
CommCareHQ Documentation
Release 1.0

Dimagi

Aug 14, 2017

Contents

1 Reporting 3
1.1 Recommended approaches for building reports . 3
1.2 Hooking up reports to CommCare HQ . 4
1.3 Reporting on data stored in SQL . 4
1.4 Report API . 6
1.5 Adding dynamic reports . 7
1.6 How pillow/fluff work . 7

2 Change Feeds 9
2.1 What they are . 9
2.2 Architecture . 9
2.3 Publishing changes . 10
2.4 Subscribing to changes . 10
2.5 Porting a new pillow . 11

3 Pillows 13
3.1 What they are . 13
3.2 Creating a pillow . 13
3.3 Error Handling . 14
3.4 Monitoring . 14
3.5 Troubleshooting . 14

4 API 17
4.1 Bulk User Resource . 17

5 Reporting: Maps in HQ 19
5.1 What is the “Maps Report”? . 19
5.2 Orientation . 19
5.3 Styling . 20
5.4 Data Sources . 20
5.5 Display Configuration . 21
5.6 Raw vs. Formatted Data . 23

6 Exports 25

7 UI Helpers 27
7.1 Paginated CRUD View . 27

i

8 Using Class-Based Views in CommCare HQ 35
8.1 The Base Classes . 35
8.2 Adding to Urlpatterns . 37
8.3 Hierarchy . 37
8.4 Permissions . 38
8.5 GETs and POSTs (and other http methods) . 38

9 Testing best practices 41
9.1 Test set up . 41
9.2 Test tear down . 42
9.3 Using SimpleTestCase . 42
9.4 Squashing Migrations . 42

10 Forms in HQ 43
10.1 Making forms CSRF safe . 43
10.2 An Example Complex Asynchronous Form With Partial Fields . 44

11 HQ Management Commands 49

12 CommTrack 51
12.1 What happens during a CommTrack submission? . 51
12.2 Submitting a stock report via CommCare . 52

13 CloudCare 53
13.1 Overview . 53
13.2 Touchforms . 54
13.3 Offline Cloudcare . 54

14 Internationalization 57
14.1 Tagging strings in views . 57
14.2 Tagging strings in template files . 59
14.3 Keeping translations up to date . 59

15 Profiling 61
15.1 Practical guide to profiling a slow view or function . 61
15.2 Memory profiling . 65

16 ElasticSearch 67
16.1 Indexes . 67
16.2 Keeping indexes up-to-date . 68
16.3 Changing a mapping or adding data . 68
16.4 How to un-bork your broken indexes . 68
16.5 Querying Elasticsearch - Best Practices . 68

17 Use ESQuery when possible 69

18 Prefer “get” to “search” 71

19 Prefer scroll queries 73

20 Prefer filter to query 75

21 Use size(0) with aggregations 77

22 ESQuery 79

ii

23 Analyzing Test Coverage 81
23.1 Using coverage.py . 81

24 Advanced App Features 83
24.1 Child Modules . 83
24.2 Shadow Modules . 85

25 Using the shared NFS drive 89
25.1 Using apache / nginx to handle downloads . 89
25.2 Saving uploads to the NFS drive . 90

26 How to use and reference forms and cases programatically 91
26.1 Models . 91
26.2 Model acessors . 92
26.3 Branching . 93
26.4 Unit Tests . 93

27 Messaging in CommCareHQ 95
27.1 Messaging Definitions . 95
27.2 Contacts . 96
27.3 Outbound SMS . 97
27.4 Inbound SMS . 98
27.5 SMS Backends . 99
27.6 Reminders . 101
27.7 Keywords . 103

28 Locations 105

29 Tips for documenting 107
29.1 Documenting . 107

30 Indices and tables 111

iii

iv

CommCareHQ Documentation, Release 1.0

Contents:

Contents 1

CommCareHQ Documentation, Release 1.0

2 Contents

CHAPTER 1

Reporting

A report is a logical grouping of indicators with common config options (filters etc)

The way reports are produced in CommCare is still evolving so there are a number of different frameworks and
methods for generating reports. Some of these are legacy frameworks and should not be used for any future reports.

Recommended approaches for building reports

TODO: SQL reports, Elastic reports, Custom case lists / details,

Things to keep in mind:

• report API

• Fluff

• sqlagg

• couchdbkit-aggregate (legacy)

Example Custom Report Scaffolding

class MyBasicReport(GenericTabularReport, CustomProjectReport):
name = "My Basic Report"
slug = "my_basic_report"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

@property
def headers(self):

return DataTablesHeader(DataTablesColumn("Col A"),
DataTablesColumnGroup(

"Group 1",
DataTablesColumn("Col B"),
DataTablesColumn("Col C")),

3

https://github.com/dimagi/sql-agg
https://github.com/dimagi/couchdbkit-aggregate

CommCareHQ Documentation, Release 1.0

DataTablesColumn("Col D"))

@property
def rows(self):

return [
['Row 1', 2, 3, 4],
['Row 2', 3, 2, 1]

]

Hooking up reports to CommCare HQ

Custom reports can be configured in code or in the database. To configure custom reports in code follow the following
instructions.

First, you must add the app to HQ_APPS in settings.py. It must have an __init__.py and a models.py for django to
recognize it as an app.

Next, add a mapping for your domain(s) to the custom reports module root to the DOMAIN_MODULE_MAP variable
in settings.py.

Finally, add a mapping to your custom reports to __init__.py in your custom reports submodule:

from myproject import reports

CUSTOM_REPORTS = (
('Custom Reports', (

reports.MyCustomReport,
reports.AnotherCustomReport,

)),
)

Reporting on data stored in SQL

As described above there are various ways of getting reporting data into and SQL database. From there we can query
the data in a number of ways.

Extending the SqlData class

The SqlData class allows you to define how to query the data in a declarative manner by breaking down a query into
a number of components.

This approach means you don’t write any raw SQL. It also allows you to easily include or exclude columns, format
column values and combine values from different query columns into a single report column (e.g. calculate percent-
ages).

In cases where some columns may have different filter values e.g. males vs females, sqlagg will handle executing the
different queries and combining the results.

This class also implements the corehq.apps.reports.api.ReportDataSource.

See Report API and sqlagg for more info.

e.g.

4 Chapter 1. Reporting

https://github.com/dimagi/sql-agg

CommCareHQ Documentation, Release 1.0

class DemoReport(SqlTabularReport, CustomProjectReport):
name = "SQL Demo"
slug = "sql_demo"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

The columns to include the the 'group by' clause
group_by = ["user"]

The table to run the query against
table_name = "user_report_data"

@property
def filters(self):

return [
BETWEEN('date', 'startdate', 'enddate'),

]

@property
def filter_values(self):

return {
"startdate": self.datespan.startdate_param_utc,
"enddate": self.datespan.enddate_param_utc,
"male": 'M',
"female": 'F',

}

@property
def keys(self):

would normally be loaded from couch
return [["user1"], ["user2"], ['user3']]

@property
def columns(self):

return [
DatabaseColumn("Location", SimpleColumn("user_id"), format_fn=self.

→˓username),
DatabaseColumn("Males", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'male')]),
DatabaseColumn("Females", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'female')]),
AggregateColumn(

"C as percent of D",
self.calc_percentage,
[SumColumn("indicator_c"), SumColumn("indicator_d")],
format_fn=self.format_percent)

]

_usernames = {"user1": "Location1", "user2": "Location2", 'user3': "Location3"}
→˓# normally loaded from couch

def username(self, key):
return self._usernames[key]

def calc_percentage(num, denom):
if isinstance(num, Number) and isinstance(denom, Number):

if denom != 0:
return num * 100 / denom

else:
return 0

1.3. Reporting on data stored in SQL 5

CommCareHQ Documentation, Release 1.0

else:
return None

def format_percent(self, value):
return format_datatables_data("%d%%" % value, value)

Using the sqlalchemy API directly

TODO

Report API

Part of the evolution of the reporting frameworks has been the development of a report api. This is essentially just a
change in the architecture of reports to separate the data from the display. The data can be produced in various formats
but the most common is an list of dicts.

e.g.

data = [
{
'slug1': 'abc',
'slug2': 2

},
{
'slug1': 'def',
'slug2': 1

}
...

]

This is implemented by creating a report data source class that extends corehq.apps.reports.api.
ReportDataSource and overriding the get_data() function.

These data sources can then be used independently or the CommCare reporting user interface and can also be reused
for multiple use cases such as displaying the data in the CommCare UI as a table, displaying it in a map, making it
available via HTTP etc.

An extension of this base data source class is the corehq.apps.reports.sqlreport.SqlData class which
simplifies creating data sources that get data by running an SQL query. See section on SQL reporting for more info.

e.g.

class CustomReportDataSource(ReportDataSource):
def get_data(self):

startdate = self.config['start']
enddate = self.config['end']

...

return data

config = {'start': date(2013, 1, 1), 'end': date(2013, 5, 1)}
ds = CustomReportDataSource(config)
data = ds.get_data()

6 Chapter 1. Reporting

CommCareHQ Documentation, Release 1.0

Adding dynamic reports

Domains support dynamic reports. Currently the only verison of these are maps reports. There is currently no doc-
umentation for how to use maps reports. However you can look at the drew or aaharsneha domains on prod for
examples.

How pillow/fluff work

GitHub

Note: This should be rewritten, I wrote it when I was first trying to understand how fluff works.

A Pillow provides the ability to listen to a database, and on changes, the class BasicPillow calls change_transform and
passes it the changed doc dict. This method can process the dict and transform it, or not. The result is then passed to
the method change_transport, which must be implemented in any subclass of BasicPillow. This method is
responsible for acting upon the changes.

In fluff’s case, it stores an indicator document with some data calculated from a particular type of doc. When a relevant
doc is updated, the calculations are performed. The diff between the old and new indicator docs is calculated, and sent
to the db to update the indicator doc.

fluff’s Calculator object auto-detects all methods that are decorated by subclasses of base_emitter and stores them in
a _fluff_emitters array. This is used by the calculate method to return a dict of emitter slugs mapped to the result of
the emitter function (called with the newly updated doc) coerced to a list.

to rephrase: fluff emitters accept a doc and return a generator where each element corresponds to a contribution to the
indicator

1.5. Adding dynamic reports 7

https://github.com/dimagi/fluff

CommCareHQ Documentation, Release 1.0

8 Chapter 1. Reporting

CHAPTER 2

Change Feeds

The following describes our approach to change feeds on HQ. For related content see Cory’s brown bag on the topic

What they are

A change feed is modeled after the CouchDB _changes feed. It can be thought of as a real-time log of “changes” to
our database. Anything that creates such a log is called a “(change) publisher”.

Other processes can listen to a change feed and then do something with the results. Processes that listen to changes
are called “subscribers”. In the HQ codebase “subscribers” are referred to as “pillows” and most of the change feed
functionality is provided via the pillowtop module. This document refers to pillows and subscribers interchangeably.

Common use cases for change subscribers:

• ETL (our main use case)

– Saving docs to ElasticSearch

– Custom report tables

– UCR data sources

• Cache invalidation

• Real-time visualizations (e.g. dimagisphere)

Architecture

We use kafka as our primary back-end to facilitate change feeds. This allows us to decouple our subscribers from the
underlying source of changes so that they can be database-agnostic. For legacy reasons there are still change feeds
that run off of CouchDB’s _changes feed however these are in the process of being phased out.

9

https://docs.google.com/presentation/d/1YPWUJbic87UYz3bqocJCsnYrnaEZkn8nCM2VZOXQRmg/edit
http://kafka.apache.org/

CommCareHQ Documentation, Release 1.0

Topics

Topics are a kafka concept that are used to create logical groups (or “topics”) of data. In the HQ codebase we use
topics primarily as a 1:N mapping to HQ document classes (or ‘‘doc_type‘‘s). Forms and cases currently have their
own topics, while everything else is lumped in to a “meta” topic. This allows certain pillows to subscribe to the exact
category of change/data they are interested in (e.g. a pillow that sends cases to elasticsearch would only subscribe to
the “cases” topic).

Document Stores

Published changes are just “stubs” but do not contain the full data that was affected. Each change should be associated
with a “document store” which is an abstraction that represents a way to retrieve the document from its original
database. This allows the subscribers to retrieve the full document while not needing to have the underlying source
hard-coded (so that it can be changed). To add a new document store, you can use one of the existing subclasses of
DocumentStore or roll your own.

Publishing changes

Publishing changes is the act of putting them into kafka from somewhere else.

From Couch

Publishing changes from couch is easy since couch already has a great change feed implementation with the
_changes API. For any database that you want to publish changes from the steps are very simple. Just create a
ConstructedPillow with a CouchChangeFeed feed pointed at the database you wish to publish from and a
KafkaProcessor to publish the changes. There is a utility function (get_change_feed_pillow_for_db)
which creates this pillow object for you.

From SQL

Currently SQL-based change feeds are published from the app layer. Basically, you can just call a func-
tion that publishes the change in a .save() function (or a post_save signal). See the functions in
form_processors.change_publishers and their usages for an example of how that’s done.

It is planned (though unclear on what timeline) to find an option to publish changes directly from SQL to kafka to avoid
race conditions and other issues with doing it at the app layer. However, this change can be rolled out independently
at any time in the future with (hopefully) zero impact to change subscribers.

From anywhere else

There is not yet a need/precedent for publishing changes from anywhere else, but it can always be done at the app
layer.

Subscribing to changes

It is recommended that all new change subscribers be instances (or subclasses) of ConstructedPillow. You can
use the KafkaChangeFeed object as the change provider for that pillow, and configure it to subscribe to one or
more topics. Look at usages of the ConstructedPillow class for examples on how this is done.

10 Chapter 2. Change Feeds

https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/change_publishers.py

CommCareHQ Documentation, Release 1.0

Porting a new pillow

Porting a new pillow to kafka will typically involve the following steps. Depending on the data being published, some
of these may be able to be skipped (e.g. if there is already a publisher for the source data, then that can be skipped).

1. Setup a publisher, following the instructions above.

2. Setup a subscriber, following the instructions above.

3. For non-couch-based data sources, you must setup a DocumentStore class for the pillow, and include it in
the published feed.

4. For any pillows that require additional bootstrap logic (e.g. setting up UCR data tables or bootstrapping elastic-
search indexes) this must be hooked up manually.

2.5. Porting a new pillow 11

CommCareHQ Documentation, Release 1.0

12 Chapter 2. Change Feeds

CHAPTER 3

Pillows

What they are

A pillow is a subscriber to a change feed. When a change is published the pillow receives the document, performs
some calculation or transform, and publishes it to another database.

Creating a pillow

All pillows inherit from ConstructedPillow class. A pillow consists of a few parts:

1. Change Feed

2. Checkpoint

3. Processor(s)

4. Change Event Handler

Change Feed

Change feeds are documented here.

The 10,000 foot view is a change feed publishes changes which you can subscribe to.

Checkpoint

The checkpoint is a json field that tells processor where to start the change feed.

13

CommCareHQ Documentation, Release 1.0

Processor(s)

A processor is what handles the transformation or calculation and publishes it to a database. Most pillows only have
one processor, but sometimes it will make sense to combine processors into one pillow when you are only iterating
over a small number of documents (such as custom reports).

