
Universal Ctags Documentation
Release 0.3.0

Universal Ctags Team

11 December 2018

Contents

1 Introduced changes 2
1.1 Importing changes from Exuberant-ctags . 3
1.2 Parser related changes . 4
1.3 New and extended options . 6
1.4 Changes to the tags file format . 16
1.5 Reference tags . 16
1.6 Automatic parser selection . 18
1.7 Pseudo tags . 18
1.8 Parser own fields . 20
1.9 Parser own extras . 21
1.10 Parser own parameter . 23
1.11 Customizing xref output . 24
1.12 Incompatible changes in command line . 25
1.13 Skipping utf-8 BOM . 25
1.14 Readtags . 25

2 Request for extending a parser (or Reporting a bug of parser) 30
2.1 Before reporting . 30
2.2 The content of report . 31
2.3 An example of good report . 32

3 Contributions 34
3.1 General topics . 35
3.2 Specific to add new parser and/or new kind/role . 37

4 Parsers 40
4.1 Asm parser . 40
4.2 CMake parser . 40
4.3 The new C/C++ parser . 41
4.4 The new HTML parser . 44
4.5 puppetManifest parser . 45
4.6 The new Python parser . 45
4.7 The new Tcl parser . 46
4.8 The Vim parser . 46
4.9 XSLT parser . 47

5 Output formats 48
5.1 JSON output . 48
5.2 Xref output . 49

6 --_interactive Mode 50

i

6.1 generate-tags . 50
6.2 sandbox submode . 51

7 Choosing a proper parser in ctags 52

8 Running multiple parsers on an input file 53
8.1 Applying a parser to specified areas of input file (guest/host) . 53
8.2 Tagging definitions of higher(upper) level language (sub/base) 54

9 Building ctags 64
9.1 Building with configure (*nix including GNU/Linux) . 64
9.2 Building/hacking/using on MS-Windows . 64
9.3 Building on Mac OS . 68

10 Testing ctags 70
10.1 Units test facility . 70
10.2 Semi-fuzz(Fuzz) testing . 74
10.3 Noise testing . 75
10.4 Chop and slap testing . 75
10.5 Tmain: a facility for testing main part . 76
10.6 Tinst installation test . 77
10.7 Cspell spell checking . 77
10.8 Input validation for Units . 78

11 Extending ctags 80
11.1 Extending ctags with Regex parser (optlib) . 80
11.2 ctags Internal API . 99

12 Tips for hacking 105
12.1 Fussy syntax checking . 105
12.2 Finding performance bottleneck . 105
12.3 Checking coverage . 105
12.4 Reviewing the result of Units test . 106
12.5 Running cppcheck . 106

13 Relationship between other projects 107
13.1 Geany . 107
13.2 Tracking other projects . 108
13.3 Software using ctags . 114

14 Proposal for extended Vi tags file format 116
14.1 Introduction . 117
14.2 From proposal to standard . 117
14.3 Backwards compatibility . 117
14.4 Security . 118
14.5 Goals . 119
14.6 Proposal . 119
14.7 Exceptions in Universal-ctags . 122

15 Who we are 123

ii

Universal Ctags Documentation, Release 0.3.0

Version Draft

Authors universal-ctags developers

Web Page https://ctags.io/

Universal-ctags was created to continue the development of Darren Hiebert’s Exuberant-ctags after activity on that
project unfortunately stalled.

Reza Jelveh <reza.jelveh@gmail.com> initially created a personal fork on GitHub and as interest and participation
grew it was decided to move development to a dedicated GitHub organization.

The goal of this project is to maintain a common/unified space where people interested in improving ctags can
work together.

This guide is primarily intended for developers. Users should first consult the ctags.1 man page.

This is a draft document. Proofreading and pull-requests are welcome!

Contents 1

https://ctags.io/
https://github.com/universal-ctags
http://ctags.sourceforge.net/
mailto:reza.jelveh@gmail.com

CHAPTER 1

Introduced changes

Maintainer Masatake YAMATO <yamato@redhat.com>

Table of contents

• Importing changes from Exuberant-ctags

• Parser related changes

– Fully rewritten parsers

– New parsers

– Heavily improved parsers

– F kind usage

• New and extended options

– Wildcard in options

– Long names in kinds, fields, and extra options

– Notice messages and --quiet

– --input-encoding=ENCODING and --output-encoding=ENCODING

– Extra tag entries (--extras)

– Options for inspecting ctags internals

– Kinds synchronization

– --put-field-prefix options

– --maxdepth option

– --map-<LANG> option

– Guessing parser from file contents (-G option)

– Enabling/disabling pseudo tags (--pseudo-tags option)

– JSON output

– “always” and “never” as an argument for –tag-relative

2

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

– Defining a macro in CPreProcessor input

– --_interactive Mode

– Defining a kind

– Defining an extra

– Defining a subparser

* Basic

* Directions

* Listing subparsers

• Changes to the tags file format

– Truncating the pattern for long input lines

• Reference tags

• Automatic parser selection

– Incompatible changes to file name pattern and extension handling

• Pseudo tags

– TAG_KIND_DESCRIPTION

– TAG_KIND_SEPARATOR

– TAG_OUTPUT_MODE

• Parser own fields

• Parser own extras

– Discussion

• Parser own parameter

• Customizing xref output

• Incompatible changes in command line

– -D option

• Skipping utf-8 BOM

• Readtags

– Printing line numbers with -n

– Filtering in readtags command

– Examples of input

– Examples of filter expressions

Many changes have been introduced in Universal-ctags. Use git-log to review changes not enumerated here,
especially in language parsers.

1.1 Importing changes from Exuberant-ctags

See “Exuberant-ctags” in “Tracking other projects” for detailed information regarding imported changes.

Some changes have also been imported from Fedora and Debian.

1.1. Importing changes from Exuberant-ctags 3

Universal Ctags Documentation, Release 0.3.0

1.2 Parser related changes

1.2.1 Fully rewritten parsers

• C (see The new C/C++ parser)

• C++ (see The new C/C++ parser)

• Python (see The new Python parser)

• HTML (see The new HTML parser)

• Tcl (see The new Tcl parser)

• ITcl (see The new Tcl parser)

1.2.2 New parsers

The following parsers have been added:

• Ada

• AnsiblePlaybook libyaml

• Asciidoc

• Autoconf

• Automake

• AutoIt

• Clojure

• CMake optlib

• CSS

• Ctags option library optlib

• CUDA

• D

• DBusIntrospect libxml

• Diff

• DTD

• DTS

• Elm optlib

• Falcon

• Gdbinit script optlib

• Glade libxml

• Go

• JavaProperties

• JSON

• GNU linker script(LdScript)

• Man page optlib

• Markdown optlib

1.2. Parser related changes 4

Universal Ctags Documentation, Release 0.3.0

• Maven2 libxml

• M4

• ObjectiveC

• Passwd optlib

• PuppetManifest optlib

• Perl6

• Pod optlib

• PropertyList(plist) libxml

• Protobuf

• PythonLoggingConfig

• QemuHX optlib

• QtMoc

• R

• RelaxNG libxml

• ReStructuredText

• Robot

• RpmSpec

• Rust

• SystemdUnit

• SystemVerilog

• SVG libxml

• TclOO (see The new Tcl parser)

• TTCN

• WindRes

• XSLT v1.0 libxml

• Yacc

• Yaml libyaml

• YumRepo

• Zephir

• Myrddin

• RSpec optlib

See “Option library” for details on optlib. Libxml2 is required to use the parser(s) marked with libxml. Libyaml
is required to use the parser(s) marked with libyaml.

TIPS: you can list newly introduced parsers if you also have Exuberant-ctags installed with following command
line:

$ diff -ruN <(universal-ctags --list-languages) <(exuberant-ctags --list-
→˓languages) | grep '^[-+]'

1.2. Parser related changes 5

Universal Ctags Documentation, Release 0.3.0

1.2.3 Heavily improved parsers

• Ant (rewritten with libxml)

• PHP

• Verilog

1.2.4 F kind usage

F is used as a kind letter for file kind in Exuberant-ctags; the F was hard-coded in ctags internal. However, we
found some built-in parsers including Ruby uses F for their own purpose. So if you find a tag having F as a kind
letter, you cannot say what it is well: a file name or something peculiar in the language. Long kind description
strings may help you but we are not sure all tools utilizing tags file refer the long kind description strings.

Universal-ctags disallows parsers to use F their own purpose in both built-in and optlib parsers.

F in built-in parsers are replaced as follows:

Language Long description Replacement
ObjectiveC field E
Ruby singletonMethod S
Rust method P
SQL field E

1.3 New and extended options

1.3.1 Wildcard in options

For the purpose of gathering as much as information as possible from source code the “wildcard”(*) option value
has been introduced.

--extras=*

Enables all extra tags.

--fields=*

Enables all available fields.

--<LANG>-kinds=*

Enables all available kinds for LANG.

--kinds-<LANG>=*

Alternative representation of --<LANG>-kinds=*.

--all-kinds=SPEC

Applies SPEC as kinds to all available language parsers.

--all-kinds=*

Enables all available kinds for all available language parsers.

1.3.2 Long names in kinds, fields, and extra options

A letter is used for specifying a kind, a field, or an extra entry. In Universal-ctags a name can also be used.

Surround the name with braces ({ and }) in values assigned to the options, --kind-<LANG>=, --fields=, or
--extras=.

1.3. New and extended options 6

Universal Ctags Documentation, Release 0.3.0

$./ctags --kinds-C=+L-d ...

This command line uses the letters, L for enabling the label kind and d for disabling the macro kind of C. The
command line can be rewritten with the associated names.

$./ctags --kinds-C='+{label}-{macro}' ...

The quotes are needed because braces are interpreted as meta characters by the shell.

The available names can be listed with --list-kinds-full, --list-fields, or --list-extras.

1.3.3 Notice messages and --quiet

There were 3 classes of message in ctags:

fatal

A critical error has occurred and ctags aborts the execution.

warning

An error has occurred but ctags continues the execution.

verbose

Mainly used for debugging purposes.

notice is a new class of message. It is less important than warning but more important for users than verbose.

Generally the user can ignore notice class messages and --quiet can be used to disable them.

1.3.4 --input-encoding=ENCODING and --output-encoding=ENCODING

Japanese programmers sometimes use the Japanese language in source code comments. Of course, it is not limited
to Japanese. People may use their own native language and in such cases encoding becomes an issue.

ctags doesn’t consider the input encoding; it just reads input as a sequence of bytes and uses them as is when
writing tags entries.

On the other hand Vim does consider input encoding. When loading a file, Vim converts the file contents into an
internal format with one of the encodings specified in its fileencodings option.

As a result of this difference, Vim cannot always move the cursor to the definition of a tag as users expect when
attempting to match the patterns in a tags file.

The good news is that there is a way to notify Vim of the encoding used in a tags file with the
TAG_FILE_ENCODING pseudo tag.

Two new options have been introduced (--input-encoding=IN and --output-encoding=OUT).

Using the encoding specified with these options ctags converts input from IN to OUT. ctags uses the converted
strings when writing the pattern parts of each tag line. As a result the tags output is encoded in OUT encoding.

In addition OUT is specified at the top the tags file as the value for the TAG_FILE_ENCODING pseudo tag. The
default value of OUT is UTF-8.

NOTE: Converted input is NOT passed to language parsers. The parsers still deal with input as a byte sequence.

With --input-encoding-<LANG>=IN, you can specify a specific input encoding for LANG. It overrides the
global default value given with --input-encoding.

The example usage can be found in Tmain/{input,output}-encoding-option.d.

Acceptable IN and OUT values can be listed with iconv -l or iconv –list. It is platform dependant.

To enable the option, libiconv is needed on your platform. In addition --enable-iconv must be given to
configure before making ctags. On Windows mingw32, you must specify WITH_ICONV=yes like this:

1.3. New and extended options 7

Universal Ctags Documentation, Release 0.3.0

C:\dev\ctags>mingw32-make -f mk_mingw.mak WITH_ICONV=yes

--list-features helps you to know whether your ctags executable links to libiconv or not. You will find
iconv in the output if it links to.

1.3.5 Extra tag entries (--extras)

--extra option in Exuberant-ctags is renamed to --extras (plural) in Universal-ctags for making consistent
with --kinds-<LANG> and --fields.

These extra tag entries are newly introduced.

F

Equivalent to –file-scope.

p

Include pseudo tags.

1.3.6 Options for inspecting ctags internals

Exuberant-ctags provides a way to inspect its internals via --list-kinds, --list-languages, and
--list-maps.

This idea has been expanded in Universal-ctags with --list-kinds-full, --list-map-extensions,
--list-extras, --list-features, --list-fields, --list-map-patterns, and
--list-pseudo-tags being added.

The original three --list- options are not changed for compatibility reasons, however, the newly introduced
options are recommended for all future use.

By default, interactive use is assumed and ctags tries aligning the list output in columns for easier reading.

When --machinable is given before a --list- option, ctags outputs the list in a format more suitable for
processing by scripts. Tab characters are used as separators between columns. The alignment of columns is never
considered when --machinable is given.

Currently only --list-extras, --list-fields and --list-kinds-full support --machinable
output.

These new --list- options also print a column header, a line representing the name of each column. The header
may help users and scripts to understand and recognize the columns. Ignoring the column header is easy because
it starts with a # character.

--with-list-header=no suppresses output of the column header.

1.3.7 Kinds synchronization

In Universal-ctags, as in Exuberant-ctags, most kinds are parser local; enabling (or disabling) a kind in a parser
has no effect on kinds in any other parsers even those with the same name and/or letter.

However, there are exceptions, such as C and C++ for example. C++ can be considered a language extended from
C. Therefore it is natural that all kinds defined in the C parser are also defined in the C++ parser. Enabling a kind
in the C parser also enables a kind having the same name in the C++ parser, and vice versa.

A kind group is a group of kinds satisfying the following conditions:

1. Having the same name and letter, and

2. Being synchronized with each other

1.3. New and extended options 8

Universal Ctags Documentation, Release 0.3.0

A master parser manages the synchronization of a kind group. The MASTER column of --list-kinds-full
shows the master parser of the kind.

Internally, a state change (enabled or disabled with --kind-<LANG>=[+|-]...) of a kind in a kind group is
reported to its master parser as an event. Then the master parser updates the state of all kinds in the kind group as
specified with the option.

$./ctags --list-kinds-full=C++
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro on FALSE 1 C macro definitions
...
$./ctags --list-kinds-full=C
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro on FALSE 1 C macro definitions
...

The example output indicates that the d kinds of both the C++ and C parsers are in the same group and that the C
parser manages the group.

$./ctags --kinds-C++=-d --list-kinds-full=C | head -2
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro off FALSE 1 C macro definitions
$./ctags --kinds-C=-d --list-kinds-full=C | head -2
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro off FALSE 1 C macro definitions
$./ctags --kinds-C++=-d --list-kinds-full=C++ | head -2
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro off FALSE 1 C macro definitions
$./ctags --kinds-C=-d --list-kinds-full=C++ | head -2
#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
d macro off FALSE 1 C macro definitions

In the above example, the d kind is disabled via C or C++. Disabling a d kind via one language disables the d kind
for the other parser, too.

1.3.8 --put-field-prefix options

Some fields are newly introduced in Universal-ctags and more will be introduced in the future. Other tags gener-
ators may also introduce their own fields.

In such a situation there is a concern about conflicting field names; mixing tags files generated by multiple tags
generators including Universal-ctags is difficult.

--put-field-prefix provides a workaround for this use case. When --put-field-prefix is given,
ctags adds “UCTAGS” as a prefix to newly introduced fields.

$ cat /tmp/foo.h
#include <stdio.h>
$./ctags -o - --extras=+r --fields=+r /tmp/foo.h
stdio.h /tmp/foo.h /^#include <stdio.h>/;" h roles:system
$./ctags --put-field-prefix -o - --extras=+r --fields=+r /tmp/foo.h
stdio.h /tmp/foo.h /^#include <stdio.h>/;" h UCTAGSroles:system

In this example, roles is prefixed.

1.3.9 --maxdepth option

--maxdepth limits the depth of directory recursion enabled with the -R option.

1.3. New and extended options 9

Universal Ctags Documentation, Release 0.3.0

1.3.10 --map-<LANG> option

--map-<LANG> is newly introduced to control the file name to language mappings (langmap) with finer granu-
larity than --langmap allows.

A langmap entry is defined as a pair; the name of the language and a file name extension (or pattern).

Here we use “spec” as a generic term representing both file name extensions and patterns.

--langmap maps specs to languages exclusively:

$./ctags --langdef=FOO --langmap=FOO:+.ABC \
--langdef=BAR --langmap=BAR:+.ABC \
--list-maps | grep '*.ABC$'

BAR *.ABC

Though language FOO is added before BAR, only BAR is set as a handler for the spec *.ABC.

Universal-ctags enables multiple parsers to be configured for a spec. The appropriate parser for a given input file
can then be chosen by a variety of internal guessing strategies (see “Choosing a proper parser in ctags”).

Let’s see how specs can be mapped non-exclusively with --map-<LANG>:

% ./ctags --langdef=FOO --map-FOO=+.ABC \
--langdef=BAR --map-BAR=+.ABC \
--list-maps | grep '*.ABC$'

FOO *.ABC
BAR *.ABC

Both FOO and BAR are registered as handlers for the spec *.ABC.

--map-<LANG> can also be used for removing a langmap entry.:

$./ctags --langdef=FOO --map-FOO=+.ABC \
--langdef=BAR --map-BAR=+.ABC \
--map-FOO=-.ABC --list-maps | grep '*.ABC$'

BAR *.ABC

$./ctags --langdef=FOO --map-FOO=+.ABC \
--langdef=BAR --map-BAR=+.ABC \
--map-BAR=-.ABC --list-maps | grep '*.ABC$'

FOO *.ABC

$./ctags --langdef=FOO --map-FOO=+.ABC \
--langdef=BAR --map-BAR=+.ABC \
--map-BAR=-.ABC --map-FOO=-.ABC --list-maps | grep '*.ABC$'

(NOTHING)

--langmap provides a way to manipulate the langmap in a spec-centric manner and --map-<LANG> provides
a way to manipulate the langmap in a parser-centric manner.

1.3.11 Guessing parser from file contents (-G option)

See “Choosing a proper parser in ctags” section.

1.3.12 Enabling/disabling pseudo tags (--pseudo-tags option)

Each pseudo tag can be enabled/disabled with --pseudo-tags.

--pseudo-tags=+ptag
--pseudo-tags=-ptag

1.3. New and extended options 10

Universal Ctags Documentation, Release 0.3.0

When prefixed with +, the pseudo tag specified as ptag is enabled. When prefixed with -, the pseudo tag is
disabled. --list-pseudo-tags shows all recognized ptag names.

All pseudo tags are enabled if * is given as the value of ptag like:

--pseudo-tags='*'

All pseudo tags are disabled if no option value is given to --pseudo-tags like:

--pseudo-tags=

To specify only a single pseudo tag, omit the sign:

--pseudo-tags=ptag

1.3.13 JSON output

Experimental JSON output has been added. --output-format can be used to enable it.

$./ctags --output-format=json --fields=-s /tmp/foo.py
{"_type": "tag", "name": "Foo", "path": "/tmp/foo.py", "pattern": "/^class Foo:$/",
→˓ "kind": "class"}
{"_type": "tag", "name": "doIt", "path": "/tmp/foo.py", "pattern": "/^ def
→˓doIt():$/", "kind": "member"}

See JSON output for more details.

1.3.14 “always” and “never” as an argument for –tag-relative

Even if “yes” is specified as an option argument for –tag-relative, absolute paths are used in tags output if an input
is given as an absolute path. This behavior is expected in exuberant-ctags as written in its man-page.

In addition to “yes” and “no”, universal-ctags takes “never” and “always”.

If “never” is given, absolute paths are used in tags output regardless of the path representation for input file(s). If
“always” is given, relative paths are used always.

1.3.15 Defining a macro in CPreProcessor input

Newly introduced -D option extends the function provided by -I option.

-D emulates the behaviour of the corresponding gcc option: it defines a C preprocessor macro. All types of
macros are supported, including the ones with parameters and variable arguments. Stringification, token pasting
and recursive macro expansion are also supported.

-I is now simply a backward-compatible syntax to define a macro with no replacement.

Some examples follow.

$ ctags ... -D IGNORE_THIS ...

With this commandline the following C/C++ input

int IGNORE_THIS a;

will be processed as if it was

int a;

Defining a macro with parameters uses the following syntax:

1.3. New and extended options 11

Universal Ctags Documentation, Release 0.3.0

$ ctags ... -D "foreach(arg)=for(arg;;)" ...

This example defines for(arg;;) as the replacement foreach(arg). So the following C/C++ input

foreach(char * p,pointers)
{

}

is processed in new C/C++ parser as:

for(char * p;;)
{

}

and the p local variable can be extracted.

The previous commandline includes quotes since the macros generally contain characters that are treated specially
by the shells. You may need some escaping.

Token pasting is performed by the ## operator, just like in the normal C preprocessor.

$ ctags ... -D "DECLARE_FUNCTION(prefix)=int prefix ## Call();"

So the following code

DECLARE_FUNCTION(a)
DECLARE_FUNCTION(b)

will be processed as

int aCall();
int bCall();

Macros with variable arguments use the gcc __VA_ARGS__ syntax.

$ ctags ... -D "DECLARE_FUNCTION(name,...)=int name(__VA_ARGS__);"

So the following code

DECLARE_FUNCTION(x,int a,int b)

will be processed as

int x(int a,int b);

1.3.16 --_interactive Mode

A new --_interactive option launches a JSON based command REPL which can be used to control ctags
generation programmatically.

See –_interactive Mode for more details.

--_interactive=sandbox adds up seccomp filter. See sandbox submode for more details.

1.3.17 Defining a kind

A new --kinddef-<LANG>=letter,name,description option reduces the typing defining a regex pat-
tern with --regex-<LANG>=, and keeps the consistency of dynamically defined kinds in a language.

1.3. New and extended options 12

Universal Ctags Documentation, Release 0.3.0

A kind letter defined with --kinddef-<LANG> can be referred in --kinddef-<LANG>.

Previously you had to write in your optlib:

--regex-elm=/^([[:lower:]_][[:alnum:]_]*)[^=]*=$/\1/f,function,Functions/
→˓{scope=set}
--regex-elm=/^[[:blank:]]+([[:lower:]_][[:alnum:]_]*)[^=]*=$/\1/f,function,
→˓Functions/{scope=ref}

With new --kinddef-<LANG> you can write the same things like:

--kinddef-elm=f,function,Functions
--regex-elm=/^([[:lower:]_][[:alnum:]_]*)[^=]*=$/\1/f/{scope=set}
--regex-elm=/^[[:blank:]]+([[:lower:]_][[:alnum:]_]*)[^=]*=$/\1/f/{scope=ref}

We can say now “kind” is a first class object in Universal-ctags.

1.3.18 Defining an extra

A new --_extradef-<LANG>=name,description option allows you to defining a parser own extra
which turning on and off can be referred from a regex based parser for <LANG>.

See Conditional tagging with extras for more details.

1.3.19 Defining a subparser

Basic

About the concept of subparser, see Tagging definitions of higher(upper) level language (sub/base).

With base long flag of –langdef=<LANG> option, you can define a subparser for a specified base parser. Com-
bining with --kinddef-<LANG> and --regex-<KIND> options, you can extend an existing parser without
risk of kind confliction.

Let’s see an example.

input.c

static int set_one_prio(struct task_struct *p, int niceval, int error)
{
}

SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
{

...;
}

$./ctags --options=NONE -x --_xformat="%20N %10K %10l" -o - input.c
ctags: Notice: No options will be read from files or environment

set_one_prio function C
SYSCALL_DEFINE3 function C

C parser doesn’t understand that SYSCALL_DEFINE3 is a macro for defining an entry point for a system.

Let’s define linux subparser which using C parser as a base parser:

$ cat linux.ctags
--langdef=linux{base=C}
--kinddef-linux=s,syscall,system calls
--regex-linux=/SYSCALL_DEFINE[0-9]\(([^,)]+)[\),]*/\1/s/

The output is change as follows with linux parser:

1.3. New and extended options 13

Universal Ctags Documentation, Release 0.3.0

$./ctags --options=NONE --options=./linux.ctags -x --_xformat="%20N %10K %10l" -
→˓o - input.c
ctags: Notice: No options will be read from files or environment

setpriority syscall linux
set_one_prio function C

SYSCALL_DEFINE3 function C

setpriority is recognized as a syscall of linux.

Using only –regex-C=. . . you can capture setpriority. However, there were concerns about kind confliction;
when introducing a new kind with –regex-C=. . . , you cannot use a letter and name already used in C parser and
–regex-C=. . . options specified in the other places.

You can use a newly defined subparser as a new namespace of kinds. In addition you can enable/disable with the
subparser usable –languages=[+|-] option:

Directions

As explained in Tagging definitions of higher(upper) level language (sub/base), you can choose direction(s) how
a base parser and a guest parser work together with long flags putting after –langdef=Foo{base=Bar}.

C level notation Command line long flag
SUBPARSER_BASE_RUNS_SUB shared
SUBPARSER_SUB_RUNS_BASE dedicated
SUBPARSER_BASE_RUNS_SUB bidirectional

Let’s see actual difference of behaviors.

The examples are taken from #1409 submitted by @sgraham on github Universal-ctags repository.

input.cc and input.mojom are input files, and have the same contents:

ABC();
int main(void)
{
}

C++ parser can capture main as a function. Mojom subparser defined in the later runs on C++ parser and is for
capturing ABC.

shared combination

{shared} is specified, for input.cc, both tags capture by C++ parser and mojom parser are recorded to tags file. For
input.mojom, only tags captured by mojom parser are recorded to tags file.

mojom-shared.ctags:

--langdef=mojom{base=C++}{shared}
--map-mojom=+.mojom
--kinddef-mojom=f,function,functions
--regex-mojom=/^[]+([a-zA-Z]+)\(/\1/f/

tags for input.cc:

ABC input.cc /^ ABC();$/;" f language:mojom
main input.cc /^int main(void)$/;" f language:C++
→˓typeref:typename:int

tags for input.mojom:

1.3. New and extended options 14

Universal Ctags Documentation, Release 0.3.0

ABC input.mojom /^ ABC();$/;" f language:mojom

Mojom parser uses C++ parser internally but tags captured by C++ parser are dropped in the output.

{shared} is the default behavior. If none of {shared}, {dedicated}, nor {bidirectional} is specified, it implies
{shared}.

dedicated combination

{dedicated} is specified, for input.cc, only tags capture by C++ parser are recorded to tags file. For input.mojom,
both tags capture by C++ parser and mojom parser are recorded to tags file.

mojom-dedicated.ctags:

--langdef=mojom{base=C++}{dedicated}
--map-mojom=+.mojom
--kinddef-mojom=f,function,functions
--regex-mojom=/^[]+([a-zA-Z]+)\(/\1/f/

tags for input.cc:

main input.cc /^int main(void)$/;" f language:C++
→˓typeref:typename:int

tags for input.mojom:

ABC input.mojom /^ ABC();$/;" f language:mojom
main input.mojom /^int main(void)$/;" f language:C++
→˓typeref:typename:int

Mojom parser works only when .mojom file is given as input.

bidirectional combination

{bidirectional} is specified, both tags capture by C++ parser and mojom parser are recorded to tags file for either
input input.cc and input.mojom.

mojom-bidirectional.ctags:

--langdef=mojom{base=C++}{bidirectional}
--map-mojom=+.mojom
--kinddef-mojom=f,function,functions
--regex-mojom=/^[]+([a-zA-Z]+)\(/\1/f/

tags for input.cc:

ABC input.cc /^ ABC();$/;" f language:mojom
main input.cc /^int main(void)$/;" f language:C++
→˓typeref:typename:int

tags for input.mojom:

ABC input.cc /^ ABC();$/;" f language:mojom
main input.cc /^int main(void)$/;" f language:C++
→˓typeref:typename:int

Listing subparsers

Subparsers can be listed with --list-subparser:

1.3. New and extended options 15

Universal Ctags Documentation, Release 0.3.0

$./ctags --options=NONE --options=./linux.ctags --list-subparsers=C
ctags: Notice: No options will be read from files or environment
#NAME BASEPARSER DIRECTION
linux C base => sub {shared}

1.4 Changes to the tags file format

1.4.1 Truncating the pattern for long input lines

To prevent generating overly large tags files, a pattern field is truncated, by default, when its size exceeds 96 bytes.
A different limit can be specified with --pattern-length-limit=N.

The truncation avoids cutting in the middle of a UTF-8 code point spanning multiple bytes to prevent writing
invalid byte sequences from valid input files. This handling allows for an extra 3 bytes above the configured limit
in the worse case of a 4 byte code point starting right before the limit. Please also note that this handling is fairly
naive and fast, and although it is resistant against any input, it requires a valid input to work properly; it is not
guaranteed to work as the user expects when dealing with partially invalid UTF-8 input. This also partially affect
non-UTF-8 input, if the byte sequence at the truncation length looks like a multibyte UTF-8 sequence. This should
however be rare, and in the worse case will lead to including up to an extra 3 bytes above the limit.

An input source file with long lines and multiple tag matches per line can generate an excessively large tags
file with an unconstrained pattern length. For example, running ctags on a minified JavaScript source file often
exhibits this behaviour.

