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CHAPTER

ONE

INTRODUCTION - ICEPACK

1.1 About Icepack

Modern sea ice models have evolved into highly complex collections of physical parameterizations and infrastructural
elements to support various configurations and computational approaches. In particular, numerical models may now
be implemented for unstructured grids, requiring new approaches for referencing information in neighboring grid cells
and communication information across grid elements. However, a large portion of the physics in sea ice models can be
described in a vertical column, without reference to neighboring grid cells.

The column physics package of the sea ice model CICE, “Icepack”, is maintained by the CICE Consortium. This code
includes several options for simulating sea ice thermodynamics, mechanical redistribution (ridging) and associated
area and thickness changes. In addition, the model supports a number of tracers, including thickness, enthalpy, ice age,
first-year ice area, deformed ice area and volume, melt ponds, and biogeochemistry.

Icepack is implemented in CICE as a git submodule. The purpose of Icepack is to provide the column physics model
as a separate library for use in other host models such as CICE. Development and testing of CICE and Icepack may be
done together, but the repositories are independent. This document describes the Icepack model. The Icepack code is
available from https://github.com/CICE-Consortium/Icepack.

Icepack consists of three independent parts, the column physics code, the icepack driver that supports stand-alone
testing of the column physics code, and the icepack scripts that build and test the Icepack model. The column physics
is called from a host (driver) model on a gridpoint by gridpoint basis. Each gridpoint is independent and the host model
stores and passes the model state and forcing to the column physics.

Major changes with each Icepack release (https://github.com/CICE-Consortium/Icepack/releases) will be detailed with
the included release notes. Enhancements and bug fixes made to Icepack since the last numbered release can be found
on the Icepack wiki (https://github.com/CICE-Consortium/Icepack/wiki/Icepack-Recent-changes). Please cite any
use of the Icepack code. More information can be found at Citing the Icepack code.

This document uses the following text conventions: Variable names used in the code are typewritten. Subroutine
names are given in italic. File and directory names are in boldface. A comprehensive index, including glossary of
symbols with many of their values, appears at the end of this guide.

1
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1.2 Quick Start

Download the model from the CICE-Consortium repository,
https://github.com/CICE-Consortium/Icepack

Instructions for working in github with Icepack (and CICE) can be found in the CICE Git and Workflow Guide.

From your main Icepack directory, execute:

./icepack.setup -c ~/mycase1 -m testmachine
cd ~/mycase1
./icepack.build
./icepack.submit

testmachine is a generic machine name included with the icepack scripts. The local machine name will have to be
substituted for testmachine and there are working ports for several different machines. However, it may be necessary
to port the model to a new machine. See Porting for more information about how to port. See Scripts for more
information about how to use the icepack.setup and icepack.submit scripts.

Please cite any use of the Icepack code. More information can be found at Citing the Icepack code.

1.3 Acknowledgements

This work has been completed through the CICE Consortium and its members with funding through the

• Department of Energy (Los Alamos National Laboratory)

• Department of Defense (Navy)

• Department of Commerce (National Oceanic and Atmospheric Administration)

• National Science Foundation (the National Center for Atmospheric Research)

• Environment and Climate Change Canada.

Special thanks are due to participants from these institutions and many others who contributed to previous versions of
CICE or Icepack.

1.4 Citing the Icepack code

Each individual release has its own Digital Object Identifier (DOI), e.g. Icepack v1.2.2 has DOI 10.5281/zen-
odo.3888633. All versions of this lineage (e.g. Icepack v1) can be cited by using the DOI 10.5281/zenodo.1213462
(https://zenodo.org/record/1213462). This DOI represents all v1 releases, and will always resolve to the latest one.
More information can be found by following the DOI link to zenodo.

If you use Icepack, please cite the version number of the code you are using or modifying.

If using code from the CICE-Consortium repository main branch that includes modifications that have not yet been
released with a version number, then in addition to the most recent version number, the hash at time of download can
be cited, determined by executing the command git log in your clone.

A hash can also be cited for your own modifications, once they have been committed to a repository branch.

Please also make the CICE Consortium aware of any publications and model use.

2 Chapter 1. Introduction - Icepack
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1.5 Copyright

© Copyright 2023, Triad National Security LLC. All rights reserved. This software was produced under U.S. Gov-
ernment contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad
National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and dis-
tribute this software. NEITHER THE GOVERNMENT NOR TRIAD NATIONAL SECURITY, LLC MAKES ANY
WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE.
If software is modified to produce derivative works, such modified software should be clearly marked, so as not to
confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Triad National Security, LLC, Los Alamos National Laboratory, LANL, the U.S. Govern-
ment, nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY TRIAD NATIONAL SECURITY, LLC AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL TRIAD NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

1.5. Copyright 3
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CHAPTER

TWO

SCIENCE GUIDE

2.1 Atmosphere and ocean boundary forcing

Table 1: External forcing data that are relevant to Icepack
Variable Description External Interactions
𝑧𝑜 Atmosphere level height From atmosphere model to sea ice model
𝑧𝑜,𝑠 Atmosphere level height (scalar quantities)

(optional)
From atmosphere model to sea ice model

�⃗�𝑎 Wind velocity From atmosphere model to sea ice model
𝑄𝑎 Specific humidity From atmosphere model to sea ice model
𝜌𝑎 Air density From atmosphere model to sea ice model
Θ𝑎 Air potential temperature From atmosphere model to sea ice model
𝑇𝑎 Air temperature From atmosphere model to sea ice model
𝐹𝑠𝑤↓ Incoming shortwave radiation (4 bands) From atmosphere model to sea ice model
𝐹𝐿↓ Incoming longwave radiation From atmosphere model to sea ice model
𝐹𝑟𝑎𝑖𝑛 Rainfall rate From atmosphere model to sea ice model
𝐹𝑠𝑛𝑜𝑤 Snowfall rate From atmosphere model to sea ice model
𝐹𝑓𝑟𝑧𝑚𝑙𝑡 Freezing/melting potential From ocean model to sea ice model
𝑇𝑤 Sea surface temperature From ocean model to sea ice model
𝑆 Sea surface salinity From ocean model to sea ice model
∇𝐻𝑜 Sea surface slope From ocean model via flux coupler to sea ice

model
ℎ1 Thickness of first ocean level (optional) From ocean model to sea ice model
�⃗�𝑤 Surface ocean currents From ocean model to sea ice model (available

in Icepack driver, not used directly in column
physics)

�⃗�𝑎 Wind stress From sea ice model to atmosphere model
𝐹𝑠 Sensible heat flux From sea ice model to atmosphere model
𝐹𝑙 Latent heat flux From sea ice model to atmosphere model
𝐹𝐿↑ Outgoing longwave radiation From sea ice model to atmosphere model
𝐹𝑒𝑣𝑎𝑝 Evaporated water From sea ice model to atmosphere model
𝛼 Surface albedo (4 bands) From sea ice model to atmosphere model
𝑇𝑠𝑓𝑐 Surface temperature From sea ice model to atmosphere model
𝐹𝑠𝑤⇓ Penetrating shortwave radiation From sea ice model to ocean model
𝐹𝑤𝑎𝑡𝑒𝑟 Fresh water flux From sea ice model to ocean model
𝐹ℎ𝑜𝑐𝑛 Net heat flux to ocean From sea ice model to ocean model
𝐹𝑠𝑎𝑙𝑡 Salt flux From sea ice model to ocean model
�⃗�𝑤 Ice-ocean stress From sea ice model to ocean model

continues on next page
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Table 1 – continued from previous page
Variable Description External Interactions
𝐹𝑏𝑖𝑜 Biogeochemical fluxes From sea ice model to ocean model
𝑎𝑖 Ice fraction From sea ice model to both ocean and atmo-

sphere models
𝑇 𝑟𝑒𝑓
𝑎 2m reference temperature (diagnostic) From sea ice model to both ocean and atmo-

sphere models
𝑄𝑟𝑒𝑓

𝑎 2m reference humidity (diagnostic) From sea ice model to both ocean and atmo-
sphere models

𝐹𝑠𝑤𝑎𝑏𝑠 Absorbed shortwave (diagnostic) From sea ice model to both ocean and atmo-
sphere models

𝐸(𝑓) Wave spectrum as a function of frequency From ocean surface wave model to sea ice
model

The ice fraction 𝑎𝑖 (aice) is the total fractional ice coverage of a grid cell. That is, in each cell,

𝑎𝑖 = 0 if there is no ice
𝑎𝑖 = 1 if there is no open water

0 < 𝑎𝑖 < 1 if there is both ice and open water,

where 𝑎𝑖 is the sum of fractional ice areas for each category of ice. The ice fraction is used by the flux coupler to
merge fluxes from the sea ice model with fluxes from the other earth system components. For example, the penetrating
shortwave radiation flux, weighted by 𝑎𝑖, is combined with the net shortwave radiation flux through ice-free leads,
weighted by (1− 𝑎𝑖), to obtain the net shortwave flux into the ocean over the entire grid cell. The CESM flux coupler
requires the fluxes to be divided by the total ice area so that the ice and land models are treated identically (land also
may occupy less than 100% of an atmospheric grid cell). These fluxes are “per unit ice area” rather than “per unit grid
cell area.”

In some coupled climate models (for example, recent versions of the U.K. Hadley Centre model) the surface air temper-
ature and fluxes are computed within the atmosphere model and are passed to CICE for use in the column physics. In
this case the logical parameter calc_Tsfc in ice_therm_vertical is set to false. The fields fsurfn (the net surface heat
flux from the atmosphere), flatn (the surface latent heat flux), and fcondtopn (the conductive flux at the top surface)
for each ice thickness category are copied or derived from the input coupler fluxes and are passed to the thermodynamic
driver subroutine, thermo_vertical. At the end of the time step, the surface temperature and effective conductivity (i.e.,
thermal conductivity divided by thickness) of the top ice/snow layer in each category are returned to the atmosphere
model via the coupler. Since the ice surface temperature is treated explicitly, the effective conductivity may need to be
limited to ensure stability. As a result, accuracy may be significantly reduced, especially for thin ice or snow layers.
A more stable and accurate procedure would be to compute the temperature profiles for both the atmosphere and ice,
together with the surface fluxes, in a single implicit calculation. This was judged impractical, however, given that the
atmosphere and sea ice models generally exist on different grids and/or processor sets.

2.1.1 Atmosphere

The wind velocity, specific humidity, air density and potential temperature at the given level height 𝑧∘ (optionally
𝑧∘,𝑠, see below) are used to compute transfer coefficients used in formulas for the surface wind stress and turbulent
heat fluxes �⃗�𝑎, 𝐹𝑠, and 𝐹𝑙, as described below. The sensible and latent heat fluxes, 𝐹𝑠 and 𝐹𝑙, along with shortwave
and longwave radiation, 𝐹𝑠𝑤↓, 𝐹𝐿↓ and 𝐹𝐿↑, are included in the flux balance that determines the ice or snow surface
temperature when calc_Tsfc is true. As described in the Thermodynamics section, these fluxes depend nonlinearly
on the ice surface temperature 𝑇𝑠𝑓𝑐. The balance equation is iterated until convergence, and the resulting fluxes and
𝑇𝑠𝑓𝑐 are then passed to the flux coupler.

The snowfall precipitation rate (provided as liquid water equivalent and converted by the ice model to snow depth) also
contributes to the heat and water mass budgets of the ice layer. Melt ponds generally form on the ice surface in the
Arctic and refreeze later in the fall, reducing the total amount of fresh water that reaches the ocean and altering the heat

6 Chapter 2. Science Guide
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budget of the ice; this version includes two new melt pond parameterizations. Rain and all melted snow end up in the
ocean.

Wind stress and transfer coefficients for the turbulent heat fluxes are computed in subroutine atmo_boundary_layer
following [32], with additions and changes as detailed in Appendix A of [55] for high frequency coupling (namelist
variable highfreq). The resulting equations are provided here for the default boundary layer scheme, which is based
on Monin-Obukhov theory (atmbndy = ‘stability’). Alternatively, atmbndy = ‘constant’ provides constant
coefficients for wind stress, sensible heat and latent heat calculations (computed in subroutine atmo_boundary_const);
atmbndy = ‘mixed’ uses the stability based calculation for wind stress and constant coefficients for sensible and
latent heat fluxes.

The wind stress and turbulent heat flux calculation accounts for both stable and unstable atmosphere–ice boundary
layers. We first define the “stability”

Υ =
𝜅𝑔𝑧∘
𝑢*2

(︂
Θ*

Θ𝑎 (1 + 0.606𝑄𝑎)
+

𝑄*

1/0.606 +𝑄𝑎

)︂
, (2.1)

where 𝜅 is the von Karman constant, 𝑔 is gravitational acceleration, and 𝑢*, Θ* and𝑄* are turbulent scales for velocity
difference, temperature, and humidity, respectively, computed as (given the ice velocity �⃗�𝑖):

𝑢* = 𝑐𝑢 max
(︁
𝑈Δmin,

⃒⃒⃒
�⃗�𝑎 − �⃗�𝑖

⃒⃒⃒)︁
,

Θ* = 𝑐𝜃 (Θ𝑎 − 𝑇𝑠𝑓𝑐) ,

𝑄* = 𝑐𝑞 (𝑄𝑎 −𝑄𝑠𝑓𝑐) .

(2.2)

Note that atmo_boundary_layer also accepts an optional argument, zlvs, to support staggered atmospheric levels, i.e.
receiving scalar quantities from the atmospheric model (humidity and temperature) at a different vertical level than the
winds. In that case a separate stability Υ𝑠 is computed using the same formula as above but substituting 𝑧𝑜 by 𝑧𝑜,𝑠.

Within the 𝑢* expression, 𝑈Δmin is the minimum allowable value of |�⃗�𝑎 − �⃗�𝑖| , which is set to of 0.5 m/s for high
frequency coupling (highfreq =.true.). When high frequency coupling is turned off (highfreq =.false.), it is assumed
in equation (2.2) that:

�⃗�𝑎 − �⃗�𝑖 ≈ �⃗�𝑎 (2.3)

and a higher threshold is taken for 𝑈Δmin of 1m/s. Equation (2.3) is a poor assumption when resolving inertial oscilla-
tions in ice-ocean configurations where the ice velocity vector may make a complete rotation over a period of ≥ 11.96
hours, as discussed in [55]. However, (2.3) is acceptable for low frequency ice-ocean coupling on the order of a day
or more, when transient ice-ocean Ekman transport is effectively filtered from the model solution. For the Θ* and 𝑄*

terms in (2.2), 𝑇𝑠𝑓𝑐 and 𝑄𝑠𝑓𝑐 are the surface temperature and specific humidity, respectively. The latter is calculated
by assuming a saturated surface, as described in the Thermodynamic surface forcing balance section.

Neglecting form drag, the exchange coefficients 𝑐𝑢, 𝑐𝜃 and 𝑐𝑞 are initialized as

𝜅

ln(𝑧𝑟𝑒𝑓/𝑧𝑖𝑐𝑒)
(2.4)

and updated during a short iteration, as they depend upon the turbulent scales. The number of iterations is set by the
namelist variable natmiter, nominally set to five but sometimes increased by users employing the highfreq option.
A convergence tolerance atmiter_conv on ustar can be set to exit the natmiter loop early if desired. Here, 𝑧𝑟𝑒𝑓 is
a reference height of 10m and 𝑧𝑖𝑐𝑒 is the roughness length scale for the given sea ice category. Υ is constrained to have
magnitude less than 10. Further, defining 𝜒 = (1− 16Υ)

0.25 and 𝜒 ≥ 1, the “integrated flux profiles” for momentum
and stability in the unstable (Υ < 0) case are given by

𝜓𝑚 = 2 ln [0.5(1 + 𝜒)] + ln
[︀
0.5(1 + 𝜒2)

]︀
− 2 tan−1 𝜒+

𝜋

2
,

𝜓𝑠 = 2 ln
[︀
0.5(1 + 𝜒2)

]︀
.

(2.5)

2.1. Atmosphere and ocean boundary forcing 7
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In a departure from the parameterization used in [32], we use profiles for the stable case following [31],

𝜓𝑚 = 𝜓𝑠 = − [0.7Υ + 0.75 (Υ− 14.3) exp (−0.35Υ) + 10.7] . (2.6)

The coefficients are then updated as

𝑐′𝑢 =
𝑐𝑢

1 + 𝑐𝑢 (𝜆− 𝜓𝑚) /𝜅

𝑐′𝜃 =
𝑐𝜃

1 + 𝑐𝜃 (𝜆𝑠 − 𝜓𝑠) /𝜅

𝑐′𝑞 = 𝑐′𝜃

(2.7)

where 𝜆 = ln (𝑧∘/𝑧𝑟𝑒𝑓 ) and 𝜆𝑠 = ln (𝑧∘,𝑠/𝑧𝑟𝑒𝑓 ) if staggered atmospheric levels are used, else 𝜆𝑠 = 𝜆. The first
iteration ends with new turbulent scales from equations (2.2). After natmiter iterations the latent and sensible heat
flux coefficients are computed, along with the wind stress:

𝐶𝑙 = 𝜌𝑎 (𝐿𝑣𝑎𝑝 + 𝐿𝑖𝑐𝑒)𝑢
*𝑐𝑞

𝐶𝑠 = 𝜌𝑎𝑐𝑝𝑢
*𝑐*𝜃 + 1

�⃗�𝑎 =
𝜌𝑎(𝑢

*)2
(︁
�⃗�𝑎 − �⃗�𝑖

)︁
⃒⃒⃒
�⃗�𝑎 − �⃗�𝑖

⃒⃒⃒ (2.8)

where 𝐿𝑣𝑎𝑝 and 𝐿𝑖𝑐𝑒 are latent heats of vaporization and fusion, 𝜌𝑎 is the density of air and 𝑐𝑝 is its specific heat.
Again following [31], we have added a constant to the sensible heat flux coefficient in order to allow some heat to pass
between the atmosphere and the ice surface in stable, calm conditions. For the atmospheric stress term in (2.8), we
make the assumption in (2.3) when highfreq =.false..

The atmospheric reference temperature 𝑇 𝑟𝑒𝑓
𝑎 is computed from 𝑇𝑎 and 𝑇𝑠𝑓𝑐 using the coefficients 𝑐𝑢, 𝑐𝜃 and 𝑐𝑞 . Al-

though the sea ice model does not use this quantity, it is convenient for the ice model to perform this calculation. The
atmospheric reference temperature is returned to the flux coupler as a climate diagnostic. The same is true for the
reference humidity, 𝑄𝑟𝑒𝑓

𝑎 .

Additional details about the latent and sensible heat fluxes and other quantities referred to here can be found in the Ther-
modynamic surface forcing balance section.

2.1.2 Ocean

New sea ice forms when the ocean temperature drops below its freezing temperature. In the Bitz and Lipscomb thermo-
dynamics, [6] 𝑇𝑓 = −𝜇𝑆, where 𝑆 is the seawater salinity and 𝜇 = 0.054∘/ppt is the ratio of the freezing temperature
of brine to its salinity (linear liquidus approximation). For the mushy thermodynamics, 𝑇𝑓 is given by a piecewise
linear liquidus relation. The ocean model calculates the new ice formation; if the freezing/melting potential 𝐹𝑓𝑟𝑧𝑚𝑙𝑡

is positive, its value represents a certain amount of frazil ice that has formed in one or more layers of the ocean and
floated to the surface. (The ocean model assumes that the amount of new ice implied by the freezing potential actually
forms.)

If 𝐹𝑓𝑟𝑧𝑚𝑙𝑡 is negative, it is used to heat already existing ice from below. In particular, the sea surface temperature and
salinity are used to compute an oceanic heat flux 𝐹𝑤 (|𝐹𝑤| ≤ |𝐹𝑓𝑟𝑧𝑚𝑙𝑡|) which is applied at the bottom of the ice. The
portion of the melting potential actually used to melt ice is returned to the coupler in 𝐹ℎ𝑜𝑐𝑛. The ocean model adjusts
its own heat budget with this quantity, assuming that the rest of the flux remained in the ocean.

In addition to runoff from rain and melted snow, the fresh water flux 𝐹𝑤𝑎𝑡𝑒𝑟 includes ice melt water from the top
surface and water frozen (a negative flux) or melted at the bottom surface of the ice. This flux is computed as the net
change of fresh water in the ice and snow volume over the coupling time step, excluding frazil ice formation and newly
accumulated snow.

Setting the namelist option update_ocn_f to true causes frazil ice to be included in the fresh water and salt fluxes.
Some ocean models compute the frazil ice fluxes, which then might need to be corrected for consistency with mushy

8 Chapter 2. Science Guide



Icepack Documentation

physics. This behavior is controlled using a combination of update_ocn_f, cpl_frazil and ktherm. In partic-
ular, cpl_frazil = 'external' assumes that the frazil ice fluxes are handled entirely outside of Icepack. When
ktherm=2, cpl_frazil = 'fresh_ice_correction' sends coupling fluxes representing the difference between
the mushy frazil fluxes and fluxes computed assuming the frazil is purely fresh ice. Otherwise the internally computed
frazil fluxes are sent to the coupler.

There is a flux of salt into the ocean under melting conditions, and a (negative) flux when sea water is freezing. However,
melting sea ice ultimately freshens the top ocean layer, since the ocean is much more saline than the ice. The ice model
passes the net flux of salt 𝐹𝑠𝑎𝑙𝑡 to the flux coupler, based on the net change in salt for ice in all categories. In the
present configuration, ice_ref_salinity is used for computing the salt flux, although the ice salinity used in the
thermodynamic calculation has differing values in the ice layers.

A fraction of the incoming shortwave 𝐹𝑠𝑤⇓ penetrates the snow and ice layers and passes into the ocean, as described
in the Thermodynamic surface forcing balance section.

A thermodynamic slab ocean mixed-layer parameterization is available in icepack_ocean.F90 and can be run in the
full CICE configuration. The turbulent fluxes are computed above the water surface using the same parameterizations
as for sea ice, but with parameters appropriate for the ocean. The surface flux balance takes into account the turbulent
fluxes, oceanic heat fluxes from below the mixed layer, and shortwave and longwave radiation, including that passing
through the sea ice into the ocean. If the resulting sea surface temperature falls below the salinity-dependent freezing
point, then new ice (frazil) forms. Otherwise, heat is made available for melting the ice.

When the namelist option calc_dragio is set to true, the ice-ocean drag coefficient, 𝑐𝑤 (dragio), is computed from the
thickness of the first ocean level, ℎ1 (thickness_ocn_layer1), and an under-ice roughness length, 𝑧𝑖𝑜 (iceruf_ocn).
The computation follows [58] :

𝑐𝑤 = 𝑐*𝑤𝜆
2 (2.9)

where

𝑐*𝑤 =
𝜅2

ln2 (ℎ1/𝑧𝑖𝑜)
,

𝜆 =
ℎ1 − 𝑧𝑖𝑜

ℎ1 [
√
𝑐*𝑤𝜅

−1 (ln(2)− 1 + 𝑧𝑖𝑜/ℎ1) + 1]

(2.10)

2.1.3 Variable exchange coefficients

In the default configuration, atmospheric and oceanic neutral drag coefficients (𝑐𝑢 and 𝑐𝑤) are assumed constant in
time and space. These constants are chosen to reflect friction associated with an effective sea ice surface roughness at
the ice–atmosphere and ice–ocean interfaces. Sea ice (in both Arctic and Antarctic) contains pressure ridges as well
as floe and melt pond edges that act as discrete obstructions to the flow of air or water past the ice, and are a source of
form drag. Following [70] and based on recent theoretical developments [41][40], the neutral drag coefficients can now
be estimated from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard
and floe draft, and size of floes and melt ponds. The new parameterization allows the drag coefficients to be coupled to
the sea ice state and therefore to evolve spatially and temporally. This parameterization is contained in the subroutine
neutral_drag_coeffs and is accessed by setting formdrag = true in the namelist. (Note: see also Known bugs and other
issues.)

Following [70], consider the general case of fluid flow obstructed by N randomly oriented obstacles of height 𝐻 and
transverse length 𝐿𝑦 , distributed on a domain surface area 𝑆𝑇 . Under the assumption of a logarithmic fluid velocity
profile, the general formulation of the form drag coefficient can be expressed as

𝐶𝑑 =
𝑁𝑐𝑆2

𝑐𝛾𝐿𝑦𝐻

2𝑆𝑇

[︂
ln(𝐻/𝑧0)

ln(𝑧𝑟𝑒𝑓/𝑧0)

]︂2
, (2.11)

where 𝑧0 is a roughness length parameter at the top or bottom surface of the ice, 𝛾 is a geometric factor, 𝑐 is the
resistance coefficient of a single obstacle, and 𝑆𝑐 is a sheltering function that takes into account the shielding effect of
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the obstacle,

𝑆𝑐 = (1− exp(−𝑠𝑙𝐷/𝐻))
1/2

, (2.12)

with 𝐷 the distance between two obstacles and 𝑠𝑙 an attenuation parameter.

As in the original drag formulation in CICE (Atmosphere and Ocean sections), 𝑐𝑢 and 𝑐𝑤 along with the transfer coef-
ficients for sensible heat, 𝑐𝜃, and latent heat, 𝑐𝑞 , are initialized to a situation corresponding to neutral atmosphere–ice
and ocean–ice boundary layers. The corresponding neutral exchange coefficients are then replaced by coefficients that
explicitly account for form drag, expressed in terms of various contributions as

Cdn_atm = Cdn_atm_rdg+ Cdn_atm_floe+ Cdn_atm_skin+ Cdn_atm_pond, (2.13)

Cdn_ocn = Cdn_ocn_rdg+ Cdn_ocn_floe+ Cdn_ocn_skin. (2.14)

The contributions to form drag from ridges (and keels underneath the ice), floe edges and melt pond edges can be
expressed using the general formulation of equation (2.11) (see [70] for details). Individual terms in equation (2.14)
are fully described in [70]. Following [3] the skin drag coefficient is parametrized as

Cdn_(atm/ocn)_skin = 𝑎𝑖

(︂
1−𝑚(𝑠/𝑘)

𝐻(𝑠/𝑘)

𝐷(𝑠/𝑘)

)︂
𝑐𝑠(𝑠/𝑘), if

𝐻(𝑠/𝑘)

𝐷(𝑠/𝑘)
≥ 1

𝑚(𝑠/𝑘)
, (2.15)

where 𝑚𝑠 (𝑚𝑘) is a sheltering parameter that depends on the average sail (keel) height, 𝐻𝑠 (𝐻𝑘), but is often assumed
constant,𝐷𝑠 (𝐷𝑘) is the average distance between sails (keels), and 𝑐𝑠𝑠 (𝑐𝑠𝑘) is the unobstructed atmospheric (oceanic)
skin drag that would be attained in the absence of sails (keels) and with complete ice coverage, 𝑎𝑖𝑐𝑒 = 1.

Calculation of equations (2.11) – (2.15) requires that small-scale geometrical properties of the ice cover be related to
average grid cell quantities already computed in the sea ice model. These intermediate quantities are briefly presented
here and described in more detail in [70]. The sail height is given by

𝐻𝑠 = 2
𝑣𝑟𝑑𝑔
𝑎𝑟𝑑𝑔

(︂
𝛼 tan𝛼𝑘𝑅𝑑 + 𝛽 tan𝛼𝑠𝑅ℎ

𝜑𝑟 tan𝛼𝑘𝑅𝑑 + 𝜑𝑘 tan𝛼𝑠𝑅2
ℎ

)︂
, (2.16)

and the distance between sails

𝐷𝑠 = 2𝐻𝑠
𝑎𝑖
𝑎𝑟𝑑𝑔

(︂
𝛼

tan𝛼𝑠
+

𝛽

tan𝛼𝑘

𝑅ℎ

𝑅𝑑

)︂
, (2.17)

where 0 < 𝛼 < 1 and 0 < 𝛽 < 1 are weight functions, 𝛼𝑠 and 𝛼𝑘 are the sail and keel slope, 𝜑𝑠 and 𝜑𝑘 are
constant porosities for the sails and keels, and we assume constant ratios for the average keel depth and sail height
(𝐻𝑘/𝐻𝑠 = 𝑅ℎ) and for the average distances between keels and between sails (𝐷𝑘/𝐷𝑠 = 𝑅𝑑). With the assumption
of hydrostatic equilibrium, the effective ice plus snow freeboard is 𝐻𝑓 = ℎ̄𝑖(1− 𝜌𝑖/𝜌𝑤) + ℎ̄𝑠(1− 𝜌𝑠/𝜌𝑤), where 𝜌𝑖,
𝜌𝑤 and 𝜌𝑠 are respectively the densities of sea ice, water and snow, ℎ̄𝑖 is the mean ice thickness and ℎ̄𝑠 is the mean
snow thickness (means taken over the ice covered regions). For the melt pond edge elevation we assume that the melt
pond surface is at the same level as the ocean surface surrounding the floes [16][17][18] and use the simplification
𝐻𝑝 = 𝐻𝑓 . Finally to estimate the typical floe size 𝐿𝐴, distance between floes, 𝐷𝐹 , and melt pond size, 𝐿𝑃 we use
the parameterizations of [41] to relate these quantities to the ice and pond concentrations. All of these intermediate
quantities are available for output, along with Cdn_atm, Cdn_ocn and the ratio Cdn_atm_ratio_n between the total
atmospheric drag and the atmospheric neutral drag coefficient.

We assume that the total neutral drag coefficients are thickness category independent, but through their dependance
on the diagnostic variables described above, they vary both spatially and temporally. The total drag coefficients and
heat transfer coefficients will also depend on the type of stratification of the atmosphere and the ocean, and we use
the parameterization described in the Atmosphere section that accounts for both stable and unstable atmosphere–ice
boundary layers. In contrast to the neutral drag coefficients the stability effect of the atmospheric boundary layer is
calculated separately for each ice thickness category.

The transfer coefficient for oceanic heat flux to the bottom of the ice may be varied based on form drag considera-
tions by setting the namelist variable fbot_xfer_type to Cdn_ocn; this is recommended when using the form drag
parameterization. The default value of the transfer coefficient is 0.006 (fbot_xfer_type = ’constant’).
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2.2 Ice thickness distribution

The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ice, and thick
pressure ridges. The thermodynamic and dynamic properties of the ice pack depend on how much ice lies in each
thickness range. Thus the basic problem in sea ice modeling is to describe the evolution of the ice thickness distribution
(ITD) in time and space.

The fundamental equation solved by CICE is [68]:

𝜕𝑔

𝜕𝑡
= −∇ · (𝑔u)− 𝜕

𝜕ℎ
(𝑓𝑔) + 𝜓 − 𝐿, (2.18)

where u is the horizontal ice velocity, ∇ = ( 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ), 𝑓 is the rate of thermodynamic ice growth, 𝜓 is a ridging

redistribution function, 𝐿 is the lateral melt rate and 𝑔 is the ice thickness distribution function. We define 𝑔(x, ℎ, 𝑡) 𝑑ℎ
as the fractional area covered by ice in the thickness range (ℎ, ℎ+ 𝑑ℎ) at a given time and location. Icepack represents
all of the terms in this equation except for the divergence (the first term on the right).

Equation (2.18) is solved by partitioning the ice pack in each grid cell into discrete thickness categories. The number
of categories can be set by the user, with a default value 𝑁𝐶 = 5. (Five categories, plus open water, are generally
sufficient to simulate the annual cycles of ice thickness, ice strength, and surface fluxes [5][38].) Each category 𝑛 has
lower thickness bound 𝐻𝑛−1 and upper bound 𝐻𝑛. The lower bound of the thinnest ice category, 𝐻0, is set to zero.
The other boundaries are chosen with greater resolution for small ℎ, since the properties of the ice pack are especially
sensitive to the amount of thin ice [42]. The continuous function 𝑔(ℎ) is replaced by the discrete variable 𝑎𝑖𝑛, defined
as the fractional area covered by ice in the open water by 𝑎𝑖0, giving

∑︀𝑁𝐶

𝑛=0 𝑎𝑖𝑛 = 1 by definition.

Category boundaries are computed in init_itd using one of several formulas, summarized in Table Lower boundary
values. Setting the namelist variable kcatbound equal to 0 or 1 gives lower thickness boundaries for any number of
thickness categories𝑁𝐶 . Table Lower boundary values shows the boundary values for𝑁𝐶 = 5 and linear remapping of
the ice thickness distribution. A third option specifies the boundaries based on the World Meteorological Organization
classification; the full WMO thickness distribution is used if𝑁𝐶 = 7; if𝑁𝐶 = 5 or 6, some of the thinner categories are
combined. The original formula (kcatbound = 0) is the default. Category boundaries differ from those shown in Table
Lower boundary values for the delta-function ITD. Users may substitute their own preferred boundaries in init_itd.

Table Lower boundary values shows lower boundary values for thickness categories, in meters, for the three distribution
options (``kcatbound``) and linear remapping (``kitd`` = 1). In the WMO case, the distribution used depends on the
number of categories used.

Table 2: Lower boundary values
distribution original round WMO
kcatbound 0 1 2
𝑁𝐶 5 5 5 6 7
categories lower bound (m)
1 0.00 0.00 0.00 0.00 0.00
2 0.64 0.60 0.30 0.15 0.10
3 1.39 1.40 0.70 0.30 0.15
4 2.47 2.40 1.20 0.70 0.30
5 4.57 3.60 2.00 1.20 0.70
6 2.00 1.20
7 2.00
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Icepack Documentation

2.3 Joint floe size and thickness distribution

Sizes of individual sea ice floes vary over an extremely broad range, from centimeters to hundreds of kilometers. The
floe size distribution (FSD) is a probability function that characterizes this variability [56]. An option to include a
prognostic sea ice floe size distribution is available and used if tr_fsd is set to true. The scheme is based on the
theoretical framework described in [24] for a joint floe size and thickness distribution (FSTD), and was implemented
by [51].

In this theory, individual floes are identified with a size 𝑟 and area 𝑥(𝑟), where 𝑥(𝑟) = 4𝛼𝑟2 for𝛼 = 0.66 < 𝜋/4 ([56]).
The probability distribution 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ is the fraction of grid surface area covered by ice with thickness between ℎ
and ℎ + 𝑑ℎ and lateral floe size between 𝑟 and 𝑟 + 𝑑𝑟. The FSTD integrates over all floe sizes and ice thicknesses to
unity (

∫︀
𝑟

∫︀
ℎ
𝐹 (𝑟, ℎ)𝑑𝑟𝑑ℎ = 1); over all floe sizes to the ITD (

∫︀
𝑟
𝐹 (𝑟, ℎ)𝑑𝑟 = 𝑔(ℎ)); and over all thicknesses to the

FSD (
∫︀
ℎ
𝐹 (𝑟, ℎ)𝑑ℎ = 𝑓(𝑟)).

For implementation in CICE, the continuous function 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ is replaced with a product of two discrete variables:
𝑎𝑖𝑛 as defined above and 𝐹𝑖𝑛,𝑘. 𝐹𝑖𝑛,𝑘 is the fraction of ice belonging to thickness category 𝑛 with lateral floe size
belonging to floe size class 𝑘 (denoted afsdn in the code). We then have

∑︀𝑁𝐶

𝑛=0

∑︀𝑁𝑓

𝑘=0 𝑎𝑖𝑛𝐹𝑖𝑛,𝑘 = 1 and
∑︀𝑁𝑓

𝑘=0 𝐹𝑖𝑛,𝑘 =
1. 𝐹𝑖𝑛,𝑘 is carried as an area-weighted tracer. The FSD (continuous function 𝑓(𝑟)𝑑𝑟 or discrete function 𝑓𝑘, denoted
afsd in the code) is recovered via

∑︀𝑁𝐶

𝑛=1 𝑎𝑖𝑛𝐹𝑖𝑛,𝑘 = 𝑓𝑘.

The FSD may be ignored when considering processes that only modify ice thickness (eg. vertical thermodynamics),
and the ITD can be ignored when considering processes that only modify floe sizes (eg. wave fracture). For processes
that affect both the ITD and the FSD, (eg. lateral melt), both 𝑎𝑖𝑛 and 𝐹𝑖𝑛,𝑘 are evolved.

The FSTD evolves subject to lateral growth, lateral melt, new ice growth, floe welding and wave fracture, as described
in [51] and with some modifications described in [53]. The equation for time evolution of the FSTD is ([24]),
𝜕𝑓(𝑟,ℎ)

𝜕𝑡 = −∇ · (𝑓(𝑟, ℎ)v) + ℒ𝑇 + ℒ𝑀 + ℒ𝑊 ,

where the terms on the right hand side represent the effects of advection, thermodynamics, mechanical redistribution
and wave fracture respectively. Floe sizes do not explicitly appear in the equations of sea ice motion and therefore the
FSTD is advected as an area tracer. We also assume that mechanical redistribution of sea ice through ridging does not
impact floe sizes. Thus it remains only to compute the thermodynamic and wave fracture tendencies.

Thermodynamic changes to the FSTD are given by

ℒ𝑇 (𝑟, ℎ) = −∇(𝑟,ℎ) · (𝑓(𝑟, ℎ)G) + 2
𝑟𝑓(𝑟, ℎ)𝐺𝑟 + 𝛿(𝑟 − 𝑟min)𝛿(ℎ− ℎmin)�̇�𝑝 + 𝛽weld.

The first two terms on the right-hand side represent growth and melt of existing floes in thickness and lateral size, at
a rate G = (𝐺𝑟, 𝐺ℎ). The third term represents growth of new ice: new floes are created at a rate �̇�𝑝 in the smallest
thickness category and a given lateral size category. If wave forcing is provided, the size of newly formed floes is
determined via a tensile stress limitation arising from the wave field ([62], [53]); otherwise, all floes are presumed to
grow as pancakes in the smallest floe size category resolved. To allow for the joining of individual floes to one another,
we represent the welding together of floes in freezing conditions via the fourth term, 𝛽weld, using a coagulation equation.

To compute the impact of wave fracture of the FSD, given a local ocean surface wave spectrum is provided, we generate
a realization of the sea surface height field, which is uniquely determined by the spectrum up to a phase. In [24] this
phase is randomly chosen, and multiple realizations of the resulting surface height field are used to obtain convergent
statistics. However this stochastic component would lead to a model that is not bit-for-bit reproducible. Users can
choose in the namelist (via wave_spec_type) to run the model with the phase set to be constant to obtain bit-for-bit
reproducibility (in which case the fracture code is not run to convergence); or to include the random phase (in which
case the fracture code is run to convergence, by generating multiple realizations of sea surface height and adding the
resulting fractures to a histogram, until successive histograms are the same to within some small error tolerance); or to
exclude wave effects completely (not recommended when using the FSD).

We calculate the number and length of fractures that would occur if waves enter a fully ice-covered region defined in
one dimension in the direction of propagation, and then apply the outcome proportionally to the ice-covered fraction in
each grid cell. Assuming that sea ice flexes with the sea surface height field, strains are computed on this sub-grid-scale
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1D domain. If the strain between successive extrema exceeds a critical value new floes are formed with diameters equal
to the distance between the extrema.

Note that tendencies in the FSD are computed using adaptive timestepping to ensure that the FSD is bounded by zero
and one (see [25]).

Floe size categories are set in init_fsd_bounds using an exponential spacing, beginning at 0.5 m with the largest size
resolved set by choice of 𝑁𝑓 (nfsd), the number of floe size categories. Icepack currently supports nfsd = 1, 12,
16, 24. Although nfsd = 1 tracks the same ice floe diameter as is assumed when tr_fsd=false, the processes
acting on the floes differ. It is assumed that the floe size lies at the midpoint of each floe size category.

If simulations begin without ice (ice_ic='none'), the FSD can emerge without initialization. If simulations begin
with ice cover, some initial FSD must be prescribed in init_fsd. The default (used for ice_ic='default') is a
simple relationship determined from point observations by [49], but its basin-wide applicability has not been tested. In
Icepack, ice_ic='default' is selected for the slab and the full ITD cells.

The history output includes FSD tendency terms for each of the floe-size-modifying processes. Note that the sum of
these does not equal the change in the FSD, as the FSD is also modified by changes in the ITD.

2.4 Tracers

Numerous tracers are available with the column physics. Several of these are required (surface temperature and thick-
ness, salinity and enthalpy of ice and snow layers), and many others are options. For instance, there are tracers to track
the age of the ice; the area of first-year ice, fractions of ice area and volume that are level, from which the amount
of deformed ice can be calculated; pond area, pond volume and volume of ice covering ponds; a prognostic floe size
distribution; snow density, grain size, and ice and liquid content; aerosols, water isotopes, and numerous other biogeo-
chemical tracers. Most of these tracers are presented in later sections. Here we describe the ice age tracers and how
tracers may depend on other tracers, using the pond tracers as an example.

2.4.1 Ice age

The age of the ice, 𝜏𝑎𝑔𝑒, is treated as an ice-volume tracer (trcr_depend = 1). It is initialized at 0 when ice forms as
frazil, and the ice ages the length of the timestep during each timestep. Freezing directly onto the bottom of the ice
does not affect the age, nor does melting. Mechanical redistribution processes and advection alter the age of ice in any
given grid cell in a conservative manner following changes in ice area. The sea ice age tracer is validated in [26].

Another age-related tracer, the area covered by first-year ice 𝑎𝐹𝑌 , is an area tracer (trcr_depend = 0) that corresponds
more closely to satellite-derived ice age data for first-year ice than does 𝜏𝑎𝑔𝑒. It is re-initialized each year on 15 Septem-
ber (yday = 259) in the northern hemisphere and 15 March (yday = 75) in the southern hemisphere, in non-leap years.
This tracer is increased when new ice forms in open water, in subroutine add_new_ice in icepack_therm_itd.F90. The
first-year area tracer is discussed in [2].

2.4.2 Tracers that depend on other tracers

Tracers may be defined that depend on other tracers. Melt pond tracers provide an example (these equations pertain
to topo tracers; level-ice tracers are similar with an extra factor of 𝑎𝑙𝑣𝑙, see Equations (2.69)–(2.72)). Conservation
equations for pond area fraction 𝑎𝑝𝑛𝑑𝑎𝑖 and pond volume ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑖, given the ice velocity u, are

𝜕

𝜕𝑡
(𝑎𝑝𝑛𝑑𝑎𝑖) +∇ · (𝑎𝑝𝑛𝑑𝑎𝑖u) = 0, (2.19)

𝜕

𝜕𝑡
(ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑖) +∇ · (ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑖u) = 0. (2.20)
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These equations represent quantities within one thickness category; all melt pond calculations are performed for each
category, separately. Equation (2.20) expresses conservation of melt pond volume, but in this form highlights that the
quantity tracked in the code is the pond depth tracer ℎ𝑝𝑛𝑑, which depends on the pond area tracer 𝑎𝑝𝑛𝑑. Likewise, 𝑎𝑝𝑛𝑑
is a tracer on ice area (Equation (2.19)), which is a state variable, not a tracer.

For a generic quantity 𝑞 that represents a mean value over the ice fraction, 𝑞𝑎𝑖 is the average value over the grid cell.
Thus for topo melt ponds, ℎ𝑝𝑛𝑑 can be considered the actual pond depth, ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑 is the mean pond depth over the
sea ice, and ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑖 is the mean pond depth over the grid cell. These quantities are illustrated in Figure Melt pond
tracer definitions. The graphic on the right illustrates the grid cell fraction of ponds or level ice as defined by the
tracers. The chart on the left provides corresponding ice thickness and pond depth averages over the grid cell, sea ice
and pond area fractions.

Fig. 1: Melt pond tracer definitions

Tracers may need to be modified for physical reasons outside of the “core” module or subroutine describing their
evolution. For example, when new ice forms in open water, the new ice does not yet have ponds on it. Likewise when
sea ice deforms, we assume that pond water (and ice) on the portion of ice that ridges is lost to the ocean.

When new ice is added to a grid cell, the grid cell total area of melt ponds is preserved within each category gaining
ice, 𝑎𝑡+Δ𝑡

𝑝𝑛𝑑 𝑎𝑡+Δ𝑡
𝑖 = 𝑎𝑡𝑝𝑛𝑑𝑎

𝑡
𝑖, or

𝑎𝑡+Δ𝑡
𝑝𝑛𝑑 =

𝑎𝑡𝑝𝑛𝑑𝑎
𝑡
𝑖

𝑎𝑡+Δ𝑡
𝑖

. (2.21)

Similar calculations are performed for all tracer types, for example tracer-on-tracer dependencies such as ℎ𝑝𝑛𝑑, when
needed:

ℎ𝑡+Δ𝑡
𝑝𝑛𝑑 =

ℎ𝑡𝑝𝑛𝑑𝑎
𝑡
𝑝𝑛𝑑𝑎

𝑡
𝑖

𝑎𝑡+Δ𝑡
𝑝𝑛𝑑 𝑎𝑡+Δ𝑡

𝑖

. (2.22)

In this case (adding new ice), ℎ𝑝𝑛𝑑 does not change because 𝑎𝑡+Δ𝑡
𝑝𝑛𝑑 𝑎𝑡+Δ𝑡

𝑖 = 𝑎𝑡𝑝𝑛𝑑𝑎
𝑡
𝑖.

When ice is transferred between two thickness categories, we conserve the total pond area summed over categories 𝑛,∑︁
𝑛

𝑎𝑡+Δ𝑡
𝑝𝑛𝑑 (𝑛)𝑎𝑡+Δ𝑡

𝑖 (𝑛) =
∑︁
𝑛

𝑎𝑡𝑝𝑛𝑑(𝑛)𝑎
𝑡
𝑖(𝑛). (2.23)

Thus,

𝑎𝑡+Δ𝑡
𝑝𝑛𝑑 (𝑚) =

∑︀
𝑛 𝑎

𝑡
𝑝𝑛𝑑(𝑛)𝑎

𝑡
𝑖(𝑛)−

∑︀
𝑛 ̸=𝑚 𝑎𝑡+Δ𝑡

𝑝𝑛𝑑 (𝑛)𝑎𝑡+Δ𝑡
𝑖 (𝑛)

𝑎𝑡+Δ𝑡
𝑖 (𝑚)

=
𝑎𝑡𝑝𝑛𝑑(𝑚)𝑎𝑡𝑖(𝑚) +

∑︀
𝑛 ̸=𝑚 ∆(𝑎𝑝𝑛𝑑𝑎𝑖)

𝑡+Δ𝑡

𝑎𝑡+Δ𝑡
𝑖 (𝑚)

(2.24)
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This is more complicated because of the ∆ term on the right-hand side, which is handled in subroutine
icepack_compute_tracers. Such tracer calculations are scattered throughout the code, wherever there are changes to
the ice thickness distribution.

Note that if a quantity such as 𝑎𝑝𝑛𝑑 becomes zero in a grid cell’s thickness category, then all tracers that depend on it
also become zero. If a tracer should be conserved (e.g., aerosols and the liquid water in topo ponds), additional code
must be added to track changes in the conserved quantity.

Tracer dependencies and conserved quantities associated with tracers are tracked using the arrays trcr_depend,
which defines the type of dependency (area, volume, snow, etc), n_trcr_strata, the number of underlying layers,
nt_strata, the indices of the underlying layers, and trcr_base, a mask that is one for the tracer dependency and
zero otherwise. These arrays are used to convert between the tracer values themselves and the conserved forms.

More information about the melt pond schemes is in the Melt ponds section.

2.5 Transport in thickness space

Next we solve the equation for ice transport in thickness space due to thermodynamic growth and melt,

𝜕𝑔

𝜕𝑡
+

𝜕

𝜕ℎ
(𝑓𝑔) = 0, (2.25)

which is obtained from Equation (2.18) by neglecting the first and third terms on the right-hand side. We use the
remapping method of [38], in which thickness categories are represented as Lagrangian grid cells whose boundaries
are projected forward in time. The thickness distribution function 𝑔 is approximated as a linear function of ℎ in each
displaced category and is then remapped onto the original thickness categories. This method is numerically smooth
and is not too diffusive. It can be viewed as a 1D simplification of the 2D incremental remapping scheme described
above.

We first compute the displacement of category boundaries in thickness space. Assume that at time 𝑚 the ice areas 𝑎𝑚𝑛
and mean ice thicknesses ℎ𝑚𝑛 are known for each thickness category. (For now we omit the subscript 𝑖 that distinguishes
ice from snow.) We use a thermodynamic model (Thermodynamics) to compute the new mean thicknesses ℎ𝑚+1

𝑛 at
time 𝑚 + 1. The time step must be small enough that trajectories do not cross; i.e., ℎ𝑚+1

𝑛 < ℎ𝑚+1
𝑛+1 for each pair of

adjacent categories. The growth rate at ℎ = ℎ𝑛 is given by 𝑓𝑛 = (ℎ𝑚+1
𝑛 −ℎ𝑚𝑛 )/∆𝑡. By linear interpolation we estimate

the growth rate 𝐹𝑛 at the upper category boundary 𝐻𝑛:

𝐹𝑛 = 𝑓𝑛 +
𝑓𝑛+1 − 𝑓𝑛
ℎ𝑛+1 − ℎ𝑛

(𝐻𝑛 − ℎ𝑛). (2.26)

If 𝑎𝑛 or 𝑎𝑛+1 = 0, 𝐹𝑛 is set to the growth rate in the nonzero category, and if 𝑎𝑛 = 𝑎𝑛+1 = 0, we set 𝐹𝑛 = 0. The
temporary displaced boundaries are given by

𝐻*
𝑛 = 𝐻𝑛 + 𝐹𝑛 ∆𝑡, 𝑛 = 1 to 𝑁 − 1 (2.27)

The boundaries must not be displaced by more than one category to the left or right; that is, we require𝐻𝑛−1 < 𝐻*
𝑛 <

𝐻𝑛+1. Without this requirement we would need to do a general remapping rather than an incremental remapping, at
the cost of added complexity.

Next we construct 𝑔(ℎ) in the displaced thickness categories. The ice areas in the displaced categories are 𝑎𝑚+1
𝑛 = 𝑎𝑚𝑛 ,

since area is conserved following the motion in thickness space (i.e., during vertical ice growth or melting). The new
ice volumes are 𝑣𝑚+1

𝑛 = (𝑎𝑛ℎ𝑛)
𝑚+1 = 𝑎𝑚𝑛 ℎ

𝑚+1
𝑛 . For conciseness, define 𝐻𝐿 = 𝐻*

𝑛−1 and 𝐻𝑅 = 𝐻*
𝑛 and drop the

time index 𝑚 + 1. We wish to construct a continuous function 𝑔(ℎ) within each category such that the total area and
volume at time 𝑚+ 1 are 𝑎𝑛 and 𝑣𝑛, respectively:∫︁ 𝐻𝑅

𝐻𝐿

𝑔 𝑑ℎ = 𝑎𝑛, (2.28)
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∫︁ 𝐻𝑅

𝐻𝐿

ℎ 𝑔 𝑑ℎ = 𝑣𝑛. (2.29)

The simplest polynomial that can satisfy both equations is a line. It is convenient to change coordinates, writing
𝑔(𝜂) = 𝑔1𝜂 + 𝑔0, where 𝜂 = ℎ−𝐻𝐿 and the coefficients 𝑔0 and 𝑔1 are to be determined. Then Equations (2.28) and
(2.29) can be written as

𝑔1
𝜂2𝑅
2

+ 𝑔0𝜂𝑅 = 𝑎𝑛, (2.30)

𝑔1
𝜂3𝑅
3

+ 𝑔0
𝜂2𝑅
2

= 𝑎𝑛𝜂𝑛, (2.31)

where 𝜂𝑅 = 𝐻𝑅 −𝐻𝐿 and 𝜂𝑛 = ℎ𝑛 −𝐻𝐿. These equations have the solution

𝑔0 =
6𝑎𝑛
𝜂2𝑅

(︂
2𝜂𝑅
3

− 𝜂𝑛

)︂
, (2.32)

𝑔1 =
12𝑎𝑛
𝜂3𝑅

(︁
𝜂𝑛 − 𝜂𝑅

2

)︁
. (2.33)

Since 𝑔 is linear, its maximum and minimum values lie at the boundaries, 𝜂 = 0 and 𝜂𝑅:

𝑔(0) =
6𝑎𝑛
𝜂2𝑅

(︂
2𝜂𝑅
3

− 𝜂𝑛

)︂
= 𝑔0, (2.34)

𝑔(𝜂𝑅) =
6𝑎𝑛
𝜂2𝑅

(︁
𝜂𝑛 − 𝜂𝑅

3

)︁
. (2.35)

Equation (2.34) implies that 𝑔(0) < 0 when 𝜂𝑛 > 2𝜂𝑅/3, i.e., when ℎ𝑛 lies in the right third of the thickness range
(𝐻𝐿, 𝐻𝑅). Similarly, Equation (2.35) implies that 𝑔(𝜂𝑅) < 0 when 𝜂𝑛 < 𝜂𝑅/3, i.e., when ℎ𝑛 is in the left third of the
range. Since negative values of 𝑔 are unphysical, a different solution is needed when ℎ𝑛 lies outside the central third
of the thickness range. If ℎ𝑛 is in the left third of the range, we define a cutoff thickness, 𝐻𝐶 = 3ℎ𝑛 − 2𝐻𝐿, and set
𝑔 = 0 between 𝐻𝐶 and 𝐻𝑅. Equations (2.32) and (2.30) are then valid with 𝜂𝑅 redefined as 𝐻𝐶 −𝐻𝐿. And if ℎ𝑛 is
in the right third of the range, we define 𝐻𝐶 = 3ℎ𝑛 − 2𝐻𝑅 and set 𝑔 = 0 between 𝐻𝐿 and 𝐻𝐶 . In this case, (2.32)
and (2.30) apply with 𝜂𝑅 = 𝐻𝑅 −𝐻𝐶 and 𝜂𝑛 = ℎ𝑛 −𝐻𝐶 .