When creating a processor you should be aware of how much time it will take to process the record. A useful baseline
is:

86400 seconds per day / # of expected changes per day = how long your processor should take

Note that it should be faster than this as most changes will come in at once instead of evenly distributed throughout
the day.

Change Event Handler

This fires after each change has been processed. The main use case is to save the checkpoint to the database.

Error Handling

Pillow errors are handled by saving to model PillowError. A celery queue reads from this model and retries any errors
on the pillow.

Monitoring

There are several datadog metrics with the prefix commcare.change_feed that can be helpful for monitoring pillows.

For UCR pillows the pillow log will contain any data sources and docs that have exceeded a threshold and can be used
to find expensive data sources.

Troubleshooting

A pillow is falling behind

A pillow can fall behind for two reasons:

1. The processor is too slow for the number of changes that are coming in.

2. There has been an issue with the change feed that has caused the checkpoint to be “rewound”

Optimizing a processor

To solve #1 you should use any monitors that have been set up to attempt to pinpoint the issue.

If this is a UCR pillow use the profile_data_source management command to profile the expensive data sources.

14 Chapter 3. Pillows

CommCareHQ Documentation, Release 1.0

Parallel Processors

To scale UCR Pillows horizontally do the following:

1. Look for what pillows are behind. This can be found in the change feed dashboard or the hq admin system info
page.

2. Ensure you have enough resources on the pillow server to scale the pillows This can be found through datadog.

3. Decide what topics need to have added partitions in kafka. There is no way to scale a couch pillow horizontally.
You can also not remove partitions so you should attempt scaling in small increments. Also attempt to make
sure pillows are able to split partitions easily. It’s easiest to use powers of 2

4. Run ./manage.py add_kafka_partition <topic> <number partitions to have>

5. In the commcare-hq-deploy repo change num_processes to the pillows you want to scale. Merge this PR and
update the submodule in hq

6. On the next deploy multiple processes will be used when starting pillows

The UCR pillows also have options to split the pillow into multiple. They include ucr_divsion, include_ucrs and
exclude_ucrs. Look to the pillow code for more information on these.

Rewound Checkpoint

Occasionally checkpoints will be “rewound” to a previous state causing pillows to process changes that have already
been processed. This usually happens when a couch node fails over to another. If this occurs, stop the pillow, wait
for confirmation that the couch nodes are up, and fix the checkpoint using: ./manage.py fix_checkpoint_after_rewind
<pillow_name>

Problem with checkpoint for pillow name: First available topic offset for topic is
num1 but needed num2

This happens when the earliest checkpoint that kafka knows about for a topic is after the checkpoint the pillow wants
to start at. This often happens if a pillow has been stopped for a month and has not been removed from the settings.

To fix this you should verify that the pillow is no longer needed in the environment. If it isn’t, you can delete the
checkpoint and re-deploy. This should eventually be followed up by removing the pillow from the settings.

If the pillow is needed and should be running you’re in a bit of a pickle. This means that the pillow is not able to get
the required document ids from kafka. It also won’t be clear what documents the pillows has and has not processed.
To fix this the safest thing will be to force the pillow to go through all relevant docs. Once this process is started you
can move the checkpoint for that pillow to the most recent offset for its topic.

3.5. Troubleshooting 15

CommCareHQ Documentation, Release 1.0

16 Chapter 3. Pillows

CHAPTER 4

API

Bulk User Resource

Resource name: bulk_user
First version available: v0.5

This resource is used to get basic user data in bulk, fast. This is especially useful if you need to get, say, the name and
phone number of every user in your domain for a widget.

Currently the default fields returned are:

id
email
username
first_name
last_name
phone_numbers

Supported Parameters:

• q - query string

• limit - maximum number of results returned

• offset - Use with limit to paginate results

• fields - restrict the fields returned to a specified set

Example query string:

?q=foo&fields=username&fields=first_name&fields=last_name&limit=100&offset=200

17

CommCareHQ Documentation, Release 1.0

This will return the first and last names and usernames for users matching the query “foo”. This request is for the third
page of results (200-300)

Additional notes:
It is simple to add more fields if there arises a significant use case.
Potential future plans: Support filtering in addition to querying. Support different types of querying. Add an order_by
option

18 Chapter 4. API

CHAPTER 5

Reporting: Maps in HQ

What is the “Maps Report”?

We now have map-based reports in HQ. The “maps report” is not really a report, in the sense that it does not query or
calculate any data on its own. Rather, it’s a generic front-end visualization tool that consumes data from some other
place... other places such as another (tabular) report, or case/form data (work in progress).

To create a map-based report, you must configure the map report template with specific parameters. These are:

• data_source – the backend data source which will power the report (required)

• display_config – customizations to the display/behavior of the map itself (optional, but suggested for
anything other than quick prototyping)

There are two options for how this configuration actually takes place:

• via a domain’s “dynamic reports” (see Adding dynamic reports), where you can create specific configurations
of a generic report for a domain

• subclass the map report to provide/generate the config parameters. You should not need to subclass any code
functionality. This is useful for making a more permanent map configuration, and when the configuration needs
to be dynamically generated based on other data or domain config (e.g., for CommTrack)

Orientation

Abstractly, the map report consumes a table of data from some source. Each row of the table is a geographical feature
(point or region). One column is identified as containing the geographical data for the feature. All other columns are
arbitrary attributes of that feature that can be visualized on the map. Another column may indicate the name of the
feature.

The map report contains, obviously, a map. Features are displayed on the map, and may be styled in a number of
ways based on feature attributes. The map also contains a legend generated for the current styling. Below the map is
a table showing the raw data. Clicking on a feature or its corresponding row in the table will open a detail popup. The
columns shown in the table and the detail popup can be customized.

19

https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/standard/inspect.py#L685
https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/commtrack/maps.py#L7

CommCareHQ Documentation, Release 1.0

Attribute data is generally treated as either being numeric data or enumerated data (i.e., belonging to a number of dis-
crete categories). Strings are inherently treated as enum data. Numeric data can be treated as enum data be specifying
thresholds: numbers will be mapped to enum ‘buckets’ between consecutive thresholds (e.g, thresholds of 10, 20 will
create enum categories: < 10, 10-20, > 20).

Styling

Different aspects of a feature’s marker on the map can be styled based on its attributes. Currently supported visualiza-
tions (you may see these referred to in the code as “display axes” or “display dimensions”) are:

• varying the size (numeric data only)

• varying the color/intensity (numeric data (color scale) or enum data (fixed color palette))

• selecting an icon (enum data only)

Size and color may be used concurrently, so one attribute could vary size while another varies the color... this is useful
when the size represents an absolute magnitude (e.g., # of pregnancies) while the color represents a ratio (% with
complications). Region features (as opposed to point features) only support varying color.

A particular configuration of visualizations (which attributes are mapped to which display axes, and associated styling
like scaling, colors, icons, thresholds, etc.) is called a metric. A map report can be configured with many different
metrics. The user selects one metric at a time for viewing. Metrics may not correspond to table columns one-to-one,
as a single column may be visualized multiple ways, or in combination with other columns, or not at all (shown in
detail popup only). If no metrics are specified, they will be auto-generated from best guesses based on the available
columns and data feeding the report.

There are several sample reports that comprehensively demo the potential styling options:

• Demo 1

• Demo 2

See Display Configuration

Data Sources

Set this config on the data_source property. It should be a dict with the following properties:

• geo_column – the column in the returned data that contains the geo point (default: "geo")

• adapter – which data adapter to use (one of the choices below)

• extra arguments specific to each data adapter

Note that any report filters in the map report are passed on verbatim to the backing data source.

One column of the data returned by the data source must be the geodata (in geo_column). For point features, this
can be in the format of a geopoint xform question (e.g, 42.366 -71.104). The geodata format for region features
is outside the scope of the document.

report

Retrieve data from a ReportDataSource (the abstract data provider of Simon’s new reporting framework – see
Report API)

Parameters:

20 Chapter 5. Reporting: Maps in HQ

https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo/
https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo2/

CommCareHQ Documentation, Release 1.0

• report – fully qualified name of ReportDataSource class

• report_params – dict of static config parameters for the ReportDataSource (optional)

legacyreport

Retrieve data from a GenericTabularReport which has not yet been refactored to use Simon’s new framework.
Not ideal and should only be used for backwards compatibility. Tabular reports tend to return pre-formatted data,
while the maps report works best with raw data (for example, it won’t know 4% or 30 mg are numeric data, and will
instead treat them as text enum values). Read more.

Parameters:

• report – fully qualified name of tabular report view class (descends from GenericTabularReport)

• report_params – dict of static config parameters for the ReportDataSource (optional)

case

Pull case data similar to the Case List.

(In the current implementation, you must use the same report filters as on the regular Case List report)

Parameters:

• geo_fetch – a mapping of case types to directives of how to pull geo data for a case of that type. Supported
directives:

– name of case property containing the geopoint data

– "link:xxx" where xxx is the case type of a linked case; the adapter will then serach that linked case
for geo-data based on the directive of the linked case type (not supported yet)

In the absence of any directive, the adapter will first search any linked Location record (not supported yet),
then try the gps case property.

csv and geojson

Retrieve static data from a csv or geojson file on the server (only useful for testing/demo– this powers the demo reports,
for example).

Display Configuration

Set this config on the display_config property. It should be a dict with the following properties:

(Whenever ‘column’ is mentioned, it refers to a column slug as returned by the data adapter)

All properties are optional. The map will attempt sensible defaults.

• name_column – column containing the name of the row; used as the header of the detail popup

• column_titles – a mapping of columns to display titles for each column

• detail_columns – a list of columns to display in the detail popup

• table_columns – a list of columns to display in the data table below the map

5.5. Display Configuration 21

CommCareHQ Documentation, Release 1.0

• enum_captions – display captions for enumerated values. A dict where each key is a column and each
value is another dict mapping enum values to display captions. These enum values reflect the results of any
transformations from metrics (including _other, _null, and -).

• numeric_format – a mapping of columns to functions that apply the appropriate numerical formatting for
that column. Expressed as the body of a function that returns the formatted value (return statement required!).
The unformatted value is passed to the function as the variable x.

• detail_template – an underscore.js template to format the content of the detail popup

• metrics – define visualization metrics (see Styling). An array of metrics, where each metric is a dict like
so:

– auto – column. Auto-generate a metric for this column with no additional manual input. Uses heuristics
to determine best presentation format.

OR

– title – metric title in sidebar (optional)

AND one of the following for each visualization property you want to control

– size (static) – set the size of the marker (radius in pixels)

– size (dynamic) – vary the size of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* baseline – value that should correspond to a marker radius of 10px

* min – min marker radius (optional)

* max – max marker radius (optional)

– color (static) – set the marker color (css color value)

– color (dynamic) – vary the color of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* categories – for enumerated data; a mapping of enum values to css color values. Mapping key
may also be one of these magic values:

· _other: a catch-all for any value not specified

· _null: matches rows whose value is blank; if absent, such rows will be hidden

* colorstops – for numeric data. Creates a sliding color scale. An array of colorstops, each of the
format [<value>, <css color>].

* thresholds – (optional) a helper to convert numerical data into enum data via “buckets”. Specify
a list of thresholds. Each bucket comprises a range from one threshold up to but not including the next
threshold. Values are mapped to the bucket whose range they lie in. The “name” (i.e., enum value)
of a bucket is its lower threshold. Values below the lowest threshold are mapped to a special bucket
called "-".

– icon (static) – set the marker icon (image url)

– icon (dynamic) – vary the icon of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* categories – as in color, a mapping of enum values to icon urls

* thresholds – as in color

22 Chapter 5. Reporting: Maps in HQ

CommCareHQ Documentation, Release 1.0

size and color may be combined (such as one column controlling size while another controls the color).
icon must be used on its own.

For date columns, any relevant number in the above config (thresholds, colorstops, etc.) may be
replaced with a date (in ISO format).

Raw vs. Formatted Data

Consider the difference between raw and formatted data. Numbers may be formatted for readability (12,345,678,
62.5%, 27 units); enums may be converted to human-friendly captions; null values may be represented as -- or
n/a. The maps report works best when it has the raw data and can perform these conversions itself. The main reason
is so that it may generate useful legends, which requires the ability to appropriately format values that may never
appear in the report data itself.

There are three scenarios of how a data source may provide data:

• (worst) only provide formatted data

Maps report cannot distinguish numbers from strings from nulls. Data visualizations will not be useful.

• (sub-optimal) provide both raw and formatted data (most likely via the legacyreport adapter)

Formatted data will be shown to the user, but maps report will not know how to format data for display in
legends, nor will it know all possible values for an enum field – only those that appear in the data.

• (best) provide raw data, and explicitly define enum lists and formatting functions in the report config

5.6. Raw vs. Formatted Data 23

CommCareHQ Documentation, Release 1.0

24 Chapter 5. Reporting: Maps in HQ

CHAPTER 6

Exports

Docs in corehq/apps/export/README.md

25

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/export/README.md

CommCareHQ Documentation, Release 1.0

26 Chapter 6. Exports

CHAPTER 7

UI Helpers

There are a few useful UI helpers in our codebase which you should be aware of. Save time and create consistency.

Paginated CRUD View

Use corehq.apps.hqwebapp.views.CRUDPaginatedViewMixin the with a TemplateView subclass (ideally one that also
subclasses corehq.apps.hqwebapp.views.BasePageView or BaseSectionPageView) to have a paginated list of objects
which you can create, update, or delete.

The Basic Paginated View

In its very basic form (a simple paginated view) it should look like:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
your template should extend style/base_paginated_crud.html
template_name = 'puppyapp/paginated_puppies.html

all the user-visible text
limit_text = "puppies per page"
empty_notification = "you have no puppies"
loading_messagge = "loading_puppies"

required properties you must implement:

@property
def parameters(self):

"""
Specify a GET or POST from an HttpRequest object.
"""
Usually, something like:
return self.request.POST if self.request.method == 'post' else self.request.