1.5 Reference tags

Traditionally ctags collects the information for locating where a language object is DEFINED.

In addition Universal-ctags supports reference tags. If the extra-tag r is enabled, Universal-ctags also collects the
information for locating where a language object is REFERENCED. This feature was proposed by @shigio in
#569 for GNU GLOBAL.

Here are some examples. Here is the target input file named reftag.c.

#include <stdio.h>
#include "foo.h"
#define TYPE point
struct TYPE { int x, y; };
TYPE p;
#undef TYPE

Traditional output:

$./ctags -o - reftag.c
TYPE reftag.c /^#define TYPE /;" d file:
TYPE reftag.c /^struct TYPE { int x, y; };$/;" s file:
p reftag.c /^TYPE p;$/;" v typeref:typename:TYPE
x reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file:
y reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file:

Output with the extra-tag r enabled:

$./ctags --list-extras | grep ^r
r Include reference tags off
$./ctags -o - --extras=+r reftag.c

(continues on next page)

1.4. Changes to the tags file format 16

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

TYPE reftag.c /^#define TYPE /;" d file:
TYPE reftag.c /^#undef TYPE$/;" d file:
TYPE reftag.c /^struct TYPE { int x, y; };$/;" s file:
foo.h reftag.c /^#include "foo.h"/;" h
p reftag.c /^TYPE p;$/;" v typeref:typename:TYPE
stdio.h reftag.c /^#include <stdio.h>/;" h
x reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file:
y reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file:

#undef X and two #include are newly collected.

“roles” is a newly introduced field in Universal-ctags. The field named is for recording how a tag is referenced. If
a tag is definition tag, the roles field has “def” as its value.

Universal-ctags prints the role information when the r field is enabled with --fields=+r.

$./ctags -o - --extras=+r --fields=+r reftag.c
TYPE reftag.c /^#define TYPE /;" d file:
TYPE reftag.c /^#undef TYPE$/;" d file: roles:undef
TYPE reftag.c /^struct TYPE { int x, y; };$/;" s file:
→˓ roles:def
foo.h reftag.c /^#include "foo.h"/;" h roles:local
p reftag.c /^TYPE p;$/;" v typeref:typename:TYPE roles:def
stdio.h reftag.c /^#include <stdio.h>/;" h roles:system
x reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file: roles:def
y reftag.c /^struct TYPE { int x, y; };$/;" m struct:TYPE
→˓ typeref:typename:int file: roles:def

The Reference tag marker field, R, is a specialized GNU global requirement; D is used for the traditional definition
tags, and R is used for the new reference tags. The field can be used only with --_xformat.

$./ctags -x --_xformat="%R %-16N %4n %-16F %C" --extras=+r reftag.c
D TYPE 3 reftag.c #define TYPE point
D TYPE 4 reftag.c struct TYPE { int x, y; };
D p 5 reftag.c TYPE p;
D x 4 reftag.c struct TYPE { int x, y; };
D y 4 reftag.c struct TYPE { int x, y; };
R TYPE 6 reftag.c #undef TYPE
R foo.h 2 reftag.c #include "foo.h"
R stdio.h 1 reftag.c #include <stdio.h>

See Customizing xref output for more details about this option.

Although the facility for collecting reference tags is implemented, only a few parsers currently utilize it. All
available roles can be listed with --list-roles:

$./ctags --list-roles
#LANGUAGE KIND(L/N) NAME ENABLED DESCRIPTION
SystemdUnit u/unit Requires on referred in Requires
→˓key
SystemdUnit u/unit Wants on referred in Wants key
SystemdUnit u/unit After on referred in After key
SystemdUnit u/unit Before on referred in Before key
SystemdUnit u/unit RequiredBy on referred in
→˓RequiredBy key
SystemdUnit u/unit WantedBy on referred in WantedBy
→˓key
Yaml a/anchor alias on alias
DTD e/element attOwner on attributes owner

(continues on next page)

1.5. Reference tags 17

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

Automake c/condition branched on used for branching
Cobol S/sourcefile copied on copied in source file
Maven2 g/groupId dependency on dependency
DTD p/parameterEntity elementName on element names
DTD p/parameterEntity condition on conditions
LdScript s/symbol entrypoint on entry points
LdScript i/inputSection discarded on discarded when linking
...

The first column shows the name of the parser. The second column shows the letter/name of the kind. The third
column shows the name of the role. The fourth column shows whether the role is enabled or not. The fifth column
shows the description of the role.

You can define a role in an optlib parser for capturing reference tags. See Capturing reference tags for more
details.

Currently ctags doesn’t provide the way for disabling a specified role.

1.6 Automatic parser selection

See “Choosing a proper parser in ctags” section.

1.6.1 Incompatible changes to file name pattern and extension handling

When guessing a proper parser for a given input file, Exuberant-ctags tests file name patterns AFTER file exten-
sions (e-order). Universal-ctags does this differently; it tests file name patterns BEFORE file extensions (u-order).

This incompatible change is introduced to deal with the following situation: “build.xml” is an input file. The
Ant parser declares it handles a file name pattern “build.xml” and another parser, Foo, declares it handles a file
extension “xml”.

Which parser should be used for parsing the input? The user may want to use the Ant parser because the pattern
it declares is more specific than the extension Foo declares. However, in e-order, the other parser, Foo, is chosen.

So Universal-ctags uses the u-order even though it introduces an incompatibility.

1.7 Pseudo tags

Pseudo tags are used to add meta data to a tags file. Universal-ctags will utilize pseudo tags aggressively.

Universal-ctags is not mature yet; there is a possibility that incompatible changes will be introduced. As a result
tools reading a tags file may not work as expected.

To mitigate this issue pseudo tags are employed to make a tags file more self-descriptive. We hope some of the
incompatibilities can be overcome in client tools by utilizing this approach.

Example output:

$./ctags -o - --extras=p --pseudo-tags='TAG_KIND_DESCRIPTION' foo.c
!_TAG_KIND_DESCRIPTION!C L,label /goto label/
!_TAG_KIND_DESCRIPTION!C c,class /classes/
!_TAG_KIND_DESCRIPTION!C d,macro /macro definitions/
!_TAG_KIND_DESCRIPTION!C e,enumerator /enumerators (values inside an
→˓enumeration)/
!_TAG_KIND_DESCRIPTION!C f,function /function definitions/
!_TAG_KIND_DESCRIPTION!C g,enum /enumeration names/
!_TAG_KIND_DESCRIPTION!C h,header /included header files/

(continues on next page)

1.6. Automatic parser selection 18

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

!_TAG_KIND_DESCRIPTION!C l,local /local variables/
!_TAG_KIND_DESCRIPTION!C m,member /class, struct, and union members/
!_TAG_KIND_DESCRIPTION!C n,namespace /namespaces/
!_TAG_KIND_DESCRIPTION!C p,prototype /function prototypes/
!_TAG_KIND_DESCRIPTION!C s,struct /structure names/
!_TAG_KIND_DESCRIPTION!C t,typedef /typedefs/
!_TAG_KIND_DESCRIPTION!C u,union /union names/
!_TAG_KIND_DESCRIPTION!C v,variable /variable definitions/
!_TAG_KIND_DESCRIPTION!C x,externvar /external and forward variable
→˓declarations/
foo foo.c /^foo (int i, int j)$/;" f
main foo.c /^main (void)$/;" f

1.7.1 TAG_KIND_DESCRIPTION

This is a newly introduced pseudo tag. It is not emitted by default. It is emitted only when
--pseudo-tags=+TAG_KIND_DESCRIPTION is given.

This is for describing kinds; their letter, name, and description are enumerated in the tag.

ctags emits TAG_KIND_DESCRIPTION with following format:

!_TAG_KIND_SEPARATOR!{parser} {letter},{name} /{description}/

A backslash and a slash in {description} is escaped with a backslash.

1.7.2 TAG_KIND_SEPARATOR

This is a newly introduced pseudo tag. It is not emitted by default. It is emitted only when
--pseudo-tags=+TAG_KIND_SEPARATOR is given.

This is for describing separators placed between two kinds in a language.

Tag entries including the separators are emitted when --extras=+q is given; fully qualified tags contain the
separators. The separators are used in scope information, too.

ctags emits TAG_KIND_SEPARATOR with following format:

!_TAG_KIND_SEPARATOR!{parser} {sep} /{upper}{lower}/

or

!_TAG_KIND_SEPARATOR!{parser} {sep} /{lower}/

Here {parser} is the name of language. e.g. PHP. {lower} is the letter representing the kind of the lower item.
{upper} is the letter representing the kind of the upper item. {sep} is the separator placed between the upper item
and the lower item.

The format without {upper} is for representing a root separator. The root separator is used as prefix for an item
which has no upper scope.

* given as {upper} is a fallback wild card; if it is given, the {sep} is used in combination with any upper item and
the item specified with {lower}.

Each backslash character used in {sep} is escaped with an extra backslash character.

Example output:

1.7. Pseudo tags 19

Universal Ctags Documentation, Release 0.3.0

$./ctags -o - --extras=+p --pseudo-tags= --pseudo-tags=+TAG_KIND_SEPARATOR input.
→˓php
!_TAG_KIND_SEPARATOR!PHP :: /*c/
...
!_TAG_KIND_SEPARATOR!PHP \\ /c/
...
!_TAG_KIND_SEPARATOR!PHP \\ /nc/
...

The first line means :: is used when combining something with an item of the class kind.

The second line means \ is used when a class item is at the top level; no upper item is specified.

The third line means \ is used when for combining a namespace item (upper) and a class item (lower).

Of course, ctags uses the more specific line when choosing a separator; the third line has higher priority than the
first.

1.7.3 TAG_OUTPUT_MODE

This pseudo tag represents output mode: u-ctags or e-ctags.

See also Compatible output and weakness.

1.8 Parser own fields

A tag has a name, an input file name, and a pattern as basic information. Some fields like language:, signature:,
etc are attached to the tag as optional information.

In Exuberant-ctags, fields are common to all languages. Universal-ctags extends the concept of fields; a parser
can define its own field. This extension was proposed by @pragmaware in #857.

For implementing the parser own fields, the options for listing and enabling/disabling fields are also extended.

In the output of --list-fields, the owner of the field is printed in the LANGUAGE column:

$./ctags --list-fields
#LETTER NAME ENABLED LANGUAGE XFMT DESCRIPTION
...
- end off C TRUE end lines of various
→˓constructs
- properties off C TRUE properties (static, inline,
→˓ mutable,...)
- end off C++ TRUE end lines of various
→˓constructs
- template off C++ TRUE template parameters
- captures off C++ TRUE lambda capture list
- properties off C++ TRUE properties (static,
→˓virtual, inline, mutable,...)
- sectionMarker off reStructuredText TRUE character used for
→˓declaring section
- version off Maven2 TRUE version of artifact

e.g. reStructuredText is the owner of the sectionMarker field and both C and C++ own the end field.

--list-fields takes one optional argument, LANGUAGE. If it is given, --list-fields prints only the
fields for that parser:

$./ctags --list-fields=Maven2
#LETTER NAME ENABLED LANGUAGE XFMT DESCRIPTION
- version off Maven2 TRUE version of artifact

1.8. Parser own fields 20

Universal Ctags Documentation, Release 0.3.0

A parser own field only has a long name, no letter. For enabling/disabling such fields, the name must be passed to
--fields-<LANG>.

e.g. for enabling the sectionMarker field owned by the reStructuredText parser, use the following command line:

$./ctags --fields-reStructuredText=+{sectionMarker} ...

The wild card notation can be used for enabling/disabling parser own fields, too. The following example enables
all fields owned by the C++ parser.

$./ctags --fields-C++='*' ...

* can also be used for specifying languages.

The next example is for enabling end fields for all languages which have such a field.

$./ctags --fields-'*'=+'{end}' ...
...

In this case, using wild card notation to specify the language, not only fields owned by parsers but also common
fields having the name specified (end in this example) are enabled/disabled.

Using the wild card notation to specify the language is helpful to avoid incompatibilities between versions of
Universal-ctags itself (SELF INCOMPATIBLY).

In Universal-ctags development, a parser developer may add a new parser own field for a certain language. Some-
times other developers then recognize it is meaningful not only for the original language but also other languages.
In this case the field may be promoted to a common field. Such a promotion will break the command line com-
patibility for --fields-<LANG> usage. The wild card for <LANG> will help in avoiding this unwanted effect
of the promotion.

With respect to the tags file format, nothing is changed when introducing parser own fields; <fieldname>:<value>
is used as before and the name of field owner is never prefixed. The language: field of the tag identifies the owner.

1.9 Parser own extras

As man page of Exuberant-ctags says, --extras option specifies whether to include extra tag entries for certain
kinds of information. This option is available in Universal-ctags, too.

In Universal-ctags it is extended; a parser can define its own extra flags. They can be controlled with
--extras-<LANG>=[+|-]{...}.

See some examples:

$./ctags --list-extras
#LETTER NAME ENABLED LANGUAGE DESCRIPTION
F fileScope TRUE NONE Include tags ...
f inputFile FALSE NONE Include an entry ...
p pseudo FALSE NONE Include pseudo tags
q qualified FALSE NONE Include an extra ...
r reference FALSE NONE Include reference tags
g guest FALSE NONE Include tags ...
- whitespaceSwapped TRUE Robot Include tags swapping ...

See the LANGUAGE column. NONE means the extra flags are language independent (common). They can be
enabled or disabled with –extras= as before.

Look at whitespaceSwapped. Its language is Robot. This flag is enabled by default but can be disabled with
–extras-Robot=-{whitespaceSwapped}.

1.9. Parser own extras 21

Universal Ctags Documentation, Release 0.3.0

$ cat input.robot

*** Keywords ***
it's ok to be correct

Python_keyword_2

$./ctags -o - input.robot
it's ok to be correct input.robot /^it's ok to be correct$/;" k
it's_ok_to_be_correct input.robot /^it's ok to be correct$/;" k

$./ctags -o - --extras-Robot=-'{whitespaceSwapped}' input.robot
it's ok to be correct input.robot /^it's ok to be correct$/;" k

When disabled the name it’s_ok_to_be_correct is not included in the tags output. In other words, the name
it’s_ok_to_be_correct is derived from the name it’s ok to be correct when the extra flag is enabled.

1.9.1 Discussion

(This subsection should move to somewhere for developers.)

The question is what are extra tag entries. As far as I know none has answered explicitly. I have two ideas in
Universal-ctags. I write “ideas”, not “definitions” here because existing parsers don’t follow the ideas. They are
kept as is in variety reasons but the ideas may be good guide for people who wants to write a new parser or extend
an exiting parser.

The first idea is that a tag entry whose name is appeared in the input file as is, the entry is NOT an extra. (If you
want to control the inclusion of such entries, the classical --kind-<LANG>=[+|-]... is what you want.)

Qualified tags, whose inclusion is controlled by --extras=+q, is explained well with this idea. Let’s see an
example:

$ cat input.py
class Foo:

def func (self):
pass

$./ctags -o - --extras=+q --fields=+E input.py
Foo input.py /^class Foo:$/;" c
Foo.func input.py /^ def func (self):$/;" m class:Foo
→˓ extra:qualified
func input.py /^ def func (self):$/;" m class:Foo

Foo and func are in input.py. So they are no extra tags. In other hand, Foo.func is not in input.py as is. The name
is generated by ctags as a qualified extra tag entry. whitespaceSwapped extra flag of Robot parser is also aligned
well on the idea.

I don’t say all parsers follows this idea.

$ cat input.cc
class A
{

A operator+ (int);
};

$./ctags --kinds-all='*' --fields= -o - input.cc
A input.cc /^class A$/
operator + input.cc /^ A operator+ (int);$/

In this example operator+ is in input.cc. In other hand, operator + is in the ctags output as non extra tag entry.
See a whitespace between the keyword operator and + operator. This is an exception of the first idea.

The second idea is that if the inclusion of a tag cannot be controlled well with --kind-<LANG>=[+|-]...,
the tag may be an extra.

1.9. Parser own extras 22

Universal Ctags Documentation, Release 0.3.0

$ cat input.c
static int foo (void)
{

return 0;
}
int bar (void)
{

return 1;
}

$./ctags --sort=no -o - --extras=+F input.c
foo input.c /^static int foo (void)$/;" f typeref:typename:int file:
bar input.c /^int bar (void)$/;" f typeref:typename:int

$./ctags -o - --extras=-F input.c
foo input.c /^static int foo (void)$/;" f typeref:typename:int file:

$

Function foo of C language is included only when F extra flag is enabled. Both foo and bar are functions. Their
inclusions can be controlled with f kind of C language: --kind-C=[+|-]f.

The difference between static modifier or implicit extern modifier in a function definition is handled by F extra
flag.

Basically the concept kind is for handling the kinds of language objects: functions, variables, macros, types, etc.
The concept extra can handle the other aspects like scope (static or extern).

However, a parser developer can take another approach instead of introducing parser own extra; one can prepare
staticFunction and exportedFunction as kinds of one’s parser. The second idea is a just guide; the parser developer
must decide suitable approach for the target language.

Anyway, in the second idea, --extra is for controlling inclusion of tags. If what you want is not about inclusion,
--param-<LANG> can be used as the last resort.

1.10 Parser own parameter

To control the detail of a parser, --param-<LANG> option is introduced. --kinds-<LANG>,
--fields-<LANG>, --extras-<LANG> can be used for customizing the behavior of a parser specified with
<LANG>.

--param-<LANG> should be used for aspects of the parser that the options(kinds, fields, extras) cannot handle
well.

A parser defines a set of parameters. Each parameter has name and takes an argument. A user can set a parameter
with following notation

--param-<LANG>:name=arg

An example of specifying a parameter

--param-CPreProcessor:if0=true

Here if0 is a name of parameter of CPreProcessor parser and true is the value of it.

All available parameters can be listed with --list-params option.

$./ctags --list-params
#PARSER NAME DESCRIPTION
CPreProcessor if0 examine code within "#if 0" branch (true or [false])
CPreProcessor ignore a token to be specially handled

1.10. Parser own parameter 23

Universal Ctags Documentation, Release 0.3.0

(At this time only CPreProcessor parser has parameters.)

1.11 Customizing xref output

--_xformat option allows a user to customize the cross reference (xref) output enabled with -x.

--_xformat=FORMAT

The notation for FORMAT is similar to that employed by printf(3) in the C language; % represents a slot which
is substituted with a field value when printing. You can specify multiple slots in FORMAT. Here field means an
item listed with --list-fields option.

The notation of a slot:

%[-][.][WIDTH-AND-ADJUSTMENT]FIELD-SPECIFIER

FIELD-SPECIFIER specifies a field whose value is printed. Short notation and long notation are available. They
can be mixed in a FORMAT. Specifying a field with either notation, one or more fields are activated internally.

The short notation is just a letter listed in the LETTER column of the --list-fields output.

The long notation is a name string surrounded by braces({ and }). The name string is listed in the NAME column
of the output of the same option. To specify a field owned by a parser, prepend the parser name to the name string
with . as a separator.

Wild card (*) can be used where a parser name is specified. In this case both common and parser own fields are
activated and printed. If a common field and a parser own field have the same name, the common field has higher
priority.

WIDTH-AND-ADJUSTMENT is a positive number. The value of the number is used as the width of the column
where a field is printed. The printing is right adjusted by default, and left adjusted when - is given as prefix. The
output is not truncated by default even if its field width is specified and smaller than width of output value. For
truncating the output to the specified width, use . as prefix.

An example of specifying common fields:

$./ctags -x --_xformat="%-20N %4n %-16{input}|" main/main.c | head
CLOCKS_PER_SEC 360 main/main.c |
CLOCKS_PER_SEC 364 main/main.c |
CLOCK_AVAILABLE 358 main/main.c |
CLOCK_AVAILABLE 363 main/main.c |
Totals 87 main/main.c |
__anonae81ef0f0108 87 main/main.c |
addTotals 100 main/main.c |
batchMakeTags 436 main/main.c |
bytes 87 main/main.c |
clock 365 main/main.c |

Here %-20N %4n %-16{input}| is a format string. Let’s look at the elements of the format.

%-20N

The short notation is used here. The element means filling the slot with the name of the tag. The
width of the column is 20 characters and left adjusted.

%4n

The short notation is used here. The element means filling the slot with the line number of the tag.
The width of the column is 4 characters and right adjusted.

%-16{input}

The long notation is used here. The element means filling the slot with the input file name where the
tag is defined. The width of column is 16 characters and left adjusted.

1.11. Customizing xref output 24

Universal Ctags Documentation, Release 0.3.0

|

Printed as is.

Another example of specifying parser own fields:

$./ctags -x --_xformat="%-20N [%10{C.properties}]" main/main.c
CLOCKS_PER_SEC []
CLOCK_AVAILABLE []
Totals []
__anonae81ef0f0108 []
addTotals [extern]
batchMakeTags [static]
bytes []
clock []
clock [static]
...

Here “%-20N [%10{C.properties}]” is a format string. Let’s look at the elements of the format.

%-20N

Already explained in the first example.

[and]

Printed as is.

%10{C.properties}

The long notation is used here. The element means filling the slot with the value of the properties
field of the C parser. The width of the column is 10 characters and right adjusted.

1.12 Incompatible changes in command line

1.12.1 -D option

For a ctags binary that had debugging output enabled in the build config stage, -D was used for specifying the
level of debugging output. It is changed to -d. This change is not critical because -D option was not described in
ctags.1 man page.

Instead -D is used for defining a macro in CPreProcessor parser.

1.13 Skipping utf-8 BOM

The three bytes sequence(‘xEFxBBxBF’) at the head of an input file is skipped when parsing.

TODO:

• Do the same in guessing and selecting parser stage.

• Refect the BOM detection to encoding option

1.14 Readtags

1.14.1 Printing line numbers with -n

If both -e and -n are given, readtags prints the line: field.

1.12. Incompatible changes in command line 25

Universal Ctags Documentation, Release 0.3.0

1.14.2 Filtering in readtags command

readtags has ability to find tag entries by name.

The concept of filtering is inspired by the display filter of Wireshark. You can specify more complex conditions
for searching. Currently this feature is available only on platforms where fmemopen is available as part of libc.
Filtering in readtags is an experimental feature.

The syntax of filtering rules is based on the Scheme language, a variant of Lisp. The language has prefix notation
and parentheses.

Before printing an entry from the tags file, readtags evaluates an expression (S expression or sexp) given as an
option argument to -Q. As the result of the evaluation, readtags gets a value. false represented as #f, indicates
rejection: readtags doesn’t print it.

SEXP =
LIST
INTEGER
BOOLEAN
STRING
SYMBOL

LIST = (SEXP...) | ()
INTEGER = [0-9]+
BOOLEAN = #t | #f
STRING = "..."
SYMBOL = null?

and
or

not
eq?
<
>

<=
>=

prefix?
suffix?
substr?
member

$
$name
$input

$access
$file

$language
$implementation

$line
$kind
$role

$pattern
$inherits

$scope-kind
$scope-name

$end

All symbols starting with $ represent a field of a tag entry which is being tested against the S expression. Most
will evaluate as a string or #f. It evaluates to #f when the field doesn’t exist. $inherits is evaluated to a list of
strings if the entry has an inherits field. The scope field holds structured data: the kind and name of the upper
scope combined with :. The kind part is mapped to $scope-kind, and the name part to $scope-name.

$scope-kind and $scope-name can only be used if the input tags file is generated by ctags with --fields=+Z.

All symbols not prefixed with $ are operators. When using these, put them at the head(car) of list. The rest(cdr)
of the list is passed to the operator as arguments. Many of them are also available in the Scheme language; see the

1.14. Readtags 26

Universal Ctags Documentation, Release 0.3.0

other documents.

prefix?, suffix?, and substr? may only be available in this implementation. All of them take two strings. The first
one is called the target.

The exception in the above naming convention is the $ operator. $ is a generic accessor for accessing extension
fields. $ takes one argument: the name of an extension field. It returns the value of the field as a string if a value
is given, or #f.

(prefix? "TARGET" "TA")
=> #t

(prefix? "TARGET" "RGET")
=> #f

(prefix? "TARGET" "RGE")
=> #f

(suffix? "TARGET" "TA")
=> #f

(suffix? "TARGET" "RGET")
=> #t

(suffix? "TARGET" "RGE")
=> #f

(substr? "TARGET" "TA")
=> #t

(suffix? "TARGET" "RGET")
=> #t

(suffix? "TARGET" "RGE")
=> #t

(and (suffix? "TARGET" "TARGET")
(prefix? "TARGET" "TARGET")
(substr? "TARGET" "TARGET")

=> #t

Let’s see examples.

1.14.3 Examples of input

Create the tags file (foo.tags) with following command line

$./ctags --fields='*' --extras='*' -o foo.tags foo.py

for following input (foo.py)

class Foo:
def aq ():

pass
def aw ():

pass
def ae ():

pass
class A:

pass
class Bar (Foo):

def bq ():
(continues on next page)

1.14. Readtags 27

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

pass
def bw ():

pass
class B:

pass

class Baz (Foo):
def bq ():

pass
def bw ():

pass
class C:

pass

1.14.4 Examples of filter expressions

• Print entries ending with “q”

$./readtags -e -t foo.tags -Q '(suffix? $name "q")' -l
Bar.bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Bar access:public signature:()
Baz.bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
Foo.aq foo.py /^ def aq ():$/;" kind:member language:Python
→˓scope:class:Foo access:public signature:()
aq foo.py /^ def aq ():$/;" kind:member language:Python
→˓scope:class:Foo access:public signature:()
bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Bar access:public signature:()
bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()

• Print members of Baz

$./readtags -e -t foo.tags -Q '(and (eq? $kind "member") (eq? "Baz" $scope-
→˓name))' -l
Baz.bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
Baz.bw foo.py /^ def bw ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
bw foo.py /^ def bw ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()

• Print only fully qualified entries (assuming “.” is used as the separator)

$./readtags -e -t foo.tags -Q '(and (eq? $kind "member") (substr? $name "."))
→˓' -l
Bar.bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Bar access:public signature:()
Bar.bw foo.py /^ def bw ():$/;" kind:member language:Python
→˓scope:class:Bar access:public signature:()
Baz.bq foo.py /^ def bq ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
Baz.bw foo.py /^ def bw ():$/;" kind:member language:Python
→˓scope:class:Baz access:public signature:()
Foo.ae foo.py /^ def ae ():$/;" kind:member language:Python
→˓scope:class:Foo access:public signature:()

(continues on next page)

1.14. Readtags 28

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

Foo.aq foo.py /^ def aq ():$/;" kind:member language:Python
→˓scope:class:Foo access:public signature:()
Foo.aw foo.py /^ def aw ():$/;" kind:member language:Python
→˓scope:class:Foo access:public signature:()

• Print only classes inheriting Foo

$./readtags -e -t foo.tags -Q '(and (member "Foo" $inherits) (eq? $kind
→˓"class"))' -l
Bar foo.py /^class Bar (Foo):$/;" kind:class language:Python
→˓inherits:Foo access:public
Baz foo.py /^class Baz (Foo): $/;" kind:class language:Python
→˓inherits:Foo access:public

1.14. Readtags 29

CHAPTER 2

Request for extending a parser (or Reporting a bug of parser)

Maintainer Masatake YAMATO <yamato@redhat.com>

Table of contents

• Before reporting

• The content of report

• An example of good report

Sometimes you will find u-ctags doesn’t make a tag for a language object unexpectedly. Writing a patch for
making the tag is appreciate. However, you may not have time to do so. In that case, you can open an issue on the
GitHub page of u-ctags.

This section tells you how to drive u-ctags developers effectively.

2.1 Before reporting

U-Ctags just captures the definitions of language objects. U-ctags has an infrastructure for capturing references
for language objects. However, we implement reference tagging limited area. We will not work on writing new
code for capturing references for your favorite language. About requests for capturing reference tags, we will say
“patches are welcome.”.

What kind of language objects u-ctags captures is controlled by –kind-<LANG> option. Some kinds are disabled
by default because we assume people don’t want too large tags file. When you cannot find a language object you
want in a tags file, it is worth for checking the status of kinds. –list-kinds=<LANG> or (–list-kinds-full=<LANG>)
option lists the status of the given language.

Let’s see an example.

Consider following input (foo.h):

struct point {
int x, y;

};

(continues on next page)

30

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

struct point *make_point(int x0, int y0);

tags output generated with u-ctags -o - /tmp/foo.h is as following.

point foo.h /^struct point {$/;" s
x foo.h /^ int x, y;$/;" m struct:point typeref:typename:int
y foo.h /^ int x, y;$/;" m struct:point typeref:typename:int

Though point, x and y are tagged, the declaration make_point is not tagged because prototype kind of C++ is
disabled by default. You can know it from the output of ctags –list-kinds-full=C++.

#LETTER NAME ENABLED REFONLY NROLES MASTER DESCRIPTION
A alias no no 0 NONE namespace aliases
L label no no 0 C goto labels
N name no no 0 NONE names imported via using
→˓scope::symbol
...
p prototype no no 0 C function prototypes

By turning on the kind with –kinds-C++=+p, u-ctags tags make_point:

make_point foo.h /^struct point *make_point(int x0, int y0);$/;" p
→˓typeref:struct:point *
point foo.h /^struct point {$/;" s
x foo.h /^ int x, y;$/;" m struct:point typeref:typename:int
y foo.h /^ int x, y;$/;" m struct:point typeref:typename:int

Wildcard * is for enabling all kinds of a language at once. –kinds-C++=* option enables all kinds of C++ parser.
If you specify all as the name of <LANG>, you can enable all kinds of all languages at once.