Figure Linear approximation of thickness distribution function illustrates the linear reconstruction of 𝑔 for the simple
cases 𝐻𝐿 = 0, 𝐻𝑅 = 1, 𝑎𝑛 = 1, and ℎ𝑛 = 0.2, 0.4, 0.6, and 0.8. Note that 𝑔 slopes downward (𝑔1 < 0) when ℎ𝑛
is less than the midpoint thickness, (𝐻𝐿 +𝐻𝑅)/2 = 1/2, and upward when ℎ𝑛 exceeds the midpoint thickness. For
ℎ𝑛 = 0.2 and 0.8, 𝑔 = 0 over part of the range.

Finally, we remap the thickness distribution to the original boundaries by transferring area and volume between cate-
gories. We compute the ice area ∆𝑎𝑛 and volume ∆𝑣𝑛 between each original boundary 𝐻𝑛 and displaced boundary
𝐻*

𝑛. If 𝐻*
𝑛 > 𝐻𝑛, ice moves from category 𝑛 to 𝑛+ 1. The area and volume transferred are

∆𝑎𝑛 =

∫︁ 𝐻*
𝑛

𝐻𝑛

𝑔 𝑑ℎ, (2.36)

∆𝑣𝑛 =

∫︁ 𝐻*
𝑛

𝐻𝑛

ℎ 𝑔 𝑑ℎ. (2.37)

If 𝐻*
𝑛 < 𝐻𝑁 , ice area and volume are transferred from category 𝑛+1 to 𝑛 using Equations (2.36) and (2.37) with the

limits of integration reversed. To evaluate the integrals we change coordinates from ℎ to 𝜂 = ℎ−𝐻𝐿, where𝐻𝐿 is the
left limit of the range over which 𝑔 > 0, and write 𝑔(𝜂) using Equations (2.32) and (2.30). In this way we obtain the
new areas 𝑎𝑛 and volumes 𝑣𝑛 between the original boundaries 𝐻𝑛−1 and 𝐻𝑛 in each category. The new thicknesses,
ℎ𝑛 = 𝑣𝑛/𝑎𝑛, are guaranteed to lie in the range (𝐻𝑛−1, 𝐻𝑛). If 𝑔 = 0 in the part of a category that is remapped to a
neighboring category, no ice is transferred.

Other conserved quantities are transferred in proportion to the ice volume∆𝑣𝑖𝑛. For example, the transferred ice energy
in layer 𝑘 is ∆𝑒𝑖𝑛𝑘 = 𝑒𝑖𝑛𝑘(∆𝑣𝑖𝑛/𝑣𝑖𝑛).
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Fig. 2: Linear approximation of thickness distribution function
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The left and right boundaries of the domain require special treatment. If ice is growing in open water at a rate 𝐹0,
the left boundary 𝐻0 is shifted to the right by 𝐹0∆𝑡 before 𝑔 is constructed in category 1, then reset to zero after the
remapping is complete. New ice is then added to the grid cell, conserving area, volume, and energy. If ice cannot grow
in open water (because the ocean is too warm or the net surface energy flux is downward), 𝐻0 is fixed at zero, and the
growth rate at the left boundary is estimated as 𝐹0 = 𝑓1. If 𝐹0 < 0, all ice thinner than ∆ℎ0 = −𝐹0∆𝑡 is assumed to
have melted, and the ice area in category 1 is reduced accordingly. The area of new open water is

∆𝑎0 =

∫︁ Δℎ0

0

𝑔 𝑑ℎ. (2.38)

The right boundary 𝐻𝑁 is not fixed but varies with ℎ𝑁 , the mean ice thickness in the thickest category. Given ℎ𝑁 , we
set 𝐻𝑁 = 3ℎ𝑁 − 2𝐻𝑁−1, which ensures that 𝑔(ℎ) > 0 for 𝐻𝑁−1 < ℎ < 𝐻𝑁 and 𝑔(ℎ) = 0 for ℎ ≥ 𝐻𝑁 . No ice
crosses the right boundary. If the ice growth or melt rates in a given grid cell are too large, the thickness remapping
scheme will not work. Instead, the thickness categories in that grid cell are treated as delta functions following [5],
and categories outside their prescribed boundaries are merged with neighboring categories as needed. For time steps
of less than a day and category thickness ranges of 10 cm or more, this simplification is needed rarely, if ever.

The linear remapping algorithm for thickness is not monotonic for tracers, although significant errors rarely occur.
Usually they appear as snow temperatures (enthalpy) outside the physical range of values in very small snow volumes.
In this case we transfer the snow and its heat and tracer contents to the ocean.

2.6 Mechanical redistribution

The last term on the right-hand side of Equation (2.18) is 𝜓, which describes the redistribution of ice in thickness space
due to ridging and other mechanical processes. The mechanical redistribution scheme in Icepack is based on [68], [57],
[22], [15], and [39]. This scheme converts thinner ice to thicker ice and is applied after horizontal transport. When the
ice is converging, enough ice ridges to ensure that the ice area does not exceed the grid cell area.

First we specify the participation function: the thickness distribution 𝑎𝑃 (ℎ) = 𝑏(ℎ) 𝑔(ℎ) of the ice participating in
ridging. (We use “ridging” as shorthand for all forms of mechanical redistribution, including rafting.) The weighting
function 𝑏(ℎ) favors ridging of thin ice and closing of open water in preference to ridging of thicker ice. There are two
options for the form of 𝑏(ℎ). If krdg_partic = 0 in the namelist, we follow [68] and set

𝑏(ℎ) =

{︂
2
𝐺* (1− 𝐺(ℎ)

𝐺* ) if 𝐺(ℎ) < 𝐺*

0 otherwise
(2.39)

where 𝐺(ℎ) is the fractional area covered by ice thinner than ℎ, and 𝐺* is an empirical constant. Integrating 𝑎𝑃 (ℎ)
between category boundaries 𝐻𝑛−1 and 𝐻𝑛, we obtain the mean value of 𝑎𝑃 in category 𝑛:

𝑎𝑃𝑛 =
2

𝐺* (𝐺𝑛 −𝐺𝑛−1)

(︂
1− 𝐺𝑛−1 +𝐺𝑛

2𝐺*

)︂
, (2.40)

where 𝑎𝑃𝑛 is the ratio of the ice area ridging (or open water area closing) in category 𝑛 to the total area ridging and
closing, and𝐺𝑛 is the total fractional ice area in categories 0 to 𝑛. Equation (2.40) applies to categories with𝐺𝑛 < 𝐺*.
If 𝐺𝑛−1 < 𝐺* < 𝐺𝑛, then Equation (2.40) is valid with 𝐺* replacing 𝐺𝑛, and if 𝐺𝑛−1 > 𝐺*, then 𝑎𝑃𝑛 = 0. If the
open water fraction 𝑎0 > 𝐺*, no ice can ridge, because “ridging” simply reduces the area of open water. As in [68]
we set 𝐺* = 0.15.

If the spatial resolution is too fine for a given time step ∆𝑡, the weighting function Equation (2.39) can promote nu-
merical instability. For ∆𝑡 = 1 hour, resolutions finer than ∆𝑥 ∼ 10 km are typically unstable. The instability results
from feedback between the ridging scheme and the dynamics via the ice strength. If the strength changes significantly
on time scales less than ∆𝑡, the viscous-plastic solution of the momentum equation is inaccurate and sometimes os-
cillatory. As a result, the fields of ice area, thickness, velocity, strength, divergence, and shear can become noisy and
unphysical.
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A more stable weighting function was suggested by [39]:

𝑏(ℎ) =
exp[−𝐺(ℎ)/𝑎*]

𝑎*[1− exp(−1/𝑎*)]
(2.41)

When integrated between category boundaries, Equation (2.41) implies

𝑎𝑃𝑛 =
exp(−𝐺𝑛−1/𝑎

*)− exp(−𝐺𝑛/𝑎
*)

1− exp(−1/𝑎*)
(2.42)

This weighting function is used if krdg_partic = 1 in the namelist. From Equation (2.41), the mean value of𝐺 for ice
participating in ridging is 𝑎*, as compared to 𝐺*/3 for Equation (2.39). For typical ice thickness distributions, setting
𝑎* = 0.05with krdg_partic = 1 gives participation fractions similar to those given by𝐺* = 0.15with krdg_partic
= 0. See [39] for a detailed comparison of these two participation functions.

Thin ice is converted to thick, ridged ice in a way that reduces the total ice area while conserving ice volume and internal
energy. There are two namelist options for redistributing ice among thickness categories. If krdg_redist = 0, ridging
ice of thickness ℎ𝑛 forms ridges whose area is distributed uniformly between 𝐻min = 2ℎ𝑛 and 𝐻max = 2

√
𝐻*ℎ𝑛, as

in [22]. The default value of 𝐻* is 25 m, as in earlier versions of CICE. Observations suggest that 𝐻* = 50 m gives
a better fit to first-year ridges [1], although the lower value may be appropriate for multiyear ridges [15]. The ratio of
the mean ridge thickness to the thickness of ridging ice is 𝑘𝑛 = (𝐻min +𝐻max)/(2ℎ𝑛). If the area of category 𝑛 is
reduced by ridging at the rate 𝑟𝑛, the area of thicker categories grows simultaneously at the rate 𝑟𝑛/𝑘𝑛. Thus the net
rate of area loss due to ridging of ice in category 𝑛 is 𝑟𝑛(1− 1/𝑘𝑛).

The ridged ice area and volume are apportioned among categories in the thickness range (𝐻min, 𝐻max). The fraction
of the new ridge area in category 𝑚 is

𝑓area𝑚 =
𝐻𝑅 −𝐻𝐿

𝐻max −𝐻min
, (2.43)

where 𝐻𝐿 = max(𝐻𝑚−1, 𝐻min) and 𝐻𝑅 = min(𝐻𝑚, 𝐻max). The fraction of the ridge volume going to category 𝑚
is

𝑓vol𝑚 =
(𝐻𝑅)

2 − (𝐻𝐿)
2

(𝐻max)2 − (𝐻min)2
. (2.44)

This uniform redistribution function tends to produce too little ice in the 3–5 m range and too much ice thicker than 10 m
[1]. Observations show that the ITD of ridges is better approximated by a negative exponential. Setting krdg_redist
= 1 gives ridges with an exponential ITD [39]:

𝑔𝑅(ℎ) ∝ exp[−(ℎ−𝐻min)/𝜆] (2.45)

for ℎ ≥ 𝐻min, with 𝑔𝑅(ℎ) = 0 for ℎ < 𝐻min. Here, 𝜆 is an empirical e-folding scale and 𝐻min = 2ℎ𝑛 (where ℎ𝑛 is
the thickness of ridging ice). We assume that 𝜆 = 𝜇ℎ

1/2
𝑛 , where 𝜇 (mu_rdg) is a tunable parameter with units . Thus

the mean ridge thickness increases in proportion to ℎ1/2𝑛 , as in [22]. The value 𝜇 = 4.0 gives 𝜆 in the range 1–4 m
for most ridged ice. Ice strengths with 𝜇 = 4.0 and krdg_redist = 1 are roughly comparable to the strengths with
𝐻* = 50 m and krdg_redist = 0.

From Equation (2.45) it can be shown that the fractional area going to category 𝑚 as a result of ridging is

𝑓area𝑚 = exp[−(𝐻𝑚−1 −𝐻min)/𝜆]− exp[−(𝐻𝑚 −𝐻min)/𝜆]. (2.46)

The fractional volume going to category 𝑚 is

𝑓vol𝑚 =
(𝐻𝑚−1 + 𝜆) exp[−(𝐻𝑚−1 −𝐻min)/𝜆]− (𝐻𝑚 + 𝜆) exp[−(𝐻𝑚 −𝐻min)/𝜆]

𝐻𝑚𝑖𝑛 + 𝜆
. (2.47)

Equations (2.46) and (2.47) replace Equations (2.43) and (2.44) when krdg_redist = 1.
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Internal ice energy is transferred between categories in proportion to ice volume. Snow volume and internal energy are
transferred in the same way, except that a fraction of the snow may be deposited in the ocean instead of added to the
new ridge.

The net area removed by ridging and closing is a function of the strain rates. Let 𝑅net be the net rate of area loss for
the ice pack (i.e., the rate of open water area closing, plus the net rate of ice area loss due to ridging). Following [15],
𝑅net is given by

𝑅net =
𝐶𝑠

2
(∆− |𝐷𝐷|)−min(𝐷𝐷, 0), (2.48)

where 𝐶𝑠 is the fraction of shear dissipation energy that contributes to ridge-building, 𝐷𝐷 is the divergence, and ∆ is
a function of the divergence and shear. These strain rates are computed by the dynamics scheme. The default value of
𝐶𝑠 is 0.25.

Next, define 𝑅tot =
∑︀𝑁

𝑛=0 𝑟𝑛. This rate is related to 𝑅net by

𝑅net =

[︃
𝑎𝑃0 +

𝑁∑︁
𝑛=1

𝑎𝑃𝑛

(︂
1− 1

𝑘𝑛

)︂]︃
𝑅tot. (2.49)

Given𝑅net from Equation (2.48), we use Equation (2.49) to compute𝑅tot. Then the area ridged in category 𝑛 is given
by 𝑎𝑟𝑛 = 𝑟𝑛∆𝑡, where 𝑟𝑛 = 𝑎𝑃𝑛𝑅tot. The area of new ridges is 𝑎𝑟𝑛/𝑘𝑛, and the volume of new ridges is 𝑎𝑟𝑛ℎ𝑛 (since
volume is conserved during ridging). We remove the ridging ice from category 𝑛 and use Equations (2.43) and (2.44)
(or (2.46) and (2.47)) to redistribute the ice among thicker categories.

Occasionally the ridging rate in thickness category 𝑛 may be large enough to ridge the entire area 𝑎𝑛 during a time
interval less than ∆𝑡. In this case 𝑅tot is reduced to the value that exactly ridges an area 𝑎𝑛 during ∆𝑡. After each
ridging iteration, the total fractional ice area 𝑎𝑖 is computed. If 𝑎𝑖 > 1, the ridging is repeated with a value of 𝑅net

sufficient to yield 𝑎𝑖 = 1.

Two tracers for tracking the ridged ice area and volume are available. The actual tracers are for level (undeformed) ice
area (alvl) and volume (vlvl), which are easier to implement for a couple of reasons: (1) ice ridged in a given thickness
category is spread out among the rest of the categories, making it more difficult (and expensive) to track than the
level ice remaining behind in the original category; (2) previously ridged ice may ridge again, so that simply adding a
volume of freshly ridged ice to the volume of previously ridged ice in a grid cell may be inappropriate. Although the
code currently only tracks level ice internally, both level ice and ridged ice are available for output. They are simply
related:

𝑎𝑙𝑣𝑙 + 𝑎𝑟𝑑𝑔 = 𝑎𝑖,

𝑣𝑙𝑣𝑙 + 𝑣𝑟𝑑𝑔 = 𝑣𝑖.
(2.50)

Level ice area fraction and volume increase with new ice formation and decrease steadily via ridging processes. Without
the formation of new ice, level ice asymptotes to zero because we assume that both level ice and ridged ice ridge, in
proportion to their fractional areas in a grid cell (in the spirit of the ridging calculation itself which does not prefer level
ice over previously ridged ice).

The ice strength 𝑃 may be computed in either of two ways. If the namelist parameter kstrength = 0, we use the
strength formula from [21]:

𝑃 = 𝑃 *ℎ exp[−𝐶(1− 𝑎𝑖)], (2.51)

where 𝑃 * = 27, 500N/m2 and 𝐶 = 20 are empirical constants, and ℎ is the mean ice thickness. Alternatively, setting
kstrength = 1 gives an ice strength closely related to the ridging scheme. Following [57], the strength is assumed
proportional to the change in ice potential energy ∆𝐸𝑃 per unit area of compressive deformation. Given uniform ridge
ITDs (krdg_redist = 0), we have

𝑃 = 𝐶𝑓 𝐶𝑝 𝛽

𝑁𝐶∑︁
𝑛=1

[︂
−𝑎𝑃𝑛 ℎ

2
𝑛 +

𝑎𝑃𝑛

𝑘𝑛

(︂
(𝐻max

𝑛 )3 − (𝐻min
𝑛 )3

3(𝐻max
𝑛 −𝐻min

𝑛 )

)︂]︂
, (2.52)
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where 𝐶𝑃 = (𝑔/2)(𝜌𝑖/𝜌𝑤)(𝜌𝑤 − 𝜌𝑖), 𝛽 = 𝑅tot/𝑅net > 1 from Equation (2.49), and 𝐶𝑓 is an empirical parameter
that accounts for frictional energy dissipation. Following [15], we set 𝐶𝑓 = 17. The first term in the summation is the
potential energy of ridging ice, and the second, larger term is the potential energy of the resulting ridges. The factor of
𝛽 is included because 𝑎𝑃𝑛 is normalized with respect to the total area of ice ridging, not the net area removed. Recall
that more than one unit area of ice must be ridged to reduce the net ice area by one unit. For exponential ridge ITDs
(krdg_redist = 1), the ridge potential energy is modified:

𝑃 = 𝐶𝑓 𝐶𝑝 𝛽

𝑁𝐶∑︁
𝑛=1

[︂
−𝑎𝑃𝑛 ℎ

2
𝑛 +

𝑎𝑃𝑛

𝑘𝑛

(︀
𝐻2

min + 2𝐻min𝜆+ 2𝜆2
)︀]︂

(2.53)

The energy-based ice strength given by Equations (2.52) or (2.53) is more physically realistic than the strength given
by Equation (2.51). However, use of Equation (2.51) is less likely to allow numerical instability at a given resolution
and time step. See [39] for more details.

2.7 Thermodynamics

The current Icepack version includes two thermodynamics options, the Bitz and Lipscomb model [6] (ktherm = 1)
that assumes a fixed salinity profile, and a “mushy” formulation (ktherm = 2) in which salinity evolves [71]. For each
thickness category, Icepack computes changes in the ice and snow thickness and vertical temperature profile resulting
from radiative, turbulent, and conductive heat fluxes. The ice has a temperature-dependent specific heat to simulate the
effect of brine pocket melting and freezing, for ktherm = 1 and 2.

Each thickness category 𝑛 in each grid cell is treated as a horizontally uniform column with ice thickness ℎ𝑖𝑛 = 𝑣𝑖𝑛/𝑎𝑖𝑛
and snow thickness ℎ𝑠𝑛 = 𝑣𝑠𝑛/𝑎𝑖𝑛. (Henceforth we omit the category index 𝑛.) Each column is divided into 𝑁𝑖 ice
layers of thickness ∆ℎ𝑖 = ℎ𝑖/𝑁𝑖 and𝑁𝑠 snow layers of thickness ∆ℎ𝑠 = ℎ𝑠/𝑁𝑠. Minimum ice and snow thickness is
specified by namelist parameters hi_min and hs_min.

The surface temperature (i.e., the temperature of ice or snow at the interface with the atmosphere) is 𝑇𝑠𝑓 , which cannot
exceed 0∘𝐶. The temperature at the midpoint of the snow layer is 𝑇𝑠, and the midpoint ice layer temperatures are 𝑇𝑖𝑘,
where 𝑘 ranges from 1 to 𝑁𝑖. The temperature at the bottom of the ice is held at 𝑇𝑓 , the freezing temperature of the
ocean mixed layer. All temperatures are in degrees Celsius unless stated otherwise.

The tfrz_option namelist specifies the freezing temperature formulation. minus1p8 fixes the freezing temperature
at -1.8C. constant fixes the freeing point at whatever value is specified by the parameter Tocnfrz. linear_salt
sets the freezing temperature based on salinity, 𝑇𝑓 = −𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑇 * 𝑠𝑠𝑠. And mushy uses the mushy formulation for
setting the freezing temperature.

Each ice layer has an enthalpy 𝑞𝑖𝑘, defined as the negative of the energy required to melt a unit volume of ice and raise
its temperature to 0∘𝐶. Because of internal melting and freezing in brine pockets, the ice enthalpy depends on the brine
pocket volume and is a function of temperature and salinity. We can also define a snow enthalpy 𝑞𝑠, which depends on
temperature alone.

Given surface forcing at the atmosphere–ice and ice–ocean interfaces along with the ice and snow thicknesses and
temperatures/enthalpies at time 𝑚, the thermodynamic model advances these quantities to time 𝑚 + 1 (ktherm = 2
also advances salinity). The calculation proceeds in two steps. First we solve a set of equations for the new temperatures,
as discussed in the New temperatures section. Then we compute the melting, if any, of ice or snow at the top surface,
and the growth or melting of ice at the bottom surface, as described in the Growth and melting section. We begin by
describing the melt ponds and surface forcing parameterizations, which are closely related to the ice and snow surface
temperatures.

Sometimes instabilities can arise when the temperature is close to the melt point in the snow and sea ice and there is
abundant internal shorwave absorbed. One can choose to “move” the excess internal shortwave in this case up to the
top surface to be reabsorbed. The namelist parameters for this option are sw_redist, sw_frac, and sw_dtemp. By
default, sw_redist is set to .false.
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2.7.1 Snow fraction

In several places in the code, the snow fraction over ice (either sea ice or pond lids) varies as a function of snow depth.
That is, thin layers of snow are assumed to be patchy, which allows the shortwave flux to increase gradually as the layer
thins, preventing sudden changes in the shortwave reaching the sea ice (which can cause the thermodynamics solver to
not converge). For example, the parameter snowpatch is used for the CCSM3 radiation scheme, with a default value
of 0.02:

𝑓𝑠𝑛𝑜𝑤 =
ℎ𝑠

ℎ𝑠 + ℎ𝑠𝑛𝑜𝑤𝑝𝑎𝑡𝑐ℎ
,

The parameters hs0 and hs1 are used similarly for delta-Eddington radiation calculations with meltponds, with hs0
over sea ice and hs1 over pond ice.

In the tests shown in [27], ℎ𝑠0 = 0 for all cases except with the cesm pond scheme; that pond scheme has now been
deprecated. ℎ𝑠0 can be used with the topo pond scheme, although its impacts have not been documented. We enforce
ℎ𝑠0 = 0 for level-ice ponds because the infiltration of snow by pond water accomplishes the gradual radiative forcing
transition for which the patchy-snow parameters were originally intended. When level-ice ponds are not used, then a
typical value for hs0 is 0.03.

With level-ice ponds, the pond water is allowed to infiltrate snow over the level ice area, invisible to the radiation
scheme, until the water becomes deep enough to show through the snow layer. The pond fraction is computed during
this process and then used to set the snow fraction such that 𝑓𝑠𝑛𝑜𝑤 + 𝑓𝑝𝑜𝑛𝑑 = 1. The ponds are only on the level ice
area, and so there is still snow on the ridges even if the entire level ice area becomes filled with ponds.

See [27] for a discussion of the impacts of varying hs1, whose default value is 0.03.

2.7.2 Melt ponds

Three explicit melt pond parameterizations are available in Icepack, and all must use the delta-Eddington radiation
scheme, described below. The ccsm3 shortwave parameterization incorporates melt ponds implicitly by adjusting the
albedo based on surface conditions.

For each of the three explicit parameterizations, a volume ∆𝑉𝑚𝑒𝑙𝑡 of melt water produced on a given category may be
added to the melt pond liquid volume:

∆𝑉𝑚𝑒𝑙𝑡 =
𝑟

𝜌𝑤
(𝜌𝑖∆ℎ𝑖 + 𝜌𝑠∆ℎ𝑠 + 𝐹𝑟𝑎𝑖𝑛∆𝑡) 𝑎𝑖, (2.54)

where

𝑟 = 𝑟𝑚𝑖𝑛 + (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛) 𝑎𝑖 (2.55)

is the fraction of the total melt water available that is added to the ponds, 𝜌𝑖 and 𝜌𝑠 are ice and snow densities, ∆ℎ𝑖 and
∆ℎ𝑠 are the thicknesses of ice and snow that melted, and 𝐹𝑟𝑎𝑖𝑛 is the rainfall rate. Namelist parameters are set for the
level-ice (tr_pond_lvl) parameterization; in the cesm and topo pond schemes the standard values of 𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛

are 0.7 and 0.15, respectively.

Radiatively, the surface of an ice category is divided into fractions of snow, pond and bare ice. In these melt pond
schemes, the actual pond area and depth are maintained throughout the simulation according to the physical processes
acting on it. However, snow on the sea ice and pond ice may shield the pond and ice below from solar radiation. These
processes do not alter the actual pond volume; instead they are used to define an “effective pond fraction” (and likewise,
effective pond depth, snow fraction and snow depth) used only for the shortwave radiation calculation.

In addition to the physical processes discussed below, tracer equations and definitions for melt ponds are also described
in the Tracers section.
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Topographic formulation (tr_pond_topo = true)

The principle concept of this scheme is that melt water runs downhill under the influence of gravity and collects on sea
ice with increasing surface height starting at the lowest height [16][17][18]. Thus, the topography of the ice cover plays
a crucial role in determining the melt pond cover. However, Icepack does not explicitly represent the topography of sea
ice. Therefore, we split the existing ice thickness distribution function into a surface height and basal depth distribution
assuming that each sea ice thickness category is in hydrostatic equilibrium at the beginning of the melt season. We then
calculate the position of sea level assuming that the ice in the whole grid cell is rigid and in hydrostatic equilibrium.

Fig. 3: Melt Ponds

Figure Melt Ponds illustrates (a) Schematic illustration of the relationship between the height of the pond surface
ℎ𝑝𝑛𝑑,𝑡𝑜𝑡, the volume of water 𝑉𝑃𝑘 required to completely fill up to category 𝑘, the volume of water 𝑉𝑃 − 𝑉𝑃𝑘, and the
depth to which this fills category 𝑘 + 1. Ice and snow areas 𝑎𝑖 and 𝑎𝑠 are also depicted. The volume calculation takes
account of the presence of snow, which may be partially or completely saturated. (b) Schematic illustration indicating
pond surface height ℎ𝑝𝑛𝑑,𝑡𝑜𝑡 and sea level ℎ𝑠𝑙 measured with respect to the thinnest surface height category ℎ𝑖1, the
submerged portion of the floe ℎ𝑠𝑢𝑏, and hydraulic head ∆𝐻 . A positive hydraulic head (pond surface above sea level)
will flush melt water through the sea ice into the ocean; a negative hydraulic head can drive percolation of sea water
onto the ice surface. Here, 𝛼 = 0.6 and 𝛽 = 0.4 are the surface height and basal depth distribution fractions. The
height of the steps is the height of the ice above the reference level, and the width of the steps is the area of ice of
that height. The illustration does not imply a particular assumed topography, rather it is assumed that all thickness
categories are present at the sub-grid scale so that water will always flow to the lowest surface height class.

Once a volume of water is produced from ice and snow melting, we calculate the number of ice categories covered by
water. At each time step, we construct a list of volumes of water {𝑉𝑃1, 𝑉𝑃2, ...𝑉𝑃,𝑘−1, 𝑉𝑃𝑘, 𝑉𝑃,𝑘+1, ...}, where 𝑉𝑃𝑘 is
the volume of water required to completely cover the ice and snow in the surface height categories from 𝑖 = 1 to 𝑖 = 𝑘.
The volume 𝑉𝑃𝑘 is defined so that if the volume of water 𝑉𝑃 is such that 𝑉𝑃𝑘 < 𝑉𝑃 < 𝑉𝑃,𝑘+1 then the snow and ice in
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categories 𝑛 = 1 to 𝑛 = 𝑘+1 are covered in melt water. Figure Melt Ponds (a) depicts the areas covered in melt water
and saturated snow on the surface height (rather than thickness) categories ℎ𝑡𝑜𝑝,𝑘. Note in the code, we assume that
ℎ𝑡𝑜𝑝,𝑛/ℎ𝑖𝑛 = 0.6 (an arbitrary choice). The fractional area of the 𝑛th category covered in snow is 𝑎𝑠𝑛. The volume
𝑉𝑃1, which is the region with vertical hatching, is the volume of water required to completely fill the first thickness
category, so that any extra melt water must occupy the second thickness category, and it is given by the expression

𝑉𝑃1 = 𝑎𝑖1(ℎ𝑡𝑜𝑝,2 − ℎ𝑡𝑜𝑝,1)− 𝑎𝑠1𝑎𝑖1ℎ𝑠1(1− 𝑉𝑠𝑤), (2.56)

where 𝑉𝑠𝑤 is the fraction of the snow volume that can be occupied by water, and ℎ𝑠1 is the snow depth on ice height
class 1. In a similar way, the volume required to fill the first and second surface categories, 𝑉𝑃2, is given by

𝑉𝑃2 = 𝑎𝑖1(ℎ𝑡𝑜𝑝,3 − ℎ𝑡𝑜𝑝,2) + 𝑎𝑖2(ℎ𝑡𝑜𝑝,3 − ℎ𝑡𝑜𝑝,2)− 𝑎𝑠2𝑎𝑖2ℎ𝑠2(1− 𝑉𝑠𝑤) + 𝑉𝑃1. (2.57)

The general expression for volume 𝑉𝑃𝑘 is given by

𝑉𝑃𝑘 =

𝑘∑︁
𝑚=0

𝑎𝑖𝑚(ℎ𝑡𝑜𝑝,𝑘+1 − ℎ𝑡𝑜𝑝,𝑘)− 𝑎𝑠𝑘𝑎𝑖𝑘ℎ𝑠𝑘(1− 𝑉𝑠𝑤) +

𝑘−1∑︁
𝑚=0

𝑉𝑃𝑚. (2.58)

(Note that we have implicitly assumed that ℎ𝑠𝑖 < ℎ𝑡𝑜𝑝,𝑘+1 − ℎ𝑡𝑜𝑝,𝑘 for all 𝑘.) No melt water can be stored on the
thickest ice thickness category. If the melt water volume exceeds the volume calculated above, the remaining melt
water is released to the ocean.

At each time step, the pond height above the level of the thinnest surface height class, that is, the maximum pond
depth, is diagnosed from the list of volumes 𝑉𝑃𝑘. In particular, if the total volume of melt water 𝑉𝑃 is such that
𝑉𝑃𝑘 < 𝑉𝑃 < 𝑉𝑃,𝑘+1 then the pond height ℎ𝑝𝑛𝑑,𝑡𝑜𝑡 is

ℎ𝑝𝑛𝑑,𝑡𝑜𝑡 = ℎ𝑝𝑎𝑟 + ℎ𝑡𝑜𝑝,𝑘 − ℎ𝑡𝑜𝑝,1, (2.59)

where ℎ𝑝𝑎𝑟 is the height of the pond above the level of the ice in class 𝑘 and partially fills the volume between 𝑉𝑃,𝑘

and 𝑉𝑃,𝑘+1. From Figure Melt Ponds (a) we see that ℎ𝑡𝑜𝑝,𝑘 − ℎ𝑡𝑜𝑝,1 is the height of the melt water, which has volume
𝑉𝑃𝑘, which completely fills the surface categories up to category 𝑘. The remaining volume, 𝑉𝑃 − 𝑉𝑃𝑘, partially fills
category 𝑘 + 1 to the height ℎ𝑝𝑎𝑟 and there are two cases to consider: either the snow cover on category 𝑘 + 1, with
height ℎ𝑠,𝑘+1, is completely covered in melt water (i.e., ℎ𝑝𝑎𝑟 > ℎ𝑠,𝑘+1), or it is not (i.e., ℎ𝑝𝑎𝑟 ≤ ℎ𝑠,𝑘+1). From
conservation of volume, we see from Figure Melt Ponds (a) that for an incompletely to completely saturated snow
cover on surface ice class 𝑘 + 1,

𝑉𝑃 − 𝑉𝑃𝑘 = ℎ𝑝𝑎𝑟

(︃
𝑘∑︁

𝑚=1

𝑎𝑖𝑘 + 𝑎𝑖,𝑘+1(1− 𝑎𝑠,𝑘+1) + 𝑎𝑖,𝑘+1𝑎𝑠,𝑘+1𝑉𝑠𝑤

)︃
for ℎ𝑝𝑎𝑟 ≤ ℎ𝑠,𝑘+1, (2.60)

and for a saturated snow cover with water on top of the snow on surface ice class 𝑘 + 1,

𝑉𝑃 − 𝑉𝑃𝑘 = ℎ𝑝𝑎𝑟

(︃
𝑘∑︁

𝑚=1

𝑎𝑖𝑘 + 𝑎𝑖,𝑘+1(1− 𝑎𝑠,𝑘+1)

)︃
+ 𝑎𝑖,𝑘+1𝑎𝑠,𝑘+1𝑉𝑠𝑤ℎ𝑠,𝑘+1

+ 𝑎𝑖,𝑘+1𝑎𝑠,𝑘+1(ℎ𝑝𝑎𝑟 − ℎ𝑠,𝑘+1) for ℎ𝑝𝑎𝑟 > ℎ𝑠,𝑘+1.

(2.61)

As the melting season progresses, not only does melt water accumulate upon the upper surface of the sea ice, but the
sea ice beneath the melt water becomes more porous owing to a reduction in solid fraction [13]. The hydraulic head of
melt water on sea ice (i.e., its height above sea level) drives flushing of melt water through the porous sea ice and into
the underlying ocean. The mushy thermodynamics scheme (ktherm = 2) handles flushing. For ktherm ̸= 2 we model
the vertical flushing rate using Darcy’s law for flow through a porous medium

𝑤 = −Π𝑣

𝜇
𝜌𝑜𝑔

∆𝐻

ℎ𝑖
, (2.62)

where 𝑤 is the vertical mass flux per unit perpendicular cross-sectional area (i.e., the vertical component of the Darcy
velocity), Π𝑣 is the vertical component of the permeability tensor (assumed to be isotropic in the horizontal), 𝜇 is the
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viscosity of water, 𝜌𝑜 is the ocean density, 𝑔 is gravitational acceleration, ∆𝐻 is the the hydraulic head, and ℎ𝑖 is the
thickness of the ice through which the pond flushes. As proposed by [20] the vertical permeability of sea ice can be
calculated from the liquid fraction 𝜑:

Π𝑣 = 3× 10−8𝜑3m2. (2.63)

Since the solid fraction varies throughout the depth of the sea ice, so does the permeability. The rate of vertical drainage
is determined by the lowest (least permeable) layer, corresponding to the highest solid fraction. From the equations
describing sea ice as a mushy layer [14], the solid fraction is determined by:

𝜑 =
𝑐𝑖 − 𝑆

𝑐𝑖 − 𝑆𝑏𝑟(𝑇 )
, (2.64)

where 𝑆 is the bulk salinity of the ice, 𝑆𝑏𝑟(𝑇 ) is the concentration of salt in the brine at temperature 𝑇 and 𝑐𝑖 is the
concentration of salt in the ice crystals (set to zero).

The hydraulic head is given by the difference in height between the upper surface of the melt pond ℎ𝑝𝑛𝑑,𝑡𝑜𝑡 and the sea
level ℎ𝑠𝑙. The value of the sea level ℎ𝑠𝑙 is calculated from

ℎ𝑠𝑙 = ℎ𝑠𝑢𝑏 − 0.4

𝑁∑︁
𝑛=1

𝑎𝑖𝑛ℎ𝑖𝑛 − 𝛽ℎ𝑖1, (2.65)

where 0.4
∑︀𝑁

𝑛=1 𝑎𝑖𝑛ℎ𝑖,𝑛 is the mean thickness of the basal depth classes, and ℎ𝑠𝑢𝑏 is the depth of the submerged portion
of the floe. Figure Melt Ponds (b) depicts the relationship between the hydraulic head and the depths and heights that
appear in Equation (2.65). The depth of the submerged portion of the floe is determined from hydrostatic equilibrium
to be

ℎ𝑠𝑢𝑏 =
𝜌𝑚
𝜌𝑤

𝑉𝑃 +
𝜌𝑠
𝜌𝑤
𝑉𝑠 +

𝜌𝑖
𝜌𝑤
𝑉𝑖, (2.66)

where 𝜌𝑚 is the density of melt water, 𝑉𝑃 is the total pond volume, 𝑉𝑠 is the total snow volume, and 𝑉𝑖 is the total ice
volume.

When the surface energy balance is negative, a layer of ice is formed at the upper surface of the ponds. The rate of
growth of the ice lid is given by the Stefan energy budget at the lid-pond interface

𝜌𝑖𝐿0
𝑑ℎ𝑖𝑝𝑛𝑑
𝑑𝑡

= 𝑘𝑖
𝜕𝑇𝑖
𝜕𝑧

− 𝑘𝑝
𝜕𝑇𝑝
𝜕𝑧

, (2.67)

where 𝐿0 is the latent heat of fusion of pure ice per unit volume, 𝑇𝑖 and 𝑇𝑝 are the ice surface and pond temperatures,
and 𝑘𝑖 and 𝑘𝑝 are the thermal conductivity of the ice lid and pond respectively. The second term on the right hand-side
is close to zero since the pond is almost uniformly at the freezing temperature [67]. Approximating the temperature
gradient in the ice lid as linear, the Stefan condition yields the classic Stefan solution for ice lid depth

ℎ𝑖𝑝𝑛𝑑 =

√︃
2𝑘𝑖
𝜌𝑠𝐿

∆𝑇𝑖𝑡, (2.68)

where ∆𝑇 is the temperature difference between the top and the bottom of the lid. Depending on the surface flux
conditions the ice lid can grow, partially melt, or melt completely. Provided that the ice lid is thinner than a critical
lid depth (1 cm is suggested) then the pond is regarded as effective, i.e. the pond affects the optical properties of
the ice cover. Effective pond area and pond depth for each thickness category are passed to the radiation scheme for
calculating albedo. Note that once the ice lid has exceeded the critical thickness, snow may accumulate on the lid
causing a substantial increase in albedo. In the current CICE model, melt ponds only affect the thermodynamics of the
ice through the albedo. To conserve energy, the ice lid is dismissed once the pond is completely refrozen.

As the sea ice area shrinks due to melting and ridging, the pond volume over the lost area is released to the ocean
immediately. In [17], the pond volume was carried as an ice area tracer, but in [18] and here, pond area and thickness
are carried as separate tracers, as in the Tracers section.
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Unlike the cesm and level-ice melt pond schemes, the liquid pond water in the topo parameterization is not neces-
sarily virtual; it can be withheld from being passed to the ocean model until the ponds drain by setting the namelist
variable l_mpond_fresh = .true. The refrozen pond lids are still virtual. Extra code needed to track and enforce con-
servation of water has been added to icepack_itd.F90 (subroutine zap_small_areas), icepack_mechred.F90 (subrou-
tine ridge_shift), icepack_therm_itd.F90 (subroutines linear_itd and lateral_melt), and icepack_therm_vertical.F90
(subroutine thermo_vertical), along with global diagnostics in icedrv_diagnostics.F90.

Level-ice formulation (tr_pond_lvl = true)

This meltpond parameterization represents a combination of ideas from the empirical CESM melt pond scheme and
the topo approach, and is documented in [27]. The ponds evolve according to physically based process descriptions,
assuming a thickness-area ratio for changes in pond volume. A novel aspect of the new scheme is that the ponds are
carried as tracers on the level (undeformed) ice area of each thickness category, thus limiting their spatial extent based
on the simulated sea ice topography. This limiting is meant to approximate the horizontal drainage of melt water into
depressions in ice floes. (The primary difference between the level-ice and topo meltpond parameterizations lies in
how sea ice topography is taken into account when determining the areal coverage of ponds.) Infiltration of the snow
by melt water postpones the appearance of ponds and the subsequent acceleration of melting through albedo feedback,
while snow on top of refrozen pond ice also reduces the ponds’ effect on the radiation budget.

Melt pond processes, described in more detail below, include addition of liquid water from rain, melting snow and
melting surface ice, drainage of pond water when its weight pushes the ice surface below sea level or when the ice
interior becomes permeable, and refreezing of the pond water. If snow falls after a layer of ice has formed on the
ponds, the snow may block sunlight from reaching the ponds below. When melt water forms with snow still on the ice,
the water is assumed to infiltrate the snow. If there is enough water to fill the air spaces within the snowpack, then the
pond becomes visible above the snow, thus decreasing the albedo and ultimately causing the snow to melt faster. The
albedo also decreases as snow depth decreases, and thus a thin layer of snow remaining above a pond-saturated layer
of snow will have a lower albedo than if the melt water were not present.

The level-ice formulation assumes a thickness-area ratio for changes in pond volume, while the CESM scheme assumes
this ratio for the total pond volume. Pond volume changes are distributed as changes to the area and to the depth of
the ponds using an assumed aspect ratio, or shape, given by the parameter 𝛿𝑝 (pndaspect), 𝛿𝑝 = ∆ℎ𝑝/∆𝑎𝑝 and
∆𝑉 = ∆ℎ𝑝∆𝑎𝑝 = 𝛿𝑝∆𝑎

2
𝑝 = ∆ℎ2𝑝/𝛿𝑝. Here, 𝑎𝑝 = 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙, the mean pond area over the ice.

Given the ice velocityu, conservation equations for level ice fraction 𝑎𝑙𝑣𝑙𝑎𝑖, pond area fraction 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖, pond volume
ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖 and pond ice volume ℎ𝑖𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖 are

𝜕

𝜕𝑡
(𝑎𝑙𝑣𝑙𝑎𝑖) +∇ · (𝑎𝑙𝑣𝑙𝑎𝑖u) = 0, (2.69)

𝜕

𝜕𝑡
(𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖) +∇ · (𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖u) = 0, (2.70)

𝜕

𝜕𝑡
(ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖) +∇ · (ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖u) = 0, (2.71)

𝜕

𝜕𝑡
(ℎ𝑖𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖) +∇ · (ℎ𝑖𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖u) = 0. (2.72)

(We have dropped the category subscript here, for clarity.) Equations (2.71) and (2.72) express conservation of melt
pond volume and pond ice volume, but in this form highlight that the quantities tracked in the code are the tracers
ℎ𝑝𝑛𝑑 and ℎ𝑖𝑝𝑛𝑑, pond depth and pond ice thickness. Likewise, the level ice fraction 𝑎𝑙𝑣𝑙 is a tracer on ice area fraction
(Equation (2.69)), and pond fraction 𝑎𝑝𝑛𝑑 is a tracer on level ice (Equation (2.70)).

Pond ice. The ponds are assumed to be well mixed fresh water, and therefore their temperature is 0∘C. If the air
temperature is cold enough, a layer of clear ice may form on top of the ponds. There are currently three options in the
code for refreezing the pond ice. Only option A tracks the thickness of the lid ice using the tracer ℎ𝑖𝑝𝑛𝑑 and includes
the radiative effect of snow on top of the lid.
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A. The frzpnd = ‘hlid’ option uses a Stefan approximation for growth of fresh ice and is invoked only when ∆𝑉𝑚𝑒𝑙𝑡 =
0.

The basic thermodynamic equation governing ice growth is

𝜌𝑖𝐿
𝜕ℎ𝑖
𝜕𝑡

= 𝑘𝑖
𝜕𝑇𝑖
𝜕𝑧

∼ 𝑘𝑖
∆𝑇

ℎ𝑖
(2.73)

assuming a linear temperature profile through the ice thickness ℎ𝑖. In discrete form, the solution is

∆ℎ𝑖 =

{︂ √
𝛽∆𝑡/2 if ℎ𝑖 = 0

𝛽∆𝑡/2ℎ𝑖 if ℎ𝑖 > 0,
(2.74)

where

𝛽 =
2𝑘𝑖∆𝑇

𝜌𝑖𝐿
. (2.75)

When ∆𝑉𝑚𝑒𝑙𝑡 > 0, any existing pond ice may also melt. In this case,

∆ℎ𝑖 = −min

(︂
max(𝐹∘, 0)∆𝑡

𝜌𝑖𝐿
, ℎ𝑖

)︂
, (2.76)

where 𝐹∘ is the net downward surface flux.

In either case, the change in pond volume associated with growth or melt of pond ice is

∆𝑉𝑓𝑟𝑧 = −∆ℎ𝑖𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖𝜌𝑖/𝜌0, (2.77)

where 𝜌0 is the density of fresh water.

B. The frzpnd = ‘cesm’ option uses the same empirical function as in the CESM melt pond parameterization.

Radiative effects. Freshwater ice that has formed on top of a melt pond is assumed to be perfectly clear. Snow may
accumulate on top of the pond ice, however, shading the pond and ice below. The depth of the snow on the pond ice
is initialized as ℎ0𝑝𝑠 = 𝐹𝑠𝑛𝑜𝑤∆𝑡 at the first snowfall after the pond ice forms. From that time until either the pond ice
or the pond snow disappears, the pond snow depth tracks the depth of snow on sea ice (ℎ𝑠) using a constant difference
∆. As ℎ𝑠 melts, ℎ𝑝𝑠 = ℎ𝑠 −∆ will be reduced to zero eventually, at which time the pond ice is fully uncovered and
shortwave radiation passes through.

To prevent a sudden change in the shortwave reaching the sea ice (which can prevent the thermodynamics from converg-
ing), thin layers of snow on pond ice are assumed to be patchy, thus allowing the shortwave flux to increase gradually
as the layer thins. This is done using the same parameterization for patchy snow as is used elsewhere in Icepack, but
with its own parameter ℎ𝑠1:

𝑎𝑒𝑓𝑓𝑝𝑛𝑑 = (1−min (ℎ𝑝𝑠/ℎ𝑠1, 1)) 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙. (2.78)

If any of the pond ice melts, the radiative flux allowed to pass through the ice is reduced by the (roughly) equivalent
flux required to melt that ice. This is accomplished (approximately) with 𝑎𝑒𝑓𝑓𝑝𝑛𝑑 = (1 − 𝑓𝑓𝑟𝑎𝑐)𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙, where (see
Equation (2.76))

𝑓𝑓𝑟𝑎𝑐 = min

(︂
−𝜌𝑖𝐿∆ℎ𝑖

𝐹∘∆𝑡
, 1

)︂
. (2.79)

Snow infiltration by pond water. If there is snow on top of the sea ice, melt water may infiltrate the snow. It is a “virtual
process” that affects the model’s thermodynamics through the input parameters of the radiation scheme; it does not
melt the snow or affect the snow heat content.

A snow pack is considered saturated when its percentage of liquid water content is greater or equal to 15% (Sturm and
others, 2009). We assume that if the volume fraction of retained melt water to total liquid content

𝑟𝑝 =
𝑉𝑝

𝑉𝑝 + 𝑉𝑠𝜌𝑠/𝜌0
< 0.15, (2.80)
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then effectively there are no meltponds present, that is, 𝑎𝑒𝑓𝑓𝑝𝑛𝑑 = ℎ𝑒𝑓𝑓𝑝𝑛𝑑 = 0. Otherwise, we assume that the snowpack is
saturated with liquid water.

We assume that all of the liquid water accumulates at the base of the snow pack and would eventually melt the sur-
rounding snow. Two configurations are therefore possible, (1) the top of the liquid lies below the snow surface and (2)
the liquid water volume overtops the snow, and all of the snow is assumed to have melted into the pond. The volume
of void space within the snow that can be filled with liquid melt water is

𝑉𝑚𝑥 = ℎ𝑚𝑥𝑎𝑝 =

(︂
𝜌0 − 𝜌𝑠
𝜌0

)︂
ℎ𝑠𝑎𝑝, (2.81)

and we compare 𝑉𝑝 with 𝑉𝑚𝑥.

Case 1: For 𝑉𝑝 < 𝑉𝑚𝑥, we define 𝑉 𝑒𝑓𝑓
𝑝 to be the volume of void space filled by the volume 𝑉𝑝 of melt water:

𝜌0𝑉𝑝 = (𝜌0 − 𝜌𝑠)𝑉
𝑒𝑓𝑓
𝑝 , or in terms of depths,

ℎ𝑒𝑓𝑓𝑝 =

(︂
𝜌0

𝜌0 − 𝜌𝑠

)︂
ℎ𝑝𝑛𝑑. (2.82)

The liquid water under the snow layer is not visible and therefore the ponds themselves have no direct impact on the
radiation (𝑎𝑒𝑓𝑓𝑝𝑛𝑑 = ℎ𝑒𝑓𝑓𝑝𝑛𝑑 = 0), but the effective snow thickness used for the radiation scheme is reduced to

ℎ𝑒𝑓𝑓𝑠 = ℎ𝑠 − ℎ𝑒𝑓𝑓𝑝 𝑎𝑝 = ℎ𝑠 −
𝜌0

𝜌0 − 𝜌𝑠
ℎ𝑝𝑛𝑑𝑎𝑝. (2.83)

Here, the factor 𝑎𝑝 = 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙 averages the reduced snow depth over the ponds with the full snow depth over the
remainder of the ice; that is, ℎ𝑒𝑓𝑓𝑠 = ℎ𝑠(1− 𝑎𝑝) + (ℎ𝑠 − ℎ𝑒𝑓𝑓𝑝 )𝑎𝑝.

Case 2: Similarly, for 𝑉𝑝 ≥ 𝑉𝑚𝑥, the total mass in the liquid is 𝜌0𝑉𝑝 + 𝜌𝑠𝑉𝑠 = 𝜌0𝑉
𝑒𝑓𝑓
𝑝 , or

ℎ𝑒𝑓𝑓𝑝 =
𝜌0ℎ𝑝𝑛𝑑 + 𝜌𝑠ℎ𝑠

𝜌0
. (2.84)

Thus the effective depth of the pond is the depth of the whole slush layer ℎ𝑒𝑓𝑓𝑝 . In this case, 𝑎𝑒𝑓𝑓𝑝𝑛𝑑 = 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙.

Drainage. A portion 1 − 𝑟 of the available melt water drains immediately into the ocean. Once the volume changes
described above have been applied and the resulting pond area and depth calculated, the pond depth may be further
reduced if the top surface of the ice would be below sea level or if the sea ice becomes permeable.

We require that the sea ice surface remain at or above sea level. If the weight of the pond water would push the mean
ice–snow interface of a thickness category below sea level, some or all of the pond water is removed to bring the
interface back to sea level via Archimedes’ Principle written in terms of the draft 𝑑,

𝜌𝑖ℎ𝑖 + 𝜌𝑠ℎ𝑠 + 𝜌0ℎ𝑝 = 𝜌𝑤𝑑 ≤ 𝜌𝑤ℎ𝑖. (2.85)

There is a separate freeboard calculation in the thermodynamics which considers only the ice and snow and converts
flooded snow to sea ice. Because the current melt ponds are “virtual” in the sense that they only have a radiative
influence, we do not allow the pond mass to change the sea ice and snow masses at this time, although this issue may
need to be reconsidered in the future, especially for the Antarctic.