→˓GET

27

CommCareHQ Documentation, Release 1.0

@property
def total(self):

How many documents are you paginating through?
return Puppy.get_total()

@property
def column_names(self):

What will your row be displaying?
return [

"Name",
"Breed",
"Age",

]

@property
def paginated_list(self):

"""
This should return a list (or generator object) of data formatted as follows:
[

{
'itemData': {

'id': <id of item>,
<json dict of item data for the knockout model to use>

},
'template': <knockout template id>

}
]
"""
for puppy in Puppy.get_all():

yield {
'itemData': {

'id': puppy._id,
'name': puppy.name,
'breed': puppy.breed,
'age': puppy.age,

},
'template': 'base-puppy-template',

}

def post(self, *args, **kwargs):
return self.paginated_crud_response

The template should use knockout templates to render the data you pass back to the view. Each template will have
access to everything inside of itemData. Here’s an example:

{% extends 'style/base_paginated_crud.html' %}

{% block pagination_templates %}
<script type="text/html" id="base-puppy-template">

<td data-bind="text: name"></td>
<td data-bind="text: breed"></td>
<td data-bind="text: age"></td>

</script>
{% endblock %}

28 Chapter 7. UI Helpers

http://knockoutjs.com/documentation/template-binding.html

CommCareHQ Documentation, Release 1.0

Allowing Creation in your Paginated View

If you want to create data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_create_form(self, is_blank=False):

if self.request.method == 'POST' and not is_blank:
return CreatePuppyForm(self.request.POST)

return CreatePuppyForm()

def get_create_item_data(self, create_form):
new_puppy = create_form.get_new_puppy()
return {

'newItem': {
'id': new_puppy._id,
'name': new_puppy.name,
'breed': new_puppy.breed,
'age': new_puppy.age,

},
you could use base-puppy-template here, but you might want to add an

→˓update button to the
base template.
'template': 'new-puppy-template',

}

The form returned in get_create_form() should make use of crispy forms.

from django import forms
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Layout
from crispy_forms.bootstrap import StrictButton, InlineField

class CreatePuppyForm(forms.Form):
name = forms.CharField()
breed = forms.CharField()
dob = forms.DateField()

def __init__(self, *args, **kwargs):
super(CreatePuppyForm, self).__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.form_style = 'inline'
self.helper.form_show_labels = False
self.helper.layout = Layout(

InlineField('name'),
InlineField('breed'),
InlineField('dob'),
StrictButton(

mark_safe('<i class="icon-plus"></i> %s' % "Create Puppy"),
css_class='btn-success',
type='submit'

)
)

def get_new_puppy(self):
return new Puppy
return Puppy.create(self.cleaned_data)

7.1. Paginated CRUD View 29

https://django-crispy-forms.readthedocs.org/en/latest/

CommCareHQ Documentation, Release 1.0

Allowing Updating in your Paginated View

If you want to update data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_update_form(self, initial_data=None):

if self.request.method == 'POST' and self.action == 'update':
return UpdatePuppyForm(self.request.POST)

return UpdatePuppyForm(initial=initial_data)

@property
def paginated_list(self):

for puppy in Puppy.get_all():
yield {

'itemData': {
'id': puppy._id,
...
make sure you add in this line, so you can use the form in your

→˓template:
'updateForm': self.get_update_form_response(

self.get_update_form(puppy.inital_form_data)
),

},
'template': 'base-puppy-template',

}

@property
def column_names(self):

return [
...
if you're adding another column to your template, be sure to give it a

→˓name here...
_('Action'),

]

def get_updated_item_data(self, update_form):
updated_puppy = update_form.update_puppy()
return {

'itemData': {
'id': updated_puppy._id,
'name': updated_puppy.name,
'breed': updated_puppy.breed,
'age': updated_puppy.age,

},
'template': 'base-puppy-template',

}

The UpdatePuppyForm should look something like:

class UpdatePuppyForm(CreatePuppyForm):
item_id = forms.CharField(widget=forms.HiddenInput())

def __init__(self, *args, **kwargs):
super(UpdatePuppyForm, self).__init__(*args, **kwargs)
self.helper.form_style = 'default'
self.helper.form_show_labels = True
self.helper.layout = Layout(

30 Chapter 7. UI Helpers

CommCareHQ Documentation, Release 1.0

Div(
Field('item_id'),
Field('name'),
Field('breed'),
Field('dob'),
css_class='modal-body'

),
FormActions(

StrictButton(
"Update Puppy",
css_class='btn-primary',
type='submit',

),
HTML('<button type="button" class="btn" data-dismiss="modal">Cancel</

→˓button>'),
css_class="modal-footer'

)
)

def update_puppy(self):
return Puppy.update_puppy(self.cleaned_data)

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

<button type="button"
data-toggle="modal"
data-bind="

attr: {
'data-target': '#update-puppy-' + id

}
"
class="btn btn-primary">

Update Puppy
</button>

<div class="modal hide fade"
data-bind="

attr: {
id: 'update-puppy-' + id

}
">

<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-hidden=

→˓"true">×</button>
<h3>

Update puppy <strong data-bind="text: name">:
</h3>

</div>
<div data-bind="html: updateForm"></div>

</div>
</td>

</script>

7.1. Paginated CRUD View 31

CommCareHQ Documentation, Release 1.0

Allowing Deleting in your Paginated View

If you want to delete data with your paginated view, you should implement something like the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

def get_deleted_item_data(self, item_id):
deleted_puppy = Puppy.get(item_id)
deleted_puppy.delete()
return {

'itemData': {
'id': deleted_puppy._id,
...

},
'template': 'deleted-puppy-template', # don't forget to implement this!

}

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

...
<button type="button"

data-toggle="modal"
data-bind="

attr: {
'data-target': '#delete-puppy-' + id

}
"
class="btn btn-danger">

<i class="icon-remove"></i> Delete Puppy
</button>

<div class="modal hide fade"
data-bind="

attr: {
id: 'delete-puppy-' + id

}
">

<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-hidden=

→˓"true">×</button>
<h3>

Delete puppy <strong data-bind="text: name">?
</h3>

</div>
<div class="modal-body">

<p>
Yes, delete the puppy named <strong data-bind="text: name"></

→˓strong>.
</p>

</div>
<div class="modal-footer">

<button type="button"
class="btn"
data-dismiss="modal">

32 Chapter 7. UI Helpers

CommCareHQ Documentation, Release 1.0

Cancel
</button>
<button type="button"

class="btn btn-danger delete-item-confirm"
data-loading-text="Deleting Puppy...">

<i class="icon-remove"></i> Delete Puppy
</button>

</div>
</div>

</td>
</script>

Refreshing The Whole List Base on Update

If you want to do something that affects an item’s position in the list (generally, moving it to the top), this is the feature
you want.

You implement the following method (note that a return is not expected):

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

def refresh_item(self, item_id):
refresh the item here
puppy = Puppy.get(item_id)
puppy.make_default()
puppy.save()

Add a button like this to your template:

<button type="button"
class="btn refresh-list-confirm"
data-loading-text="Making Default...">

Make Default Puppy
</button>

Now go on and make some CRUD paginated views!

7.1. Paginated CRUD View 33

CommCareHQ Documentation, Release 1.0

34 Chapter 7. UI Helpers

CHAPTER 8

Using Class-Based Views in CommCare HQ

We should move away from function-based views in django and use class-based views instead. The goal of this section
is to point out the infrastructure we’ve already set up to keep the UI standardized.

The Base Classes

There are two styles of pages in CommCare HQ. One page is centered (e.g. registration, org settings or the list of
projects). The other is a two column, with the left gray column acting as navigation and the right column displaying
the primary content (pages under major sections like reports).

A Basic (Centered) Page

To get started, subclass BasePageView in corehq.apps.hqwebapp.views. BasePageView is a subclass of django’s Tem-
plateView.

class MyCenteredPage(BasePageView):
urlname = 'my_centered_page'
page_title = "My Centered Page"
template_name = 'path/to/template.html'

@property
def page_url(self):

often this looks like:
return reverse(self.urlname)

@property
def page_context(self):

You want to do as little logic here.
Better to divvy up logical parts of your view in other instance methods or

→˓properties
to keep things clean.
You can also do stuff in the get() and post() methods.

35

CommCareHQ Documentation, Release 1.0

return {
'some_property': self.compute_my_property(),
'my_form': self.centered_form,

}

urlname This is what django urls uses to identify your page

page_title This text will show up in the <title> tag of your template. It will also show up in the primary heading of
your template.

If you want to do use a property in that title that would only be available after your page is instantiated, you
should override:

@property
def page_name(self):

return mark_safe("This is a page for %s" % self.kitten.name)

page_name will not show up in the <title> tags, as you can include html in this name.

template_name Your template should extend style/base_page.html

It might look something like:

{% extends 'style/base_page.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block page_content %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

A Section (Two-Column) Page

To get started, subclass BaseSectionPageView in corehq.apps.hqwebapp.views. You should implement all the things
described in the minimal setup for A Basic (Centered) Page in addition to:

class MySectionPage(BaseSectionPageView):
... # everything from BasePageView

section_name = "Data"
template_name = 'my_app/path/to/template.html'

@property
def section_url(self):

return reverse('my_section_default')

Note: Domain Views

36 Chapter 8. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

If your view uses domain, you should subclass BaseDomainView. This inserts the domain name as into the
main_context and adds the login_and_domain_required permission. It also implements page_url to assume the basic
reverse for a page in a project: reverse(self.urlname, args=[self.domain])

section_name This shows up as the root name on the section breadcrumbs.

template_name Your template should extend style/base_section.html

It might look something like:

{% extends 'style/base_section.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block main_column %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

Note: Organizing Section Templates

Currently, the practice is to extend style/base_section.html in a base template for your section (e.g.
users/base_template.html) and your section page will then extend its section’s base template.

Adding to Urlpatterns

Your urlpatterns should look something like:

urlpatterns = patterns(
'corehq.apps.my_app.views',
...,
url(r'^my/page/path/$', MyCenteredPage.as_view(), name=MyCenteredPage.urlname),

)

Hierarchy

If you have a hierarchy of pages, you can implement the following in your class:

class MyCenteredPage(BasePageView):
...

@property
def parent_pages(self):

8.2. Adding to Urlpatterns 37

CommCareHQ Documentation, Release 1.0

This will show up in breadcrumbs as MyParentPage > MyNextPage >
→˓MyCenteredPage

return [
{

'title': MyParentPage.page_title,
'url': reverse(MyParentPage.urlname),

},
{

'title': MyNextPage.page_title,
'url': reverse(MyNextPage.urlname),

},
]

If you have a hierarchy of pages, it might be wise to implement a BaseParentPageView or
Base<InsertSectionName>View that extends the main_context property. That way all of the pages in that sec-
tion have access to the section’s context. All page-specific context should go in page_context.

class BaseKittenSectionView(BaseSectionPageView):

@property
def main_context(self):

main_context = super(BaseParentView, self).main_context
main_context.update({

'kitten': self.kitten,
})
return main_context

Permissions

To add permissions decorators to a class-based view, you need to decorate the dispatch instance method.

class MySectionPage(BaseSectionPageView):
...

@method_decorator(can_edit)
def dispatch(self, request, *args, **kwargs)

return super(MySectionPage, self).dispatch(request, *args, **kwargs)

GETs and POSTs (and other http methods)

Depending on the type of request, you might want to do different things.

class MySectionPage(BaseSectionPageView):
...

def get(self, request, *args, **kwargs):
do stuff related to GET here...
return super(MySectionPage, self).get(request, *args, **kwargs)

def post(self, request, *args, **kwargs):
do stuff related to post here...
return self.get(request, *args, **kwargs) # or any other HttpResponse object

38 Chapter 8. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

Limiting HTTP Methods

If you want to limit the HTTP request types to just GET or POST, you just have to override the http_method_names
class property:

class MySectionPage(BaseSectionPageView):
...
http_method_names = ['post']

Note: Other Allowed Methods

put, delete, head, options, and trace are all allowed methods by default.

8.5. GETs and POSTs (and other http methods) 39

CommCareHQ Documentation, Release 1.0

40 Chapter 8. Using Class-Based Views in CommCare HQ

CHAPTER 9

Testing best practices

Test set up

Doing a lot of work in the setUp call of a test class means that it will be run on every test. This quickly adds a lot
of run time to the tests. Some things that can be easily moved to setUpClass are domain creation, user creation, or
any other static models needed for the test.

Sometimes classes share the same base class and inherit the setUpClass function. Below is an example:

BAD EXAMPLE

class MyBaseTestClass(TestCase):

@classmethod
def setUpClass(cls):

...

class MyTestClass(MyBaseTestClass):

def test1(self):
...

class MyTestClassTwo(MyBaseTestClass):

def test2(self):
...

In the above example the setUpClass is run twice, once for MyTestClass and once for MyTestClassTwo. If
setUpClass has expensive operations, then it’s best for all the tests to be combined under one test class.

GOOD EXAMPLE

class MyBigTestClass(TestCase):

41

CommCareHQ Documentation, Release 1.0

@classmethod
def setUpClass(cls):

...

def test1(self):
...

def test2(self):
...

However this can lead to giant Test classes. If you find that all the tests in a package or module are sharing the same
set up, you can write a setup method for the entire package or module. More information on that can be found here.

Test tear down

It is important to ensure that all objects you have created in the test database are deleted when the test class finishes
running. This often happens in the tearDown method or the tearDownClass method. However, unneccessary
cleanup “just to be safe” can add a large amount of time onto your tests.

Using SimpleTestCase

The SimpleTestCase runs tests without a database. Many times this can be achieved through the use of the mock
library. A good rule of thumb is to have 80% of your tests be unit tests that utilize SimpleTestCase, and then 20%
of your tests be integration tests that utilize the database and TestCase.

CommCareHQ also has some custom in mocking tools.

• Fake Couch - Fake implementation of CouchDBKit api for testing purposes.

• ESQueryFake - For faking ES queries.

Squashing Migrations

There is overhead to running many migrations at once. Django allows you to squash migrations which will help speed
up the migrations when running tests.

42 Chapter 9. Testing best practices

http://pythontesting.net/framework/nose/nose-fixture-reference/#package
http://www.voidspace.org.uk/python/mock/
http://www.voidspace.org.uk/python/mock/
https://github.com/dimagi/fakecouch
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/es/fake/es_query_fake.py

CHAPTER 10

Forms in HQ

Best practice principles:

• Use as little hardcoded HTML as possible.

• Submit and validate forms asynchronously to your class-based-view’s post method.

• Protect forms against CSRF

• Be consistent with style across HQ. We are currently using Bootstrap 2.3’s horizontal forms across HQ.

• Use django.forms.

• Use crispy forms <http://django-crispy-forms.readthedocs.org/en/latest/> for field layout.

Making forms CSRF safe

HQ is protected against cross site request forgery attacks i.e. if a POST/PUT/DELETE request doesn’t pass csrf token
to corresponding View, the View will reject those requests with a 403 response. All HTML forms and AJAX calls that
make such requests should contain a csrf token to succeed. Making a form or AJAX code pass csrf token is easy and
the Django docs give detailed instructions on how to do so. Here we list out examples of HQ code that does that

1. If crispy form is used to render HTML form, csrf token is included automagically

2. For raw HTML form, use {% csrf_token %} tag in the form HTML, see tag_csrf_example.

3. If request is made via AJAX, it will be automagically protected by ajax_csrf_setup.js (which is included in base
bootstrap template) as long as your template is inherited from the base template. (ajax_csrf_setup.js overrides
$.ajaxSettings.beforeSend to accomplish this)

4. If an AJAX call needs to override beforeSend itself, then the super $.ajaxSettings.beforeSend should be explicitly
called to pass csrf token. See ajax_csrf_example

5. If request is made via Angluar JS controller, the angular app needs to be configured to send csrf token. See
angular_csrf_example

43

https://github.com/dimagi/commcare-hq/pull/9580/files#diff-b707708b04006cb99be5064dedbc8240R41
https://github.com/dimagi/commcare-hq/commit/75c4fd0c638c2c79c8a1f765b70b1ac4709b043a#diff-3cfc511ef8ce8d4f15a3b64d1a113d26R125
https://github.com/dimagi/commcare-hq/commit/2a69336776252431413cc2c0bd2ccb3602364fd1#diff-ac9201a9e1f9b2512c8ed46247739179R30

CommCareHQ Documentation, Release 1.0

6. If HTML form is created in Javascript using raw nodes, csrf-token node should be added to that form. See
js_csrf_example_1 and js_csrf_example_2

7. If an inline form is generated using outside of RequestContext using render_to_string or its cousins, use
csrf_inline custom tag. See inline_csrf_example

8. If a View needs to be exempted from csrf check (for whatever reason, say for API), use csrf_exampt decorator
to avoid csrf check. See csrf_exempt_example

9. For any other special unusual case refer to Django docs. Essentially, either the HTTP request needs to have a
csrf-token or the corresponding View should be exempted from CSRF check.