2.2 The content of report

Don’t assume following three things.

U-ctags developers know vi.

If you explain the expectation about how tags related functions of vi and its plugins, U-ctags devel-
opers don’t understand it. The answer from them can be “it can be a bug of vi.”

U-ctags developers know the programming language that you are talking.

U-ctags developers need your help to understand the meaning of language object you asked tagging
especially about kind. A person extending a parser have to decide a kind of newly tagging language
object: reusing an existing kind or introducing a new kind. U-ctags developers expect a report know
the concent kind, field, and extra. ctags.1 man page of u-ctags explains them.

English is the native language of the head maintainer.

I don’t want to write this but I have to write this. Following are my private request for reporters.

Instead of long explanation, showing code or output examples make me understand what you want.

Don’t omit sentences. Please, write your sentence in full.

Use pronounce fewer.

U-ctags can generate something meaningful from a broken input.

From garbage, u-ctags generates garbage. For a syntactically broken input source file, U-ctags does
not work well. U-ctags developers will not work on improving u-ctags for handing such input. The
exception is that macro related input. Well known one is C and C++.

2.2. The content of report 31

Universal Ctags Documentation, Release 0.3.0

Following a tuple with three items helps us to understand what you want.

1. Input file

A shorter input file is better. However, it must be syntactically valid. Show the URL (or some-
thing) where you get the input file. It is needed to incorporate the input file to the u-ctags source
tree as a test case.

2. Command line running u-ctags

3. Expected output

These three items should be rendered preformatted form on an issue page of GitHub. Use triple backquotes
notation of GitHub’s markdown notation. I will close an issue with a bad notation like this issue.

2.3 An example of good report

For the following input file(input.f90), u-ctags reports incomplete pattern for fuction f at the line 23.

! input.f90, taken from https://github.com/universal-ctags/ctags/issues/1616
module example_mod

! This module contains two interfaces:
! 1. f_interface, which is an interface to the local f function
! 2. g, which is implemented in the example_smod submodule

interface f_interface
! The function `f` is defined below, within the `contains` statement
module function f(x) result(y)

integer :: x, y
end function f

end interface f_interface

interface
! The function `g` is implemented in example_smod.f90
module function g(x) result(y)

integer :: x,y
end function g

end interface

contains
function f(x) result(y)

integer :: x, y

y = x * 2
end function f

end module example_mod

I run ctags with following command line:

u-ctags --fields=+n -o - /tmp/input.f90

What I got:

example_mod /tmp/input.f90 /^module example_mod$/;" m line:2
f /tmp/input.f90 /^ fu/;" f line:23
f_interface /tmp/input.f90 /^ interface f_interface$/;" i line:8
→˓module:example_mod

I think this should be:

2.3. An example of good report 32

https://github.com/universal-ctags/ctags/issues/1547

Universal Ctags Documentation, Release 0.3.0

example_mod /tmp/input.f90 /^module example_mod$/;" m line:2
f /tmp/input.f90 /^ function f/;" f line:23
f_interface /tmp/input.f90 /^ interface f_interface$/;" i line:8
→˓module:example_mod

or:

example_mod /tmp/input.f90 /^module example_mod$/;" m line:2
f /tmp/input.f90 /^ function f(x) result(y)/;" f line:23
f_interface /tmp/input.f90 /^ interface f_interface$/;" i line:8
→˓module:example_mod

Either way, /^ fu/ is too short as a pattern.

The version of u-ctags is 83b0d1f6:

$ u-ctags --version
Universal Ctags 0.0.0(83b0d1f6), Copyright (C) 2015 Universal Ctags Team
Universal Ctags is derived from Exuberant Ctags.
Exuberant Ctags 5.8, Copyright (C) 1996-2009 Darren Hiebert

Compiled: Dec 15 2017, 08:07:36
URL: https://ctags.io/
Optional compiled features: +wildcards, +regex, +multibyte, +debug, +option-

→˓directory, +xpath, +json, +interactive, +sandbox, +yaml, +aspell

2.3. An example of good report 33

CHAPTER 3

Contributions

Maintainer Masatake YAMATO <yamato@redhat.com>

Table of contents

• General topics

– Origin of changes and license

– Commit log

– NEWS file

– Testing

– C language

* Notes for GNU emacs users

– Command line options

– Test cases

– Compatibility

– Tag file compatibility with Exuberant-ctags

– Command line option with Exuberant-ctags

• Specific to add new parser and/or new kind/role

– What should be tagged?

– Defining kinds and roles

– Scope information and full qualified tags

– Adding a new field

– Reference

– Testing your parser

– Writing parser in regex

– Squashing commits

34

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

– Build script

You are welcome.

This is what we would like potential contributors to know. In this section “you” means a contributor, and “we”
means reviewers. “I” means Masatake YAMATO, the author of this section.

3.1 General topics

3.1.1 Origin of changes and license

Make clear where the patches come from and who wrote them.

If you backport patches from Geany or some other project, their commit IDs should be logged, too.

Include a copyright notice when adding a new {parsers,main}/*.[ch] file.

A new file also requires a license notice at the head of the file.

We expect your change (or new code) to be provided under the terms of the General Public License version 2 or
any later version. We would like you to express “version 2 or any later version”.

3.1.2 Commit log

(For new parsers the following criteria is not applicable.)

Make clear the original motivation for the change and/or the impact on the tags file.

If you fix a bug reported somewhere on the web, its URL should be logged, too.

If the bug is reported in the Exuberant-ctags tracker on the SourceForge web site, log it as sf-bugs:N, sf-patches:N,
sf-support-requests:N, or sf-feature-requests:N. docs/tracking.rst also should be updated.

3.1.3 NEWS file

Update docs/news.rst especially if you add a new parser.

3.1.4 Testing

Add test cases, and run both existing cases and your new cases.

If you add a new parser or modify an existing parser, add new test cases to “Units”. If you modify the core, add
new test cases to “Tmain”. The way to write and run test cases is described in the “Testing ctags” section of this
guide.

With the exception of the tmain test harness, you can specify VG=1 for running test cases under the Valgrind
memory debugger.

A parse should not enter an infinite loop for bad input. A parse should not crash for bad input. A parse should
return control to its caller for bad input.

Describe what kind of tests are passed in the commit message. e.g.

make units LANGUAGES=TTCN VG=1 is passed.
make fuzz LANGUAGES=TTCN VG=1 is passed.
make chop LANGUAGES=TTCN VG=1 is passed.

3.1. General topics 35

Universal Ctags Documentation, Release 0.3.0

3.1.5 C language

Don’t forget to use static modifiers. Don’t introduce unnecessary global variables.

Remove unused variables and types. If you want to keep them in your source code, include a descriptive comment.

Use the available facilities provided by the ctags core. If the facilities are not enough for writing a parser, consider
extending the core first.

Use underscores in names only in file scope objects. Don’t use them in function declarations, variable declarations
or macro names in header files.

Basic whitespace settings are specified in the EditorConfig configuration file (.editorconfig). There are plugins
available for most popular editors to automatically configure these settings.

Style guidelines are largely captured in the Uncrustify configuration file (.uncrustify.cfg). Formatting can be
checked with:

$ uncrustify -c .uncrustify.cfg -f parsers/awk.c | diff -u parsers/awk.c -

Don’t mix whitespace cleanup fixes and other improvements in one commit when changing the existing code.
Style fixes, including whitespace cleanup, should be in a separate commit. Mixing functional changes with style
fixes makes reviewing harder.

If possible, don’t use file static variables. Find an alternative way that uses parameters.

Notes for GNU emacs users

If you use GNU emacs, utilize the .editorconfig configuration based on non-GNU C style. Here non-GNU C style
means “align a keyword for control flow and { of the block start”.

GNU style:

if (...)
{

...

non-GNU style:

if (...)
{

...

For combining the style and .editorconfig configuration, put following code snippet to your .emacs:

(add-hook 'hack-local-variables-hook
(lambda () (editorconfig-apply)))

.dir-locals.el in ctags source tree applies “linux” style of cc-mode. Above code snippet applies the .editorconfig
configuration AFTER installing the “linux” style to the current buffer.

I like GNU style, but for keeping consistency in existing code of Exuberant-ctags, the origin of Universal-ctags, I
introduced the style and configuration to my .emacs. Please, do the same.

3.1.6 Command line options

Don’t introduce –<LANG>-foo=. . . style options. They are less suitable for command-line completion by the
zsh/bash completion engines. Instead, introduce –foo-<LANG>=. . . style options.

Add an entry to docs/news.rst if you change the behavior of an option or introduce a new option. If you think the
option is stable enough, add it to ctags.1.in, too.

3.1. General topics 36

http://editorconfig.org/
http://editorconfig.org/#download
http://uncrustify.sourceforge.net/

Universal Ctags Documentation, Release 0.3.0

Use underscore as a prefix for experimental options. Once an option is introduced, it must be maintained. We
don’t want to remove it later. If you are not sure of the usefulness of the option, use an underscore at the start of a
long option name like: –_echo.

Write a test case for Tmain or Units.

Don’t remove an option, especially if it exists in Exuberant-ctags. We want to maintain compatibility as much as
possible.

3.1.7 Test cases

Add a test case to Unit when creating or modifying a parser.

Add a test case to Tmain when modifying the core.

Add a test case to Tinst when modifying the install target in the Makefile.

3.1.8 Compatibility

We are trying to maintain compatibility with Exuberant-ctags in the following two areas.

3.1.9 Tag file compatibility with Exuberant-ctags

We will not accept a patch that breaks the tags file format described in “Proposal for extended Vi tags file format”
a.k.a. FORMAT file.

TBW.

3.1.10 Command line option with Exuberant-ctags

TBW.

3.2 Specific to add new parser and/or new kind/role

When working on ctags I take into account the following uses for tags:

1. inserting the name with completion,

2. jumping to the definition of the name (in an editor or similar tool),

3. navigating the source code tree,

4. summarizing the source code tree, and

5. answering a query about the source code tree.

When I review new parser code, I expect the parser to contribute to these purposes.

3.2.1 What should be tagged?

There are two classes of tags. The primary class is a definition tag. If a name is defined in a file, the name and the
line and the file where the name is defined should be tagged (recorded). However, in some languages answering,
“What is a definition?” is not so obvious. You may have to decide what is tagged in your parser thoughtfully. The
purposes listed at the top of this subsection should help you decide.

The secondary class is a reference tag. This is newly introduced in Universal-ctags and is not available in
Exuberant-ctags. If a name is used (or referenced) in a file, it can be tagged as a reference tag.

Don’t be confused by the two tag classes.

3.2. Specific to add new parser and/or new kind/role 37

Universal Ctags Documentation, Release 0.3.0

3.2.2 Defining kinds and roles

Defining kinds is the most important task in writing a new parser. Once a kind is introduced, we cannot change it
because it breaks tags file compatibility.

If you are not interested in designing kinds because you are an emacs user and use just TAGS output, there are
two choices: TBW.

3.2.3 Scope information and full qualified tags

Optional. TBW.

3.2.4 Adding a new field

TBW.

3.2.5 Reference

In the comment at the head of your source file, include a URL for a web page that explains the language your
parser deals with. Especially if the language is not well known.

Here is an example.

/*
*
* Copyright (c) 2016, Masatake YAMATO

* Copyright (c) 2016, Red Hat, K.K.

*
* This source code is released for free distribution under the terms of the

* GNU General Public License version 2 or (at your option) any later version.

*
* This module contains functions for generating tags for property list defined

* in http://www.apple.com/DTDs/PropertyList-1.0.dtd.

*/

3.2.6 Testing your parser

If possible, prepare a simple test and a complex one. The simple one for helping us, the maintainers, understand
the intent of the modification.

If there are more than 3 test cases for a parser, a parser specific test case directory should be prepared like
Units/parser-c.r.

3.2.7 Writing parser in regex

You can write a parser with regex patterns.

optlib2c, a part of the Universal-ctags build system can translate a parser written in regex patterns into C source
code.

The man parser is one example described in regex patterns. See the output of the following command line for
details:

git show 0a9e78a8a40e8595b3899e2ad249c8f2c3819c8a^..89aa548

Translated C code is also committed to our git repository. The translated code is useful for building ctags on the
platforms where optlib2c doesn’t run.

The regex approach is also suitable for prototyping.

3.2. Specific to add new parser and/or new kind/role 38

Universal Ctags Documentation, Release 0.3.0

3.2.8 Squashing commits

When you submit a pull request you might receive some comments from a reviewer and, in response, update your
patches. After updating, we would like you to squash your patches into logical units of work before we merge
them to keep the repository history as simple as possible.

Quoted from @steveno in #393:

You can check out this page for a good example of how to squash commits http://gitready.com/
advanced/2009/02/10/squashing-commits-with-rebase.html

Once you’ve squashed all your commits, simply do a git push -f to your fork, and GitHub will update
the pull request for you automatically.

3.2.9 Build script

Add your .c file to source.mak.

In addition, update win32/ctags_vs2013.vcxproj and win32/ctags_vs2013.vcxproj.filters. Otherwise our CI process
run on Appveyor will fail.

3.2. Specific to add new parser and/or new kind/role 39

http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html
http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html

CHAPTER 4

Parsers

This section deals with individual parser topics.

4.1 Asm parser

Maintainer Masatake YAMATO <yamato@redhat.com>

The original (Exuberant-ctags) parser handles #define C preprocessor directive and C style comments by itself. In
Universal-ctags Asm parser utilizes CPreProcessor meta parser for handling them. So a language object defined
with #define is tagged as “defines” of CPreProcessor language, not Asm language.

$ cat input.S
#define S 1

$ e-ctags --fields=+l -o - input.S
S input.S /^#define S 1$/;" d language:Asm

$ u-ctags --fields=+l -o - input.S
S input.S /^#define S /;" d language:CPreProcessor file:

4.2 CMake parser

The CMake parser is used for .cmake and CMakeLists.txt files. It generates tags for the following items:

• User-defined functions

• User-defined macros

• User-defined options created by option()

• Variables defined by set()

• Targets created by add_custom_target(), add_executable() and add_library()

The parser uses the experimental multi-table regex ctags options to perform the parsing and tag generation.

Caveats:

40

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

Names that are ${} references to variables are not tagged.

For example, given the following:

set(PROJECT_NAME_STR ${PROJECT_NAME})
add_executable(${PROJECT_NAME_STR} ...)
add_custom_target(${PROJECT_NAME_STR}_tests ...)
add_library(sharedlib ...)

. . . the variable PROJECT_NAME_STR and target sharedlib will both be tagged, but the other
targets will not be.

References:

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html

4.3 The new C/C++ parser

Maintainer Szymon Tomasz Stefanek <s.stefanek@gmail.com>

4.3.1 Introduction

The C++ language has strongly evolved since the old C/C++ parser was written. The old parser was struggling
with some of the new features of the language and has shown signs of reaching its limits. For this reason in
February/March 2016 the C/C++ parser was rewritten from scratch.

In the first release several outstanding bugs were fixed and some new features were added. Among them:

• Tagging of “using namespace” declarations

• Tagging of function parameters

• Extraction of function parameter types

• Tagging of anonymous structures/unions/classes/enums

• Support for C++11 lambdas (as anonymous functions)

• Support for function-level scopes (for local variables and parameters)

• Extraction of local variables which include calls to constructors

• Extraction of local variables from within the for(), while(), if() and switch() parentheses.

• Support for function prototypes/declarations with trailing return type

At the time of writing (March 2016) more features are planned.

4.3.2 Notable New Features

Some of the notable new features are described below.

Properties

Several properties of functions and variables can be extracted and placed in a new field called properties. The
syntax to enable it is:

$ ctags ... --fields-c++=+{properties} ...

At the time of writing the following properties are reported:

• virtual: a function is marked as virtual

4.3. The new C/C++ parser 41

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html
mailto:s.stefanek@gmail.com

Universal Ctags Documentation, Release 0.3.0

• static: a function/variable is marked as static

• inline: a function implementation is marked as inline

• explicit: a function is marked as explicit

• extern: a function/variable is marked as extern

• const: a function is marked as const

• pure: a virtual function is pure (i.e = 0)

• override: a function is marked as override

• default: a function is marked as default

• final: a function is marked as final

• delete: a function is marked as delete

• mutable: a variable is marked as mutable

• volatile: a function is marked as volatile

• specialization: a function is a template specialization

• scopespecialization: template specialization of scope a<x>::b()

• deprecated: a function is marked as deprecated via __attribute__

• scopedenum: a scoped enumeration (C++11)

Preprocessor macros

The new parser supports the definition of real preprocessor macros via the -D option. All types of macros are
supported, including the ones with parameters and variable arguments. Stringification, token pasting and recursive
macro expansion are also supported.

Option -I is now simply a backward-compatible syntax to define a macro with no replacement.

The syntax is similar to the corresponding gcc -D option.

Some examples follow.

$ ctags ... -D IGNORE_THIS ...

With this commandline the following C/C++ input

int IGNORE_THIS a;

will be processed as if it was

int a;

Defining a macro with parameters uses the following syntax:

$ ctags ... -D "foreach(arg)=for(arg;;)" ...

This example defines for(arg;;) as the replacement foreach(arg). So the following C/C++ input

foreach(char * p,pointers)
{

}

is processed in new C/C++ parser as:

4.3. The new C/C++ parser 42

Universal Ctags Documentation, Release 0.3.0

for(char * p;;)
{

}

and the p local variable can be extracted.

The previous commandline includes quotes since the macros generally contain characters that are treated specially
by the shells. You may need some escaping.

Token pasting is performed by the ## operator, just like in the normal C preprocessor.

$ ctags ... -D "DECLARE_FUNCTION(prefix)=int prefix ## Call();"

So the following code

DECLARE_FUNCTION(a)
DECLARE_FUNCTION(b)

will be processed as

int aCall();
int bCall();

Macros with variable arguments use the gcc __VA_ARGS__ syntax.

$ ctags ... -D "DECLARE_FUNCTION(name,...)=int name(__VA_ARGS__);"

So the following code

DECLARE_FUNCTION(x,int a,int b)

will be processed as

int x(int a,int b);

4.3.3 Incompatible Changes

The parser is mostly compatible with the old one. There are some minor incompatible changes which are described
below.

Anonymous structure names

The old parser produced structure names in the form __anonN where N was a number starting at 1 in each file
and increasing at each new structure. This caused collisions in symbol names when ctags was run on multiple
files.

In the new parser the anonymous structure names depend on the file name being processed and on the type of the
structure itself. Collisions are far less likely (though not impossible as hash functions are unavoidably imperfect).

Pitfall: the file name used for hashing includes the path as passed to the ctags executable. So the same file “seen”
from different paths will produce different structure names. This is unavoidable and is up to the user to ensure that
multiple ctags runs are started from a common directory root.

File scope

The file scope information is not 100% reliable. It never was. There are several cases in that compiler, linker or
even source code tricks can “unhide” file scope symbols (for instance *.c files can be included into each other)

4.3. The new C/C++ parser 43

Universal Ctags Documentation, Release 0.3.0

and several other cases in that the limitation of the scope of a symbol to a single file simply cannot be determined
with a single pass or without looking at a program as a whole.

The new parser defines a simple policy for file scope association that tries to be as compatible as possible with the
old parser and should reflect the most common usages. The policy is the following:

• Namespaces are in file scope if declared inside a .c or .cpp file

• Function prototypes are in file scope if declared inside a .c or .cpp file

• K&R style function definitions are in file scope if declared static inside a .c file.

• Function definitions appearing inside a namespace are in file scope only if declared static inside a .c or .cpp
file. Note that this rule includes both global functions (global namespace) and class/struct/union members
defined outside of the class/struct/union declaration.

• Function definitions appearing inside a class/struct/union declaration are in file scope only if declared static
inside a .cpp file

• Function parameters are always in file scope

• Local variables are always in file scope

• Variables appearing inside a namespace are in file scope only if they are declared static inside a .c or .cpp
file

• Variables that are members of a class/struct/union are in file scope only if declared in a .c or .cpp file

• Typedefs are in file scope if appearing inside a .c or .cpp file

Most of these rules are debatable in one way or the other. Just keep in mind that this is not 100% reliable.

Inheritance information

The new parser does not strip template names from base classes. For a declaration like

template<typename A> class B : public C<A>

the old parser reported C as base class while the new one reports C<A>.

Typeref

The syntax of the typeref field (typeref:A:B) was designed with only struct/class/union/enum types in mind.
Generic types don’t have A information and the keywords became entirely optional in C++: you just can’t tell.
Furthermore, struct/class/union/enum types share the same namespace and their names can’t collide, so the A
information is redundant for most purposes.

To accommodate generic types and preserve some degree of backward compatibility the new parser uses
struct/class/union/enum in place of A where such keyword can be inferred. Where the information is not available
it uses the ‘typename’ keyword.

Generally, you should ignore the information in field A and use only information in field B.

4.4 The new HTML parser

Maintainer Jiri Techet <techet@gmail.com>

4.4. The new HTML parser 44

mailto:techet@gmail.com

Universal Ctags Documentation, Release 0.3.0

4.4.1 Introduction

The old HTML parser was line-oriented based on regular expression matching. This brought several limitations
like the inability of the parser to deal with tags spanning multiple lines and not respecting HTML comments. In
addition, the speed of the parser depended on the number of regular expressions - the more tag types were ex-
tracted, the more regular expressions were needed and the slower the parser became. Finally, parsing of embedded
JavaScript was very limited, based on regular expressions and detecting only function declarations.

The new parser is hand-written, using separated lexical analysis (dividing the input into tokens) and syntax anal-
ysis. The parser has been profiled and optimized for speed so it is one of the fastest parsers in universal-ctags. It
handles HTML comments correctly and in addition to existing tags it extracts also <h1>, <h2> and <h3> headings.
It should be reasonably simple to add new tag types.

Finally, the parser uses the new functionality of universal-ctags to use another parser for parsing other languages
within a host language. This is used for parsing JavaScript within <script> tags and CSS within <style> tags. This
simplifies the parser and generates much better results than having a simplified JavaScript or CSS parser within
the HTML parser. To run JavaScript and CSS parsers from HTML parser, use –extras=+g option.

4.5 puppetManifest parser

Maintainer Masatake YAMATO <yamato@redhat.com>

puppetManifest is an experimental parser for testing multi tables regex meta parser defined with
--_mtable-<LANG> option.

The parser has some bugs derived from the limit of the multi tables regex meta parser.

Here document

The parser cannot ignore the contents inside the area of here document. The end marker of here
document is defined in the source code. Currently, ctags has no way to add a regex pattern for
detecting the end maker.

4.6 The new Python parser

Maintainer Colomban Wendling <ban@herbesfolles.org>

4.6.1 Introduction

The old Python parser was a line-oriented parser that grew way beyond its capabilities, and ended up riddled with
hacks and easily fooled by perfectly valid input. By design, it especially had problems dealing with constructs
spanning multiple lines, like triple-quoted strings or implicitly continued lines; but several less tricky constructs
were also mishandled, and handling of lexical constructs was duplicated and each clone evolved in its own direc-
tion, supporting different features and having different bugs depending on the location.

All this made it very hard to fix some existing bugs, or add new features. To fix this regrettable state of things,
the parser has been rewritten from scratch separating lexical analysis (generating tokens) from syntactical analysis
(understanding what the lexemes mean). This moves understanding lexemes to a single location, making it consis-
tent and easier to extend with new lexemes, and lightens the burden on the parsing code making it more concise,
robust and clear.

This rewrite allowed to quite easily fix all known bugs of the old parser, and add many new features, including:

• Tagging function parameters

• Extraction of decorators

• Proper handling of semicolons

• Extracting multiple variables in a combined declaration

4.5. puppetManifest parser 45

mailto:yamato@redhat.com
mailto:ban@herbesfolles.org

Universal Ctags Documentation, Release 0.3.0

• More accurate support of mixed indentation

• Tagging local variables

The parser should be compatible with the old one.

4.7 The new Tcl parser

Maintainer Masatake YAMATO <yamato@redhat.com>

Tcl parser is rewritten as a token oriented parser to support namespace. It was line oriented parser. Some incom-
patibility between Exuberant-ctags is introduced in the rewriting.

The line oriented parser captures class, public|protected|private method. They are definitions in ITcl and TclOO.
The new token oriented Tcl parser ignores them. Instead ITcl and TclOO subparser running on Tcl base parser
capture them.

4.7.1 Known bugs

Full qualified tags

The separator used in full qualified tags should be :: but . is used.

A ITcl or TclOO class C can be defined in a Tcl namespace N:

namespace eval N {
oo::class create C {
}

}

When --extras=+q is given, currently ctags reports:

N.C ...

This should be:

N::C ...

Much work is needed to fix this.

Nested procs

proc defined in a proc cannot be captured well. This is a regression.

4.8 The Vim parser

4.8.1 Incompatible change

Quoted from :help script-variable in the Vim documentation:

script-variable *s:var*
In a Vim script variables starting with "s:" can be used. They
cannot be accessed from outside of the scripts, thus are local to
the script.

4.7. The new Tcl parser 46

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

Exuberant-ctags records the prefix s: as part of a script-local variable’s name. However, it is omitted from function
names. As requested in issue #852 on GitHub, Universal-ctags now also includes the prefix in script-local function
names.

4.9 XSLT parser

Maintainer Masatake YAMATO <yamato@redhat.com>

This parser only supports XSLT 1.0. If a newer version (2.0 and 3.0) is specified in an input file, ctags just skips
the input. With --verbose, ctags prints the detected version of the input file.

Scope information generated by the XSLT parser is a bit broken. Currently a period (.) is used as the separator in
nested scopes. This is the default separator value in ctags.

When the XSLT parser captures a node <xsl:template match=”. . . ”> the value of the match attribute is tagged
with kind matchedTemplate. When a matchedTemplate name is stored as part of the scope information, client tools
may be confused because . is used both as the scope separator and in the XPath match expression.

4.9. XSLT parser 47

mailto:yamato@redhat.com

CHAPTER 5

Output formats

This section deals with individual output-format topics.

--output-format= can be used for choosing an output format.

5.1 JSON output

5.1.1 Format

JSON output goes to standard output by default. Each generated tag line is represented as an object.

$./ctags --output-format=json /tmp/foo.py
{"_type": "tag", "name": "Foo", "path": "/tmp/foo.py", "pattern": "/^class Foo:$/",
→˓ "kind": "class"}

Object keys which do not start with _ are normal fields and map directly to the fields of the default tags file format.

Keys that have names starting with _ are a JSON format meta field. Currently only _type is used and it can have
the values tag for a normal tag or ptag for a pseudo tag.

JSON output is still under development and it is expected the format will change in the future. To give applications
a chance to handle these changes ctags uses a pseudo tag, JSON_OUTPUT_VERSION, for specifying the format
version.

$./ctags --extras='p' --pseudo-tags=JSON_OUTPUT_VERSION --output-format=json /
→˓tmp/foo.py
{"_type": "ptag", "name": "JSON_OUTPUT_VERSION", "path": "0.0", "pattern": "in
→˓development"}
{"_type": "tag", "name": "Foo", "path": "/tmp/foo.py", "pattern": "/^class Foo:$/",
→˓ "kind": "class"}
...

The JSON output format is newly designed and does not need to support the historical quirks of the default tags
file format.

Kind long names are always used instead of kind letters. Enabling the k and/or K fields enables the z {kind} field
internally.

48

Universal Ctags Documentation, Release 0.3.0

Scope information is always split into scope kinds and scope names. Enabling the s field enables the Z {kind} and
p {scopeKind} fields internally. As for all kinds, long names are used for printing ; kind letters are never used.

If you need kind letters, open an issue at the GitHub site of Universal-ctags.

5.1.2 Field introspection

Values for the most of all fields are represented in JSON string type. However, some of them are represented in
integer type and/or boolean type. What kind of JSON data types used in a field can be known with the output of
--list-fields option:

$./ctags –list-fields #LETTER NAME ENABLED LANGUAGE XFMT JSTYPE DESCRIPTION N
name on NONE TRUE s– tag name (fixed field) .. f file on NONE TRUE –b File-restricted scoping i
inherits off NONE TRUE s-b Inheritance information . . . n line off NONE TRUE -i- Line number of
tag definition . . .

JSTYPE column tells the data type of fields.

s string

i integer

b boolean

For example, The value for “inherits” field is represented in the string or boolean type.

5.2 Xref output

• Printing z‘{kind} field in xref format doesn’t include ‘kind: prefix.

• Printing Z‘{scope} field in xref format doesn’t include ‘scope: prefix.

5.2. Xref output 49

CHAPTER 6

--_interactive Mode

Universal ctags can be run with --_interactive, which enters a REPL that can be used programmatically to
control ctags generation. In this mode, json commands are received over stdin, and corresponding responses are
emitted over stdout.

This feature needs ctags to be built with json support and this requires libjansson to be installed at build-time. If
it’s supported it will be listed in the output of --list-features:

$./ctags --list-features | grep json
json

Communication with Universal ctags over stdio uses the json lines format, where each json object appears on a
single line and is terminated with a newline.

When ctags --_interactive is invoked, it will emit a single json object to stdout announcing its name and
version. This signals the start of the interactive loop, and the user can begin sending commands over stdin.