The mushy thermodynamics scheme (ktherm = 2) handles flushing. For ktherm ̸= 2, the permeability of the sea ice
is calculated using the internal ice temperatures 𝑇𝑖 (computed from the enthalpies as in the sea ice thermodynamics).
The brine salinity and liquid fraction are given by [46] [eq 3.6] 𝑆𝑏𝑟 = 1/(10−3 − 0.054/𝑇𝑖) and 𝜑 = 𝑆/𝑆𝑏𝑟, where 𝑆
is the bulk salinity of the combined ice and brine. The ice is considered permeable if 𝜑 ≥ 0.05 with a permeability of
𝑝 = 3 × 10−8 min(𝜑3) (the minimum being taken over all of the ice layers). A hydraulic pressure head is computed
as 𝑃 = 𝑔𝜌𝑤∆ℎ where ∆ℎ is the height of the pond and sea ice above sea level. Then the volume of water drained is
given by

∆𝑉𝑝𝑒𝑟𝑚 = −𝑎𝑝𝑛𝑑 min

(︂
ℎ𝑝𝑛𝑑,

𝑝𝑃𝑑𝑝∆𝑡

𝜇ℎ𝑖

)︂
, (2.86)
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where 𝑑𝑝 is a scaling factor (dpscale), and 𝜇 = 1.79× 10−3 kg m −1 s −1 is the dynamic viscosity.

Conservation elsewhere. When ice ridges and when new ice forms in open water, the level ice area changes and ponds
must be handled appropriately. For example, when sea ice deforms, some of the level ice is transformed into ridged
ice. We assume that pond water (and ice) on the portion of level ice that ridges is lost to the ocean. All of the tracer
volumes are altered at this point in the code, even though ℎ𝑝𝑛𝑑 and ℎ𝑖𝑝𝑛𝑑 should not change; compensating factors in
the tracer volumes cancel out (subroutine ridge_shift in icepack_mechred.F90).

When new ice forms in open water, level ice is added to the existing sea ice, but the new level ice does not yet have
ponds on top of it. Therefore the fractional coverage of ponds on level ice decreases (thicknesses are unchanged). This
is accomplished in icepack_therm_itd.F90 (subroutine add_new_ice) by maintaining the same mean pond area in a
grid cell after the addition of new ice,

𝑎′𝑝𝑛𝑑(𝑎𝑙𝑣𝑙 +∆𝑎𝑙𝑣𝑙)(𝑎𝑖 +∆𝑎𝑖) = 𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖, (2.87)

and solving for the new pond area tracer 𝑎′𝑝𝑛𝑑 given the newly formed ice area ∆𝑎𝑖 = ∆𝑎𝑙𝑣𝑙.

2.7.3 Thermodynamic surface forcing balance

The net surface energy flux from the atmosphere to the ice (with all fluxes defined as positive downward) is

𝐹0 = 𝐹𝑠 + 𝐹𝑙 + 𝐹𝐿↓ + 𝐹𝐿↑ + (1− 𝛼)(1− 𝑖0)𝐹𝑠𝑤, (2.88)

where 𝐹𝑠 is the sensible heat flux, 𝐹𝑙 is the latent heat flux, 𝐹𝐿↓ is the incoming longwave flux, 𝐹𝐿↑ is the outgoing
longwave flux, 𝐹𝑠𝑤 is the incoming shortwave flux, 𝛼 is the shortwave albedo, and 𝑖0 is the fraction of absorbed
shortwave flux that penetrates into the ice. The albedo may be altered by the presence of melt ponds. Each of the
explicit melt pond parameterizations (CESM, topo and level-ice ponds) should be used in conjunction with the Delta-
Eddington shortwave scheme, described below.

Shortwave radiation: Delta-Eddington

Two methods for computing albedo and shortwave fluxes are available, the “ccsm3” method, described in the next
section, and a multiple scattering radiative transfer scheme that uses a Delta-Eddington approach (shortwave = dEdd).

“Inherent” optical properties (IOPs) for snow and sea ice, such as extinction coefficient and single scattering albedo,
are prescribed based on physical measurements; reflected, absorbed and transmitted shortwave radiation (“apparent”
optical properties) are then computed for each snow and ice layer in a self-consistent manner. Absorptive effects of
inclusions in the ice/snow matrix such as dust and algae can also be included, along with radiative treatment of melt
ponds and other changes in physical properties, for example granularization associated with snow aging.

The Delta-Eddington formulation is described in detail in [8]. Since publication of this technical paper, a number
of improvements have been made to the Delta-Eddington scheme, including a surface scattering layer and internal
shortwave absorption for snow, generalization for multiple snow layers and more than four layers of ice, and updated
IOP values.

In addition, a 5-band option for snow has been added based on [10] using parameters derived from the SNICAR
snow model (shortwave = dEdd_snicar_ad). The 3-band Delta-Eddington data is still used for non-snow-covered
surfaces. The 5-band option calculates snow radiative transfer properties for 1 visible and 4 near-infrared bands, and the
reflection, absorption and transmission of direct and diffuse shorwave incidents are computed separately, thus removing
the snow grain adjustment used in the 3-band Delta-Eddington scheme. Also, albedo and absorption of snow-covered
sea ice are adjusted for solar zenith angles greater than 75 degrees. Because the 5-band lookup tables are very large,
they can be slow to compile. The setting ICE_SNICARHC is false for simulations not using the dEdd_snicar_ad option,
and must be set to true in order to use the hard-coded (HC) lookup tables generated from the SNICAR model.

The namelist parameters R_ice and R_pnd adjust the albedo of bare or ponded ice by the product of the namelist value
and one standard deviation. For example, if R_ice = 0.1, the albedo increases by 0.1𝜎. Similarly, setting R_snw = 0.1
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decreases the snow grain radius by 0.1𝜎 (thus increasing the albedo). Two additional tuning parameters are available for
this scheme, dT_mlt and rsnw_mlt. dT_mlt is the temperature change needed for a change in snow grain radius from
non-melting to melting, and rsnw_mlt is the maximum snow grain radius when melting. An absorption coefficient
for algae (kalg) may also be set. See [8] for details; the CESM melt pond and Delta-Eddington parameterizations are
further explained and validated in [23].

Shortwave radiation: CCSM3

In the parameterization used in the previous version of the Community Climate System Model (CCSM3), the albedo
depends on the temperature and thickness of ice and snow and on the spectral distribution of the incoming solar radi-
ation. Albedo parameters have been chosen to fit observations from the SHEBA field experiment. For 𝑇𝑠𝑓 < −1∘𝐶
and ℎ𝑖 > ahmax, the bare ice albedo is 0.78 for visible wavelengths (< 700 nm) and 0.36 for near IR wavelengths
(> 700 nm). As ℎ𝑖 decreases from ahmax to zero, the ice albedo decreases smoothly (using an arctangent function)
to the ocean albedo, 0.06. The ice albedo in both spectral bands decreases by 0.075 as 𝑇𝑠𝑓 rises from −1∘𝐶 to . The
albedo of cold snow (𝑇𝑠𝑓 < −1∘𝐶) is 0.98 for visible wavelengths and 0.70 for near IR wavelengths. The visible snow
albedo decreases by 0.10 and the near IR albedo by 0.15 as 𝑇𝑠𝑓 increases from −1∘𝐶 to 0∘𝐶. The total albedo is an
area-weighted average of the ice and snow albedos, where the fractional snow-covered area is

𝑓𝑠𝑛𝑜𝑤 =
ℎ𝑠

ℎ𝑠 + ℎ𝑠𝑛𝑜𝑤𝑝𝑎𝑡𝑐ℎ
, (2.89)

and ℎ𝑠𝑛𝑜𝑤𝑝𝑎𝑡𝑐ℎ = 0.02 m. The envelope of albedo values is shown in Figure Albedo. This albedo formulation incor-
porates the effects of melt ponds implicitly; the explicit melt pond parameterization is not used in this case.

Fig. 4: Albedo
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Figure Albedo illustrates Albedo as a function of ice thickness and temperature, for the two extrema in snow depth,
for the ccsm3 shortwave option. Maximum snow depth is computed based on Archimedes’ Principle for the given ice
thickness. These curves represent the envelope of possible albedo values.

The net absorbed shortwave flux is 𝐹𝑠𝑤𝑎𝑏𝑠 =
∑︀

(1− 𝛼𝑗)𝐹𝑠𝑤↓, where the summation is over four radiative categories
(direct and diffuse visible, direct and diffuse near infrared). The flux penetrating into the ice is 𝐼0 = 𝑖0 𝐹𝑠𝑤𝑎𝑏𝑠, where
𝑖0 = 0.70 (1 − 𝑓𝑠𝑛𝑜𝑤) for visible radiation and 𝑖0 = 0 for near IR. Radiation penetrating into the ice is attenuated
according to Beer’s Law:

𝐼(𝑧) = 𝐼0 exp(−𝜅𝑖𝑧), (2.90)

where 𝐼(𝑧) is the shortwave flux that reaches depth 𝑧 beneath the surface without being absorbed, and 𝜅𝑖 is the bulk
extinction coefficient for solar radiation in ice, set to 1.4 m−1 for visible wavelengths [12]. A fraction exp(−𝜅𝑖ℎ𝑖) of
the penetrating solar radiation passes through the ice to the ocean (𝐹𝑠𝑤⇓).

Longwave radiation, turbulent fluxes

While incoming shortwave and longwave radiation are obtained from the atmosphere, outgoing longwave radiation
and the turbulent heat fluxes are derived quantities. Outgoing longwave takes the standard blackbody form, 𝐹𝐿↑ =

𝜖𝜎
(︁
𝑇𝐾
𝑠𝑓

)︁4
, where 𝜖 = 0.985 is the emissivity of snow or ice, 𝜎 is the Stefan-Boltzmann constant and 𝑇𝐾

𝑠𝑓 is the surface
temperature in Kelvin. (The longwave fluxes are partitioned such that 𝜖𝐹𝐿↓ is absorbed at the surface, the remaining
(1− 𝜖)𝐹𝐿↓ being returned to the atmosphere via 𝐹𝐿↑.) The sensible heat flux is proportional to the difference between
air potential temperature and the surface temperature of the snow or snow-free ice,

𝐹𝑠 = 𝐶𝑠

(︀
Θ𝑎 − 𝑇𝐾

𝑠𝑓

)︀
. (2.91)

𝐶𝑠 and 𝐶𝑙 (below) are nonlinear turbulent heat transfer coefficients described in the Atmosphere section. Similarly, the
latent heat flux is proportional to the difference between 𝑄𝑎 and the surface saturation specific humidity 𝑄𝑠𝑓 :

𝐹𝑙 = 𝐶𝑙 (𝑄𝑎 −𝑄𝑠𝑓 ) ,

𝑄𝑠𝑓 = (𝑞1/𝜌𝑎) exp(−𝑞2/𝑇𝐾
𝑠𝑓 ),

where 𝑞1 = 1.16378× 107 kg/m3, 𝑞2 = 5897.8K, 𝑇𝐾
𝑠𝑓 is the surface temperature in Kelvin, and 𝜌𝑎 is the surface air

density.

The net downward heat flux from the ice to the ocean is given by [43]:

𝐹𝑏𝑜𝑡 = −𝜌𝑤𝑐𝑤𝑐ℎ𝑢*(𝑇𝑤 − 𝑇𝑓 ), (2.92)

where 𝜌𝑤 is the density of seawater, 𝑐𝑤 is the specific heat of seawater, 𝑐ℎ = 0.006 is a heat transfer coefficient,
𝑢* =

√︀
|�⃗�𝑤| /𝜌𝑤 is the friction velocity, and 𝑇𝑤 is the sea surface temperature. A minimum value of 𝑢* is available;

we recommend 𝑢*min = 5× 10−4 m/s, but the optimal value may depend on the ocean forcing used and can be as low
as 0.

𝐹𝑏𝑜𝑡 is limited by the total amount of heat available from the ocean, 𝐹𝑓𝑟𝑧𝑚𝑙𝑡. Additional heat, 𝐹𝑠𝑖𝑑𝑒, is used to melt
the ice laterally following [44] and [64]. 𝐹𝑏𝑜𝑡 and the fraction of ice melting laterally are scaled so that 𝐹𝑏𝑜𝑡 +𝐹𝑠𝑖𝑑𝑒 ≥
𝐹𝑓𝑟𝑧𝑚𝑙𝑡 in the case that 𝐹𝑓𝑟𝑧𝑚𝑙𝑡 < 0 (melting; see Growth and melting).
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2.7.4 New temperatures

Bitz and Lipscomb thermodynamics (ktherm = 1)

The “Bitz99” thermodynamic sea ice model is based on [45] and [6], and is described more fully in [37]. The vertical
salinity profile is prescribed and is unchanging in time. The snow is assumed to be fresh, and the midpoint salinity 𝑆𝑖𝑘

in each ice layer is given by

𝑆𝑖𝑘 =
1

2
𝑆max[1− cos(𝜋𝑧(

𝑎
𝑧+𝑏 ))], (2.93)

where 𝑧 ≡ (𝑘 − 1/2)/𝑁𝑖, 𝑆max = 3.2 ppt, and 𝑎 = 0.407 and 𝑏 = 0.573 are determined from a least-squares fit to
the salinity profile observed in multiyear sea ice by [60]. This profile varies from 𝑆 = 0 at the top surface (𝑧 = 0) to
𝑆 = 𝑆max at the bottom surface (𝑧 = 1) and is similar to that used by [45]. Equation (2.93) is fairly accurate for ice
that has drained at the top surface due to summer melting. It is not a good approximation for cold first-year ice, which
has a more vertically uniform salinity because it has not yet drained. However, the effects of salinity on heat capacity
are small for temperatures well below freezing, so the salinity error does not lead to significant temperature errors.

Temperature updates

Given the temperatures 𝑇𝑚
𝑠𝑓 , 𝑇𝑚

𝑠 , and 𝑇𝑚
𝑖𝑘 at time 𝑚, we solve a set of finite-difference equations to obtain the new

temperatures at time 𝑚 + 1. Each temperature is coupled to the temperatures of the layers immediately above and
below by heat conduction terms that are treated implicitly. For example, the rate of change of 𝑇𝑖𝑘 depends on the new
temperatures in layers 𝑘 − 1, 𝑘, and 𝑘 + 1. Thus we have a set of equations of the form

Ax = b, (2.94)

where A is a tridiagonal matrix, x is a column vector whose components are the unknown new temperatures, and b is
another column vector. Given A and b, we can compute x with a standard tridiagonal solver.

There are four general cases: (1) 𝑇𝑠𝑓 < 0∘𝐶, snow present; (2) 𝑇𝑠𝑓 = 0∘𝐶, snow present; (3) 𝑇𝑠𝑓 < 0∘𝐶, snow
absent; and (4) 𝑇𝑠𝑓 = 0∘𝐶, snow absent. For case 1 we have one equation (the top row of the matrix) for the new
surface temperature, 𝑁𝑠 equations for the new snow temperatures, and 𝑁𝑖 equations for the new ice temperatures. For
cases 2 and 4 we omit the equation for the surface temperature, which is held at 0∘𝐶, and for cases 3 and 4 we omit the
snow temperature equations. Snow is considered absent if the snow depth is less than a user-specified minimum value,
hs_min. (Very thin snow layers are still transported conservatively by the transport modules; they are simply ignored
by the thermodynamics.)

The rate of temperature change in the ice interior is given by [45]:

𝜌𝑖𝑐𝑖
𝜕𝑇𝑖
𝜕𝑡

=
𝜕

𝜕𝑧

(︂
𝐾𝑖

𝜕𝑇𝑖
𝜕𝑧

)︂
− 𝜕

𝜕𝑧
[𝐼𝑝𝑒𝑛(𝑧)], (2.95)

where 𝜌𝑖 = 917 kg/m3 is the sea ice density (assumed to be uniform), 𝑐𝑖(𝑇, 𝑆) is the specific heat of sea ice,𝐾𝑖(𝑇, 𝑆)
is the thermal conductivity of sea ice, 𝐼𝑝𝑒𝑛 is the flux of penetrating solar radiation at depth 𝑧, and 𝑧 is the vertical
coordinate, defined to be positive downward with 𝑧 = 0 at the top surface. If shortwave = ‘ccsm3’, the penetrating
radiation is given by Beer’s Law:

𝐼𝑝𝑒𝑛(𝑧) = 𝐼0 exp(−𝜅𝑖𝑧),

where 𝐼0 is the penetrating solar flux at the top ice surface and 𝜅𝑖 is an extinction coefficient. If shortwave = ‘dEdd’,
then solar absorption is computed by the Delta-Eddington scheme.

The specific heat of sea ice is given to an excellent approximation by [48]

𝑐𝑖(𝑇, 𝑆) = 𝑐0 +
𝐿0𝜇𝑆

𝑇 2
, (2.96)

where 𝑐0 = 2106 J/kg/deg is the specific heat of fresh ice at , 𝐿0 = 3.34× 105 J/kg is the latent heat of fusion of fresh
ice at , and 𝜇 = 0.054 deg/ppt is the (liquidus) ratio between the freezing temperature and salinity of brine.
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Following [72] and [45], the standard thermal conductivity (conduct = ‘Maykut71’) is given by

𝐾𝑖(𝑇, 𝑆) = 𝐾0 +
𝛽𝑆

𝑇
, (2.97)

where 𝐾0 = 2.03 W/m/deg is the conductivity of fresh ice and 𝛽 = 0.13 W/m/ppt is an empirical constant. Experi-
mental results [69] suggest that Equation (2.97) may not be a good description of the thermal conductivity of sea ice.
In particular, the measured conductivity does not markedly decrease as 𝑇 approaches 0∘𝐶, but does decrease near the
top surface (regardless of temperature).

An alternative parameterization based on the “bubbly brine” model of [50] for conductivity is available (conduct =
‘bubbly’):

𝐾𝑖 =
𝜌𝑖
𝜌0

(2.11− 0.011𝑇 + 0.09𝑆/𝑇 ) , (2.98)

where 𝜌𝑖 and 𝜌0 = 917 kg/m3 are densities of sea ice and pure ice. Whereas the parameterization in Equation (2.97)
asymptotes to a constant conductivity of 2.03 W m−1 K −1 with decreasing 𝑇 , 𝐾𝑖 in Equation (2.98) continues to
increase with colder temperatures.

The equation for temperature changes in snow is analogous to Equation (2.95), with 𝜌𝑠 = 330 kg/m3, 𝑐𝑠 = 𝑐0,
and 𝐾𝑠 = 0.30 W/m/deg replacing the corresponding ice values. If shortwave = ‘ccsm3’, then the penetrating solar
radiation is equal to zero for snow-covered ice, since most of the incoming sunlight is absorbed near the top surface. If
shortwave = ‘dEdd’, however, then 𝐼𝑝𝑒𝑛 is nonzero in snow layers.

It is possible that more shortwave penetrates into an ice layer than is needed to completely melt the layer, or else it
causes the computed temperature to be greater than the melting temperature, which until now has caused the vertical
thermodynamics code to abort. A parameter frac = 0.9 sets the fraction of the ice layer than can be melted through. A
minimum temperature difference for absorption of radiation is also set, currently dTemp = 0.02 (K). The limiting occurs
in icepack_therm_vertical.F90, for both the ccsm3 and delta Eddington radiation schemes. If the available energy
would melt through a layer, then penetrating shortwave is first reduced, possibly to zero, and if that is insufficient then
the local conductivity is also reduced to bring the layer temperature just to the melting point.

We now convert Equation (2.95) to finite-difference form. The resulting equations are second-order accurate in space,
except possibly at material boundaries, and first-order accurate in time. Before writing the equations in full we give
finite-difference expressions for some of the terms.

First consider the terms on the left-hand side of Equation (2.95). We write the time derivatives as

𝜕𝑇

𝜕𝑡
=
𝑇𝑚+1 − 𝑇𝑚

∆𝑡
,

where 𝑇 is the temperature of either ice or snow and𝑚 is a time index. The specific heat of ice layer 𝑘 is approximated
as

𝑐𝑖𝑘 = 𝑐0 +
𝐿0𝜇𝑆𝑖𝑘

𝑇𝑚
𝑖𝑘 𝑇

𝑚+1
𝑖𝑘

, (2.99)

which ensures that energy is conserved during a change in temperature. This can be shown by using Equation (2.96) to
integrate 𝑐𝑖 𝑑𝑇 from 𝑇𝑚

𝑖𝑘 to 𝑇𝑚+1
𝑖𝑘 ; the result is 𝑐𝑖𝑘(𝑇𝑚+1

𝑖𝑘 − 𝑇𝑚
𝑖𝑘 ), where 𝑐𝑖𝑘 is given by Equation (2.99). The specific

heat is a nonlinear function of 𝑇𝑚+1
𝑖𝑘 , the unknown new temperature. We can retain a set of linear equations, however,

by initially guessing 𝑇𝑚+1
𝑖𝑘 = 𝑇𝑚

𝑖𝑘 and then iterating the solution, updating 𝑇𝑚+1
𝑖𝑘 in Equation (2.99) with each iteration

until the solution converges.

Next consider the first term on the right-hand side of Equation (2.95). The first term describes heat diffusion and is
discretized for a given ice or snow layer 𝑘 as

𝜕

𝜕𝑧

(︂
𝐾
𝜕𝑇

𝜕𝑧

)︂
=

1

∆ℎ

[︀
𝐾*

𝑘(𝑇
𝑚+1
𝑘−1 − 𝑇𝑚+1

𝑘 )−𝐾*
𝑘+1(𝑇

𝑚+1
𝑘 − 𝑇𝑚+1

𝑘+1 )
]︀
, (2.100)

where∆ℎ is the layer thickness and𝐾𝑘 is the effective conductivity at the upper boundary of layer 𝑘. This discretization
is centered and second-order accurate in space, except at the boundaries. The flux terms on the right-hand side (RHS)
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are treated implicitly; i.e., they depend on the temperatures at the new time 𝑚+ 1. The resulting scheme is first-order
accurate in time and unconditionally stable. The effective conductivity 𝐾* at the interface of layers 𝑘 − 1 and 𝑘 is
defined as

𝐾*
𝑘 =

2𝐾𝑘−1𝐾𝑘

𝐾𝑘−1ℎ𝑘 +𝐾𝑘ℎ𝑘−1
,

which reduces to the appropriate values in the limits 𝐾𝑘 ≫ 𝐾𝑘−1 (or vice versa) and ℎ𝑘 ≫ ℎ𝑘−1 (or vice versa). The
effective conductivity at the top (bottom) interface of the ice-snow column is given by 𝐾* = 2𝐾/∆ℎ, where 𝐾 and
∆ℎ are the thermal conductivity and thickness of the top (bottom) layer. The second term on the RHS of Equation
(2.95) is discretized as

𝜕

𝜕𝑧
[𝐼𝑝𝑒𝑛(𝑧)] = 𝐼0

𝜏𝑘−1 − 𝜏𝑘
∆ℎ

=
𝐼𝑘
∆ℎ

where 𝜏𝑘 is the fraction of the penetrating solar radiation 𝐼0 that is transmitted through layer 𝑘 without being absorbed.

We now construct a system of equations for the new temperatures. For 𝑇𝑠𝑓 < 0∘𝐶 we require

𝐹0 = 𝐹𝑐𝑡, (2.101)

where 𝐹𝑐𝑡 is the conductive flux from the top surface to the ice interior, and both fluxes are evaluated at time 𝑚 + 1.
Although 𝐹0 is a nonlinear function of 𝑇𝑠𝑓 , we can make the linear approximation

𝐹𝑚+1
0 = 𝐹 *

0 +

(︂
𝑑𝐹0

𝑑𝑇𝑠𝑓

)︂*

(𝑇𝑚+1
𝑠𝑓 − 𝑇 *

𝑠𝑓 ),

where 𝑇 *
𝑠𝑓 is the surface temperature from the most recent iteration, and 𝐹 *

0 and (𝑑𝐹0/𝑑𝑇𝑠𝑓 )
* are functions of 𝑇 *

𝑠𝑓 .
We initialize 𝑇 *

𝑠𝑓 = 𝑇𝑚
𝑠𝑓 and update it with each iteration. Thus we can rewrite Equation (2.101) as

𝐹 *
0 +

(︂
𝑑𝐹0

𝑑𝑇𝑠𝑓

)︂*

(𝑇𝑚+1
𝑠𝑓 − 𝑇 *

𝑠𝑓 ) = 𝐾*
1 (𝑇

𝑚+1
𝑠𝑓 − 𝑇𝑚+1

1 ),

Rearranging terms, we obtain[︂(︂
𝑑𝐹0

𝑑𝑇𝑠𝑓

)︂*

−𝐾*
1

]︂
𝑇𝑚+1
𝑠𝑓 +𝐾*

1𝑇
𝑚+1
1 =

(︂
𝑑𝐹0

𝑑𝑇𝑠𝑓

)︂*

𝑇 *
𝑠𝑓 − 𝐹 *

0 , (2.102)

the first equation in the set of equations (2.94). The temperature change in ice/snow layer 𝑘 is

𝜌𝑘𝑐𝑘
(𝑇𝑚+1

𝑘 − 𝑇𝑚
𝑘 )

∆𝑡
=

1

∆ℎ𝑘
[𝐾*

𝑘(𝑇
𝑚+1
𝑘−1 − 𝑇𝑚+1

𝑘 )−𝐾𝑘+1(𝑇
𝑚+1
𝑘 − 𝑇𝑚+1

𝑘+1 )], (2.103)

where 𝑇0 = 𝑇𝑠𝑓 in the equation for layer 1. In tridiagonal matrix form, Equation (2.103) becomes

−𝜂𝑘𝐾𝑘𝑇
𝑚+1
𝑘−1 + [1 + 𝜂𝑘(𝐾𝑘 +𝐾𝑘+1)]𝑇

𝑚+1
𝑘 − 𝜂𝑘𝐾𝑘+1𝑇

𝑚+1
𝑘+1 = 𝑇𝑚

𝑘 + 𝜂𝑘𝐼𝑘, (2.104)

where 𝜂𝑘 = ∆𝑡/(𝜌𝑘𝑐𝑘∆ℎ𝑘). In the equation for the bottom ice layer, the temperature at the ice–ocean interface is held
fixed at 𝑇𝑓 , the freezing temperature of the mixed layer; thus the last term on the LHS is known and is moved to the
RHS. If 𝑇𝑠𝑓 = 0∘𝐶 , then there is no surface flux equation. In this case the first equation in Equation (2.94) is similar
to Equation (2.104), but with the first term on the LHS moved to the RHS.

These equations are modified if 𝑇𝑠𝑓 and 𝐹𝑐𝑡 are computed within the atmospheric model and passed to the host sea ice
model (calc_Tsfc = false; see Atmosphere). In this case there is no surface flux equation. The top layer temperature
is computed by an equation similar to Equation (2.104) but with the first term on the LHS replaced by 𝜂1𝐹𝑐𝑡 and moved
to the RHS. The main drawback of treating the surface temperature and fluxes explicitly is that the solution scheme
is no longer unconditionally stable. Instead, the effective conductivity in the top layer must satisfy a diffusive CFL
condition:

𝐾* ≤ 𝜌𝑐ℎ

∆𝑡
.
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For thin layers and typical coupling intervals (∼ 1 hr),𝐾* may need to be limited before being passed to the atmosphere
via the coupler. Otherwise, the fluxes that are returned to the host sea ice model may result in oscillating, highly
inaccurate temperatures. The effect of limiting is to treat the ice as a poor heat conductor. As a result, winter growth
rates are reduced, and the ice is likely to be too thin (other things being equal). The values of hs_min and ∆𝑡 must
therefore be chosen with care. If hs_min is too small, frequent limiting is required, but if hs_min is too large, snow
will be ignored when its thermodynamic effects are significant. Likewise, infrequent coupling requires more limiting,
whereas frequent coupling is computationally expensive.

This completes the specification of the matrix equations for the four cases. We compute the new temperatures using a
tridiagonal solver. After each iteration we check to see whether the following conditions hold:

1. 𝑇𝑠𝑓 ≤ 0∘𝐶.

2. The change in 𝑇𝑠𝑓 since the previous iteration is less than a prescribed limit, ∆𝑇max.

3. 𝐹0 ≥ 𝐹𝑐𝑡. (If 𝐹0 < 𝐹𝑐𝑡, ice would be growing at the top surface, which is not allowed.)

4. The rate at which energy is added to the ice by the external fluxes equals the rate at which the internal ice energy
is changing, to within a prescribed limit ∆𝐹max.

We also check the convergence rate of 𝑇𝑠𝑓 . If 𝑇𝑠𝑓 is oscillating and failing to converge, we average temperatures
from successive iterations to improve convergence. When all these conditions are satisfied—usually within two to four
iterations for ∆𝑇max ≈ 0.01∘𝐶 and ∆𝐹𝑚𝑎𝑥 ≈ 0.01 W/m2—the calculation is complete.

To compute growth and melt rates (Growth and melting), we derive expressions for the enthalpy 𝑞. The enthalpy of
snow (or fresh ice) is given by

𝑞𝑠(𝑇 ) = −𝜌𝑠(−𝑐0𝑇 + 𝐿0).

Sea ice enthalpy is more complex, because of brine pockets whose salinity varies inversely with temperature. Since
the salinity is prescribed, there is a one-to-one relationship between temperature and enthalpy. The specific heat of sea
ice, given by Equation (2.96), includes not only the energy needed to warm or cool ice, but also the energy used to
freeze or melt ice adjacent to brine pockets. Equation (2.96) can be integrated to give the energy 𝛿𝑒 required to raise
the temperature of a unit mass of sea ice of salinity 𝑆 from 𝑇 to 𝑇 ′:

𝛿𝑒(𝑇, 𝑇
′) = 𝑐0(𝑇

′ − 𝑇 ) + 𝐿0𝜇𝑆

(︂
1

𝑇
− 1

𝑇 ′

)︂
.

If we let 𝑇 ′ = 𝑇𝑚 ≡ −𝜇𝑆, the temperature at which the ice is completely melted, we have

𝛿𝑒(𝑇, 𝑇𝑚) = 𝑐0(𝑇𝑚 − 𝑇 ) + 𝐿0

(︂
1− 𝑇𝑚

𝑇

)︂
.

Multiplying by 𝜌𝑖 to change the units from J/kg to J/m3 and adding a term for the energy needed to raise the meltwater
temperature to , we obtain the sea ice enthalpy:

𝑞𝑖(𝑇, 𝑆) = −𝜌𝑖
[︂
𝑐0(𝑇𝑚 − 𝑇 ) + 𝐿0

(︂
1− 𝑇𝑚

𝑇

)︂
− 𝑐𝑤𝑇𝑚.

]︂
(2.105)

Note that Equation (2.105) is a quadratic equation in 𝑇 . Given the layer enthalpies we can compute the temperatures
using the quadratic formula:

𝑇 =
−𝑏−

√
𝑏2 − 4𝑎𝑐

2𝑎
,

where
𝑎 = 𝑐0,

𝑏 = (𝑐𝑤 − 𝑐0)𝑇𝑚 − 𝑞𝑖
𝜌𝑖

− 𝐿0,

𝑐 = 𝐿0𝑇𝑚.

The other root is unphysical.
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Mushy thermodynamics (ktherm = 2)

The “mushy” thermodynamics option treats the sea ice as a mushy layer [14] in which the ice is assumed to be composed
of microscopic brine inclusions surrounded by a matrix of pure water ice. Both enthalpy and salinity are prognostic
variables. The size of the brine inclusions is assumed to be much smaller than the size of the ice layers, allowing a
continuum approximation: a bulk sea-ice quantity is taken to be the liquid-fraction-weighted average of that quantity
in the ice and in the brine.

Enthalpy and mushy physics

The mush enthalpy, 𝑞, is related to the temperature, 𝑇 , and the brine volume, 𝜑, by

𝑞 =𝜑𝑞𝑏𝑟 +(1− 𝜑)𝑞𝑖 =𝜑𝜌𝑤𝑐𝑤𝑇 +(1− 𝜑)(𝜌𝑖𝑐𝑖𝑇 − 𝜌𝑖𝐿0) (2.106)

where 𝑞𝑏𝑟 is the brine enthalpy, 𝑞𝑖 is the pure ice enthalpy, 𝜌𝑖 and 𝑐𝑖 are density and heat capacity of the ice, 𝜌𝑤 and 𝑐𝑤
are density and heat capacity of the brine and 𝐿0 is the latent heat of melting of pure ice. We assume that the specific
heats of the ice and brine are fixed at the values of cp_ice and cp_ocn, respectively. The enthalpy is the energy required
to raise the temperature of the sea ice to 0∘𝐶, including both sensible and latent heat changes. Since the sea ice contains
salt, it usually will be fully melted at a temperature below 0∘𝐶. Equations (2.105) and (2.106) are equivalent except
for the density used in the term representing the energy required to bring the melt water temperature to 0∘𝐶 (𝜌𝑖 and 𝜌𝑤
in equations (2.105) and (2.106), respectively).

The liquid fraction, 𝜑, of sea ice is given by

𝜑 =
𝑆

𝑆𝑏𝑟

where the brine salinity, 𝑆𝑏𝑟, is given by the liquidus relation using the ice temperature.

Within the parameterizations of brine drainage the brine density is a function of brine salinity [46]:

𝜌(𝑆𝑏𝑟) = 1000.3 + 0.78237𝑆𝑏𝑟 + 2.8008× 10−4𝑆2
𝑏𝑟.

Outside the parameterizations of brine drainage the densities of brine and ice are fixed at the values of 𝜌𝑤 and 𝜌𝑖,
respectively.

The permeability of ice is computed from the liquid fraction as in [20]:

Π(𝜑) = 3× 10−8(𝜑− 𝜑Π)
3

where 𝜑Π is 0.05.

The liquidus relation used in the mushy layer module is based on observations of [4]. A piecewise linear relation can
be fitted to observations of Z (the ratio of mass of salt (in g) to mass of pure water (in kg) in brine) to the melting
temperature: 𝑍 = 𝑎𝑇 + 𝑏. Salinity is the mass of salt (in g) per mass of brine (in kg) so is related to Z by

1

𝑆
=

1

1000
+

1

𝑍
.

The data is well fitted with two linear regions,

𝑆𝑏𝑟 =
(𝑇 + 𝐽1)

(𝑇/1000 + 𝐿1)
𝑙0 +

(𝑇 + 𝐽2)

(𝑇/1000 + 𝐿2)
(1− 𝑙0)

where

𝑙0 =

{︂
1 if 𝑇 ≥ 𝑇0
0 if 𝑇 < 𝑇0

,

𝐽1,2 =
𝑏1,2
𝑎1,2

,
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𝐿1,2 =
(1 + 𝑏1,2/1000)

𝑎1,2
.

𝑇0 is the temperature at which the two linear regions meet. Fitting to the data, 𝑇0 = −7.636∘C, 𝑎1 =
−18.48 g kg−1 K−1, 𝑎2 = −10.3085 g kg−1 K−1, 𝑏1 = 0 and 𝑏2 = 62.4 g kg−1.

Two-stage outer iteration

As for the Bitz99 thermodynamics [6] there are two qualitatively different situations that must be considered when
solving for the vertical thermodynamics: the surface can be melting and at the melting temperature, or the surface can
be colder than the melting temperature and not melting. In the Bitz99 thermodynamics these two situations were treated
within the same iterative loop, but here they are dealt with separately. If at the beginning of the time step the ice surface
is cold and not melting, we solve the ice temperatures assuming that this is also true at the end of the time step. Once
we have solved for the new temperatures we test to see if the answer is consistent with this assumption. If the surface
temperature is below the melting temperature then we have found the appropriate consistent solution. If the surface is
above the melting temperature at the end of the initial solution attempt, we recalculate the new temperatures assuming
the surface temperature is fixed at the melting temperature. Alternatively if the surface is at the melting temperature
at the start of a time step, we assume initially that this is also the case at the end of the time step, solve for the new
temperatures and then check that the surface conductive heat flux is less than the surface atmospheric heat flux as is
required for a melting surface. If this is not the case, the temperatures are recalculated assuming the surface is colder
than melting. We have found that solutions of the temperature equations that only treat one of the two qualitatively
different solutions at a time are more numerically robust than if both are solved together. The surface state rarely
changes qualitatively during the solution so the method is also numerically efficient.

Temperature updates

During the calculation of the new temperatures and salinities, the liquid fraction is held fixed at the value from the
previous time step. Updating the liquid fraction during the Picard iteration described below was found to be numer-
ically unstable. Keeping the liquid fraction fixed drastically improves the numerical stability of the method without
significantly changing the solution.

Temperatures are calculated in a similar way to Bitz99 with an outer Picard iteration of an inner tridiagonal matrix
solve. The conservation equation for the internal ice temperatures is

𝜕𝑞

𝜕𝑡
=

𝜕

𝜕𝑧

(︂
𝐾
𝜕𝑇

𝜕𝑧

)︂
+ 𝑤

𝜕𝑞𝑏𝑟
𝜕𝑧

+ 𝐹

where 𝑞 is the sea ice enthalpy,𝐾 is the bulk thermal conductivity of the ice,𝑤 is the vertical Darcy velocity of the brine,
𝑞𝑏𝑟 is the brine enthalpy and 𝐹 is the internally absorbed shortwave radiation. The first term on the right represents
heat conduction and the second term represents the vertical advection of heat by gravity drainage and flushing.

The conductivity of the mush is given by

𝐾 = 𝜑𝐾𝑏𝑟 + (1− 𝜑)𝐾𝑖

where 𝐾𝑖 = 2.3Wm−1K−1 is the conductivity of pure ice and 𝐾𝑏𝑟 = 0.5375Wm−1K−1 is the conductivity of the
brine. The thermal conductivity of brine is a function of temperature and salinity, but here we take it as a constant
value for the middle of the temperature range experienced by sea ice, −10∘C [63], assuming the brine liquidus salinity
at −10∘C.

We discretize the terms that include temperature in the heat conservation equation as

𝑞𝑡𝑘 − 𝑞𝑡0𝑘
∆𝑡

=

𝐾*
𝑘+1

Δ𝑧′
𝑘+1

(𝑇 𝑡
𝑘+1 − 𝑇 𝑡

𝑘)−
𝐾*

𝑘

Δ𝑧′
𝑘
(𝑇 𝑡

𝑘 − 𝑇 𝑡
𝑘−1)

∆ℎ
(2.107)

where the superscript signifies whether the quantity is evaluated at the start (𝑡0) or the end (𝑡) of the time step and the
subscript indicates the vertical layer. Writing out the temperature dependence of the enthalpy term we have

(𝜑(𝑐𝑤𝜌𝑤 − 𝑐𝑖𝜌𝑖) + 𝑐𝑖𝜌𝑖)𝑇
𝑡
𝑘 − (1− 𝜑)𝜌𝑖𝐿− 𝑞𝑡0𝑘

∆𝑡
=

𝐾*
𝑘+1

Δ𝑧′
𝑘+1

(𝑇 𝑡
𝑘+1 − 𝑇 𝑡

𝑘)−
𝐾*

𝑘

Δ𝑧′
𝑘
(𝑇 𝑡

𝑘 − 𝑇 𝑡
𝑘−1)

∆ℎ
.
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The mush thermal conductivities are fixed at the start of the timestep. For the lowest ice layer 𝑇𝑘+1 is replaced with
𝑇𝑏𝑜𝑡, the temperature of the ice base. ∆ℎ is the layer thickness and 𝑧′𝑘 is the distance between the 𝑘 − 1 and 𝑘 layer
centers.

Similarly, for the snow layer temperatures we have the following discretized equation:

𝑐𝑖𝜌𝑠𝑇
𝑡
𝑘 − 𝜌𝑠𝐿0 − 𝑞𝑡0𝑘

∆𝑡
=

𝐾*
𝑘+1

Δ𝑧′
𝑘+1

(𝑇 𝑡
𝑘+1 − 𝑇 𝑡

𝑘)−
𝐾*

𝑘

Δ𝑧′
𝑘
(𝑇 𝑡

𝑘 − 𝑇 𝑡
𝑘−1)

∆ℎ
.

For the upper-most layer (either ice layer or snow layer if it present) 𝑇𝑘−1 is replaced with 𝑇𝑠𝑓 , the temperature of the
surface.

If the surface is colder than the melting temperature then we also have to solve for the surface temperature, 𝑇𝑠𝑓 . Here
we follow the methodology of Bitz99 described above.

These discretized temperature equations form a tridiagional matrix for the new temperatures and are solved with a
standard tridiagonal solver. A Picard iteration is used to incorporate nonlinearity in the equations. The surface heat
flux is a function of surface temperature and with each iteration, the surface heat flux is calculated with the new surface
temperature until convergence is achieved. Convergence normally occurs after a few iterations once the temperature
changes during an iteration fall below 5× 10−4 ∘C and the energy conservation error falls below 0.9 ferrmax.

Salinity updates

Several physical processes alter the sea ice bulk salinity. New ice forms with the salinity of the sea water from which
it formed. Gravity drainage reduces the bulk salinity of newly formed sea ice, while flushing of melt water through the
ice also alters the salinity profile.

The salinity equation takes the form

𝜕𝑆

𝜕𝑡
= 𝑤

𝜕𝑆𝑏𝑟

𝜕𝑧
+𝐺

where 𝑤 is a vertical Darcy velocity and𝐺 is a source term. The right-hand side depends indirectly on the bulk salinity
through the liquid fraction (𝑆 = 𝜑𝑆𝑏𝑟). Since 𝜑 is fixed for the time step, we solve the salinity equation explicitly after
the temperature equation is solved.

A. Gravity drainage. Sea ice initially retains all the salt present in the sea water from which it formed. Cold temperatures
near the top surface of forming sea ice result in higher brine salinities there, because the brine is always at its melting
temperature. This colder, saltier brine is denser than the underlying sea water and the brine undergoes convective
overturning with the ocean. As the dense, cold brine drains out of the ice, it is replaced by fresher seawater, lowering
the bulk salinity of the ice. Following [71], gravity drainage is assumed to occur as two simultaneously operating
modes: a rapid mode operating principally near the ice base and a slow mode occurring everywhere.

Rapid drainage takes the form of a vertically varying upward Darcy flow. The contribution to the bulk salinity equation
for the rapid mode is

𝜕𝑆

𝜕𝑡

⃒⃒⃒⃒
𝑟𝑎𝑝𝑖𝑑

= 𝑤(𝑧)
𝜕𝑆𝑏𝑟

𝜕𝑧

where 𝑆 is the bulk salinity and 𝐵𝑏𝑟 is the brine salinity, specified by the liquidus relation with ice temperature. This
equation is discretized using an upwind advection scheme,

𝑆𝑡
𝑘 − 𝑆𝑡0

𝑘

∆𝑡
= 𝑤𝑘

𝑆𝑏𝑟𝑘+1 − 𝑆𝑏𝑟𝑘

∆𝑧
.

The upward advective flow also carries heat, contributing a term to the heat conservation Equation (2.107),

𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑟𝑎𝑝𝑖𝑑

= 𝑤(𝑧)
𝜕𝑞𝑏𝑟
𝜕𝑧
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where 𝑞𝑏𝑟 is the brine enthalpy. This term is discretized as

𝑞𝑡𝑘 − 𝑞𝑡0𝑘
∆𝑡

⃒⃒⃒⃒
𝑟𝑎𝑝𝑖𝑑

= 𝑤𝑘
𝑞𝑏𝑟 𝑘+1 − 𝑞𝑏𝑟 𝑘

∆𝑧
.

𝑤𝑘 = max
𝑗=𝑘,𝑛

(�̃�𝑗)

where the maximum is taken over all the ice layers between layer 𝑘 and the ice base. �̃�𝑗 is given by

�̃�(𝑧) = 𝑤

(︂
𝑅𝑎(𝑧)−𝑅𝑎𝑐

𝑅𝑎(𝑧)

)︂
. (2.108)

where 𝑅𝑎𝑐 is a critical Rayleigh number and 𝑅𝑎(𝑧) is the local Rayleigh number at a particular level,

𝑅𝑎(𝑧) =
𝑔∆𝜌Π(ℎ− 𝑧)

𝜅𝜂

where ∆𝜌 is the difference in density between the brine at 𝑧 and the ocean, Π is the minimum permeability between 𝑧
and the ocean, ℎ is the ice thickness, 𝜅 is the brine thermal diffusivity and 𝜂 is the brine dynamic viscosity. Equation
(2.108) reduces the flow rate for Rayleigh numbers below the critical Rayleigh number.

The unmodified flow rate, 𝑤, is determined from a hydraulic pressure balance argument for upward flow through the
mush and returning downward flow through ice free channels:

𝑤(𝑧)∆𝑥2 = 𝐴𝑚

(︂
−∆𝑃

𝑙
+𝐵𝑚

)︂
where

∆𝑃

𝑙
=

𝐴𝑝𝐵𝑝 +𝐴𝑚𝐵𝑚

𝐴𝑚 +𝐴𝑝
,

𝐴𝑚 =
∆𝑥2

𝜂

𝑛∑︀𝑛
𝑘=1

1
Π(𝑘)

,

𝐵𝑚 = − 𝑔

𝑛

𝑛∑︁
𝑘=1

𝜌(𝑘),

𝐴𝑝 =
𝜋𝑎4

8𝜂
,

𝐵𝑝 = −𝜌𝑝𝑔.

There are three tunable parameters in the above parameterization, 𝑎, the diameter of the channel, ∆𝑥, the horizontal
size of the mush draining through each channel, and 𝑅𝑎𝑐, the critical Rayleigh number. 𝜌𝑝 is the density of brine in
the channel which we take to be the density of brine in the mush at the level that the brine is draining from. 𝑙 is the
thickness of mush from the ice base to the top of the layer in question. We assume that ∆𝑥 is proportional to 𝑙 so that
∆𝑥 = 2𝛽𝑙. 𝑎 (a_rapid_mode), 𝛽 (aspect_rapid_mode) and 𝑅𝑎𝑐 (Ra_c_rapid_mode) are all namelist parameters
with default values of 0.5 mm, 1 and 10, respectively. The value 𝛽 = 1 gives a square aspect ratio for the convective
flow in the mush.

The slow drainage mode takes the form of a simple relaxation of bulk salinity:

𝜕𝑆(𝑧)

𝜕𝑡

⃒⃒⃒⃒
𝑠𝑙𝑜𝑤

= −𝜆(𝑆(𝑧)− 𝑆𝑐).

The decay constant, 𝜆, is modeled as

𝜆 = 𝑆* max

(︂
𝑇𝑏𝑜𝑡 − 𝑇𝑠𝑓

ℎ
, 0

)︂
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where 𝑆* is a tuning parameter for the drainage strength, 𝑇𝑏𝑜𝑡 is the basal ice temperature, 𝑇𝑠𝑓 is the upper surface
temperature and ℎ is the ice thickness. The bulk salinity relaxes to a value, 𝑆𝑐(𝑧), given by

𝑆𝑐(𝑧) = 𝜑𝑐𝑆𝑏𝑟(𝑧)

where 𝑆𝑏𝑟(𝑧) is the brine salinity at depth 𝑧 and 𝜑𝑐 is a critical liquid fraction. Both 𝑆* and 𝜑𝑐 are namelist parameters,
dSdt_slow_mode = 1.5× 10−7 m s−1 K−1 and phi_c_slow_mode = 0.05.

B. Downwards flushing. Melt pond water drains through sea ice and flushes out brine, reducing the bulk salinity of the
sea ice. This is modeled with the mushy physics option as a vertical Darcy flow through the ice that affects both the
enthalpy and bulk salinity of the sea ice:

𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑓𝑙𝑢𝑠ℎ

= 𝑤𝑓
𝜕𝑞𝑏𝑟
𝜕𝑧

𝜕𝑆

𝜕𝑡

⃒⃒⃒⃒
𝑓𝑙𝑢𝑠ℎ

= 𝑤𝑓
𝜕𝑆𝑏𝑟

𝜕𝑧

These equations are discretized with an upwind advection scheme. The flushing Darcy flow, 𝑤𝑓 , is given by

𝑤𝑓 =
Π𝜌𝑤𝑔∆ℎ

ℎ𝜂
,

where Π is the harmonic mean of the ice layer permeabilities and ∆ℎ is the hydraulic head driving melt water through
the sea ice. It is the difference in height between the top of the melt pond and sea level.

Basal boundary condition

In traditional Stefan problems the ice growth rate is calculated by determining the difference in heat flux on either side
of the ice/ocean interface and equating this energy difference to the latent heat of new ice formed. Thus,

(1− 𝜑𝑖)𝐿0𝜌𝑖
𝜕ℎ

𝜕𝑡
= 𝐾

𝜕𝑇

𝜕𝑧

⃒⃒⃒⃒
𝑖

−𝐾𝑤
𝜕𝑇

𝜕𝑧

⃒⃒⃒⃒
𝑤

(2.109)

where (1− 𝜑𝑖) is the solid fraction of new ice formed and the right hand is the difference in heat flux at the ice–ocean
interface between the ice side and the ocean side of the interface. However, with mushy layers there is usually no
discontinuity in solid fraction across the interface, so 𝜑𝑖 = 1 and Equation (2.109) cannot be used explicitly. To
circumvent this problem we set the interface solid fraction to be 0.15, a value that reproduces observations. 𝜑𝑖 is a
namelist parameter (phi_i_mushy = 0.85). The basal ice temperature is set to the liquidus temperature 𝑇𝑓 of the
ocean surface salinity.

Tracer consistency

In order to ensure conservation of energy and salt content, the advection routines will occasionally limit changes to
either enthalpy or bulk salinity. The mushy thermodynamics routine determines temperature from both enthalpy and
bulk salinity. Since the limiting changes performed in the advection routine are not applied consistently (from a mushy
physics point of view) to both enthalpy and bulk salinity, the resulting temperature may be changed to be greater
than the limit allowed in the thermodynamics routines. If this situation is detected, the code corrects the enthalpy
so the temperature is below the limiting value. The limiting value, Tliquidus_max can be specified in namelist.
Conservation of energy is ensured by placing the excess energy in the ocean, and the code writes a warning (see
Error Messages and Aborts) that this has occurred to the diagnostics file. This situation only occurs with the mushy
thermodynamics, and it should only occur very infrequently and have a minimal effect on results. The addition of the
heat to the ocean may reduce ice formation by a small amount afterwards.
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2.7.5 Growth and melting

Melting at the top surface is given by

𝑞 𝛿ℎ =

{︂
(𝐹0 − 𝐹𝑐𝑡)∆𝑡 if 𝐹0 > 𝐹𝑐𝑡

0 otherwise (2.110)

where 𝑞 is the enthalpy of the surface ice or snow layer1 (recall that 𝑞 < 0) and 𝛿ℎ is the change in thickness. If the
layer melts completely, the remaining flux is used to melt the layers beneath. Any energy left over when the ice and
snow are gone is added to the ocean mixed layer. Ice cannot grow at the top surface due to conductive fluxes; however,
snow–ice can form. New snowfall is added at the end of the thermodynamic time step.

Growth and melting at the bottom ice surface are governed by

𝑞 𝛿ℎ = (𝐹𝑐𝑏 − 𝐹𝑏𝑜𝑡)∆𝑡, (2.111)

where 𝐹𝑏𝑜𝑡 is given by Equation (2.92) and 𝐹𝑐𝑏 is the conductive heat flux at the bottom surface:

𝐹𝑐𝑏 =
𝐾𝑖,𝑁+1

∆ℎ𝑖
(𝑇𝑖𝑁 − 𝑇𝑓 ).