An Example Complex Asynchronous Form With Partial Fields

We create the following base form, subclassing django.forms.Form:

from django import forms
from crispy_forms.helper import FormHelper
from crispy_forms import layout as crispy

class PersonForm(forms.Form):
first_name = forms.CharField()
last_name = forms.CharField()
pets = forms.CharField(widget=forms.HiddenInput)

def __init__(self, *args, **kwargs):
super(PersonForm, self).__init__(*args, **kwargs)

self.helper = FormHelper()
self.helper.layout = crispy.Layout(

all kwargs passed to crispy.Field turn into that tag's attributes and
→˓underscores

become hyphens. so data_bind="value: name" gets inserted as data-bind=
→˓"value: name"

crispy.Field('first_name', data_bind="value: first_name"),
crispy.Field('last_name', data_bind="value: last_name"),
crispy.Div(

data_bind="template: {name: 'pet-form-template', foreach: pets}, "
"visible: isPetVisible"

),
form actions creates the gray box around the submit / cancel buttons
FormActions(

StrictButton(
_("Update Information"),
css_class="btn-primary",
type="submit",

),
todo: add a cancel 'button' class!
crispy.HTML('Cancel' % cancel_url),
alternatively, the following works if you capture the name="cancel"

→˓'s event in js:
Button('cancel', 'Cancel'),

),
)

@property
def current_values(self):

44 Chapter 10. Forms in HQ

https://github.com/dimagi/commcare-hq/commit/a3964b2f2f1f2839df1516934b66d11dbc90faaf#diff-8380c7394c4bb525b5a02ebabc97e08fR198
https://github.com/dimagi/commcare-hq/commit/fadf34936a4fabdf92e2e14503d39f1efb502aa2#diff-88a89488da4f667449d6a54763ab905aR9
https://github.com/dimagi/commcare-hq/commit/b12e0457b8e3b5c3accd5ef9f57a90b3018c7828#diff-597545574657c656fd164ce865186edaR1158
https://github.com/dimagi/commcare-hq/pull/9736/files#diff-a8527f8793e60d01dedc1bc05c822d76R174

CommCareHQ Documentation, Release 1.0

values = dict([(name, self.person_form[name].value()) for name in self.person_
→˓form.keys()])

here's where you would make sure events outputs the right thing
in this case, a list so it gets converted an ObservableArray for the

→˓knockout model
return values

def clean_first_name(self):
first_name = self.cleaned_data['first_name']
validate
return first_name

def clean_last_name(self):
last_name = self.cleaned_data['last_name']
validate
return last_name

def clean_pets(self):
since we could have any number of pets we tell knockout to store it as json

→˓in a hidden field
pets = json.loads(self.cleaned_data['pets'])
validate pets
suggestion:
errors = []
for pet in pets:

pet_form = PetForm(pet)
pet_form.is_valid()
errors.append(pet_form.errors)

raise errors as necessary
return pets

class PetForm(forms.Form):
nickname = CharField()

def __init__(self, *args, **kwargs):
super(PetForm, self).__init__(*args, **kwargs)

self.helper = FormHelper()
since we're using this form to 'nest' inside of PersonForm, we want to

→˓prevent
crispy forms from auto-including a form tag:
self.helper.form_tag = False

self.helper.layout = crispy.Layout(
Field('nickname', data_bind="value: nickname"),

)

The view will look something like:

class PersonFormView(BaseSectionPageView):
see documentation on ClassBasedViews for use of BaseSectionPageView
template_name = 'people/person_form.html'
allowed_post_actions = [

'person_update',
'select2_field_update', # an example of another action you might consider

]

10.2. An Example Complex Asynchronous Form With Partial Fields 45

CommCareHQ Documentation, Release 1.0

@property
@memoized
def person_form(self):

initial = {}
if self.request.method == 'POST':

return PersonForm(self.request.POST, initial={})
return PersonForm(initial={})

@property
def page_context(self):

return {
'form': self.person_form,
'pet_form': PetForm(),

}

@property
def post_action:

return self.request.POST.get('action')

def post(self, *args, **kwargs):
if self.post_action in self.allowed_post_actions:

return HttpResponse(json.dumps(getattr(self, '%s_response' % self.
→˓action)))

NOTE: doing the entire form asynchronously means that you have to
→˓explicitly handle the display of

errors for each field. Ideally we should subclass crispy.Field to something
→˓like KnockoutField

where we'd add something in the template for errors.
raise Http404()

@property
def person_update_response(self):

if self.person_form.is_valid():
return {

'data': self.person_form.current_values,
}

return {
'errors': self.person_form.errors.as_json(),
note errors looks like:
{'field_name': [{'message': "msg", 'code': "invalid"}, {'message': "msg

→˓", 'code': "required"}]}
}

The template people/person_form.html:

{% extends 'people/base_template.html' %}
{% load hq_shared_tags %}
{% load i18n %}
{% load crispy_forms_tags %}

{% block js %}{{ block.super }}
<script src="{% static 'people/ko/form.person.js' %}"></script>

{% endblock %}

{% block js-inline %}{{ block.super }}
<script>

var personFormModel = new PersonFormModel(
{{ form.current_values|JSON }},

46 Chapter 10. Forms in HQ

CommCareHQ Documentation, Release 1.0

);
$('#person-form').koApplyBindings(personFormModel);
personFormModel.init();

</script>
{% endblock %}

{% block main_column %}
<div id="manage-reminders-form">

<form class="form form-horizontal" method="post">
{% crispy form %}

</form>
</div>

<script type="text/html" id="pet-form-template">
{% crispy pet_form %}

</script>
{% endblock %}

Your knockout code in form.person.js:

var PersonFormModel = function (initial) {
'use strict';
var self = this;

self.first_name = ko.observable(initial.first_name);
self.last_name = ko.observable(initial.last_name);

self.petObjects = ko.observableArray();
self.pets = ko.computed(function () {

return JSON.stringify(_.map(self.petObjects(), function (pet) {
return pet.asJSON();

}));
});

self.init = function () {
var pets = JSON.parse(initial.pets || '[]');
self.petObjects(_.map(pets, function (initial_data) {

return new Pet(initial_data);
}));

};

};

var Pet = function (initial) {
'use strict';
var self = this;

self.nickname = ko.observable(initial.nickname);

self.asJSON = ko.computed(function () {
return {

nickname: self.nickname()
}

});
};

That should hopefully get you 90% there. For an example on HQ see
corehq.apps.reminders.views.CreateScheduledReminderView <https://github.com/dimagi/commcare-

10.2. An Example Complex Asynchronous Form With Partial Fields 47

CommCareHQ Documentation, Release 1.0

hq/blob/master/corehq/apps/reminders/views.py#L486>

48 Chapter 10. Forms in HQ

CHAPTER 11

HQ Management Commands

This is a list of useful management commands. They can be run using $ python manage.py <command> or $
./manage.py <command>. For more information on a specific command, run $./manage.py <command>
--help

bootstrap Bootstrap a domain and user who owns it. Usage:: $./manage.py bootstrap [options] <domain> <email>
<password>

bootstrap_app Bootstrap an app in an existing domain. Usage:: $./manage.py bootstrap_app [options] <do-
main_name> <app_name>

clean_pyc Removes all python bytecode (.pyc) compiled files from the project.

copy_domain Copies the contents of a domain to another database. Usage:: $./manage.py copy_domain [options]
<sourcedb> <domain>

ptop_reindexer_fluff Fast reindex of fluff docs. Usage:: $./manage.py ptop_reindexer_fluff <pillow_name>

run_ptop Run the pillowtop management command to scan all _changes feeds

runserver

Starts a lightweight web server for development which outputs additional debug information.
--werkzeug Tells Django to use the Werkzeug interactive debugger.

syncdb

Create the database tables for all apps in INSTALLED_APPS whose tables haven’t already been created,
except those which use migrations.
--migrate Tells South to also perform migrations after the sync.

test Runs the test suite for the specified applications, or the entire site if no apps are specified. Usage:: $./manage.py
test [options] [appname ...]

49

CommCareHQ Documentation, Release 1.0

50 Chapter 11. HQ Management Commands

CHAPTER 12

CommTrack

What happens during a CommTrack submission?

This is the life-cycle of an incoming stock report via sms.

1. SMS is received and relevant info therein is parsed out

2. The parsed sms is converted to an HQ-compatible xform submission. This includes:

• stock info (i.e., just the data provided in the sms)

• location to which this message applies (provided in message or associated with sending user)

• standard HQ submission meta-data (submit time, user, etc.)

Notably missing: anything that updates cases

3. The submission is not submitted yet, but rather processed further on the server. This includes:

• looking up the product sub-cases that actually store stock/consumption values. (step (2) looked up
the location ID; each supply point is a case associated with that location, and actual stock data is
stored in a sub-case – one for each product – of the supply point case)

• applying the stock actions for each product in the correct order (a stock report can include multiple
actions; these must be applied in a consistent order or else unpredictable stock levels may result)

• computing updated stock levels and consumption (using somewhat complex business and reconcili-
ation logic)

• dumping the result in case blocks (added to the submission) that will update the new values in HQ’s
database

• post-processing also makes some changes elsewhere in the instance, namely:

– also added are ‘inferred’ transactions (if my stock was 20, is now 10, and i had receipts of
15, my inferred consumption was 25). This is needed to compute consumption rate later.
Conversely, if a deployment tracks consumption instead of receipts, receipts are inferred
this way.

51

CommCareHQ Documentation, Release 1.0

– transactions are annotated with the order in which they were processed

Note that normally CommCare generates its own case blocks in the forms it submits.

4. The updated submission is submitted to HQ like a normal form

Submitting a stock report via CommCare

CommTrack-enabled CommCare submits xforms, but those xforms do not go through the post-processing step in (3)
above. Therefore these forms must generate their own case blocks and mimic the end result that commtrack expects.
This is severely lacking as we have not replicated the full logic from the server in these xforms (unsure if that’s even
possible, nor do we like the prospect of maintaining the same logic in two places), nor can these forms generate the
inferred transactions. As such, the capabilities of the mobile app are greatly restricted and cannot support features like
computing consumption.

This must be fixed and it’s really not worth even discussing much else about using a mobile app until it is.

52 Chapter 12. CommTrack

CHAPTER 13

CloudCare

Overview

The goal of this section is to give an overview of the CloudCare system for developers who are new to CloudCare. It
should allow one’s first foray into the system to be as painless as possible by giving him or her a high level overview
of the system.

Backbone

On the frontend, CloudCare is a single page backbone.js app. The app, module, form, and case selection parts of the
interface are rendered by backbone while the representation of the form itself is controlled by touchforms (described
below).

When a user navigates CloudCare, the browser is not making full page reload requests to our Django server, instead,
javascript is used to modify the contents of the page and change the url in the address bar. Whenever a user directly en-
ters a CloudCare url like /a/<domain>/cloudcare/apps/<urlPath> into the browser, the cloudcare_main
view is called. This page loads the backbone app and perhaps bootstraps it with the currently selected app and case.

The Backbone Views

The backbone app consists of several Backbone.Views subclasses. What follows is a brief description of several
of the most important classes used in the CloudCare backbone app.

cloudCare.AppListView Renders the list of apps in the current domain on the left hand side of the page.

cloudCare.ModuleListView Renders the list of modules in the currently selected app on the left hand side of
the page.

cloudCare.FormListView Renders the list of forms in the currently selected module on the left hand side of
the page.

cloudCareCases.CaseMainView Renders the list of cases for the selected form. Note that this list is populated
asynchronously.

53

http://backbonejs.org/
https://github.com/dimagi/commcare-hq/blob/54ef84a62ba9872a11527dcc6c42c388962ed713/corehq/apps/cloudcare/views.py#L53

CommCareHQ Documentation, Release 1.0

cloudCareCases.CaseDetailsView Renders the table displaying the currently selected case’s properties.

cloudCare.AppView AppView holds the module and form list views. It is also responsible for inserting the form
html into the DOM. This html is constructed using JSON returned by the touchforms process and several js libs
found in the /touchforms/formplayer/static/formplayer/script/ directory. This is kicked
off by the AppView’s _playForm method. AppView also inserts cloudCareCases.CaseMainViews as
necessary.

cloudCare.AppMainView AppMainView (not to be confused with AppView) holds all of the other views and
is the entry point for the application. Most of the applications event handling is set up inside AppMainView’s
initialize method. The AppMainView has a router. Event handlers are set on this router to modify the
state of the backbone application when the browser’s back button is used, or when the user enters a link to a
certain part of the app (like a particular form) directly.

Touchforms

The backbone app is not responsible for processing the XFrom. This is done instead by our XForms player, touch-
forms. Touchforms runs as a separate process on our servers, and sends JSON to the backbone application representing
the structure of the XForm. Touchforms is written in jython, and serves as a wrapper around the JavaRosa that powers
our mobile applications.

Offline Cloudcare

What is it?

First of all, the “offline” part is a misnomer. This does not let you use CloudCare completely offline. We need a new
name.

Normal CloudCare requires a round-trip request to the HQ touchforms daemon every time you answer/change a
question in a form. This is how it can handle validation logic and conditional questions with the exact same behavior
as on the phone. On high-latency or unreliable internet this is a major drag.

“Offline” CloudCare fixes this by running a local instance of the touchforms daemon. CloudCare (in the browser)
communicates with this daemon for all matters of maintaining the xform session state. However, CloudCare still talks
directly to HQ for other CloudCare operations, such as initial launch of a form, submitting the completed form, and
everything outside a form session (case list/select, etc.). Also, the local daemon itself will call out to HQ as needed by
the form, such as querying against the casedb. So you still need internet!

How does it work?

The touchforms daemon (i.e., the standard JavaRosa/CommCare core with a Jython wrapper) is packaged up as a
standalone jar that can be run from pure Java. This requires bundling the Jython runtime. This jar is then served as a
“Java Web Start” (aka JNLP) application (same as how you download and run WebEx).

When CloudCare is in offline mode, it will prompt you to download the app; once you do the app will auto-launch.
CloudCare will poll the local port the app should be running on, and once its ready, will then initialize the form session
and direct all touchforms queries to the local instance rather than HQ.

