 2.20e+01 2.70e+01 3.20e+01 ... ]
[ 3.00e+00 8.00e+00 1.30e+01 1.80e+01 2.30e+01 2.80e+01 3.30e+01 ... ]
[ 4.00e+00 9.00e+00 1.40e+01 1.90e+01 2.40e+01 2.90e+01 3.40e+01 ... ]

The format is parameterized by the dictionary options in the module cvxopt.printing. The parameters
options['iformat'] and options['dformat'] determine, respectively, how integer and double/complex
numbers are printed. The entries are Python format strings with default values '% .2e' for 'd' and 'z' matrices
and % i' for 'i' matrices. The parameters options['width'] and options['height'] specify the max-
imum number of columns and rows that are shown. If options['width'] is set to a negative value, all columns
are displayed. If options['height'] is set to a negative value, all rows are displayed. The default values of
options['width'] and options['height'] are 7 and -1, respectively.

>>> from cvxopt import printing
>>> printing.options
{'width': 7, 'dformat': '% .2e', 'iformat': '% i', 'height': -1}
>>> printing.options['dformat'] = '%.1f'
>>> printing.options['width'] = -1
>>> print(A)
[ 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0]
[ 1.0 6.0 11.0 16.0 21.0 26.0 31.0 36.0 41.0 46.0]
[ 2.0 7.0 12.0 17.0 22.0 27.0 32.0 37.0 42.0 47.0]

(continues on next page)

127



CVXOPT Documentation, Release 1.3.2

(continued from previous page)

[ 3.0 8.0 13.0 18.0 23.0 28.0 33.0 38.0 43.0 48.0]
[ 4.0 9.0 14.0 19.0 24.0 29.0 34.0 39.0 44.0 49.0]

In order to make the built-in Python functions repr and str accessible for further customization, two functions are
provided in CVXOPT. The function cvxopt.matrix_repr is used when repr is called with a matrix argument;
and cvxopt.matrix_str is used when str is called with a matrix argument. By default, the functions are set to
printing.matrix_repr_default and printing.matrix_str_default, respectively, but they can be
redefined to any other Python functions. For example, if we prefer A to return the same output as print A, we can
simply redefine cvxopt.matrix_repr as shown below.

>>> import cvxopt
>>> from cvxopt import matrix, printing
>>> A = matrix(range(4), (2,2), 'd')
>>> A
<2x2 matrix, tc='d'>
>>> cvxopt.matrix_repr = printing.matrix_str_default
>>> A
[ 0.00e+00 2.00e+00]
[ 1.00e+00 3.00e+00]

The formatting for sparse matrices is similar. The functions repr and str for sparse matrices are cvxopt.
spmatrix_repr and cvxopt.spmatrix_str, respectively. By default, they are set to printing.
spmatrix_repr_default and printing.spmatrix_repr_str.

>>> import cvxopt
>>> from cvxopt import printing, spmatrix
>>> A = spmatrix(range(5), range(5), range(5), (5,10))
>>> A
<5x10 sparse matrix, tc='d', nnz=5>
>>> print(A)
[ 0.00e+00 0 0 0 0 0 0 ... ]
[ 0 1.00e+00 0 0 0 0 0 ... ]
[ 0 0 2.00e+00 0 0 0 0 ... ]
[ 0 0 0 3.00e+00 0 0 0 ... ]
[ 0 0 0 0 4.00e+00 0 0 ... ]

>>> cvxopt.spmatrix_repr = printing.spmatrix_str_default
>>> A
[ 0.00e+00 0 0 0 0 0 0 ... ]
[ 0 1.00e+00 0 0 0 0 0 ... ]
[ 0 0 2.00e+00 0 0 0 0 ... ]
[ 0 0 0 3.00e+00 0 0 0 ... ]
[ 0 0 0 0 4.00e+00 0 0 ... ]

As can be seen from the example, the default behaviour is to print the entire matrix including structural zeros. An
alternative triplet printing style is defined in printing.spmatrix_str_triplet.