If ice is melting at the bottom surface, 𝑞 in Equation (2.111) is the enthalpy of the bottom ice layer. If ice is growing,
𝑞 is the enthalpy of new ice with temperature 𝑇𝑓 and salinity 𝑆𝑚𝑎𝑥 (ktherm = 1) or ocean surface salinity (ktherm =
2). This ice is added to the bottom layer.

In general, frazil ice formed in the ocean is added to the thinnest ice category. The new ice is grown in the open water
area of the grid cell to a specified minimum thickness; if the open water area is nearly zero or if there is more new ice
than will fit into the thinnest ice category, then the new ice is spread over the entire cell.

If tr_fsd=true, a floe size must be assigned to the new frazil ice. If spectral ocean surface wave forcing is provided
(and set using the namelist option wave_spec_type), this will be used to calculate a tensile stress on new floes that
determines their maximum possible size [62][53]. If no ocean surface wave forcing is provided, all floes are assumed
to grow as pancakes, at the smallest possible floe size.

If tr_fsd=true, lateral growth at the edges of exisiting floes may also occur, calculated using the prognostic floe
size distribution as described in [24] and [51]. The lateral growth that occurs is a portion of the total new ice growth,
depending on the area of open water close to floe edges. Lateral growth modifies the ITD and the FSD.

If tr_fsd=true, floes may weld together thermodynamically during freezing conditions according to the probability
that they overlap, assuming they are replaced randomly on the domain. Evolution of the FSD is described using a
coagulation equation. The total number of floes that weld with another, per square meter, per unit time, in the case
of a fully covered ice surface was estimated from observations in [52]. In its original model implementation, with 12
floe size categories, the tendency term for floe welding was divided by a constant equal to the area of the largest floe,
(approx 2 km^2), with this choice made as the product of sensitivity studies to balance the climatological tendencies
of wave fracture and welding. So that results do not vary as the number or range of floe size categories varies, we fix
this scaling coefficient, c_weld.

If the latent heat flux is negative (i.e., latent heat is transferred from the ice to the atmosphere), snow or snow-free ice
sublimates at the top surface. If the latent heat flux is positive, vapor from the atmosphere is deposited at the surface
as snow or ice. The thickness change of the surface layer is given by

(𝜌𝐿𝑣 − 𝑞)𝛿ℎ = 𝐹𝑙∆𝑡, (2.112)

where 𝜌 is the density of the surface material (snow or ice), and𝐿𝑣 = 2.501×106 J/kg is the latent heat of vaporization
of liquid water at 0∘𝐶. Note that 𝜌𝐿𝑣 is nearly an order of magnitude larger than typical values of 𝑞. For positive latent
heat fluxes, the deposited snow or ice is assumed to have the same enthalpy as the existing surface layer.

1 The mushy thermodynamics option does not include the enthalpy associated with raising the meltwater temperature to in these calculations,
unlike Bitz99, which does include it. This extra heat is returned to the ocean (or the atmosphere, in the case of evaporation) with the melt water.
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After growth and melting, the various ice layers no longer have equal thicknesses. We therefore adjust the layer in-
terfaces, conserving energy, so as to restore layers of equal thickness ∆ℎ𝑖 = ℎ𝑖/𝑁𝑖. This is done by computing the
overlap 𝜂𝑘𝑚 of each new layer 𝑘 with each old layer 𝑚:

𝜂𝑘𝑚 = min(𝑧𝑚, 𝑧𝑘)−max(𝑧𝑚−1, 𝑧𝑘−1),

where 𝑧𝑚 and 𝑧𝑘 are the vertical coordinates of the old and new layers, respectively. The enthalpies of the new layers
are

𝑞𝑘 =
1

∆ℎ𝑖

𝑁𝑖∑︁
𝑚=1

𝜂𝑘𝑚𝑞𝑚.

If tr_fsd=false, lateral melting is accomplished by multiplying the state variables by 1 − 𝑟𝑠𝑖𝑑𝑒, where 𝑟𝑠𝑖𝑑𝑒 is the
fraction of ice melted laterally [44][64], and adjusting the ice energy and fluxes as appropriate. We assume a floe
diameter of 300 m.

If tr_fsd=true, lateral melting is accomplished using the [44] lateral heat flux, but applied to the ice using the
prognostic floe size distribution as described in [24] and [51]. Lateral melt modifies the ITD and the FSD.

2.7.6 Snow-ice formation

At the end of the time step we check whether the snow is deep enough to lie partially below the surface of the ocean
(freeboard). From Archimedes’ principle, the base of the snow is at sea level when

𝜌𝑖ℎ𝑖 + 𝜌𝑠ℎ𝑠 = 𝜌𝑤ℎ𝑖.

Thus the snow base lies below sea level when

ℎ* ≡ ℎ𝑠 −
(𝜌𝑤 − 𝜌𝑖)ℎ𝑖

𝜌𝑠
> 0.

In this case, for ktherm = 1 (Bitz99) we raise the snow base to sea level by converting some snow to ice:

𝛿ℎ𝑠 =
−𝜌𝑖ℎ*

𝜌𝑤
,

𝛿ℎ𝑖 =
𝜌𝑠ℎ

*

𝜌𝑤
.

In rare cases this process can increase the ice thickness substantially. For this reason snow–ice conversions are post-
poned until after the remapping in thickness space (Transport in thickness space), which assumes that ice growth during
a single time step is fairly small.

For ktherm = 2 (mushy), we model the snow–ice formation process as follows: If the ice surface is below sea level
then we replace some snow with the same thickness of sea ice. The thickness change chosen is that which brings the
ice surface to sea level. The new ice has a porosity of the snow, which is calculated as

𝜑 = 1− 𝜌𝑠
𝜌𝑖

where 𝜌𝑠 is the density of snow and 𝜌𝑖 is the density of fresh ice. The salinity of the brine occupying the above porosity
within the new ice is taken as the sea surface salinity. Once the new ice is formed, the vertical ice and snow layers are
regridded into equal thicknesses while conserving energy and salt.
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2.8 Advanced snow physics

Once deposited, the character and distribution of snow on sea ice depend on re-transport (wind), melting/wetting, and
metamorphism (chiefly producing low-conductivity depth hoar or snow-ice). Each of these processes affects the other,
and they are crucial for the evolution of the sea ice pack [65]. In particular, Wind slab and depth hoar resist densification,
and Wind slab may prevent snow from drifting after deposition. Snow drifts around ridges cover only 6% of the ice
surface area and are about 30% deeper than other snow-covered areas, but they prevent seawater filled cracks around
the ridges from freezing, with important biological consequences.

The standard model configuration includes a basic snow formulation describing the essential effects of snow on sea
ice, such as its albedo, vertical conduction, and growth/melt processes. It also incorporates more detailed processes
such as snow-ice formation due to flooding and snow infiltration by melt water, which may form melt ponds. Several
potentially important processes are not included in the standard configuration, such as compaction and redistribution
of snow by wind and their effects on the thermal balance and on effective roughness. Snow metamorphism due to
temperature gradients and liquid water content also are not included.

Setting tr_snow = .true. activates advanced snow physics parameterizations that represent the following processes,
each of which has its own namelist flag for flexible configuration:

1. Radiative effects of snow redistribution by wind with respect to ice topography, including snow loss to leads and
snow compaction by wind

2. Coupling effects associated with snow saturation and pond formation.

3. Radiative effects of snow grain metamorphism (variable grain size)

Snow can be scoured from level ice, blowing into leads or piling up on ridges. The presence of liquid water in snow,
such as rain or melt water, changes the surface albedo dramatically. It also alters the conductivity of the snow pack.
These effects are associated mainly with the formation of depth hoar (change in grain size).

The standard model configuration assumes that the snow depth is uniform across each ice thickness category within
a grid cell for the vertical thermodynamic calculation. However, there are separate radiation calculations for bare ice,
snow-covered ice, and pond-covered ice; snow and ponds interact through snow saturation levels. Redistributing the
snow alters these radiative calculations.

2.8.1 Snow redistribution

Because the thermodynamic schemes in CICE assume a uniform snow depth over each category, ignoring the fractions
of level and deformed ice, effects of snow redistribution are included only via the delta-Eddington radiation scheme.
The redistributed snow depth is used to determine the effective area of bare ice (for very small snow depths) and the
effective area and depth of melt ponds over level ice. Once those areas are determined, the redistributed snow volume
over them is known, from which the snow depth for the remaining snow-covered area can be computed and used for its
radiation balance calculation.

Two basic approaches are available for snow redistribution by wind, snwredist = bulk, for which a user-defined
parameter 𝑝 (snwlvlfac) determines the ratio of snow on ridges to that on level ice, and snwITDrdg, in which snow
can be compacted by the wind or eroded and redeposited on other thickness categories. For both, nonlocal redistribution
of snow (i.e., between grid cells) is neglected, assuming that the difference between snow mass blowing into a grid cell
and that blowing out is negligible, but snow can be blown into nearby leads and open water.
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Bulk snow redistribution

[65] noted that on average during the SHEBA experiment, snow near ridged ice was 30% deeper than snow on unde-
formed ice. Using this rule of thumb, we can reduce the amount of snow on level ice in the model by reducing the
snowfall rate over the sea ice and assuming the removed snow volume passes into the ocean through leads, instanta-
neously. This approach takes into account the area of open water available, as in the original code, by employing a
precipitation flux in units of kg m −2 s −1, which accumulates snow only on the ice-covered area of the grid cell.

This approach affects the simulation in two ways: (1) the snow removed from the level ice area is deposited into leads,
and (2) using the snow remaining on the level ice area to adjust the effective melt pond and bare ice areas. Case (1) affects
both the radiative and thermodynamic calculations by reducing the total amount of snow on the ice. Case (2) affects
the radiative calculation directly, by possibly exposing more bare ice or melt ponds, but it affects the thermodynamic
(conduction) calculation only through the altered radiative absorption, since the snow is always assumed to be equally
deep over both level and deformed ice for the thermodynamic calculation.

When snwredist = bulk, snow loss to leads is accomplished simply by reducing the volume of snowfall reaching the
ice:

𝑓 ′𝑠 = 𝑓𝑠

[︂
𝑎𝑙𝑣𝑙

(︂
𝑝

1 + 𝑝

)︂]︂
,

where 𝑓𝑠 is the snowfall rate, 𝑎𝑙𝑣𝑙 is the average level-ice tracer value, and primed quantities represent their modified
values.

Snow is redistributed between level and ridged ice within a single thickness category by solving a pair of equations for
the modified level- and ridged-ice snow depths in terms of the original snow depth:

ℎ′𝑙𝑣𝑙 =
1

1 + 𝑝(1− 𝑎𝑙𝑣𝑙)
ℎ𝑙𝑣𝑙

ℎ′𝑟𝑑𝑔 =
1 + 𝑝

1 + 𝑝(1− 𝑎𝑙𝑣𝑙)
ℎ𝑙𝑣𝑙.

In the shortwave module for level-ice ponds, we create a new variable ℎ′𝑙𝑣𝑙 (hsnlvl) for snow depth over the level ice,
and replace hsn with hsnlvl for the snow infiltration calculation and for the calculation of snow depth over refrozen
melt ponds.

Snow redistribution and compaction by wind

Following [34], when snwredist = snwITDrdg we parameterize the amount of snow lost into the ocean through leads
or redistributed to other thickness categories by defining the redistribution function Φ for snow mass as the sum of an
erosion rate Φ𝐸 and a redeposition rate Φ𝑅 for each category of thickness ℎ𝑖:

Φ𝐸 =

(︂
𝜕𝑚

𝜕𝑡

)︂
𝑒𝑟𝑜𝑠𝑖𝑜𝑛

= − 𝛾

𝜎𝐼𝑇𝐷
(𝑉 − 𝑉 *)

𝜌𝑚𝑎𝑥 − 𝜌𝑠
𝜌𝑚𝑎𝑥

where 𝜌𝑠 and 𝜌𝑚𝑎𝑥 are the effective snow density and the maximum snow density in the model, respectively. For now,
we take 𝜌𝑠 to be the wind-compacted snow density computed at the end of the snow model time step.

Φ𝐸∆𝑡 represents the maximum snow mass per unit area that may be suspended from each category, subject to the total
mass (per unit area) available on each category.

Erosion begins when the instantaneous wind speed 𝑉 exceeds the seasonal wind speed required to compact the snow
to a density 𝜌𝑠, 𝑉 * = (𝜌𝑠−𝛽)/𝛼. 𝜎𝐼𝑇𝐷 is the standard deviation of the ice thicknesses from the thickness distribution
𝑔 within the grid cell. 𝛾 is a tuning coefficient for the eroded mass, which [34] set to 10−5 kg m −2. From [35],
𝜌𝑠 = 44.6𝑉 * + 174 kg m −3 for seasonal mean wind speed 𝑉 , i.e. 𝛼 = 174 kg m −3 and 𝛽 = 44.6 kg s m −4.
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In [34], the fraction of this suspended snow lost in leads is

𝑓 = (1− 𝑎𝑖) exp

(︂
−𝜎𝐼𝑇𝐷

𝜎𝑟𝑒𝑓

)︂
,

where the scale factor 𝜎𝑟𝑒𝑓 = 1 m and 𝑎𝑖 is the total ice area fraction within the grid cell. Thus, the snow mass that is
redistribution on the ice (i.e., not lost in leads) is

Φ𝑅∆𝑡 = 𝑎𝑖 (1− 𝑓) Φ𝐸∆𝑡.

We extend this approach by using the level and ridged ice thicknesses to compute the standard deviation of ice thickness
across all categories. That is,

𝜎2
𝐼𝑇𝐷 =

𝑁∑︁
𝑛=1

𝑎𝑖𝑛𝑎𝑙𝑣𝑙𝑛

(︃
ℎ𝑖𝑙𝑣𝑙𝑛 −

𝑁∑︁
𝑘=1

𝑎𝑖𝑘ℎ𝑖𝑘

)︃2

+ 𝑎𝑖𝑛𝑎𝑟𝑑𝑔𝑛

(︃
ℎ𝑖𝑟𝑑𝑔𝑛 −

𝑁∑︁
𝑘=1

𝑎𝑖𝑘ℎ𝑖𝑘

)︃2

.

When considering snow over ridged and level ice for the redistribution, we reapportion the fraction of snow on level
ice as 𝑎𝑠𝑙𝑣𝑙 = 1− (1 + 𝑝)𝑎𝑟𝑑𝑔 and note that with the average expression

𝑎𝑠𝑙𝑣𝑙 =

∑︀𝑁
𝑛=1 𝑎𝑖𝑛 (𝑎𝑙𝑣𝑙𝑛 − 𝑝𝑎𝑟𝑑𝑔𝑛)∑︀𝑁

𝑛=1 𝑎𝑖𝑛

a conservative redistribution of snow across thickness categories is (for each category 𝑛)

Φ𝑅(𝑛)∆𝑡 = 𝑎𝑖 (1− 𝑓) [𝑎𝑟𝑑𝑔𝑛 (1 + 𝑝) + 𝑎𝑠𝑙𝑣𝑙] Φ𝐸∆𝑡,

where 𝑝 ≤ 𝑎𝑙𝑣𝑙𝑛/𝑎𝑟𝑑𝑔𝑛.

The snow volume and energy state variables are updated in two steps, first for erosion of snow into suspension, then
snow redeposition. When redepositing the snow, the snow energy is distributed among the snow layers affected by
erosion, proportionally to the fraction of snow eroded. Finally, snow layer thicknesses are re-equalized, conserving
snow energy. The fraction of suspended snow mass and energy lost in leads is added to the fresh water and heat fluxes
for strict conservation.

High wind speeds compact the upper portion of a snow pack into “wind slab,” a dense and more conductive medium
that resists further drifting. An effective snow density is computed based on wind speed, which is then used to limit
snow erosion of denser snow.

[34] note that once snow is deposited, its density changes very little. During deposition, the density primarily falls into
one of two types, wind slab for wind velocities greater than about 10 m/s, and loose snow for lighter winds. Their table
3 indicates densities for a variety of snow types. “Hard slab,” deposited at 𝑉 = 13 m/s, has a density of 𝜌𝑠 = 403 kg m
−3 and “soft slab” is 𝜌𝑠 = 321 kg m −3, deposited at 𝑉 = 10 m/s. Linearly interpolating between these values, we have
𝜌𝑠 = 27.3𝑉 +47.7. The slope is an adjustable namelist parameter, drhosdwind. For simplicity, we assign a minimum
snow density of 𝜌𝑚𝑖𝑛

𝑠 = 100 kg m −3 s (rhosmin) and add to it the gradient associated with wind speed from [34] for
wind speeds greater than 10 m/s: 𝜌𝑛𝑒𝑤𝑠 = 𝜌𝑚𝑖𝑛

𝑠 + 27.3max (𝑉 − 10, 0). The minimum wind speed to compact snow
windmin is adjustable, and the maximum snow density is also a namelist parameter, rhosmax. This density is merged
with preexisting layer densities only if new snow falls. The thickness of the wind slab is the larger of the depth of newly
fallen snow or the thickness of snow redeposited by the wind. Following [65], density does not evolve further, other
than by transport, unless additional snow falls at high enough wind speeds to compact the snow.
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2.8.2 Ice and liquid water mass in snow

The advanced snow physics option calculates ice and liquid water mass and effective snow grain radius, enabling them
to interact with the radiation calculation. The mass of ice and liquid water in snow are implemented as tracers on
snow volume layers and used for the snow grain metamorphism. Together with snow volume, they also can be used to
determine effective snow density as 𝜌𝑒𝑓𝑓𝑠 = (𝑚𝑖𝑐𝑒 +𝑚𝑙𝑖𝑞)/ℎ𝑠. Note that 𝑚𝑖𝑐𝑒 +𝑚𝑙𝑖𝑞 is the snow water equivalent
(kg/m 2).

Sources of 𝑚𝑖𝑐𝑒 are snowfall, condensation, and freezing of liquid water within the snowpack; sinks are sublimation
and melting. All of the sources and sinks of 𝑚𝑖𝑐𝑒 are already computed in the code except for freezing of liquid water
within the snow pack.

Sources of 𝑚𝑙𝑖𝑞 are rain and snow melt; freezing of liquid water within the snowpack and runoff are sinks. Runoff and
meltwater entering a snow layer (i.e., runoff from the layer above) are associated with vertical flow through the snow
column. As in [47], when the liquid water within a snow layer exceeds the layer’s holding capacity, the excess water is
added to the underlying layer, limited by the effective porosity of the layer. When use_smliq_pnd is true, the excess
water is supplied to the melt pond parameterization, which puts a fraction of it into the pond volume and allows the
rest to run off into the ocean.

The snow mass fractions of precipitation and old ice are saved for metamorphosing the snow grain radius.

Except for the topo melt pond scheme, melt water and heat in ponds (which may be hidden within a partially saturated
snow pack) are “virtual” in the sense that they are provided to the ocean model component immediately upon melting,
even though the effects of the liquid water continue to be tracked as if it were retained on the ice. Retaining that water
and heat in the sea ice component alters the timing, location and magnitude of fresh water runoff events into the ocean.
All melt pond schemes include the meltwater effects, regardless of whether the liquid water is virtual. The advanced
snow physics option allows the liquid water calculated by the snow metamorphism scheme to be used for melt pond
calculations, replacing the snow melt and rainfall terms.

2.8.3 Metamorphosis of snow grains

When snwgrain = .true., dynamic, effective snow radius, a snow volume tracer, evolves analytically as a function
of snow temperature, temperature gradient, and density for radiative calculations using the delta-Eddington radiation
scheme. Wet metamorphism changes both density (through volume change) and effective grain size; here we only
consider changes in grain radius. In the formation of depth hoar, dry snow kinetic metamorphism (TG metamorphism)
also increases the snow grain radius.

The tracers𝑚𝑙𝑖𝑞 and𝑚𝑖𝑐𝑒 characterize the snow in each snow layer, for each ice category and horizontal grid cell. The
model’s meltpond volume covers a fraction of the grid cell and represents liquid in excess of𝑚𝑙𝑖𝑞 . The radiative effects
of snow grain radius in the fraction of ice covered by pond volume are only calculated when the pond volume has not yet
saturated the snow pack; otherwise, delta-Eddington transfer uses meltpond properties. Therefore, modelled changes
in snow grain radii from metamorphism are designed specifically for the fraction without exposed (i.e. effective) melt
ponds.

Following [47], the new snow grain radius is computed as a weighted function of existing and new (freshly fallen,
rsnw_fall) snow grain radii, using parameters from a look-up table that depends on snow temperature, temperature
gradient and (effective) density. The maximum snow radius is a namelist option, rsnw_tmax.
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2.9 Biogeochemistry

2.9.1 Aerosols

Basic Aerosols

Aerosols may be deposited on the ice and gradually work their way through it until the ice melts and they are passed
into the ocean. They are defined as ice and snow volume tracers (Eq. 15 and 16 in CICE.v5 documentation), with the
snow and ice each having two tracers for each aerosol species, one in the surface scattering layer (delta-Eddington SSL)
and one in the snow or ice interior below the SSL.

Rather than updating aerosols for each change to ice/snow thickness due to evaporation, melting, snow-ice formation,
etc., during the thermodynamics calculation, these changes are deduced from the diagnostic variables (melts, meltb,
snoice, etc) in icepack_aerosol.F90. Three processes change the volume of ice or snow but do not change the total
amount of aerosol, thus causing the aerosol concentration (the value of the tracer itself) to increase: evaporation, snow
deposition and basal ice growth. Basal and lateral melting remove all aerosols in the melted portion. Surface ice and
snow melt leave a significant fraction of the aerosols behind, but they do “scavenge” a fraction of them given by the
parameter kscav = [0.03, 0.2, 0.02, 0.02, 0.01, 0.01] (only the first 3 are used in CESM, for their 3 aerosol species).
Scavenging also applies to snow-ice formation. When sea ice ridges, a fraction of the snow on the ridging ice is thrown
into the ocean, and any aerosols in that fraction are also lost to the ocean.

As upper SSL or interior layers disappear from the snow or ice, aerosols are transferred to the next lower layer, or into
the ocean when no ice remains. The atmospheric flux faero_atm contains the rates of aerosol deposition for each
species, while faero_ocn has the rate at which the aerosols are transferred to the ocean.

The aerosol tracer flag tr_aero must be set to true in icepack_in, and the number of aerosol species is set in
icepack.settings; CESM uses 3.

Z-Aerosols

An alternate scheme for aerosols in sea ice is available using the brine motion based transport scheme of the biogeo-
chemical tracers. All vertically resolved biogeochemical tracers (z-tracers), including aerosols, have the potential to be
atmospherically deposited onto the snow or ice, scavenged during snow melt, and passed into the brine. The mobile
fraction (discussed in Mobile and stationary phases) is then transported via brine drainage processes (Eq. (2.129))
while a stationary fraction (discussed in Mobile and stationary phases) adheres to the ice crystals. Snow deposition
and the process of scavenging aerosols during snow melt is consistent with the basic aerosol scheme, though param-
eters have been generalized to accomodate potential atmospheric deposition for all z-tracers. For an example, see the
scavenging parameter kscavz for z-tracers defined in icepack_zbgc_shared.F90.

Within the snow, z-tracers are defined as concentrations in the snow surface layer (ℎ𝑠𝑠𝑙) and the snow interior (ℎ𝑠−ℎ𝑠𝑠𝑙).
The total snow content of z-tracers per ice area per grid cell area, 𝐶𝑠𝑛𝑜𝑤 is

𝐶𝑠𝑛𝑜𝑤 = 𝐶𝑠𝑠𝑙ℎ𝑠𝑠𝑙 + 𝐶𝑠𝑖𝑛𝑡(ℎ𝑠 − ℎ𝑠𝑠𝑙)

One major difference in how the two schemes model snow aerosol transport is that the fraction scavenged from snow
melt in the z-tracer scheme is not immediately fluxed into the ocean, but rather, enters the ice as a source of low salinity
but potentially tracer-rich brine. The snow melt source is included as a surface flux condition in icepack_algae.F90.

All the z-aerosols are nonreactive with the exception of the dust aerosols. We assume that a small fraction of the
dust flux into the ice has soluble iron (dustFe_sol in icepack_in) and so is passed to the dissolved iron tracer. The
remaining dust passes through the ice without reactions.

To use z-aerosols, tr_zaero must be set to true in icepack_in, and the number of z-aerosol species is set in
icepack.settings, TRZAERO. Note, the basic tracers tr_aero must be false and NTRAERO in icepack.settings should be
0. In addition, z-tracers and the brine height tracer must also be active. These are set in icepack_in with tr_brine
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and z_tracer set to true. In addition, to turn on the radiative coupling between the aerosols and the Delta-Eddington
radiative scheme, shortwave must equal ’dEdd’ and dEdd_algae must be true in icepack_in.

2.9.2 Water Isotope

Water isotopes may be deposited on the ice from above or below, and gradually work their way through it until the ice
melts and they are passed into the ocean. They are defined as ice and snow volume tracers (Eq. 15 and 16 in CICE.v5
documentation), with the snow and ice each having one tracer for each water isotope species.

Rather than updating water isotopes for each change to ice/snow thickness due to evaporation, melting, snow-ice for-
mation, etc., during the thermodynamics calculation, these changes are deduced from the diagnostic variables (melts,
meltb, snoice, etc) in icepack_isotope.F90. The water isotopes follow the “real” water in the sense that all of the mass
budget changes that impact fresh water equally affect the water isotopes. The sources of water isotopes are precipitation
(snow accumulation), condensation, and sea ice growth, including both frazil and congelation formation that take up
water isotopes from the ocean. The sinks are evaporation and melting snow and sea ice. Isotopic fractionation occurs
for vapor condensation and new sea ice growth, in which H2_16O (regular water, ${H_2}O$) is treated differently than
H2_18O and HDO.

More information can be found in [7].

2.9.3 Brine height

The brine height, ℎ𝑏, is the distance from the ice-ocean interface to the brine surface. When tr_brine is set true
in icepack_in and TRBRI is set equal to 1 in icepack.settings, the brine surface can move relative to the ice surface.
Physically, this occurs when the ice is permeable and there is a nonzero pressure head: the difference between the brine
height and the equilibrium sea surface. Brine height motion is computed in icepack_brine.F90 from thermodynamic
variables and the ice microstructural state deduced from internal bulk salinities and temperature. This tracer is required
for the transport of vertically resolved biogeochemical tracers.

Vertical transport processes are, generally, a result of the brine motion. Therefore the vertical transport equations for
biogeochemical tracers will be defined only where brine is present. This region, from the ice-ocean interface to the brine
height, defines the domain of the vertical bio-grid. The resolution of the bio-grid is specified in icepack.settings by
setting the variable NBGCLYR. A detailed description of the bio-grid is given in section Grid and boundary conditions.
The ice microstructural state, determined in icepack_brine.F90, is computed from sea ice salinities and temperatures
linearly interpolated to the bio-grid. When ℎ𝑏 > ℎ𝑖, the upper surface brine is assumed to have the same temperature
as the ice surface.

Brine height is transported horizontally as the fraction 𝑓𝑏𝑟𝑖 = ℎ𝑏/ℎ𝑖, a volume conserved tracer. Note that unlike the
sea ice porosity, brine height fraction may be greater than 1 when ℎ𝑏 > ℎ𝑖.

Changes to ℎ𝑏 occur from ice and snow melt, ice bottom boundary changes, and from pressure adjustments. The
computation of ℎ𝑏 at 𝑡+∆𝑡 is a two step process. First, ℎ𝑏 is updated from changes in ice and snow thickness, ie.

ℎ′𝑏 = ℎ𝑏(𝑡) + ∆ℎ𝑏|ℎ𝑖,ℎ𝑠
. (2.113)

Second, pressure driven adjustments arising from meltwater flushing and snow loading are applied to ℎ′𝑏. Brine flow
due to pressure forces are governed by Darcy’s equation

𝑤 = −Π*𝜌𝑔

𝜇

ℎ𝑝
ℎ𝑖
. (2.114)

The vertical component of the net permeability tensor Π* is computed as

Π* =

(︃
1

ℎ

𝑁∑︁
𝑖=1

∆𝑧𝑖
Π𝑖

)︃−1

(2.115)
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where the sea ice is composed of 𝑁 vertical layers with 𝑖th layer thickness ∆𝑧𝑖 and permeability Π𝑖. The average sea
ice density is 𝜌 specified in icepack_zbgc_shared.F90. The hydraulic head is ℎ𝑝 = ℎ𝑏−ℎ𝑠𝑙 where ℎ𝑠𝑙 is the sea level
given by

ℎ𝑠𝑙 =
𝜌

𝜌𝑤
ℎ𝑖 +

𝜌𝑠
𝜌𝑤
ℎ𝑠. (2.116)

Assuming constant ℎ𝑖 and ℎ𝑠 during Darcy flow, the rate of change of ℎ𝑏 is

𝜕ℎ𝑏
𝜕𝑡

= −𝑤ℎ𝑝 (2.117)

where 𝑤𝑜 = Π*𝜌𝑔/(ℎ𝑖𝜇𝜑𝑡𝑜𝑝) and 𝜑𝑡𝑜𝑝 is the upper surface porosity. When the Darcy flow is downward into the
ice (𝑤𝑜 < 0), then 𝜑𝑡𝑜𝑝 equals the sea ice porosity in the uppermost layer. However, when the flow is upwards into
the snow, then 𝜑𝑡𝑜𝑝 equals the snow porosity phi_snow specified in icepack_in. If a negative number is specified for
phi_snow, then the default value is used: phi_snow = 1− 𝜌𝑠/𝜌𝑤.

Since ℎ𝑠𝑙 remains relatively unchanged during Darcy flow, (2.117) has the approximate solution

ℎ𝑏(𝑡+∆𝑡) ≈ ℎ𝑠𝑙(𝑡+∆𝑡) + [ℎ′𝑏 − ℎ𝑠𝑙(𝑡+∆𝑡)] exp {−𝑤∆𝑡} . (2.118)

The contribution ∆ℎ𝑏|ℎ𝑖,ℎ𝑠
arises from snow and ice melt and bottom ice changes. Since the ice and brine bottom

boundaries coincide, changes in the ice bottom from growth or melt, (∆ℎ𝑖)𝑏𝑜𝑡, equal the bottom brine boundary
changes. The surface contribution from ice and snow melt, however, is opposite in sign. The ice contribution is as
follows. If ℎ𝑖 > ℎ𝑏 and the ice surface is melting, ie. (∆ℎ𝑖)𝑡𝑜𝑝 < 0), then meltwater increases the brine height:

(∆ℎ𝑏)𝑡𝑜𝑝 =
𝜌𝑖
𝜌𝑜

·
{︂

−(∆ℎ𝑖)𝑡𝑜𝑝 if |(∆ℎ𝑖)𝑡𝑜𝑝| < ℎ𝑖 − ℎ𝑏
ℎ𝑖 − ℎ𝑏 otherwise. (2.119)

For snow melt (∆ℎ𝑠 < 0), it is assumed that all snow meltwater contributes a source of surface brine. The total change
from snow melt and ice thickness changes is

∆ℎ𝑏|ℎ𝑖,ℎ𝑠 = (∆ℎ𝑏)𝑡𝑜𝑝 − (∆ℎ𝑖)𝑏𝑜𝑡 −
𝜌𝑠
𝜌𝑜

∆ℎ𝑠. (2.120)

The above brine height calculation is used only when ℎ𝑖 and ℎ𝑏 exceed a minimum thickness, thinS, specified in
icepack_zbgc_shared.F90. Otherwise

ℎ𝑏(𝑡+∆𝑡) = ℎ𝑏(𝑡) + ∆ℎ𝑖 (2.121)

provided that |ℎ𝑠𝑙 − ℎ𝑏| ≤ 0.001. This formulation ensures small Darcy velocities when ℎ𝑏 first exceeds thinS.

Both the volume fraction 𝑓𝑏𝑟𝑖 and the area-weighted brine height ℎ𝑏 are available for output.∑︀
𝑓𝑏𝑟𝑖𝑣𝑖∑︀
𝑣𝑖

, (2.122)

while hbri is comparable to hi (ℎ𝑖) ∑︀
𝑓𝑏𝑟𝑖ℎ𝑖𝑎𝑖∑︀
𝑎𝑖

, (2.123)

where the sums are taken over thickness categories.

2.9.4 Sea ice ecosystem

There are two options for modeling biogeochemistry in sea ice: 1) a skeletal layer or bottom layer model that assumes
biology and biological molecules are restricted to a single layer at the base of the sea ice; and 2) a vertically resolved
model (zbgc) that allows for biogeochemical processes throughout the ice column. The two models may be run with
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the same suite of biogeochemical tracers and use the same module algal_dyn in icepack_algae.F90 to determine the
biochemical reaction terms for the tracers at each vertical grid level. In the case of the skeletal-layer model this is a
single layer, while for zbgc there are NBGCLYR+1 vertical layers. The primary difference between the two schemes
is in the vertical transport assumptions for each biogeochemical tracer. This includes the parameterizations of fluxes
between ocean and ice.

In order to run with the skeletal-layer model, the code must be built with the following options in icepack.settings:

setenv TRBGCS 1 # set to 1 for skeletal layer tracers
setenv TRBGCZ 0 # set to 1 for zbgc tracers

For zbgc with 8 vertical layers:

setenv TRBRI 1 # set to 1 for brine height tracer
setenv TRBGCS 0 # set to 1 for skeletal layer tracers
setenv TRBGCZ 1 # set to 1 for zbgc tracers
setenv NBGCLYR 7 # number of zbgc layers

There are also environmental variables in icepack.settings that, in part, specify the complexity of the ecosystem and
are used for both zbgc and the skeletal-layer model. These are 1) TRALG, the number of algal species; 2) TRDOC,
the number of dissolved organic carbon groups, 3) TRDIC, the number of dissolved inorganic carbon groups (this is
currently not yet implemented and should be set to 0); 4) TRDON, the number of dissolved organic nitrogen groups, 5)
TRFEP, the number of particulate iron groups; and 6) TRFED, the number of dissolved iron groups. The current version
of algal_dyn biochemistry has parameters for up to 3 algal species (diatoms, small phytoplankton and Phaeocystis sp,
respectively), 2 DOC tracers (polysaccharids and lipids, respectively), 0 DIC tracers, 1 DON tracer (proteins/amino
acids), 1 particulate iron tracer and 1 dissolved iron tracer. Note, for tracers with multiple species/groups, the order is
important. For example, specifying TRALG = 1 will compute reaction terms using parameters specific to ice diatoms.
However, many of these parameters can be modified in icepack_in.

The complexity of the algal ecosystem must be specified in both icepack.settings during the build and in the namelist,
icepack_in. The procedure is equivalent for both the skeletal-layer model and zbgc. The namelist specification is
described in detail in section Vertical BGC (‘’zbgc”)

Biogeochemical upper ocean concentrations are initialized in the subroutine icepack_init_ocean_conc in
icepack_zbgc.F90 unless coupled to the ocean biogeochemistry. Silicate and nitrate may be read from a file. This
option is specified in the namelist by setting the variables bgc_data_type to ISPOL or NICE. The location of forcing
files is specified in data_dir and the filename is also in namelist, bgc_data_file.

Skeletal Layer BGC

In the skeletal layer model, biogeochemical processing is modelled as a single layer of reactive tracers attached to the
sea ice bottom. Optional settings are available via the zbgc_nml namelist in icepack_in. In particular, skl_bgc must
be true and z_tracers and solve_zbgc must both be false.

Skeletal tracers 𝑇𝑏 are ice area conserved and follow the horizontal transport Equation (2.25). For each horizontal grid
point, local biogeochemical tracer equations are solved in icepack_algae.F90. There are two types of ice-ocean tracer
flux formulations: 1) ‘Jin2006’ modeled after the growth rate dependent piston velocity and 2) ‘constant’ modeled after
a constant piston velocity. The formulation is specified in icepack_in by setting bgc_flux_type equal to ‘Jin2006’
or ‘constant’.

In addition to horizontal advection and transport among thickness categories, biogeochemical tracers (𝑇𝑏 where 𝑏 =
1, . . . , 𝑁𝑏) satisfy a set of local coupled equations of the form

𝑑𝑇𝑏
𝑑𝑡

= 𝑤𝑏
∆𝑇𝑏
∆𝑧

+𝑅𝑏(𝑇𝑗 : 𝑗 = 1, . . . , 𝑁𝑏) (2.124)
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where 𝑅𝑏 represents the nonlinear biochemical reaction terms (described in section Reaction Equations) and ∆𝑧 is a
length scale representing the molecular sublayer of the ice-ocean interface. Its value is absorbed in the piston velocity
parameters. The piston velocity 𝑤𝑏 depends on the particular tracer and the flux formulation.

For ‘Jin2006’, the piston velocity is a function of ice growth and melt rates. All tracers (algae included) flux with the
same piston velocity during ice growth, 𝑑ℎ/𝑑𝑡 > 0:

𝑤𝑏 = −𝑝𝑔

⃒⃒⃒⃒
⃒𝑚1 +𝑚2

𝑑ℎ

𝑑𝑡
−𝑚3

(︂
𝑑ℎ

𝑑𝑡

)︂2
⃒⃒⃒⃒
⃒ (2.125)

with parameters𝑚1, 𝑚2, 𝑚3 and 𝑝𝑔 defined in skl_biogeochemistry in icepack_algae.F90. For ice melt, 𝑑ℎ/𝑑𝑡 < 0,
all tracers with the exception of ice algae flux with

𝑤𝑏 = 𝑝𝑚

⃒⃒⃒⃒
⃒𝑚2

𝑑ℎ

𝑑𝑡
−𝑚3

(︂
𝑑ℎ

𝑑𝑡

)︂2
⃒⃒⃒⃒
⃒ (2.126)

with 𝑝𝑚 defined in skl_biogeochemistry. The ‘Jin2006’ formulation also requires that for both expressions, |𝑤𝑏| ≤
0.9ℎ𝑠𝑘/∆𝑡. The concentration difference at the ice-ocean boundary for each tracer, ∆𝑇𝑏, depends on the sign of 𝑤𝑏.
For growing ice, 𝑤𝑏 < 0, ∆𝑇𝑏 = 𝑇𝑏/ℎ𝑠𝑘 − 𝑇𝑖𝑜, where 𝑇𝑖𝑜 is the ocean concentration of tracer 𝑖. For melting ice,
𝑤𝑏 > 0, ∆𝑇𝑏 = 𝑇𝑏/ℎ𝑠𝑘.

In ‘Jin2006’, the algal tracer (𝑁𝑎) responds to ice melt in the same manner as the other tracers (2.126). However, this
is not the case for ice growth. Unlike dissolved nutrients, algae are able to cling to the ice matrix and resist expulsion
during desalination. For this reason, algal tracers do not flux between ice and ocean during ice growth unless the ice
algal brine concentration is less than the ocean algal concentration (𝑁𝑜). Then the ocean seeds the sea ice concentration
according to

𝑤𝑏
∆𝑁𝑎

∆𝑧
=
𝑁𝑜ℎ𝑠𝑘/𝜑𝑠𝑘 −𝑁𝑎

∆𝑡
(2.127)

The ‘constant’ formulation uses a fixed piston velocity (PVc) for positive ice growth rates for all tracers except 𝑁𝑎. As
in ‘Jin2006’, congelation ice growth seeds the sea ice algal population according to (2.127) when 𝑁𝑎 < 𝑁𝑜ℎ𝑠𝑘/𝜑𝑠𝑘.
For bottom ice melt, all tracers follow the prescription

𝑤𝑏
∆𝑇𝑏
∆𝑧

=

{︂
𝑇𝑏|𝑑ℎ𝑖/𝑑𝑡|/ℎ𝑠𝑘 if |𝑑ℎ𝑖/𝑑𝑡|∆𝑡/ℎ𝑠𝑘 < 1
𝑇𝑏/∆𝑡 otherwise. (2.128)

A detailed description of the biogeochemistry reaction terms is given in section Reaction Equations.

Vertical BGC (‘’zbgc”)

In order to solve for the vertically resolved biogeochemistry, several flags in icepack_in must be true: a) tr_brine, b)
z_tracers, and c) solve_zbgc.

• tr_brine = true turns on the dynamic brine height tracer, ℎ𝑏, which defines the vertical domain of the biogeo-
chemical tracers. z-Tracer horizontal transport is conserved on ice volume×brine height fraction.

• z_tracers = true indicates use of vertically resolved biogeochemical and z-aerosol tracers. This flag alone turns
on the vertical transport scheme but not the biochemistry.

• solve_zbgc = true turns on the biochemistry for the vertically resolved tracers and automatically turns on the
algal nitrogen tracer flag tr_bgc_N. If false, tr_bgc_N is set false and any other biogeochemical tracers in use are
transported as passive tracers. This is appropriate for the black carbon and dust aerosols specified by tr_zaero
true.

With the above flags, the default biochemistry is a simple algal-nitrate system: tr_bgc_N and tr_bgc_Nit are true.
Options exist in icepack_in to use a more complicated ecosystem which includes up to three algal classes, two DOC
groups, one DON pool, limitation by nitrate, silicate and dissolved iron, sulfur chemistry plus refractory humic material.
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The icepack_in namelist options are described in the Tables of Namelist Options.

Vertically resolved z-tracers are brine- volume conserved and thus depend on both the ice volume and the brine height
fraction tracer (𝑣𝑖𝑛𝑓𝑏). These tracers follow the conservation equations for multiply dependent tracers (see, for example
Equation (2.70) where 𝑎𝑝𝑛𝑑 is a tracer on 𝑎𝑙𝑣𝑙𝑎𝑖)

The following sections describe the vertical transport equation for mobile tracers, the partitioning of tracers into mobile
and stationary fractions and the biochemical reaction equations. The vertical bio-grid is described in the Grid and
boundary conditions section.

Mobile and stationary phases

Purely mobile tracers are tracers which move with the brine and thus, in the absence of biochemical reactions, evolve like
salinity. For vertical tracer transport of purely mobile tracers, the flux conserved quantity is the bulk tracer concentration
multiplied by the ice thickness, i.e. 𝐶 = ℎ𝜑[𝑐], where ℎ is the ice thickness, 𝜑 is the porosity, and [𝑐] is the tracer
concentration in the brine. 𝜑, [𝑐] and 𝐶 are defined on the interface bio grid (igrid):

igrid(𝑘) = ∆(𝑘 − 1) for 𝑘 = 1 : 𝑛𝑏 + 1 and ∆ = 1/𝑛𝑏.

The biogeochemical module solves the following equation:

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥

{︃(︃
𝑣

ℎ
+
𝑤𝑓

ℎ𝜑
− �̃�

ℎ2𝜑2
𝜕𝜑

𝜕𝑥

)︃
𝐶 +

�̃�

ℎ2𝜑

𝜕𝐶

𝜕𝑥

}︃
+ ℎ𝜑𝑅([𝑐]) (2.129)

where 𝐷𝑖𝑛 = �̃�/ℎ2 = (𝐷 + 𝜑𝐷𝑚)/ℎ2 and 𝑅([𝑐]) is the nonlinear biogeochemical interaction term (see [29]).

The solution to (2.129) is flux-corrected and positive definite. This is accomplished using a finite element Galerkin
discretization. Details are in Flux-corrected, positive definite transport scheme.

In addition to purely mobile tracers, some tracers may also adsorb or otherwise adhere to the ice crystals. These tracers
exist in both the mobile and stationary phases. In this case, their total brine concentration is a sum 𝑐𝑚 + 𝑐𝑠 where
𝑐𝑚 is the mobile fraction transported by equation (2.129) and 𝑐𝑠 is fixed vertically in the ice matrix. The algae are
an exception, however. We assume that algae in the stationary phase resist brine motion, but rather than being fixed
vertically, these tracers maintain their relative position in the ice. Algae that adhere to the ice interior (bottom, surface),
remain in the ice interior (bottom, surface) until release to the mobile phase.

In order to model the transfer between these fractions, we assume that tracers adhere (are retained) to the crystals with
a time-constant of 𝜏𝑟𝑒𝑡, and release with a time constant 𝜏𝑟𝑒𝑙, i.e.

𝜕𝑐𝑚
𝜕𝑡

= − 𝑐𝑚
𝜏𝑟𝑒𝑡

+
𝑐𝑠
𝜏𝑟𝑒𝑙

𝜕𝑐𝑠
𝜕𝑡

=
𝑐𝑚
𝜏𝑟𝑒𝑡

− 𝑐𝑠
𝜏𝑟𝑒𝑙

We use the exponential form of these equations:

𝑐𝑡+𝑑𝑡
𝑚 = 𝑐𝑡𝑚 exp

(︂
− 𝑑𝑡

𝜏𝑟𝑒𝑡

)︂
+ 𝑐𝑡𝑠

(︂
1− exp

[︂
− 𝑑𝑡

𝜏𝑟𝑒𝑙

]︂)︂

𝑐𝑡+𝑑𝑡
𝑠 = 𝑐𝑡𝑠 exp

(︂
− 𝑑𝑡

𝜏𝑟𝑒𝑙

)︂
+ 𝑐𝑡𝑚

(︂
1− exp

[︂
− 𝑑𝑡

𝜏𝑟𝑒𝑡

]︂)︂
The time constants are functions of the ice growth and melt rates (𝑑ℎ/𝑑𝑡). All tracers except algal nitrogen diatoms
follow the simple case: when 𝑑ℎ/𝑑𝑡 ≥ 0, then 𝜏𝑟𝑒𝑙 → ∞ and 𝜏𝑟𝑒𝑡 is finite. For 𝑑ℎ/𝑑𝑡 < 0, then 𝜏𝑟𝑒𝑡 → ∞ and 𝜏𝑟𝑒𝑙
is finite. In other words, ice growth promotes transitions to the stationary phase and ice melt enables transitions to the
mobile phase.
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The exception is the diatom pool. We assume that diatoms, the first algal nitrogen group, can actively maintain their
relative position within the ice, i.e. bottom (interior, upper) algae remain in the bottom (interior, upper) ice, unless melt
rates exceed a threshold. The namelist parameter algal_vel sets this threshold.

The variable bgc_tracer_type determines the mobile to stationary transition timescales for each z-tracer. It is
multi-dimensional with a value for each z-tracer. For bgc_tracer_type``(k) equal to -1, the kth tracer
remains solely in the mobile phase. For ``bgc_tracer_type equal to 1, the tracer has maximal rates in
the retention phase and minimal in the release. For bgc_tracer_type equal to 0, the tracer has maximal rates in the
release phase and minimal in the retention. Finally for bgc_tracer_type equal to 0.5, minimum timescales are used
for both transitions. Table Types of Mobile and Stationary Transitions summarizes the transition types. The tracer
types are: algaltype_diatoms, algaltype_sp (small plankton), algaltype_phaeo (phaeocystis), nitratetype,
ammoniumtype, silicatetype, dmspptype, dmspdtype, humtype, doctype_s (saccharids), doctype_l (lipids),
dontype_protein, fedtype_1, feptype_1, zaerotype_bc1 (black carbon class 1), zaerotype_bc2 (black car-
bon class 2), and four dust classes, zaerotype_dustj, where j takes values 1 to 4. These may be modified to increase
or decrease retention. Another option is to alter the minimum tau_min and maximum tau_max timescales which
would impact all the z-tracers.

Table 3: Types of Mobile and Stationary Transitions
bgc_tracer_type 𝜏𝑟𝑒𝑡 𝜏𝑟𝑒𝑙 Description
-1.0 ∞ 0 entirely in the mobile phase
0.0 min max retention dominated
1.0 max min release dominated
0.5 min min equal but rapid exchange
2.0 max max equal but slow exchange

The fraction of a given tracer in the mobile phase is independent of ice depth and stored in the tracer variable zbgc_frac.
The horizontal transport of this tracer is conserved on brine volume and so is dependent on two tracers: brine height
fraction (𝑓𝑏) and ice volume (𝑣𝑖𝑛). The conservation equations are given by

𝜕

𝜕𝑡
(𝑓𝑏𝑣𝑖𝑛) +∇ · (𝑓𝑏𝑣𝑖𝑛u) = 0.

The tracer, zbgc_frac, is initialized to 1 during new ice formation, because all z-tracers are initially in the purely
mobile phase. Similarly, as the ice melts, z-tracers return to the mobile phase. Very large release timescales will
prevent this transition and could result in an unphysically large accumulation during the melt season.

Flux-corrected, positive definite transport scheme

Numerical solution of the vertical tracer transport equation is accomplished using the finite element Galerkin discretiza-
tion. Multiply (2.129) by “w” and integrate by parts∫︁

ℎ

[︂
𝑤
𝜕𝐶
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− 𝜕𝑤
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−
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ℎ
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𝐶|𝑡𝑜𝑝 = 0

The bottom boundary condition indicated by |𝑏𝑜𝑡𝑡𝑜𝑚 satisfies
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𝑤𝑓
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(𝐶𝑁+2 or 𝐶𝑁+1)− 𝑤

𝐷𝑖𝑛

𝜑𝑁+1(∆ℎ+ 𝑔𝑜)
(𝐶𝑁+1 − 𝐶𝑁+2)

where 𝐶𝑁+2 = ℎ𝜑𝑁+1[𝑐]𝑜𝑐𝑒𝑎𝑛 and 𝑤 = 1 at the bottom boundary and the top. The component 𝐶𝑁+2 or 𝐶𝑁+1

depends on the sign of the advection boundary term. If 𝑑ℎ𝑏 + 𝑤𝑓/𝜑 > 0 then use 𝐶𝑁+2 otherwise 𝐶𝑁+1.
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Define basis functions as linear piecewise, with two nodes (boundary nodes) in each element. Then for 𝑖 > 1 and
𝑖 < 𝑁 + 1

𝑤𝑖(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0 𝑥 < 𝑥𝑖−1

(𝑥− 𝑥𝑖−1)/∆ 𝑥𝑖−1 < 𝑥 ≤ 𝑥𝑖
1− (𝑥− 𝑥𝑖)/∆ 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1

0, 𝑥 ≥ 𝑥𝑖+1

For 𝑖 = 1

𝑤1(𝑥) =

{︂
1− 𝑥/∆ 𝑥 < 𝑥2
0, 𝑥 ≥ 𝑥2

and 𝑖 = 𝑁 + 1

𝑤𝑁+1(𝑥) =

{︂
0, 𝑥 < 𝑥𝑁
(𝑥− 𝑥𝑁 )/∆ 𝑥 ≥ 𝑥𝑁

Now assume a form

𝐶ℎ =
𝑁+1∑︁
𝑗

𝑐𝑗𝑤𝑗

Then ∫︁
ℎ

𝐶ℎ𝑑𝑥 = 𝑐1

∫︁ 𝑥2

0

(︁
1− 𝑥

∆

)︁
𝑑𝑥+ 𝑐𝑁+1

∫︁ 𝑥𝑁+1

𝑥𝑁

𝑥− 𝑥𝑁
∆

𝑑𝑥

+

𝑁∑︁
𝑗=2

𝑐𝑗

{︂∫︁ 𝑗

𝑗−1

𝑥− 𝑥𝑗−1

∆
𝑑𝑥+

∫︁ 𝑗+1

𝑗

[︂
1− (𝑥− 𝑥𝑗)

∆

]︂
𝑑𝑥

}︂

= ∆

⎡⎣𝑐1
2

+
𝑐𝑁+1

2
+

𝑁∑︁
𝑗=2

𝑐𝑗

⎤⎦
Now this approximate solution form is substituted into the variational equation with 𝑤 = 𝑤ℎ ∈ {𝑤𝑗}

0 =

∫︁
ℎ

[︂
𝑤ℎ

𝜕𝐶ℎ

𝜕𝑡
− 𝜕𝑤ℎ

𝜕𝑥

(︂[︂
− 𝑣
ℎ
− 𝑤𝑓

ℎ𝜑
+
𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥

]︂
𝐶ℎ − 𝐷𝑖𝑛

𝜑

𝜕𝐶ℎ

𝜕𝑥

)︂]︂
𝑑𝑥

+ 𝑤ℎ

(︂
−
[︂
1

ℎ

𝑑ℎ𝑏
𝑑𝑡

+
𝑤𝑓

ℎ𝜑

]︂
𝐶ℎ +

𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥
𝐶 − 𝐷𝑖𝑛

𝜑

𝜕𝐶ℎ

𝜕𝑥

)︂⃒⃒⃒⃒
𝑏𝑜𝑡𝑡𝑜𝑚

+ 𝑤ℎ

[︂
1

ℎ

𝑑ℎ𝑡
𝑑𝑡

+
𝑤𝑓

ℎ𝜑

]︂
𝐶ℎ|𝑡𝑜𝑝

The result is a linear matrix equation

𝑀𝑗𝑘
𝜕𝐶𝑘(𝑡)

𝜕𝑡
= [𝐾𝑗𝑘 + 𝑆𝑗𝑘]𝐶𝑘(𝑡) + 𝑞𝑖𝑛

where

𝑀𝑗𝑘 =

∫︁
ℎ

𝑤𝑗(𝑥)𝑤𝑘(𝑥)𝑑𝑥

𝐾𝑗𝑘 =

[︂
− 𝑣
ℎ
− 𝑤𝑓

ℎ𝜑
+
𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥

]︂ ∫︁
ℎ

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑘𝑑𝑥

− 𝑤𝑗

(︂
−
[︂
𝑣

ℎ
+

𝑤𝑓

ℎ𝜑𝑘

]︂
𝑤𝑘 +

𝐷𝑖𝑛

𝜑2
𝜕𝜑𝑘
𝜕𝑥

𝑤𝑘 − 𝐷𝑖𝑛

𝜑𝑘

𝜕𝑤𝑘

𝜕𝑥

)︂⃒⃒⃒⃒
𝑏𝑜𝑡

= −𝑉𝑘
∫︁
ℎ

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑘𝑑𝑥− 𝑤𝑗

(︂
−𝑉𝑘𝑤𝑘 − 𝐷𝑖𝑛

𝜑𝑘

𝜕𝑤𝑘

𝜕𝑥

)︂⃒⃒⃒⃒
𝑏𝑜𝑡

𝑆𝑗𝑘 = −𝐷𝑖𝑛

𝜑𝑘

∫︁
ℎ

𝜕𝑤𝑗

𝜕𝑥
· 𝜕𝑤𝑘

𝜕𝑥
𝑑𝑥

𝑞𝑖𝑛 = −𝑉 𝐶𝑡𝑤𝑗(𝑥)|𝑡

54 Chapter 2. Science Guide



Icepack Documentation

and 𝐶𝑁+2 = ℎ𝜑𝑁+1[𝑐]𝑜𝑐𝑒𝑎𝑛.