The app download should persist in a local application cache, so it will not have to be downloaded each time. The
initial download is somewhat beefy (14MB) primarily due to the inclusion of the Jython runtime. It is possible we
may be able to trim this down by removing unused stuff. When started, the app will automatically check for updates

54 Chapter 13. CloudCare

CommCareHQ Documentation, Release 1.0

(though there may be a delay before the updates take effect). When updating, only the components that changed need
to be re-downloaded (so unless we upgrade Jython, the big part of the download is a one-time cost).

When running, the daemon creates an icon in the systray. This is also where you terminate it.

How do I get it?

Offline mode for CloudCare is currently hidden until we better decide how to intergrate it, and give it some minimal
testing. To access:

• Go to the main CloudCare page, but don’t open any forms

• Open the chrome dev console (F12 or ctrl+shift+J)

• Type enableOffline() in the console

• Note the new ‘Use Offline CloudCare’ checkbox on the left

13.3. Offline Cloudcare 55

CommCareHQ Documentation, Release 1.0

56 Chapter 13. CloudCare

CHAPTER 14

Internationalization

This page contains the most common techniques needed for managing CommCare HQ localization strings. For more
comprehensive information, consult the Django Docs translations page or this helpful blog post.

Tagging strings in views

TL;DR: ugettext should be used in code that will be run per-request. ugettext_lazy should be used in code
that is run at module import.

The management command makemessages pulls out strings marked for translation so they can be translated via
transifex. All three ugettext functions mark strings for translation. The actual translation is performed separately. This
is where the ugettext functions differ.

• ugettext: The function immediately returns the translation for the currently selected language.

• ugettext_lazy: The function converts the string to a translation “promise” object. This is later coerced to
a string when rendering a template or otherwise forcing the promise.

• ugettext_noop: This function only marks a string as translation string, it does not have any other effect;
that is, it always returns the string itself. This should be considered an advanced tool and generally avoided. It
could be useful if you need access to both the translated and untranslated strings.

The most common case is just wrapping text with ugettext.

from django.utils.translation import ugettext as _

def my_view(request):
messages.success(request, _("Welcome!"))

Typically when code is run as a result of a module being imported, there is not yet a user whose locale can be used
for translations, so it must be delayed. This is where ugettext_lazy comes in. It will mark a string for translation, but
delay the actual translation as long as possible.

57

https://docs.djangoproject.com/en/dev/topics/i18n/translation/
http://blog.bessas.me/post/65775299341/using-gettext-in-django

CommCareHQ Documentation, Release 1.0

class MyAccountSettingsView(BaseMyAccountView):
urlname = 'my_account_settings'
page_title = ugettext_lazy("My Information")
template_name = 'settings/edit_my_account.html'

When variables are needed in the middle of translated strings, interpolation can be used as normal. However, named
variables should be used to ensure that the translator has enough context.

message = _("User '{user}' has successfully been {action}.").format(
user=user.raw_username,
action=_("Un-Archived") if user.is_active else _("Archived"),

)

This ends up in the translations file as:

msgid "User '{user}' has successfully been {action}."

Using ugettext_lazy

The ugettext_lazy method will work in the majority of translation situations. It flags the string for translation but does
not translate it until it is rendered for display. If the string needs to be immediately used or manipulated by other
methods, this might not work.

When using the value immediately, there is no reason to do lazy translation.

return HttpResponse(ugettext("An error was encountered."))

It is easy to forget to translate form field names, as Django normally builds nice looking text for you. When writing
forms, make sure to specify labels with a translation flagged value. These will need to be done with ugettext_lazy.

class BaseUserInfoForm(forms.Form):
first_name = forms.CharField(label=ugettext_lazy('First Name'), max_length=50,

→˓required=False)
last_name = forms.CharField(label=ugettext_lazy('Last Name'), max_length=50,

→˓required=False)

ugettext_lazy, a cautionary tale

ugettext_lazy does not return a string. This can cause complications.

When using methods to manipulate a string, lazy translated strings will not work properly.

group_name = ugettext("mobile workers")
return group_name.upper()

Converting ugettext_lazy objects to json will crash. You should use dimagi.utils.web.json_handler
to properly coerce it to a string.

>>> import json
>>> from django.utils.translation import ugettext_lazy
>>> json.dumps({"message": ugettext_lazy("Hello!")})
TypeError: <django.utils.functional.__proxy__ object at 0x7fb50766f3d0> is not JSON
→˓serializable
>>> from dimagi.utils.web import json_handler

58 Chapter 14. Internationalization

CommCareHQ Documentation, Release 1.0

>>> json.dumps({"message": ugettext_lazy("Hello!")}, default=json_handler)
'{"message": "Hello!"}'

Tagging strings in template files

There are two ways translations get tagged in templates.

For simple and short plain text strings, use the trans template tag.

{% trans "Welcome to CommCare HQ" %}

More complex strings (requiring interpolation, variable usage or those that span multiple lines) can make use of the
blocktrans tag.

If you need to access a variable from the page context:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

If you need to make use of an expression in the translation:

{% blocktrans with amount=article.price %}
That will cost $ {{ amount }}.

{% endblocktrans %}

This same syntax can also be used with template filters:

{% blocktrans with myvar=value|filter %}
This will have {{ myvar }} inside.

{% endblocktrans %}

In general, you want to avoid including HTML in translations. This will make it easier for the translator to understand
and manipulate the text. However, you can’t always break up the string in a way that gives the translator enough
context to accurately do the translation. In that case, HTML inside the translation tags will still be accepted.

{% blocktrans %}
Manage Mobile Workers <small>for CommCare Mobile and
CommCare HQ Reports</small>

{% endblocktrans %}

Text passed as constant strings to template block tag also needs to be translated. This is most often the case in
CommCare with forms.

{% crispy form _("Specify New Password") %}

Keeping translations up to date

Once a string has been added to the code, we can update the .po file by running makemessages.

To do this for all langauges:

$ django-admin.py makemessages --all

It will be quicker for testing during development to only build one language:

14.2. Tagging strings in template files 59

CommCareHQ Documentation, Release 1.0

$ django-admin.py makemessages -l fra

After this command has run, your .po files will be up to date. To have content in this file show up on the website you
still need to compile the strings.

$ django-admin.py compilemessages

You may notice at this point that not all tagged strings with an associated translation in the .po shows up translated.
That could be because Django made a guess on the translated value and marked the string as fuzzy. Any string marked
fuzzy will not be displayed and is an indication to the translator to double check this.

Example:

#: corehq/__init__.py:103
#, fuzzy
msgid "Export Data"
msgstr "Exporter des cas"

60 Chapter 14. Internationalization

CHAPTER 15

Profiling

Practical guide to profiling a slow view or function

This will walkthrough one way to profile slow code using the @profile decorator.

At a high level this is the process:

1. Find the function that is slow

2. Add a decorator to save a raw profile file that will collect information about function calls and timing

3. Use libraries to analyze the raw profile file and spit out more useful information

4. Inspect the output of that information and look for anomalies

5. Make a change, observe the updated load times and repeat the process as necessary

Finding the slow function

This is usually pretty straightforward. The easiest thing to do is typically use the top-level entry point for a view call.
In this example we are investigating the performance of commtrack location download, so the relevant function would
be commtrack.views.location_export.:

@login_and_domain_required
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

Getting a profile dump

To get a profile dump, simply add the following decoration to the function.:

61

https://github.com/dimagi/dimagi-utils/blob/master/dimagi/utils/decorators/profile.py

CommCareHQ Documentation, Release 1.0

from dimagi.utils.decorators.profile import profile
@login_and_domain_required
@profile('locations_download.prof')
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

Now each time you load the page a raw dump file will be created with a timestamp of when it was run. These are
created in /tmp/ by default, however you can change it by adding a value to your settings.py like so:

PROFILE_LOG_BASE = "/home/czue/profiling/"

Note that the files created are huge; this code should only be run locally.

Creating a more useful output from the dump file

The raw profile files are not human readable, and you need to use something like hotshot to make them useful. A
script that will generate what is typically sufficient information to analyze these can be found in the commcarehq-
scripts repository. You can read the source of that script to generate your own analysis, or just use it directly as
follows:

$./reusable/convert_profile.py /path/to/profile_dump.prof

Reading the output of the analysis file

The analysis file is broken into two sections. The first section is an ordered breakdown of calls by the cumulative time
spent in those functions. It also shows the number of calls and average time per call.

The second section is harder to read, and shows the callers to each function.

This analysis will focus on the first section. The second section is useful when you determine a huge amount of time
is being spent in a function but it’s not clear where that function is getting called.

Here is a sample start to that file:

loading profile stats for locations_download/commtrack-location-20140822T205905.prof
361742 function calls (355960 primitive calls) in 8.838 seconds

Ordered by: cumulative time, call count
List reduced from 840 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/views.py:336(location_export)
1 0.011 0.011 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/util.py:248(dump_locations)
194 0.001 0.000 8.128 0.042 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:136(parent)
190 0.002 0.000 8.121 0.043 /home/czue/src/commcare-hq/corehq/apps/

→˓cachehq/mixins.py:35(get)
190 0.003 0.000 8.021 0.042 submodules/dimagi-utils-src/dimagi/

→˓utils/couch/cache/cache_core/api.py:65(cached_open_doc)
190 0.013 0.000 7.882 0.041 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/client.py:362(open_doc)

62 Chapter 15. Profiling

https://docs.python.org/2/library/hotshot.html
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py

CommCareHQ Documentation, Release 1.0

396 0.003 0.000 7.762 0.020 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)

396 7.757 0.020 7.757 0.020 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)

196 0.001 0.000 7.414 0.038 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)

196 0.011 0.000 7.402 0.038 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)

590 0.019 0.000 7.356 0.012 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)

198 0.002 0.000 0.618 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:69(request)

196 0.001 0.000 0.616 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/resource.py:105(get)

198 0.004 0.000 0.615 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/resource.py:164(request)

198 0.002 0.000 0.605 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/client.py:415(request)

198 0.003 0.000 0.596 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/client.py:293(perform)

198 0.005 0.000 0.537 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/client.py:456(get_response)

396 0.001 0.000 0.492 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:135(headers)

790 0.002 0.000 0.452 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:50(_check_headers_complete)

198 0.015 0.000 0.450 0.002 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:191(__next__)
1159/1117 0.043 0.000 0.396 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

13691 0.041 0.000 0.227 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.005 0.000 0.219 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

103 0.000 0.000 0.201 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)
333/303 0.001 0.000 0.190 0.001 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/jsonobject/base.py:615(wrap)
289 0.002 0.000 0.185 0.001 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:31(__init__)
6 0.000 0.000 0.176 0.029 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

The most important thing to look at is the cumtime (cumulative time) column. In this example we can see that the
vast majority of the time (over 8 of the 8.9 total seconds) is spent in the cached_open_doc function (and likely the
library calls below are called by that function). This would be the first place to start when looking at improving profile
performance. The first few questions that would be useful to ask include:

• Can we optimize the function?

• Can we reduce calls to that function?

• In the case where that function is hitting a database or a disk, can the code be rewritten to load things in bulk?

In this practical example, the function is clearly meant to already be caching (based on the name alone) so it’s possible
that the results would be different if caching was enabled and the cache was hot. It would be good to make sure we test
with those two parameters true as well. This can be done by changing your localsettings file and setting the following
two variables:

15.1. Practical guide to profiling a slow view or function 63

CommCareHQ Documentation, Release 1.0

COUCH_CACHE_DOCS = True
COUCH_CACHE_VIEWS = True

Reloading the page twice (the first time to prime the cache and the second time to profile with a hot cache) will then
produce a vastly different output:

loading profile stats for locations_download/commtrack-location-20140822T211654.prof
303361 function calls (297602 primitive calls) in 0.484 seconds

Ordered by: cumulative time, call count
List reduced from 741 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/views.py:336(location_export)
1 0.004 0.004 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/util.py:248(dump_locations)
1159/1117 0.017 0.000 0.160 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

4 0.000 0.000 0.128 0.032 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:62(filter_by_type)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:986(all)

103 0.000 0.000 0.128 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:946(iterator)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:995(fetch)

9 0.000 0.000 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)

9 0.124 0.014 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)

13 0.000 0.000 0.114 0.009 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)

103 0.000 0.000 0.112 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)

13691 0.018 0.000 0.094 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.002 0.000 0.091 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

194 0.000 0.000 0.078 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:136(parent)

190 0.000 0.000 0.076 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓cachehq/mixins.py:35(get)

103 0.000 0.000 0.075 0.001 submodules/dimagi-utils-src/dimagi/
→˓utils/couch/database.py:50(iter_docs)

4 0.000 0.000 0.075 0.019 submodules/dimagi-utils-src/dimagi/
→˓utils/couch/bulk.py:81(get_docs)

4 0.000 0.000 0.073 0.018 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/requests/api.py:80(post)

Yikes! It looks like this is already quite fast with a hot cache! And there don’t appear to be any obvious candidates for
further optimization. If it is still a problem it may be an indication that we need to prime the cache better, or increase

64 Chapter 15. Profiling

CommCareHQ Documentation, Release 1.0

the amount of data we are testing with locally to see more interesting results.

Aggregating data from multiple runs

In some cases it is useful to run a function a number of times and aggregate the profile data. To do this follow the
steps above to create a set of ‘.prof’ files (one for each run of the function) then use the ‘gather_profile_stats.py’ script
included with django (lib/python2.7/site-packages/django/bin/profiling/gather_profile_stats.py) to aggregate the data.

This will produce a ‘.agg.prof’ file which can be analysed with the prof.py script.

Line profiling

In addition to the above methods of profiling it is possible to do line profiling of code which attached profile data to
individual lines of code as opposed to function names.

The easiest way to do this is to use the line_profile decorator.

Example output:

File: demo.py
Function: demo_follow at line 67
Total time: 1.00391 s
Line # Hits Time Per Hit % Time Line Contents
==

67 def demo_follow():
68 1 34 34.0 0.0 r = random.randint(5, 10)
69 11 81 7.4 0.0 for i in xrange(0, r):
70 10 1003800 100380.0 100.0 time.sleep(0.1)

File: demo.py
Function: demo_profiler at line 72
Total time: 1.80702 s
Line # Hits Time Per Hit % Time Line Contents
==

72 @line_profile(follow=[demo_follow])
73 def demo_profiler():
74 1 17 17.0 0.0 r = random.randint(5, 10)
75 9 66 7.3 0.0 for i in xrange(0, r):
76 8 802921 100365.1 44.4 time.sleep(0.1)
77
78 1 1004013 1004013.0 55.6 demo_follow()

More details here:

• https://github.com/dmclain/django-debug-toolbar-line-profiler

• https://github.com/dcramer/django-devserver#devservermodulesprofilelineprofilermodule

Additional references

• http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

Memory profiling

Refer to these resources which provide good information on memory profiling:

15.2. Memory profiling 65

https://gist.github.com/czue/4947238
https://github.com/dimagi/dimagi-utils/blob/master/dimagi/utils/decorators/profile.py#L51
https://github.com/dmclain/django-debug-toolbar-line-profiler
https://github.com/dcramer/django-devserver#devservermodulesprofilelineprofilermodule
http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

CommCareHQ Documentation, Release 1.0

• Diagnosing memory leaks

• Using heapy

• Diving into python memory

• Memory usage graphs with ps

– while true; do ps -C python -o etimes=,pid=,%mem=,vsz= >> mem.txt; sleep 1; done

• You can also use the “resident_set_size” decorator and context manager to print the amount of memory allocated
to python before and after the method you think is causing memory leaks:

from dimagi.utils.decorators.profile import resident_set_size

@resident_set_size()
def function_that_uses_a_lot_of_memory:

[u'{}'.format(x) for x in range(1,100000)]

def somewhere_else():
with resident_set_size(enter_debugger=True):

the enter_debugger param will enter a pdb session after your method has
→˓run so you can do more exploration

do memory intensive things

66 Chapter 15. Profiling

http://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html
http://smira.ru/wp-content/uploads/2011/08/heapy.html
https://github.com/CyrilPeponnet/cyrilpeponnet.github.com/blob/master/_posts/2014-09-18-diving-into-python-memory.md
http://brunogirin.blogspot.com.au/2010/09/memory-usage-graphs-with-ps-and-gnuplot.html

CHAPTER 16

ElasticSearch

Indexes

We have indexes for each of the following doc types:

• Applications - hqapps

• Cases - hqcases

• Domains - hqdomains

• Forms - xforms

• Groups - hqgroups

• Users - hqusers

• Report Cases - report_cases

• Report Forms - report_xforms

• SMS logs - smslogs

• TrialConnect SMS logs - tc_smslogs

The Report cases and forms indexes are only configured to run for a few domains, and they store additional mappings
allowing you to query on form and case properties (not just metadata).