>>> cvxopt.spmatrix_str = printing.spmatrix_str_triplet
>>> print(A)
(0,0) 0.00e+00
(1,1) 1.00e+00
(2,2) 2.00e+00
(3,3) 3.00e+00
(4,4) 4.00e+00

128 Chapter 12. Matrix Formatting



Index

A
abs() (built-in function), 18
addconstraint() (op method), 116

B
bool() (built-in function), 18

C
CCS, 17
constraints() (op method), 116
ctrans(), 16
cvxopt.amd.order() (built-in function), 59
cvxopt.blas.asum() (built-in function), 27
cvxopt.blas.axpy() (built-in function), 28
cvxopt.blas.copy() (built-in function), 28
cvxopt.blas.dot() (built-in function), 28
cvxopt.blas.dotu() (built-in function), 28
cvxopt.blas.gbmv() (built-in function), 29
cvxopt.blas.gemm() (built-in function), 31
cvxopt.blas.gemv() (built-in function), 28
cvxopt.blas.ger() (built-in function), 30
cvxopt.blas.geru() (built-in function), 30
cvxopt.blas.hbmv() (built-in function), 29
cvxopt.blas.hemm() (built-in function), 32
cvxopt.blas.hemv() (built-in function), 29
cvxopt.blas.her() (built-in function), 30
cvxopt.blas.her2() (built-in function), 30
cvxopt.blas.her2k() (built-in function), 33
cvxopt.blas.herk() (built-in function), 32
cvxopt.blas.iamax() (built-in function), 28
cvxopt.blas.nrm2() (built-in function), 27
cvxopt.blas.sbmv() (built-in function), 29
cvxopt.blas.scal() (built-in function), 27
cvxopt.blas.swap() (built-in function), 28
cvxopt.blas.symm() (built-in function), 31
cvxopt.blas.symv() (built-in function), 28
cvxopt.blas.syr() (built-in function), 30
cvxopt.blas.syr2() (built-in function), 30
cvxopt.blas.syr2k() (built-in function), 33

cvxopt.blas.syrk() (built-in function), 32
cvxopt.blas.tbmv() (built-in function), 30
cvxopt.blas.tbsv() (built-in function), 30
cvxopt.blas.trmm() (built-in function), 32
cvxopt.blas.trmv() (built-in function), 29
cvxopt.blas.trsm() (built-in function), 32
cvxopt.blas.trsv() (built-in function), 29
cvxopt.cholmod.diag() (built-in function), 64
cvxopt.cholmod.linsolve() (built-in function),

62
cvxopt.cholmod.numeric() (built-in function),

63
cvxopt.cholmod.solve() (built-in function), 63
cvxopt.cholmod.splinsolve() (built-in func-

tion), 62
cvxopt.cholmod.spsolve() (built-in function),

63
cvxopt.cholmod.symbolic() (built-in function),

63
cvxopt.cos() (built-in function), 20
cvxopt.div() (built-in function), 21
cvxopt.exp() (built-in function), 20
cvxopt.fftw.dct() (built-in function), 56
cvxopt.fftw.dctn() (built-in function), 56
cvxopt.fftw.dft() (built-in function), 55
cvxopt.fftw.dftn() (built-in function), 55
cvxopt.fftw.dst() (built-in function), 56
cvxopt.fftw.dstn() (built-in function), 57
cvxopt.fftw.idct() (built-in function), 56
cvxopt.fftw.idctn() (built-in function), 56
cvxopt.fftw.idft() (built-in function), 55
cvxopt.fftw.idftn() (built-in function), 56
cvxopt.fftw.idst() (built-in function), 57
cvxopt.fftw.idstn() (built-in function), 57
cvxopt.getseed() (built-in function), 22
cvxopt.lapack.gbsv() (built-in function), 36
cvxopt.lapack.gbtrf() (built-in function), 37
cvxopt.lapack.gbtrs() (built-in function), 37
cvxopt.lapack.gees() (built-in function), 50
cvxopt.lapack.gelqf() (built-in function), 44