$ ctags --_interactive
{"_type": "program", "name": "Universal Ctags", "version": "0.0.0"}

The following commands are currently supported in interactive mode:

• generate-tags

6.1 generate-tags

The generate-tags command takes two arguments:

• filename: name of the file to generate tags for (required)

• size: size in bytes of the file, if the contents will be received over stdin (optional)

The simplest way to generate tags for a file is by passing its path on filesystem(file request). The response
will include one json object per line representing each tag, followed by a single json object with the completed
field emitted once the file has been fully processed.

$ echo '{"command":"generate-tags", "filename":"test.rb"}' | ctags --_interactive
{"_type": "program", "name": "Universal Ctags", "version": "0.0.0"}

(continues on next page)

50

http://jsonlines.org/

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

{"_type": "tag", "name": "foobar", "path": "test.rb", "pattern": "/^ def foobar$/
→˓", "kind": "method", "scope": "Test", "scopeKind": "class"}
{"_type":"completed", "command": "generate-tags"}

The generate-tags command can also be used to generate tags for code which is not present on filesys-
tem(inline request). For example, an IDE might want to generate ctags for an unsaved buffer while the
user is editing code. When size is specified, the corresponding number of bytes are read over stdin after the json
object and newline.

$ (
echo '{"command":"generate-tags", "filename":"test.rb", "size": 17}'
echo 'def foobaz() end'

) | ctags --_interactive
{"_type": "program", "name": "Universal Ctags", "version": "0.0.0"}
{"_type": "tag", "name": "foobaz", "path": "test.rb", "pattern": "/^def foobaz()
→˓end$/", "kind": "method"}
{"_type": "completed", "command": "generate-tags"}

6.2 sandbox submode

sandbox submode can be used with --_interactive=sandbox. This submode will activate a sandbox, to
this limits the damage that the can be achieved when exploiting a buffer overflow in Universal-ctags.

In the sandbox submode ctags can generate tags only for inline requests because ctags has to use open system call
to handle file requests. The open system call is not allowed in the sandbox.

This feature uses seccomp-bpf, and is only supported on Linux. To use the submode libseccomp is needed at
build-time. If ctags was built with seccomp support, sandbox is listed in the output of --list-features
option.

$./ctags --list-features | grep sandbox
sandbox

$ (
echo '{"command":"generate-tags", "filename":"test.rb", "size": 17}'
echo 'def foobaz() end'

) | ctags --_interactive=sandbox
{"_type": "program", "name": "Universal Ctags", "version": "0.0.0"}
{"_type": "tag", "name": "foobaz", "path": "test.rb", "pattern": "/^def foobaz()
→˓end$/", "kind": "method"}
{"_type": "completed", "command": "generate-tags"}

6.2. sandbox submode 51

CHAPTER 7

Choosing a proper parser in ctags

See ctags(1) within the source tree.

52

CHAPTER 8

Running multiple parsers on an input file

Universal-ctags provides parser developers ways(guest/host and sub/base) to run multiple parsers for an input file.

This section shows concepts behind the running multiple parsers, real examples, and APIs.

8.1 Applying a parser to specified areas of input file (guest/host)

guest/host combination considers the case that an input file has areas written in languages different from the
language for the input file.

host parser parses the input file and detects the areas. host parser schedules guest parsers parsing the areas. guest
parsers parses the areas.

guest parsers are run only when –extras=+g is given. If –fields=+E is given, all tags generated by a guest parser
is marked guest in their extras: fields.

8.1.1 Examples of guest/host combinations

{CSS,JavaScript}/HTML parser combination

For an html file, you may want to run HTML parser, of course. The html file may have CSS areas and JavaScript
areas. In other hand Universal-ctags has both CSS and JavaScript parsers. Don’t you think it is useful if you can
apply these parsers to the areas?

In this case, HTML has responsible to detect the CSS and JavaScript areas and record the positions of the areas.
The HTML parser schedules delayed invocations of CSS and JavaScript parsers on the area with promise API.

Here HTML parser is a host parser. CSS and JavaScript parsers are guest parsers.

See The new HTML parser and parsers/html.c.

C/Yacc parser combination

A yacc file has some areas written in C. Universal-ctags has both YACC and C parsers. You may want to run C
parser for the areas from YACC parser.

53

Universal Ctags Documentation, Release 0.3.0

Here YACC parser is a host parser. C parser is a guest parser. See promise API and parsers/yacc.c.

Pod/Perl parser combination

Pod (Plain Old Documentation) is a language for documentation. The language can be used not only in a stand
alone file but also it can be used inside a Perl script.

Universal-ctags has both parsers for Perl and Pod. The Perl parser recognizes the area where Pod document is
embedded in a Perl script and schedules applying pod parser as a guest parser on the area.

8.1.2 API for running a parser in an area

promise API can be used. A host parser using the interface has responsibility to detect areas from input stream
and record them with name of guest parsers that will be applied to the areas.

8.2 Tagging definitions of higher(upper) level language (sub/base)

8.2.1 Background

Consider an application written in language X. The application has its domain own concepts. Developers of the
application may try to express the concepts in the syntax of language X.

In language X level, the developer can define functions, variables, types, and so on. Further more, if the syntax of
X allows, the developers want to define higher level(= application level) things for implementing the domain own
concepts.

Let me show the part of source code of SPY-WARS, an imaginary game application. It is written in scheme
language, a dialect of lisp. (Here gauche is considered as the implementation of scheme interpreter).

(define agent-tables (make-hash-table))
(define-class <agent> ()

((rights :init-keyword :rights)
(responsibilities :init-keyword :responsibilities)))

(define-macro (define-agent name rights responsibilities)
`(hash-table-put! agent-tables ',name

(make <agent>
:rights ',rights
:responsibilities ',responsibilities)))

(define-agent Bond (kill ...) ...)
(define-agent Bourne ...)

...

define, define-class, and define-macro are keywords of scheme for defining a variable, class and macro. Therefore
scheme parser of ctags should make tags for agent-tables with variable kind, <agent> with class kind, and define-
agent with macro kind. There is no discussion here.

NOTE: To be exactly define-class and define-macro are not the part of scheme language. They are
part of gauche. That means three parsers are stacked: scheme, gosh, and SPY-WARS.

The interesting things here are Bond and Bourne.

(define-agent Bond (kill ...) ...)
(define-agent Bourne ...)

8.2. Tagging definitions of higher(upper) level language (sub/base) 54

http://practical-scheme.net/gauche/index.html

Universal Ctags Documentation, Release 0.3.0

In scheme parser level, the two expressions define nothing; the two expressions are just macro(define-agent)
expansions.

However, in the application level, they define agents as the macro name shown. In this level Universal-ctags
should capture Bond and Bourne. The question is which parser should capture them? scheme parser should not;
define-agent is not part of scheme language. Newly defined SPY-WARS parser is the answer.

Though define-agent is just a macro in scheme parser level, it is keyword in SPY-WARS parser. SPY-WARS parser
makes a tag for a token next to define-agent.

The above example illustrates levels of language in an input file. scheme is used as the base language. With
the base language we can assume an imaginary higher level language named SPY-WARS is used to write the
application. To parse the source code of the application written in two stacked language, ctags uses the two
stacked parsers.

Making higher level language is very popular technique in the languages of lisp family (see On Lisp for more
details). However, it is not special to lisp.

Following code is taken from linux kernel written in C:

DEFINE_EVENT(mac80211_msg_event, mac80211_info,
TP_PROTO(struct va_format *vaf),
TP_ARGS(vaf)

);

There is no concept EVENT in C language, however it make sense in the source tree of linux kernel. So we can
consider linux parser, based on C parser, which tags mac80211_msg_event as event kind.

8.2.2 Terms

Base parser and subparser

In the context of the SPY-WARS example, scheme parser is called a base parser. The SPY-WARS is called
a subparser. A base parser tags definitions found in lower level view. A subparser on the base parser tags
definitions found in higher level view. This relationship can be nested. A subparser can be a base parser for
another sub parsers.

At a glance the relationship between two parsers are similar to the relationship guest parser and host parser de-
scription in Applying a parser to specified areas of input file. However, they are different. Though a guest parser
can run stand-alone, a subparser cannot; a subparser needs help from base parser to work.

Top down parser choice and bottom up parser choice

There are two ways to run a subparser: top down or bottom up parser choices.

Universal-ctags can chose a subparser automatically. Matching file name patterns and extensions are the typical
ways for choosing. A user can choose a subparser with –language-force= option. Choosing a parser in these
deterministic way is called top down. When a parser is chosen as a subparser in the top down way, the subparser
must call its base parser. The base parser may call methods defined in the sub parser.

Universal-ctags uses bottom up choice when the top down way doesn’t work; a given file name doesn’t match
any patterns and extensions of subparsers and the user doesn’t specify –language-force= explicitly. In choosing a
subparser bottom up way it is assumed that a base parser for the subparser can be chosen by top down way. During
a base parser running, the base parser tries to detect use of higher level languages in the input file. As shown later
in this section, the base parser utilizes methods defined in its subparsers for the detection. If the base parser detects
the use of a higher level language, a subparser for the higher level language is chosen. Choosing a parser in this
non-deterministic way(dynamic way) is called bottom up.

Here is an example. Universal-ctags has both m4 parser and Autoconf parser. The m4 parser is a base parser. The
Autoconf parser is a subparser based on the m4 parser. If configure.ac is given as an input file, Autoconf parser

8.2. Tagging definitions of higher(upper) level language (sub/base) 55

http://www.paulgraham.com/onlisp.html

Universal Ctags Documentation, Release 0.3.0

is chosen automatically because the Autoconf parser has configure.ac in its patterns list. Based on the pattern
matching, Universal-ctags chooses the Autoconf parser automatically(top down choice).

If input.m4 is given as an input file, the Autoconf parser is not chosen. Instead the m4 parser is chosen automat-
ically because the m4 parser has .m4 in its extension list. The m4 parser passes every token finding in the input
file to the Autoconf parser. The Autoconf parser gets the chance to probe whether the Autoconf parser itself can
handle the input or not; if a token name is started with AC_, the Autoconf parser reports “this is Autoconf input
though its file extension is m4” to the m4 parser. As the result the Autoconf parser is chosen(bottom up choice).

Some subparsers can be chosen both top down and bottom up ways. Some subparser can be chosen only top down
way or bottom up ways.

Exclusive subparser and coexisting subparser

TBW. This must be filled when I implement python-celery parser.

8.2.3 API for making a combination of base parser and subparsers

Outline

You have to work on both sides: a base parser and subparsers.

A base parser must define a data structure type(baseMethodTable) for its subparsers by extending struct subparser
defined in main/subparser.h. A subparser defines a variable(subparser var) having type baseMethodTable by
filling its fields and registers subparser var to the base parser using dependency API.

The base parser calls functions pointed by baseMethodTable of subparsers during parsing. A function for prob-
ing a higher level language may be included in baseMethodTable. What kind of fields should be included in
baseMethodTable is up to the design of a base parser and the requirements of its subparsers. A method for probing
is one of them.

Registering a subparser var to a base parser is enough for the bottom up choice. For handling the top down choice
(e.g. specifying –language-force=subparser in a command line), more code is needed.

call scheduleRunningBaseparser function from a function(parser method) assigned to parser member in
parserDefinition of the subparser, scheduleRunningBaseparser‘is declared in *main/subparser.h*. ‘scheduleRun-
ningBaseparser takes an integer argument that specifies the dependency used for registering the subparser var.

By extending struct subparser you can define a type for your subparser. Then make a variable for the type and
declare a dependency on the base parser.

Details

Fields of subparser type

Here the source code of Autoconf/m4 parsers is referred as an example.

main/types.h:

struct sSubparser;
typedef struct sSubparser subparser;

main/subparser.h:

typedef enum eSubparserRunDirection {
SUBPARSER_BASE_RUNS_SUB = 1 << 0,
SUBPARSER_SUB_RUNS_BASE = 1 << 1,
SUBPARSER_BI_DIRECTION = SUBPARSER_BASE_RUNS_SUB|SUBPARSER_SUB_RUNS_BASE,

} subparserRunDirection;

(continues on next page)

8.2. Tagging definitions of higher(upper) level language (sub/base) 56

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

struct sSubparser {
...

/* public to the parser */
subparserRunDirection direction;

void (* inputStart) (subparser *s);
void (* inputEnd) (subparser *s);
void (* exclusiveSubparserChosenNotify) (subparser *s, void *data);

};

A subparser must fill the fields of subparser.

direction field specifies how the subparser is called. If a subparser runs exclusively and is chosen in top down way,
set SUBPARSER_SUB_RUNS_BASE flag. If a subparser runs coexisting way and is chosen in bottom up way, set
SUBPARSER_BASE_RUNS_SUB. Use SUBPARSER_BI_DIRECTION if both cases can be considered.

SystemdUnit parser runs as a subparser of iniconf base parser. SystemdUnit parser specifies SUB-
PARSER_SUB_RUNS_BASE because unit files of systemd have very specific file extensions though they are writ-
ten in iniconf syntax. Therefore we expect SystemdUnit parser is chosen in top down way. The same logic is
applicable to YumRepo parser.

Autoconf parser specifies SUBPARSER_BI_DIRECTION. For input file having name configure.ac, by pattern
matching, Autoconf parser is chosen in top down way. In other hand, for file name foo.m4, Autoconf parser can
be chosen in bottom up way.

inputStart is called before the base parser starting parsing a new input file. inputEnd is called after the base parser
finishing parsing the input file. Universal-ctags main part calls these methods. Therefore, a base parser doesn’t
have to call them.

exclusiveSubparserChosenNotify is called when a parser is chosen as an exclusive parser. Calling this method is a
job of a base parser.

Extending subparser type

The m4 parser extends subparser type like following:

parsers/m4.h:

typedef struct sM4Subparser m4Subparser;
struct sM4Subparser {

subparser subparser;

bool (* probeLanguage) (m4Subparser *m4, const char* token);

/* return value: Cork index */
int (* newMacroNotify) (m4Subparser *m4, const char* token);

bool (* doesLineCommentStart) (m4Subparser *m4, int c, const char
→˓*token);

bool (* doesStringLiteralStart) (m4Subparser *m4, int c);
};

Put subparser as the first member of the extended struct(here sM4Subparser). In addition the first field, 4 methods
are defined in the extended struct.

Till choosing a subparser for the current input file, the m4 parser calls probeLanguage method of its subparsers
each time when find a token in the input file. A subparser returns true if it recognizes the input file is for the itself
by analyzing tokens passed from the base parser.

parsers/autoconf.c:

8.2. Tagging definitions of higher(upper) level language (sub/base) 57

Universal Ctags Documentation, Release 0.3.0

extern parserDefinition* AutoconfParser (void)
{

static const char *const patterns [] = { "configure.in", NULL };
static const char *const extensions [] = { "ac", NULL };
parserDefinition* const def = parserNew("Autoconf");

static m4Subparser autoconfSubparser = {
.subparser = {

.direction = SUBPARSER_BI_DIRECTION,

.exclusiveSubparserChosenNotify =
→˓exclusiveSubparserChosenCallback,

},
.probeLanguage = probeLanguage,
.newMacroNotify = newMacroCallback,
.doesLineCommentStart = doesLineCommentStart,
.doesStringLiteralStart = doesStringLiteralStart,

};

probeLanguage function defined in autoconf.c is connected to the probeLanguage member of autoconfSubparser.
The probeLanguage function of Autoconf is very simple:

parsers/autoconf.c:

static bool probeLanguage (m4Subparser *m4, const char* token)
{

return strncmp (token, "m4_", 3) == 0
|| strncmp (token, "AC_", 3) == 0
|| strncmp (token, "AM_", 3) == 0
|| strncmp (token, "AS_", 3) == 0
|| strncmp (token, "AH_", 3) == 0
;

}

This function checks the prefix of passed tokens. If known prefix is found, Autoconf assumes this is an Autoconf
input and returns true.

parsers/m4.c:

if (m4tmp->probeLanguage
&& m4tmp->probeLanguage (m4tmp, token))

{
chooseExclusiveSubparser ((m4Subparser *)tmp, NULL);
m4found = m4tmp;

}

The m4 parsers calls probeLanguage function of a subparser. If true is returned chooseExclusiveSubparser func-
tion which is defined in the main part. chooseExclusiveSubparser calls exclusiveSubparserChosenNotify method
of the chosen subparser.

The method is implemented in Autoconf subparser like following:

parsers/autoconf.c:

static void exclusiveSubparserChosenCallback (subparser *s, void *data)
{

setM4Quotes ('[', ']');
}

It changes quote characters of the m4 parser.

8.2. Tagging definitions of higher(upper) level language (sub/base) 58

Universal Ctags Documentation, Release 0.3.0

Making a tag in a subparser

Via calling callback functions defined in subparsers, their base parser gives chance to them making tag entries.

The m4 parser calls newMacroNotify method when it finds an m4 macro is used. The Autoconf parser connects
newMacroCallback function defined in parser/autoconf.c.

parsers/autoconf.c:

static int newMacroCallback (m4Subparser *m4, const char* token)
{

int keyword;
int index = CORK_NIL;

keyword = lookupKeyword (token, getInputLanguage ());

/* TODO:
AH_VERBATIM

*/
switch (keyword)
{
case KEYWORD_NONE:

break;
case KEYWORD_init:

index = makeAutoconfTag (PACKAGE_KIND);
break;

...

extern parserDefinition* AutoconfParser (void)
{

...
static m4Subparser autoconfSubparser = {

.subparser = {
.direction = SUBPARSER_BI_DIRECTION,
.exclusiveSubparserChosenNotify =

→˓exclusiveSubparserChosenCallback,
},
.probeLanguage = probeLanguage,
.newMacroNotify = newMacroCallback,

In newMacroCallback function, the Autoconf parser receives the name of macro found by the base parser and
analysis weather the macro is interesting in the context of Autoconf language or not. If it is interesting name, the
Autoconf parser makes a tag for it.

Calling methods of subparsers from a base parser

A base parser can use foreachSubparser macro for accessing its subparsers. A base should call enterSubparser
before calling a method of a subparser, and call leaveSubparser after calling the method. The macro and functions
are declare in main/subparser.h .

parsers/m4.c:

static m4Subparser * maySwitchLanguage (const char* token)
{

subparser *tmp;
m4Subparser *m4found = NULL;

foreachSubparser (tmp, false)
{

m4Subparser *m4tmp = (m4Subparser *)tmp;

(continues on next page)

8.2. Tagging definitions of higher(upper) level language (sub/base) 59

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

enterSubparser(tmp);
if (m4tmp->probeLanguage

&& m4tmp->probeLanguage (m4tmp, token))
{

chooseExclusiveSubparser (tmp, NULL);
m4found = m4tmp;

}
leaveSubparser();

if (m4found)
break;

}

return m4found;
}

foreachSubparser takes a variable having type subparser. For each iteration, the value for the variable is updated.

enterSubparser takes a variable having type subparser. With the calling enterSubparser, the current language(the
value returned from getInputLanguage) can be temporary switched to the language specified with the variable. One
of the effect of switching is that language field of tags made in the callback function called between enterSubparser
and leaveSubparser is adjusted.

Registering a subparser to its base parser

Use DEPTYPE_SUBPARSER dependency in a subparser for registration.

parsers/autoconf.c:

extern parserDefinition* AutoconfParser (void)
{

parserDefinition* const def = parserNew("Autoconf");

static m4Subparser autoconfSubparser = {
.subparser = {

.direction = SUBPARSER_BI_DIRECTION,

.exclusiveSubparserChosenNotify =
→˓exclusiveSubparserChosenCallback,

},
.probeLanguage = probeLanguage,
.newMacroNotify = newMacroCallback,
.doesLineCommentStart = doesLineCommentStart,
.doesStringLiteralStart = doesStringLiteralStart,

};
static parserDependency dependencies [] = {

[0] = { DEPTYPE_SUBPARSER, "M4", &autoconfSubparser },
};

def->dependencies = dependencies;
def->dependencyCount = ARRAY_SIZE (dependencies);

DEPTYPE_SUBPARSER is specified in the 0th element of‘dependencies‘ function static variable. In the next a
literal string “M4” is specified and autoconfSubparser follows. The intent of the code is registering autoconfSub-
parser subparser definition to a base parser named “M4”.

dependencies function static variable must be assigned to dependencies fields of a variable of parserDefinition.
The main part of Universal-ctags refers the field when initializing parsers.

[0] emphasizes this is “the 0th element”. The subparser may refer the index of the array when the subparser calls
scheduleRunningBaseparser.

8.2. Tagging definitions of higher(upper) level language (sub/base) 60

Universal Ctags Documentation, Release 0.3.0

Scheduling running the base parser

For the case that a subparser is chosen in top down, the subparser must call scheduleRunningBaseparser in the
main parser method.

parsers/autoconf.c:

static void findAutoconfTags(void)
{

scheduleRunningBaseparser (0);
}

extern parserDefinition* AutoconfParser (void)
{

...
parserDefinition* const def = parserNew("Autoconf");
...
static parserDependency dependencies [] = {

[0] = { DEPTYPE_SUBPARSER, "M4", &autoconfSubparser },
};

def->dependencies = dependencies;
...
def->parser = findAutoconfTags;
...
return def;

}

A subparser can do nothing actively. A base parser makes its subparser work b calling methods of the subparser.
Therefor a subparser must run its base parser when the subparser is chosen in a top down way, The main part
prepares scheduleRunningBaseparser function for the purpose.

A subparser should call the function from parser method of parserDefinition of the subparser. scheduleRunning-
Baseparser takes an integer. It specifies an index of the dependency which is used for registering the subparser.

Command line interface

Running subparser can be controlled with s extras flag. By default it is enabled. To turning off the feature running
subparser, specify –extras=-s.

When –extras=+E option given, a tag entry recorded by a subparser is marked as follows:

TMPDIR input.ac /^AH_TEMPLATE([TMPDIR],$/;" template
→˓extras:subparser end:4

See also Defining a subparser.

8.2.4 Examples of sub/base combinations

Automake/Make parser combination

Simply to say the syntax of Automake is the subset of Make. However, the Automake parser has interests in Make
macros having special suffixes: “_PROGRAMS”, “_LTLIBRARIES”, and “_SCRIPTS” so on.

Here is an example of input for Automake:

bin_PROGRAMS = ctags
ctags_CPPFLAGS = \

-I. \
(continues on next page)

8.2. Tagging definitions of higher(upper) level language (sub/base) 61

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

-I$(srcdir) \
-I$(srcdir)/main

From the point of the view of the Make parser, bin_PROGRAMS is a just a macro; the Make parser tags
bin_PROGRAMS as a macro. The Make parser doesn’t tag “ctags” being right side of = because it is not a
new name: just a value assigned to bin_PROGRAMS. However, for the Automake parser “ctags” is a new name;
the Automake parser tags “ctags” with kind “Program”. The Automake parser can tag it with getting help from
the Make parser.

The Automake parser is an exclusive subparser. It is chosen in top down way; an input file name “Makefile.am”
gives enough information for choosing the Automake parser.

To give chances to the Automake parser to capture Automake own definitions, The Make parser provides following
interface in parsers/make.h:

struct sMakeSubparser {
subparser subparser;

void (* valueNotify) (makeSubparser *s, char* name);
void (* directiveNotify) (makeSubparser *s, char* name);
void (* newMacroNotify) (makeSubparser *s,

char* name,
bool withDefineDirective,
bool appending);

};

The Automake parser defines methods for tagging Automake own definitions in a struct sMakeSubparser type
variable, and runs the Make parser by calling scheduleRunningBaseparser function.

The Make parser tags Make own definitions in an input file. In addition Make parser calls the methods during
parsing the input file.

$./ctags --fields=+lK --extras=+r -o - Makefile.am
bin Makefile.am /^bin_PROGRAMS = ctags$/;" directory
→˓language:Automake
bin_PROGRAMS Makefile.am /^bin_PROGRAMS = ctags$/;" macro language:Make
ctags Makefile.am /^bin_PROGRAMS = ctags$/;" program
→˓language:Automake directory:bin
ctags_CPPFLAGS Makefile.am /^ctags_CPPFLAGS = \\$/;" macro
→˓language:Make

bin_PROGRAMS and ctags_CPPFLAGS are tagged as macros of Make. In addition bin is tagged as directory, and
ctags as program of Automake.

bin is tagged in a callback function assigned to newMacroFound method. ctags is tagged in a callback function
assigned to valuesFound method.

–extras=+r is used in the example. r extra is needed to tag bin. bin is not defined in the line, bin_PROGRAMS =.
bin is referenced as a name of directory where programs are stored. Therefore r is needed.

For tagging ctags, the Automake parser must recognize bin in bin_PROGRAMS first. ctags is tagged because it is
specified as a value for bin_PROGRAMS. As the result r is also needed to tag ctags.

Only Automake related tags are emitted if Make parser is disabled.

$./ctags --languages=-Make --fields=+lKr --extras=+r -o - Makefile.am
bin Makefile.am /^bin_PROGRAMS = ctags$/;" directory
→˓language:Automake roles:program
ctags Makefile.am /^bin_PROGRAMS = ctags$/;" program language:Automake
→˓ directory:bin

8.2. Tagging definitions of higher(upper) level language (sub/base) 62

Universal Ctags Documentation, Release 0.3.0

Autoconf/M4 parser combination

Universal-ctags uses m4 parser as a base parser and Autoconf parse as a sub parser for configure.ac input file.

AC_DEFUN([PRETTY_VAR_EXPAND],
[$(eval "$as_echo_n" $(eval "$as_echo_n" "${$1}"))])

The m4 parser finds no definition here. However, Autoconf parser finds PRETTY_VAR_EXPAND as a macro
definition. Syntax like (. . .) is part of M4 language. So Autoconf parser is implemented as a sub parser of
m4 parser. The most parts of tokens in input files are handled by M4. Autoconf parser gives hints for parsing
configure.ac and registers callback functions to Autoconf parser.

8.2. Tagging definitions of higher(upper) level language (sub/base) 63

CHAPTER 9

Building ctags

9.1 Building with configure (*nix including GNU/Linux)

Like most Autotools-based projects, you need to do:

$./autogen.sh
$./configure --prefix=/where/you/want # defaults to /usr/local
$ make
$ make install # may require extra privileges depending on where to install

After installation the ctags executable will be in $prefix/bin/.

autogen.sh runs autoreconf internally. If you use a (binary oriented) GNU/Linux distribution, autoreconf may be
part of the autoconf package. In addition you may have to install automake and/or pkg-config, too.

9.1.1 Changing the executable’s name

On some systems, like certain BSDs, there is already a ‘ctags’ program in the base system, so it is somewhat
inconvenient to have the same name for Universal-ctags. During the configure stage you can now change the
name of the created executable.

To add a prefix ‘ex’ which will result in ‘ctags’ being renamed to ‘exctags’:

$./configure --program-prefix=ex

To completely change the program’s name run the following:

$./configure --program-transform-name='s/ctags/my_ctags/; s/etags/myemacs_tags/'

Please remember there is also an ‘etags’ installed alongside ‘ctags’ which you may also want to rename as shown
above.

9.2 Building/hacking/using on MS-Windows

Maintainer Frank Fesevur <ffes@users.sourceforge.net>

64

mailto:ffes@users.sourceforge.net

Universal Ctags Documentation, Release 0.3.0

This part of the documentation is written by Frank Fesevur, co-maintainer of universal-ctags and the maintainer
of the Windows port of this project. It is still very much a work in progress. Things still need to be written down,
tested or even investigated. When building for Windows you should be aware that there are many compilers and
build environments available. This is a summary of available options and things that have been tested so far.

9.2.1 Compilers

There are many compilers for Windows. Compilers not mentioned here may work but are not tested.

Microsoft Visual Studio

http://www.visualstudio.com/

Obviously there is Microsoft Visual Studio 2013. Many professional developers targeting Windows use Visual
Studio. Visual Studio comes in a couple of different editions. Their Express and Community editions are free
to use, but a Microsoft-account is required to download the .iso and when you want to continue using it after a
30-days trial period. Other editions of Visual Studio must be purchased.

Installing Visual Studio will give you the IDE, the command line compilers and the MS-version of make named
nmake.

Note that ctags cannot be built with Visual Studio older than 2013 anymore. There is C99 (or C11) coding used
that generates syntax errors with VS2012 and older. This could affect compilers from other vendors as well.

GCC

There are three flavors of GCC for Windows:

• MinGW http://www.mingw.org

• MinGW-w64 http://mingw-w64.sourceforge.net

• TDM-GCC http://tdm-gcc.tdragon.net

MinGW started it all, but development stalled for a while and no x64 was available. Then the MinGW-w64 fork
emerged. It started as a 64-bit compiler, but soon they included both a 32-bit and a 64-bit compiler. But the
name remained, a bit confusing. Another fork of MinGW is TDM-GCC. It also provides both 32-bit and 64-bit
compilers. All have at least GCC 4.8. MinGW-w64 appears to be the most used flavor of MinGW at this moment.
Many well known programs that originate from GNU/Linux use MinGW-w64 to compile their Windows port.

9.2.2 Building ctags from the command line

Microsoft Visual Studio

Most users of Visual Studio will use the IDE and not the command line to compile a project. But by default a
shortcut to the command prompt that sets the proper path is installed in the Start Menu. When this command
prompt is used nmake -f mk_mvc.mak will compile ctags. You can also go into the win32 subdirectory
and run msbuild ctags_vs2013.sln for the default build. Use msbuild ctags_vs2013.sln /
p:Configuration=Release to specifically build a release build. MSBuild is what the IDE uses internally
and therefore will produce the same files as the IDE.