Each index has a corresponding mapping file in corehq/pillows/mappings/. Each mapping has a hash that
reflects the current state of the mapping. This is appended to the index name so the index is called something like
xforms_1cce1f049a1b4d864c9c25dc42648a45. Each type of index has an alias with the short name, so
you should normally be querying just xforms, not the fully specified index+hash.

Whenever the mapping is changed, this hash should be updated. That will trigger the creation of a new index on deploy
(by the $./manage.py ptop_preindex command). Once the new index is finished, the alias is flipped ($.
/manage.py ptop_es_manage --flip_all_aliases) to point to the new index, allowing for a relatively
seamless transition.

67

CommCareHQ Documentation, Release 1.0

Keeping indexes up-to-date

Pillowtop looks at the changes feed from couch and listens for any relevant new/changed docs. In order to have your
changes appear in elasticsearch, pillowtop must be running:

$./manage.py run_ptop --all

You can also run a once-off reindex for a specific index:

$./manage.py ptop_reindexer_v2 user

Changing a mapping or adding data

If you’re adding additional data to elasticsearch, you’ll need modify that index’s mapping file in order to be able to
query on that new data.

Adding data to an index

Each pillow has a function or class that takes in the raw document dictionary and transforms it into the
document that get’s sent to ES. If for example, you wanted to store username in addition to user_id on
cases in elastic, you’d add username to corehq.pillows.mappings.case_mapping, then modify
transform_case_for_elasticsearch function to do the appropriate lookup. It accepts a doc_dict for
the case doc and is expected to return a doc_dict, so just add the username to that.

Building the new index

Once you’ve made the change, you’ll need to build a new index which uses that new mapping, so you’ll have to update
the hash at the top of the file. This can just be a random alphanumeric string. This will trigger a preindex as outlined
in the Indexes section.

How to un-bork your broken indexes

Sometimes things get in a weird state and (locally!) it’s easiest to just blow away the index and start over.

1. Delete the affected index. The easiest way to do this is with elasticsearch-head. You can delete multiple affected
indices with curl -X DELETE http://localhost:9200/*. * can be replaced with any regex to
delete matched indices, similar to bash regex.

2. Run $./manage.py ptop_preindex && ./manage.py ptop_es_manage
--flip_all_aliases.

3. Try again

Querying Elasticsearch - Best Practices

Here are the most basic things to know if you want to write readable and reasonably performant code for accessing
Elasticsearch.

68 Chapter 16. ElasticSearch

https://github.com/mobz/elasticsearch-head

CHAPTER 17

Use ESQuery when possible

Check out ESQuery

• Prefer the cleaner .count(), .values(), .values_list(), etc. execution methods to the more low
level .run().hits, .run().total, etc. With the latter easier to make mistakes and fall into anti-patterns
and it’s harder to read.

• Prefer adding filter methods to using set_query() unless you really know what you’re doing and are willing
to make your code more error prone and difficult to read.

69

CommCareHQ Documentation, Release 1.0

70 Chapter 17. Use ESQuery when possible

CHAPTER 18

Prefer “get” to “search”

Don’t use search to fetch a doc or doc fields by doc id; use “get” instead. Searching by id can be easily an order of
magnitude (10x) slower. If done in a loop, this can effectively grind the ES cluster to a halt.

Bad::

POST /hqcases_2016-03-04/case/_search
{

"query": {
"filtered": {

"filter": {
"and": [{"terms": {"_id": [case_id]}}, {"match_all": {}}]

},
"query": {"match_all":{}}

}
},
"_source": ["name"],
"size":1000000

}

Good::

GET /hqcases_2016-03-04/case/<case_id>?_source_include=name

71

CommCareHQ Documentation, Release 1.0

72 Chapter 18. Prefer “get” to “search”

CHAPTER 19

Prefer scroll queries

Use a scroll query when fetching lots of records.

73

CommCareHQ Documentation, Release 1.0

74 Chapter 19. Prefer scroll queries

CHAPTER 20

Prefer filter to query

Don’t use query when you could use filter if you don’t need rank.

75

CommCareHQ Documentation, Release 1.0

76 Chapter 20. Prefer filter to query

CHAPTER 21

Use size(0) with aggregations

Use size(0) when you’re only doing aggregations thing—otherwise you’ll get back doc bodies as well! Sometimes
that’s just abstractly wasteful, but often it can be a serious performance hit for the operation as well as the cluster.

The best way to do this is by using helpers like ESQuery’s .count() that know to do this for you—your code will
look better and you won’t have to remember to check for that every time. (If you ever find helpers not doing this
correctly, then it’s definitely worth fixing.)

77

CommCareHQ Documentation, Release 1.0

78 Chapter 21. Use size(0) with aggregations

CHAPTER 22

ESQuery

79

CommCareHQ Documentation, Release 1.0

80 Chapter 22. ESQuery

CHAPTER 23

Analyzing Test Coverage

This page goes over some basic ways to analyze code coverage locally.

Using coverage.py

First thing is to install the coverage.py library:

$ pip install coverage

Now you can run your tests through the coverage.py program:

$ coverage run manage.py test commtrack

This will create a binary commcare-hq/.coverage file (that is already ignored by our .gitignore) which contains all the
magic bits about what happened during the test run.

You can be as specific or generic as you’d like with what selection of tests you run through this. This tool will track
which lines of code in the app have been hit during execution of the tests you run. If you’re only looking to analyze
(and hopefully increase) coverage in a specific model or utils file, it might be helpful to cut down on how many tests
you’re running.

Make an HTML view of the data

The simplest (and probably fastest) way to view this data is to build an HTML view of the code base with the coverage
data:

$ coverage html

This will build a commcare-hq/coverage-report/ directory with a ton of HTML files in it. The important one is
commcare-hq/coverage-report/index.html.

81

CommCareHQ Documentation, Release 1.0

View the result in Vim

Install coveragepy.vim (https://github.com/alfredodeza/coveragepy.vim) however you personally like to install plugins.
This plugin is old and out of date (but seems to be the only reasonable option) so because of this I personally think the
HTML version is better.

Then run :Coveragepy report in Vim to build the report (this is kind of slow).

You can then use :Coveragepy hide and :Coveragepy show to add/remove the view from your current buffer.

82 Chapter 23. Analyzing Test Coverage

https://github.com/alfredodeza/coveragepy.vim

CHAPTER 24

Advanced App Features

See corehq.apps.app_manager.suite_xml.SuiteGenerator and corehq.apps.app_manager.
xform.XForm for code.

Child Modules

In principle child modules is very simple. Making one module a child of another simply changes the menu elements
in the suite.xml file. For example in the XML below module m1 is a child of module m0 and so it has its root attribute
set to the ID of its parent.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1" root="m0">

<text>
<locale id="modules.m1"/>

</text>
<command id="m1-f0"/>

</menu>

Menu structure

As described above the basic menu structure is quite simple however there is one property in particular that affects the
menu structure: module.put_in_root

This property determines whether the forms in a module should be shown under the module’s own menu item or under
the parent menu item:

83

CommCareHQ Documentation, Release 1.0

put_in_root Resulting menu
True id=”<parent menu id>”
False id=”<module menu id>” root=”<parent menu id>”

Notes:

• If the module has no parent then the parent is root.

• root=”root” is equivalent to excluding the root attribute altogether.

Session Variables

This is all good and well until we take into account the way the Session works on the mobile which “prioritizes the
most relevant piece of information to be determined by the user at any given time”.

This means that if all the forms in a module require the same case (actually just the same session IDs) then the user will
be asked to select the case before selecting the form. This is why when you build a module where all forms require a
case the case selection happens before the form selection.

From here on we will assume that all forms in a module have the same case management and hence require the same
session variables.

When we add a child module into the mix we need to make sure that the session variables for the child module forms
match those of the parent in two ways, matching session variable names and adding in any missing variables.

Matching session variable names

For example, consider the session variables for these two modules:

module A:

case_id: load mother case

module B child of module A:

case_id_mother: load mother case
case_id_child: load child case

You can see that they are both loading a mother case but are using different session variable names.

To fix this we need to adjust the variable name in the child module forms otherwise the user will be asked to select the
mother case again:

case_id_mother -> case_id

module B final:

case_id: load mother case
case_id_child: load child case

Inserting missing variables

In this case imagine our two modules look like this:

module A:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())

84 Chapter 24. Advanced App Features

https://github.com/dimagi/commcare/wiki/Suite20#the-session

CommCareHQ Documentation, Release 1.0

module B child of module A:

case_id: load patient case
case_id_child: load child case

Here we can see that both modules load the patient case and that the session IDs match so we don’t have to change
anything there.

The problem here is that forms in the parent module also add a case_id_new_visit variable to the session which
the child module forms do not. So we need to add it in:

module B final:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())
case_id_child: load child case

Note that we can only do this for session variables that are automatically computed and hence does not require user
input.

Shadow Modules

A shadow module is a module that piggybacks on another module’s commands (the “source” module). The shadow
module has its own name, case list configuration, and case detail configuration, but it uses the same forms as its source
module.

This is primarily for clinical workflows, where the case detail is a list of patients and the clinic wishes to be able to
view differently-filtered queues of patients that ultimately use the same set of forms.

Shadow modules are behind the feature flag Shadow Modules.

Scope

The shadow module has its own independent:

• Name

• Menu mode (display module & forms, or forms only)

• Media (icon, audio)

• Case list configuration (including sorting and filtering)

• Case detail configuration

The shadow module inherits from its source:

• case type

• commands (which forms the module leads to)

• end of form behavior

Limitations

A shadow module can neither be a parent module nor have a parent module

24.2. Shadow Modules 85

CommCareHQ Documentation, Release 1.0

A shadow module’s source can be a parent module (the shadow will include a copy of the children), or have a parent
module (the shadow will appear as a child of that same parent)

Shadow modules are designed to be used with case modules. They may behave unpredictably if given an advanced
module or reporting module as a source.

Shadow modules do not necessarily behave well when the source module uses custom case tiles. If you experience
problems, make the shadow module’s case tile configuration exactly matches the source module’s.

Entries

A shadow module duplicates all of its parent’s entries. In the example below, m1 is a shadow of m0, which has one
form. This results in two unique entries, one for each module, which share several properties.

<entry>
<form>

http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
</form>
<command id="m0-f0">

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>
<entry>

<form>
http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8

</form>
<command id="m1-f0">

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>

Menu structure

In the simplest case, shadow module menus look exactly like other module menus. In the example below, m1 is a
shadow of m0. The two modules have their own, unique menu elements.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1">

<text>
<locale id="modules.m1"/>
</text>

<command id="m1-f0"/>
</menu>

Menus get more complex when shadow modules are mixed with parent/child modules. In the following example,
m0 is a basic module, m1 is a child of m0, and m2 is a shadow of m0. All three modules have put_in_root=false
(see Child Modules > Menu structure above). The shadow module has its own menu and also a copy of the child

86 Chapter 24. Advanced App Features

CommCareHQ Documentation, Release 1.0

module’s menu. This copy of the child module’s menu is given the id m1.m2 to distinguish it from m1, the original
child module menu.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu root="m0" id="m1">

<text>
<locale id="modules.m1"/>

</text>
<command id="m1-f0"/>

</menu>
<menu root="m2" id="m1.m2">
→˓ <text>

<locale id="modules.m1"/>
</text>

→˓ <command id="m1-f0"/>
</menu>
<menu id="m2">
→˓ <text>

<locale id="modules.m2"/>
</text>

→˓ <command id="m2-f0"/>
</menu>

24.2. Shadow Modules 87

CommCareHQ Documentation, Release 1.0

88 Chapter 24. Advanced App Features

CHAPTER 25

Using the shared NFS drive

On our production servers (and staging) we have an NFS drive set up that we can use for a number of things:

• store files that are generated asynchronously for retrieval in a later request * previously we needed to save these
files to Redis so that they would be available to all the Django workers on the next request * doing this has the
added benefit of allowing apache / nginx to handle the file transfer instead of Django

• store files uploaded by the user that require asynchronous processing

Using apache / nginx to handle downloads

import os
import tempfile
from wsgiref.util import FileWrapper
from django.conf import settings
from django.http import StreamingHttpResponse
from django_transfer import TransferHttpResponse

transfer_enabled = settings.SHARED_DRIVE_CONF.transfer_enabled
if transfer_enabled:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:

_, path = tempfile.mkstemp()

make_file(path)

if transfer_enabled:
response = TransferHttpResponse(path, content_type=self.zip_mimetype)

else:
response = StreamingHttpResponse(FileWrapper(open(path)), content_type=self.zip_

→˓mimetype)

response['Content-Length'] = os.path.getsize(fpath)

89

CommCareHQ Documentation, Release 1.0

response["Content-Disposition"] = 'attachment; filename="%s"' % filename
return response

This also works for files that are generated asynchronously:

@task
def generate_download(download_id):

use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled
if use_transfer:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:

_, path = tempfile.mkstemp()

generate_file(path)

common_kwargs = dict(
mimetype='application/zip',
content_disposition='attachment; filename="{fname}"'.format(fname=filename),
download_id=download_id,

)
if use_transfer:

expose_file_download(
path,
use_transfer=use_transfer,

**common_kwargs
)

else:
expose_cached_download(

FileWrapper(open(path)),
expiry=(1 * 60 * 60),

**common_kwargs
)

Saving uploads to the NFS drive

For files that are uploaded and require asynchronous processing e.g. imports, you can also use the NFS drive:

from soil.util import expose_file_download, expose_cached_download

uploaded_file = request.FILES.get('Filedata')
if hasattr(uploaded_file, 'temporary_file_path') and settings.SHARED_DRIVE_CONF.temp_
→˓dir:

path = settings.SHARED_DRIVE_CONF.get_temp_file()
shutil.move(uploaded_file.temporary_file_path(), path)
saved_file = expose_file_download(path)

else:
uploaded_file.file.seek(0)
saved_file = expose_cached_download(uploaded_file.file.read(), expiry=(60 * 60))

process_uploaded_file.delay(saved_file.download_id)

90 Chapter 25. Using the shared NFS drive

CHAPTER 26

How to use and reference forms and cases programatically

With the introduction of the new architecture for form and case data it is now necessary to use generic functions and
accessors to access and operate on the models.