For the top condition 𝑞𝑖𝑛 is applied to the upper value 𝐶2 when 𝑉 𝐶𝑡 < 0, i.e. 𝑞𝑖𝑛 is a source.

Compute the 𝑀𝑗𝑘 integrals:

𝑀𝑗𝑗 =

∫︁ 𝑥𝑗

𝑥𝑗−1

(𝑥− 𝑥𝑗−1)
2

∆2
𝑑𝑥+

∫︁ 𝑥𝑗+1

𝑥𝑗

[︂
1− (𝑥− 𝑥𝑗)

∆

]︂2
𝑑𝑥 =

2∆

3
for 1 < 𝑗 < 𝑁 + 1

𝑀11 =

∫︁ 𝑥2

𝑥1

[︂
1− (𝑥− 𝑥2)

∆

]︂2
𝑑𝑥 =

∆

3

𝑀𝑁+1,𝑁+1 =

∫︁ 𝑥𝑁+1

𝑥𝑁

(𝑥− 𝑥𝑁 )2

∆2
𝑑𝑥 =

∆

3

Off diagonal components:

𝑀𝑗,𝑗+1 =

∫︁ 𝑥𝑗+1

𝑥𝑗

[︂
1− (𝑥− 𝑥𝑗)

∆

]︂ [︂
𝑥− 𝑥𝑗
∆

]︂
𝑑𝑥 =

∆

6
for 𝑗 < 𝑁 + 1

𝑀𝑗,𝑗−1 =

∫︁ 𝑥𝑗

𝑥𝑗−1

[︂
𝑥− 𝑥𝑗−1

∆

]︂ [︂
1− (𝑥− 𝑥𝑗−1)

∆

]︂
𝑑𝑥 =

∆

6
for 𝑗 > 1

Compute the 𝐾𝑗𝑘 integrals:

𝐾𝑗𝑗 = 𝑘′𝑗𝑗

[︃∫︁ 𝑥𝑗

𝑥𝑗−1

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑗𝑑𝑥+

∫︁ 𝑥𝑗+1

𝑥𝑗

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑗𝑑𝑥

]︃

=
1

2
+−1

2
= 0 for 1 < 𝑗 < 𝑁 + 1

𝐾11 = −𝑘
′
11

2
=

1

2

[︂
𝑣

ℎ
+
𝑤𝑓

ℎ𝜑

]︂
𝐾𝑁+1,𝑁+1 =

𝑘′𝑁+1,𝑁+1

2
+ min

[︂
0,

(︂
1

ℎ

𝑑ℎ𝑏
𝑑𝑡

+
𝑤𝑓

ℎ𝜑𝑁+1

)︂]︂
− 𝐷𝑖𝑛

𝜑𝑁+1(𝑔𝑜/ℎ)

=

[︂
− 𝑣
ℎ
− 𝑤𝑓

ℎ𝜑
+
𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥

]︂
1

2
+ min

[︂
0,

(︂
1

ℎ

𝑑ℎ𝑏
𝑑𝑡

+
𝑤𝑓

ℎ𝜑𝑁+1

)︂]︂
− 𝐷𝑖𝑛

𝜑𝑁+1(𝑔𝑜/ℎ)

Off diagonal components:

𝐾𝑗(𝑗+1) = 𝑘′𝑗(𝑗+1)

∫︁ 𝑥𝑗+1

𝑥𝑗

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑗+1𝑑𝑥 = −𝑘′𝑗(𝑗+1)

∫︁ 𝑥𝑗+1

𝑥𝑗

(𝑥− 𝑥𝑗)

∆2
𝑑𝑥

= −
𝑘′𝑗(𝑗+1)

∆2

∆2

2
= −

𝑘′𝑗(𝑗+1)

2
= 𝑝5 *

[︂
𝑣

ℎ
+
𝑤𝑓

ℎ𝜑
− 𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥

]︂
(𝑗+1)

for 𝑗 < 𝑁 + 1

𝐾𝑗(𝑗−1) = 𝑘′𝑗(𝑗−1)

∫︁ 𝑥𝑗

𝑥𝑗−1

𝜕𝑤𝑗

𝜕𝑥
𝑤𝑗−1𝑑𝑥 = 𝑘′𝑗(𝑗−1)

∫︁ 𝑥𝑗

𝑥𝑗−1

[︂
1− (𝑥− 𝑥𝑗−1)

∆2

]︂
𝑑𝑥

=
𝑘′𝑗(𝑗−1)

∆2

∆2

2
=
𝑘′𝑗(𝑗−1)

2
= −𝑝5 *

[︂
𝑣

ℎ
+
𝑤𝑓

ℎ𝜑
− 𝐷𝑖𝑛

𝜑2
𝜕𝜑

𝜕𝑥

]︂
(𝑗−1)

for 𝑗 > 1

For 𝐾𝑁+1,𝑁 , there is a boundary contribution:

𝐾𝑁+1,𝑁 =
𝑘′𝑁+1(𝑁)

2
− 𝐷𝑁

∆𝜑𝑁

The bottom condition works if 𝐶𝑏𝑜𝑡 = ℎ𝜑𝑁+2[𝑐]𝑜𝑐𝑒𝑎𝑛, 𝜑2 is 𝜑𝑁+1𝜑𝑁+2 and

𝜕𝜑

𝜕𝑥

⃒⃒⃒⃒
𝑏𝑜𝑡

=
𝜑𝑁+2 − 𝜑𝑁

2∆
;
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then the 𝐷𝑁+1/𝜑𝑁+1/∆ cancels properly with the porosity gradient. In general

𝜕𝜑

𝜕𝑥

⃒⃒⃒⃒
𝑘

=
𝜑𝑘+2 − 𝜑𝑘

2∆
.

When evaluating the integrals for the diffusion term, we will assume that 𝐷/𝜑 is constant in an element. For 𝐷𝑖𝑛/𝑖𝜑
defined on interface points, 𝐷1 = 0 and for 𝑗 = 2, ..., 𝑁 𝐷𝑗/𝑏𝜑𝑗 = (𝐷𝑖𝑛(𝑗) +𝐷𝑖𝑛(𝑗 + 1))/(𝑖𝜑𝑗 + 𝑖𝜑𝑗+1). Then the
above integrals will be modified as follows:

Compute the 𝑆𝑗𝑘 integrals:

𝑆𝑗𝑗 = −

[︃
𝐷𝑗−1

𝑏𝜑𝑗−1

∫︁ 𝑥𝑗

𝑥𝑗−1

(︂
𝜕𝑤𝑗

𝜕𝑥

)︂2

𝑑𝑥+
𝐷𝑗

𝑏𝜑𝑗

∫︁ 𝑥𝑗+1

𝑥𝑗

(︂
𝜕𝑤𝑗

𝜕𝑥

)︂2

𝑑𝑥

]︃

= − 1

∆

[︂
𝐷𝑗−1

𝑏𝜑𝑗−1
+
𝐷𝑗

𝑏𝜑𝑗

]︂
for 1 < 𝑗 < 𝑁 + 1

𝑆11 =
𝑠′11
∆

= 0

𝑆𝑁+1,𝑁+1 =
𝑠′𝑁+1,𝑁+1

∆
= − (𝐷𝑁 )

𝑏𝜑𝑁∆

Compute the off-diagonal components of 𝑆𝑗𝑘:

𝑆𝑗(𝑗+1) = 𝑠′𝑗(𝑗+1)

∫︁ 𝑥𝑗+1

𝑥𝑗

𝜕𝑤𝑗

𝜕𝑥

𝜕𝑤𝑗+1

𝜕𝑥
𝑑𝑥 = −

𝑠′𝑗(𝑗+1)

∆
=

𝐷𝑗

𝑏𝜑𝑗∆
for 𝑗 < 𝑁 + 1

𝑆𝑗(𝑗−1) = 𝑠′𝑗(𝑗−1)

∫︁ 𝑥𝑗

𝑥𝑗−1

𝜕𝑤𝑗

𝜕𝑥

𝜕𝑤𝑗−1

𝜕𝑥
𝑑𝑥 = −

𝑠′𝑗(𝑗−1)

∆
=
𝐷𝑗−1

𝑏𝜑𝑗−1
for 𝑗 > 1

We assume that 𝐷/𝜑2𝜕𝜑/𝜕𝑥 is constant in the element 𝑖. If 𝐷/𝜑𝑗 is constant, and 𝜕𝜑/𝜕𝑥 is constant then both the
Darcy and 𝐷 terms go as 𝜑−1. Then 𝜑 = (𝜑𝑗 −𝜑𝑗−1)(𝑥− 𝑥𝑗)/∆+𝜑𝑗 and 𝑚 = (𝜑𝑗 −𝜑𝑗−1)/∆ and 𝑏 = 𝜑𝑗 −𝑚𝑥𝑗 .

The first integral contribution to the Darcy term is:

𝐾1
𝑗𝑗 =

−1

∆2

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂∫︁ 𝑗

𝑗−1

(𝑥− 𝑥𝑗−1)
1

𝑚𝑥+ 𝑏
𝑑𝑥

= −
(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆2

[︂∫︁ 𝑗

𝑗−1

𝑥

𝑚𝑥+ 𝑏
𝑑𝑥− 𝑥𝑗−1

∫︁ 𝑗

𝑗−1

1

𝑚𝑥+ 𝑏
𝑑𝑥

]︂
= −

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆2

[︂
𝑚𝑥− 𝑏 log(𝑏+𝑚𝑥)

𝑚2
− 𝑥𝑗−1

log(𝑏+𝑚𝑥)

𝑚

]︂𝑥𝑗

𝑥𝑗−1

= −
(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆𝜑

[︂
1 + log

(︂
𝜑𝑗
𝜑𝑗−1

)︂
− 𝜑𝑗

∆𝜑𝑗

log

(︂
𝜑𝑗
𝜑𝑗−1

)︂]︂
= −

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆𝜑

[︂
1 +

𝜑𝑗−1

∆𝜑
log

(︂
𝜑𝑗
𝜑𝑗−1

)︂]︂

𝐾2
𝑗𝑗 =

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆

∫︁ 𝑥𝑗+1

𝑥𝑗

[︂
1− (𝑥− 𝑥𝑗)

∆

]︂
1

𝑚𝑥+ 𝑏
𝑑𝑥

=

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆

[︂
(𝑏+𝑚(𝑥𝑗 +∆)) log(𝑏+𝑚𝑥)−𝑚𝑥

∆𝑚2

]︂𝑥𝑗+1

𝑥𝑗

=

(︂
𝑤𝑓

ℎ
− 𝐷

𝜑

𝜕𝜑

𝜕𝑥

)︂
1

∆𝜑

[︂
1− 𝜑𝑗+1

∆𝜑
log

(︂
𝜑𝑗+1

𝜑𝑗

)︂]︂
Now 𝑚 = (𝜑𝑗+1 − 𝜑𝑗)/∆ and 𝑏 = 𝜑𝑗+1 −𝑚𝑥𝑗+1.
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Source terms 𝑞𝑏𝑜𝑡 = 𝑞𝑁+1 and 𝑞𝑡𝑜𝑝 = 𝑞1 (both positive)

𝑞𝑏𝑜𝑡 = max

[︂
0,

(︂
1

ℎ

𝑑ℎ𝑏
𝑑𝑡

+
𝑤𝑓

ℎ𝜑𝑁+1

)︂]︂
𝐶|𝑏𝑜𝑡 +

𝐷𝑖𝑛

𝜑𝑁+1(𝑔𝑜/ℎ)
𝐶|𝑏𝑜𝑡

𝐶|𝑏𝑜𝑡 = 𝜑𝑁+1[𝑐]𝑜𝑐𝑒𝑎𝑛

where 𝑔𝑜 is not zero.

𝑞𝑖𝑛 = −min

[︂
0,

(︂
1

ℎ

𝑑ℎ𝑡
𝑑𝑡

+
𝑤𝑓

ℎ𝜑

)︂
𝐶|𝑡𝑜𝑝

]︂
𝐶|𝑡𝑜𝑝 = ℎ[𝑐]𝑜𝜑𝑚𝑖𝑛

Calculating the low order solution:

1) Find the lumped mass matrix 𝑀𝑙 = 𝑑𝑖𝑎𝑔{𝑚𝑖}

𝑚𝑗 =
∑︁
𝑖

𝑚𝑗𝑖 = 𝑚𝑗(𝑗+1) +𝑚𝑗(𝑗−1) +𝑚𝑗𝑗

=
∆

6
+

∆

6
+

2∆

3
= ∆ for 1 < 𝑗 < 𝑁 + 1

𝑚1 = 𝑚11 +𝑚12 =
∆

3
+

∆

6
=

∆

2

𝑚𝑁+1 = 𝑚𝑁+1,𝑁 +𝑚𝑁+1,𝑁+1 =
∆

6
+

∆

3
=

∆

2

2) Define artificial diffusion 𝐷𝑎

𝑑𝑗,(𝑗+1) = max{−𝑘𝑗(𝑗+1), 0,−𝑘(𝑗+1)𝑗} = 𝑑(𝑗+1)𝑗

𝑑𝑗𝑗 = −
∑︁
𝑖 ̸=𝑗

𝑑𝑗𝑖

3) Add artificial diffusion to 𝐾: 𝐿 = 𝐾 +𝐷𝑎.

4) Solve for the low order predictor solution:

(𝑀𝑙 −∆𝑡[𝐿+ 𝑆])𝐶𝑛+1 =𝑀𝑙𝐶
𝑛 +∆𝑡𝑞

Conservations terms for the low order solution are:∫︁ [︀
𝐶𝑛+1 − 𝐶𝑛

]︀
𝑤(𝑥)𝑑𝑥 = ∆

⎡⎣𝑐𝑛+1
1 − 𝑐𝑛1

2
+
𝑐𝑛+1
𝑁+1 − 𝑐𝑛𝑁+1

2
+

𝑁∑︁
𝑗=2

(𝑐𝑛+1
𝑗 − 𝑐𝑛𝑗 )

⎤⎦
= ∆𝑡

[︀
𝑞𝑏𝑜𝑡 + 𝑞𝑖𝑛 + (𝐾𝑁+1,𝑁+1 +𝐾𝑁,𝑁+1)𝐶

𝑛+1
𝑁+1 + (𝐾1,1 +𝐾2,1)𝐶

𝑛+1
1

]︀
Now add the antidiffusive flux: compute the F matrix using the low order solution 𝑐𝑛+1. Diagonal components are
zero. For 𝑖 ̸= 𝑗

𝑓𝑖𝑗 = 𝑚𝑖𝑗

[︂
∆𝑐𝑖
∆𝑡

− ∆𝑐𝑗
∆𝑡

+ 𝑑𝑖𝑗(𝑐
𝑛+1
𝑖 − 𝑐𝑛+1

𝑗

]︂
.

Reaction Equations

The biogeochemical reaction terms for each biogeochemical tracer (see Table Biogeochemical Tracers for tracer defini-
tions) are defined in icepack_algae.F90 in the subroutine algal_dyn. The same set of equations is used for the bottom
layer model (when skl_bgc is true) and the multi-layer biogeochemical model (when z_tracers and solve_zbgc
are true).
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Table 4: Biogeochemical Tracers
Text
Variable

Variable in code flag Description units

N (1) Nin(1) tr_bgc_N diatom 𝑚𝑚𝑜𝑙 𝑁/𝑚3

N (2) Nin(2) tr_bgc_N small phytoplankton 𝑚𝑚𝑜𝑙 𝑁/𝑚3

N (3) Nin(3) tr_bgc_N Phaeocystis sp 𝑚𝑚𝑜𝑙 𝑁/𝑚3

DOC (1) DOCin(1) tr_bgc_DOC polysaccharids 𝑚𝑚𝑜𝑙 𝐶/𝑚3

DOC (2) DOCin(2) tr_bgc_DOC lipids 𝑚𝑚𝑜𝑙 𝐶/𝑚3

DON DONin(1) tr_bgc_DON proteins 𝑚𝑚𝑜𝑙 𝐶/𝑚3

fed Fedin(1) tr_bgc_Fe dissolved iron 𝜇 𝐹𝑒/𝑚3

fep Fepin(1) tr_bgc_Fe particulate iron 𝜇 𝐹𝑒/𝑚3

NO3 Nitin tr_bgc_Nit NO3 𝑚𝑚𝑜𝑙 𝑁/𝑚3

NH4 Amin tr_bgc_Am NH4 𝑚𝑚𝑜𝑙 𝑁/𝑚3

SiO3 Silin tr_bgc_Sil SiO2 𝑚𝑚𝑜𝑙 𝑆𝑖/𝑚3

DMSPp DMSPpin tr_bgc_DMS particulate DMSP 𝑚𝑚𝑜𝑙 𝑆/𝑚3

DMSPd DMSPdin tr_bgc_DMS dissolved DMSP 𝑚𝑚𝑜𝑙 𝑆/𝑚3

DMS DMSin tr_bgc_DMS DMS 𝑚𝑚𝑜𝑙 𝑆/𝑚3

PON PON 𝑎 tr_bgc_PON passive mobile tracer 𝑚𝑚𝑜𝑙 𝑁/𝑚3

hum hum 𝑎𝑏 tr_bgc_hum passive sticky tracer 𝑚𝑚𝑜𝑙 /𝑚3

BC (1) zaero(1) 𝑎 tr_zaero black carbon species 1 𝑘𝑔 /𝑚3

BC (2) zaero(2) 𝑎 tr_zaero black carbon species 2 𝑘𝑔 /𝑚3

dust (1) zaero(3) 𝑎 tr_zaero dust species 1 𝑘𝑔 /𝑚3

dust (2) zaero(4) 𝑎 tr_zaero dust species 2 𝑘𝑔 /𝑚3

dust (3) zaero(5) 𝑎 tr_zaero dust species 3 𝑘𝑔 /𝑚3

dust (4) zaero(6) 𝑎 tr_zaero dust species 4 𝑘𝑔 /𝑚3

𝑎 not modified in algal_dyn
𝑏 may be in C or N units depending on the ocean concentration

The biochemical reaction term for each algal species has the form:

∆N/𝑑𝑡 = 𝑅N = 𝜇(1− 𝑓𝑔𝑟𝑎𝑧𝑒 − 𝑓𝑟𝑒𝑠)−𝑀𝑜𝑟𝑡

where 𝜇 is the algal growth rate, 𝑀𝑜𝑟𝑡 is a mortality loss, 𝑓𝑔𝑟𝑎𝑧𝑒 is the fraction of algal growth that is lost to predatory
grazing, and 𝑓𝑟𝑒𝑠 is the fraction of algal growth lost to respiration. Algal mortality is temperature dependent and limited
by a maximum loss rate fraction (𝑙𝑚𝑎𝑥):

𝑀𝑜𝑟𝑡 = min(𝑙𝑚𝑎𝑥[N],𝑚𝑝𝑟𝑒 exp{𝑚𝑇 (𝑇 − 𝑇𝑚𝑎𝑥)}[N])

Note, [·] denotes brine concentration.

Nitrate and ammonium reaction terms are given by

∆NO3/𝑑𝑡 = 𝑅NO3
= [NH4]𝑘𝑛𝑖𝑡𝑟 − 𝑈 𝑡𝑜𝑡

NO3

∆NH4/𝑑𝑡 = 𝑅NH4
= −[NH4]𝑘𝑛𝑖𝑡𝑟 − 𝑈 𝑡𝑜𝑡

NH4
+ (𝑓𝑛𝑔𝑓𝑔𝑟𝑎𝑧𝑒(1− 𝑓𝑔𝑠) + 𝑓𝑟𝑒𝑠)𝜇

𝑡𝑜𝑡

+ 𝑓𝑛𝑚𝑀𝑜𝑟𝑡

= −[NH4]𝑘𝑛𝑖𝑡𝑟 − 𝑈 𝑡𝑜𝑡
NH4

+𝑁𝑟𝑒𝑚𝑖𝑛

where the uptake 𝑈 𝑡𝑜𝑡 and algal growth 𝜇𝑡𝑜𝑡 are accumulated totals for all algal species. 𝑘𝑛𝑖𝑡𝑟 is the nitrification rate
and 𝑓𝑛𝑔 and 𝑓𝑛𝑚 are the fractions of grazing and algal mortality that are remineralized to ammonium and 𝑓𝑔𝑠 is the
fraction of grazing spilled or lost. Algal growth and nutrient uptake terms are described in more detail in Algal growth
and nutrient uptake.
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Dissolved organic nitrogen satisfies the equation

∆DON/𝑑𝑡 = 𝑅DON = 𝑓𝑑𝑔𝑓𝑔𝑠𝑓𝑔𝑟𝑎𝑧𝑒𝜇
𝑡𝑜𝑡 − [DON]𝑘𝑛𝑏

With a loss from bacterial degration (rate 𝑘𝑛𝑏) and a gain from spilled grazing that does not enter the NH4 pool.

A term Z𝑜𝑜 closes the nitrogen cycle by summing all the excess nitrogen removed as zooplankton/bacteria in a timestep.
This term is not a true tracer, i.e. not advected horizontally with the ice motion, but provides a diagnostic comparison
of the amount of 𝑁 removed biogeochemically from the ice N-NO3-NH4-DON cycle at each timestep.

Z𝑜𝑜 = [(1− 𝑓𝑛𝑔(1− 𝑓𝑔𝑠)− 𝑓𝑑𝑔𝑓𝑔𝑠]𝑓𝑔𝑟𝑎𝑧𝑒𝜇
𝑡𝑜𝑡𝑑𝑡+ (1− 𝑓𝑛𝑚)𝑀𝑜𝑟𝑡𝑑𝑡+ [DON]𝑘𝑛𝑏𝑑𝑡

Dissolved organic carbon may be divided into polysaccharids and lipids. Parameters are two dimensional (indicated by
superscript 𝑖) with index 1 corresponding to polysaccharids and index 2 appropriate for lipids. The DOC𝑖 equation is:

∆DOC𝑖/𝑑𝑡 = 𝑅DOC = 𝑓 𝑖𝑐𝑔𝑓𝑛𝑔𝜇
𝑡𝑜𝑡 +𝑅𝑖

𝑐:𝑛𝑀𝑜𝑟𝑡 − [DOC]𝑘𝑖𝑐𝑏

Silicate has no biochemical source terms within the ice and is lost only through algal uptake:

∆SiO3/𝑑𝑡 = 𝑅SiO3
= −𝑈 𝑡𝑜𝑡

SiO3

Dissolved iron has algal uptake and remineralization pathways. In addition, fed may be converted to or released from
the particulate iron pool depending on the dissolve iron (fed) to polysaccharid (DOC(1)) concentration ratio. If this
ratio exceeds a maximum value 𝑟𝑚𝑎𝑥

𝑓𝑒𝑑:𝑑𝑜𝑐 then the change in concentration for dissolved and particulate iron is

∆𝑓𝑒fed/𝑑𝑡 = −[fed]/𝜏𝑓𝑒
∆𝑓𝑒fep/𝑑𝑡 = [fed]/𝜏𝑓𝑒

For values less than 𝑟𝑚𝑎𝑥
𝑓𝑒𝑑:𝑑𝑜𝑐

∆𝑓𝑒fed/𝑑𝑡 = [fep]/𝜏𝑓𝑒
∆𝑓𝑒fep/𝑑𝑡 = −[fep]/𝜏𝑓𝑒

Very long timescales 𝜏𝑓𝑒 will remove this source/sink term. The default value is currently set at 3065 days to turn off
this dependency (any large number will do to turn it off). 61-65 days is a more realistic option (Parekh et al., 2004).

The full equation for fed including uptake and remineralization is

∆fed/𝑑𝑡 = 𝑅fed = −𝑈 𝑡𝑜𝑡
fed + 𝑓𝑓𝑎𝑅𝑓𝑒:𝑛𝑁𝑟𝑒𝑚𝑖𝑛 +∆𝑓𝑒fed/𝑑𝑡

Particulate iron also includes a source term from algal mortality and grazing that is not immediately bioavailable. The
full equation for fep is

∆fep/𝑑𝑡 = 𝑅fep = 𝑅𝑓𝑒:𝑛[Z𝑜𝑜/𝑑𝑡+ (1− 𝑓𝑓𝑎)]𝑁𝑟𝑒𝑚𝑖𝑛 +∆𝑓𝑒fep/𝑑𝑡

The sulfur cycle includes DMS and dissolved DMSP (DMSPd). Particulate DMSP is assumed to be proportional to
the algal concentration, i.e. DMSPp = 𝑅𝑖

𝑠:𝑛N𝑖 for algal species 𝑖. For DMSP and DMS,

∆DMSPd/𝑑𝑡 = 𝑅DMSPd = 𝑅𝑠:𝑛[𝑓𝑠𝑟𝑓𝑟𝑒𝑠𝜇
𝑡𝑜𝑡 + 𝑓𝑛𝑚𝑀𝑜𝑟𝑡]− [DMSPd]/𝜏𝑑𝑚𝑠𝑝

∆DMS/𝑑𝑡 = 𝑅DMS = 𝑦𝑑𝑚𝑠[DMSPd]/𝜏𝑑𝑚𝑠𝑝 − [DMS]/𝜏𝑑𝑚𝑠

See BGC Tuning Parameters for a more complete list and description of biogeochemical parameters.
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Algal growth and nutrient uptake

Nutrient limitation terms are defined in the simplest ecosystem for NO3. If the appropriate tracer flags are true, then
limitation terms may also be found for NH4, SiO3, and fed

NO3𝑙𝑖𝑚 =
[NO3]

[NO3] +𝐾NO3

NH4𝑙𝑖𝑚 =
[NH4]

[NH4] +𝐾NH4

𝑁𝑙𝑖𝑚 = min(1,NO3𝑙𝑖𝑚 + NH4𝑙𝑖𝑚)

SiO3𝑙𝑖𝑚 =
[SiO3]

[SiO3] +𝐾SiO3

fed𝑙𝑖𝑚 =
[fed]

[fed] +𝐾fed

Light limitation 𝐿𝑙𝑖𝑚 is defined in the following way: 𝐼𝑠𝑤(𝑧) (in𝑊/𝑚2) is the shortwave radiation at the ice level and
the optical depth is proportional to the chlorophyll concentration, 𝑜𝑝𝑑𝑒𝑝 = chlabs [Chl*a*]. If ( 𝑜𝑝𝑑𝑒𝑝 > 𝑜𝑝𝑚𝑖𝑛) then

𝐼𝑎𝑣𝑔 = 𝐼𝑠𝑤(1− exp(−𝑜𝑝𝑑𝑒𝑝))/𝑜𝑝𝑑𝑒𝑝

otherwise 𝐼𝑎𝑣𝑔 = 𝐼𝑠𝑤.

𝐿𝑙𝑖𝑚 = (1− exp(−𝛼𝐼𝑎𝑣𝑔)) exp(−𝛽𝐼𝑎𝑣𝑔)

The maximal algal growth rate before limitation is

𝜇𝑜 = 𝜇𝑚𝑎𝑥 exp(𝜇𝑇∆𝑇 )𝑓𝑠𝑎𝑙[N]

𝜇′ = 𝑚𝑖𝑛(𝐿𝑙𝑖𝑚, 𝑁𝑙𝑖𝑚,SiO3𝑙𝑖𝑚, fed𝑙𝑖𝑚)𝜇𝑜

where 𝜇′ is the initial estimate of algal growth rate for a given algal species and ∆𝑇 is the difference between the local
tempurature and the maximum (in this case T𝑚𝑎𝑥 = 0𝑜C).

The initial estimate of the uptake rate for silicate and iron is

�̃�SiO3
= 𝑅𝑠𝑖:𝑛𝜇

′

�̃�fed = 𝑅𝑓𝑒:𝑛𝜇
′

For nitrogen uptake, we assume that ammonium is preferentially acquired by algae. To determine the nitrogen uptake
needed for each algal growth rate of 𝜇, first determine the “potential” uptake rate of ammonium:

𝑈 ′
NH4

= NH4𝑙𝑖𝑚𝜇𝑜

Then

�̃�NH4
= min(𝜇′, 𝑈 ′

NH4
)

�̃�NO3
= 𝜇′ − �̃�NH4

We require that each rate not exceed a maximum loss rate 𝑙𝑚𝑎𝑥/𝑑𝑡. This is particularly important when multiple species
are present. In this case, the accumulated uptake rate for each nutrient is found and the fraction (𝑓𝑈 𝑖) of uptake due to
algal species 𝑖 is saved. Then the total uptake rate is compared with the maximum loss condition. For example, the net
uptake of nitrate when there are three algal species is

�̃� 𝑡𝑜𝑡
NO3

=

3∑︁
𝑖=1

�̃� 𝑖
NO3

.
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Then the uptake fraction for species 𝑖 and the adjusted total uptake is

𝑓𝑈 𝑖
NO3

=
�̃� 𝑖

NO3

�̃� 𝑡𝑜𝑡
NO3

𝑈 𝑡𝑜𝑡
NO3

= min(�̃� 𝑡𝑜𝑡
NO3

, 𝑙𝑚𝑎𝑥[NO3]/𝑑𝑡)

Now, for each algal species the nitrate uptake is

𝑈 𝑖
NO3

= 𝑓𝑈 𝑖
NO3

𝑈 𝑡𝑜𝑡
NO3

Similar expressions are found for all potentially limiting nutrients. Then the true growth rate for each algal species 𝑖 is

𝜇𝑖 = min(𝑈 𝑖
SiO3

/𝑅𝑠𝑖:𝑛, 𝑈
𝑖
NO3

+ 𝑈 𝑖
NH4

, 𝑈 𝑖
fed/𝑅𝑓𝑒:𝑛)

Preferential ammonium uptake is assumed once again and the remaining nitrogen is taken from the nitrate pool.
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CHAPTER

THREE

STANDALONE USER GUIDE

3.1 Implementation

Icepack is written in FORTRAN90 and runs on platforms using UNIX, LINUX, and other operating systems. The code
is not parallelized. (CHANGE IF OPENMP IS IMPLEMENTED)

Icepack consists of the sea ice column physics code, contained in the columnphysics/ directory, and a configuration/
directory that includes a driver for testing the column physics and a set of scripts for configuring the tests. Icepack is
designed such that the column physics code may be used by a host sea ice model without direct reference to the driver
or scripts, although these may be consulted for guidance when coupling the column physics code to the host sea ice
model (CICE may also be useful for this.) Information about the interface between the column physics and the driver
or host sea ice model is located in the Initialization and Forcing section.

3.1.1 Directory structure

The present code distribution includes source code for the column physics, source code for the driver, and the scripts.
Forcing data is available from the ftp site. The directory structure of Icepack is as follows. All columnphysics filename
have a prefix of icepack_ and all driver files are prefixed with icedrv_*.

LICENSE.pdf
license for using and sharing the code

DistributionPolicy.pdf
policy for using and sharing the code

README.md
basic information and pointers

columnphysics/
columnphysics source code, see Icepack Column Physics

configuration/scripts/
support scripts, see Scripts Implementation

configuration/driver/
icepack driver code, see Driver Implementation

doc/
documentation

icepack.setup
main icepack script for creating cases

A case (compile) directory is created upon initial execution of the script icepack.setup at the user-specified location
provided after the -c flag. Executing the command ./icepack.setup -h provides helpful information for this tool.
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3.1.2 Grid and boundary conditions

The driver configures a collection of grid cells on which the column physics code will be run. This “horizontal” grid
is a vector of length nx, with a minimum length of 4. The grid vector is initialized with different sea ice conditions,
such as open water, a uniform slab of ice, a multi-year ice thickness distribution with snow, and land. For simplicity,
the same forcing values are applied to all grid cells.

Icepack includes two vertical grids. The basic vertical grid contains nilyr equally spaced grid cells. History variables
available for column output are ice and snow temperature, Tinz and Tsnz. These variables also include thickness
category as a fourth dimension.

In addition, there is a bio-grid that can be more finely resolved and includes additional nodes for boundary conditions.
It is used for solving the brine height variable ℎ𝑏 and for discretizing the vertical transport equations of biogeochemical
tracers. The bio-grid is a non-dimensional vertical grid which takes the value zero at ℎ𝑏 and one at the ice–ocean
interface. The number of grid levels is specified during compilation by setting the variable NBGCLYR equal to an
integer (𝑛𝑏) .

Ice tracers and microstructural properties defined on the bio-grid are referenced in two ways: as bgrid = 𝑛𝑏 + 2
points and as igrid= 𝑛𝑏 + 1 points. For both bgrid and igrid, the first and last points reference ℎ𝑏 and the ice–ocean
interface, respectively, and so take the values 0 and 1, respectively. For bgrid, the interior points [2, 𝑛𝑏 + 1] are spaced
at 1/𝑛𝑏 intervals beginning with bgrid(2) = 1/(2𝑛𝑏). The igrid interior points [2, 𝑛𝑏] are also equidistant with the
same spacing, but physically coincide with points midway between those of bgrid.

3.1.3 Initialization and Forcing

Icepack’s parameters and variables are initialized in several steps. Many constants and physical parameters are set in
icepack_parameters.F90. In the current driver implementation, a namelist file is read to setup the model. Namelist
values are given default values in the code, which may then be changed when the input file icepack_in is read. Other
physical constants, numerical parameters, and variables are first set in initialization routines for each ice model compo-
nent or module. Then, if the ice model is being restarted from a previous run, core variables are read and reinitialized
in restartfile, while tracer variables needed for specific configurations are read in separate restart routines associated
with each tracer or specialized parameterization. Finally, albedo and other quantities dependent on the initial ice state
are set. Some of these parameters will be described in more detail in the Tables of Namelist Options.

Two namelist variables control model initialization, ice_ic and restart. Setting ice_ic = ‘default’ causes the model
to run using initial values set in the code. To start from a file filename, set restart = .true. and ice_ic = filename.
When restarting using the Icepack driver, for simplicity the tracers are assumed to be set the same way (on/off) as in the
run that created the restart file; i.e. that the restart file contains exactly the information needed for the new run. CICE
is more flexible in this regard.

For stand-alone runs, routines in icedrv_forcing.F90 read and interpolate data from files, and are intended merely for
testing, although they can also provide guidance for the user to write his or her own routines.

3.1.4 Choosing an appropriate time step

Transport in thickness space imposes a restraint on the time step, given by the ice growth/melt rate and the smallest
range of thickness among the categories, ∆𝑡 < min(∆𝐻)/2max(𝑓), where ∆𝐻 is the distance between category
boundaries and 𝑓 is the thermodynamic growth rate. For the 5-category ice thickness distribution used as the default
in this distribution, this is not a stringent limitation: ∆𝑡 < 19.4 hr, assuming max(𝑓) = 40 cm/day.
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3.1.5 Model output

The Icepack model provides diagnostic output files, binary or netCDF restart files, and a primitive netCDF history file
capability. The sea ice model CICE provides more extensive options for model output, including many derived output
variables.

Diagnostic files

Icepack writes diagnostic information for each grid cell as a separate file, ice_diag.*, identified by the initial ice state
of the grid cell (no ice, slab, land, etc).

Restart files

Icepack provides restart data in binary unformatted format or netCDF. The restart files created by the Icepack driver
contain all of the variables needed for a full, exact restart. The filename begins with the character string ‘iced.’ and is
placed in the directory specified by the namelist variable restart_dir. The restart dump frequency is given by the
namelist variable dumpfreq. The namelist variable ice_ic contains the pointer to the filename from which the restart
data is to be read and the namelist option restart must be set to .true. to use the file. dump_last namelist can also
be set to true to trigger restarts automatically at the end of runs. The default restart file format is binary, set in namelist
with restart_format = ‘bin’. For netCDF, set restart_format = ‘nc’ or use icepack.setup -s restcdf.

The default configuration of Icepack does not support netCDF. If netCDF restart files are desired, the USE_NETCDF
C preprocessor directive must be set during compilation. This is done by setting ICE_IOTYPE to netcdf in
icepack.settings or using the icepack.setup -s option ionetcdf. If netCDF is used on a particular machine,
the machine env and Macros file must support compilation with netCDF.

History files

Icepack has a primitive netCDF history capability that is turned on with the history_format namelist.
When history_format is set to ‘nc’, history files are created for each run with a naming convention of
icepack.h.yyyymmdd.nc in the run directory history directory. The yyyymmdd is the start date for each run. Use
icepack.setup -s histcdf to turn on netCDF history files automatically.

When Icepack history files are turned on, data for a set of fixed fields is written to the history file for each column at
every timestep without ability to control fields, frequencies, or temporal averaging. All output fields are hardwired into
the implementation in configuration/driver/icedrv_history.F90 file. The netCDF file does NOT meet netCDF CF
conventions and is provided as an amenity in the standalone Icepack model. Users are free to modify the output fields
or extend the implementation and are encouraged to share any updates with the Consortium.

The default configuration of Icepack does not support netCDF. If netCDF history files are desired, the USE_NETCDF
C preprocessor directive must be set during compilation. This is done by setting ICE_IOTYPE to netcdf in
icepack.settings or using the icepack.setup -s option ionetcdf. If netCDF is used on a particular machine,
the machine env and Macros file must support compilation with netCDF.
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Biogeochemistry History Fields

History output is not provided with Icepack. This documentation indicates what is available for output and is imple-
mented in CICE.

Table Biogeochemical History variables lists the biogeochemical tracer history flags along with a short description and
the variable or variables saved. Not listed are flags appended with _ai, i.e. f_fbio_ai. These fields are identical to their
counterpart. i.e. f_fbio, except they are averaged by ice area.

Table 1: Biogeochemical History variables
History Flag Definition Variable(s) Units
f_fiso_atm atmospheric water isotope deposition flux fiso_atm kg m−2 s−1

f_fiso_ocn water isotope flux from ice to ocean fiso_ocn kg m−2 s−1

f_iso isotope mass (snow and ice) isosno, isoice kg/kg
f_faero_atm atmospheric aerosol deposition flux faero_atm kg m−2 s−1

f_faero_ocn aerosol flux from ice to ocean faero_ocn kg m−2 s−1

f_aero aerosol mass (snow and ice ssl and int) aerosnossl, aeros-
noint,aeroicessl, aeroiceint

kg/kg

f_fbio biological ice to ocean flux fN, fDOC, fNit,
fAm,fDON,fFep𝑎, fFed𝑎,
fSil,fhum, fPON, fDM-
SPd,fDMS, fDMSPp, fzaero

mmol m−2

s−1

f_zaero bulk z-aerosol mass fraction zaero kg/kg
f_bgc_S DEPRECATED bgc_S ppt
f_bgc_N bulk algal N concentration bgc_N mmol m−3

f_bgc_C bulk algal C concentration bgc_C mmol m−3

f_bgc_DOC bulk DOC concentration bgc_DOC mmol m−3

f_bgc_DON bulk DON concentration bgc_DON mmol m−3

f_bgc_DIC bulk DIC concentration bgc_DIC mmol m−3

f_bgc_chl bulk algal chlorophyll concentration bgc_chl mg chl m−3

f_bgc_Nit bulk nitrate concentration bgc_Nit mmol m−3

f_bgc_Am bulk ammonium concentration bgc_Am mmol m−3

f_bgc_Sil bulk silicate concentration bgc_Sil mmol m−3

f_bgc_DMSPp bulk particulate DMSP concentration bgc_DMSPp mmol m−3

f_bgc_DMSPd bulk dissolved DMSP concentration bgc_DMSPd mmol m−3

f_bgc_DMS bulk DMS concentration bgc_DMS mmol m−3

f_bgc_Fe bulk dissolved and particulate iron conc. bgc_Fed, bgc_Fep 𝜇mol m−3

f_bgc_hum bulk humic matter concentration bgc_hum mmol m−3

f_bgc_PON bulk passive mobile tracer conc. bgc_PON mmol m−3

f_upNO Total algal NO3 uptake rate upNO mmol m−2

d−1

f_upNH Total algal NH4 uptake rate upNH mmol m−2

d−1

f_bgc_ml upper ocean tracer concentrations ml_N, ml_DOC, ml_Nit,ml_Am,
ml_DON, ml_Fep𝑏,ml_Fed𝑏,
ml_Sil, ml_hum,
ml_PON,ml_DMS, ml_DMSPd,
ml_DMSPp

mmol m−3

f_bTin ice temperature on the bio grid bTizn 𝑜C
f_bphi ice porosity on the bio grid bphizn %
f_iDin brine eddy diffusivity on the interface bio

grid
iDin m2 d−1

continues on next page
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Table 1 – continued from previous page
History Flag Definition Variable(s) Units
f_iki ice permeability on the interface bio grid ikin mm2

f_fbri ratio of brine tracer height to ice thickness fbrine 1
f_hbri brine tracer height hbrine m
f_zfswin internal ice PAR on the interface bio grid zfswin W m−2

f_bionet brine height integrated tracer concentra-
tion

algalN_net, algalC_net,
chl_net, pFe𝑐_net, dFe𝑐_net,
Sil_net, Nit_net, Am_net,
hum_net, PON_net, DMS_net,
DMSPd_net, DMSPp_net,
DOC_net, zaero_net, DON_net

mmol m−2

f_biosnow snow integrated tracer concentration” algalN_snow, al-
galC_snow,chl_snow,
pFe𝑐_snow,
dFe𝑐_snow,Sil_snow, Nit_snow,
Am_snow, hum_snow,
PON_snow, DMS_snow, DM-
SPd_snow, DMSPp_snow,
DOC_snow, zaero_snow,
DON_snow

mmol m−2

f_grownet Net specific algal growth rate grow_net m d−1

f_PPnet Net primary production PP_net mgC m−2 d−1

f_algalpeak interface bio grid level of peak chla peak_loc 1
f_zbgc_frac mobile fraction of tracer algalN_frac, chl_frac,

pFe_frac,dFe_frac, Sil_frac,
Nit_frac,Am_frac, hum_frac,
PON_frac,DMS_frac,
DMSPd_frac, DM-
SPp_frac,DOC_frac, zaero_frac,
DON_frac

1

𝑎 units are 𝜇mol m−2 s−1

𝑏 units are 𝜇mol m−3

𝑐 units are 𝜇mol m−2

3.2 Running Icepack

Quick-start instructions are provided in the Quick Start section.

3.2.1 Scripts

The icepack scripts are written to allow quick setup of cases and tests. Once a case is generated, users can manually
modify the namelist and other files to custom configure the case. Several settings are available via scripts as well.
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Overview

Most of the scripts that configure, build and run Icepack are contained in the directory configuration/scripts/, except
for icepack.setup, which is in the main directory. icepack.setup is the main script that generates a case.

Users may need to port the scripts to their local machine. Specific instructions for porting are provided in Porting.

icepack.setup -h will provide the latest information about how to use the tool. icepack.setup --help will
provide an extended version of the help. There are three usage modes,

• --case or -c creates individual stand alone cases.

• --test creates individual tests. Tests are just cases that have some extra automation in order to carry out par-
ticular tests such as exact restart.

• --suite creates a test suite. Test suites are predefined sets of tests and --suite provides the ability to quickly
setup, build, and run a full suite of tests.

All modes will require use of --mach or -m to specify the machine. Use of --env is also recommended to specify
the compilation environment. --case and --test modes can use --set or -s which will turn on various model
options. --test and --suite will require --testid to be set and can use --bdir, --bgen, --bcmp, and --diff to
generate (save) results for regression testing (comparison with prior results). --tdir will specify the location of the
test directory. Testing will be described in greater detail in the Testing Icepack section.

Again, icepack.setup --help will show the latest usage information including the available --set options, the
current ported machines, and the test choices.

To create a case, run icepack.setup:

icepack.setup -c mycase -m machine -e intel
cd mycase

Once a case/test is created, several files are placed in the case directory

• env.[machine]_[env] defines the machine environment

• icepack.settings defines many variables associated with building and running the model

• makdep.c is a tool that will automatically generate the make dependencies

• Macros.[machine]_[env] defines the Makefile macros

• Makefile is the makefile used to build the model

• icepack.build is a script that builds and compiles the model

• icepack_in is the namelist input file

• icepack.run is a batch run script

• icepack.submit is a simple script that submits the icepack.run script

All scripts and namelist are fully resolved in the case. Users can edit any of the files in the case directory manually to
change the model configuration, build options, or batch settings. The file dependency is indicated in the above list. For
instance, if any of the files before icepack.build in the list are edited, icepack.build should be rerun.

The casescripts/ directory holds scripts used to create the case and can largely be ignored. Once a case is created, the
icepack.build script should be run interactively and then the case should be submitted by executing the icepack.submit
script interactively. The icepack.submit script submits the icepack.run or icepack.test script.

Some hints:

• To change namelist, manually edit the icepack_in file

• To change batch settings, manually edit the top of the icepack.run or icepack.test (if running a test) file
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• When the run scripts are submitted, the current icepack_in, icepack.settings, and env.[machine] files are copied
from the case directory into the run directory. Users should generally not edit files in the run directory as these
are overwritten when following the standard workflow. icepack.settings can be sourced to establish the case
values in the login shell. An alias like the following can be established to quickly switch between case and run
directories:

alias cdrun 'cd `\grep "setenv ICE_RUNDIR" icepack.settings | awk "{print "\$"NF}
→˓"`'
alias cdcase 'cd `\grep "setenv ICE_CASEDIR" icepack.settings | awk "{print "\$"NF}
→˓"`'

• To turn on the debug compiler flags, set ICE_BLDDEBUG in icepack.setttings to true

• To change compiler options, manually edit the Macros file. To add user defined preprocessor macros, modify
ICE_CPPDEFS in icepack.settings using the syntax -DCICE_MACRO.

• To clean the build before each compile, set ICE_CLEANBUILD in icepack.settings to true. To not clean before
the build, set ICE_CLEANBUILD in icepack.settings to false

To build and run:

./icepack.build

./icepack.submit

The build and run log files will be copied into the logs subdirectory in the case directory. Other model output will be
in the run directory. The run directory is set in icepack.settings via the ICE_RUNDIR variable. To modify the case
setup, changes should be made in the case directory, NOT the run directory.

Command Line Options

icepack.setup -h provides a summary of the command line options. There are three different modes, --case,
--test, and --suite. This section provides details about the relevant options for setting up cases with examples.
Testing will be described in greater detail in the Testing Icepack section.

--help, -h
prints icepack.setup help information to the terminal and exits.

--version
prints the Icepack version to the terminal and exits.

--setvers
Updates the stored value of the Icepack version in the sandbox and exits See Model Version Control for more
information.

--docintfc
Runs a script that updates the public interfaces in the documentation. This script parses the source code directly.
See Public Interfaces for more information.

--case, -c CASE
specifies the case name. This can be either a relative path of an absolute path. This cannot be used with –test or
–suite. Either --case, --test, or --suite is required.

--mach, -mMACHINE
specifies the machine name. This should be consistent with the name defined in the Macros and env files in con-
figurations/scripts/machines. This is required in all modes and is paired with --env to define the compilation
environment.
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--env, -e ENVIRONMENT1,ENVIRONMENT2,ENVIRONMENT3
specifies the compilation environment associated with the machine. This should be consistent with the name de-
fined in the Macros and env files in configurations/scripts/machines. Each machine can have multiple supported
environments including support for different compilers, different compiler versions, different mpi libraries, or
other system settigs. When used with --suite or --test, the ENVIRONMENT can be a set of comma delim-
inated values with no spaces and the tests will then be run for all of those environments. With --case, only one
ENVIRONMENT should be specified. (default is intel)

--pes, -pMxN
specifies the number of tasks and threads the case should be run on. This only works with --case. The format is
tasks x threads or “M”x”N” where M is tasks and N is threads and both are integers. The current icepack driver
is purely serial so setting multiple tasks or multiple threads will have no impact. (default is 1x1)

--acct ACCOUNT
specifies a batch account number. This is optional. See Machine Account Settings for more information.

--queue QUEUE
specifies a batch queue name. This is optional. See Machine Queue Settings for more information.

--grid, -g GRID
specifies the grid. This is a string and for the current icepack driver, only col is supported. (default = col)

--set, -s SET1,SET2,SET3
specifies the optional settings for the case. This is only used with --case or --test. The settings for --suite
are defined in the suite file. Multiple settings can be specified by providing a comma deliminated set of values
without spaces between settings. The available settings are in configurations/scripts/options and icepack.
setup --help will also list them. These settings files can change either the namelist values or overall case
settings (such as the debug flag).

For Icepack, when setting up cases, the --case and --mach must be specified. It’s also recommended that --env be
set explicitly as well. At the present time, --pes and --grid cannot vary from 1x1 and col respectively which are the
defaults. --acct is not normally used. A more convenient method is to use the ~/cice_proj file, see Machine Account
Settings. The --set option can be extremely handy. The --set options are documented in Preset Options.

Preset Options

There are several preset options. These are hardwired in configurations/scripts/options and are specfied for a case or
test by the --set command line option. You can see the full list of settings by doing icepack.setup --help.

The default icepack namelist and icepack settings are specified in the files configuration/scripts/icepack_in and
configuration/scripts/icepack.settings respectively. When picking a preset setting (option), the set_env.setting and
set_nml.setting will be used to change the defaults. This is done as part of the icepack.setup and the modifications
are resolved in the icepack.settings and icepack_in file placed in the case directory. If multiple options are chosen
that conflict, then the last option chosen takes precedence. Not all options are compatible with each other.