If you want to build an iconv enabled version, you must specify WITH_ICONV=yes and ICONV_DIR like below:

nmake -f mk_mvc.mak WITH_ICONV=yes ICONV_DIR=path/to/iconvlib

If you want to build a debug version using mk_mvc.mak, you must specify DEBUG=1 like below:

9.2. Building/hacking/using on MS-Windows 65

http://www.visualstudio.com/
http://www.mingw.org
http://mingw-w64.sourceforge.net
http://tdm-gcc.tdragon.net

Universal Ctags Documentation, Release 0.3.0

nmake -f mk_mvc.mak DEBUG=1

If you want to create PDB files for debugging even for a release version, you must specify PDB=1 like below:

nmake -f mk_mvc.mak PDB=1

GCC

General

All the GCC’s come with installers or with zipped archives. Install or extract them in a directory without spaces.

GNU Make builds for Win32 are available as well, and sometimes are included with the compilers. Make sure it
is in your path, for instance by copying the make.exe in the bin directory of your compiler.

Native win32 versions of the GNU/Linux commands cp, rm and mv can be useful. rm is almost always used in by
the clean target of a makefile.

CMD

Any Windows includes a command prompt. Not the most advanced, but it is enough to do the build tasks. Make
sure the path is set properly and make -f mk_mingw.mak should do the trick.

If you want to build an iconv enabled version, you must specify WITH_ICONV=yes like below:

make -f mk_mingw.mak WITH_ICONV=yes

If you want to build a debug version, you must specify DEBUG=1 like below:

make -f mk_mingw.mak DEBUG=1

MSYS / MSYS2

From their site: MSYS is a collection of GNU utilities such as bash, make, gawk and grep to allow building of
applications and programs which depend on traditional UNIX tools to be present. It is intended to supplement
MinGW and the deficiencies of the cmd shell.

MSYS comes in two flavors; the original from MinGW and MSYS2. See http://www.msys2.org/ about MSYS2.

MSYS is old but still works. You can build ctags with it using make -f mk_mingw.mak. The Autotools are
too old on MSYS so you cannot use them.

MSYS2 is a more maintained version of MSYS, but specially geared towards MinGW-w64. You can also use
Autotools to build ctags. If you use Autotools you can enable parsers which require jansson, libxml2 or libyaml,
and can also do the Units testing with make units.

The following packages are needed to build a full-featured version:

• base-devel (make, autoconf)

• mingw-w64-{i686,x86_64}-toolchain (mingw-w64-{i686,x86_64}-gcc, mingw-w64-{i686,x86_64}-pkg-
config)

• mingw-w64-{i686,x86_64}-jansson

• mingw-w64-{i686,x86_64}-libxml2

• mingw-w64-{i686,x86_64}-libyaml

• mingw-w64-{i686,x86_64}-xz

If you want to build a single static-linked binary, you can use the following command:

9.2. Building/hacking/using on MS-Windows 66

http://www.msys2.org/

Universal Ctags Documentation, Release 0.3.0

./autogen.sh

./configure --disable-external-sort EXTRA_CFLAGS=-DLIBXML_STATIC LDFLAGS=-static
→˓LIBS='-lz -llzma -lws2_32'
make

--disable-external-sort is a recommended option for Windows builds.

Cygwin

Cygwin provides ports of many GNU/Linux tools and a POSIX API layer. This is the most complete way to get
the GNU/Linux terminal feel under Windows. Cygwin has a setup that helps you install all the tools you need.
One drawback of Cygwin is that it has poor performance.

It is easy to build a Cygwin version of ctags using the normal GNU/Linux build steps. This ctags.exe will depend
on cygwin1.dll and should only be used within the Cygwin ecosystem.

Cygwin has packages with a recent version of MinGW-w64 as well. This way it is easy to cross-compile a native
Windows application with make -f mk_mingw.mak CC=i686-w64-mingw32-gcc.

You can also build a native Windows version using Autotools.

./autogen.sh

./configure --host=i686-w64-mingw32 --disable-external-sort
make

If you use Autotools you can also do the Units testing with make units.

Some anti-virus software slows down the build and test process significantly, especially when ./configure is
running and during the Units tests. In that case it could help to temporarily disable them. But be aware of the risks
when you disable your anti-virus software.

Cross-compile from GNU/Linux

All major distributions have both MinGW and MinGW-w64 packages. Cross-compiling works the same way as
with Cygwin. You cannot do the Windows based Units tests on GNU/Linux.

9.2.3 Building ctags with IDEs

I have no idea how things work for most GNU/Linux developers, but most Windows developers are used to IDEs.
Not many use a command prompt and running the debugger from the command line is not a thing a Windows
developers would normally do. Many IDEs exist for Windows, I use the two below.

Microsoft Visual Studio

As already mentioned Microsoft Visual Studio 2013 has the free Express and Community editions. For ctags the
Windows Desktop Express Edition is enough to get the job done. The IDE has a proper debugger. Project files for
VS2013 can be found in the win32 directory.

Please know that when files are added to the sources.mak, these files need to be added to the .vcxproj and .vcx-
proj.filters files as well. The XML of these files should not be a problem.

Code::Blocks

http://www.codeblocks.org/

Code::Blocks is a decent GPL-licensed IDE that has good gcc and gdb integration. The TDM-GCC that can be
installed together with Code::Blocks works fine and I can provide a project file. This is an easy way to have a free
- free as in beer as well as in speech - solution and to have the debugger within the GUI as well.

9.2. Building/hacking/using on MS-Windows 67

http://www.codeblocks.org/

Universal Ctags Documentation, Release 0.3.0

9.2.4 Other differences between Microsoft Windows and GNU/Linux

There other things where building ctags on Microsoft Windows differs from building on GNU/Linux.

• Filenames on Windows file systems are case-preserving, but not case-sensitive.

• Windows file systems use backslashes “" as path separators, but paths with forward slashes “/” are no
problem for a Windows program to recognize, even when a full path (include drive letter) is used.

• The default line-ending on Windows is CRLF. A tags file generated by the Windows build of ctags will
contain CRLF.

• The tools used to build ctags do understand Unix-line endings without problems. There is no need to convert
the line-ending of existing files in the repository.

• Due to the differences between the GNU/Linux and Windows C runtime library there are some things that
need to be added to ctags to make the program as powerful as it is on GNU/Linux. At this moment regex
and fnmatch are borrowed from glibc.

• Because there is no default scandir() for Windows, the optlib feature is not yet available for Windows.
Various implementations of scandir() for Windows do exist, but still have to be investigated.

• Units testing needs a decent bash shell. It is only tested using Cygwin or MSYS2.

9.3 Building on Mac OS

Maintainer Cameron Eagans <me@cweagans.net>

This part of the documentation is written by Cameron Eagans, a co-maintainer of Universal-ctags and the main-
tainer of the OSX packaging of this project.

9.3.1 Build Prerequisites

Building ctags on OSX should be no different than building on GNU/Linux. The same toolchains are used, and
the Mac OS packaging scripts use autotools and make (as you’d expect).

You may need to install the xcode command line tools. You can install the entire xcode distribution from the App
Store, or for a lighter install, you can simply run xcode-select --install to only install the compilers
and such. See http://stackoverflow.com/a/9329325 for more information. Once your build toolchain is installed,
proceed to the next section.

At this point, if you’d like to build from an IDE, you’ll have to figure it out. Building ctags is a pretty straightfor-
ward process that matches many other projects and most decent IDEs should be able to handle it.

Building Manually (i.e. for development)

You can simply run the build instructions in README.md.

Building with Homebrew

Homebrew (http://brew.sh/) is the preferred method for installing Universal-ctags for end users. Currently, the
process for installing with Homebrew looks like this:

brew tap universal-ctags/universal-ctags
brew install --HEAD universal-ctags

9.3. Building on Mac OS 68

mailto:me@cweagans.net
http://stackoverflow.com/a/9329325
http://brew.sh/

Universal Ctags Documentation, Release 0.3.0

Eventually, we hope to move the Universal-ctags formula to the main Homebrew repository, but since we don’t
have any tagged releases at this point, it’s a head-only formula and wouldn’t be accepted. When we have a tagged
release, we’ll submit a PR to Homebrew.

If you’d like to help with the Homebrew formula, you can find the repository here: https://github.com/
universal-ctags/homebrew-universal-ctags

9.3.2 Differences between OSX and GNU/Linux

There other things where building ctags on OSX differs from building on GNU/Linux.

• Filenames on HFS+ (the Mac OS filesystem) are case-preserving, but not case-sensitive in 99% of configu-
rations. If a user manually formats their disk with a case sensitive version of HFS+, then the filesystem will
behave like normal GNU/Linux systems. Depending on users doing this is not a good thing.

9.3.3 Contributing

This documentation is very much a work in progress. If you’d like to contribute, submit a PR and mention
@cweagans for review.

9.3. Building on Mac OS 69

https://github.com/universal-ctags/homebrew-universal-ctags
https://github.com/universal-ctags/homebrew-universal-ctags

CHAPTER 10

Testing ctags

It it difficult for us to know syntax of all languages supported in ctags. Test facility and test cases are quite import
for maintaining ctags in limited resources.

10.1 Units test facility

Maintainer Masatake YAMATO <yamato@redhat.com>

Exuberant ctags has a test facility. The test case were Test directory. So Here I call it Test.

Main aim of the facility is detecting regression. All files under Test directory are given as input for old and new
version of ctags commands. The output tags files of both versions are compared. If any difference is found the
check fails. Test expects the older ctags binary to be correct.

This expectation is not always met. Consider that a parser for a new language is added. You may want to add
a sample source code for that language to Test. An older ctags version is unable to generate a tags file for that
sample code, but the newer ctags version does. At this point a difference is found and Test reports failure.

The units test facility(Units) I describe here takes a different approach. An input file and an expected output file
are given by a contributor of a language parser. The units test facility runs ctags command with the input file and
compares its output and the expected output file. The expected output doesn’t depend on ctags.

If a contributor sends a patch which may improve a language parser, and if a reviewer is not familiar with that
language, s/he cannot evaluate it.

Unit test files, the pair of input file and expected output file may be able to explain the intent of patch well; and
may help the reviewer.

10.1.1 How to write a test case

The test facility recognizes an input file and an expected output file by patterns of file name. Each test case should
have its own directory under Units directory.

Units/TEST/input.* requisite

Input file name must have a input as basename. TEST part should explain the test case well.

Units/TEST/input[-_][0-9].* Units/TEST/input[-_][0-9][-_]*.* optional

70

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

Optional input file names. They are put next to input.* in testing command line.

Units/TEST/expected.tags optional

Expected output file must have a name expected.tags. It should be the same directory of the input file.

If this file is not given, the exit status of ctags process is just checked; the output is ignored.

If you want to test etags output (specified with -e), Use .tags-e as suffix instead of .tags. In such a
case you don’t have to write -e to args.ctags. The test facility sets -e automatically.

If you want to test cross reference output (specified with -x), Use .tags-x as suffix instead of .tags.
In such a case you don’t have to write -x to args.ctags. The test facility sets -x automatically.

If you want to test json output (specified with --output-format=json), Use .tags-json as suffix
instead of .tags. In such a case you don’t have to write --output-format=json to args.
ctags, and json to features. The test facility sets the option and the feature automatically.

Units/TEST/args.ctags optional

-o - is used as default optional argument when running a unit test ctags. If you want to add more
options, enumerate options in args.ctags file. This file is an optional.

Remember you have to put one option in one line; don’t put multiple options to one line. Multiple
options in one line doesn’t work.

Units/TEST/filter-*.* optional

You can rearrange the output of ctags with this command before comparing with executed.tags. This
command is invoked with no argument. The output ctags is given via stdin. Rearrange data should be
written to stdout.

Units/TEST/features optional

If a unit test case requires special features of ctags, enumerate them in this file line by line. If a target
ctags doesn’t have one of the features, the test is skipped.

If a file line is started with !, the effect is inverted; if a target ctags has the feature specified with !,
the test is skipped.

All features built-in can be listed with passing --list-features to ctags.

Units/TEST/languages optional

If a unit test case requires that language parsers are enabled/available, enumerate them in this file line
by line. If one of them is disabled/unavailable, the test is skipped.

language parsers enabled/available can be checked with passing --list-languages to ctags.

Units/TEST/dictfile optional

Used in spell checking. See cspell for more details.

10.1.2 Note for importing a test case from Test directory

I think all test cases under Test directory should be converted to Units.

If you convert use following TEST name convention.

• use .t instead of .d as suffix for the name

Here is an example:

Test/simple.sh

This should be:

Units/simple.sh.t

10.1. Units test facility 71

Universal Ctags Documentation, Release 0.3.0

With this name convention we can track which test case is converted or not.

10.1.3 Example of files

See Units/c-sample/input.c and Units/c-sample/expected.

10.1.4 How to run unit tests

test make target:

$ make units

The result of unit tests is reported by lines. You can specify test cases with UNITS=.

An example to run vim-command.d only:

$ make units UNITS=vim-command

Another example to run vim-command.d and parser-python.r/bug1856363.py.d:

$ make units UNITS=vim-command,bug1856363.py

During testing OUTPUT.tmp, EXPECTED.tmp and DIFF.tmp files are generated for each test case directory. These
are removed when the unit test is passed. If the result is FAILED, it is kept for debugging. Following command
line can clean up these generated files at once:

$ make clean-units

Other than FAILED and passed two types of result are defined.

skipped

means running the test case is skipped in some reason.

failed (KNOWN bug)

mean the result if failed but the failure is expected. See “Gathering test cases for known bugs”.

10.1.5 Example of running

$ make units
Category: ROOT

Testing 1795612.js as JavaScript passed
Testing 1850914.js as JavaScript passed
Testing 1878155.js as JavaScript passed
Testing 1880687.js as JavaScript passed
Testing 2023624.js as JavaScript passed
Testing 3184782.sql as SQL passed
...

10.1.6 Running unit tests for specific languages

You can run only the tests for specific languages by setting LANGUAGES to parsers as reported by ctags
--list-languages:

make units LANGUAGES=PHP,C

Multiple languages can be selected using a comma separated list.

10.1. Units test facility 72

Universal Ctags Documentation, Release 0.3.0

10.1.7 Gathering test cases for known bugs

When we met a bug, making a small test case that triggers the bug is important development activity. Even the bug
cannot be fixed in soon, the test case is an important result of work. Such result should be merged to the source
tree. However, we don’t love FAILED message, too. What we should do?

In such a case, merge as usually but use .b as suffix for the directory of test case instead of .d.

Unix/css-singlequote-in-comment-issue2.b is an example of .b suffix usage.

When you run test.units target, you will see:

Testing c-sample as C passed
Testing css-singlequote-in-comment as CSS failed (KNOWN bug)
Testing ctags-simple as ctags passed

Suffix .i is a variant of .b. .i is for merging/gathering input which lets ctags process enter an infinite loop. Different
from .b, test cases marked as .i are never executed. They are just skipped but reported the skips:

Testing ada-ads as Ada passed
Testing ada-function as Ada skipped (may cause an
→˓infinite loop)
Testing ada-protected as Ada passed
...

Summary (see CMDLINE.tmp to reproduce without test harness)
--

#passed: 347
#FIXED: 0
#FAILED (unexpected-exit-status): 0
#FAILED (unexpected-output): 0
#skipped (features): 0
#skipped (languages): 0
#skipped (infinite-loop): 1
ada-protected

...

10.1.8 Running under valgrind and timeout

If VG=1 is given, each test cases are run under valgrind. If valgrind detects an error, it is reported as:

$ make units VG=1
Testing css-singlequote-in-comment as CSS failed (valgrind-error)
...
Summary (see CMDLINE.tmp to reproduce without test harness)
--
...
#valgrind-error: 1

css-singlequote-in-comment
...

In this case the report of valgrind is recorded to Units/css-singlequote-in-comment/
VALGRIND-CSS.tmp.

NOTE: /bin/bash is needed to report the result. You can specify a shell running test with SHELL macro like:

$ make units VG=1 SHELL=/bin/bash

If TIMEOUT=N is given, each test cases are run under timeout command. If ctags doesn’t stop in N second, it is
stopped by timeout command and reported as:

10.1. Units test facility 73

Universal Ctags Documentation, Release 0.3.0

$ make units TIMEOUT=1
Testing css-singlequote-in-comment as CSS failed (TIMED OUT)
...
Summary (see CMDLINE.tmp to reproduce without test harness)
--
...
#TIMED-OUT: 1

css-singlequote-in-comment
...

If TIMEOUT=N is given, .i test cases are run. They will be reported as TIMED-OUT.

10.1.9 Categories

With .r suffix, you can put test cases under a sub directory of Units. Units/parser-ada.r is an example. If
misc/units test harness, the sub directory is called a category. parser-ada.r is the name category in the above
example.

CATEGORIES macro of make is for running units in specified categories. Following command line is for running
units in Units/parser-sh.r and Units/parser-ada.r:

$ make units CATEGORIES='parser-sh,parser-ada'

10.1.10 Finding minimal bad input

When a test case is failed, the input causing FAILED result is passed to misc/units shrink. misc/units shrink tries
to make the shortest input which makes ctags exits with non-zero status. The result is reported to Units/*/
SHRINK-${language}.tmp. Maybe useful to debug.

10.1.11 Acknowledgments

The file name rule is suggested by Maxime Coste <frrrwww@gmail.com>.

10.2 Semi-fuzz(Fuzz) testing

Maintainer Masatake YAMATO <yamato@redhat.com>

Unexpected input can lead ctags to enter an infinite loop. The fuzz target tries to identify these conditions by
passing semi-random (semi-broken) input to ctags.

$ make fuzz LANGUAGES=LANG1[,LANG2,...]

With this command line, ctags is run for random variations of all test inputs under Units/*/input.* of languages
defined by LANGUAGES macro variable. In this target, the output of ctags is ignored and only the exit status is
analyzed. The ctags binary is also run under timeout command, such that if an infinite loop is found it will exit
with a non-zero status. The timeout will be reported as following:

[timeout C] Units/test.vhd.t/input.vhd

This means that if C parser doesn’t stop within N seconds when Units/test.vhd.t/input.vhd is given as an input,
timeout will interrupt ctags. The default duration can be changed using TIMEOUT=N argument in make command.
If there is no timeout but the exit status is non-zero, the target reports it as following:

10.2. Semi-fuzz(Fuzz) testing 74

mailto:frrrwww@gmail.com
mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

[unexpected-status(N) C] Units/test.vhd.t/input.vhd

The list of parsers which can be used as a value for LANGUAGES can be obtained with following command line

$./ctags --list-languages

Besides LANGUAGES and TIMEOUT, fuzz target also takes the following parameters:

VG=1

Run ctags under valgrind. If valgrind finds a memory error it is reported as:

[valgrind-error Verilog] Units/array_spec.f90.t/
→˓input.f90

The valgrind report is recorded at Units/*/VALGRIND-${language}.tmp.

As the same as units target, this semi-fuzz test target also calls misc/units shrink when a test case is failed. See
“Units test facility” about the shrunk result.

10.3 Noise testing

Maintainer Masatake YAMATO <yamato@redhat.com>

After enjoying developing Semi-fuzz testing, I’m looking for a more unfair approach. Run

$ make noise LANGUAGES=LANG1[,LANG2,...]

It takes a long time, especially with VG=1, so this cannot be run under Travis CI. However, it is a good idea to run
it locally.

The noise target generates test cases by inserting or deleting one character to the test cases of Units.

TBW

10.4 Chop and slap testing

Maintainer Masatake YAMATO <yamato@redhat.com>

After reviving many bug reports, we recognized some of them spot unexpected EOF. The chop target was devel-
oped based on this recognition.

The chop target generates many input files from an existing input file under Units by truncating the existing input
file at variety file positions.

$ make chop LANGUAGES=LANG1[,LANG2,...]

It takes a long time, especially with VG=1, so this cannot be run under Travis CI. However, it is a good idea to run
it locally.

slap target is derived from chop target. While chop target truncates the existing input files from tail, the slap target
does the same from head.

10.3. Noise testing 75

mailto:yamato@redhat.com
mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

10.5 Tmain: a facility for testing main part

Maintainer Masatake YAMATO <yamato@redhat.com>

Tmain is introduced to test the area where Units does not cover well.

Units works fine for testing parsers. However, it assumes something input is given to ctags command, and a tags
file is generated from ctags command.

Other aspects cannot be tested. Such areas are files and directories layout after installation, standard error output,
exit status, etc.

You can run test cases with following command line:

$ make tmain

Tmain is still under development so I will not write the details here.

To write a test case, see files under Tmain/tmain-example.d. In the example, Tmain does:

1. runs new subshell and change the working directory to Tmain/tmain-example.d,

2. runs run.sh with bash,

3. captures stdout, stderr and exit status, and

4. compares them with stdout-expected.txt, stderr-expected.txt, and exit-expected.txt.

5. compares it with tags-expected.txt if run.sh generates tags file.

run.sh is run with following 4 arguments:

1. the path for the target ctags

2. the path for builddir directory

3. the path for the target readtags

The path for readtags is not reliable; readtags command is not available if –disable-readcmd was given in configure
time. A case, testing the behavior of readtags, must verify the command existence with test -x $4 before going
into the main part of the test.

When comparing tags file with tags-expected.txt, you must specify the path of tags explicitly with -o option in
ctags command line like:

CTAGS=$1
BUILDDIR=$3
${CTAGS} ... -o $BUILDDIR/tags ...

This makes it possible to keep the original source directory clean.

See also tmain_run and tmain_compare functions in misc/units.

If run.sh exits with code 77, the test case is skipped. The output to stdout is captured and printed as the reason of
skipping.

10.5.1 TODO

• Run under valgrind

10.5. Tmain: a facility for testing main part 76

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

10.6 Tinst installation test

Maintainer Masatake YAMATO <yamato@redhat.com>

tinst target is for testing the result of make install.

$ make tinst

10.7 Cspell spell checking

Maintainer Masatake YAMATO <yamato@redhat.com>

• make cspell reports unknown words. After verifying the reported words are correct you should add
them to files under dictfiles directory.

• cspell target assumes the names used in ctags source code are correctly spelled. Such names can be
added semi-automatically; use make dicts targets. It updates files prefixed with GENERATED- under
dictfiles.

• Either semi-automatically generated or adding by manually, files under dictfiles directory should be installed
to Universal-ctags git repository.

• make cspell makes and users SPELL_CHECKING.TMP at the top of source code directory as tempo-
rary working space.

• cspell target depends on GNU aspell library. If the library is linked to, ctags --list-features
prints aspell.

An example session:

$ make cspell
./misc/gen-repoinfo > main/repoinfo.h

CC main/ctags-repoinfo.o
CCLD ctags

/bin/sh misc/cspell
checking bda36b226cfc0f492908bc5779268c353e615623...unknown words

orignal
dictfile

checking 61a71ef37df9fd9ebb0d3e8a941effd643662cda...ok
checking b08c956e155d47a8e689cfede2501ab48890c889...ok
checking c07a6e94140e1d5cfeaf3cb42d2fc28bd0e92e51...ok
...
checking 201e5e774fef84527802113969998bd71b14466d...ok
Makefile:6510: recipe for target 'cspell' failed
make: *** [cspell] Error 1

Here cspell reports “orignal” and “dictfile” as unknown words.

“orignal” should be “original”. So you should make a fixup commit for bda36b with “git commit –fixup=bda36b”.
Then you may want to do “git rebase -i –autosquash master”.

“dictfile” may be a name used in source code files. Ideally make dicts picks up the name and puts to one of
GENERATED- dictionaries. However, it is not implemented yet. What you can do now is adding it to one of
dictionaries under dictfiles directory. After do “git add” the directory file and make a fixup commit.

There are cases that you want to add a misspelled word intentionally to source tree: to test cases(Units and Tmain)
and to documentations.

About test cases, make a file named dictfile under the directory of target test case, and put the words line by line.
You can find an example in Units/simple-ctags-aspell.d/dictfile of Universal-ctags source tree.

10.6. Tinst installation test 77

mailto:yamato@redhat.com
mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

For documentations, there is no good way. Suggestions are welcome. “CSPELL:” prefix line is a temporary
solution. A line starting from “CSPELL:” in a commit log is treated specially by make cspell when spell-
checking the commit; whitespace separated words in the line are added to a temporary dictionary.

An example

commit 8efb57fa1c9d7b9b7ba01f49963d7d7779609f21
Author: Masatake YAMATO <yamato@redhat.com>
Date: Mon Jun 5 23:08:51 2017 +0900

docs(man): fix styles of definition list

CSPELL: xno xyes

Signed-off-by: Masatake YAMATO <yamato@redhat.com>

Here “xno” and “xyes” are added to a dictionary temporary used during spell-checking the commit, “8efb57”;
“xno” and “xyes” are never reported as unknown words. The temporary dictionary is used only for this commit.

10.8 Input validation for Units

Maintainer Masatake YAMATO <yamato@redhat.com>

We have to maintain parsers for languages that we don’t know well. We don’t have enough time to learn the
languages.

Units test cases help us not introduce wrong changes to a parser.

However, there is still an issue; a developer who doesn’t know a target language well may write a broken test input
file for the language. Here comes “Input validation.”

You can validate the test input files of Units with validate-input make target if a validator for a language is defined.

10.8.1 How to run and an example session

Here is an example validating an input file for JSON.

$ make validate-input VALIDATORS=jq
...
Category: ROOT
--
simple-json.d/input.json with jq valid

Summary
--

#valid: 1
#invalid: 0
#skipped (known invalidation) 0
#skipped (validator unavailable) 0

This example shows validating simple-json.d/input.json as an input file with jq validator. With VALIDATORS
variable passed via command-line, you can specify validators to run. Multiple validators can be specified using a
comma-separated list. If you don’t give VALIDATORS, the make target tries to use all available validators.

The meanings of “valid” and “invalid” in “Summary” are apparent. In two cases, the target skips validating input
files:

#skipped (known invalidation)

A test case specifies KNOWN-INVALIDATION in its validator file.

10.8. Input validation for Units 78

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

#skipped (validator unavailable)

A command for a validator is not available.

10.8.2 validator file

validator file in a Units test directory specifies which validator the make target should use.

$ cat Units/simple-json.d/validator
jq

If you put validator file to a category directory (a directory having .r suffix), the make target uses the validator
specified in the file as default. The default validator can be overridden with a validator file in a subdirectory.

$ cat Units/parser-puppetManifest.r/validator
puppet
cat Units/parser-puppetManifest.r/puppet-append.d/validator
KNOWN-INVALIDATION

In the example, the make target uses puppet validator for validating the most of all input files under Units/parser-
puppetManifest.r directory. An exception is an input file under Units/parser-puppetManifest.r/puppet-append.d
directory. The directory has its specific validator file.

If a Unit test case doesn’t have expected.tags file, the make target doesn’t run the validator on the file even if a
default validator is given in its category directory.

If a Unit test case specifies KNOWN-INVALIDATION in its validator file, the make target just increments
“#skipped (known invalidation)” counter. The target reports the counter at the end of execution.

10.8.3 validator command

A validator specified in a validator file is a command file put under misc/validators directory. The command must
have “validator-” as prefix in its file name. For an example, misc/validators/validator-jq is the command for “jq”.

The command file must be an executable. validate-input make target runs the command in two ways.

is_runnable method

Before running the command as a validator, the target runs the command with “is_runnable” as the
first argument. A validator command can let the target know whether the validator command is
runnable or not with exit status. 0 means ready to run. Non-zero means not ready to run.

The make target never runs the validator command for validation purpose if the exit status is non-zero.

For an example, misc/validators/validator-jq command uses jq command as its backend. If jq com-
mand is not available on a system, validator-jq can do nothing. If such case, is_runnable method of
validator-jq command should exit with non-zero value.

validate method

The make target runs the command with “validate* and an input file name for validating the input file.
The command exits non-zero if the input file contains invalid syntax. This method

will never run if is_runnable method of the command exits with non-zero.

10.8. Input validation for Units 79

CHAPTER 11

Extending ctags

Exuberant-ctags allows a user to add a new parser to ctags with --langdef=<LANG> and
--regex-<LANG>=... options.

Universal-ctags follows and extends the design of Exuberant-ctags in more powerful ways, as described in the
following chapters.

Universal-ctags encourages users to share the new parsers defined by their options. See optlib to know how you
can share your parser definition with others.

Note that some of the new features are experimental, and will be marked as such in the documentation.

11.1 Extending ctags with Regex parser (optlib)

Maintainer Masatake YAMATO <yamato@redhat.com>

11.1.1 Option files

An “option” file is a file in which command line options are written line by line. ctags loads it and runs as if the
options in the file were passed in command line.

Following file is an example of option file.

Exclude directories that don't contain real code
--exclude=Units

indentation is ignored
--exclude=tinst-root

--exclude=Tmain

can be used as a start marker of a line comment. Whitespaces at the start of lines are ignored during loading.

There are two categories of option files, though they both contain command line options: preload and optlib
option files.

80

mailto:yamato@redhat.com

Universal Ctags Documentation, Release 0.3.0

Preload option file

Preload option files are option files loaded by ctags automatically at start-up time. Which files are loaded at
start-up time are very different from Exuberant-ctags.