This document provides a basic guide for how to do that.

Models

In the codebase there are now two models for form and case data.

Couch SQL
CommCareCase CommCareCaseSQL
CommCareCaseAction CaseTransaction
CommCareCaseAttachment CaseAttachmentSQL
CommCareCaseIndex CommCareCaseIndexSQL
XFormInstance XFormInstanceSQL

XFormAttachment
XFormOperation XFormOperationSQL
StockReport
StockTransaction LedgerTransaction
StockState LedgerValue

Some of these models define a common interface that allows you to perform the same operations irrespective of the
type. Some examples are shown below:

Form Instance

91

CommCareHQ Documentation, Release 1.0

Property / method Description
form.form_id The instance ID of the form
form.is_normal
form.is_deleted
form.is_archived
form.is_error
form.is_deprecated
form.is_duplicate
form.is_submission_error_log

Replacement for checking the doc_type of a form

form.attachments The form attachment objects
form.get_attachment Get an attachment by name
form.archive Archive a form
form.unarchive Unarchive a form
form.to_json Get the JSON representation of a form
form.form_data Get the XML form data

Case
Property / method Description
case.case_id ID of the case
case.is_deleted Replacement for doc_type check
case.case_name Name of the case
case.get_attachment Get attachment by name
case.dynamic_case_properties Dictionary of dynamic case properties
case.get_subcases Get subcase objects
case.get_index_map Get dictionary of case indices

Model acessors

To access models from the database there are classes that abstract the actual DB operations. These classes are generally
names <type>Accessors and must be instantiated with a domain

name in order to know which DB needs to be queried.

Forms

• FormAccessors(domain).get_form(form_id)

• FormAccessors(domain).get_forms(form_ids)

• FormAccessors(domain).iter_forms(form_ids)

• FormAccessors(domain).save_new_form(form)

– only for new forms

• FormAccessors(domain).get_with_attachments(form)

– Preload attachments to avoid having to the the DB again

Cases

• CaseAccessors(domain).get_case(case_id)

• CaseAccessors(domain).get_cases(case_ids)

• CaseAccessors(domain).iter_cases(case_ids)

• CaseAccessors(domain).get_case_ids_in_domain(type=’dog’)

Ledgers

92 Chapter 26. How to use and reference forms and cases programatically

CommCareHQ Documentation, Release 1.0

• LedgerAccessors(domain).get_ledger_values_for_case(case_id)

For more details see:

• corehq.form_processor.interfaces.dbaccessors.FormAccessors

• corehq.form_processor.interfaces.dbaccessors.CaseAccessors

• corehq.form_processor.interfaces.dbaccessors.LedgerAccessors

Branching

In special cases code may need to be branched into SQL and Couch versions. This can be accomplished using
the should_use_sql_backend(domain) function.:

if should_use_sql_backend(domain_name):
do SQL specifc stuff here

else:
do couch stuff here

Unit Tests

In most cases tests that use form / cases/ ledgers should be run on both backends as follows:

@run_with_all_backends
def test_my_function(self):

...

If you really need to run a test on only one of the backends you can do the following:

@override_settings(TESTS_SHOULD_USE_SQL_BACKEND=True)
def test_my_test(self):

...

To create a form in unit tests use the following pattern:

from corehq.form_processor.tests.utils import run_with_all_backends
from corehq.form_processor.utils import get_simple_wrapped_form, TestFormMetadata

@run_with_all_backends
def test_my_form_function(self):

This TestFormMetadata specifies properties about the form to be created
metadata = TestFormMetadata(

domain=self.user.domain,
user_id=self.user._id,

)
form = get_simple_wrapped_form(

form_id,
metadata=metadata

)

Creating cases can be done with the CaseFactory:

26.3. Branching 93

CommCareHQ Documentation, Release 1.0

from corehq.form_processor.tests.utils import run_with_all_backends
from casexml.apps.case.mock import CaseFactory

@run_with_all_backends
def test_my_case_function(self):

factory = CaseFactory(domain='foo')
factory.create_case(

case_type='my_case_type',
owner_id='owner1',
case_name='bar',
update={'prop1': 'abc'}

)

Cleaning up

Cleaning up in tests can be done using the FormProcessorTestUtils1 class:

from corehq.form_processor.tests.utils import FormProcessorTestUtils

def tearDown(self):
FormProcessorTestUtils.delete_all_cases()
OR
FormProcessorTestUtils.delete_all_cases(

domain=domain
)

FormProcessorTestUtils.delete_all_xforms()
OR
FormProcessorTestUtils.delete_all_xforms(

domain=domain
)

94 Chapter 26. How to use and reference forms and cases programatically

CHAPTER 27

Messaging in CommCareHQ

The term “messaging” in CommCareHQ commonly refers to the set of frameworks that allow the following types of
use cases:

• sending SMS to contacts

• receiving SMS from contacts and performing pre-configured actions based on the content

• scheduling reminders to contacts

• creating alerts based on configurable criteria

• sending outbound calls to contacts and initiating an Interactive Voice Response (IVR) session

• collecting data via SMS surveys

• sending email alerts to contacts

The purpose of this documentation is to show how all of those use cases are performed technically by CommCareHQ.
The topics below cover this material and should be followed in the order presented below if you have no prior knowl-
edge of the messaging frameworks used in CommCareHQ.

27.1 Messaging Definitions

General Messaging Terms

SMS Gateway a third party service that provides an API for sending and receiving SMS

Outbound SMS an SMS that is sent from the SMS Gateway to a contact

Inbound SMS an SMS that is sent from a contact to the SMS Gateway

Mobile Terminating (MT) SMS an outbound SMS

Mobile Originating (MO) SMS an inbound SMS

Dual Tone Multiple Frequencies (DTMF) tones: the tones made by a telephone when pressing a button
such as number 1, number 2, etc.

95

CommCareHQ Documentation, Release 1.0

Interactive Voice Response (IVR) Session: a phone call in which the user is prompted to make choices
using DTMF tones and the flow of the call can change based on those choices

IVR Gateway a third party service that provides an API for handling IVR sessions

International Format (also referred to as E.164 Format) for a Phone Number: a format for a phone
number which makes it so that it can be reached from any other country; the format typically starts
with +, then the country code, then the number, though there may be some subtle operations to
perform on the number before putting into international format, such as removing a leading zero

SMS Survey a way of collecting data over SMS that involves asking questions one SMS at a time and
waiting for a contact’s response before sending the next SMS

Structured SMS a way for collecting data over SMS that involves collecting all data points in one SMS
rather than asking one question at a time as in an SMS Survey; for example: “REGISTER Joe 25”
could be one way to define a Structured SMS that registers a contact named Joe whose age is 25.

Messaging Terms Commonly Used in CommCareHQ

SMS Backend the code which implements the API of a specific SMS Gateway

IVR Backend the code which implements the API of a specific IVR Gateway

Two-way Phone Number a phone number that the system has tied to a single contact in a single do-
main, so that the system can not only send oubound SMS to the contact, but the contact can also
send inbound SMS and have the system process it accordingly; the system currently only considers
a number to be two-way if there is a corehq.apps.sms.models.PhoneNumber entry for it that has
verified = True

One-way Phone Number a phone number that has not been tied to a single contact, so that the system
can only send outbound SMS to the number; one-way phone numbers can be shared across many
contacts in many domains, but only one of those numbers can be a two-way phone number

Contacts

A contact is a single person that we want to interact with through messaging. In CommCareHQ, at the
time of writing, contacts can either be users (CommCareUser, WebUser) or cases (CommCareCase).

In order for the messaging frameworks to interact with a contact, the contact must implement the
corehq.apps.sms.mixin.CommCareMobileContactMixin.

Contacts have phone numbers which allows CommCareHQ to interact with them. All phone numbers for
contacts must be stored in International Format, and the frameworks always assume a phone number is
given in International Format.

Regarding the + sign before the phone number, the rule of thumb is to never store the + when storing
phone numbers, and to always display it when displaying phone numbers.

Users

A user’s phone numbers are stored as the phone_numbers attribute on the CouchUser class, which is just
a list of strings.

At the time of writing, WebUsers are only allowed to have one-way phone numbers.

CommCareUsers are allowed to have two-way phone numbers, but in order to have a phone number be
considered to be a two-way phone number, it must first be verified. The verification process is initiated

96 Chapter 27. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/mixin.py

CommCareHQ Documentation, Release 1.0

on the edit mobile worker page and involves sending an outbound SMS to the phone number and having
it be acknowledged by receiving a validated response from it.

Cases

At the time of writing, cases are allowed to have only one phone number. The following case properties
are used to define a case’s phone number:

contact_phone_number the phone number, in International Format

contact_phone_number_is_verified must be set to 1 in order to consider the phone number a two-way
phone number; the point here is that the health worker registering the case should verify the phone
number and the form should set this case property to 1 if the health worker has identified the phone
number as verified

If two cases are registered with the same phone number and both set the verified flag to 1, it will only be
granted two-way phone number status to the case who registers it first.

If a two-way phone number can be granted for the case, a corehq.apps.sms.models.PhoneNumber en-
try with verified set to True is created for it. This happens automatically by running celery task
corehq.apps.sms.tasks.sync_case_phone_number for a case each time a case is saved.

Future State

Forcing the verification workflows before granting a phone number two-way phone number status has
proven to be challenging for our users. In a (hopefully soon) future state, we will be doing away with all
verification workflows and automatically consider a phone number to be a two-way phone number for the
contact who registers it first.

Outbound SMS

The SMS framework uses a queuing architecture to make it easier to scale SMS processing power hori-
zontally.

The process to send an SMS from within the code is as follows. The only step you need to do is the first,
and the rest happen automatically.

1. Invoke one of the send_sms* functions found in corehq.apps.sms.api:

send_sms used to send SMS to a one-way phone number represented as a string

send_sms_to_verified_number use to send SMS to a two-way phone number represented as
a PhoneNumber object

send_sms_with_backend used to send SMS with a specific SMS backend

send_sms_with_backend_name used to send SMS with the given SMS backend name which
will be resolved to an SMS backend

2. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
sent.

3. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

27.3. Outbound SMS 97

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py

CommCareHQ Documentation, Release 1.0

4. process_sms attempts to send the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

5. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for outbound SMS. To find
out other more detailed functionality provided by process_sms, see the code.

1. If the domain has restricted the times at which SMS can be sent, check those and requeue the SMS
if it is not currently an allowed time.

2. Select an SMS backend by looking in the following order:

• If using a two-way phone number, look up the SMS backend with the name given in the
backend_id property

• If the domain has a default SMS backend specified, use it

• Look up an appropriate global SMS backend by checking the phone number’s prefix against
the global SQLMobileBackendMapping entries

• Use the catch-all global backend (found from the global SQLMobileBackendMapping en-
try with prefix = ‘*’)

3. If the SMS backend has configured rate limiting or load balancing across multiple numbers, enforce
those constraints.

4. Pass the SMS to the send() method of the SMS Backend, which is an instance of
corehq.apps.sms.models.SQLSMSBackend.

Inbound SMS

Inbound SMS uses the same queueing architecture as outbound SMS does.

The entry point to processing an inbound SMS is the corehq.apps.sms.api.incoming function. All SMS
backends which accept inbound SMS call the incoming function.

From there, the following functions are performed at a high level:

1. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
processed.

2. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

3. process_sms attempts to process the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

4. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for inbound SMS. To find out
other more detailed functionality provided by process_sms, see the code.

1. Look up a two-way phone number for the given phone number string.

2. If a two-way phone number is found, pass the SMS on to each inbound SMS handler (defined in
settings.SMS_HANDLERS) until one of them returns True, at which point processing stops.

98 Chapter 27. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

3. If a two-way phone number is not found, try to pass the SMS on to the SMS handlers that don’t
require two-way phone numbers (the phone verification workflow, self-registration over SMS work-
flows)

SMS Backends

We have one SMS Backend class per SMS Gateway that we make available.

SMS Backends are defined by creating a new directory under corehq.messaging.smsbackends, and the
code for each backend has two main parts:

• The outbound part of the backend which is represented by a class that subclasses
corehq.apps.sms.models.SQLSMSBackend

• The inbound part of the backend which is represented by a view that subclasses
corehq.apps.sms.views.IncomingBackendView

Outbound

The outbound part of the backend code is responsible for interacting with the SMS Gateway’s API to send
an SMS.

All outbound SMS backends are subclasses of SQLSMSBackend, and you can’t use a backend until
you’ve created an instance of it and saved it in the database. You can have multiple instances of backends,
if for example, you have multiple accounts with the same SMS gateway.

Backend instances can either be global, in which case they are shared by all projects in CommCareHQ, or
they can belong to a specific project. If belonged to a specific project, a backend can optionally be shared
with other projects as well.

To write the outbound backend code:

1. Create a subclass of corehq.apps.sms.models.SQLSMSBackend and implement the unimplemented
methods:

get_api_id should return a string that uniquely identifies the backend type (but is shared
across backend instances); we choose to not use the class name for this since class
names can change but the api id should never change; the api id is only used for sms
billing to look up sms rates for this backend type

get_generic_name a displayable name for the backend

get_available_extra_fields each backend likely needs to store additional information,
such as a username and password for authenticating with the SMS gateway; list those
fields here and they will be accessible via the backend’s config property

get_form_class should return a subclass of corehq.apps.sms.forms.BackendForm, which
should:

• have form fields for each of the fields in get_available_extra_fields, and

• implement the gateway_specific_fields property, which should return a crispy forms
rendering of those fields

send takes a corehq.apps.sms.models.QueuedSMS object as an argument and is respon-
sible for interfacing with the SMS Gateway’s API to send the SMS; if you want the
framework to retry the SMS, raise an exception in this method, otherwise if no excep-
tion is raised the framework takes that to mean the process was successful

27.5. SMS Backends 99

https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/smsbackends
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

2. Add the backend to sms.SMS_LOADED_SQL_BACKENDS

3. Add an outbound test for the backend in corehq.apps.sms.tests.test_backends. This will test that
the backend is reachable by the framework, but any testing of the direct API connection with the
gateway must be tested manually.

Once that’s done, you should be able to create instances of the backend by navigating to Messaging ->
SMS Connectivity (for domain-level backend instances) or Admin -> SMS Connectivity and Billing (for
global backend instances). To test it out, set it as the default backend for a project and try sending an SMS
through the Compose SMS interface.

Things to look out for:

• Make sure you use the proper encoding of the message when you implement the send() method.
Some gateways are picky about the encoding needed. For example, some require everything to
be UTF-8. Others might make you choose between ASCII and Unicode. And for the ones that
accept Unicode, you might need to sometimes convert it to a hex representation. And remember
that get/post data will be automatically url-encoded when you use python requests. Consult the
documentation for the gateway to see what is required.