Some of the options are

debug which turns on the compiler debug flags

short, medium, long which change the batch time limit

diag1 which turns on diagnostics each timestep

leap which turns on the leap year

pondlvl, pondtopo which turn on the various pond schemes

run10day, run1year, etc which specifies a run length

swccsm3 which turns on the ccsm3 shortwave and albedo computation
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thermo1 which on turns on the Bitz-Lipscomb thermodynamics model (default is mushy-layer)

bgc* which turns of various bgc configurations

and there are others. To add a new option, just add the appropriate file in configuration/scripts/options. Some of the
options settings like smoke and restart are specifically geared toward setting up tests. For more information, see
Preset Case Options

Examples

The simplest case is just to setup a default configurations specifying the case name, machine, and environment:

icepack.setup --case mycase1 --mach spirit --env intel

To add some optional settings, one might do:

icepack.setup --case mycase2 --mach spirit --env intel --set debug,diag1,run1year,
→˓pondtopo

Once the cases are created, users are free to modify the icepack.settings and icepack_in namelist to further modify
their setup.

C Preprocessor (CPP) Macros

There are a few C Preprocessor Macros supported in the Icepack model. These support certain coding features to be
excluded or included during the compile. They exist in part to support the CICE model and other applications that use
Icepack.

For standalone Icepack, The CPPs are defined by the CPPDEFS variable in the Icepack Makefile. They are defined
by passing the -D[CPP] to the C and Fortran compilers (ie. -DNO_I8) and this is what needs to be set in the CPPDEFS
variable. The value of ICE_CPPDEFS in icepack.settings is copied into the Makefile CPPDEFS variable as are settings
hardwired into the Macros.[machine]_[environment] file.

A list of available CPPs can be found in Table of C Preprocessor (CPP) Macros.

Model Version Control

Managing the internal representation of the model version is handled through the icepack.setup script. The --version
option displays the version value on the terminal. The --setvers option updates the version defined in the sandbox.
It is highly recommended that any changes to the version name be done through this interface to make sure it’s done
correctly and comprehensively. The version name should just include the string associated with the major, minor, and
similar. For instance,:

icepack.setup --version

returns

./icepack.setup: This is ICEPACK_v1.0.0.d0003

and:

icepack.setup --setvers v1.0.0.d0004

would update the version. Always check the string by doing icepack.setup --version after invoking icepack.
setup --setvers.
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The version is not updated in the repository unless the code changes associated with the new version are pushed to the
repository.

Other Scripts Tools

There are other scripts that come with icepack. These include

• setup_run_dirs.csh. This scripts is added to the case directory. Invoking it creates all the run directories manually.
This script is automatically called as part of the run script, but sometimes it’s useful to create these directories
before submitting in order to stage custom input files or other data.

3.2.2 Porting

To port, an env.[machine]_[environment] and Macros.[machine]_[environment] file have to be added to the con-
figuration/scripts/machines/ directory and the configuration/scripts/icepack.batch.csh file needs to be modified. In
addition configuration/scripts/icepack.launch.csh may need to be modified if simply running the binary directly will
not work. In general, the machine is specified in icepack.setup with --mach and the environment (compiler) is
specified with --env. mach and env in combination define the compiler, compiler version, supporting libaries, and
batch information. Multiple compilation environments can be created for a single machine by choosing unique env
names.

• cd to configuration/scripts/machines/

• Copy an existing env and a Macros file to new names for your new machine

• Edit your env and Macros files, update as needed

• cd .. to configuration/scripts/

• Edit the icepack.batch.csh script to add a section for your machine with batch settings and job launch settings

• Edit the icepack.launch.csh script to add a section for your machine if executing the binary directly is not
supported

• Download and untar a forcing dataset to the location defined by ICE_MACHINE_INPUTDATA in the env file

In fact, this process almost certainly will require some iteration. The easiest way to carry this out is to create
an initial set of changes as described above, then create a case and manually modify the env.[machine] file and
Macros.[machine] file until the case can build and run. Then copy the files from the case directory back to con-
figuration/scripts/machines/ and update the configuration/scripts/icepack.batch.csh file, retest, and then add and
commit the updated machine files to the repository.

Machine variables

There are several machine specific variables defined in the env.$[machine]. These variables are used to generate
working cases for a given machine, compiler, and batch system. Some variables are optional.
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Table 2: Machine Settings
variable format description
ICE_MACHINE_MACHNAMEstring machine name
ICE_MACHINE_MACHINFO string machine information
ICE_MACHINE_ENVNAME string env/compiler name
ICE_MACHINE_ENVINFO string env/compiler information
ICE_MACHINE_MAKE string make command
ICE_MACHINE_WKDIR string root work directory
ICE_MACHINE_INPUTDATAstring root input data directory
ICE_MACHINE_BASELINE string root regression baseline directory
ICE_MACHINE_SUBMIT string batch job submission command
ICE_MACHINE_TPNODE integer machine maximum MPI tasks per node
ICE_MACHINE_ACCT string batch default account
ICE_MACHINE_QUEUE string batch default queue
ICE_MACHINE_BLDTHRDS integer number of threads used during build
ICE_MACHINE_QSTAT string batch job status command (optional)
ICE_MACHINE_QUIETMODEtrue/false flag to reduce build output (optional)

Cross-compiling

It can happen that the model must be built on a platform and run on another, for example when the run environment is
only available in a batch queue. The program makdep (see Overview), however, is both compiled and run as part of
the build process.

In order to support this, the Makefile uses a variable CFLAGS_HOST that can hold compiler flags specfic to the
build machine for the compilation of makdep. If this feature is needed, add the variable CFLAGS_HOST to the
Macros.[machine]_[environment] file. For example :

CFLAGS_HOST = -xHost

Machine Account Settings

The machine account default is specified by the variable ICE_MACHINE_ACCT in the env.[machine] file. The easiest
way to change a user’s default is to create a file in your home directory called .cice_proj and add your preferred account
name to the first line. There is also an option (--acct) in icepack.setup to define the account number. The order of
precedence is icepack.setup command line option, .cice_proj setting, and then value in the env.[machine] file.

Machine Queue Settings

The machine queue default is specified by the variable ICE_MACHINE_QUEUE in the env.[machine] file. The easiest
way to change a user’s default is to create a file in your home directory called .cice_queue and add your preferred
account name to the first line. There is also an option (--queue) in icepack.setup to define the queue name on a
case basis. The order of precedence is icepack.setup command line option, .cice_queue setting, and then value in the
env.[machine] file.
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3.2.3 Porting to Laptop or Personal Computers

To get the required software necessary to build and run Icepack, a conda environment file is available at :

configuration/scripts/machines/environment.yml.

This configuration is supported by the Consortium on a best-effort basis on macOS and GNU/Linux. It is untested
under Windows, but might work using the Windows Subsystem for Linux.

Once you have installed Miniconda and created the icepack conda environment by following the procedures in this
section, Icepack should run on your machine without having to go through the formal Porting process outlined above.

Installing Miniconda

We recommend the use of the Miniconda distribution to create a self-contained conda environment from the
environment.yml file. This process has to be done only once. If you do not have Miniconda or Anaconda installed,
you can install Miniconda by following the official instructions, or with these steps:

On macOS:

# Download the Miniconda installer to ~/Downloads/miniconda.sh
curl -L https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o ~/
→˓Downloads/miniconda.sh
# Install Miniconda
bash ~/Downloads/miniconda.sh

# Follow the prompts

# Close and reopen your shell

On GNU/Linux:

# Download the Miniconda installer to ~/miniconda.sh
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/
→˓miniconda.sh
# Install Miniconda
bash ~/miniconda.sh

# Follow the prompts

# Close and reopen your shell

Note: on some Linux distributions (including Ubuntu and its derivatives), the csh shell that comes with the system
is not compatible with conda. You will need to install the tcsh shell (which is backwards compatible with csh), and
configure your system to use tcsh as csh:

# Install tcsh
sudo apt-get install tcsh
# Configure your system to use tcsh as csh
sudo update-alternatives --set csh /bin/tcsh
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Initializing your shell for use with conda

We recommend initializing your default shell to use conda. This process has to be done only once.

The Miniconda installer should ask you if you want to do that as part of the installation procedure. If you did not answer
“yes”, you can use one of the following procedures depending on your default shell. Bash should be your default shell
if you are on macOS (10.14 and older) or GNU/Linux.

Note: answering “yes” during the Miniconda installation procedure will only initialize the Bash shell for use with
conda.

If your Mac has macOS 10.15 or higher, your default shell is Zsh.

These instructions make sure that the conda command is available when you start your shell by modifying your shell’s
startup file. Also, they make sure not to activate the “base” conda environment when you start your shell. This conda
environment is created during the Miniconda installation but is not used for Icepack.

For Bash:

# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/bin/activate
conda init bash

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For Zsh (Z shell):

# Initialize Zsh to use conda
source $HOME/miniconda3/bin/activate
conda init zsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For tcsh:

# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/etc/profile.d/conda.csh
conda init tcsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For fish:

# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/etc/fish/conf.d/conda.fish
conda init fish

(continues on next page)
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(continued from previous page)

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For xonsh:

# Install miniconda as indicated above, then initialize your shell to use conda:
source-bash $HOME/miniconda3/bin/activate
conda init xonsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

Initializing your shell for conda manually

If you prefer not to modify your shell startup files, you will need to run the appropriate source command below
(depending on your default shell) before using any conda command, and before compiling and running Icepack. These
instructions make sure the conda command is available for the duration of your shell session.

For Bash and Zsh:

# Initialize your shell session to use conda:
source $HOME/miniconda3/bin/activate

For tcsh:

# Initialize your shell session to use conda:
source $HOME/miniconda3/etc/profile.d/conda.csh

For fish:

# Initialize your shell session to use conda:
source $HOME/miniconda3/etc/fish/conf.d/conda.fish

For xonsh:

# Initialize your shell session to use conda:
source-bash $HOME/miniconda3/bin/activate

Creating Icepack directories and the conda environment

The conda configuration expects some directories and files to be present at $HOME/icepack-dirs:

cd $HOME
mkdir -p icepack-dirs/runs icepack-dirs/baseline icepack-dirs/input
# Download the required forcing from https://github.com/CICE-Consortium/Icepack/wiki/
→˓Icepack-Input-Data
# and untar it at $HOME/icepack-dirs/input
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This step needs to be done only once.

If you prefer that some or all of the Icepack directories be located somewhere else, you can create a symlink from your
home to another location:

# Create the Icepack directories at your preferred location
cd ${somewhere}
mkdir -p icepack-dirs/runs icepack-dirs/baseline icepack-dirs/input
# Download the required forcing from https://github.com/CICE-Consortium/Icepack/wiki/
→˓Icepack-Input-Data
# and untar it at icepack-dirs/input

# Create a symlink to icepack-dirs in your $HOME
cd $HOME
ln -s ${somewhere}/icepack-dirs icepack-dirs

Note: if you wish, you can also create a complete machine port for your computer by leveraging the conda configuration
as a starting point. See Porting.

Next, create the “icepack” conda environment from the environment.yml file in the Icepack source code repository.
You will need to clone Icepack to run the following command:

conda env create -f configuration/scripts/machines/environment.yml

This step needs to be done only once. If you ever need to update the conda environment because the required packages
change or packages are out of date, do

conda env update -f configuration/scripts/machines/environment.yml

Using the conda configuration

Follow the general instructions in Overview, using the conda machine name and macos or linux as compiler names.

On macOS:

./icepack.setup -m conda -e macos -c ~/icepack-dirs/cases/case1
cd ~/icepack-dirs/cases/case1
./icepack.build
./icepack.run

On GNU/Linux:

./icepack.setup -m conda -e linux -c ~/icepack-dirs/cases/case1
cd ~/icepack-dirs/cases/case1
./icepack.build
./icepack.run

A few notes about the conda configuration:

• This configuration always runs the model interactively, such that ./icepack.run and ./icepack.submit are
the same.

• You should not update the packages in the icepack conda environment, nor install additional packages.

• It is not recommeded to run other test suites than quick_suite or travis_suite on a personal computer.
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• The conda environment is automatically activated when compiling or running the model using the ./icepack.
build and ./icepack.run scripts in the case directory. These scripts source the file env.conda_{linux.
macos}, which calls conda activate icepack.

• The environment also contains the Sphinx package necessesary to build the HTML documentation. For this use
case you must manually activate the environment:

cd doc
conda activate icepack
make html
# Open build/html/index.html in your browser
conda deactivate # to deactivate the environment

3.2.4 Forcing data

The input data space is defined on a per machine basis by the ICE_MACHINE_INPUTDATA variable in the env.[machine]
file. That file space is often shared among multiple users, and it can be desirable to consider using a common file space
with group read and write permissions such that a set of users can update the inputdata area as new datasets are available.

The code is currently configured to run in standalone mode on a 4-cell grid using atmospheric data, available as detailed
on the wiki. These data files are designed only for testing the code, not for use in production runs or as observational
data. Please do not publish results based on these data sets. Module configuration/driver/icedrv_forcing.F90 can be
modified to change the forcing data.

Icepack requires near surface atmospheric data at a single point which are set in forcing_nml with the
atm_data_type in the namelist (see Table of Icepack Settings). The required fields to force icepack include: down-
welling long wave and shortwave radiative fluxes, latent and sensible heat fluxes, precipitation rate, and near surface
potential temperature and specific humidity. The filenames atm_data_file, ocn_data_file, ice_data_file, and
bgc_data_file must also be provided for options other than the default and climatological forcing cases. Current
filenames can be found in the options scripts in configuration/scripts/options and in the forcing data directories.

1) Climate Forecast System (CFS)

Hourly atmospheric forcing from the National Centers for Environmental Prediction’s (NCEP) Climate Forecast
System, version 2 (CFSv2) [59] were utilized to generate a one-year time series for Icepack testing. These data
were used to create the annual cycle at a point in the Beaufort Sea (70N, 220W) for the period of January 1
00:00UTC - December 31 23:00UTC, 2015. Additional locations can be provided for both hemispheres for the
period of 1999-2015 for future testing. This dataset can be used to run for several years to reach equilibrium of
the annual cycle.

Atmospheric forcing fields consist of 2-m air temperature (K), specific humidity (kg/kg), 10-m wind velocity
in the x and y directions (m/s), downward solar radiation (𝑊/𝑚2), downward longwave radiation (𝑊/𝑚2), and
precipitation (𝑘𝑔/𝑚2/𝑠). Icepack’s boundary layer calculation is used to derive sensible and latent heat fluxes.
In the namelist, set atm_data_type = CFS to use CFS atmospheric forcing.

2) Field campaign derived

a) Norwegian Young Sea Ice cruise (N-ICE)

Atmospheric, oceanic, and biogeochemical forcing are available from the 2015 Norwegian Young Sea
Ice Cruise (N-ICE) [11]. These data are available daily, except for incoming atmospheric radiative
forcing, which are available 6-hourly. The data correspond to the Arctic Ocean north of Svalbard
along the N-ICE drift track (83N, 16E to 80N, 5E) from April 24, 2015 to June 6, 2015.

Atmospheric forcing fields from [11] consist of 2-m air temperature (K), 2-m specific humidity
(kg/kg), 10-m wind velocity in the x and y directions (m/s), downward solar radiation (𝑊/𝑚2), and
precipitation (𝑘𝑔/𝑚2/𝑠). Icepack’s boundary layer calculation is used to derive sensible and latent
heat fluxes. In the namelist, set atm_data_type = NICE to use N-ICE atmospheric forcing.
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Oceanic forcing fields are available from a Parallel Ocean Program (POP) 1-degree (gx1v3) simulation
[9]. These fields consist of sea surface temperature (K), sea surface salinity (ppt), boundary layer depth
(m), ocean velocity in the x and y direction (m/s), and deep ocean heat flux (𝑊/𝑚2). In the namelist,
set ocn_data_type = NICE to use N-ICE oceanic forcing.

Biogeochemical forcing fields are available from the World Ocean Atlas [19]. The biogeochemical
fields provided are nitrate concentration (𝑚𝑚𝑜𝑙/𝑚3) and silicate concentration (𝑚𝑚𝑜𝑙/𝑚3). In the
namelist, set bgc_data_type = NICE to use N-ICE biogeochemical forcing.

b) Ice Station Polarstern (ISPOL)

Atmospheric, oceanic, and biogeochemical forcing are available from the 2004 Ice Station Polarstern
(ISPOL) [28]. These data can be used with both [6] and mushy layer thermodynamics. These data
are available daily, except for incoming atmospheric radiative forcing, which are available 6-hourly.
The data correspond to the Weddell Sea (67.9S, 54W) from June 16, 2004 to December 31, 2004.

Atmospheric forcing fields from [28] consist of 2-m air temperature (K), 2-m specific humidity
(kg/kg), 10-m wind velocity in the x and y directions (m/s), downward solar radiation (𝑊/𝑚2), and
precipitation (𝑘𝑔/𝑚2/𝑠). Icepack’s boundary layer calculation is used to derive sensible and latent
heat fluxes. In the namelist, set atm_data_type = ISPOL to use ISPOL atmospheric forcing.

Oceanic forcing fields are available from [28] derived from a POP 1-degree (gx1v3 simulation) [9].
These consist of sea surface temperature (K), sea surface salinity (ppt), boundary layer depth (m),
ocean velocity in the x and y direction (m/s), and deep ocean heat flux (𝑊/𝑚2). In the namelist, set
ocn_data_type = ISPOL to use ISPOL oceanic forcing.

Biogeochemical forcing fields are available from the World Ocean Atlas [19]. The biogeochemical
fields provided are nitrate concentration (𝑚𝑚𝑜𝑙/𝑚3) and silicate concentration (𝑚𝑚𝑜𝑙/𝑚3). In the
namelist, set bgc_data_type = ISPOL to use ISPOL biogeochemical forcing.

c) Surface HEat Budget of the Arctic (SHEBA)

The ice opening and closing rates (1/s) are derived from the SHEBA data and have been used previ-
ously in Cecilia Bitz’s column model. For additional information see the following websites:

• https://atmos.washington.edu/~bitz/column_model/

• https://atmos.washington.edu/~bitz/column_model/notes_forcing_data

At present, only the opening and closing rates (1/s) are used from the forcing data. In the namelist,
set ocn_data_type = SHEBA to use this forcing in Icepack.

3) Climatological - Maykut and Untersteiner 1971 [45]

The climatological forcing consists of a monthly climatology of downward radiative fluxes, air temperature,
relative humidity and wind speed compiled from Arctic ice station observations shown in Table 1 from [36].
Icepack’s boundary layer calculation is used to derive sensible and latent heat fluxes. The snowfall follows the
idealized specification used by [61] . To adjust the ice thickness a fixed heating of 6 𝑊/𝑚2 is applied to the
bottom of the ice. This may be thought of as containing about 2 𝑊/𝑚2 of ocean heating and an adjustment
of about 4 𝑊/𝑚2 for biases in the forcings or the model. In the namelist, set atm_data_type = clim to use
climatological atmospheric forcing.
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3.2.5 Horizontal ice advection

When Icepack is run in standalone mode with a dynamical forcing (e.g., ocn_data_type = SHEBA), closing
implies the lateral flux of ice or open water area into the grid cell. The default assumption (in the namelist,
lateral_flux_type = 'uniform_ice') is that the active grid cell is surrounded by grid cells with identical ice
properties to the active grid cell, i.e. the ice is uniform across all of those cells, and when the dynamical forcing is
net convergence, this uniform ice is fluxed into the grid cell. Alternatively, one may assume that the active grid cell is
surrounded by open water (in the namelist lateral_flux_type = 'open_water'), in which case closing (i.e., ice
convergence) will produce open water in the grid cell. In either case, when the forcing is net divergence, ice area and
volume are removed from the grid cell to accommodate the formation of open water implied by the net divergence.

3.2.6 Run Directories

The icepack.setup script creates a case directory. However, the model is actually built and run under the ICE_OBJDIR
and ICE_RUNDIR directories as defined in the icepack.settings file. It’s important to note that when the run script is
submitted, the current icepack_in, icepack.settings, and env.[machine] files are copied from the case directory into
the run directory. Users should generally not edit files in the run directory as these are overwritten when following the
standard workflow.

Build and run logs will be copied from the run directory into the case logs/ directory when complete.

3.2.7 Local modifications

Scripts and other case settings can be changed manually in the case directory and used. Source code can be modified
in the main sandbox. When changes are made, the code should be rebuilt before being resubmitted. It is always
recommended that users modify the scripts and input settings in the case directory, NOT the run directory. In general,
files in the run directory are overwritten by versions in the case directory when the model is built, submitted, and run.

3.3 Testing Icepack

This section documents primarily how to use the Icepack scripts to carry out icepack testing. Exactly what to test is
a separate question and depends on the kinds of code changes being made. Prior to merging changes to the CICE
Consortium main branch, changes will be reviewed and developers will need to provide a summary of the tests carried
out.

There is a base suite of tests provided by default with Icepack and this may be a good starting point for testing.

The testing scripts support several features

• Ability to test individual (via --test)or multiple tests (via --suite) using an input file to define the suite
or suites

• Ability to use test suite defined in the package or test suites defined by the user

• Ability to store test results for regresssion testing (--bgen)

• Ability to compare results to prior baselines to verify bit-for-bit (--bcmp)

• Ability to define where baseline tests are stored

• Ability to compare tests against each other (--diff)
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3.3.1 Individual Tests

The Icepack scripts support both setup of individual tests as well as test suites. Individual tests are run from the
command line:

./icepack.setup --test smoke --mach conrad --env cray --set diag1,debug --testid myid

Tests are just like cases but have some additional scripting around them. Individual tests can be created and manually
modified just like cases. Many of the command line arguments for individual tests are similar to Command Line Options
for --case. For individual tests, the following command line options can be set

--test TESTNAME
specifies the test type. This is probably either smoke or restart but see icepack.setup –help for the latest. This is
required instead of --case.

--testid ID
specifies the testid. This is required for every use of --test and --suite. This is a user defined string that will
allow each test to have a unique case and run directory name. This is also required.

--tdir PATH
specifies the test directory. Testcases will be created in this directory. (default is .)

--mach MACHINE (see Command Line Options)

--env ENVIRONMENT1 (see Command Line Options)

--set SET1,SET2,SET3 (see Command Line Options)

--acct ACCOUNT (see Command Line Options)

--grid GRID (see Command Line Options)

--pes MxN (see Command Line Options)

Like --case, --grid and --pes are not particularly useful right now within Icepack since the model can only run
serially and only with the col grid setting. There are several additional options that come with --test that are not
available with --case for regression and comparision testing,

--bdir DIR
specifies the top level location of the baseline results. This is used in conjuction with --bgen and --bcmp. The
default is set by ICE_MACHINE_BASELINE in the env.[machine]_[environment] file.

--bgen DIR
specifies the name of the directory under [bdir] where test results will be stored. When this flag is set, it auto-
matically creates that directory and stores results from the test under that directory. If DIR is set to default,
then the scripts will automatically generate a directory name based on the Icepack hash and the date and time.
This can be useful for tracking the baselines by hash.

--bcmp DIR
specifies the name of the directory under [bdir] that the current tests will be compared to. When this flag is set, it
automatically invokes regression testing and compares results from the current test to those prior results. If DIR
is set to default, then the script will automatically generate the last directory name in the [bdir] directory. This
can be useful for automated regression testing.

--diff LONG_TESTNAME
invokes a comparison against another local test. This allows different tests to be compared to each other. The
restrictions are that the test has to already be completed and the testid has to match.

The format of the case directory name for a test will always be [machine]_[env]_[test]_[grid]_[pes]_[sets].
[testid] The [sets] will always be sorted alphabetically by the script so --set debug,diag1 and --set diag1,
debug produces the same testname and test with _debug_diag1 in that order.
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To build and run a test, the process is the same as a case. cd to the test directory, run the build script, and run the submit
script:

cd [test_case]
./icepack.build
./icepack.submit

The test results will be generated in a local file called test_output. To check those results:

cat test_output

Tests are defined under configuration/scripts/tests/. The tests currently supported are:

• smoke - Runs the model for default length. The length and options can
be set with the --set command line option. The test passes if the model completes successfully.

• restart - Runs the model for 14 months, writing a restart file at month 3 and
again at the end of the run. Runs the model a second time starting from the month 3 restart and writing a
restart at month 12 of the model run. The test passes if both runs complete and if the restart files at month
12 from both runs are bit-for-bit identical.

Please run ./icepack.setup --help for the latest information.

Individual Test Examples

1) Basic default single test

Define the test, mach, env, and testid.

./icepack.setup --test smoke --mach wolf --env gnu --testid t00
cd wolf_gnu_smoke_col_1x1.t00
./icepack.build
./icepack.submit
./cat test_output

2) Simple test with some options

Add --set

./icepack.setup --test smoke --mach wolf --env gnu --set diag1,debug --testid t00
cd wolf_gnu_smoke_col_1x1_debug_diag1.t00
./icepack.build
./icepack.submit
./cat test_output

3) Single test, generate baseline dataset

Add --bgen

./icepack.setup --test smoke --mach wolf -env gnu --bgen icepack.v01 --testid t00 --
→˓set diag1
cd wolf_gnu_smoke_col_1x1_diag1.t00
./icepack.build
./icepack.submit
./cat test_output
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4) Single test, compare results to a prior baseline

Add --bcmp. For this to work, the prior baseline must exist and have the exact same base testname [ma-
chine]_[env]_[test]_[grid]_[pes]_[sets]

./icepack.setup --test smoke --mach wolf -env gnu --bcmp icepack.v01 --testid t01 --
→˓set diag1
cd wolf_gnu_smoke_col_1x1_diag1.t01
./icepack.build
./icepack.submit
./cat test_output

5) Simple test, generate a baseline dataset and compare to a prior baseline

Use --bgen and --bcmp. The prior baseline must exist already.

./icepack.setup --test smoke --mach wolf -env gnu --bgen icepack.v02 --bcmp icepack.
→˓v01 --testid t02 --set diag1
cd wolf_gnu_smoke_col_1x1_diag1.t02
./icepack.build
./icepack.submit
./cat test_output

6) Simple test, comparison against another test

Use --diff. This feature is primarily used in test suites and has limited use in icepack, but is being described
for completeness.

--diff provides a way to compare tests with each other. For this to work, the tests have to be run in a specific
order and the testids need to match. The test is always compared relative to the current case directory.

To run the first test,

./icepack.setup --test smoke --mach wolf -env gnu --testid tx01 --set debug
cd wolf_gnu_smoke_col_1x1_debug.tx01
./icepack.build
./icepack.submit
./cat test_output

Then to run the second test and compare to the results from the first test

./icepack.setup --test smoke --mach wolf -env gnu --testid tx01 --diff smoke_col_
→˓1x1_debug
cd wolf_gnu_smoke_col_1x1.tx01
./icepack.build
./icepack.submit
./cat test_output

The scripts will add a [machine]_[environment] to the beginning of the diff argument and the same testid to
the end of the diff argument. Then the runs will be compared for bit-for-bit and a result will be produced in
test_output. This is really more useful in CICE and for test suites right now. For example, CICE uses this feature
to compare results from different pe counts or decompositions, single threaded vs multi-threaded, and so forth.
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3.3.2 Test suites

Test suites support running multiple tests specified via an input file or files. When invoking the test suite option
(--suite) with icepack.setup, all tests will be created, built, and submitted automatically under a directory called
testsuite.[testid].[$date] as part of involing the suite. The test scripts provide an ability to reuse binaries between tests
within a test suite when possible. Because the tests are built and submitted automatically, this feature does not allow
for customization of cases or tests like individual cases and tests do:

./icepack.setup --suite base_suite --mach wolf --env gnu --testid myid

Like an individual test, the --testid option must be specified and can be any string.

If using the --tdir option, that directory must not exist before the script is run. The tdir directory will be created by
the script and it will be populated by all tests as well as scripts that support the test suite:

./icepack.setup --suite base_suite --mach wolf --env gnu --testid myid --tdir /scratch/
→˓$user/testsuite.myid

Once the tests are complete, results can be checked by running the results.csh script in the [suite_name].[testid]:

cd testsuite.[testid]
./results.csh

The predefined test suites are defined under configuration/scripts/tests and the files defining the suites have a suffix
of .ts in that directory. The format for the test suite file is relatively simple. It is a text file with white space delimited
columns that define a handful of values in a specific order. The first column is the test name, the second the grid, the
third the pe count, the fourth column is the --set options and the fifth column is the --diff argument. (The grid and
PEs columns are provided for compatibility with the similar CICE scripts.) The fourth and fifth columns are optional.
Lines that begin with # or are blank are ignored. For example,

#Test Grid PEs Sets Diff
smoke col 1x1 diag1
smoke col 1x1 diag1,run1year smoke_col_1x1_diag1
smoke col 1x1 debug,run1year
restart col 1x1 debug
restart col 1x1 diag1
restart col 1x1 pondlvl
restart col 1x1 pondtopo

The argument to --suite defines the test suite (.ts) filename or filenames and that argument can contain a path.
icepack.setup will look for the filename in the local directory, in configuration/scripts/tests/, or in the path defined
by the --suite option.

Because many of the command line options are specified in the input file, ONLY the following options are valid for
suites,

--suite suitename1,suitename2
required, input filename with comma delimited list of suite or suites

--machMACHINE
required

--env ENVIRONMENT1,ENVIRONMENT2
strongly recommended

--acct ACCOUNT
optional
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--tdir PATH
optional

--testid ID
required

--bdir DIR
optional, top level baselines directory and defined by default by ICE_MACHINE_BASELINE in
env.[machine]_[environment].

--bgen DIR
recommended, test output is copied to this directory under [bdir]

--bcmp DIR
recommended, test output are compared to prior results in this directory under [bdir]

--report
This is only used by --suite and when set, invokes a script that sends the test results to the results page when
all tests are complete. Please see Test Reporting for more information.

--coverage
When invoked, code coverage diagnostics are generated. This will modify the build and reduce optimization and
generate coverage reports using lcov or codecov tools. General use is not recommended, this is mainly used as
a diagnostic to periodically assess test coverage. Please see Code Coverage Testing for more information.

Please see Command Line Options and Individual Tests for more details about how these options are used.

Test Suite Examples

1) Basic test suite

Specify suite, mach, env, testid.

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a
cd base_suite.v01a
#wait for runs to complete
./results.csh

2) Basic test suite with user defined test directory

Specify suite, mach, env, testid.

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a --tdir /
→˓scratch/$user/ts.v01a
cd /scratch/$user/ts.v01a
#wait for runs to complete
./results.csh

3) Multiple test suites on multiple environments

Specify multiple envs.

./icepack.setup --suite base_suite,quick_suite --mach conrad --env cray,pgi,
→˓intel,gnu --testid v01a
cd testsuite.v01a
#wait for runs to complete
./results.csh
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The interface supports both multiple suites and multiple environments from a single command line
invokation. Each env or suite can also be run as a separate invokation of icepack.setup but if that
approach is taken, it is recommended that different testids be used.

4) Basic test suite, store baselines in user defined name

Add --bgen

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen icepack.v01a
cd testsuite.v01a
#wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under the subdirectory icepack.v01a.

5) Basic test suite, store baselines in user defined top level directory

Add --bgen and --bdir

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen icepack.v01a --bdir /tmp/user/ICEPACK_BASELINES
cd testsuite.v01a
#wait for runs to complete
./results.csh

This will store the results in /tmp/user/ICEPACK_BASELINES/icepack.v01a.

6) Basic test suite, store baselines in auto-generated directory

Add --bgen default

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen default
cd testsuite.v01a
#wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under a directory name generated by the script
that includes the hash and date.

7) Basic test suite, compare to prior baselines

Add --bcmp

./icepack.setup --suite base_suite --mach conrad --env cray --testid v02a --
→˓bcmp icepack.v01a
cd testsuite.v02a
#wait for runs to complete
./results.csh

This will compare to results saved in the baseline [bdir] directory under the subdirectory icepack.v01a.
You can use other regression options as well (--bdir and --bgen)

8) Basic test suite, use of default string in regression testing

default is a special argument to --bgen and --bcmp. When used, the scripts will automate generation
of the directories. In the case of --bgen, a unique directory name consisting of the hash and a date
will be created. In the case of --bcmp, the latest directory in [bdir] will automatically be specified.
This provides a number of useful features
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• the --bgen directory will be named after the hash automatically

• the --bcmp will always find the most recent set of baselines

• the --bcmp reporting will include information about the comparison directory name which will
include hash information

• automation can be invoked easily, especially if --bdir is used to separate results

Imagine the case where the default settings are used and --bdir is used to create a unique location.
You could easily carry out regular builds automatically via,

set mydate = `date -u "+%Y%m%d"`
git clone https://github.com/myfork/icepack icepack.$mydate
cd icepack.$mydate
./icepack.setup --suite base_suite --mach conrad --env cray,gnu,intel,pgi --
→˓testid $mydate --bcmp default --bgen default --bdir /tmp/work/user/
→˓ICEPACK_BASELINES_MAIN

When this is invoked, a new set of baselines will be generated and compared to the prior results each
time without having to change the arguments.

9) Create and test a custom suite

Create your own input text file consisting of 5 columns of data,

• Test

• Grid

• pes

• sets (optional)

• diff test (optional)

such as

> cat mysuite
smoke col 1x1 diag1,debug
restart col 1x1
restart col 1x1 diag1,debug restart_col_1x1
restart col 1x1 mynewoption,diag1,debug

then use that input file, mysuite

./icepack.setup --suite mysuite --mach conrad --env cray --testid v01a --
→˓bgen default
cd mysuite.v01a
#wait for runs to complete
./results.csh

You can use all the standard regression testing options (--bgen, --bcmp, --bdir). Make sure any
“diff” testing that goes on is on tests that are created earlier in the test list, as early as possible. Un-
fortunately, there is still no absolute guarantee the tests will be completed in the correct sequence.
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3.3.3 Test Reporting

The Icepack testing scripts have the capability to post test results to the official wiki page. You may need write permis-
sion on the wiki. If you are interested in using the wiki, please contact the consortium.

To post results, once a test suite is complete, run results.csh and report_results.csh from the suite directory,

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a
cd testsuite.v01a
#wait for runs to complete
./results.csh
./report_results.csh

report_results.csh will run results.csh by default automatically, but we recommmend running it manually first
to verify results before publishing them. report_results.csh -n will turn off automatic running of results.csh.

The reporting can also be automated in a test suite by adding --report to icepack.setup

./icepack.setup --suite base_suite --mach conrad --env cray --testid v01a --report

With --report, the suite will create all the tests, build and submit them, wait for all runs to be complete, and run the
results and report_results scripts.

3.3.4 Code Coverage Testing

The --coverage feature in icepack.setup provides a method to diagnose code coverage. This argument turns on
special compiler flags including reduced optimization and then invokes the gcov tool. Once runs are complete, either
lcov or codecov can be used to analyze the results. This option is currently only available with the gnu compiler and
on a few systems with modified Macros files.

At the present time, the --coverage flag invokes the lcov analysis automatically by running the report_lcov.csh script
in the test suite directory. The output will show up at the CICE-Consortium code coverage website. To use the tool,
you should have write permission for that repository. The lcov tool should be run on a full multi-suite test suite, and it
can take several hours to process the data once the test runs are complete. A typical instantiation would be

./icepack.setup --suite base_suite,travis_suite,quick_suite --mach cheyenne --env gnu --
→˓testid cc01 --coverage

Alternatively, codecov analysis can be carried out by manually running the report_codecov.csh script from the test
suite directory, but there are several ongoing problems with this approach and it is not generally recommended. The
codecov analysis is largely identical to the analysis performed by lcov, codecov just provides a nicer web experience to
view the output.

This is a special diagnostic test and is not part of the standard model testing. General use is not recommended, this is
mainly used as a diagnostic to periodically assess test coverage.
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3.3.5 Test Plotting

The Icepack scripts include a script (timeseries.csh) that will generate a timeseries figure from the diagnostic
output file. When running a test suite, the timeseries.csh script is automatically copied to the suite directory. If
the timeseries.csh script is to be used on a test / case that is not a part of a test suite, users will need to run the
timeseries.csh script from the tests directory (./configuration/scripts/tests/timeseries.csh), or copy
it to a local directory and run it locally (cp configuration/scripts/tests/timeseries.csh . followed by ./
timeseries.csh /path/to/ice_diag.full_ITD. The plotting script can be run on any of the output files - icefree,
slab, full_ITD, land). To generate the figure, run the timeseries.csh script and pass the full path to the ice_diag file
as an argument.

For example:

Run the test suite.

$ ./icepack.setup -m conrad -e intel --suite base_suite -acct <account_number> --testid␣
→˓t00

Wait for suite to finish then go to the directory.

$ cd testsuite.t00

Run the timeseries script on the desired case.

$ ./timeseries.csh /p/work1/turner/ICEPACK_RUNS/conrad_intel_smoke_col_1x1_diag1_
→˓run1year.t00/ice_diag.full_ITD

The output figures are placed in the directory where the ice_diag file is located.

This plotting script can be used to plot the following variables:

• area fraction

• average ice thickness (m)

• average snow depth (m)

• air temperature (C)

• shortwave radiation (𝑊/𝑚2)

• longwave radiation (𝑊/𝑚2)

• snowfall

• average salinity (ppt)

• surface temperature (C)

• outward longwave flux (𝑊/𝑚2)

• sensible heat flux (𝑊/𝑚2)

• latent heat flux (𝑊/𝑚2)

• top melt (m)

• bottom melt (m)

• lateral melt (m)

• new ice (m)

• congelation (m)
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• snow-ice (m)

• initial energy change (𝑊/𝑚2)

3.4 Case Settings, Model Namelist, and CPPs

There are two important files that define the case, icepack.settings and icepack_in. icepack.settings is a list of env
variables that define many values used to setup, build and run the case. icepack_in is the input namelist file for
the icepack driver. Variables in both files are described below. In addition, the first table documents available C
Preprocessor Macros.

3.4.1 Table of C Preprocessor (CPP) Macros

The Icepack model supports a few C Preprocessor (CPP) Macros. These can be turned on during compilation to activate
different pieces of source code. The main purpose is to introduce build-time code modifications to include or exclude
certain libraries or Fortran language features, in part to support CICE or other applications. More information can be
found in C Preprocessor (CPP) Macros. The following CPPs are available.

Table 3: CPP Macros
CPP name description

General Macros
NO_I8 Converts integer*8 to integer*4.
NO_R16 Converts real*16 to real*8.
NO_SNICARHC Does not compile hardcoded (HC) 5 band snicar tables tables needed by

shortwave=dEdd_snicar_ad. May reduce compile time.
USE_NETCDF Turns on netcdf capabilities in Icepack. By default and generally, Icepack does not need

netcdf.

Application
Macros
CESMCOUPLED Turns on code changes for the CESM coupled application
CICE_IN_NEMO Turns on code changes for coupling in the NEMO ocean model

3.4.2 Table of Icepack Settings

The icepack.settings file contains a number of environment variables that define configuration, file system, run, and
build settings. Several variables are set by the icepack.setup script. This file is created on a case by case basis and can
be modified as needed.

Table 4: Icepack settings
variable options/format description default value
ICE_CASENAME string case name set by icepack.setup
ICE_SANDBOX string sandbox directory set by icepack.setup
ICE_MACHINE string machine name set by icepack.setup
ICE_ENVNAME string compilation environment set by icepack.setup
ICE_MACHCOMP string machine_environment name set by icepack.setup
ICE_SCRIPTS string scripts directory set by icepack.setup

continues on next page
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Table 4 – continued from previous page
variable options/format description default value
ICE_CASEDIR string case directory set by icepack.setup
ICE_RUNDIR string run directory set by icepack.setup
ICE_OBJDIR string compile directory ${ICE_RUNDIR}/compile
ICE_RSTDIR string unused ${ICE_RUNDIR}/restart
ICE_HSTDIR string unused ${ICE_RUNDIR}/history
ICE_LOGDIR string log directory ${ICE_CASEDIR}/logs
ICE_RSTPFILE string unused undefined
ICE_DRVOPT string unused icepack
ICE_IOTYPE none,netcdf IO options none
ICE_CLEANBUILD true,false automatically clean before building true
ICE_CPPDEFS string user defined preprocessor macros for

build
null

ICE_QUIETMODE true, false reduce build output to the screen false
ICE_GRID col grid col
ICE_NXGLOB 4 number of gridcells 4
ICE_NTASKS 1 number of tasks, must be set to 1 1
ICE_NTHRDS 1 number of threads per task, must be

set to 1
1

ICE_TEST string test setting if using a test set by icepack.setup
ICE_TESTNAME string test name if using a test set by icepack.setup
ICE_BASELINE string baseline directory name, associated

with icepack.setup -bd
set by icepack.setup

ICE_BASEGEN string baseline directory name for regres-
sion generation, associated with
icepack.setup -bg

set by icepack.setup

ICE_BASECOM string baseline directory name for regres-
sion comparison, associated with
icepack.setup -bc

set by icepack.setup

ICE_BFBCOMP string location of case for comparison, as-
sociated with icepack.setup -td

set by icepack.setup

ICE_SPVAL string unused UnDeFiNeD
ICE_RUNLENGTH string batch run length default

00:10:00

ICE_ACCOUNT string batch account number set by icepack.setup or by
default

ICE_QUEUE string batch queue name set by icepack.setup or by
default

ICE_THREADED true,false force threading in compile, will al-
ways compile threaded if NTHRDS
is gt 1

false

NICELYR integer number of vertical layers in the ice 7
NSNWLYR integer number of vertical layers in the snow 1
NICECAT integer number of ice thickness categories 5
NFSDCAT integer number of floe size categories 12
TRAGE 0,1 ice age tracer 1
TRFY 0,1 first-year ice area tracer 1
TRLVL 0,1 deformed ice tracer 1
TRPND 0,1 melt pond tracer 1
NTRAERO integer number of aerosol tracers 1

continues on next page
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Table 4 – continued from previous page
variable options/format description default value
NTRISO integer number of water isotope tracers 1
TRBRI 0,1 brine height tracer 0
TRZS DEPRECATED
TRBGCS 0,1 skeletal layer tracer, needs TR-

BGCZ=0
0

TRBGCZ 0,1 zbgc tracers, needs TRBGCS=0 and
TRBRI=1

0

NBGCLYR integer number of zbgc layers 1
TRZAERO 0-6 number of z aerosol tracers 0
TRALG 0,1,2,3 number of algal tracers 0
TRDOC 0,1,2,3 number of dissolved organic carbon 0
TRDIC 0,1 number of dissolved inorganic car-

bon
0

TRDON 0,1 number of dissolved organic nitro-
gen

0

TRFEP 0,1,2 number of particulate iron tracers 0
TRFED 0,1,2 number of dissolved iron tracers 0
ICE_SNICARHC true,false include hardcoded (HC) snicar ta-

bles
false

ICE_BLDDEBUG true,false turn on compile debug flags false
ICE_COVERAGE true,false turn on code coverage flags false

3.4.3 Tables of Namelist Options

The Icepack driver reads a namelist input file, icepack_in, consisting of several namelist groups. The tables below
summarize the different groups and the variables in each group. The variables are organized alphabetically and the
default values listed are the values defined in the source code. Those values will be used unless overridden by the Icepack
namelist file, icepack_in. The source code default values as listed in the table are not necessarily the recommended
production values.
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setup_nml

Table 5: setup_nml namelist options
variable options/format description default value

conserv_check logical check conservation .false.
cpl_bgc logical couple bgc thru driver .false.
days_per_year integer number of days in a model year 365
diagfreq integer frequency of diagnostic output in timesteps 24
diag_file string diagnostic output filename ‘ice_diag’
dumpfreq d write restart every dumpfreq_n days y

m write restart every dumpfreq_n months
y write restart every dumpfreq_n years

dump_last true/false write restart at end of run false
dt seconds thermodynamics time step length

3600.

history_format cdf history file output in netcdf format none
none no history output

ice_ic default latitude and sst dependent initial condition default
none no ice
‘path/file’ restart file name

istep0 integer initial time step number 0
ndtd integer number of dynam-

ics/advection/ridging/steps per thermo
timestep

1

npt integer total number of time steps to take 99999
restart logical initialize using restart file .false.
restart_dir string path to restart directory ‘./’
restart_file string output file prefix for restart dump ‘iced’
restart_format bin restart file output in binary format bin

cdf restart file output in netcdf format
use_leap_years logical include leap days .false.
year_init integer the initial year if not using restart 0

grid_nml

Table 6: grid_nml namelist options
variable options/format description default value

kcatbound -1 single category formulation 1
0 old formulation
1 new formulation with round numbers
2 WMO standard categories
3 asymptotic scheme
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tracer_nml

Table 7: tracer_nml namelist options
variable options/format description default value

tr_aero logical aerosols .false.
tr_fsd logical floe size distribution .false.
tr_FY logical first-year ice area .false.
tr_iage logical ice age .false.
tr_iso logical isotopes .false.
tr_lvl logical level ice area and volume .false.
tr_pond_lvl logical level-ice melt ponds .false.
tr_pond_topo logical topo melt ponds .false.
tr_snow logical advanced snow physics .false.

thermo_nml

Table 8: thermo_nml namelist options
variable options/format description default value

a_rapid_mode real brine channel diameter in m 0.5e-3
aspect_rapid_mode real brine convection aspect ratio 1.0
conduct bubbly conductivity scheme [50] bubbly

MU71 conductivity [45]
dSdt_slow_mode real slow drainage strength parameter m/s/K -1.5e-7
floediam real effective floe diameter for lateral melt in m 300.0
hfrazilmin real min thickness of new frazil ice in m 0.05
hi_min real minimum ice thickness allowed for thermo

in m
0.01

kitd 0 delta function ITD approximation 1
1 linear remapping ITD approximation

ksno real snow thermal conductivity 0.3
ktherm -1 thermodynamic model disabled 1

1 Bitz and Lipscomb thermodynamic model
2 mushy-layer thermodynamic model

phi_c_slow_mode 0 < 𝜑𝑐 < 1 critical liquid fraction 0.05
phi_i_mushy 0 < 𝜑𝑖 < 1 solid fraction at lower boundary 0.85
Rac_rapid_mode real critical Rayleigh number 10.0
Tliquidus_max real maximum liquidus temperature of mush (C) 0.0
tscale_pnd_drain real mushy pond macroscopic drainage

timescale in days 10.
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dynamics_nml

Table 9: dynamics_nml namelist options
variable options/format description default value

Cf real ratio of ridging work to PE change in ridging 17.0
kstrength 0 ice strength formulation [21] 1

1 ice strength formulation [57]
krdg_partic 0 old ridging participation function 1

1 new ridging participation function
krdg_redist 0 old ridging redistribution function 1

1 new ridging redistribution function
mu_rdg real e-folding scale of ridged ice for

krdg_partic = 1 in m^0.5
3.0
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shortwave_nml

Table 10: shortwave_nml namelist options
variable options/format description default value

ahmax real albedo is constant above this thickness in
meters

0.3

albedo_type ccsm3 NCAR CCSM3 albedo implementation ccsm3
constant four constant albedos

albicei 0 < 𝛼 < 1 near infrared ice albedo for thicker ice 0.36
albicev 0 < 𝛼 < 1 visible ice albedo for thicker ice 0.78
albsnowi 0 < 𝛼 < 1 near infrared, cold snow albedo 0.70
albsnowv 0 < 𝛼 < 1 visible, cold snow albedo 0.98
dT_mlt real ∆ temperature per ∆ snow grain radius 1.5
kalg real absorption coefficient for algae 0.6
rsnw_mlt real maximum melting snow grain radius

1500.