At start-up time, Universal-ctags loads files having .ctags as a file extension under the following statically
defined directories:

1. $HOME/.ctags.d

2. $HOMEDRIVE$HOMEPATH/.ctags.d (in Windows)

3. .ctags.d

4. ctags.d

ctags visits the directories in the order listed above for preloading files. ctags loads files having .ctags as
file extension in alphabetical order (strcmp(3) is used for comparing, so for example .ctags.d/ZZZ.ctags
will be loaded before .ctags.d/aaa.ctags).

Quoted from man page of Exuberant-ctags:

FILES
/ctags.cnf (on MSDOS, MSWindows only)
/etc/ctags.conf
/usr/local/etc/ctags.conf
$HOME/.ctags
$HOME/ctags.cnf (on MSDOS, MSWindows only)
.ctags
ctags.cnf (on MSDOS, MSWindows only)

If any of these configuration files exist, each will
be expected to contain a set of default options
which are read in the order listed when ctags
starts, but before the CTAGS environment variable is
read or any command line options are read. This
makes it possible to set up site-wide, personal or
project-level defaults. It is possible to compile
ctags to read an additional configuration file
before any of those shown above, which will be
indicated if the output produced by the --version
option lists the "custom-conf" feature. Options
appearing in the CTAGS environment variable or on
the command line will override options specified in
these files. Only options will be read from these
files. Note that the option files are read in
line-oriented mode in which spaces are significant
(since shell quoting is not possible). Each line of
the file is read as one command line parameter (as
if it were quoted with single quotes). Therefore,
use new lines to indicate separate command-line
arguments.

What follows explains the differences and their intentions. . .

Directory oriented configuration management

Exuberant-ctags provides a way to customize ctags with options like --langdef=<LANG> and
--regex-<LANG>. These options are powerful and make ctags popular for programmers.

Universal-ctags extends this idea; we have added new options for defining a parser, and have extended existing
options. Defining a new parser with the options is more than “customizing” in Universal-ctags.

To make it easier to maintain a parser defined using the options, you can put each parser language in a different
options file. Universal-ctags doesn’t preload a single file. Instead, Universal-ctags loads all files having the .

11.1. Extending ctags with Regex parser (optlib) 81

Universal Ctags Documentation, Release 0.3.0

ctags extension under the previously specified directories. If you have multiple parser definitions, put them in
different files.

Avoiding option incompatibility issues

The Universal-ctags options are different from those of Exuberant-ctags, therefore Universal-ctags doesn’t load
any of the files Exuberant-ctags loads at start-up. Otherwise there would be incompatibility issues if Exuberant-
ctags loaded an option file that used a newly introduced option in Universal-ctags, and vice versa.

No system wide configuration

To make the preload path list short and because it was rarely ever used, Universal-ctags does not load any option
files for system wide configuration. (i.e., no /etc/ctags.d)

Use .ctags for the file extension

Extensions .cnf and .conf are obsolete. Use the unified extension .ctags only.

Optlib option file

From a syntax perspective, there is no difference between optlib option files and preload option files; ctags
options are written line by line in a file.

Optlib option files are option files not loaded at start-up time automatically. To load an optlib option file, specify
a pathname for an optlib option file with --options=PATHNAME option explicitly. The pathname can be just
the filename if it’s in the current directory.

Exuberant-ctags has the --options option, but you can only specify a single file to load. Universal-ctags
extends the option two aspects: you can specify a directory to load all files in that directory, and you can specify
a path search list to look in. See next section for details.

Specifying a directory

If you specify a directory instead of a file as the argument for the --options=PATHNAME, Universal-ctags will
load all files having a .ctags extension under the directory in alphabetical order.

Specifying an optlib path search list

For loading a file (or directory) specified in --options=PATHNAME, ctags searches “optlib path list” first if
the option argument (PATHNAME) doesn’t start with ‘/’ or ‘.’. If ctags finds a file, ctags loads it.

If ctags doesn’t find a file in the path list, ctags loads a file (or directory) at the specified pathname.

By default, optlib path list is empty. To set or add a directory path to the list, use --optlib-dir=PATH.

For setting (adding one after clearing):

--optlib-dir=PATH

For adding:

--optlib-dir=+PATH

11.1. Extending ctags with Regex parser (optlib) 82

Universal Ctags Documentation, Release 0.3.0

Tips for writing an option file

• Use --quiet --options=NONE to disable preloading.

• Two options are introduced for debugging the process of loading option files.

--_echo=MSG

Prints MSG to standard error immediately.

--_force-quit=[NUM]

Exit immediately with the status of the specified NUM.

• Universal-ctags has an optlib2c script that translates an option file into C source code. Your optlib parser
can thus easily become a built-in parser, by contributing to Universal-ctags’ github. You could be famous!
Examples are in the optlib directory in Universal-ctags source tree.

11.1.2 Regular expression (regex) engine

Universal-ctags currently uses the same regex engine as Exuberant-ctags does: the POSIX.2 regex engine in GNU
glibc-2.10.1. By default it uses the Extended Regular Expressions (ERE) syntax, as used by most engines today;
however it does not support many of the “modern” extensions such as lazy captures, non-capturing grouping,
atomic grouping, possessive quantifiers, look-ahead/behind, etc. It is also notoriously slow when backtracking,
and has some known “quirks” with respect to escaping special characters in bracket expressions.

For example, a pattern of [^\]]+ is invalid in POSIX.2, because the] is not special inside a bracket expression,
and thus should not be escaped. Most regex engines ignore this subtle detail in POSIX.2, and instead allow
escaping it with \] inside the bracket expression and treat it as the literal character]. GNU glibc, however, does
not generate an error but instead considers it undefined behavior, and in fact it will match very odd things. Instead
you must use the more unintuitive [^]]+ syntax. The same is technically true of other special characters inside a
bracket expression, such as [^\)]+, which should instead be [^)]+. The [^\)]+ will appear to work usually,
but only because what it is really doing is matching any character but \ or). The only exceptions for using \
inside a bracket expression are for \t and \n, which ctags converts to their single literal character control codes
before passing the pattern to glibc.

Another detail to keep in mind is how the regex engine treats newlines. Universal-ctags compiles the regular ex-
pressions in the --regex-<LANG> and --mline-regex-<LANG> options with REG_NEWLINE set. What
that means is documented in the POSIX spec. One obvious effect is that the regex special dot any-character .
does not match newline characters, the ^ anchor does match right after a newline, and the $ anchor matches
right before a newline. A more subtle issue is this text from the Regular Expressions chapter: “the use of literal
<newline>s or any escape sequence equivalent produces undefined results”. What that means is using a regex
pattern with [^\n]+ is invalid, and indeed in glibc produces very odd results. Never use \n in patterns for
--regex-<LANG>, and never use them in non-matching bracket expressions for --mline-regex-<LANG>
patterns. For the experimental --_mtable-regex-<LANG> you can safely use \n because that regex is not
compiled with REG_NEWLINE.

You should always test your regex patterns against test files with strings that do and do not match. Pay particular
emphasis to when it should not match, and how much it matches when it should. A common error is forgetting that
a POSIX.2 ERE engine is always greedy; the * and + quantifiers match as much as possible, before backtracking
from the end of their match.

For example this pattern:

foo.*bar

Will match this entire string, not just the first part:

foobar, bar, and even more bar

11.1. Extending ctags with Regex parser (optlib) 83

http://pubs.opengroup.org/onlinepubs/009695399/functions/regcomp.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html

Universal Ctags Documentation, Release 0.3.0

11.1.3 Regex option argument flags

Many regex-based options described in this document support additonal arguments in the form of long flags. Long
flags are specified with surrounding { and }.

The general format and placement is as follows:

--regex-<LANG>=<PATTERN>/<NAME>/[<KIND>/]LONGFLAGS

Some examples:

--regex-Pod=/^=head1[\t]+(.+)/\1/c/
--regex-Foo=/set=[^;]+/\1/v/{icase}
--regex-Man=/^\.TH[[:space:]]{1,}"([^"]{1,})".*/\1/t/{exclusive}{icase}{scope=push}
--regex-Gdbinit=/^#//{exclusive}

Note that the last example only has two / forward slashes following the regex pattern, as a shortened form when
no kind-spec exists.

The --mline-regex-<LANG> option also follows the above format. The experimental
--_mtable-regex-<LANG> option follows a slightly modified version as well.

The --langdef=<LANG> option also supports long flags, but not using forward-slash separators.

Regex control flags

The regex matching can be controlled by adding flags to the --regex-<LANG>, --mline-regex-<LANG>,
and experimental --_mtable-regex-<LANG> options. This is done by either using the single character short
flags b, e and i flags as explained in the ctags.1 man page, or by using long flags described earlier. The long flags
require more typing but are much more readable.

The mapping between the older short flag names and long flag names is:

short flag long flag description
b basic Posix basic regular expression syntax.
e extend Posix extended regular expression syntax (default).
i icase Case-insensitive matching.

So the following --regex-<LANG> expression:

--regex-m4=/^m4_define\(\[([^]$\(]+).+$/\1/d,definition/x

is the same as:

--regex-m4=/^m4_define\(\[([^]$\(]+).+$/\1/d,definition/{extend}

The characters { and } may not be suitable for command line use, but long flags are mostly intended for option
files.

Exclusive flag in regex

By default, lines read from the input files will be matched with all regular expressions defined with
--regex-<LANG>. Each matched regular expression will successfully emit a tag.

In some cases another policy, exclusive-matching, is preferable to the all-matching policy. Exclusive-matching
means the rest of regular expressions are not tried if one of regular expressions is matched successfully, for that
input line.

For specifying exclusive-matching the flags exclusive (long) and x (short) were introduced. For example, this
is used in optlib/gdbinit.ctags for ignoring comment lines in gdb files, as follows:

11.1. Extending ctags with Regex parser (optlib) 84

Universal Ctags Documentation, Release 0.3.0

--regex-Gdbinit=/^#//{exclusive}

Comments in gbd files start with # so the above line is the first regex match line in gdbinit.ctags, so that
subsequent regex matches are not tried for the input line.

If an empty name pattern(//) is used for the --regex-<LANG> option, ctags warns it as a wrong usage of the
option. However, if the flags exclusive or x is specified, the warning is suppressed.

NOTE: This flag does not make sense in the multi-line --mline-regex-<LANG> option nor the multi-table
--_mtable-regex-<LANG> option.

Experimental flags

Note: These flags are experimental. They apply to all regex option types: basic --regex-<LANG>, multi-line
--mline-regex-<LANG>, and the experimental multi-table --_mtable-regex-<LANG> option.

_extra

This flag indicates the tag should only be generated if the given ‘extra’ type is enabled, as explained
in Conditional tagging with extras.

_field

This flag allows a regex match to add additional custom fields to the generated tag entry, as explained
in Adding custom fields to the tag output.

_role

This flag allows a regex match to generate a reference tag entry and specify the role of the reference,
as explained in Capturing reference tags.

Ghost kind in regex parser

If a whitespace is used as a kind letter, it is never printed when ctags is called with --list-kinds option. This
kind is automatically assigned to an empty name pattern.

Normally you don’t need to know this.

11.1.4 Scope tracking in a regex parser

With the scope long flag, you can record/track scope context. A stack is used for tracking the scope context.

{scope=push}

Push the tag captured with a regex pattern to the top of the stack. If you don’t want to record this tag
but just push, use placeholder long option together.

{scope=ref}

Refer to the thing at the top of the stack as a scope where the tag captured with a regex pattern is. The
stack is not modified with this specification. If the stack is empty, this flag is just ignored.

{scope=pop}

Pop the thing at the top of the stack. If the stack is empty, this flag is just ignored.

{scope=clear}

Make the stack empty.

{scope=set}

Clear then push.

11.1. Extending ctags with Regex parser (optlib) 85

Universal Ctags Documentation, Release 0.3.0

{placeholder}

Don’t print a tag captured with a regex pattern to a tag file. This is useful when you need to push non-
named context information to the stack. Well known non-named scope in C language is established
with {. A non- named scope never appears in tags file as a name or scope name. However, pushing it
is important to balance push and pop.

Example 1:

in /tmp/input.foo
class foo:
def bar(baz):

print(baz)
class goo:
def gar(gaz):

print(gaz)

in /tmp/foo.ctags:
--langdef=Foo
--map-Foo=+.foo

--regex-Foo=/^class[[:blank:]]+([[:alpha:]]+):/\1/c,class/{scope=set}
--regex-Foo=/^[[:blank:]]+def[[:blank:]]+([[:alpha:]]+).*:/\1/d,definition/
→˓{scope=ref}

$ ctags --options=/tmp/foo.ctags -o - /tmp/input.foo
bar /tmp/input.foo /^ def bar(baz):$/;" d class:foo
foo /tmp/input.foo /^class foo:$/;" c
gar /tmp/input.foo /^ def gar(gaz):$/;" d class:goo
goo /tmp/input.foo /^class goo:$/;" c

Example 2:

// in /tmp/input.pp
class foo {

int bar;
}

in /tmp/pp.ctags:
--langdef=pp
--map-pp=+.pp

--regex-pp=/^[[:blank:]]*\}//{scope=pop}{exclusive}
--regex-pp=/^class[[:blank:]]*([[:alnum:]]+)[[[:blank:]]]*\{/\1/c,class,classes/
→˓{scope=push}
--regex-pp=/^[[:blank:]]*int[[:blank:]]*([[:alnum:]]+)/\1/v,variable,variables/
→˓{scope=ref}

$ ctags --options=/tmp/pp.ctags -o - /tmp/input.pp
bar /tmp/input.pp /^ include bar$/;" v class:foo
foo /tmp/input.pp /^class foo {$/;" c

NOTE: This flag doesn’t work well with --mline-regex-<LANG>=.

11.1.5 Overriding the letter for file kind

One of the built-in tag kinds in Universal-ctags is the F file kind. Overriding the letter for file kind is not allowed
in Universal-ctags.

11.1. Extending ctags with Regex parser (optlib) 86

Universal Ctags Documentation, Release 0.3.0

Warning: Don’t use F as a kind letter in your parser. (See issue #317 on github)

11.1.6 Generating fully qualified tags automatically from scope information

If scope fields are filled properly with {scope=. . . } regex flags, you can use the field values for generating fully
qualified tags. About the {scope=..} flag itself, see “FLAGS FOR –regex-<LANG> OPTION” section of ctags-
optlib(7) man page or Universal-ctags parser definition language.

Specify {_autoFQTag} to the end of --langdef=<LANG> option like -langdef=Foo{_autoFQTag} to
make ctags generate fully qualified tags automatically.

. is the default separator combining names into a fully qualified tag. It is not customizable yet.

input.foo:

class X
var y

end

foo.ctags:

--langdef=foo{_autoFQTag}
--map-foo=+.foo
--kinddef-foo=c,class,classes
--kinddef-foo=v,var,variables
--regex-foo=/class ([A-Z]*)/\1/c/{scope=push}
--regex-foo=/end///{placeholder}{scope=pop}
--regex-foo=/[\t]*var ([a-z]*)/\1/v/{scope=ref}

Output:

$ u-ctags --quiet --options=NONE --options=./foo.ctags -o - input.foo
X input.foo /^class X$/;" c
y input.foo /^ var y$/;" v class:X

$ u-ctags --quiet --options=NONE --options=./foo.ctags --extras=+q -o - input.foo
X input.foo /^class X$/;" c
X.y input.foo /^ var y$/;" v class:X
y input.foo /^ var y$/;" v class:X

“X.y” is printed as a fully qualified tag when --extras=+q is given.

11.1.7 Multi-line pattern match

We often need to scan multiple lines to generate a tag, whether due to needing contextual information to decide
whether to tag or not, or to constrain generating tags to only certain cases, or to grab multiple substrings to generate
the tag name.

Universal-ctags has two ways to accomplish this: multi-line regex options, and an experimental multi-table regex
options described later.

The newly introduced --mline-regex-<LANG> is similar to --regex-<LANG> except the pattern is ap-
plied to the whole file’s contents, not line by line.

This example is based on an issue #219 posted by @andreicristianpetcu:

// in input.java:

@Subscribe
public void catchEvent(SomeEvent e)

(continues on next page)

11.1. Extending ctags with Regex parser (optlib) 87

https://github.com/universal-ctags/ctags/blob/master/man/ctags-optlib.7.rst.in

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

{
return;
}

@Subscribe
public void
recover(Exception e)
{
return;
}

The above java code is similar to the Java Spring framework. The @Subscribe annotation is a keyword for the
framework, and the developer would like to have a tag generated for each method annotated with @Subscribe,
using the name of the method followed by a dash followed by the type of the argument. For example the developer
wants the tag name Event-SomeEvent generated for the first method shown above.

To accomplish this, the developer creates a spring.ctags file with the following:

in spring.ctags:
--langdef=javaspring
--map-javaspring:+.java
--mline-regex-javaspring=/@Subscribe([[:space:]])*([a-z]+)[[:space:]]*([a-zA-
→˓Z]*)\(([a-zA-Z]*)/\3-\4/s,subscription/{mgroup=3}
--fields=+ln

And now using spring.ctags the tag file has this:

$./ctags -o - --options=./spring.ctags input.java
Event-SomeEvent input.java /^public void catchEvent(SomeEvent e)$/;" s
→˓ line:2 language:javaspring
recover-Exception input.java /^ recover(Exception e)$/;" s
→˓line:10 language:javaspring

Multiline pattern flags

Note: These flags also apply to the experimental --_mtable-regex-<LANG> option described later.

{mgroup=N}

This flag indicates the pattern should be applied to the whole file contents, not line by line. N is the
number of a capture group in the pattern, which is used to record the line number location of the tag.
In the above example 3 is specified. The start position of the regex capture group 3, relative to the
whole file is used.

Warning: You must add an {mgroup=N} flag to the multi-line --mline-regex-<LANG> option, even
if the N is 0 (meaning the start position of the whole regex pattern). You do not need to add it for the multi-table
--_mtable-regex-<LANG>.

{_advanceTo=N[start|end]}

A regex pattern is applied to whole file’s contents iteratively. This long flag specifies from where the
pattern should be applied in the next iteration for regex matching. When a pattern matches, the next
pattern matching starts from the start or end of capture group N. By default it advances to the end of
of the whole match (i.e., {_advanceTo=0end} is the default).

Let’s think about following input

11.1. Extending ctags with Regex parser (optlib) 88

https://spring.io

Universal Ctags Documentation, Release 0.3.0

def def abc

Consider two sets of options, foo and bar.

foo.ctags:
--langdef=foo
--langmap=foo:.foo
--kinddef-foo=a,something,something
--mline-regex-foo=/def *([a-z]+)/\1/a/{mgroup=1}

bar.ctags:
--langdef=bar
--langmap=bar:.bar
--kinddef-bar=a,something,something
--mline-regex-bar=/def *([a-z]+)/\1/a/{mgroup=1}{_advanceTo=1start}

foo.ctags emits following tags output:

def input.foo /^def def abc$/;" a

bar.ctgs emits following tags output:

def input-0.bar /^def def abc$/;" a
abc input-0.bar /^def def abc$/;" a

_advanceTo=1start is specified in bar.ctags. This allows ctags to capture “abc”.

At the first iteration, the patterns of both foo.ctags and bar.ctags match as follows

0 1 (start)
v v
def def abc

^
0,1 (end)

“def” at the group 1 is captured as a tag in both languages. At the next iteration, the positions where
the pattern matching is applied to are not the same in the languages.

foo.ctags

0end (default)
v

def def abc

bar.ctags

1start (as specified in _advanceTo long flag)
v

def def abc

This difference of positions makes the difference of tags output.

A more relevant use-case is when {_advanceTo=N[start|end]} is used in the experimental
--_mtable-regex-<LANG>, to “advance” back to the beginning of a match, so that one can
generate multiple tags for the same input line(s).

Note: This flag doesn’t work well with scope related flags and exclusive flags.

11.1.8 Advanced pattern matching with multiple regex tables

11.1. Extending ctags with Regex parser (optlib) 89

Universal Ctags Documentation, Release 0.3.0

Note: This is a highly experimental feature. This will not go into the man page of 6.0. But let’s be honest, it’s
the most exciting feature!

In some cases, the --regex-<LANG> and --mline-regex-<LANG> options are not sufficient to generate
the tags for a particular language. Some of the common reasons for this are:

• To ignore commented lines or sections for the language file, so that tags aren’t generated for symbols that
are within the comments.

• To enter and exit scope, and use it for tagging based on contextual state or with end-scope markers that are
difficult to match to their associated scope entry point.

• To support nested scopes.

• To change the pattern searched for, or the resultant tag for the same pattern, based on scoping or contextual
location.

• To break up an overly complicated --mline-regex-<LANG> pattern into separate regex patterns, for
performance or readability reasons.

To help handle such things, Universal-ctags has been enhanced with multi-table regex matching. The feature
is inspired by lex, the fast lexical analyzer generator, which is a popular tool on Unix environments for writing
parsers, and RegexLexer of Pygments. Knowledge about them will help you understand the new options.

The new options are:

--_tabledef-<LANG>

Declares a new regex matching table of a given name for the language, as described in Declaring a
new regex table.

--_mtable-regex-<LANG>

Adds a regex pattern and associated tag generation information and flags, to the given table, as de-
scribed in Adding a regex to a regex table.

--_mtable-extend-<LANG>

Includes a previously-defined regex table to the named one.

The above will be discussed in more detail shortly.

First, let’s explain the feature with an example. Consider a imaginary language “X” has a similar syntax as
JavaScript: “var” is used as defining variable(s), , and “/* . . . */” is used for block comments.

Here is our input, input.x:

/* BLOCK COMMENT
var dont_capture_me;

*/
var a /* ANOTHER BLOCK COMMENT */, b;

We want ctags to capture a and b - but it is difficult to write a parser that will ignore dont_capture_me in
the comment with a classical regex parser defined with --regex-<LANG> or --mline-regex-<LANG>,
because of the block comments.

The --regex-<LANG> option only works on one line at a time, so cannnot know dont_capture_me is
within comments. The --mline-regex-<LANG> could do it in theory, but due to the greedy nature of the
regex engine it is impractical and potentially inefficient to do so, given that there could be multiple block comments
in the file, with * inside them, etc.

A parser written with multi-table regex, on the other hand, can capture only a and b safely. But it is more
complicated to understand.

Here is a 1st version of X.ctags:

11.1. Extending ctags with Regex parser (optlib) 90

http://pygments.org/docs/lexerdevelopment/

Universal Ctags Documentation, Release 0.3.0

--langdef=X
--map-X=.x
--kinddef-X=v,var,variables

Not so interesting. It doesn’t really do anything yet. It just creates a new language named X, for files ending with
a .x suffix, and defines a new tag for variable kinds.

When writing a multi-table parser, you have to think about the necessary states of parsing. For the parser of
language X, we need the following states:

• toplevel (initial state)

• comment (inside comment)

• vars (var statements)

Declaring a new regex table

Before adding regular expressions, you have to declare tables for each state with the
--_tabledef-<LANG>=<TABLE> option.

Here is the 2nd version of X.ctags doing so:

--langdef=X
--map-X=.x
--kinddef-X=v,var,variables

--_tabledef-X=toplevel
--_tabledef-X=comment
--_tabledef-X=vars

For table names, only characters in the range [0-9a-zA-Z_] are acceptable.

For a given language, for each file’s input the ctags multi-table parser begins with the first declared table. For
X.ctags, toplevel is the one. The other tables are only ever entered/checked if another table specified to do
so, starting with the first table. In other words, if the first declared table does not find a match for the current input,
and does not specify to go to another table, the other tables for that language won’t be used. The flags to go to
another table are {tenter}, {tleave}, and {tjump}, as described later.

Adding a regex to a regex table

The new option to add a regex to a declared table is --_mtable-regex-<LANG>, and it follows this form:

--_mtable-regex-<LANG>=<TABLE>/<PATTERN>/<NAME>/[<KIND>]/LONGFLAGS

The parameters for --_mtable-regex-<LANG> look complicated. However, <PATTERN>, <NAME>, and
<KIND> are the same as the parameters of the --regex-<LANG> and --mline-regex-<LANG> options.
<TABLE> is simply the name of a table previously declared with the --_tabledef-<LANG> option.

A regex pattern added to a parser with --_mtable-regex-<LANG> is matched against the input at the current
byte position, not line. Even if you do not specify the ^ anchor at the start of the pattern, ctags adds ^ to
the pattern automatically. Unlike the --regex-<LANG> and --mline-regex-<LANG> options, a ^ anchor
does not mean “begging of line” in --_mtable-regex-<LANG>; instead it means the beginning of the input
string (i.e., the current byte position).

The LONGFLAGS include the already discussed flags for --regex-<LANG> and --mline-regex-<LANG>:
{scope=...}, {mgroup=N}, {_advanceTo=N}, {basic}, {extend}, and {icase}. The
{exclusive} flag does not make sense for multi-table regex.

In addition, several new flags are introduced exclusively for multi-table regex use:

{tenter}

11.1. Extending ctags with Regex parser (optlib) 91

Universal Ctags Documentation, Release 0.3.0

Push the current table on the stack, and enter another table.

{tleave}

Leave the current table, pop the stack, and go to the table that was just popped from the stack.

{tjump}

Jump to another table, without affecting the stack.

{treset}

Clear the stack, and go to another table.

{tquit}

Clear the stack, and stop processing the current input file for this language.

To explain the above new flags, we’ll continue using our example in the next section.

Skipping block comments

Let’s continue with our example. Here is the 3rd version of X.ctags:

--langdef=X
--map-X=.x
--kinddef-X=v,var,variables

--_tabledef-X=toplevel
--_tabledef-X=comment
--_tabledef-X=vars

--_mtable-regex-X=toplevel/\/*//{tenter=comment}
--_mtable-regex-X=toplevel/.//

--_mtable-regex-X=comment/*\///{tleave}
--_mtable-regex-X=comment/.//

Four --_mtable-regex-X lines are added for skipping the block comments. Let’s discuss them one by one.

For each new file it scans, ctags always chooses the first pattern of the first table of the parser. Even if it’s
an empty table, ctags will only try the first declared table. (in such a case it would immedietaly fail to match
anything, and thus stop proessing the input file and effectively do nothing)

The first declared table (toplevel) has the following regex added to it first:

--_mtable-regex-X=toplevel/\/*//{tenter=comment}

A pattern of \/* is added to the toplevel table, to match the beginning of a block comment. A back-
slash character is used in front of the leading / to escape the separation character / that separates the fields of
--_mtable-regex-<LANG>. Another backslash inside the pattern is used before the asterisk *, to make it a
literal asterisk character in regex.

The last // means ctags should not tag something matching this pattern. In --regex-<LANG> you never use
// because it would be pointless to match something and not tag it using and single-line --regex-<LANG>;
in multi-line --mline-regex-<LANG> you rarely see it, because it would rarely be useful. But in multi-table
regex it’s quite common, since you frequently want to transition from one state to another (i.e., tenter or tjump
from one table to another).

The long flag added to our first regex of our first table is tenter, which is a long flag for switching the table and
pushing on the stack. {tenter=comment} means “switch the table from toplevel to comment”.

So given the input file input.x shown earlier, ctags will begin at the toplevel table and try to match the
first regex. It will succeed, and thus push on the stack and go to the comment table.

It will begin at the top of the comment table (it always begins at the top of a given table), and try each regex line
in sequence until it finds a match. If it fails to find a match, it will pop the stack and go to the table that was just

11.1. Extending ctags with Regex parser (optlib) 92

Universal Ctags Documentation, Release 0.3.0

popped from the stack, and begin trying to match at the top of that table. If it continues failing to find a match,
and ultimately reaches the end of the stack, it will stop processing for this file. For the next input file, it will begin
again from the top of the first declared table.

Getting back to our example, the top of the comment table has this regex:

--_mtable-regex-X=comment/*\///{tleave}

Similar to the previous toplevel table pattern, this one for *\/ uses a backslash to escape the separator
/, as well as one before the * to make it a literal asterisk in regex. So what it’s looking for, from a simple
string perspective, is the sequence */. Note that this means even though you see three backslashes /// at the
end, the first one is escaped and used for the pattern itself, and the --_mtable-regex-X only has // to
separate the regex pattern from the long flags, instead of the usual ///. Thus it’s using the shorthand form of the
--_mtable-regex-X option. It could instead have been:

--_mtable-regex-X=comment/*\////{tleave}

The above would have worked exactly the same.

Getting back to our example, remember we’re looking at the input.x file, currently using the comment table,
and trying to match the first regex of that table, shown above, at the following location:

,ctags is trying to match starting here
v

/* BLOCK COMMENT
var dont_capture_me;

*/
var a /* ANOTHER BLOCK COMMENT */, b;

The pattern doesn’t match for the position just after /*, because that position is a space character. So ctags tries
the next pattern in the same table:

--_mtable-regex-X=comment/.//

This pattern matches any any one character including newline; the current position moves one character forward.
Now the character at the current position is B. The first pattern of the table */ still does not match with the input.
So ctags uses next pattern again. When the current position moves to the */ of the 3rd line of input.x, it will
finally match this:

--_mtable-regex-X=comment/*\///{tleave}

In this pattern, the long flag {tleave} is specified. This triggers table switching again. {tleave} makes
ctags switch the table back to the last table used before doing {tenter}. In this case, toplevel is the table.
ctags manages a stack where references to tables are put. {tenter} pushes the current table to the stack.
{tleave} pops the table at the top of the stack and chooses it.