129



CVXOPT Documentation, Release 1.3.2

cvxopt.lapack.gels() (built-in function), 44
cvxopt.lapack.geqp3() (built-in function), 45
cvxopt.lapack.geqrf() (built-in function), 44
cvxopt.lapack.gesdd() (built-in function), 50
cvxopt.lapack.gesv() (built-in function), 35
cvxopt.lapack.gesvd() (built-in function), 49
cvxopt.lapack.getrf() (built-in function), 35
cvxopt.lapack.getri() (built-in function), 36
cvxopt.lapack.getrs() (built-in function), 36
cvxopt.lapack.gges() (built-in function), 51
cvxopt.lapack.gtsv() (built-in function), 38
cvxopt.lapack.gttrf() (built-in function), 38
cvxopt.lapack.gttrs() (built-in function), 38
cvxopt.lapack.heev() (built-in function), 48
cvxopt.lapack.heevd() (built-in function), 48
cvxopt.lapack.heevr() (built-in function), 49
cvxopt.lapack.heevx() (built-in function), 48
cvxopt.lapack.hegv() (built-in function), 49
cvxopt.lapack.hesv() (built-in function), 42
cvxopt.lapack.hetrf() (built-in function), 42
cvxopt.lapack.hetri() (built-in function), 43
cvxopt.lapack.hetrs() (built-in function), 42
cvxopt.lapack.orglq() (built-in function), 47
cvxopt.lapack.orgqr() (built-in function), 46
cvxopt.lapack.ormlq() (built-in function), 46
cvxopt.lapack.ormqr() (built-in function), 45
cvxopt.lapack.pbsv() (built-in function), 40
cvxopt.lapack.pbtrf() (built-in function), 40
cvxopt.lapack.pbtrs() (built-in function), 41
cvxopt.lapack.posv() (built-in function), 39
cvxopt.lapack.potrf() (built-in function), 39
cvxopt.lapack.potri() (built-in function), 39
cvxopt.lapack.potrs() (built-in function), 39
cvxopt.lapack.ptsv() (built-in function), 41
cvxopt.lapack.pttrf() (built-in function), 41
cvxopt.lapack.pttrs() (built-in function), 41
cvxopt.lapack.syev() (built-in function), 48
cvxopt.lapack.syevd() (built-in function), 48
cvxopt.lapack.syevr() (built-in function), 48
cvxopt.lapack.syevx() (built-in function), 48
cvxopt.lapack.sygv() (built-in function), 49
cvxopt.lapack.sysv() (built-in function), 41
cvxopt.lapack.sytrf() (built-in function), 42
cvxopt.lapack.sytri() (built-in function), 42
cvxopt.lapack.sytrs() (built-in function), 42
cvxopt.lapack.tbtrs() (built-in function), 43
cvxopt.lapack.trtri() (built-in function), 43
cvxopt.lapack.trtrs() (built-in function), 43
cvxopt.lapack.unglq() (built-in function), 46
cvxopt.lapack.ungqr() (built-in function), 46
cvxopt.lapack.unmlq() (built-in function), 46
cvxopt.lapack.unmqr() (built-in function), 45
cvxopt.log() (built-in function), 20
cvxopt.matrix() (built-in function), 7

cvxopt.max() (built-in function), 21
cvxopt.min() (built-in function), 21
cvxopt.modeling.dot() (built-in function), 113
cvxopt.modeling.op() (built-in function), 116
cvxopt.modeling.sum() (built-in function), 113
cvxopt.modeling.variable() (built-in func-