R_ice real tuning parameter for sea ice albedo from
Delta-Eddington shortwave

0.0

R_pnd real tuning parameter for ponded sea ice albedo
from Delta-Eddington shortwave

0.0

R_snw real tuning parameter for snow (broadband
albedo) from Delta-Eddington shortwave

1.5

shortwave ccsm3 NCAR CCSM3 shortwave distribution
method

dEdd

dEdd Delta-Eddington method (3-band)
dEdd_snicar_ad Delta-Eddington method with 5-band snow

snw_ssp_table snicar lookup table for dEdd_snicar_ad
test reduced lookup table for dEdd_snicar_ad

testing
sw_dtemp real temperature from melt for sw_redist 0.02
sw_frac real fraction of shortwave redistribution 0.9
sw_redist logical shortwave redistribution .false.
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ponds_nml

Table 11: ponds_nml namelist options
variable options/format description default value

dpscale real scaling factor for flushing in permeable ice
(ktherm=1)

1.e-3

frzpnd cesm CESM pond refreezing forumulation cesm
hlid Stefan refreezing with pond ice thickness

hp1 real critical ice lid thickness for topo ponds in m 0.01
hs0 real snow depth of transition to bare sea ice in m
hs1 real snow depth of transition to pond ice in m 0.03
pndaspect real aspect ratio of pond changes (depth:area) 0.8
rfracmax 0 ≤ 𝑟𝑚𝑎𝑥 ≤ 1 maximum melt water added to ponds 0.85
rfracmin 0 ≤ 𝑟𝑚𝑖𝑛 ≤ 1 minimum melt water added to ponds 0.15

snow_nml

Table 12: snow_nml namelist options
variable options/format description default value

drhosdwind real wind compaction factor for snow 27.3
rhosmin real minimum snow density 100.0
rhosmax real maximum snow density 450.0
rhosnew real new snow density 100.0
rsnw_fall real radius of new snow (um) 54.526
rsnw_tmax real maximum snow radius (um) 1500.0
snw_aging_table test snow aging lookup table test

snicar (not available in Icepack)
snwgrain logical snow grain metamorphosis .true.
snwlvlfac real fraction increase in bulk snow redistribution 0.3
snwredist snwITDrdg snow redistribution using ITD/ridges snwITDrdg

bulk bulk snow redistribution
none no snow redistribution

use_smliq_pnd logical use liquid in snow for ponds .true.
windmin real minimum wind speed to compact snow 10.0

forcing_nml

Table 13: forcing_nml namelist options
variable options/format description default value

atmbndy string bulk transfer coefficients similarity
similarity stability-based boundary layer
constant constant-based boundary layer

continues on next page
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Table 13 – continued from previous page
variable options/format description default value

mixed stability-based, but constant for sensi-
ble+latent heatfluxes

atmiter_conv real convergence criteria for ustar 0.0
atm_data_file string file containing atmospheric data ‘ ‘
atm_data_format bin read direct access binary forcing files bin
atm_data_type clim monthly climatology (see Forcing data) default

CFS CFS model output (see Forcing data)
default constant values defined in the code
ISPOL ISPOL experiment data (see Forcing data)
NICE N-ICE experiment data (see Forcing data)

bgc_data_file string file containing biogeochemistry data ‘ ‘
bgc_data_format bin read direct access binary forcing files bin
bgc_data_type clim bgc climatological data default

default constant values defined in the code
ncar POP ocean forcing data

calc_strair .false. read wind stress and speed from files .true.
.true. calculate wind stress and speed

calc_Tsfc logical calculate surface temperature .true.
cpl_frazil external frazil water/salt fluxes are handled outside of

Icepack
fresh_ice_correction

fresh_ice_correctioncorrect fresh-ice frazil water/salt fluxes for
mushy physics

internal send full frazil water/salt fluxes for mushy
physics

data_dir string path to forcing data directory ‘ ‘
default_season summer forcing initial summer values winter

winter forcing initial winter values
emissivity real emissivity of snow and ice 0.985
fbot_xfer_type Cdn_ocn variabler ocean heat transfer coefficient

scheme
constant

constant constant ocean heat transfer coefficient
formdrag logical calculate form drag .false.
fyear_init integer first year of atmospheric forcing data 1998
highfreq logical high-frequency atmo coupling .false.
lateral_flux_type uniform_ice flux ice with identical properties into the cell

when closing (Icepack only)
none advect open water into the cell when closing

(Icepack only)
ice_data_file string file containing ice opening, closing data ‘ ‘
l_mpond_fresh .false. release pond water immediately to ocean .false.

true retain (topo) pond water until ponds drain
natmiter integer number of atmo boundary layer iterations 5
oceanmixed_ice logical active ocean mixed layer calculation .false.
ocn_data_file string file containing ocean data ‘ ‘
ocn_data_format bin read direct access binary forcing files bin
ocn_data_type default constant values defined in the code default

ISPOL ISPOL experiment data (see Forcing data)
NICE N-ICE experiment data (see Forcing data)
SHEBA Opening/closing dataset from SHEBA

continues on next page
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Table 13 – continued from previous page
variable options/format description default value
precip_units mks liquid precipitation data units mks

mm_per_month
mm_per_sec (same as MKS units)
m_per_sec

restore_ocn logical restore sst to data .false.
saltflux_option constant salt flux is referenced to a constant salinity constant

prognostic use actual sea ice bulk salinity in flux
tfrz_option constant constant ocean freezing temperature (Tocn-

frz)
mushy

linear_salt linear function of salinity (ktherm=1)
minus1p8 constant ocean freezing temperature

(−1.8∘𝐶)
mushy matches mushy-layer thermo (ktherm=2)

trestore integer sst restoring time scale (days) 90
update_ocn_f .false. do not include frazil water/salt fluxes in ocn

fluxes
.false.

true include frazil water/salt fluxes in ocn fluxes
ustar_min real minimum value of ocean friction velocity in

m/s
0.005

wave_spec_type constant wave data file is provided, sea surface height
generated using constant phase (1 iteration
of wave fracture)

none

none no wave data provided, no wave-ice inter-
actions (not recommended when using the
FSD)

profile no wave data file is provided, use fixed
dummy wave spectrum, for testing, sea sur-
face height generated using constant phase
(1 iteration of wave fracture)

random wave data file is provided, sea surface height
generated using random number (multiple it-
erations of wave fracture)

ycycle integer number of years in forcing data cycle 1

zbgc_nml

Table 14: zbgc_nml namelist options
variable options/format description default value

algaltype_diatoms real mobility type between stationary and mobile
algal diatoms

0.0

algaltype_phaeo real mobility type between stationary and mobile
algal phaeocystis

0.5

algaltype_sp real mobility type between stationary and mobile
small plankton

0.5

algal_vel real [33] 1.11e-8
alpha2max_low_diatomsreal light limitation diatoms 1/(W/m^2) 0.8

continues on next page
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Table 14 – continued from previous page
variable options/format description default value
alpha2max_low_phaeoreal light limitation phaeocystis 1/(W/m^2) 0.67
alpha2max_low_sp real light limitation small plankton 1/(W/m^2) 0.67
ammoniumtype real mobility type between stationary and mobile

ammonium
1.0

beta2max_diatoms real light inhibition diatoms 1/(W/m^2) 0.18
beta2max_phaeo real light inhibition phaeocystis 1/(W/m^2) 0.01
beta2max_sp real light inhibition small plankton 1/(W/m^2) 0.0025
bgc_data_type clim bgc climatological data default

default constant values defined in the code
ncar POP ocean forcing data

bgc_flux_type constant constant ice–ocean flux velocity Jin2006
Jin2006 ice–ocean flux velocity of [30]

chlabs_diatoms real chl absorbtion diatoms 1/m/(mg/m^3) 0.03
chlabs_phaeo real chl absorbtion phaeocystis 1/m/(mg/m^3) 0.05
chlabs_sp real chl absorbtion small plankton

1/m/(mg/m^3)
0.01

dEdd_algae logical .false.
dmspdtype real mobility type between stationary and mobile

dmspd
-1.0

dmspptype real mobility type between stationary and mobile
dmspp

0.5

doctype_l real mobility type between stationary and mobile
doc lipids

0.5

doctype_s real mobility type between stationary and mobile
doc saccharids

0.5

dontype_protein real mobility type between stationary and mobile
don proteins

0.5

dustFe_sol real solubility fraction 0.005
fedtype_1 real mobility type between stationary and mobile

fed lipids
0.5

feptype_1 real mobility type between stationary and mobile
fep lipids

0.5

frazil_scav real increase in initial bio bracer from ocean
scavenging

1.0

fr_dFe real fraction of remineralized nitrogen in units of
algal iron

0.3

fr_graze_diatoms real fraction grazed diatoms 0.01
fr_graze_e real fraction of assimilation excreted 0.5
fr_graze_phaeo real fraction grazed phaeocystis 0.1
fr_graze_s real fraction of grazing spilled or slopped 0.5
fr_graze_sp real fraction grazed small plankton 0.1
fr_mort2min real fractionation of mortality to Am 0.5
fr_resp real frac of algal growth lost due to respiration 0.05
fr_resp_s real DMSPd fraction of respiration loss as DM-

SPd
0.75

fsal real salinity limitation ppt 1.0
F_abs_chl_diatoms real scales absorbed radiation for dEdd chl di-

atoms
2.0

F_abs_chl_phaeo real scales absorbed radiation for dEdd chl
phaeocystis

5.0

continues on next page
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Table 14 – continued from previous page
variable options/format description default value
F_abs_chl_sp real scales absorbed radiation for dEdd small

plankton
4.0

f_doc_l real fraction of mortality to DOC lipids 0.4
f_doc_s real fraction of mortality to DOC saccharides 0.4
f_don_Am_protein real fraction of remineralized DON to ammo-

nium
0.25

f_don_protein real fraction of spilled grazing to proteins 0.6
f_exude_l real fraction of exudation to DOC lipids 1.0
f_exude_s real fraction of exudation to DOC saccharids 1.0
grid_o real z biology for bottom flux 5.0
grid_oS real DEPRECATED
grow_Tdep_diatoms real temperature dependence growth diatoms per

degC
0.06

grow_Tdep_phaeo real temperature dependence growth phaeocystis
per degC

0.06

grow_Tdep_sp real temperature dependence growth small
plankton per degC

0.06

humtype real mobility type between stationary and mobile
hum

1.0

initbio_frac real fraction of ocean trcr concentration in bio
tracers

1.0

K_Am_diatoms real ammonium half saturation diatoms
mmol/m^3

0.3

K_Am_phaeo real ammonium half saturation phaeocystis
mmol/m^3

0.3

K_Am_sp real ammonium half saturation small plankton
mmol/m^3

0.3

k_bac_l real Bacterial degredation of DOC lipids per day 0.03
k_bac_s real Bacterial degredation of DOC saccharids

per day
0.03

k_exude_diatoms real algal exudation diatoms per day 0.0
k_exude_phaeo real algal exudation phaeocystis per day 0.0
k_exude_sp real algal exudation small plankton per day 0.0
K_Fe_diatoms real iron half saturation diatoms nM 1.0
K_Fe_phaeo real iron half saturation phaeocystis nM 0.1
K_Fe_sp real iron half saturation small plankton nM 0.2
k_nitrif real nitrification rate per day 0.0
K_Nit_diatoms real nitrate half saturation diatoms mmol/m^3 1.0
K_Nit_phaeo real nitrate half saturation phaeocystis

mmol/m^3
1.0

K_Nit_sp real nitrate half saturation small plankton
mmol/m^3

1.0

K_Sil_diatoms real silicate half saturation diatoms mmol/m^3 4.0
K_Sil_phaeo real silicate half saturation phaeocystis

mmol/m^3
0.0

K_Sil_sp real silicate half saturation small plankton
mmol/m^3

0.0

kn_bac_protein real bacterial degradation of DON per day 0.03
l_sk real characteristic diffusive scale in m 7.0
l_skS real DEPRECATED

continues on next page
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Table 14 – continued from previous page
variable options/format description default value
max_dfe_doc1 real max ratio of dFe to saccharides in the ice in

nm Fe / muM C
0.2

max_loss real restrict uptake to percent of remaining value 0.9
modal_aero logical modal aersols .false.
mort_pre_diatoms real mortality diatoms 0.007
mort_pre_phaeo real mortality phaeocystis 0.007
mort_pre_sp real mortality small plankton 0.007
mort_Tdep_diatoms real temperature dependence of mortality di-

atoms per degC
0.03

mort_Tdep_phaeo real temperature dependence of mortality phaeo-
cystis per degC

0.03

mort_Tdep_sp real temperature dependence of mortality small
plankton per degC

0.03

mu_max_diatoms real maximum growth rate diatoms per day 1.2
mu_max_phaeo real maximum growth rate phaeocystis per day 0.851
mu_max_sp real maximum growth rate small plankton per

day
0.851

nitratetype real mobility type between stationary and mobile
nitrate

-1.0

op_dep_min real light attenuates for optical depths exceeding
min

0.1

phi_snow real snow porosity for brine height tracer 0.5
ratio_chl2N_diatomsreal algal chl to N in mg/mmol diatoms 2.1
ratio_chl2N_phaeo real algal chl to N in mg/mmol phaeocystis 0.84
ratio_chl2N_sp real algal chl to N in mg/mmol small plankton 1.1
ratio_C2N_diatoms real algal C to N in mol/mol diatoms 7.0
ratio_C2N_phaeo real algal C to N in mol/mol phaeocystis 7.0
ratio_C2N_proteinsreal algal C to N in mol/mol proteins 7.0
ratio_C2N_sp real algal C to N in mol/mol small plankton 7.0
ratio_Fe2C_diatomsreal algal Fe to C in umol/mol diatoms 0.0033
ratio_Fe2C_phaeo real algal Fe to C in umol/mol phaeocystis 1.0
ratio_Fe2C_sp real algal Fe to C in umol/mol small plankton 0.0033
ratio_Fe2N_diatomsreal algal Fe to N in umol/mol diatoms 0.23
ratio_Fe2N_phaeo real algal Fe to N in umol/mol phaeocystis 0.7
ratio_Fe2N_sp real algal Fe to N in umol/mol small plankton 0.23
ratio_Fe2DOC_s real Fe to C of DON saccharids nmol/umol 1.0
ratio_Fe2DOC_l real Fe to C of DOC lipids nmol/umol 0.033
ratio_Fe2DON real Fe to C of DON nmol/umol 0.023
ratio_Si2N_diatomsreal algal Si to N in mol/mol diatoms 1.8
ratio_Si2N_phaeo real algal Si to N in mol/mol phaeocystis 0.0
ratio_Si2N_sp real algal Si to N in mol/mol small plankton 0.0
ratio_S2N_diatoms real algal S to N in mol/mol diatoms 0.03
ratio_S2N_phaeo real algal S to N in mol/mol phaeocystis 0.03
ratio_S2N_sp real algal S to N in mol/mol small plankton 0.03
restore_bgc logical restore bgc to data .false.
R_dFe2dust real g/g [66] 0.035
scale_bgc logical .false.
silicatetype real mobility type between stationary and mobile

silicate
-1.0

skl_bgc logical biogeochemistry .false.

continues on next page
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Table 14 – continued from previous page
variable options/format description default value
solve_zbgc logical .false.
solve_zsal logical DEPRECATED .false.
tau_max real long time mobile to stationary exchanges 1.73e-5
tau_min real rapid module to stationary exchanges

5200.

tr_bgc_Am logical ammonium tracer .false.
tr_bgc_C logical algal carbon tracer .false.
tr_bgc_chl logical algal chlorophyll tracer .false.
tr_bgc_DMS logical DMS tracer .false.
tr_bgc_DON logical DON tracer .false.
tr_bgc_Fe logical iron tracer .false.
tr_bgc_hum logical .false.
tr_bgc_Nit logical .false.
tr_bgc_PON logical PON tracer .false.
tr_bgc_Sil logical silicate tracer .false.
tr_brine logical brine height tracer .false.
tr_zaero logical vertical aerosol tracers .false.
t_iron_conv real desorption loss pFe to dFe in days

3065.

t_sk_conv real Stefels conversion time in days 3.0
t_sk_ox real DMS oxidation time in days 10.0
T_max real maximum temperature degC 0.0
y_sk_DMS real fraction conversion given high yield 0.5
zaerotype_bc1 real mobility type between stationary and mobile

zaero bc1
1.0

zaerotype_bc2 real mobility type between stationary and mobile
zaero bc2

1.0

zaerotype_dust1 real mobility type between stationary and mobile
zaero dust1

1.0

zaerotype_dust2 real mobility type between stationary and mobile
zaero dust2

1.0

zaerotype_dust3 real mobility type between stationary and mobile
zaero dust3

1.0

zaerotype_dust4 real mobility type between stationary and mobile
zaero dust4

1.0

z_tracers logical .false.

• = If Icepack is run stand-alone and wave_spec_type is not set to none, then a fixed wave spectrum is defined in
the code to use for testing. As with other input data, this spectrum should not be used for production runs or
publications.
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3.4.4 BGC Tuning Parameters

Biogeochemical tuning parameters are specified as namelist options in icepack_in. Table Biogeochemical Reaction Pa-
rameters provides a list of parameters used in the reaction equations, their representation in the code, a short description
of each and the default values. Please keep in mind that there has only been minimal tuning of the model.

Table 15: Biogeochemical Reaction Parameters
Text
Vari-
able

Variable in code Description Value units

𝑓𝑔𝑟𝑎𝑧𝑒 fr_graze(1:3) fraction of growth
grazed

0, 0.1, 0.1 1

𝑓𝑟𝑒𝑠 fr_resp fraction of growth
respired

0.05 1

𝑙𝑚𝑎𝑥 max_loss maximum tracer loss
fraction

0.9 1

𝑚𝑝𝑟𝑒 mort_pre(1:3) maximum mortality
rate

0.007, 0.007, 0.007 day−1

𝑚𝑇 mort_Tdep(1:3) mortality tempera-
ture decay

0.03, 0.03, 0.03 𝑜C−1

𝑇𝑚𝑎𝑥 T_max maximum brine tem-
perature

0 𝑜C

𝑘𝑛𝑖𝑡𝑟 k_nitrif nitrification rate 0 day−1

𝑓𝑛𝑔 fr_graze_e fraction of grazing
excreted

0.5 1

𝑓𝑔𝑠 fr_graze_s fraction of grazing
spilled

0.5 1

𝑓𝑛𝑚 fr_mort2min fraction of mortality
to NH4

0.5 1

𝑓𝑑𝑔 f_don frac. spilled grazing
to DON

0.6 1

𝑘𝑛𝑏 kn_bac 𝑎 bacterial degradation
of DON

0.03 day−1

𝑓𝑐𝑔 f_doc(1:3) fraction of mortality
to DOC

0.4, 0.4, 0.2 1

𝑅𝑐
𝑐:𝑛 R_C2N(1:3) algal carbon to nitro-

gen ratio
7.0, 7.0, 7.0 mol/mol

𝑘𝑐𝑏 k_bac1:3𝑎 bacterial degradation
of DOC

0.03, 0.03, 0.03 day−1

𝜏𝑓𝑒 t_iron_conv conversion time pFe
↔ dFe

3065.0 day

𝑟𝑚𝑎𝑥
𝑓𝑒𝑑:𝑑𝑜𝑐 max_dfe_doc1 max ratio of dFe to

saccharids
0.1852 nM Fe/𝜇M C

𝑓𝑓𝑎 fr_dFe fraction of remin. N
to dFe

0.3 1

𝑅𝑓𝑒:𝑛 R_Fe2N(1:3) algal Fe to N ratio 0.023, 0.023, 0.7 mmol/mol
𝑅𝑠:𝑛 R_S2N(1:3) algal S to N ratio 0.03, 0.03, 0.03 mol/mol
𝑓𝑠𝑟 fr_resp_s resp. loss as DMSPd 0.75 1
𝜏𝑑𝑚𝑠𝑝 t_sk_conv Stefels rate 3.0 day
𝜏𝑑𝑚𝑠 t_sk_ox DMS oxidation rate 10.0 day
𝑦𝑑𝑚𝑠 y_sk_DMS yield for DMS con-

version
0.5 1

continues on next page
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Table 15 – continued from previous page
Text
Vari-
able

Variable in code Description Value units

𝐾NO3
K_Nit(1:3) NO3 half saturation

constant
1,1,1 mmol/m3

𝐾NH4
K_Am(1:3) NH4 half saturation

constant
0.3, 0.3, 0.3 mmol/m−3

𝐾SiO3
K_Sil(1:3) silicate half satura-

tion constant
4.0, 0, 0 mmol/m−3

𝐾fed K_Fe(1:3) iron half saturation
constant

1.0, 0.2, 0.1 𝜇mol/m−3

𝑜𝑝𝑚𝑖𝑛 op_dep_min boundary for light at-
tenuation

0.1 1

𝑐ℎ𝑙𝑎𝑏𝑠 chlabs(1:3) light absorption
length per chla conc.

0.03, 0.01, 0.05 1/m/(mg/m3)

𝛼 alpha2max_low(1:3) light limitation factor 0.25, 0.25, 0.25 m2/W
𝛽 beta2max(1:3) light inhibition factor 0.018, 0.0025, 0.01 m2/W
𝜇𝑚𝑎𝑥 mu_max(1:3) maximum algal

growth rate
1.44, 0.851, 0.851 day−1

𝜇𝑇 grow_Tdep(1:3) temperature growth
factor

0.06, 0.06, 0.06 day−1

𝑓𝑠𝑎𝑙 fsal salinity growth factor 1 1
𝑅𝑠𝑖:𝑛 R_Si2N(1:3) algal silicate to nitro-

gen
1.8, 0, 0 mol/mol

𝑎 only (1:2) of DOC and DOC parameters have physical meaning

3.5 Troubleshooting

Check the FAQ: https://github.com/CICE-Consortium/Icepack/wiki

3.5.1 Initial setup

If there are problems, you can manually edit the env, Macros, and icepack.run files in the case directory until things
are working properly. Then you can copy the env and Macros files back to configuration/scripts/machines.

• Changes made directly in the run directory, e.g. to the namelist file, will be overwritten if scripts in the case
directory are run again later.

• If changes are needed in the icepack.run.setup.csh script, it must be manually modified.
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3.5.2 Restarts

• Manual restart tests require the path to the restart file be included in ice_in in the namelist file.

• Ensure that kcatbound is the same as that used to create the restart file. Other configuration parameters, such
as NICELYR, must also be consistent between runs.

3.5.3 Debugging hints

Icepack has a warning package (/columnphysics/icepack_warnings.F90) where icepack stores information not set in
write routines. Details about the package can be found in Error Messages and Aborts. This package can be useful to
detect an abort

A printing utility is available in the driver that can be helpful when debugging the code. Not all of these will work
everywhere in the code, due to possible conflicts in module dependencies.

conserv_check = true (ice_in)
Diagnoses conservation in various icepack algorithms.

debug_icepack (configuration/driver/ice_diagnostics.F90)
A wrapper for print_state that is easily called from numerous points during initialization and the timestepping
loop

print_state (configuration/driver/ice_diagnostics.F90)
Print the ice state and forcing fields for a given grid cell.

3.5.4 Known bugs and other issues

• With the old CCSM radiative scheme (shortwave = ‘default’ or ‘ccsm3’), a sizable fraction (more than 10%)
of the total shortwave radiation is absorbed at the surface but should be penetrating into the ice interior instead.
This is due to use of the aggregated, effective albedo rather than the bare ice albedo when snowpatch < 1.

• The linear remapping algorithm for thickness is not monotonic for tracers.

• The form drag parameterization assumes a fixed ridge shape where both the macroscopic ridge porosity and
the angle of repose are specified parameters. One high-resolution coupled model that uses the CICE column
physics package has been unable to make this parameterization work in its current form. Development of a
new, variational approach for ridging is underway that will generate ridge shapes differently from the current
parameterization, and is expected to alleviate the reported problem ([54]).

3.5.5 Interpretation of albedos

The snow-and-ice albedo, albsni, and diagnostic albedos albice, albsno, and albpnd are merged over categories
but not scaled (divided) by the total ice area. (This is a change from CICE v4.1 for albsni.) The latter three history
variables represent completely bare or completely snow- or melt-pond-covered ice; that is, they do not take into account
the snow or melt pond fraction (albsni does, as does the code itself during thermodyamic computations). This is to
facilitate comparison with typical values in measurements or other albedo parameterizations. The melt pond albedo
albpnd is only computed for the Delta-Eddington shortwave case.

With the Delta-Eddington parameterization, the albedo depends on the cosine of the zenith angle (cos𝜙, coszen) and
is one if the sun is below the horizon (cos𝜙 < 0). Thus, the albedos will be one in the dark, polar winter hemisphere.
However, the time-averaged albedo fields will be high if a diurnal solar cycle is used, because values of one would
be included in the average for half of each 24-hour period. To rectify this, a separate counter should be used for the
averaging that is incremented only when cos𝜙 > 0. However, this is still a work in progress.

106 Chapter 3. Standalone User Guide



Icepack Documentation

3.5.6 Interpretation of general results

Icepack releases are “functional releases” in the sense that the code runs, does not crash, passes various tests, and re-
quires further work to establish its scientific validity. In general, users are not encouraged to use any of the CICE Con-
sortium’s model configurations to obtain “scientific” results. The test configurations are useful for model development,
but sea ice models must be evaluated from a physical standpoint in a couple system because simplified configurations
do not necessarily represent what is actually happening in the fully coupled system that includes interactive ocean and
atmosphere components.

3.5.7 Proliferating subprocess parameterizations

With the addition of several alternative parameterizations for sea ice processes, a number of subprocesses now appear
in multiple parts of the code with differing descriptions. For instance, sea ice porosity and permeability, along with
associated flushing and flooding, are calculated separately for mushy thermodynamics, topo and level-ice melt ponds,
and for the brine height tracer, each employing its own equations. Likewise, the Bitz99 and mushy thermodynam-
ics compute freeboard and snow–ice formation differently, and the topo and level-ice melt pond schemes both allow
fresh ice to grow atop melt ponds, using slightly different formulations for Stefan freezing. These various process
parameterizations will be compared and their subprocess descriptions possibly unified in the future.
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CHAPTER

FOUR

USE IN OTHER MODELS

4.1 Overview

Icepack is a column physics package designed to be used in other broader sea ice models, such as CICE, SIS, or even
in ocean models. Icepack includes options for simulating sea ice thermodynamics, mechanical redistribution (ridging)
and associated area and thickness changes. In addition, the model supports a number of tracers, including thickness,
enthalpy, ice age, first-year ice area, deformed ice area and volume, melt ponds, and biogeochemistry.

Icepack is called on a grid point by grid point basis. All data is passed in and out of the model via subroutine interfaces.
Fortran “use” statements are not encouraged for accessing data inside the Icepack model.

Icepack does not generally contain any parallelization or I/O. The driver of Icepack is expected to support those features.
Icepack can be called concurrently across multiple MPI tasks. Icepack should also be thread safe.

4.2 Protocols

This section describes a number of basic protocols for using Icepack in other models.

4.2.1 Access

Icepack provides several public interfaces. These are defined in columnphysics/icepack_intfc.F90. Icepack interfaces
all contain the icepack_ prefix. Icepack interfaces follow a general design where data is passed in on a gridpoint by
gridpoint basis, that data is updated and returned to the driver, and the data is not stored within Icepack. Additional
information about the interfaces can be found in Sequencing and Interfaces.

Icepack interfaces can have long argument lists. These are documented in Public Interfaces. In some cases, arguments
are required for optional features (i.e. biogeochemistry) even when that feature is turned off in Icepack. The Icepack
development team continues to work towards having more optional arguments. If an argument is required for the
interface but not needed, the driver will still have to pass a (dummy) variable thru the interface to meet the interface
specification.
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4.2.2 Initialization

The subroutine icepack_configure should be called before any other icepack interfaces are called. This subroutine
initializes the abort flag and a few other important defaults. We recommend that call be implemented as:

call icepack_configure() ! initialize icepack
call icepack_warnings_flush(nu_diag)
if (icepack_warnings_aborted()) call my_abort_method()

The 2nd and 3rd line above are described further in Error Messages and Aborts.

4.2.3 Error Messages and Aborts

Icepack does not generally handle I/O (file units), the parallel computing environment (MPI, etc), or model aborts.
Icepack generates and buffers error messages that can be accessed by the driver. In addition, if Icepack fails, it will set
an abort flag that can be queried by the driver. To best use those features, it’s recommended that after every icepack
interface call, the user add the following:

call icepack_warnings_flush(nu_diag)
if (icepack_warnings_aborted()) call my_abort_method()

icepack_warnings_flush is a public interface in icepack that writes any warning or error messages generated in icepack
to the driver file unit number defined by nu_diag. The function icepack_warnings_aborted queries the internal icepack
abort flag and returns true if icepack generated an abort error. my_abort_method represents a method in the driver that
will abort the model cleanly.

In addition to writing Icepack messages thru the icepack_warnings_flush interface, there are also several methods in
icepack that write general information to a file. The various icepack_write_ interfaces accept a unit number provided
by the driver and then document internal Icepack values.

4.2.4 Setting Internal Parameters

While Icepack does not generally store the model state, there are several Icepack interfaces that allow the driver to
set various scientific and technical parameters internally in Icepack for later use. Those interfaces generally have a
set (init), get (query) and write method that allows the driver to set, get, or write the values defined internally. Some
parameters are required to be set by the driver and others take on defaults. The following table defines the available
interfaces that fit into this category.

Table 1: Init, Query, and Write Interfaces
type init query write notes
orbital icepack_init_orbit icepack_query_orbit orbital settings
parame-
ters

icepack_init_parametersicepack_query_parametersicepack_write_parametersscientific parameters

tracer
flags

icepack_init_tracer_flagsicepack_query_tracer_flagsicepack_write_tracer_flagstracer flags

tracer
sizes

icepack_query_tracer_sizesicepack_write_tracer_sizestracer counts and tracer max-
imum sizes

tracer in-
dices

icepack_init_tracer_indicesicepack_query_tracer_indicesicepack_write_tracer_indicestracer indexing in a broader
tracer array

Many of these interfaces are related to tracers and in particular, tracer indexing in broader arrays. This is further
explained in Tracer Indexing.
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4.2.5 Tracer Indexing

Tracers are really just variables associated with the model state. Some of the tracers are prognostic, vary each timestep,
and are updated in Icepack. Other tracers are just used by Icepack to evolve other tracers.

One of the most complicated aspects of the Icepack usage are managing tracers. Some tracers (i.e. Tsfc, qice, qsno)
are required, while other tracers (i.e. FY or bgc tracers) are optional and used only when certain features are trig-
gered. As a general rule, Icepack is aware of only a specific set of tracers and each tracer takes on multiple properties
including counts, dependencies (Tracers that depend on other tracers), and indexing in a broader tracer array. The
following table summarize the various types of tracers understood by Icepack and lists some of their properties. See
also Biogeochemical Tracers.

Table 2: Tracer Types and Properties
name status optional flag number count notes
Tsfc required 1 1 ice/snow temperature
qice required 1 nilyr ice enthalpy
qsno required 1 nslyr snow enthalpy
sice required 1 nilyr ice bulk salinity
iage optional tr_iage 1 1 ice age
FY optional tr_FY 1 1 first year ice
alvl optional tr_lvl 1 1 level ice area fraction
vlvl optional tr_lvl 1 1 level ice area volume
apnd optional tr_pond 1 1 melt pond area fraction
hpnd optional tr_pond 1 1 melt pond depth
ipnd optional tr_pond 1 1 melt pond refrozen thickness
fsd optional tr_fsd 1 nfsd floe size distribution
iso optional tr_iso n_iso 2 water isotopes (snow, sea ice)
aero optional tr_aero n_aero* 4 aerosols (snow SSL, snow below SSL, sea ice SSL, sea ice below SSL in that order)
fbri optional tr_brine 1 1
bgc_N optional tr_bgc_N n_algae nblyr+3 nutrients
bgc_Nit optional 1 nblyr+3 diatoms, phaeocystis, pico/small
bgc_DOC optional tr_bgc_DOC n_doc nblyr+3 dissolved organic carbon
bgc_DIC optional n_dic nblyr+3 dissolved inorganic carbon
bgc_chl optional n_algae nblyr+3 algal chlorophyll
bgc_Am optional tr_bgc_Am 1 nblyr+3 ammonia
bgc_Sil optional tr_bgc_Sil 1 nblyr+3 silicon
bgc_DMSPp optional tr_bgc_DMS 1 nblyr+3
bgc_DMSPd optional tr_bgc_DMS 1 nblyr+3
bgc_DMS optional tr_bgc_DMS 1 nblyr+3
bgc_PON optional tr_bgc_PON 1 nblyr+3 zooplankton and detritus
bgc_DON optional tr_bgc_DON n_don nblyr+3 dissolved organic nitrogen
bgc_Fed optional tr_bgc_Fe n_fed nblyr+3 dissolved iron
bgc_Fep optional tr_bgc_Fe n_fep nblyr+3 particulate iron
bgc_hum optional tr_bgc_hum 1 nblyr+3 humic material
zaero optional tr_zaero n_zaero nblyr+3 bgc aerosols like black carbon
zbgc_frac optional 1 nbtrcr fraction of tracer in mobile phase

• NOTE the aero tracer indexing is a little more complicated depending which aero option is chosen.

The nt_ start index in a full tracer array is the start index associated with tracer relative to the number*count. The nlt_
start index in a bgc array is the start index associated with the tracer relative to the number only and it generally contains
only bgc tracers.

Generally, tracers are passed into the Icepack interfaces by type where each type is a separate argument. There are
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some cases where an array of tracers is required and this is where the tracer indexing is particularly important. Below
is a list of the various tracer indexing used

• nt_ references the tracer start index in a broader tracer array

• nlt_ references a bgc specific tracer start index for a different bgc array with different indexing from the nt_
indexing

• trcrn_depend/strata/etc defines dependency properties for tracers associated with the full array reference by nt_
indexing

• bio_index and bio_index_o is something else

In icepack_aggregate, the arguments trcr_depend, trcr_base, n_trcr_strata, and nt_strata are passed into the interface,
and they provide information on dependencies between tracers. This information needs to be initialized in the driving
code. In the bgc implementation, there are arrays bio_index and bio_index_o which also need to be initialized in the
driving code and passed to Icepack.

4.3 Sequencing and Interfaces

4.3.1 Access to Interfaces

Icepack public parameters and interfaces as accessed via a single module in icepack, icepack_intfc.F90. The standard
syntax to gain access to Icepack parameters and interfaces is through Fortran90 use. For example:

use icepack_intfc, only: icepack_warnings_flush
use icepack_intfc, only: icepack_warnings_aborted
use icepack_intfc, only: icepack_query_tracer_indices
use icepack_intfc, only: icepack_configure

The full suite of public parameters and interfaces is documented in icepack_intfc.F90.

4.3.2 Interfaces Module

Column physics data and subroutines are made public through the icepack_intfc.F90 file. That file contains the entire
list of data and subroutines needed to initialize, setup, and run the column physics package. That file points to other
modules within the column physics where the interfaces are located.

Within icepack_intfc.F90, internal icepack kinds are defined via the icepack_kinds module:

use icepack_kinds, only: icepack_char_len => char_len
use icepack_kinds, only: icepack_char_len_long => char_len_long
use icepack_kinds, only: icepack_log_kind => log_kind
use icepack_kinds, only: icepack_int_kind => int_kind
use icepack_kinds, only: icepack_int8_kind => int8_kind
use icepack_kinds, only: icepack_real_kind => real_kind
use icepack_kinds, only: icepack_dbl_kind => dbl_kind
use icepack_kinds, only: icepack_r16_kind => r16_kind

icepack_tracers defines a handful of parameters that provide information about maximum array sizes for static dimen-
sioning:
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use icepack_tracers, only: icepack_max_nbtrcr => max_nbtrcr
use icepack_tracers, only: icepack_max_algae => max_algae
use icepack_tracers, only: icepack_max_dic => max_dic
use icepack_tracers, only: icepack_max_doc => max_doc
use icepack_tracers, only: icepack_max_don => max_don
use icepack_tracers, only: icepack_max_fe => max_fe
use icepack_tracers, only: icepack_max_aero => max_aero
use icepack_tracers, only: icepack_max_iso => max_iso
use icepack_tracers, only: icepack_nmodal1 => nmodal1
use icepack_tracers, only: icepack_nmodal2 => nmodal2
use icepack_parameters,only: icepack_nspint => nspint

icepack_parameters provides init, query, write, and recompute methods to define constant values and model parameters.
These constants have defaults that the caller can query or reset:

use icepack_parameters, only: icepack_init_parameters
use icepack_parameters, only: icepack_query_parameters
use icepack_parameters, only: icepack_write_parameters
use icepack_parameters, only: icepack_recompute_constants

icepack_parameters also provides a set of constants:

use icepack_parameters, only: c0, c1, c1p5, c2, c3, c4, c5, c6, c8
use icepack_parameters, only: c10, c15, c16, c20, c25, c100, c1000
use icepack_parameters, only: p001, p01, p1, p2, p4, p5, p6, p05
use icepack_parameters, only: p15, p25, p75, p333, p666

icepack_tracers provides init, query, and write methods to define various tracer sizes, flags, and indices. The tracers
have some defaults that the caller can query or reset:

use icepack_tracers, only: icepack_compute_tracers
use icepack_tracers, only: icepack_init_tracer_flags
use icepack_tracers, only: icepack_query_tracer_flags
use icepack_tracers, only: icepack_write_tracer_flags
use icepack_tracers, only: icepack_init_tracer_indices
use icepack_tracers, only: icepack_query_tracer_indices
use icepack_tracers, only: icepack_write_tracer_indices
use icepack_tracers, only: icepack_init_tracer_sizes
use icepack_tracers, only: icepack_query_tracer_sizes
use icepack_tracers, only: icepack_write_tracer_sizes

icepack_itd provides three public interfaces to compute the ice thickness distribution:

use icepack_itd, only: icepack_init_itd
use icepack_itd, only: icepack_init_itd_hist
use icepack_itd, only: icepack_aggregate

icepack_fsd provides three public interfaces to compute the floe size distribution:

use icepack_fsd, only: icepack_init_fsd_bounds
use icepack_fsd, only: icepack_init_fsd
use icepack_fsd, only: icepack_cleanup_fsd

icepack_mechred contains two public interfaces to compute ridging and ice strength:
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use icepack_mechred, only: icepack_step_ridge
use icepack_mechred, only: icepack_ice_strength

icepack_wavefracspec provides two public interface to compute the impact of waves on sea ice:

use icepack_wavefracspec, only: icepack_init_wave
use icepack_wavefracspec, only: icepack_step_wavefracture

icepack_snow provides a routine to initialize the snow physics and a routine to update the snow physics:

use icepack_snow, only: icepack_init_snow
use icepack_snow, only: icepack_step_snow

icepack_shortwave provides a routine to initialize the radiation computation and a routine to update the radiation com-
putation:

use icepack_shortwave, only: icepack_prep_radiation
use icepack_shortwave, only: icepack_step_radiation

icepack_brine addresses brine computations:

use icepack_brine, only: icepack_init_hbrine
use icepack_brine, only: icepack_init_zsalinity ! DEPRECATED

icepack_zbgc contains several public interfaces to support initialization and computation for the skeletal layer bgc and
zbgc options:

use icepack_zbgc , only: icepack_init_bgc
use icepack_zbgc , only: icepack_init_zbgc
use icepack_zbgc , only: icepack_biogeochemistry
use icepack_zbgc , only: icepack_init_ocean_bio
use icepack_zbgc , only: icepack_load_ocean_bio_array

There are a couple of routines to support computation of an atmosphere and ocean interaction:

use icepack_atmo , only: icepack_atm_boundary
use icepack_ocean, only: icepack_ocn_mixed_layer

icepack_orbital provides methods to set and query orbital parameters:

use icepack_orbital , only: icepack_init_orbit
use icepack_orbital , only: icepack_query_orbit

icepack_step_therm1 and icepack_step_therm2 compute the ice thermodynamics in two steps:

use icepack_therm_vertical, only: icepack_step_therm1
use icepack_therm_itd , only: icepack_step_therm2

icepack_therm_shared provides several methods to compute different internal terms:

use icepack_therm_shared , only: icepack_ice_temperature
use icepack_therm_shared , only: icepack_snow_temperature
use icepack_therm_shared , only: icepack_liquidus_temperature
use icepack_therm_shared , only: icepack_sea_freezing_temperature

(continues on next page)
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use icepack_therm_shared , only: icepack_enthalpy_snow
use icepack_therm_shared , only: icepack_init_thermo
use icepack_therm_shared , only: icepack_init_trcr

icepack_mushy_physics provides three public interfaces to compute various functions:

use icepack_mushy_physics , only: icepack_mushy_density_brine
use icepack_mushy_physics , only: icepack_mushy_liquid_fraction
use icepack_mushy_physics , only: icepack_mushy_temperature_mush

icepack_warnings provides several methods for getting, writing, and clearing messages. There is also a function that
returns a logical flag indicating whether the column physics has aborted:

use icepack_warnings, only: icepack_warnings_clear
use icepack_warnings, only: icepack_warnings_print
use icepack_warnings, only: icepack_warnings_flush
use icepack_warnings, only: icepack_warnings_aborted

icepack_configure is a standalone icepack method that should always be called first:

public :: icepack_configure

The actual interfaces are documented in Public Interfaces

4.3.3 Calling Sequence

The calling sequence required to setup and run the column physics is generally described below. Several steps may be
needed to be taken by the host between icepack calls in order to support the icepack interfaces. The icepack driver and
the CICE model provide working examples of how to do this in practice. The sample below does not include bgc:

start driver

call *icepack_configure*

initialize driver and read in driver namelist

call *icepack_init_parameters*
call *icepack_init_tracers_*
call *icepack_init_trcr*
call *icepack_init_thermo*
call *icepack_init_itd*
call *icepack_init_itd_hist*
loop over gridcells
call *icepack_step_radiation*

end loop over gridcells
call *icepack_init_hbrine*
loop over gridcells

call *icepack_aggregate*
end loop over gridcells

loop over timesteps
loop over gridcells

(continues on next page)
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call *icepack_prep_radiation*
call *icepack_step_therm1*
call *icepack_step_therm2*
call *icepack_aggregate*
call *icepack_step_ridge*
call *icepack_step_radiation*
call *icepack_atm_boundary*
call *icepack_ocn_mixed_layer*

end loop over gridcells
end loop over timesteps

end driver

4.4 Public Interfaces

Below are a list of public icepack interfaces.

The documentation for these interfaces is extracted directly from the icepack source code using the script doc/
generate_interfaces.sh. That script updates the rst file interfaces.include in the doc/source/user_guide
directory. That file is part of the internal documentation. There is information about how generate_interfaces.
sh parses the source code in a comment section in that script. Executing icepack.setup --docintfc will run the
generate_interfaces script as noted in Command Line Options. Once generate_interfaces is executed, the user still
has to git add, commit, and push the changes to the documentation manually. A typical workflow would be:

# verify all public interfaces in the columnphysics have appropriate autodocument␣
→˓comment line
# there should be a "!autodocument_start ${interface_name}" at the begining of the␣
→˓interface
# there should be a "!autodocument_end" at the end of the declaration of the interface␣
→˓arguments
./icepack.setup --docintfc
git add doc/source/user_guide/interfaces.include
git commit -m "update public interface documentation"

4.4.1 icepack_atmo.F90

icepack_atm_boundary

!

subroutine icepack_atm_boundary(sfctype, &
Tsf, potT, &
uatm, vatm, &
wind, zlvl, &
Qa, rhoa, &
strx, stry, &
Tref, Qref, &
delt, delq, &
lhcoef, shcoef, &

(continues on next page)
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Cdn_atm, &
Cdn_atm_ratio_n, &
Qa_iso, Qref_iso, &
uvel, vvel, &
Uref, zlvs)

character (len=3), intent(in) :: &
sfctype ! ice or ocean

real (kind=dbl_kind), intent(in) :: &
Tsf , & ! surface temperature of ice or ocean
potT , & ! air potential temperature (K)
uatm , & ! x-direction wind speed (m/s)
vatm , & ! y-direction wind speed (m/s)
wind , & ! wind speed (m/s)
zlvl , & ! atm level height for momentum (and scalars if zlvs is not␣

→˓present) (m)
Qa , & ! specific humidity (kg/kg)
rhoa ! air density (kg/m^3)

real (kind=dbl_kind), intent(inout) :: &
Cdn_atm , & ! neutral drag coefficient
Cdn_atm_ratio_n ! ratio drag coeff / neutral drag coeff

real (kind=dbl_kind), intent(inout) :: &
strx , & ! x surface stress (N)
stry ! y surface stress (N)

real (kind=dbl_kind), intent(inout) :: &
Tref , & ! reference height temperature (K)
Qref , & ! reference height specific humidity (kg/kg)
delt , & ! potential T difference (K)
delq , & ! humidity difference (kg/kg)
shcoef , & ! transfer coefficient for sensible heat
lhcoef ! transfer coefficient for latent heat

real (kind=dbl_kind), intent(in), dimension(:), optional :: &
Qa_iso ! specific isotopic humidity (kg/kg)

real (kind=dbl_kind), intent(inout), dimension(:), optional :: &
Qref_iso ! reference specific isotopic humidity (kg/kg)

real (kind=dbl_kind), intent(in), optional :: &
uvel , & ! x-direction ice speed (m/s)
vvel , & ! y-direction ice speed (m/s)
zlvs ! atm level height for scalars (if different than zlvl) (m)

real (kind=dbl_kind), intent(out), optional :: &
Uref ! reference height wind speed (m/s)
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4.4.2 icepack_brine.F90

icepack_init_hbrine

! Initialize brine height tracer

subroutine icepack_init_hbrine(bgrid, igrid, cgrid, &
icgrid, swgrid, nblyr, nilyr, phi_snow)

integer (kind=int_kind), intent(in) :: &
nilyr, & ! number of ice layers
nblyr ! number of bio layers

real (kind=dbl_kind), intent(inout) :: &
phi_snow ! porosity at the ice-snow interface

real (kind=dbl_kind), dimension (nblyr+2), intent(out) :: &
bgrid ! biology nondimensional vertical grid points

real (kind=dbl_kind), dimension (nblyr+1), intent(out) :: &
igrid ! biology vertical interface points

real (kind=dbl_kind), dimension (nilyr+1), intent(out) :: &
cgrid , & ! CICE vertical coordinate
icgrid , & ! interface grid for CICE (shortwave variable)
swgrid ! grid for ice tracers used in dEdd scheme

icepack_init_zsalinity

! **DEPRECATED**, all code removed
! Interface provided for backwards compatibility

subroutine icepack_init_zsalinity(nblyr,ntrcr_o, Rayleigh_criteria, &
Rayleigh_real, trcrn_bgc, nt_bgc_S, ncat, sss)

integer (kind=int_kind), intent(in) :: &
nblyr , & ! number of biolayers
ntrcr_o, & ! number of non bio tracers
ncat , & ! number of categories
nt_bgc_S ! zsalinity index

logical (kind=log_kind), intent(inout) :: &
Rayleigh_criteria

real (kind=dbl_kind), intent(inout):: &
Rayleigh_real

real (kind=dbl_kind), intent(in):: &
sss

real (kind=dbl_kind), dimension(:,:), intent(inout):: &
trcrn_bgc ! bgc subset of trcrn
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4.4.3 icepack_fsd.F90

icepack_init_fsd_bounds

! Initialize ice fsd bounds (call whether or not restarting)
! Define the bounds, midpoints and widths of floe size
! categories in area and radius
!
! authors: Lettie Roach, NIWA/VUW and C. M. Bitz, UW

subroutine icepack_init_fsd_bounds(nfsd, &
floe_rad_l, & ! fsd size lower bound in m (radius)
floe_rad_c, & ! fsd size bin centre in m (radius)
floe_binwidth, & ! fsd size bin width in m (radius)
c_fsd_range, & ! string for history output
write_diags ) ! flag for writing diagnostics

integer (kind=int_kind), intent(in) :: &
nfsd ! number of floe size categories

real(kind=dbl_kind), dimension(:), intent(inout) :: &
floe_rad_l, & ! fsd size lower bound in m (radius)
floe_rad_c, & ! fsd size bin centre in m (radius)
floe_binwidth ! fsd size bin width in m (radius)

character (len=35), intent(out) :: &
c_fsd_range(nfsd) ! string for history output

logical (kind=log_kind), intent(in), optional :: &
write_diags ! write diags flag

icepack_init_fsd

!
! Initialize the FSD
!
! authors: Lettie Roach, NIWA/VUW

subroutine icepack_init_fsd(nfsd, ice_ic, &
floe_rad_c, & ! fsd size bin centre in m (radius)
floe_binwidth, & ! fsd size bin width in m (radius)
afsd) ! floe size distribution tracer

integer(kind=int_kind), intent(in) :: &
nfsd

character(len=char_len_long), intent(in) :: &
ice_ic ! method of ice cover initialization

real(kind=dbl_kind), dimension(:), intent(inout) :: &
floe_rad_c, & ! fsd size bin centre in m (radius)

(continues on next page)
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floe_binwidth ! fsd size bin width in m (radius)

real (kind=dbl_kind), dimension (:), intent(inout) :: &
afsd ! floe size tracer: fraction distribution of floes

icepack_cleanup_fsd

!
! Clean up small values and renormalize
!
! authors: Elizabeth Hunke, LANL
!

subroutine icepack_cleanup_fsd (ncat, nfsd, afsdn)

integer (kind=int_kind), intent(in) :: &
ncat , & ! number of thickness categories
nfsd ! number of floe size categories

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
afsdn ! floe size distribution tracer

4.4.4 icepack_intfc.F90

icepack_intfc.F90

! public parameters and interface routines for the icepack columnpackage code

module icepack_intfc

use icepack_kinds, only: icepack_char_len => char_len
use icepack_kinds, only: icepack_char_len_long => char_len_long
use icepack_kinds, only: icepack_log_kind => log_kind
use icepack_kinds, only: icepack_int_kind => int_kind
use icepack_kinds, only: icepack_int8_kind => int8_kind
use icepack_kinds, only: icepack_real_kind => real_kind
use icepack_kinds, only: icepack_dbl_kind => dbl_kind
use icepack_kinds, only: icepack_r16_kind => r16_kind

use icepack_tracers, only: icepack_max_nbtrcr => max_nbtrcr
use icepack_tracers, only: icepack_max_algae => max_algae
use icepack_tracers, only: icepack_max_dic => max_dic
use icepack_tracers, only: icepack_max_doc => max_doc
use icepack_tracers, only: icepack_max_don => max_don
use icepack_tracers, only: icepack_max_fe => max_fe
use icepack_tracers, only: icepack_max_aero => max_aero
use icepack_tracers, only: icepack_max_iso => max_iso
use icepack_tracers, only: icepack_nmodal1 => nmodal1
use icepack_tracers, only: icepack_nmodal2 => nmodal2

(continues on next page)
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use icepack_shortwave_data, only: icepack_nspint_3bd => nspint_3bd
use icepack_shortwave_data, only: icepack_nspint_5bd => nspint_5bd

use icepack_parameters, only: icepack_init_parameters
use icepack_parameters, only: icepack_query_parameters
use icepack_parameters, only: icepack_write_parameters
use icepack_parameters, only: icepack_recompute_constants
use icepack_parameters, only: secday, spval_const
use icepack_parameters, only: c0, c1, c1p5, c2, c3, c4, c5, c6, c8
use icepack_parameters, only: c10, c15, c16, c20, c25, c100, c1000
use icepack_parameters, only: p001, p01, p1, p2, p4, p5, p6, p05
use icepack_parameters, only: p15, p25, p75, p333, p666

use icepack_tracers, only: icepack_compute_tracers
use icepack_tracers, only: icepack_init_tracer_flags
use icepack_tracers, only: icepack_query_tracer_flags
use icepack_tracers, only: icepack_write_tracer_flags
use icepack_tracers, only: icepack_init_tracer_indices
use icepack_tracers, only: icepack_query_tracer_indices
use icepack_tracers, only: icepack_write_tracer_indices
use icepack_tracers, only: icepack_init_tracer_sizes
use icepack_tracers, only: icepack_query_tracer_sizes
use icepack_tracers, only: icepack_write_tracer_sizes

use icepack_itd, only: icepack_init_itd
use icepack_itd, only: icepack_init_itd_hist
use icepack_itd, only: icepack_aggregate

use icepack_fsd, only: icepack_init_fsd_bounds
use icepack_fsd, only: icepack_init_fsd
use icepack_fsd, only: icepack_cleanup_fsd

use icepack_mechred, only: icepack_step_ridge
use icepack_mechred, only: icepack_ice_strength

use icepack_wavefracspec, only: icepack_init_wave
use icepack_wavefracspec, only: icepack_step_wavefracture

use icepack_snow, only: icepack_init_snow
use icepack_snow, only: icepack_step_snow

use icepack_shortwave, only: icepack_init_radiation
use icepack_shortwave, only: icepack_prep_radiation
use icepack_shortwave, only: icepack_step_radiation

use icepack_brine, only: icepack_init_hbrine
use icepack_brine, only: icepack_init_zsalinity ! deprecated

use icepack_zbgc , only: icepack_init_bgc
use icepack_zbgc , only: icepack_init_zbgc
use icepack_zbgc , only: icepack_biogeochemistry
use icepack_zbgc , only: icepack_init_ocean_bio

(continues on next page)
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use icepack_zbgc , only: icepack_load_ocean_bio_array

use icepack_atmo , only: icepack_atm_boundary
use icepack_ocean, only: icepack_ocn_mixed_layer

use icepack_orbital , only: icepack_init_orbit
use icepack_orbital , only: icepack_query_orbit

use icepack_therm_vertical, only: icepack_step_therm1
use icepack_therm_itd , only: icepack_step_therm2
use icepack_therm_shared , only: icepack_ice_temperature
use icepack_therm_shared , only: icepack_snow_temperature
use icepack_therm_shared , only: icepack_liquidus_temperature
use icepack_therm_shared , only: icepack_sea_freezing_temperature
use icepack_therm_shared , only: icepack_init_thermo
use icepack_therm_shared , only: icepack_salinity_profile
use icepack_therm_shared , only: icepack_init_trcr

use icepack_mushy_physics , only: icepack_enthalpy_snow
use icepack_mushy_physics , only: icepack_enthalpy_mush
use icepack_mushy_physics , only: icepack_mushy_density_brine
use icepack_mushy_physics , only: icepack_mushy_liquid_fraction
use icepack_mushy_physics , only: icepack_mushy_temperature_mush

use icepack_warnings, only: icepack_warnings_clear
use icepack_warnings, only: icepack_warnings_print
use icepack_warnings, only: icepack_warnings_flush
use icepack_warnings, only: icepack_warnings_aborted
use icepack_warnings, only: icepack_warnings_getall

4.4.5 icepack_itd.F90

icepack_init_itd

! Initialize area fraction and thickness boundaries for the itd model
!
! authors: William H. Lipscomb and Elizabeth C. Hunke, LANL
! C. M. Bitz, UW

subroutine icepack_init_itd(ncat, hin_max)

integer (kind=int_kind), intent(in) :: &
ncat ! number of thickness categories

real (kind=dbl_kind), intent(out) :: &
hin_max(0:ncat) ! category limits (m)
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icepack_init_itd_hist

! Initialize area fraction and thickness boundaries for the itd model
!
! authors: William H. Lipscomb and Elizabeth C. Hunke, LANL
! C. M. Bitz, UW

subroutine icepack_init_itd_hist (ncat, hin_max, c_hi_range)

integer (kind=int_kind), intent(in) :: &
ncat ! number of thickness categories

real (kind=dbl_kind), intent(in) :: &
hin_max(0:ncat) ! category limits (m)

character (len=35), intent(out) :: &
c_hi_range(ncat) ! string for history output

icepack_aggregate

! Aggregate ice state variables over thickness categories.
!
! authors: C. M. Bitz, UW
! W. H. Lipscomb, LANL

subroutine icepack_aggregate (ncat, &
aicen, trcrn, &
vicen, vsnon, &
aice, trcr, &
vice, vsno, &
aice0, &
ntrcr, &
trcr_depend, &
trcr_base, &
n_trcr_strata, &
nt_strata, Tf)

integer (kind=int_kind), intent(in) :: &
ncat , & ! number of thickness categories
ntrcr ! number of tracers in use

real (kind=dbl_kind), dimension (:), intent(in) :: &
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon ! volume per unit area of snow (m)

real (kind=dbl_kind), dimension (:,:), intent(inout) :: &
trcrn ! ice tracers

integer (kind=int_kind), dimension (:), intent(in) :: &
trcr_depend, & ! = 0 for aicen tracers, 1 for vicen, 2 for vsnon