So now ctags is back to the toplevel table, and tries the first regex of that table, which was this:

--_mtable-regex-X=toplevel/\/*//{tenter=comment}

It tries to match that against its current position, which is now the newline on line 3, between the */ and the word
var:

/* BLOCK COMMENT
var dont_capture_me;

*/ <--- ctags is now at this newline (/n) character
var a /* ANOTHER BLOCK COMMENT */, b;

The first regex of the toplevel table does not match a newline, so it tries the second regex:

--_mtable-regex-X=toplevel/.//

11.1. Extending ctags with Regex parser (optlib) 93

Universal Ctags Documentation, Release 0.3.0

This matches a newline successfully, but has no actions to perform. So ctags moves one character forward
(the newline it just matched), and goes back to the top of the toplevel table, and tries the first regex again.
Eventually we’ll reach the beginning of the second block comment, and do the same things as before.

When ctags finally reaches the end of the file (the position after b;), it will not be able to match either the first
or second regex of the toplevel table, and quit processing the input file.

So far, we’ve successfully skipped over block comments for our new X language, but haven’t generated any tags.
The point of ctags is to generate tags, not just keep your computer warm. So now let’s move onto actually
tagging variables. . .

Capturing variables in a sequence

Here is the 4th version of X.ctags:

--langdef=X
--map-X=.x
--kinddef-X=v,var,variables

--_tabledef-X=toplevel
--_tabledef-X=comment
--_tabledef-X=vars

--_mtable-regex-X=toplevel/\/*//{tenter=comment}
NEW
--_mtable-regex-X=toplevel/var[\n\t]//{tenter=vars}
--_mtable-regex-X=toplevel/.//

--_mtable-regex-X=comment/*\///{tleave}
--_mtable-regex-X=comment/.//

NEW
--_mtable-regex-X=vars/;//{tleave}
--_mtable-regex-X=vars/\/*//{tenter=comment}
--_mtable-regex-X=vars/([a-zA-Z][a-zA-Z0-9]*)/\1/v/
--_mtable-regex-X=vars/.//

One pattern in toplevel was added, and a new table vars with four patterns was also added.

The new regex in toplevel is this:

--_mtable-regex-X=toplevel/var[\n\t]//{tenter=vars}

The purpose of this being in toplevel is to switch to the vars table when the keyword var is found in the input
stream. We need to switch states (i.e., tables) because we can’t simply capture the variables a and b with a single
regex pattern in the toplevel table, because there might be block comments inside the var statement (as there
are in our input.x), and we also need to create two tags: one for a and one for b, even though the word var only
appears once. In other words, we need to “remember” that we saw the keyword var, when we later encounter the
names a and b, so that we know to tag each of them; and saving that “in-variable-statement” state is accomplished
by switching tables to the vars table.

The first regex in our new vars table is:

--_mtable-regex-X=vars/;//{tleave}

This pattern is used to match a single semi-colon ;, and if it matches pop back to the toplevel table using the
{tleave} long flag. We didn’t have to make this the first regex pattern, because it doesn’t overlap with any of
the other ones other than the /.// last one (which must be last for this example to work).

The second regex in our vars table is:

--_mtable-regex-X=vars/\/*//{tenter=comment}

11.1. Extending ctags with Regex parser (optlib) 94

Universal Ctags Documentation, Release 0.3.0

We need this because block comments can be in variable definitions:

var a /* ANOTHER BLOCK COMMENT */, b;

So to skip block comments in such a position, the pattern \/* is used just like it was used in the toplevel
table: to find the literal /* beginning of the block comment and enter the comment table. Because we’re using
{tenter} and {tleave} to push/pop from a stack of tables, we can use the same comment table for both
toplevel and vars to go to, because ctags will “remember” the previous table and {tleave} will pop
back to the right one.

The third regex in our vars table is:

--_mtable-regex-X=vars/([a-zA-Z][a-zA-Z0-9]*)/\1/v/

This is nothing special, but is the one that actually tags something: it captures the variable name and uses it for
generating a variable (shorthand v) tag kind.

The last regex in the vars table we’ve seen before:

--_mtable-regex-X=vars/.//

This makes ctags ignore any other characters, such as whitespace or the comma ,.

Running our example

$ cat input.x
/* BLOCK COMMENT
var dont_capture_me;

*/
var a /* ANOTHER BLOCK COMMENT */, b;

$ u-ctags -o - --fields=+n --options=X.ctags input.x
u-ctags -o - --fields=+n --options=X.ctags input.x
a input.x /^var a \/* ANOTHER BLOCK COMMENT *\/, b;$/;" v line:4
b input.x /^var a \/* ANOTHER BLOCK COMMENT *\/, b;$/;" v line:4

It works!

You can find additional examples of multi-table regex in our github repo, under the optlib directory. For
example puppetManifest.ctags is a serious example. It is the primary parser for testing multi-table regex
parsers, and used in the actual ctags program for parsing puppet manifest files.

11.1.9 Conditional tagging with extras

If a matched pattern should only be tagged when an extra is enabled, mark the pattern with {_extra=XNAME}.
XNAME is the name of extra. You must define an XNAME with the --_extradef-<LANG>=XNAME,
DESCRIPTION option before defining a regex option marked {_extra=XNAME}.

if __name__ == '__main__':
do_something()

To capture above lines in a python program(input.py), an extra can be used.

--_extradef-Python=main,__main__ entry points
--regex-Python=/^if __name__ == '__main__':/__main__/f/{_extra=main}

The above optlib(python-main.ctags) introduces main extra to Python parser. The pattern matching is done only
when the main is enabled.

11.1. Extending ctags with Regex parser (optlib) 95

Universal Ctags Documentation, Release 0.3.0

$./ctags --options=python-main.ctags -o - --extras-Python='+{main}' input.py
__main__ input.py /^if __name__ == '__main__':$/;" f

11.1.10 Adding custom fields to the tag output

Exuberant-ctags allows one of the specified group in a regex pattern can be used as a part of the name of a tagEntry.
Universal-ctags offers using the other groups in the regex pattern.

An optlib parser can have its own fields. The groups can be used as a value of the fields of a tagEntry.

Let’s think about Unknown, an imaginary language. Here is a source file(input.unknown) written in Unknown:

public func foo(n, m); protected func bar(n); private func baz(n,. . .);

With –regex-Unknown=. . . Exuberant-ctags can capture foo, bar, and baz as names. Universal-ctags can attach
extra context information to the names as values for fields. Let’s focus on bar. protected is a keyword to control
how widely the identifier bar can be accessed. (n) is the parameter list of bar. protected and (n) are extra context
information of bar.

With following optlib file(unknown.ctags)), ctags can attach protected to protection field and (n) to signa-
ture field.

--langdef=unknown
--kinddef-unknown=f,func,functions
--map-unknown=+.unknown

--_fielddef-unknown=protection,access scope
--_fielddef-unknown=signature,signatures

--regex-unknown=/^((public|protected|private) +)?func ([^\(]+)\((.*)\)/\3/f/{_
→˓field=protection:\1}{_field=signature:(\4)}

--fields-unknown=+'{protection}{signature}'

For the line protected func bar(n); you will get following tags output:

bar input.unknown /^protected func bar(n);$/;" f
→˓protection:protected signature:(n)

Let’s see the detail of unknown.ctags.

--_fielddef-unknown=protection,access scope

--_fielddef-<LANG>=name,description defines a new field for a parser specified by <LANG>. Be-
fore defining a new field for the parser, the parser must be defined with --langdef=<LANG>. protection is
the field name used in tags output. access scope is the description used in the output of --list-fields and
--list-fields=Unknown.

--_fielddef-unknown=signature,signatures

This defines a field named signature.

--regex-unknown=/^((public|protected|private) +)?func ([^\(]+)\((.*)\)/\3/f/{_
→˓field=protection:\1}{_field=signature:(\4)}

This option requests making a tag for the name that is specified with the group 3 of the pattern, attaching the group
1 as a value for protection field to the tag, and attaching the group 4 as a value for signature field to the tag. You
can use the long regex flag _field for attaching fields to a tag with following notation rule:

{_field=FIELDNAME:GROUP}

11.1. Extending ctags with Regex parser (optlib) 96

Universal Ctags Documentation, Release 0.3.0

--fields-<LANG>=[+|-]{FIELDNAME} can be used to enable or disable specified field.

When defining a new parser own field, it is disabled by default. Enable the field explicitly to use the field. See
Parser own fields about –fields-<LANG> option.

passwd parser is a simple example that uses --fields-<LANG> option.

11.1.11 Capturing reference tags

To capture a reference tag with an optlib parser, specify a role with _role long regex flag. Let’s see an example:

--langdef=FOO
--kinddef-FOO=m,module,modules
--_roledef-FOO=m.imported,imported module
--regex-FOO=/import[\t]+([a-z]+)/\1/m/{_role=imported}
--extras=+r
--fields=+r

See the line, –regex-FOO=. . . . In this parser FOO, a name of imported module is captured as a reference tag with
role imported. A role must be defined before specifying it as value for _role flag. –_roledef-<LANG> option is
for defining a role.

The parameter of the option comes from three components: a kind letter, the name of role, and the description of
role. The kind letter comes first. Following a period, give the role name. The period represents that the role is
defined under the kind specified with the kind letter. In the example, imported role is defined under module kind
specified with m.

Of course, the kind specified with the kind letter must be defined before using –_roledef-<FOO> option. –kinddef-
<LANG> option is for defining a kind.

The roles are listed with –list-roles=<LANG>. The name and description passed to –_roledef-<LANG> option
are used in the output like:

$./ctags --langdef=FOO --kinddef-FOO=m,module,modules \
--_roledef-FOO='m.imported,imported module' --list-

→˓roles=FOO
#KIND(L/N) NAME ENABLED DESCRIPTION
m/module imported on imported module

With specifying _role regex flag multiple times with different roles, you can assign multiple roles to a reference
tag. See following input of C language

i += 1;

An ultra fine grained C parser may capture a variable i with lvalue and incremented. You can do it with:

--_roledef-C=v.lvalue,locator values
--_roledef-C=v.incremented,incremeted with ++ operator
--regex-C=/([a-zA-Z_][a-zA-Z_0-9])+ *+=/\1/v/{_role=lvalue}{_role=incremeted}

11.1.12 Submitting an optlib file to the Universal-ctags project

You are encouraged to submit your .ctags file to our github through a pull request.

Universal-ctags provides a facility for “Option library”. Read “Option library” about the concept and usage first.

Here I will explain how to merge your .ctags into universal-ctags as part of option library. Here I assume you
consider contributing an option library in which a regex based language parser is defined. See How to Add
Support for a New Language to Exuberant Ctags (EXTENDING) about the way to how to write a regex based
language parser. In this section I explains the next step.

11.1. Extending ctags with Regex parser (optlib) 97

http://ctags.sourceforge.net/EXTENDING.html
http://ctags.sourceforge.net/EXTENDING.html

Universal Ctags Documentation, Release 0.3.0

I use Swine as the name of programming language which your parser deals with. Assume source files written in
Swine language have a suffix .swn. The file name of option library is swine.ctags.

Copyright notice, contact mail address and license term

Put these information at the header of swine.ctags.

An example taken from data/optlib/ctags.ctags

#
#
Copyright (c) 2014, Red Hat, Inc.
Copyright (c) 2014, Masatake YAMATO
#
Author: Masatake YAMATO <yamato@redhat.com>
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.
#
#
...

“GPL version 2 or later version” is needed here. Option file is not linked to ctags command. However, I have
a plan to write a translator which generates .c file from a given option file. As the result the .c file is built into
ctags command. In such a case “GPL version 2 or later version” may be required.

Units test cases

We, universal-ctags developers don’t have enough time to learn all languages supported by ctags. In other word,
we cannot review the code. Only test cases help us to know whether a contributed option library works well or
not. We may reject any contribution without a test case.

Read “Using Units” about how to write Units test cases. Don’t write one big test case. Some smaller cases are
helpful to know about the intent of the contributor.

• Units/sh-alias.d

• Units/sh-comments.d

• Units/sh-quotes.d

• Units/sh-statements.d

are good example of small test cases. Big test cases are good if smaller test cases exist.

See also parser-m4.r/m4-simple.d especially parser-m4.r/m4-simple.d/args.ctags. Your test cases need ctags
having already loaded your option library, swine.ctags. You must specify loading it in the test case own args.ctags.

Assume your test name is swine-simile.d. Put --option=swine in Units/swine-simile.d/args.ctags.

11.1. Extending ctags with Regex parser (optlib) 98

Universal Ctags Documentation, Release 0.3.0

Makefile.in

Add your optlib file, swine.ctags to PRELOAD_OPTLIB variable of Makefile.in.

If you don’t want your optlib loaded automatically when ctags starts up, put your optlib file into OPTLIB of
Makefile.in instead of PRELOAD_OPTLIB.

Verification

Let’s verify all your work here.

1. Run the tests and check whether your test case is passed or failed:

$ make units

2. Verify your files are installed as expected:

$ mkdir /tmp/tmp
$./configure --prefix=/tmp/tmp
$ make
$ make install
$ /tmp/tmp/ctags -o - --option=swine something_input.swn

Pull-request

Please, consider submitting your well written optlib parser to Universal-ctags. Your .ctags is a treasure and can be
shared as a first class software component in Universal-ctags.

Pull-requests are welcome.

11.2 ctags Internal API

11.2.1 Input text stream

Function prototypes for handling input text stream are declared in main/read.h. The file exists in exuberant ctags,
too. However, the names functions are changed when overhauling --line-directive option. (In addition
macros were converted to functions for making data structures for the input text stream opaque.)

Ctags has 3 groups of functions for handling input: input, bypass, and raw. Parser developers should use input
group. The rest of two are for ctags main part.

inputFile type and the functions of input group

(The original version of this sub sub sub section was written before inputFile type and File variable are made
private.)

inputFile is the type for representing the input file and stream for a parser. It was declared in main/read.h but now
it is defined in main/read.c.

Ctags uses a file static variable File having type inputFile for maintaining the input file and stream. File is also
defined in main/read.c as inputFile is.

fp and line are the essential fields of File. fp having type well known MIO declared in main/mio.h. By calling
functions of input group (getcFromInputFile and readLineFromInputFile), a parser gets input text from fp.

11.2. ctags Internal API 99

Universal Ctags Documentation, Release 0.3.0

The functions of input group updates fields input and source of File These two fields has type inputFileInfo. These
two fields are for mainly tracking the name of file and the current line number. Usually ctags uses only input field.
source is used only when #line directive is found in the current input text stream.

A case when a tool generates the input file from another file, a tool can record the original source file to the
generated file with using the #line directive. source is used for tracking/recording the information appeared on
#line directives.

Regex pattern matching are also done behind calling the functions of this group.

The functions of bypass group

The functions of bypass group (readLineFromBypass and readLineFromBypassSlow) are used for reading text
from fp field of File static variable without updating input and source fields of File.

Parsers may not need the functions of this group. The functions are used in ctags main part. The functions are
used to make pattern fields of tags file, for example.

The functions of raw group

The functions of this group(readLineRaw and readLineRawWithNoSeek) take a parameter having type MIO; and
don’t touch File static variable.

Parsers may not need the functions of this group. The functions are used in ctags main part. The functions are
used to load option files, for example.

promise API

(Currently the tagging via promise API is disabled by default. Use –extras=+g option for enabling it.)

Background and Idea

More than one programming languages can be used in one input text stream. promise API allows a host parser
running a guest parser in the specified area of input text stream.

e.g. Code written in c language (C code) is embedded in code written in Yacc language (Yacc code). Let’s think
about this input stream.

/* foo.y */
%token

END_OF_FILE 0
ERROR 255
BELL 1

%{
/* C language */
int counter;
%}
%right EQUALS
%left PLUS MINUS
...
%%
CfgFile : CfgEntryList

{ InterpretConfigs($1); }
;

...
%%
int

(continues on next page)

11.2. ctags Internal API 100

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

yyerror(char *s)
{

(void)fprintf(stderr,"%s: line %d of %s\n",s,lineNum,
(scanFile?scanFile:"(unknown)"));

if (scanStr)
(void)fprintf(stderr,"last scanned symbol is: %s\n",scanStr);

return 1;
}

In the input the area started from %{ to %} and the area started from the second %% to the end of file are written
in C. Yacc can be called host language, and C can be called guest language.

Ctags may choose the Yacc parser for the input. However, the parser doesn’t know about C syntax. Implementing
C parser in the Yacc parser is one of approach. However, ctags has already C parser. The Yacc parser should
utilize the existing C parser. The promise API allows this.

More examples are in Applying a parser to specified areas of input file.

Usage

See a commit titled with “Yacc: run C parser in the areas where code is written in C”. I applied promise API to
the Yacc parser.

The parser for host language must track and record the start and the end of a guest language. Pairs of line number
and byte offset represents the start and end. When the start and end are fixed, call makePromise with (1) the guest
parser name, (2) start, and (3) end. (This description is a bit simplified the real usage.)

Let’s see the actual code from parsers/yacc.c.

struct cStart {
unsigned long input;
unsigned long source;

};

Both fields are for recording start. input field is for recording the value returned from getInputLineNumber. source
is for getSourceLineNumber. See inputFile for the difference of the two.

enter_c_prologue shown in the next is a function called when %{ is found in the current input text stream. Re-
member, in yacc syntax, %{ is a marker of C code area.

static void enter_c_prologue (const char *line CTAGS_ATTR_UNUSED,
const regexMatch *matches CTAGS_ATTR_UNUSED,
unsigned int count CTAGS_ATTR_UNUSED,
void *data)

{
struct cStart *cstart = data;

readLineFromInputFile ();
cstart->input = getInputLineNumber ();
cstart->source = getSourceLineNumber ();

}

The function just records the start line. It calls readLineFromInputFile because the C code may start the next line
of the line where the marker is.

leave_c_prologue shown in the next is a function called when %}, the end marker of C code area is found in the
current input text stream.

static void leave_c_prologue (const char *line CTAGS_ATTR_UNUSED,
const regexMatch *matches CTAGS_ATTR_UNUSED,

(continues on next page)

11.2. ctags Internal API 101

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

unsigned int count CTAGS_ATTR_UNUSED,
void *data)

{
struct cStart *cstart = data;
unsigned long c_end;

c_end = getInputLineNumber ();
makePromise ("C", cstart->input, 0, c_end, 0, cstart->source);

}

After recording the line number of the end of the C code area, leave_c_prologue calls makePromise.

Of course “C” stands for C language, the name of guest parser. Available parser names can be listed by running
ctags with –list-languages option. In this example two 0 characters are provided as the 3rd and 5th argument.
They are byte offsets of the start and the end of the C language area from the beginning of the line which is 0 in
this case. In general, the guest language’s section does not have to start at the beginning of the line in which case
the two offsets have to be provided. Compilers reading the input character by character can obtain the current
offset by calling getInputLineOffset().

Internal design

A host parser cannot run a guest parser directly. What the host parser can do is just asking the ctags main part
scheduling of running the guest parser for specified area which defined with the start and end. These scheduling
requests are called promises.

After running the host parser, before closing the input stream, the ctags main part checks the existence of
promise(s). If there is, the main part makes a sub input stream and run the guest parser specified in the promise.
The sub input stream is made from the original input stream by narrowing as requested in the promise. The main
part iterates the above process till there is no promise.

Theoretically a guest parser can be nested; it can make a promise. The level 2 guest is also just scheduled.
(However, I have never tested such a nested guest parser).

Why not running the guest parser directly from the context of the host parser? Remember many parsers have their
own file static variables. If a parser is called from the parser, the variables may be crashed.

11.2.2 Automatic parser guessing

11.2.3 Managing regular expression parsers

11.2.4 Parser written in C

tokenInfo API

In Exuberant-ctags, a developer can write a parser anyway; only input stream and tagEntryInfo data structure is
given.

However, while maintaining Universal-ctags I (Masatake YAMATO) think we should have a framework for writing
parser. Of course the framework is optional; you can still write a parser without the framework.

To design a framework, I have studied how @b4n (Colomban Wendling) writes parsers. tokenInfo API is the first
fruit of my study.

TBW

11.2. ctags Internal API 102

Universal Ctags Documentation, Release 0.3.0

11.2.5 Output tag stream

Ctags provides makeTagEntry to parsers as an entry point for writing tag information to MIO. makeTagEntry
calls writeTagEntry if the parser does not set useCork field. writeTagEntry calls writerWriteTag. writerWriteTag
just calls writeEntry of writer backends. writerTable variable holds the four backends: ctagsWriter, etagsWriter,
xrefWriter, and jsonWriter. One of them is chosen depending on the arguments passed to ctags.

If useCork is set, the tag information goes to a queue on memory. The queue is flushed when useCork in unset.
See cork API for more details.

cork API

Background and Idea

cork API is introduced for recording scope information easier.

Before introducing cork, a scope information must be recorded as strings. It is flexible but memory management
is required. Following code is taken from clojure.c(with modifications).

if (vStringLength (parent) > 0)
{

current.extensionFields.scope[0] = ClojureKinds[K_NAMESPACE].name;
current.extensionFields.scope[1] = vStringValue (parent);

}

makeTagEntry (¤t);

parent, values stored to scope [0] and scope [1] are all kind of strings.

cork API provides more solid way to hold scope information. cork API expects parent, which represents scope of
a tag(current) currently parser dealing, is recorded to a tags file before recording the current tag via makeTagEntry
function.

For passing the information about parent to makeTagEntry, tagEntryInfo object was created. It was used just for
recording; and freed after recording. In cork API, it is not freed after recording; a parser can reused it as scope
information.

How to use

See a commit titled with “clojure: use cork”. I applied cork API to the clojure parser.

cork can be enabled and disabled per parser. cork is disabled by default. So there is no impact till you enables it
in your parser.

useCork field is introduced in parserDefinition type:

typedef struct {
...

boolean useCork;
...
} parserDefinition;

Set TRUE to useCork like:

extern parserDefinition *ClojureParser (void)
{

...
parserDefinition *def = parserNew ("Clojure");
...

(continues on next page)

11.2. ctags Internal API 103

Universal Ctags Documentation, Release 0.3.0

(continued from previous page)

def->useCork = TRUE;
return def;

}

When ctags running a parser with useCork being TRUE, all output requested via makeTagEntry function calling
is stored to an internal queue, not to tags file. When parsing an input file is done, the tag information stored
automatically to the queue are flushed to tags file in batch.

When calling makeTagEntry with a tagEntryInfo object(parent), it returns an integer. The integer can be used as
handle for referring the object after calling.

static int parent = CORK_NIL;
...
parent = makeTagEntry (&e);

The handle can be used by setting to a scopeIndex field of current tag, which is in the scope of parent.

current.extensionFields.scopeIndex = parent;

When passing current to makeTagEntry, the scopeIndex is refereed for emitting the scope information of current.

scopeIndex must be set to CORK_NIL if a tag is not in any scope. When using scopeIndex of current, NULL must
be assigned to both current.extensionFields.scope[0] and current.extensionFields.scope[1]. initTagEntry function
does this initialization internally, so you generally you don’t have to write the initialization explicitly.

Automatic full qualified tag generation

If a parser uses the cork for recording and emitting scope information, ctags can reuse it for generating full
qualified(FQ) tags. Set requestAutomaticFQTag field of parserDefinition to TRUE then the main part of ctags
emits FQ tags on behalf of the parser if –extras=+q is given.

An example can be found in DTS parser:

extern parserDefinition* DTSParser (void)
{

static const char *const extensions [] = { "dts", "dtsi", NULL };
parserDefinition* const def = parserNew ("DTS");
...
def->requestAutomaticFQTag = TRUE;
return def;

}

Setting requestAutomaticFQTag to TRUE implies setting useCork to TRUE.

11.2. ctags Internal API 104

CHAPTER 12

Tips for hacking

12.1 Fussy syntax checking

If -Wall of gcc is not enough, you may be interested in this.

You can change C compiler warning options with ‘WARNING_CFLAGS’ configure arg-var option.

$./configure WARNING_CFLAGS='-Wall -Wextra'

If configure option ‘–with-sparse-cgcc’ is specified, cgcc is used as CC. cgcc is part of Sparse, Semantic Parser
for C. It is used in development of Linux kernel for finding programming error. cgcc acts as a c compiler but
more fussy. ‘-Wsparse-all’ is used as default option passed to cgcc but you can change with ‘CGCC_CFLAGS’
configure arg-var option.

$./configure --with-sparse-cgcc [CGCC_CFLAGS='-Wsparse-all']

12.2 Finding performance bottleneck

See https://wiki.geany.org/howtos/profiling/gperftools and #383

12.3 Checking coverage

Before starting coverage measuring, you need to specify ‘–enable-coverage-gcov’ configure option.

$./configure --enable-coverage-gcov

After doing make clean, you can build coverage measuring ready ctags by make COVERAGE=1. At this time
*.gcno files are generated by the compiler. *.gcno files can be removed with make clean.

After building ctags, you can run run-gcov target. When running *.gcda files. The target runs ctags with all input
files under Units/**/input.*; and call gcov. Human readable result is printed. The detail can be shown in *.gcov.
files. *.gcda files and *.gcov files can be removed with make clean-gcov.

105

https://wiki.geany.org/howtos/profiling/gperftools

Universal Ctags Documentation, Release 0.3.0

12.4 Reviewing the result of Units test

Try misc/review. [TBW]

12.5 Running cppcheck

cppcheck is a tool for static C/C++ code analysis.

To run it do as following after install cppcheck:

$ make cppcheck

12.4. Reviewing the result of Units test 106

CHAPTER 13

Relationship between other projects

Table of contents

• Geany

• Tracking other projects

– exuberant-ctags

* subversion

* bugs

– patches

– devel mailing list (ctags-devel@sourceforge)

– Fedora

– Debian

– Other interesting ctags repositories

* VIM-Japan

* Anjuta

* tagbar

• Software using ctags

13.1 Geany

Geany maintains their own tagging engine derived from ctags. We are looking for the way to merge or share the
source code each other.

Repo

https://github.com/geany/geany/tree/master/tagmanager/ctags

Geany has created a library out of ctags

107

https://github.com/geany/geany/tree/master/tagmanager/ctags

Universal Ctags Documentation, Release 0.3.0

https://github.com/universal-ctags/ctags/issues/63

Their language parsers have many improvements to various parsers. Changes known by devs worth backporting:

• HTML reads <h1><h2><h3> tags

• Make has support for targets

• Various fixes for D parser (c.c), but currently the code diverges from ours to some extent.

They have these additional language parsers:

• Abaqus

• ActionScript

• AsciiDoc

• DocBook

• Ferite (c.c)

• GLSL (c.c)

• Haskell

• Haxe

• NSIS

• txt2tags

• Vala (c.c)

These changes have been merged:

• Fix regex callback match count - https://github.com/universal-ctags/ctags/pull/104

• SQL tags are stored with scopes instead of “tablename.field” - https://github.com/universal-ctags/ctags/pull/
100

• Some fixes for D parser

• C++11’s enum class/struct support

orphan

13.2 Tracking other projects

This is working note for tracking activities other projects, especially activity at exuberant-ctags.

I(Masatake YAMATO) consider tracking activities as the first class fruits of this project.

13.2.1 exuberant-ctags

subversion

• status

Revisions up to <r815> are merged except:

NOTHING HERE NOW

(Mon Sep 22 12:41:32 2014 by yamato)

• howto

13.2. Tracking other projects 108

https://github.com/universal-ctags/ctags/issues/63
http://en.wikipedia.org/wiki/Abaqus
http://en.wikipedia.org/wiki/ActionScript
http://en.wikipedia.org/wiki/AsciiDoc
http://en.wikipedia.org/wiki/DocBook
http://en.wikipedia.org/wiki/Ferite
http://en.wikipedia.org/wiki/OpenGL_Shading_Language
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Haxe
http://en.wikipedia.org/wiki/Nullsoft_Scriptable_Install_System
http://en.wikipedia.org/wiki/Txt2tags
http://en.wikipedia.org/wiki/Vala_%28programming_language%29
https://github.com/universal-ctags/ctags/pull/104
https://github.com/universal-ctags/ctags/pull/100
https://github.com/universal-ctags/ctags/pull/100

Universal Ctags Documentation, Release 0.3.0

<svn>
=> <git: local universal-ctags repo>

=> <git: local universal-ctags repo>

1. prepare your own universal-ctags repo: a local git repo cloned from github. You may know how to do
it :)

$ git clone https://github.com/universal-ctags/ctags.git

2. prepare exuberant-ctags SVN repo: a local git repo clone from exuberant-ctags svn tree.

The original clone is already part of exuberant tree.

To initialize your git repository with the required subversion information do

$ git svn init https://svn.code.sf.net/p/ctags/code/trunk
$ git update-ref refs/remotes/git-svn refs/remotes/origin/sourceforge

and then

$ git svn fetch
$ git svn rebase

to get the latest changes and reflect it to the local copy.