tion), 111
cvxopt.mul() (built-in function), 20
cvxopt.normal() (built-in function), 22
cvxopt.setseed() (built-in function), 22
cvxopt.sin() (built-in function), 20
cvxopt.solvers.conelp() (built-in function), 67
cvxopt.solvers.coneqp() (built-in function), 71
cvxopt.solvers.cp() (built-in function), 95
cvxopt.solvers.cpl() (built-in function), 99
cvxopt.solvers.gp() (built-in function), 104
cvxopt.solvers.lp() (built-in function), 73
cvxopt.solvers.qp() (built-in function), 74
cvxopt.solvers.sdp() (built-in function), 78
cvxopt.solvers.socp() (built-in function), 77
cvxopt.sparse() (built-in function), 10
cvxopt.spdiag() (built-in function), 11
cvxopt.spmatrix() (built-in function), 10
cvxopt.sqrt() (built-in function), 20
cvxopt.umfpack.linsolve() (built-in function),

60
cvxopt.umfpack.numeric() (built-in function),

61
cvxopt.umfpack.solve() (built-in function), 61
cvxopt.umfpack.symbolic() (built-in function),

60
cvxopt.uniform() (built-in function), 22

D
delconstraint() (op method), 116

E
equalities() (op method), 116

F
fromfile(), 17

I
I, 17
imag(), 16
inequalities() (op method), 116

J
J, 17

L
len() (built-in function), 18

130 Index



CVXOPT Documentation, Release 1.3.2

M
Matrix_New (C function), 124
Matrix_NewFromMatrix (C function), 124
Matrix_NewFromSequence (C function), 124
max() (built-in function), 18
min() (built-in function), 18
multiplier (constraint attribute), 116

N
name (constraint attribute), 116
name (variable attribute), 111

O
objective (op attribute), 116

R
real(), 16

S
size, 16
solve() (op method), 117
SpMatrix_New (C function), 125
SpMatrix_NewFromIJV (C function), 125
SpMatrix_NewFromMatrix (C function), 125
sum() (built-in function), 18

T
tofile(), 17
trans(), 16
type (constraint attribute), 116
typecode, 16

V
V, 17
value, 112
value (constraint attribute), 116
value (variable attribute), 111
variables, 112
variables() (op method), 116

Index 131


	Copyright and License
	Introduction
	Dense and Sparse Matrices
	Dense Matrices
	Sparse Matrices
	Arithmetic Operations
	Indexing and Slicing
	Attributes and Methods
	Built-In Functions
	Other Matrix Functions
	Randomly Generated Matrices

	The BLAS Interface
	Matrix Classes
	Level 1 BLAS
	Level 2 BLAS
	Level 3 BLAS

	The LAPACK Interface
	General Linear Equations
	Positive Definite Linear Equations
	Symmetric and Hermitian Linear Equations
	Triangular Linear Equations
	Least-Squares and Least-Norm Problems
	Symmetric and Hermitian Eigenvalue Decomposition
	Generalized Symmetric Definite Eigenproblems
	Singular Value Decomposition
	Schur and Generalized Schur Factorization
	Example: Analytic Centering

	Discrete Transforms
	Discrete Fourier Transform
	Discrete Cosine Transform
	Discrete Sine Transform

	Sparse Linear Equations
	Matrix Orderings
	General Linear Equations
	Positive Definite Linear Equations
	Example: Covariance Selection

	Cone Programming
	Linear Cone Programs
	Quadratic Cone Programs
	Linear Programming
	Quadratic Programming
	Second-Order Cone Programming
	Semidefinite Programming
	Exploiting Structure
	Optional Solvers
	Algorithm Parameters

	Nonlinear Convex Optimization
	Problems with Nonlinear Objectives
	Problems with Linear Objectives
	Geometric Programming
	Exploiting Structure
	Algorithm Parameters

	Modeling
	Variables
	Functions
	Constraints
	Optimization Problems
	Examples

	C API
	Dense Matrices
	Sparse Matrices

	Matrix Formatting
	Index