• The message limit for a single SMS is 160 7-bit structures. That works out to 140 bytes, or 70
words. That means the limit for a single message is typically 160 GSM characters, or 70 Unicode
characters. And it’s actually a little more complicated than that since some simple ASCII characters
(such as ‘{‘) take up two GSM characters, and each carrier uses the GSM alphabet according to
language.

So the bottom line is, it’s difficult to know whether the given text will fit in one SMS message or
not. As a result, you should find out if the gateway supports Concatenated SMS, a process which
seamlessly splits up long messages into multiple SMS and stiches them back up without you having
to do any additional work. You may need to have the gateway enable a setting to do this or include
an additional parameter when sending SMS to make this work.

Inbound

The inbound part of the backend code is responsible for exposing a view which implements the API that
the SMS Gateway expects so that the gateway can connect to CommCareHQ and notify us of inbound
SMS.

To write the inbound backend code:

1. Create a subclass of corehq.apps.sms.views.IncomingBackendView, and implement the unimple-
mented property:

backend_class should return the subclass of SQLSMSBackend that was written above

2. Implement either the get() or post() method on the view based on the gateway’s API. The only
requirement of the framework is that this method call the corehq.apps.sms.api.incoming function,
but you should also:

• pass self.backend_couch_id as the backend_id kwarg to incoming()

• if the gateway gives you a unique identifier for the SMS in their system, pass that identifier as
the backend_message_id kwarg to incoming(); this can help later with debugging

3. Create a url for the view. The url pattern should accept an api key and look something like:
r’^sms/(?P<api_key>[w-]+)/$’ . The API key used will need to match the inbound_api_key of a
backend instance in order to be processed.

100 Chapter 27. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tests/test_backends.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py

CommCareHQ Documentation, Release 1.0

4. Let the SMS Gateway know the url to connect to, including the API Key. To get the API Key,
look at the value of the inbound_api_key property on the backend instance. This value is generated
automatically when you first create a backend instance.

What happens behind the scenes is as follows:

1. A contact sends an inbound SMS to the SMS Gateway

2. The SMS Gateway connects to the URL configured above.

3. The view automatically looks up the backend instance by api key and rejects the request if one is not
found.

4. Your get() or post() method is invoked which parses the parameters accordingly and passes the
information to the inbound incoming() entry point.

5. The Inbound SMS framework takes it from there as described in the Inbound SMS section.

NOTE: The api key is part of the URL because it’s not always easy to make the gateway send us an extra
arbitrary parameter on each inbound SMS.

Rate Limiting

You may want (or need) to limit the rate at which SMS get sent from a given backend instance. To do so,
just override the get_sms_rate_limit() method in your SQLSMSBackend, and have it return the maximum
number of SMS that can be sent in a one minute period.

Load Balancing

If you want to load balance the Outbound SMS traffic automatically across multiple phone numbers, do
the following:

1. Make your BackendForm subclass the corehq.apps.sms.forms.LoadBalancingBackendFormMixin

2. Make your SQLSMSBackend subclass the corehq.apps.sms.models.PhoneLoadBalancingMixin

3. Make your SQLSMSBackend’s send method take a orig_phone_number kwarg. This will be the
phone number to use when sending. This is always sent to the send() method, even if there is just
one phone number to load balance over.

From there, the framework will automatically handle managing the phone numbers through the create/edit
gateway UI and balancing the load across the numbers when sending. When choosing the originating
phone number, the destination number is hashed and that hash is used to choose from the list of load
balancing phone numbers, so that a recipient always receives messages from the same originating number.

If your backend uses load balancing and rate limiting, the framework applies the rate limit to each phone
number separately as you would expect.

Reminders

The Reminders framework uses a queuing architecture similar to the SMS framework, to make it easier
to scale reminders processing power horizontally.

To see how this works, we first have to see how the reminders models are setup.

27.6. Reminders 101

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

Reminder Definition

A reminder definition, represented by a corehq.apps.reminders.models.CaseReminderHandler object, de-
fines the rules for:

• what criteria cause a reminder to be triggered

• when the reminder should start once the criteria are fulfilled

• who the reminder should go to

• on what schedule and frequency the reminder should continue to be sent

• the content to send

• what causes the reminder to stop

Reminder Instance

A reminder instance, represented by a corehq.apps.reminders.models.CaseReminder, defines an instance
of a reminder definition and keeps track of the state of the reminder instance throughout its lifetime.

For example, a reminder definition may define a rule for sending an SMS to a case of type patient,
and sending an SMS appointment reminder to the case 2 days before the case’s appointment_date case
property.

As soon as a case is created or updated in the given project to meet the criteria of having type patient
and having an appointment_date, the framework will create a reminder instance to track it. After the
reminder is sent 2 days before the appointment_date, the reminder instance is deactivated to denote that it
has completed the defined schedule and should not be sent again.

In order to keep reminder instances responsive to case changes, every time a case is saved, a
corehq.apps.reminders.tasks.case_changed task is spawned to handle any changes. Similarly, any time
a reminder definition is updated, a corehq.apps.reminders.tasks.process_reminder_rule task is spawned to
rerun it against all cases in the project.

The aim of the framework is to always be completely responsive to all changes. So in the example above,
if a case’s appointment_date changes before the appointment reminder is actually sent, the framework
will update the reminder instance automatically in order to reflect the new appointment date. And if the
appointment reminder went out months ago but a new appointment_date value is given to the case for a
new appointment, the same reminder instance is updated again to reflect a new reminder that must go out.

Similarly, if the reminder definition is updated to use a different case property other than appoint-
ment_date, all existing reminder instances are deleted and any new ones are created if they meet the
criteria.

Queueing

All of the reminder instances in the database represent the queue of reminders that should be sent. The
way a reminder is processed is as follows:

1. The reminder polling process (python manage.py run_reminder_queue), which runs as a supervisor
process on one of the celery machines, constantly polls for reminders that should be processed by
querying for reminder instances that have a next_fire property that is in the past.

2. Once a reminder that needs to be processed has been identified, the framework spawns a
corehq.apps.reminders.tasks.fire_reminder task to handle it.

102 Chapter 27. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/tasks.py

CommCareHQ Documentation, Release 1.0

3. fire_reminder looks up the reminder definition that spawned the reminder instance, and instructs it
to 1) take the appropriate action that has been configured (for example, send an sms), and 2) update
the state of the reminder instance so that it gets scheduled for the next action it must take based on
the reminder definition.

Event Handlers

A reminder definition sends content of one type. At the time of writing, the content a reminder definition
can be configured to send includes:

• SMS

• SMS Survey

• Outbound IVR Session

• Emails

In the case of SMS Surveys or IVR Sessions, the survey content is defined using a form in an app which
is then played to the recipients over SMS or IVR using touchforms (see corehq.apps.smsforms for this
interface with touchforms).

New event handlers can be written and added to the current ones in corehq.apps.reminders.event_handlers,
and each event handler is tied to a reminder definition through the reminder definition’s method attribute
and the corehq.apps.reminders.event_handlers.EVENT_HANDLER_MAP.

Keywords

A Keyword (corehq.apps.sms.models.Keyword) defines an action or set of actions to be taken when an
inbound SMS is received whose first word matches the keyword configuration.

Any number of actions can be taken, which include:

• Replying with an SMS or SMS Survey

• Sending an SMS or SMS Survey to another contact or group of contacts

• Processing the SMS as a Structured SMS

Keywords tie into the Inbound SMS framework through the keyword handler
(corehq.apps.sms.handlers.keyword.sms_keyword_handler, see settings.SMS_HANDLERS), and
use the Reminders framework to carry out their action(s).

Behind the scenes, all actions besides processing Structured SMS create a reminder definition to be sent
immediately. So any functionality provided by a reminder definition can be added to be supported as a
Keyword action.

27.7. Keywords 103

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/smsforms
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/event_handlers.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reminders/event_handlers.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/handlers/keyword.py

CommCareHQ Documentation, Release 1.0

104 Chapter 27. Messaging in CommCareHQ

CHAPTER 28

Locations

105

CommCareHQ Documentation, Release 1.0

106 Chapter 28. Locations

CHAPTER 29

Tips for documenting

Documenting

Documentation is awesome. You should write it. Here’s how.

All the CommCareHQ docs are stored in a docs/ folder in the root of the repo. To add a new doc, make an
appropriately-named rst file in the docs/ directory. For the doc to appear in the table of contents, add it to the
toctree list in index.rst.

Sooner or later we’ll probably want to organize the docs into sub-directories, that’s fine, you can link to specific
locations like so: `Installation <intro/install>`.

For a more complete working set of documentation, check out Django’s docs directory. This is used to build
docs.djangoproject.com.

Index

1. Sphinx is used to build the documentation.

2. Writing Documentation - Some general tips for writing documentation

3. reStructuredText is used for markup.

4. Editors with RestructuredText support

Sphinx

Sphinx builds the documentation and extends the functionality of rst a bit for stuff like pointing to other files and
modules.

To build a local copy of the docs (useful for testing changes), navigate to the docs/ directory and run make html.
Open <path_to_commcare-hq>/docs/_build/html/index.html in your browser and you should have
access to the docs for your current version (I bookmarked it on my machine).

• Sphinx Docs

107

https://github.com/django/django/tree/master/docs
https://docs.djangoproject.com
http://sphinx-doc.org/

CommCareHQ Documentation, Release 1.0

• Full index

Writing Documentation

For some great references, check out Jacob Kaplan-Moss’s series Writing Great Documentation and this blog post by
Steve Losh. Here are some takeaways:

• Use short sentences and paragraphs

• Break your documentation into sections to avoid text walls

• Avoid making assumptions about your reader’s background knowledge

• Consider three types of documentation:

1. Tutorials - quick introduction to the basics

2. Topical Guides - comprehensive overview of the project; everything but the dirty details

3. Reference Material - complete reference for the API

One aspect that Kaplan-Moss doesn’t mention explicitly (other than advising us to “Omit fluff” in his Technical style
piece) but is clear from both his documentation series and the Django documentation, is what not to write. It’s an
important aspect of the readability of any written work, but has other implications when it comes to technical writing.

Antoine de Saint Exupéry wrote, ”... perfection is attained not when there is nothing more to add, but when there is
nothing more to remove.”

Keep things short and take stuff out where possible. It can help to get your point across, but, maybe more importantly
with documentation, means there is less that needs to change when the codebase changes.

Think of it as an extension of the DRY principle.

reStructuredText

reStructuredText is a markup language that is commonly used for Python documentation. You can view the source of
this document or any other to get an idea of how to do stuff (this document has hidden comments). Here are some
useful links for more detail:

• rst quickreference

• Sphinx guide to rst

• reStructuredText full docs

• Referencing arbitrary locations and other documents

Editors

While you can use any text editor for editing RestructuredText documents, I find two particularly useful:

• PyCharm (or other JetBrains IDE, like IntelliJ), which has great syntax highlighting and linting.

• Sublime Text, which has a useful plugin for hard-wrapping lines called Sublime Wrap Plus. Hard-wrapped lines
make documentation easy to read in a console, or editor that doesn’t soft-wrap lines (i.e. most code editors).

• Vim has a command gq to reflow a block of text (:help gq). It uses the value of textwidth to wrap
(:setl tw=75). Also check out :help autoformat. Syntastic has a rst linter. To make a line a header,
just yypVr= (or whatever symbol you want).

108 Chapter 29. Tips for documenting

http://sphinx-doc.org/genindex.html
http://jacobian.org/writing/great-documentation/
http://stevelosh.com/blog/2013/09/teach-dont-tell/
http://jacobian.org/writing/what-to-write/
http://jacobian.org/writing/technical-style/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/rest.html
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/markup/inline.html#ref-role
https://github.com/ehuss/Sublime-Wrap-Plus

CommCareHQ Documentation, Release 1.0

Examples

Some basic examples adapted from 2 Scoops of Django:

Section Header

Sections are explained well here

emphasis (bold/strong)

italics

Simple link: http://commcarehq.org

Inline link: CommCareHQ

Fancier Link: CommCareHQ

1. An enumerated list item

2. Second item

• First bullet

• Second bullet

– Indented Bullet

– Note carriage return and indents

Literal code block:

def like():
print("I like Ice Cream")

for i in range(10):
like()

Python colored code block (requires pygments):

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

console.log("Don't use alert()");

29.1. Documenting 109

http://docutils.sourceforge.net/docs/user/rst/quickstart.html#sections
http://commcarehq.org
https://commcarehq.org
https://commcarehq.org

CommCareHQ Documentation, Release 1.0

110 Chapter 29. Tips for documenting

CHAPTER 30

Indices and tables

• genindex

• modindex

• search

111

	Reporting
	Recommended approaches for building reports
	Hooking up reports to CommCare HQ
	Reporting on data stored in SQL
	Report API
	Adding dynamic reports
	How pillow/fluff work

	Change Feeds
	What they are
	Architecture
	Publishing changes
	Subscribing to changes
	Porting a new pillow

	Pillows
	What they are
	Creating a pillow
	Error Handling
	Monitoring
	Troubleshooting

	API
	Bulk User Resource

	Reporting: Maps in HQ
	What is the ``Maps Report''?
	Orientation
	Styling
	Data Sources
	Display Configuration
	Raw vs. Formatted Data

	Exports
	UI Helpers
	Paginated CRUD View

	Using Class-Based Views in CommCare HQ
	The Base Classes
	Adding to Urlpatterns
	Hierarchy
	Permissions
	GETs and POSTs (and other http methods)

	Testing best practices
	Test set up
	Test tear down
	Using SimpleTestCase
	Squashing Migrations

	Forms in HQ
	Making forms CSRF safe
	An Example Complex Asynchronous Form With Partial Fields

	HQ Management Commands
	CommTrack
	What happens during a CommTrack submission?
	Submitting a stock report via CommCare

	CloudCare
	Overview
	Touchforms
	Offline Cloudcare

	Internationalization
	Tagging strings in views
	Tagging strings in template files
	Keeping translations up to date

	Profiling
	Practical guide to profiling a slow view or function
	Memory profiling

	ElasticSearch
	Indexes
	Keeping indexes up-to-date
	Changing a mapping or adding data
	How to un-bork your broken indexes
	Querying Elasticsearch - Best Practices

	Use ESQuery when possible
	Prefer ``get'' to ``search''
	Prefer scroll queries
	Prefer filter to query
	Use size(0) with aggregations
	ESQuery
	Analyzing Test Coverage
	Using coverage.py

	Advanced App Features
	Child Modules
	Shadow Modules

	Using the shared NFS drive
	Using apache / nginx to handle downloads
	Saving uploads to the NFS drive

	How to use and reference forms and cases programatically
	Models
	Model acessors
	Branching
	Unit Tests

	Messaging in CommCareHQ
	Messaging Definitions
	Contacts
	Outbound SMS
	Inbound SMS
	SMS Backends
	Reminders
	Keywords

	Locations
	Tips for documenting
	Documenting

	Indices and tables