3. merge

TODO

4. cherry-pick

4.1. Make a branch at local universal-ctags repo and switch to it.

4.2. Do cherry-pick like:

$ git cherry-pick -s -x c81a8ce

You can find commit id on the another terminal <git: local universal-ctags repo>:

$ git log

or

$ git log --oneline

If conflicts are occurred in cherry-picking, you can abort/reset cherry-picking with:

$ git reset --hard

<git: local universal-ctags repo> at the branch for picking.

bugs

<367> C++11 override makes a C++ member function declaration ignored

• fixed in:

d4fcbdd
#413
#405

<366> –options=.ctags doesn’t work under Windows

• fixed in:

13.2. Tracking other projects 109

Universal Ctags Documentation, Release 0.3.0

15cedc6c94e95110cc319b5cdad7807caf3db1f4

<365> Selecting Python kinds is broken

• fixed in:

4a95e4a55f67230fc4eee91ffb31c18c422df6d3

• discussed at #324.

<364> Ruby method on self is missing the trailing ? in the generated tag name

• fixed in:

d9ba5df9f4d54ddaa511bd5440a1a3decaa2dc28

<363> Invalid C input file causes invalid read / heap overflow

• it is not reproduced.

• the test case is imported as parser-c.r/c-heapoverflow-sh-bug-363.d:

$ make units UNITS=c-heapoverflow-sh-bug-363 VG=1

<361> Invalid C input file causes invalid read / heap overflow

• it is not reproduced.

<360> Fails to parse annotation’s fields with default value

• fixed in:

682a7f3b180c27c1196f8a1ae662d6e8ad142939

<358> Vim parser: Segmentation fault when reading empty vim file

• directly contributed by the original author of bug report and patch:

e0f854f0100e7a3cb8b959a23d6036e43f6b6c85

• it is fixed in sf, too:

5d774f6022a1af71fa5866994699aafce0253085

<356> [python] mistakes module level attribute for class level attribute in module level if

• fixed in:

ab91e6e1ae84b80870a1e8712fc7f3133e4b5542

<355> Error when parsing empty file (OCaml)

• fixed in:

02ec2066b5be6b129eba49685bd0b17fef4acfa

<341> Lua: “function f ()” whitespace

• fixed in:

8590bbef5fcf70f6747d509808c29bf84342cd0d

<341> Introducing ctags.conf.d

• merged the improved version:

13.2. Tracking other projects 110

Universal Ctags Documentation, Release 0.3.0

216880c5287e0421d9c49898d983144db61c83aa

<271> regex callback is broken; <320> [PATCH] fix regex callback match count

• merged patch (with updated bug number):

a12b3a24b62d6535a968e076675f68bac9ad32ba

<177> Lua: “function” results in function tag (includes patch)

• fixed in:

5606f3f711afeac74587a249650a5f7b416f19be

13.2.2 patches

Tracking the tickets in patch tracker is quite fruitful. Patches are always there. So it is easy to evaluate the value:)

[(<]TICKET#[>)] TITLE

• STATUS

– MORE STATUS

<TICKET#>

means the ticket is closed from the view of exuberant tree developers. We don’t have to
take time for this ticket.

(TICKET#)

means the ticket is still opened from the view of exuberant tree developers. We don’t have
to take time for this ticket.

<85> Add –encoding option to make utf-8 encoded tags file

• contributed by the original author:

b3f670c7c4a3c3570b8d2d82756735586aafc0cb

<84> C++11 new using semantics

• solved by another implementation:

c93e3bfa05b70d7fbc2539454c957eb2169e16b3
502355489b1ba748b1a235641bbd512ba6da315e

<83> New full non-regex PHP parser

• contributed by the original author

<82> Support for comments in .ctags files

• contributed by the original author:

cab4735e4f99ce23c52b78dc879bc06af66796fd

<81> ocaml parser segfaults on invalid files

• the bug is not reproduced

<80> Add support for falcon pl

• contributed by the original author

<74> protobuf parser

13.2. Tracking other projects 111

Universal Ctags Documentation, Release 0.3.0

• Merged after getting approval from the original author

<67> Objective C language parser

• This is the implementation we have in universal-ctags tree.

<65> absoluteFilename uses strcpy on overlapping strings

• Fixed in universal-ctags tree, however the ticket is still open:

d2bdf505abb7569deae2b50305ea1edce6208557

<64> Fix strcpy() misuse

• Fixed in universal-ctags tree, however the ticket is still open:

d2bdf505abb7569deae2b50305ea1edce6208557

<55> TTCN-3 support

• contributed by the original author

<51> Ada support

• Ada support is now available in universal-ctags tree:

4b6b4a72f3d2d4ef969d7c650de1829d79f0ea7c

<38> Ada support

• Ada support is now available in universal-ctags tree:

4b6b4a72f3d2d4ef969d7c650de1829d79f0ea7c

<33> Add basic ObjC support

• This one is written in regexp.

• we have better objc parser.

(1) bibtex parser

• Reject because. . .

– the owner of the ticket is anonymous.

– the name of patch author is not written explicitly at the header of patch.

• Alternative

https://gist.github.com/ptrv/4576213

13.2.3 devel mailing list (ctags-devel@sourceforge)

<[Ctags] Shebang with python3 instead of python> From: Martin Ueding <dev@ma. . . > - 2013-01-
26 18:36:32

Added python, python2 and python3 as extensions of python parser:

bb81485205c67617f1b34f61341e60b9e8030502

<[Ctags-devel] Lack of fnmatch(3) in Windows> From: Frank Fesevur <ffes@us. . . > - 2013-08-24
20:25:47

There is no fnmatch() in the Windows C library. Therefore a string comparison is done in
fileNameMatched() in strlist.c and patterns are not recognized:

13.2. Tracking other projects 112

https://gist.github.com/ptrv/4576213
mailto:dev@ma...
mailto:ffes@us...

Universal Ctags Documentation, Release 0.3.0

698bf2f3db692946d2358892d228a864014abc4b

<Re: [Ctags-devel] WindRes parser> From: Frank Fesevur <ffes@unns. . . > - 2013-08-30 21:23:50

A parser for Windows Resource files. http://en.wikipedia.org/wiki/Resource_
%28Windows%29

95b4806ba6c006e4b7e72a006700e33c720ab9e7

([Ctags-devel] Skip repeat PATH_SEPARATORs in relativeFilename()) From: Seth Dickson <whe-
fxlr@gm. . . > - 2013-12-24 04:51:01

Looks interesting.

13.2.4 Fedora

Some patches are maintained in ctags package of Fedora. Inventory of patches are http://pkgs.fedoraproject.org/
cgit/ctags.git/tree/ctags.spec

<ctags-5.7-destdir.patch>

This patch was merged in universal-ctags git tree:

d4b5972427a46cbdcbfb050a944cf62b300676be

<ctags-5.7-segment-fault.patch>

This patch was merged in universal-ctags git tree:

8cc2b482f6c7257c5151893a6d02b8c79851fedd

(ctags-5.8-cssparse.patch)

Not in universal-ctags tree.

The reproducer is attached to the following page: https://bugzilla.redhat.com/show_bug.cgi?id=
852101

However, universal-ctags doesn’t reproduce with it.

I, Masatake YAMATO, read the patch. However, I don’t understand the patch.

<ctags-5.8-css.patch>

This patch was merged in universal-ctags git tree:

80c1522a36df3ba52b8b7cd7f5c79d5c30437a63

<ctags-5.8-memmove.patch>

This patch was merged in exuberant ctags svn tree. As the result this patch is in universal-ctags tree:

d2bdf505abb7569deae2b50305ea1edce6208557

<ctags-5.8-ocaml-crash.patch>

This patch was merged in exuberant ctags svn tree. As the result this patch is in universal-ctags tree:

ddb29762b37d60a875252dcc401de0b7479527b1

<ctags-5.8-format-security.patch>

This patch was merged in exuberant ctags svn tree. As the result this patch is in universal-ctags tree:

2f7a78ce21e4156ec3e63c821827cf1d5680ace8

13.2. Tracking other projects 113

mailto:ffes@unns...
http://en.wikipedia.org/wiki/Resource_%28Windows%29
http://en.wikipedia.org/wiki/Resource_%28Windows%29
mailto:whefxlr@gm...
mailto:whefxlr@gm...
http://pkgs.fedoraproject.org/cgit/ctags.git/tree/ctags.spec
http://pkgs.fedoraproject.org/cgit/ctags.git/tree/ctags.spec
https://bugzilla.redhat.com/show_bug.cgi?id=852101
https://bugzilla.redhat.com/show_bug.cgi?id=852101

Universal Ctags Documentation, Release 0.3.0

13.2.5 Debian

Some patches are maintained in ctags package of Debian. Inventory of patches are http://anonscm.debian.org/cgit/
users/cjwatson/exuberant-ctags.git/tree/debian/patches/series

<python-disable-imports.patch>

universal-ctags tags Y in import X as Y and Z in from X import Y as Z as definition tags. They are
turned on by default. The others are tagged as reference tags. reference tags are recorded only when
“r” extra tags are enabled. e.g. –extras=+r.

<vim-command-loop.patch>

This patch was merged as an alternative for 7fb36a2f4690374526e9e7ef4f1e24800b6914ec

Discussed on https://github.com/fishman/ctags/issues/74

e59325a576e38bc63b91abb05a5a22d2cef25ab7

13.2.6 Other interesting ctags repositories

There are several interesting repo’s with ctags around. These are interesting to integrate in the future.

VIM-Japan

VIM-Japan have some interesting things, especially regarding encoding.

Anjuta

Anjuta is a Gnome IDE. They did not fork Exuberant ctags, but they did natively include it in Anjuta. They have
made several additions to their version of it including fairly extensive Vala language support.

tagbar

Wiki

https://github.com/majutsushi/tagbar/wiki

This is a gold mine of optlibs.

13.3 Software using ctags

pygments

pygments can generate html files. It can utilize tags file as input for making hyperlinks. However,
pygments just looks at names and lines in tags file. scopes and kinds are not used.

As far as I(Masatake YAMATO) tried, using pygments from ctags is not so useful. There are critical
gap between ctags and pygments. ctags focuses on identifiers. pygments focuses on keywords.

GNU global

I(Masatake YAMATO) don’t inspect this much but GNU global uses ctags internally.

A person at GNU global project proposed an extension for the tags file format:

http://sourceforge.net/p/ctags/mailman/message/30020186/

GNU source highlight

13.3. Software using ctags 114

http://anonscm.debian.org/cgit/users/cjwatson/exuberant-ctags.git/tree/debian/patches/series
http://anonscm.debian.org/cgit/users/cjwatson/exuberant-ctags.git/tree/debian/patches/series
https://github.com/fishman/ctags/issues/74
https://github.com/majutsushi/tagbar/wiki
http://sourceforge.net/p/ctags/mailman/message/30020186/

Universal Ctags Documentation, Release 0.3.0

highlight can generate html files. It can utilize tags file as input for making hyperlinks. http://www.
gnu.org/software/src-highlite/source-highlight.html#Generating-References

I(Masatake YAMATO) have not tried the feature yet.

OpenGrok

I(Masatake YAMATO) don’t inspect this much but OpenGrok uses ctags internally.

Linux kernel

See linux/scripts/tags.sh of Linux kernel source tree. It utilizes c parser to the utmost limit.

13.3. Software using ctags 115

http://www.gnu.org/software/src-highlite/source-highlight.html#Generating-References
http://www.gnu.org/software/src-highlite/source-highlight.html#Generating-References

CHAPTER 14

Proposal for extended Vi tags file format

Note: The contents of next section is a copy of FORMAT file in exuberant ctags source code in its subversion
repository at sourceforge.net.

We have made some modifications:

• Exceptions introduced in Universal-ctags are explained with “EXCEPTION” marker.

• Exceptions in Universal-ctags subsction summarizes the exceptions.

Table of contents

• Introduction

• From proposal to standard

• Backwards compatibility

• Security

• Goals

• Proposal

• Exceptions in Universal-ctags

– Exceptions

– Compatible output and weakness

Version 0.06 DRAFT

Date 1998 Feb 8

Author Bram Moolenaar <Bram at vim.org> and Darren Hiebert <dhiebert at users.sourceforge.net>

116

Universal Ctags Documentation, Release 0.3.0

14.1 Introduction

The file format for the “tags” file, as used by Vi and many of its descendants, has limited capabilities.

This additional functionality is desired:

1. Static or local tags. The scope of these tags is the file where they are defined. The same tag can appear in
several files, without really being a duplicate.

2. Duplicate tags. Allow the same tag to occur more then once. They can be located in a different file and/or
have a different command.

3. Support for C++. A tag is not only specified by its name, but also by the context (the class name).

4. Future extension. When even more additional functionality is desired, it must be possible to add this later,
without breaking programs that don’t support it.

14.2 From proposal to standard

To make this proposal into a standard for tags files, it needs to be supported by most people working on versions
of Vi, ctags, etc.. Currently this standard is supported by:

Darren Hiebert <dhiebert at users.sourceforge.net> Exuberant ctags

Bram Moolenaar <Bram at vim.org> Vim (Vi IMproved)

These have been or will be asked to support this standard:

Nvi Keith Bostic <bostic at bsdi.com>

Vile Tom E. Dickey <dickey at clark.net>

NEdit Mark Edel <edel at ltx.com>

CRiSP Paul Fox <fox at crisp.demon.co.uk>

Lemmy James Iuliano <jai at accessone.com>

Zeus Jussi Jumppanen <jussij at ca.com.au>

Elvis Steve Kirkendall <kirkenda at cs.pdx.edu>

FTE Marko Macek <Marko.Macek at snet.fri.uni-lj.si>

14.3 Backwards compatibility

A tags file that is generated in the new format should still be usable by Vi. This makes it possible to distribute tags
files that are usable by all versions and descendants of Vi.

This restricts the format to what Vi can handle. The format is:

1. The tags file is a list of lines, each line in the format:

{tagname}<Tab>{tagfile}<Tab>{tagaddress}

{tagname} Any identifier, not containing white space..

EXCEPTION: Universal-ctags violates this item of the proposal; tagname may contain spaces. How-
ever, tabs are not allowed.

<Tab> Exactly one TAB character (although many versions of Vi can handle any amount of white space).

{tagfile} The name of the file where {tagname} is defined, relative to the current directory (or location of
the tags file?).

14.1. Introduction 117

Universal Ctags Documentation, Release 0.3.0

{tagaddress} Any Ex command. When executed, it behaves like ‘magic’ was not set.

2. The tags file is sorted on {tagname}. This allows for a binary search in the file.

3. Duplicate tags are allowed, but which one is actually used is unpredictable (because of the binary search).

The best way to add extra text to the line for the new functionality, without breaking it for Vi, is to put a comment
in the {tagaddress}. This gives the freedom to use any text, and should work in any traditional Vi implementation.

For example, when the old tags file contains:

main main.c /^main(argc, argv)$/
DEBUG defines.c 89

The new lines can be:

main main.c /^main(argc, argv)$/;"any additional text
DEBUG defines.c 89;"any additional text

Note that the ‘;’ is required to put the cursor in the right line, and then the ‘”’ is recognized as the start of a
comment.

For Posix compliant Vi versions this will NOT work, since only a line number or a search command is recognized.
I hope Posix can be adjusted. Nvi suffers from this.

14.4 Security

Vi allows the use of any Ex command in a tags file. This has the potential of a trojan horse security leak.

The proposal is to allow only Ex commands that position the cursor in a single file. Other commands, like editing
another file, quitting the editor, changing a file or writing a file, are not allowed. It is therefore logical to call the
command a tagaddress.

Specifically, these two Ex commands are allowed:

• A decimal line number:

89

• A search command. It is a regular expression pattern, as used by Vi, enclosed in // or ??:

/^int c;$/
?main()?

There are two combinations possible:

• Concatenation of the above, with ‘;’ in between. The meaning is that the first line number or search com-
mand is used, the cursor is positioned in that line, and then the second search command is used (a line
number would not be useful). This can be done multiple times. This is useful when the information in a
single line is not unique, and the search needs to start in a specified line.

/struct xyz {/;/int count;/
389;/struct foo/;/char *s;/

• A trailing comment can be added, starting with ‘;”’ (two characters: semi-colon and double-quote). This is
used below.

89;" foo bar

This might be extended in the future. What is currently missing is a way to position the cursor in a certain column.

14.4. Security 118

Universal Ctags Documentation, Release 0.3.0

14.5 Goals

Now the usage of the comment text has to be defined. The following is aimed at:

1. Keep the text short, because:

• The line length that Vi can handle is limited to 512 characters.

• Tags files can contain thousands of tags. I have seen tags files of several Mbytes.

• More text makes searching slower.

2. Keep the text readable, because:

• It is often necessary to check the output of a new ctags program.

• Be able to edit the file by hand.

• Make it easier to write a program to produce or parse the file.

3. Don’t use special characters, because:

• It should be possible to treat a tags file like any normal text file.

14.6 Proposal

Use a comment after the {tagaddress} field. The format would be:

{tagname}<Tab>{tagfile}<Tab>{tagaddress}[;"<Tab>{tagfield}..]

{tagname} Any identifier, not containing white space..

EXCEPTION: Universal-ctags violates this item of the proposal; name may contain spaces. However, tabs
are not allowed. Conversion, for some characters including <Tab> in the “value”, explained in the last of
this section is applied.

<Tab> Exactly one TAB character (although many versions of Vi can handle any amount of white space).

{tagfile} The name of the file where {tagname} is defined, relative to the current directory (or location of the tags
file?).

{tagaddress} Any Ex command. When executed, it behaves like ‘magic’ was not set. It may be restricted to a
line number or a search pattern (Posix).

Optionally:

;” semicolon + doublequote: Ends the tagaddress in way that looks like the start of a comment to Vi.

{tagfield} See below.

A tagfield has a name, a colon, and a value: “name:value”.

• The name consist only out of alphabetical characters. Upper and lower case are allowed. Lower case is
recommended. Case matters (“kind:” and “Kind: are different tagfields).

• The value may be empty. It cannot contain a <Tab>.

– When a value contains a “\t”, this stands for a <Tab>.

– When a value contains a “\r”, this stands for a <CR>.

– When a value contains a “\n”, this stands for a <NL>.

– When a value contains a “\”, this stands for a single ‘’ character.

Other use of the backslash character is reserved for future expansion. Warning: When a tagfield value holds
an MS-DOS file name, the backslashes must be doubled!

EXCEPTION: Universal-ctags introduces more conversion rules.

14.5. Goals 119

Universal Ctags Documentation, Release 0.3.0

– When a value contains a “\a”, this stands for a <BEL> (0x07).

– When a value contains a “\b”, this stands for a <BS> (0x08).

– When a value contains a “\v”, this stands for a <VT> (0x0b).

– When a value contains a “\f”, this stands for a <FF> (0x0c).

– The characters in range 0x01 to 0x1F included, 0x7F, and leading space (0x20) and ‘!’ (0x21) are
converted to x prefixed hexadecimal number if the characters are not handled in the above “value”
rules.

Proposed tagfield names:

FIELD-NAME DESCRIPTION
arity Number of arguments for a function tag.
class Name of the class for which this tag is a member or

method.
enum Name of the enumeration in which this tag is an enu-

merator.
file Static (local) tag, with a scope of the specified file.

When the value is empty, {tagfile} is used.
function Function in which this tag is defined. Useful for local

variables (and functions). When functions nest (e.g.,
in Pascal), the function names are concatenated, sep-
arated with ‘/’, so it looks like a path.

kind Kind of tag. The value depends on the language. For
C and C++ these kinds are recommended:
c class name
d define (from #define XXX)
e enumerator
f function or method name
F file name
g enumeration name
m member (of structure or class data)
p function prototype
s structure name
t typedef
u union name
v variable
When this field is omitted, the kind of tag is unde-
fined.

struct Name of the struct in which this tag is a member.
union Name of the union in which this tag is a member.

Note that these are mostly for C and C++. When tags programs are written for other languages, this list should be
extended to include the used field names. This will help users to be independent of the tags program used.

Examples:

asdf sub.cc /^asdf()$/;" new_field:some\svalue file:
foo_t sub.h /^typedef foo_t$/;" kind:t
func3 sub.p /^func3()$/;" function:/func1/func2 file:
getflag sub.c /^getflag(arg)$/;" kind:f file:
inc sub.cc /^inc()$/;" file: class:PipeBuf

The name of the “kind:” field can be omitted. This is to reduce the size of the tags file by about 15%. A program
reading the tags file can recognize the “kind:” field by the missing ‘:’. Examples:

foo_t sub.h /^typedef foo_t$/;" t
getflag sub.c /^getflag(arg)$/;" f file:

14.6. Proposal 120

Universal Ctags Documentation, Release 0.3.0

Additional remarks:

• When a tagfield appears twice in a tag line, only the last one is used.

Note about line separators:

Vi traditionally runs on Unix systems, where the line separator is a single linefeed character <NL>. On MS-DOS
and compatible systems <CR><NL> is the standard line separator. To increase portability, this line separator is
also supported.

On the Macintosh a single <CR> is used for line separator. Supporting this on Unix systems causes problems,
because most fgets() implementation don’t see the <CR> as a line separator. Therefore the support for a <CR> as
line separator is limited to the Macintosh.

Summary:

line separator generated on accepted on
<LF> Unix Unix, MS-DOS, Macintosh
<CR> Macintosh Macintosh
<CR><LF> MS-DOS Unix, MS-DOS, Macintosh

The characters <CR> and <LF> cannot be used inside a tag line. This is not mentioned elsewhere (because it’s
obvious).

Note about white space:

Vi allowed any white space to separate the tagname from the tagfile, and the filename from the tagaddress. This
would need to be allowed for backwards compatibility. However, all known programs that generate tags use a
single <Tab> to separate fields.

There is a problem for using file names with embedded white space in the tagfile field. To work around this,
the same special characters could be used as in the new fields, for example “\s”. But, unfortunately, in MS-DOS
the backslash character is used to separate file names. The file name “c:\vim\sap” contains “\s”, but this is not a
<Space>. The number of backslashes could be doubled, but that will add a lot of characters, and make parsing the
tags file slower and clumsy.

To avoid these problems, we will only allow a <Tab> to separate fields, and not support a file name or tagname
that contains a <Tab> character. This means that we are not 100% Vi compatible. However, there is no known
tags program that uses something else than a <Tab> to separate the fields. Only when a user typed the tags file
himself, or made his own program to generate a tags file, we could run into problems. To solve this, the tags file
should be filtered, to replace the arbitrary white space with a single <Tab>. This Vi command can be used:

:%s/^\([^ ^I]*\)[^I]*\([^ ^I]*\)[^I]*/\1^I\2^I/

(replace ^I with a real <Tab>).

TAG FILE INFORMATION:

Psuedo-tag lines can be used to encode information into the tag file regarding details about its content (e.g. have
the tags been sorted?, are the optional tagfields present?), and regarding the program used to generate the tag file.
This information can be used both to optimize use of the tag file (e.g. enable/disable binary searching) and provide
general information (what version of the generator was used).

The names of the tags used in these lines may be suitably chosen to ensure that when sorted, they will always be
located near the first lines of the tag file. The use of “!_TAG_” is recommended. Note that a rare tag like “!” can
sort to before these lines. The program reading the tags file should be smart enough to skip over these tags.

The lines described below have been chosen to convey a select set of information.

Tag lines providing information about the content of the tag file:

!_TAG_FILE_FORMAT {version-number} /optional comment/
!_TAG_FILE_SORTED {0|1} /0=unsorted, 1=sorted/

14.6. Proposal 121

Universal Ctags Documentation, Release 0.3.0

The {version-number} used in the tag file format line reserves the value of “1” for tag files complying with the
original UNIX vi/ctags format, and reserves the value “2” for tag files complying with this proposal. This value
may be used to determine if the extended features described in this proposal are present.

Tag lines providing information about the program used to generate the tag file, and provided solely for documen-
tation purposes:

!_TAG_PROGRAM_AUTHOR {author-name} /{email-address}/
!_TAG_PROGRAM_NAME {program-name} /optional comment/
!_TAG_PROGRAM_URL {URL} /optional comment/
!_TAG_PROGRAM_VERSION {version-id} /optional comment/

14.7 Exceptions in Universal-ctags

Universal-ctags supports this proposal with some exceptions.

14.7.1 Exceptions

1. {tagname} in tags file generated by Universal-ctags may contain spaces and several escape sequences.
Parsers for documents like Tex and reStructuredText, or liberal languages such as JavaScript need these
exceptions. See {tagname} of Proposal section for more detail about the conversion.

14.7.2 Compatible output and weakness

Default behavior (--output-format=u-ctags option) has the exceptions. In other hand, with
--output-format=e-ctags option ctags has no exception; Universal-ctags command may use the same
file format as Exuberant-ctags. However, --output-format=e-ctags throws away a tag entry which name
includes a space or a tab character. TAG_OUTPUT_MODE pseudo tag tells which format is used when ctags
generating tags file.

14.7. Exceptions in Universal-ctags 122

CHAPTER 15

Who we are

Please, add your name, background and interests here If you are interested in contributing to universal-ctags
steadily. So we can dispatch a task and/or an issue to the right person!

(Keep the list in alphabetical order.)

Frank Fesevur <ffes@users.sourceforge.net>

My current use of ctags is for a Notepad++ plug-in I’m writing. The plug-in is not yet released
because of problems with the Windows version of ctags. Those problems are fixed by now. I am a
Windows developer, but also an occasional Ubuntu and Raspbian user at home. I wrote the windres
parser.

Colomban Wendling <colomban@geany.org>

I am a developer of Geany, a lightweight IDE/editor that uses CTags parsers to provide various code
insights for a large variety of languages. I don’t use CTags directly but through a (currently) internal
library. Hence, my fields of interest are the quality of the parsers (good and comprehensive results)
and their code (speed, proof against any inputs, absence of memory leaks, regression tests), and a
CTags library applications could use more readily. I am mostly a C developer, but as the maintainer
of the CTags parsers in Geany I work on all parsers.

Masatake YAMATO <yamato@redhat.com>

I’m using ctags in batch jobs running on my source code base where most of all source code in Fedora
are deployed. I’m an Emacs user, so generally I don’t use ctags interactively except when hacking
universal-ctags. Therefore my primary goal is to improve the robustness of parsers: I introduced
Units test facility and badinput command for achieving the goal. The secondary goal is to support
more languages and formats: I introduced optlib. I’m working on Fedora. I don’t have access to the
other platforms.

Qingming He <906459647@qq.com>

I’m mainly a Fortran developer and I use ctags combined with Emacs to handle my projects. My goal
is to improve the Fortran parser to make it support Fortran standards from 77 to 2008 and maybe 2015
to be released in the near future. I’m also interested in improving the lisp parsers (elisp and scheme).

Vitor Antunes <vitor.hda@gmail.com>

I’ve been working with Verilog for most of the last 10 years and am an avid Vim user. My goal is
to improve the Verilog parser such that Vim can get the most out of it in plugins like Tagbar and to
support the Omni completion plugin I am writing.

123

mailto:ffes@users.sourceforge.net
mailto:colomban@geany.org
mailto:yamato@redhat.com
mailto:906459647@qq.com
mailto:vitor.hda@gmail.com

Universal Ctags Documentation, Release 0.3.0

Cameron Eagans <me@cweagans.net>

I’ve been a PHP developer for almost 10 years, and have been using Vim almost as long. My goal
is to help guide the direction of the PHP parser, as well as maintain the ctags website and help guide
new contributors to tasks that they may be able to help with. With time, I may end up contributing
directly to ctags development, but my C skills are not so great at the moment.

Szymon Tomasz Stefanek <s.stefanek@gmail.com>

I’m a multilanguage developer and I use ctags with my own text editor which has some IDE capabil-
ities. I’m the maintainer of the new C/C++ parser.

124

mailto:me@cweagans.net
mailto:s.stefanek@gmail.com

	Introduced changes
	Importing changes from Exuberant-ctags
	Parser related changes
	New and extended options
	Changes to the tags file format
	Reference tags
	Automatic parser selection
	Pseudo tags
	Parser own fields
	Parser own extras
	Parser own parameter
	Customizing xref output
	Incompatible changes in command line
	Skipping utf-8 BOM
	Readtags

	Request for extending a parser (or Reporting a bug of parser)
	Before reporting
	The content of report
	An example of good report

	Contributions
	General topics
	Specific to add new parser and/or new kind/role

	Parsers
	Asm parser
	CMake parser
	The new C/C++ parser
	The new HTML parser
	puppetManifest parser
	The new Python parser
	The new Tcl parser
	The Vim parser
	XSLT parser

	Output formats
	JSON output
	Xref output

	--_interactive Mode
	generate-tags
	sandbox submode

	Choosing a proper parser in ctags
	Running multiple parsers on an input file
	Applying a parser to specified areas of input file (guest/host)
	Tagging definitions of higher(upper) level language (sub/base)

	Building ctags
	Building with configure (*nix including GNU/Linux)
	Building/hacking/using on MS-Windows
	Building on Mac OS

	Testing ctags
	Units test facility
	Semi-fuzz(Fuzz) testing
	Noise testing
	Chop and slap testing
	Tmain: a facility for testing main part
	Tinst installation test
	Cspell spell checking
	Input validation for Units

	Extending ctags
	Extending ctags with Regex parser (optlib)
	ctags Internal API

	Tips for hacking
	Fussy syntax checking
	Finding performance bottleneck
	Checking coverage
	Reviewing the result of Units test
	Running cppcheck

	Relationship between other projects
	Geany
	Tracking other projects
	Software using ctags

	Proposal for extended Vi tags file format
	Introduction
	From proposal to standard
	Backwards compatibility
	Security
	Goals
	Proposal
	Exceptions in Universal-ctags

	Who we are