(continues on next page)

4.4. Public Interfaces 123



Icepack Documentation

(continued from previous page)

n_trcr_strata ! number of underlying tracer layers

real (kind=dbl_kind), dimension (:,:), intent(in) :: &
trcr_base ! = 0 or 1 depending on tracer dependency

! argument 2: (1) aice, (2) vice, (3) vsno

integer (kind=int_kind), dimension (:,:), intent(in) :: &
nt_strata ! indices of underlying tracer layers

real (kind=dbl_kind), intent(out) :: &
aice , & ! concentration of ice
vice , & ! volume per unit area of ice (m)
vsno , & ! volume per unit area of snow (m)
aice0 ! concentration of open water

real (kind=dbl_kind), dimension (:), intent(out) :: &
trcr ! ice tracers

real (kind=dbl_kind), intent(in) :: &
Tf ! freezing temperature

4.4.6 icepack_mechred.F90

icepack_ice_strength

! Compute the strength of the ice pack, defined as the energy (J m-2)
! dissipated per unit area removed from the ice pack under compression,
! and assumed proportional to the change in potential energy caused
! by ridging.
!
! See Rothrock (1975) and Hibler (1980).
!
! For simpler strength parameterization, see this reference:
! Hibler, W. D. III, 1979: A dynamic-thermodynamic sea ice model,
! J. Phys. Oceanog., 9, 817-846.
!
! authors: William H. Lipscomb, LANL
! Elizabeth C. Hunke, LANL

subroutine icepack_ice_strength (ncat, &
aice, vice, &
aice0, aicen, &
vicen, &
strength)

integer (kind=int_kind), intent(in) :: &
ncat ! number of thickness categories

real (kind=dbl_kind), intent(in) :: &
aice , & ! concentration of ice

(continues on next page)
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vice , & ! volume per unit area of ice (m)
aice0 ! concentration of open water

real (kind=dbl_kind), dimension(:), intent(in) :: &
aicen , & ! concentration of ice
vicen ! volume per unit area of ice (m)

real (kind=dbl_kind), intent(inout) :: &
strength ! ice strength (N/m)

icepack_step_ridge

! Computes sea ice mechanical deformation
!
! authors: William H. Lipscomb, LANL
! Elizabeth C. Hunke, LANL

subroutine icepack_step_ridge (dt, ndtd, &
nilyr, nslyr, &
nblyr, &
ncat, hin_max, &
rdg_conv, rdg_shear, &
aicen, &
trcrn, &
vicen, vsnon, &
aice0, trcr_depend, &
trcr_base, n_trcr_strata, &
nt_strata, &
dardg1dt, dardg2dt, &
dvirdgdt, opening, &
fpond, &
fresh, fhocn, &
n_aero, &
faero_ocn, fiso_ocn, &
aparticn, krdgn, &
aredistn, vredistn, &
dardg1ndt, dardg2ndt, &
dvirdgndt, &
araftn, vraftn, &
aice, fsalt, &
first_ice, fzsal, &
flux_bio, closing, Tf )

real (kind=dbl_kind), intent(in) :: &
dt ! time step

real (kind=dbl_kind), intent(in) :: &
Tf ! freezing temperature

integer (kind=int_kind), intent(in) :: &
(continues on next page)
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ncat , & ! number of thickness categories
ndtd , & ! number of dynamics supercycles
nblyr , & ! number of bio layers
nilyr , & ! number of ice layers
nslyr , & ! number of snow layers
n_aero ! number of aerosol tracers

real (kind=dbl_kind), dimension(0:ncat), intent(inout) :: &
hin_max ! category limits (m)

integer (kind=int_kind), dimension (:), intent(in) :: &
trcr_depend, & ! = 0 for aicen tracers, 1 for vicen, 2 for vsnon
n_trcr_strata ! number of underlying tracer layers

real (kind=dbl_kind), dimension (:,:), intent(in) :: &
trcr_base ! = 0 or 1 depending on tracer dependency

! argument 2: (1) aice, (2) vice, (3) vsno

integer (kind=int_kind), dimension (:,:), intent(in) :: &
nt_strata ! indices of underlying tracer layers

real (kind=dbl_kind), intent(inout) :: &
aice , & ! sea ice concentration
aice0 , & ! concentration of open water
rdg_conv , & ! convergence term for ridging (1/s)
rdg_shear, & ! shear term for ridging (1/s)
dardg1dt , & ! rate of area loss by ridging ice (1/s)
dardg2dt , & ! rate of area gain by new ridges (1/s)
dvirdgdt , & ! rate of ice volume ridged (m/s)
opening , & ! rate of opening due to divergence/shear (1/s)
fpond , & ! fresh water flux to ponds (kg/m^2/s)
fresh , & ! fresh water flux to ocean (kg/m^2/s)
fsalt , & ! salt flux to ocean (kg/m^2/s)
fhocn ! net heat flux to ocean (W/m^2)

real (kind=dbl_kind), intent(inout), optional :: &
fzsal ! zsalinity flux to ocean(kg/m^2/s) (deprecated)

real (kind=dbl_kind), intent(inout), optional :: &
closing ! rate of closing due to divergence/shear (1/s)

real (kind=dbl_kind), dimension(:), intent(inout) :: &
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon , & ! volume per unit area of snow (m)
dardg1ndt, & ! rate of area loss by ridging ice (1/s)
dardg2ndt, & ! rate of area gain by new ridges (1/s)
dvirdgndt, & ! rate of ice volume ridged (m/s)
aparticn , & ! participation function
krdgn , & ! mean ridge thickness/thickness of ridging ice
araftn , & ! rafting ice area
vraftn , & ! rafting ice volume

(continues on next page)

126 Chapter 4. Use in Other Models



Icepack Documentation

(continued from previous page)

aredistn , & ! redistribution function: fraction of new ridge area
vredistn , & ! redistribution function: fraction of new ridge volume
faero_ocn, & ! aerosol flux to ocean (kg/m^2/s)
flux_bio ! all bio fluxes to ocean

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
fiso_ocn ! isotope flux to ocean (kg/m^2/s)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
trcrn ! tracers

!logical (kind=log_kind), intent(in) :: &
!tr_pond_topo,& ! if .true., use explicit topography-based ponds
!tr_aero ,& ! if .true., use aerosol tracers
!tr_brine !,& ! if .true., brine height differs from ice thickness

logical (kind=log_kind), dimension(:), intent(inout) :: &
first_ice ! true until ice forms

4.4.7 icepack_mushy_physics.F90

icepack_mushy_density_brine

! Compute density of brine from brine salinity

function icepack_mushy_density_brine(Sbr) result(rho)

real(kind=dbl_kind), intent(in) :: &
Sbr ! brine salinity (ppt)

real(kind=dbl_kind) :: &
rho ! brine density (kg m-3)

icepack_enthalpy_snow

! Enthalpy of snow from snow temperature

function icepack_enthalpy_snow(zTsn) result(zqsn)

real(kind=dbl_kind), intent(in) :: &
zTsn ! snow layer temperature (C)

real(kind=dbl_kind) :: &
zqsn ! snow layer enthalpy (J m-3)
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icepack_enthalpy_mush

! Enthalpy of mush from mush temperature and bulk salinity

function icepack_enthalpy_mush(zTin, zSin) result(zqin)

real(kind=dbl_kind), intent(in) :: &
zTin, & ! ice layer temperature (C)
zSin ! ice layer bulk salinity (ppt)

real(kind=dbl_kind) :: &
zqin ! ice layer enthalpy (J m-3)

icepack_mushy_temperature_mush

! Temperature of mush from mush enthalpy and bulk salinity

function icepack_mushy_temperature_mush(zqin, zSin) result(zTin)

real(kind=dbl_kind), intent(in) :: &
zqin , & ! ice enthalpy (J m-3)
zSin ! ice layer bulk salinity (ppt)

real(kind=dbl_kind) :: &
zTin ! ice layer temperature (C)

icepack_mushy_liquid_fraction

! Liquid fraction of mush from mush temperature and bulk salinity

function icepack_mushy_liquid_fraction(zTin, zSin) result(phi)

real(kind=dbl_kind), intent(in) :: &
zTin, & ! ice layer temperature (C)
zSin ! ice layer bulk salinity (ppt)

real(kind=dbl_kind) :: &
phi ! liquid fraction

4.4.8 icepack_ocean.F90

icepack_ocn_mixed_layer

! Compute the mixed layer heat balance and update the SST.
! Compute the energy available to freeze or melt ice.
! NOTE: SST changes due to fluxes through the ice are computed in
! icepack_therm_vertical.

(continues on next page)
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subroutine icepack_ocn_mixed_layer (alvdr_ocn, swvdr, &
alidr_ocn, swidr, &
alvdf_ocn, swvdf, &
alidf_ocn, swidf, &
sst, flwout_ocn, &
fsens_ocn, shcoef, &
flat_ocn, lhcoef, &
evap_ocn, flw, &
delt, delq, &
aice, fhocn, &
fswthru, hmix, &
Tf, qdp, &
frzmlt, dt)

real (kind=dbl_kind), intent(in) :: &
alvdr_ocn , & ! visible, direct (fraction)
alidr_ocn , & ! near-ir, direct (fraction)
alvdf_ocn , & ! visible, diffuse (fraction)
alidf_ocn , & ! near-ir, diffuse (fraction)
swvdr , & ! sw down, visible, direct (W/m^2)
swvdf , & ! sw down, visible, diffuse (W/m^2)
swidr , & ! sw down, near IR, direct (W/m^2)
swidf , & ! sw down, near IR, diffuse (W/m^2)
flw , & ! incoming longwave radiation (W/m^2)
Tf , & ! freezing temperature (C)
hmix , & ! mixed layer depth (m)
delt , & ! potential temperature difference (K)
delq , & ! specific humidity difference (kg/kg)
shcoef , & ! transfer coefficient for sensible heat
lhcoef , & ! transfer coefficient for latent heat
fhocn , & ! net heat flux to ocean (W/m^2)
fswthru , & ! shortwave penetrating to ocean (W/m^2)
aice , & ! ice area fraction
dt ! time step (s)

real (kind=dbl_kind), intent(inout) :: &
flwout_ocn, & ! outgoing longwave radiation (W/m^2)
fsens_ocn , & ! sensible heat flux (W/m^2)
flat_ocn , & ! latent heat flux (W/m^2)
evap_ocn , & ! evaporative water flux (kg/m^2/s)
qdp , & ! deep ocean heat flux (W/m^2), negative upward
sst , & ! sea surface temperature (C)
frzmlt ! freezing/melting potential (W/m^2)
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4.4.9 icepack_orbital.F90

icepack_init_orbit

! Compute orbital parameters for the specified date.

subroutine icepack_init_orbit(iyear_AD_in, eccen_in, obliqr_in, &
lambm0_in, mvelpp_in, obliq_in, mvelp_in, decln_in, eccf_in, &
log_print_in)

integer(kind=int_kind), optional, intent(in) :: iyear_AD_in ! Year to calculate␣
→˓orbit for

real(kind=dbl_kind), optional, intent(in) :: eccen_in ! Earth's orbital␣
→˓eccentricity

real(kind=dbl_kind), optional, intent(in) :: obliqr_in ! Earth's obliquity in␣
→˓radians

real(kind=dbl_kind), optional, intent(in) :: lambm0_in ! Mean longitude of␣
→˓perihelion at the

! vernal equinox (radians)
real(kind=dbl_kind), optional, intent(in) :: mvelpp_in ! Earth's moving vernal␣

→˓equinox longitude
! of perihelion + pi␣

→˓(radians)
real(kind=dbl_kind), optional, intent(in) :: obliq_in ! obliquity in degrees
real(kind=dbl_kind), optional, intent(in) :: mvelp_in ! moving vernal equinox long
real(kind=dbl_kind), optional, intent(in) :: decln_in ! solar declination angle␣

→˓in radians
real(kind=dbl_kind), optional, intent(in) :: eccf_in ! earth orbit eccentricity␣

→˓factor
logical(kind=log_kind), optional, intent(in) :: log_print_in ! Flags print of␣

→˓status/error

icepack_query_orbit

! Compute orbital parameters for the specified date.

subroutine icepack_query_orbit(iyear_AD_out, eccen_out, obliqr_out, &
lambm0_out, mvelpp_out, obliq_out, mvelp_out, decln_out, eccf_out, &
log_print_out)

integer(kind=int_kind), optional, intent(out) :: iyear_AD_out ! Year to calculate␣
→˓orbit for

real(kind=dbl_kind), optional, intent(out) :: eccen_out ! Earth's orbital␣
→˓eccentricity

real(kind=dbl_kind), optional, intent(out) :: obliqr_out ! Earth's obliquity in␣
→˓radians

real(kind=dbl_kind), optional, intent(out) :: lambm0_out ! Mean longitude of␣
→˓perihelion at the

! vernal equinox (radians)
real(kind=dbl_kind), optional, intent(out) :: mvelpp_out ! Earth's moving vernal␣

→˓equinox longitude
(continues on next page)
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! of perihelion + pi␣
→˓(radians)

real(kind=dbl_kind), optional, intent(out) :: obliq_out ! obliquity in degrees
real(kind=dbl_kind), optional, intent(out) :: mvelp_out ! moving vernal equinox␣

→˓long
real(kind=dbl_kind), optional, intent(out) :: decln_out ! solar declination angle␣

→˓in radians
real(kind=dbl_kind), optional, intent(out) :: eccf_out ! earth orbit␣

→˓eccentricity factor
logical(kind=log_kind), optional, intent(out) :: log_print_out ! Flags print of␣

→˓status/error

4.4.10 icepack_parameters.F90

icepack_init_parameters

! subroutine to set the column package internal parameters

subroutine icepack_init_parameters( &
argcheck_in, puny_in, bignum_in, pi_in, secday_in, &
rhos_in, rhoi_in, rhow_in, cp_air_in, emissivity_in, &
cp_ice_in, cp_ocn_in, hfrazilmin_in, floediam_in, &
depressT_in, dragio_in, thickness_ocn_layer1_in, iceruf_ocn_in, &
albocn_in, gravit_in, viscosity_dyn_in, tscale_pnd_drain_in, &
Tocnfrz_in, rhofresh_in, zvir_in, vonkar_in, cp_wv_in, &
stefan_boltzmann_in, ice_ref_salinity_in, &
Tffresh_in, Lsub_in, Lvap_in, Timelt_in, Tsmelt_in, &
iceruf_in, Cf_in, Pstar_in, Cstar_in, kappav_in, &
kice_in, ksno_in, &
zref_in, hs_min_in, snowpatch_in, rhosi_in, sk_l_in, &
saltmax_in, phi_init_in, min_salin_in, salt_loss_in, &
Tliquidus_max_in, &
min_bgc_in, dSin0_frazil_in, hi_ssl_in, hs_ssl_in, &
awtvdr_in, awtidr_in, awtvdf_in, awtidf_in, &
qqqice_in, TTTice_in, qqqocn_in, TTTocn_in, &
ktherm_in, conduct_in, fbot_xfer_type_in, calc_Tsfc_in, dts_b_in, &
update_ocn_f_in, ustar_min_in, hi_min_in, a_rapid_mode_in, &
cpl_frazil_in, &
Rac_rapid_mode_in, aspect_rapid_mode_in, &
dSdt_slow_mode_in, phi_c_slow_mode_in, &
phi_i_mushy_in, shortwave_in, albedo_type_in, albsnowi_in, &
albicev_in, albicei_in, albsnowv_in, &
ahmax_in, R_ice_in, R_pnd_in, R_snw_in, dT_mlt_in, rsnw_mlt_in, &
kalg_in, kstrength_in, krdg_partic_in, krdg_redist_in, mu_rdg_in, &
atmbndy_in, calc_strair_in, formdrag_in, highfreq_in, natmiter_in, &
atmiter_conv_in, calc_dragio_in, &
tfrz_option_in, kitd_in, kcatbound_in, hs0_in, frzpnd_in, &
saltflux_option_in, &
floeshape_in, wave_spec_in, wave_spec_type_in, nfreq_in, &
dpscale_in, rfracmin_in, rfracmax_in, pndaspect_in, hs1_in, hp1_in, &

(continues on next page)
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bgc_flux_type_in, z_tracers_in, scale_bgc_in, solve_zbgc_in, &
modal_aero_in, skl_bgc_in, solve_zsal_in, grid_o_in, l_sk_in, &
initbio_frac_in, grid_oS_in, l_skS_in, dEdd_algae_in, &
phi_snow_in, T_max_in, fsal_in, &
fr_resp_in, algal_vel_in, R_dFe2dust_in, dustFe_sol_in, &
op_dep_min_in, fr_graze_s_in, fr_graze_e_in, fr_mort2min_in, &
fr_dFe_in, k_nitrif_in, t_iron_conv_in, max_loss_in, &
max_dfe_doc1_in, fr_resp_s_in, conserv_check_in, &
y_sk_DMS_in, t_sk_conv_in, t_sk_ox_in, frazil_scav_in, &
sw_redist_in, sw_frac_in, sw_dtemp_in, snwgrain_in, &
snwredist_in, use_smliq_pnd_in, rsnw_fall_in, rsnw_tmax_in, &
rhosnew_in, rhosmin_in, rhosmax_in, windmin_in, drhosdwind_in, &
snwlvlfac_in, isnw_T_in, isnw_Tgrd_in, isnw_rhos_in, &
snowage_rhos_in, snowage_Tgrd_in, snowage_T_in, &
snowage_tau_in, snowage_kappa_in, snowage_drdt0_in, &
snw_aging_table_in, snw_ssp_table_in )

!-----------------------------------------------------------------
! control settings
!-----------------------------------------------------------------

character(len=*), intent(in), optional :: &
argcheck_in ! optional argument checking, never, first, or always

!-----------------------------------------------------------------
! parameter constants
!-----------------------------------------------------------------

real (kind=dbl_kind), intent(in), optional :: &
secday_in, & !
puny_in, & !
bignum_in, & !
pi_in !

!-----------------------------------------------------------------
! densities
!-----------------------------------------------------------------

real (kind=dbl_kind), intent(in), optional :: &
rhos_in, & ! density of snow (kg/m^3)
rhoi_in, & ! density of ice (kg/m^3)
rhosi_in, & ! average sea ice density (kg/m2)
rhow_in, & ! density of seawater (kg/m^3)
rhofresh_in ! density of fresh water (kg/m^3)

!-----------------------------------------------------------------------
! Parameters for thermodynamics
!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(in), optional :: &
floediam_in, & ! effective floe diameter for lateral melt (m)
hfrazilmin_in, & ! min thickness of new frazil ice (m)
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cp_ice_in, & ! specific heat of fresh ice (J/kg/K)
cp_ocn_in, & ! specific heat of ocn (J/kg/K)
depressT_in, & ! Tf:brine salinity ratio (C/ppt)
viscosity_dyn_in, & ! dynamic viscosity of brine (kg/m/s)
tscale_pnd_drain_in,&! mushy macroscopic drainage timescale (days)
Tocnfrz_in, & ! freezing temp of seawater (C)
Tffresh_in, & ! freezing temp of fresh ice (K)
Lsub_in, & ! latent heat, sublimation freshwater (J/kg)
Lvap_in, & ! latent heat, vaporization freshwater (J/kg)
Timelt_in, & ! melting temperature, ice top surface (C)
Tsmelt_in, & ! melting temperature, snow top surface (C)
ice_ref_salinity_in, & ! (ppt)
kice_in, & ! thermal conductivity of fresh ice(W/m/deg)
ksno_in, & ! thermal conductivity of snow (W/m/deg)
hs_min_in, & ! min snow thickness for computing zTsn (m)
snowpatch_in, & ! parameter for fractional snow area (m)
saltmax_in, & ! max salinity at ice base for BL99 (ppt)
phi_init_in, & ! initial liquid fraction of frazil
min_salin_in, & ! threshold for brine pocket treatment
salt_loss_in, & ! fraction of salt retained in zsalinity
Tliquidus_max_in, & ! maximum liquidus temperature of mush (C)
dSin0_frazil_in ! bulk salinity reduction of newly formed frazil

integer (kind=int_kind), intent(in), optional :: &
ktherm_in ! type of thermodynamics

! -1 none
! 1 = Bitz and Lipscomb 1999
! 2 = mushy layer theory

character (len=*), intent(in), optional :: &
conduct_in, & ! 'MU71' or 'bubbly'
fbot_xfer_type_in, & ! transfer coefficient type for ice-ocean heat flux
cpl_frazil_in ! type of coupling for frazil ice

logical (kind=log_kind), intent(in), optional :: &
calc_Tsfc_in , &! if true, calculate surface temperature

! if false, Tsfc is computed elsewhere and
! atmos-ice fluxes are provided to CICE

update_ocn_f_in ! include fresh water and salt fluxes for frazil

real (kind=dbl_kind), intent(in), optional :: &
dts_b_in, & ! zsalinity timestep
hi_min_in, & ! minimum ice thickness allowed (m) for thermo
ustar_min_in ! minimum friction velocity for ice-ocean heat flux

! mushy thermo
real(kind=dbl_kind), intent(in), optional :: &

a_rapid_mode_in , & ! channel radius for rapid drainage mode (m)
Rac_rapid_mode_in , & ! critical Rayleigh number for rapid drainage mode
aspect_rapid_mode_in , & ! aspect ratio for rapid drainage mode (larger=wider)
dSdt_slow_mode_in , & ! slow mode drainage strength (m s-1 K-1)
phi_c_slow_mode_in , & ! liquid fraction porosity cutoff for slow mode
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phi_i_mushy_in ! liquid fraction of congelation ice

character(len=*), intent(in), optional :: &
tfrz_option_in ! form of ocean freezing temperature

! 'minus1p8' = -1.8 C
! 'linear_salt' = -depressT * sss
! 'mushy' conforms with ktherm=2

character(len=*), intent(in), optional :: &
saltflux_option_in ! Salt flux computation

! 'constant' reference value of ice_ref_salinity
! 'prognostic' prognostic salt flux

!-----------------------------------------------------------------------
! Parameters for radiation
!-----------------------------------------------------------------------

real(kind=dbl_kind), intent(in), optional :: &
emissivity_in, & ! emissivity of snow and ice
albocn_in, & ! ocean albedo
vonkar_in, & ! von Karman constant
stefan_boltzmann_in, & ! W/m^2/K^4
kappav_in, & ! vis extnctn coef in ice, wvlngth<700nm (1/m)
hi_ssl_in, & ! ice surface scattering layer thickness (m)
hs_ssl_in, & ! visible, direct
awtvdr_in, & ! visible, direct ! for history and
awtidr_in, & ! near IR, direct ! diagnostics
awtvdf_in, & ! visible, diffuse
awtidf_in ! near IR, diffuse

character (len=*), intent(in), optional :: &
shortwave_in, & ! shortwave method, 'ccsm3' or 'dEdd' or 'dEdd_snicar_ad'
albedo_type_in ! albedo parameterization, 'ccsm3' or 'constant'

! shortwave='dEdd' overrides this parameter

! baseline albedos for ccsm3 shortwave, set in namelist
real (kind=dbl_kind), intent(in), optional :: &

albicev_in , & ! visible ice albedo for h > ahmax
albicei_in , & ! near-ir ice albedo for h > ahmax
albsnowv_in , & ! cold snow albedo, visible
albsnowi_in , & ! cold snow albedo, near IR
ahmax_in ! thickness above which ice albedo is constant (m)

! dEdd tuning parameters, set in namelist
real (kind=dbl_kind), intent(in), optional :: &

R_ice_in , & ! sea ice tuning parameter; +1 > 1sig increase in albedo
R_pnd_in , & ! ponded ice tuning parameter; +1 > 1sig increase in albedo
R_snw_in , & ! snow tuning parameter; +1 > ~.01 change in broadband albedo
dT_mlt_in , & ! change in temp for non-melt to melt snow grain

! radius change (C)
rsnw_mlt_in , & ! maximum melting snow grain radius (10^-6 m)
kalg_in ! algae absorption coefficient for 0.5 m thick layer
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logical (kind=log_kind), intent(in), optional :: &
sw_redist_in ! redistribute shortwave

real (kind=dbl_kind), intent(in), optional :: &
sw_frac_in , & ! Fraction of internal shortwave moved to surface
sw_dtemp_in ! temperature difference from melting

!-----------------------------------------------------------------------
! Parameters for dynamics
!-----------------------------------------------------------------------

real(kind=dbl_kind), intent(in), optional :: &
Cf_in, & ! ratio of ridging work to PE change in ridging
Pstar_in, & ! constant in Hibler strength formula
Cstar_in, & ! constant in Hibler strength formula
dragio_in, & ! ice-ocn drag coefficient
thickness_ocn_layer1_in, & ! thickness of first ocean level (m)
iceruf_ocn_in, & ! under-ice roughness (m)
gravit_in, & ! gravitational acceleration (m/s^2)
iceruf_in ! ice surface roughness (m)

integer (kind=int_kind), intent(in), optional :: & ! defined in namelist
kstrength_in , & ! 0 for simple Hibler (1979) formulation

! 1 for Rothrock (1975) pressure formulation
krdg_partic_in, & ! 0 for Thorndike et al. (1975) formulation

! 1 for exponential participation function
krdg_redist_in ! 0 for Hibler (1980) formulation

! 1 for exponential redistribution function

real (kind=dbl_kind), intent(in), optional :: &
mu_rdg_in ! gives e-folding scale of ridged ice (m^.5)

! (krdg_redist = 1)

logical (kind=log_kind), intent(in), optional :: &
calc_dragio_in ! if true, calculate dragio from iceruf_ocn and thickness_ocn_

→˓layer1

!-----------------------------------------------------------------------
! Parameters for atmosphere
!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(in), optional :: &
cp_air_in, & ! specific heat of air (J/kg/K)
cp_wv_in, & ! specific heat of water vapor (J/kg/K)
zvir_in, & ! rh2o/rair - 1.0
zref_in, & ! reference height for stability (m)
qqqice_in, & ! for qsat over ice
TTTice_in, & ! for qsat over ice
qqqocn_in, & ! for qsat over ocn
TTTocn_in ! for qsat over ocn
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character (len=*), intent(in), optional :: &
atmbndy_in ! atmo boundary method, 'similarity', 'constant' or 'mixed'

logical (kind=log_kind), intent(in), optional :: &
calc_strair_in, & ! if true, calculate wind stress components
formdrag_in, & ! if true, calculate form drag
highfreq_in ! if true, use high frequency coupling

integer (kind=int_kind), intent(in), optional :: &
natmiter_in ! number of iterations for boundary layer calculations

! Flux convergence tolerance
real (kind=dbl_kind), intent(in), optional :: atmiter_conv_in

!-----------------------------------------------------------------------
! Parameters for the ice thickness distribution
!-----------------------------------------------------------------------

integer (kind=int_kind), intent(in), optional :: &
kitd_in , & ! type of itd conversions

! 0 = delta function
! 1 = linear remap

kcatbound_in ! 0 = old category boundary formula
! 1 = new formula giving round numbers
! 2 = WMO standard
! 3 = asymptotic formula

!-----------------------------------------------------------------------
! Parameters for the floe size distribution
!-----------------------------------------------------------------------

integer (kind=int_kind), intent(in), optional :: &
nfreq_in ! number of frequencies

real (kind=dbl_kind), intent(in), optional :: &
floeshape_in ! constant from Steele (unitless)

logical (kind=log_kind), intent(in), optional :: &
wave_spec_in ! if true, use wave forcing

character (len=*), intent(in), optional :: &
wave_spec_type_in ! type of wave spectrum forcing

!-----------------------------------------------------------------------
! Parameters for biogeochemistry
!-----------------------------------------------------------------------

character (len=*), intent(in), optional :: &
bgc_flux_type_in ! type of ocean-ice piston velocity

! 'constant', 'Jin2006'

logical (kind=log_kind), intent(in), optional :: &
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z_tracers_in, & ! if .true., bgc or aerosol tracers are vertically resolved
scale_bgc_in, & ! if .true., initialize bgc tracers proportionally with␣

→˓salinity
solve_zbgc_in, & ! if .true., solve vertical biochemistry portion of code
dEdd_algae_in, & ! if .true., algal absorptionof Shortwave is computed in␣

→˓the
modal_aero_in, & ! if .true., use modal aerosol formulation in shortwave
conserv_check_in ! if .true., run conservation checks and abort if checks␣

→˓fail

logical (kind=log_kind), intent(in), optional :: &
skl_bgc_in, & ! if true, solve skeletal biochemistry
solve_zsal_in ! if true, update salinity profile from solve_S_dt

real (kind=dbl_kind), intent(in), optional :: &
grid_o_in , & ! for bottom flux
l_sk_in , & ! characteristic diffusive scale (zsalinity) (m)
initbio_frac_in, & ! fraction of ocean tracer concentration used to initialize␣

→˓tracer
phi_snow_in ! snow porosity at the ice/snow interface

real (kind=dbl_kind), intent(in), optional :: &
grid_oS_in , & ! for bottom flux (zsalinity)
l_skS_in ! 0.02 characteristic skeletal layer thickness (m)␣

→˓(zsalinity)
real (kind=dbl_kind), intent(in), optional :: &

fr_resp_in , & ! fraction of algal growth lost due to respiration
algal_vel_in , & ! 0.5 cm/d(m/s) Lavoie 2005 1.5 cm/day
R_dFe2dust_in , & ! g/g (3.5% content) Tagliabue 2009
dustFe_sol_in , & ! solubility fraction
T_max_in , & ! maximum temperature (C)
fsal_in , & ! Salinity limitation (ppt)
op_dep_min_in , & ! Light attenuates for optical depths exceeding min
fr_graze_s_in , & ! fraction of grazing spilled or slopped
fr_graze_e_in , & ! fraction of assimilation excreted
fr_mort2min_in , & ! fractionation of mortality to Am
fr_dFe_in , & ! fraction of remineralized nitrogen

! (in units of algal iron)
k_nitrif_in , & ! nitrification rate (1/day)
t_iron_conv_in , & ! desorption loss pFe to dFe (day)
max_loss_in , & ! restrict uptake to % of remaining value
max_dfe_doc1_in , & ! max ratio of dFe to saccharides in the ice

! (nM Fe/muM C)
fr_resp_s_in , & ! DMSPd fraction of respiration loss as DMSPd
y_sk_DMS_in , & ! fraction conversion given high yield
t_sk_conv_in , & ! Stefels conversion time (d)
t_sk_ox_in , & ! DMS oxidation time (d)
frazil_scav_in ! scavenging fraction or multiple in frazil ice

real (kind=dbl_kind), intent(in), optional :: &
sk_l_in, & ! skeletal layer thickness (m)
min_bgc_in ! fraction of ocean bgc concentration in surface melt
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!-----------------------------------------------------------------------
! Parameters for melt ponds
!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(in), optional :: &
hs0_in ! snow depth for transition to bare sea ice (m)

! level-ice ponds
character (len=*), intent(in), optional :: &

frzpnd_in ! pond refreezing parameterization

real (kind=dbl_kind), intent(in), optional :: &
dpscale_in, & ! alter e-folding time scale for flushing
rfracmin_in, & ! minimum retained fraction of meltwater
rfracmax_in, & ! maximum retained fraction of meltwater
pndaspect_in, & ! ratio of pond depth to pond fraction
hs1_in ! tapering parameter for snow on pond ice

! topo ponds
real (kind=dbl_kind), intent(in), optional :: &

hp1_in ! critical parameter for pond ice thickness

!-----------------------------------------------------------------------
! Parameters for snow redistribution, metamorphosis
!-----------------------------------------------------------------------

character (len=*), intent(in), optional :: &
snwredist_in, & ! type of snow redistribution
snw_aging_table_in ! snow aging lookup table

logical (kind=log_kind), intent(in), optional :: &
use_smliq_pnd_in, &! use liquid in snow for ponds
snwgrain_in ! snow metamorphosis

real (kind=dbl_kind), intent(in), optional :: &
rsnw_fall_in, & ! radius of new snow (10^-6 m)
rsnw_tmax_in, & ! maximum snow radius (10^-6 m)
rhosnew_in, & ! new snow density (kg/m^3)
rhosmin_in, & ! minimum snow density (kg/m^3)
rhosmax_in, & ! maximum snow density (kg/m^3)
windmin_in, & ! minimum wind speed to compact snow (m/s)
drhosdwind_in, & ! wind compaction factor (kg s/m^4)
snwlvlfac_in ! fractional increase in snow depth

integer (kind=int_kind), intent(in), optional :: &
isnw_T_in, & ! maxiumum temperature index
isnw_Tgrd_in, & ! maxiumum temperature gradient index
isnw_rhos_in ! maxiumum snow density index

real (kind=dbl_kind), dimension(:), intent(in), optional :: &
snowage_rhos_in, & ! snowage dimension data
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snowage_Tgrd_in, & !
snowage_T_in !

real (kind=dbl_kind), dimension(:,:,:), intent(in), optional :: &
snowage_tau_in, & ! (10^-6 m)
snowage_kappa_in, &!
snowage_drdt0_in ! (10^-6 m/hr)

character (len=char_len), intent(in), optional :: &
snw_ssp_table_in ! lookup table: 'snicar' or 'test'

icepack_query_parameters

! subroutine to query the column package internal parameters

subroutine icepack_query_parameters( &
argcheck_out, puny_out, bignum_out, pi_out, rad_to_deg_out,&
secday_out, c0_out, c1_out, c1p5_out, c2_out, c3_out, c4_out, &
c5_out, c6_out, c8_out, c10_out, c15_out, c16_out, c20_out, &
c25_out, c100_out, c180_out, c1000_out, p001_out, p01_out, p1_out, &
p2_out, p4_out, p5_out, p6_out, p05_out, p15_out, p25_out, p75_out, &
p333_out, p666_out, spval_const_out, pih_out, piq_out, pi2_out, &
rhos_out, rhoi_out, rhow_out, cp_air_out, emissivity_out, &
cp_ice_out, cp_ocn_out, hfrazilmin_out, floediam_out, &
depressT_out, dragio_out, thickness_ocn_layer1_out, iceruf_ocn_out, &
albocn_out, gravit_out, viscosity_dyn_out, tscale_pnd_drain_out, &
Tocnfrz_out, rhofresh_out, zvir_out, vonkar_out, cp_wv_out, &
stefan_boltzmann_out, ice_ref_salinity_out, &
Tffresh_out, Lsub_out, Lvap_out, Timelt_out, Tsmelt_out, &
iceruf_out, Cf_out, Pstar_out, Cstar_out, kappav_out, &
kice_out, ksno_out, &
zref_out, hs_min_out, snowpatch_out, rhosi_out, sk_l_out, &
saltmax_out, phi_init_out, min_salin_out, salt_loss_out, &
Tliquidus_max_out, &
min_bgc_out, dSin0_frazil_out, hi_ssl_out, hs_ssl_out, &
awtvdr_out, awtidr_out, awtvdf_out, awtidf_out, cpl_frazil_out, &
qqqice_out, TTTice_out, qqqocn_out, TTTocn_out, update_ocn_f_out, &
Lfresh_out, cprho_out, Cp_out, ustar_min_out, hi_min_out, a_rapid_mode_out, &
ktherm_out, conduct_out, fbot_xfer_type_out, calc_Tsfc_out, dts_b_out, &
Rac_rapid_mode_out, aspect_rapid_mode_out, dSdt_slow_mode_out, &
phi_c_slow_mode_out, phi_i_mushy_out, shortwave_out, &
albedo_type_out, albicev_out, albicei_out, albsnowv_out, &
albsnowi_out, ahmax_out, R_ice_out, R_pnd_out, R_snw_out, dT_mlt_out, &
rsnw_mlt_out, dEdd_algae_out, &
kalg_out, kstrength_out, krdg_partic_out, krdg_redist_out, mu_rdg_out, &
atmbndy_out, calc_strair_out, formdrag_out, highfreq_out, natmiter_out, &
atmiter_conv_out, calc_dragio_out, &
tfrz_option_out, kitd_out, kcatbound_out, hs0_out, frzpnd_out, &
saltflux_option_out, &
floeshape_out, wave_spec_out, wave_spec_type_out, nfreq_out, &
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dpscale_out, rfracmin_out, rfracmax_out, pndaspect_out, hs1_out, hp1_out, &
bgc_flux_type_out, z_tracers_out, scale_bgc_out, solve_zbgc_out, &
modal_aero_out, skl_bgc_out, solve_zsal_out, grid_o_out, l_sk_out, &
initbio_frac_out, grid_oS_out, l_skS_out, &
phi_snow_out, conserv_check_out, &
fr_resp_out, algal_vel_out, R_dFe2dust_out, dustFe_sol_out, &
T_max_out, fsal_out, op_dep_min_out, fr_graze_s_out, fr_graze_e_out, &
fr_mort2min_out, fr_resp_s_out, fr_dFe_out, &
k_nitrif_out, t_iron_conv_out, max_loss_out, max_dfe_doc1_out, &
y_sk_DMS_out, t_sk_conv_out, t_sk_ox_out, frazil_scav_out, &
sw_redist_out, sw_frac_out, sw_dtemp_out, snwgrain_out, &
snwredist_out, use_smliq_pnd_out, rsnw_fall_out, rsnw_tmax_out, &
rhosnew_out, rhosmin_out, rhosmax_out, windmin_out, drhosdwind_out, &
snwlvlfac_out, isnw_T_out, isnw_Tgrd_out, isnw_rhos_out, &
snowage_rhos_out, snowage_Tgrd_out, snowage_T_out, &
snowage_tau_out, snowage_kappa_out, snowage_drdt0_out, &
snw_aging_table_out, snw_ssp_table_out )

!-----------------------------------------------------------------
! control settings
!-----------------------------------------------------------------

character(len=*), intent(out), optional :: &
argcheck_out ! optional argument checking

!-----------------------------------------------------------------
! parameter constants
!-----------------------------------------------------------------

real (kind=dbl_kind), intent(out), optional :: &
c0_out, c1_out, c1p5_out, c2_out, c3_out, c4_out, &
c5_out, c6_out, c8_out, c10_out, c15_out, c16_out, c20_out, &
c25_out, c180_out, c100_out, c1000_out, p001_out, p01_out, p1_out, &
p2_out, p4_out, p5_out, p6_out, p05_out, p15_out, p25_out, p75_out, &
p333_out, p666_out, spval_const_out, pih_out, piq_out, pi2_out, &
secday_out, & ! number of seconds per day
puny_out, & ! a small number
bignum_out, & ! a big number
pi_out, & ! pi
rad_to_deg_out, & ! conversion factor from radians to degrees
Lfresh_out, & ! latent heat of melting of fresh ice (J/kg)
cprho_out, & ! for ocean mixed layer (J kg / K m^3)
Cp_out ! proport const for PE

!-----------------------------------------------------------------
! densities
!-----------------------------------------------------------------

real (kind=dbl_kind), intent(out), optional :: &
rhos_out, & ! density of snow (kg/m^3)
rhoi_out, & ! density of ice (kg/m^3)
rhosi_out, & ! average sea ice density (kg/m2)
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rhow_out, & ! density of seawater (kg/m^3)
rhofresh_out ! density of fresh water (kg/m^3)

!-----------------------------------------------------------------------
! Parameters for thermodynamics
!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(out), optional :: &
floediam_out, & ! effective floe diameter for lateral melt (m)
hfrazilmin_out, & ! min thickness of new frazil ice (m)
cp_ice_out, & ! specific heat of fresh ice (J/kg/K)
cp_ocn_out, & ! specific heat of ocn (J/kg/K)
depressT_out, & ! Tf:brine salinity ratio (C/ppt)
viscosity_dyn_out, & ! dynamic viscosity of brine (kg/m/s)
tscale_pnd_drain_out, & ! mushy macroscopic drainage timescale (days)
Tocnfrz_out, & ! freezing temp of seawater (C)
Tffresh_out, & ! freezing temp of fresh ice (K)
Lsub_out, & ! latent heat, sublimation freshwater (J/kg)
Lvap_out, & ! latent heat, vaporization freshwater (J/kg)
Timelt_out, & ! melting temperature, ice top surface (C)
Tsmelt_out, & ! melting temperature, snow top surface (C)
ice_ref_salinity_out, & ! (ppt)
kice_out, & ! thermal conductivity of fresh ice(W/m/deg)
ksno_out, & ! thermal conductivity of snow (W/m/deg)
hs_min_out, & ! min snow thickness for computing zTsn (m)
snowpatch_out, & ! parameter for fractional snow area (m)
saltmax_out, & ! max salinity at ice base for BL99 (ppt)
phi_init_out, & ! initial liquid fraction of frazil
min_salin_out, & ! threshold for brine pocket treatment
salt_loss_out, & ! fraction of salt retained in zsalinity
Tliquidus_max_out, & ! maximum liquidus temperature of mush (C)
dSin0_frazil_out ! bulk salinity reduction of newly formed frazil

integer (kind=int_kind), intent(out), optional :: &
ktherm_out ! type of thermodynamics

! -1 none
! 1 = Bitz and Lipscomb 1999
! 2 = mushy layer theory

character (len=*), intent(out), optional :: &
conduct_out, & ! 'MU71' or 'bubbly'
fbot_xfer_type_out, & ! transfer coefficient type for ice-ocean heat flux
cpl_frazil_out ! type of coupling for frazil ice

logical (kind=log_kind), intent(out), optional :: &
calc_Tsfc_out ,&! if true, calculate surface temperature

! if false, Tsfc is computed elsewhere and
! atmos-ice fluxes are provided to CICE

update_ocn_f_out ! include fresh water and salt fluxes for frazil

real (kind=dbl_kind), intent(out), optional :: &
dts_b_out, & ! zsalinity timestep
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hi_min_out, & ! minimum ice thickness allowed (m) for thermo
ustar_min_out ! minimum friction velocity for ice-ocean heat flux

! mushy thermo
real(kind=dbl_kind), intent(out), optional :: &

a_rapid_mode_out , & ! channel radius for rapid drainage mode (m)
Rac_rapid_mode_out , & ! critical Rayleigh number for rapid drainage mode
aspect_rapid_mode_out , & ! aspect ratio for rapid drainage mode (larger=wider)
dSdt_slow_mode_out , & ! slow mode drainage strength (m s-1 K-1)
phi_c_slow_mode_out , & ! liquid fraction porosity cutoff for slow mode
phi_i_mushy_out ! liquid fraction of congelation ice

character(len=*), intent(out), optional :: &
tfrz_option_out ! form of ocean freezing temperature

! 'minus1p8' = -1.8 C
! 'constant' = Tocnfrz
! 'linear_salt' = -depressT * sss
! 'mushy' conforms with ktherm=2

character(len=*), intent(out), optional :: &
saltflux_option_out ! Salt flux computation

! 'constant' reference value of ice_ref_salinity
! 'prognostic' prognostic salt flux

!-----------------------------------------------------------------------
! Parameters for radiation
!-----------------------------------------------------------------------

real(kind=dbl_kind), intent(out), optional :: &
emissivity_out, & ! emissivity of snow and ice
albocn_out, & ! ocean albedo
vonkar_out, & ! von Karman constant
stefan_boltzmann_out, & ! W/m^2/K^4
kappav_out, & ! vis extnctn coef in ice, wvlngth<700nm (1/m)
hi_ssl_out, & ! ice surface scattering layer thickness (m)
hs_ssl_out, & ! visible, direct
awtvdr_out, & ! visible, direct ! for history and
awtidr_out, & ! near IR, direct ! diagnostics
awtvdf_out, & ! visible, diffuse
awtidf_out ! near IR, diffuse

character (len=*), intent(out), optional :: &
shortwave_out, & ! shortwave method, 'ccsm3' or 'dEdd' or 'dEdd_snicar_ad'
albedo_type_out ! albedo parameterization, 'ccsm3' or 'constant'

! shortwave='dEdd' overrides this parameter

! baseline albedos for ccsm3 shortwave, set in namelist
real (kind=dbl_kind), intent(out), optional :: &

albicev_out , & ! visible ice albedo for h > ahmax
albicei_out , & ! near-ir ice albedo for h > ahmax
albsnowv_out , & ! cold snow albedo, visible
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albsnowi_out , & ! cold snow albedo, near IR
ahmax_out ! thickness above which ice albedo is constant (m)

! dEdd tuning parameters, set in namelist
real (kind=dbl_kind), intent(out), optional :: &

R_ice_out , & ! sea ice tuning parameter; +1 > 1sig increase in albedo
R_pnd_out , & ! ponded ice tuning parameter; +1 > 1sig increase in albedo
R_snw_out , & ! snow tuning parameter; +1 > ~.01 change in broadband albedo
dT_mlt_out , & ! change in temp for non-melt to melt snow grain

! radius change (C)
rsnw_mlt_out , & ! maximum melting snow grain radius (10^-6 m)
kalg_out ! algae absorption coefficient for 0.5 m thick layer

logical (kind=log_kind), intent(out), optional :: &
sw_redist_out ! redistribute shortwave

real (kind=dbl_kind), intent(out), optional :: &
sw_frac_out , & ! Fraction of internal shortwave moved to surface
sw_dtemp_out ! temperature difference from melting

!-----------------------------------------------------------------------
! Parameters for dynamics
!-----------------------------------------------------------------------

real(kind=dbl_kind), intent(out), optional :: &
Cf_out, & ! ratio of ridging work to PE change in ridging
Pstar_out, & ! constant in Hibler strength formula
Cstar_out, & ! constant in Hibler strength formula
dragio_out, & ! ice-ocn drag coefficient
thickness_ocn_layer1_out, & ! thickness of first ocean level (m)
iceruf_ocn_out, & ! under-ice roughness (m)
gravit_out, & ! gravitational acceleration (m/s^2)
iceruf_out ! ice surface roughness (m)

integer (kind=int_kind), intent(out), optional :: & ! defined in namelist
kstrength_out , & ! 0 for simple Hibler (1979) formulation

! 1 for Rothrock (1975) pressure formulation
krdg_partic_out, & ! 0 for Thorndike et al. (1975) formulation

! 1 for exponential participation function
krdg_redist_out ! 0 for Hibler (1980) formulation

! 1 for exponential redistribution function

real (kind=dbl_kind), intent(out), optional :: &
mu_rdg_out ! gives e-folding scale of ridged ice (m^.5)

! (krdg_redist = 1)

logical (kind=log_kind), intent(out), optional :: &
calc_dragio_out ! if true, compute dragio from iceruf_ocn and thickness_ocn_

→˓layer1

!-----------------------------------------------------------------------
! Parameters for atmosphere
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!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(out), optional :: &
cp_air_out, & ! specific heat of air (J/kg/K)
cp_wv_out, & ! specific heat of water vapor (J/kg/K)
zvir_out, & ! rh2o/rair - 1.0
zref_out, & ! reference height for stability (m)
qqqice_out, & ! for qsat over ice
TTTice_out, & ! for qsat over ice
qqqocn_out, & ! for qsat over ocn
TTTocn_out ! for qsat over ocn

character (len=*), intent(out), optional :: &
atmbndy_out ! atmo boundary method, 'similarity', 'constant' or 'mixed'

logical (kind=log_kind), intent(out), optional :: &
calc_strair_out, & ! if true, calculate wind stress components
formdrag_out, & ! if true, calculate form drag
highfreq_out ! if true, use high frequency coupling

integer (kind=int_kind), intent(out), optional :: &
natmiter_out ! number of iterations for boundary layer calculations

! Flux convergence tolerance
real (kind=dbl_kind), intent(out), optional :: atmiter_conv_out

!-----------------------------------------------------------------------
! Parameters for the ice thickness distribution
!-----------------------------------------------------------------------

integer (kind=int_kind), intent(out), optional :: &
kitd_out , & ! type of itd conversions

! 0 = delta function
! 1 = linear remap

kcatbound_out ! 0 = old category boundary formula
! 1 = new formula giving round numbers
! 2 = WMO standard
! 3 = asymptotic formula

!-----------------------------------------------------------------------
! Parameters for the floe size distribution
!-----------------------------------------------------------------------

integer (kind=int_kind), intent(out), optional :: &
nfreq_out ! number of frequencies

real (kind=dbl_kind), intent(out), optional :: &
floeshape_out ! constant from Steele (unitless)

logical (kind=log_kind), intent(out), optional :: &
wave_spec_out ! if true, use wave forcing
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character (len=*), intent(out), optional :: &
wave_spec_type_out ! type of wave spectrum forcing

!-----------------------------------------------------------------------
! Parameters for biogeochemistry
!-----------------------------------------------------------------------

character (len=*), intent(out), optional :: &
bgc_flux_type_out ! type of ocean-ice piston velocity

! 'constant', 'Jin2006'

logical (kind=log_kind), intent(out), optional :: &
z_tracers_out, & ! if .true., bgc or aerosol tracers are vertically␣

→˓resolved
scale_bgc_out, & ! if .true., initialize bgc tracers proportionally with␣

→˓salinity
solve_zbgc_out, & ! if .true., solve vertical biochemistry portion of code
dEdd_algae_out, & ! if .true., algal absorptionof Shortwave is computed in␣

→˓the
modal_aero_out, & ! if .true., use modal aerosol formulation in shortwave
conserv_check_out ! if .true., run conservation checks and abort if checks␣

→˓fail

logical (kind=log_kind), intent(out), optional :: &
skl_bgc_out, & ! if true, solve skeletal biochemistry
solve_zsal_out ! if true, update salinity profile from solve_S_dt

real (kind=dbl_kind), intent(out), optional :: &
grid_o_out , & ! for bottom flux
l_sk_out , & ! characteristic diffusive scale (zsalinity) (m)
initbio_frac_out, & ! fraction of ocean tracer concentration used to initialize␣

→˓tracer
phi_snow_out ! snow porosity at the ice/snow interface

real (kind=dbl_kind), intent(out), optional :: &
grid_oS_out , & ! for bottom flux (zsalinity)
l_skS_out ! 0.02 characteristic skeletal layer thickness (m)␣

→˓(zsalinity)
real (kind=dbl_kind), intent(out), optional :: &

fr_resp_out , & ! fraction of algal growth lost due to respiration
algal_vel_out , & ! 0.5 cm/d(m/s) Lavoie 2005 1.5 cm/day
R_dFe2dust_out , & ! g/g (3.5% content) Tagliabue 2009
dustFe_sol_out , & ! solubility fraction
T_max_out , & ! maximum temperature (C)
fsal_out , & ! Salinity limitation (ppt)
op_dep_min_out , & ! Light attenuates for optical depths exceeding min
fr_graze_s_out , & ! fraction of grazing spilled or slopped
fr_graze_e_out , & ! fraction of assimilation excreted
fr_mort2min_out , & ! fractionation of mortality to Am
fr_dFe_out , & ! fraction of remineralized nitrogen

! (in units of algal iron)
k_nitrif_out , & ! nitrification rate (1/day)
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t_iron_conv_out , & ! desorption loss pFe to dFe (day)
max_loss_out , & ! restrict uptake to % of remaining value
max_dfe_doc1_out , & ! max ratio of dFe to saccharides in the ice

! (nM Fe/muM C)
fr_resp_s_out , & ! DMSPd fraction of respiration loss as DMSPd
y_sk_DMS_out , & ! fraction conversion given high yield
t_sk_conv_out , & ! Stefels conversion time (d)
t_sk_ox_out , & ! DMS oxidation time (d)
frazil_scav_out ! scavenging fraction or multiple in frazil ice

real (kind=dbl_kind), intent(out), optional :: &
sk_l_out, & ! skeletal layer thickness (m)
min_bgc_out ! fraction of ocean bgc concentration in surface melt

!-----------------------------------------------------------------------
! Parameters for melt ponds
!-----------------------------------------------------------------------

real (kind=dbl_kind), intent(out), optional :: &
hs0_out ! snow depth for transition to bare sea ice (m)

! level-ice ponds
character (len=*), intent(out), optional :: &

frzpnd_out ! pond refreezing parameterization

real (kind=dbl_kind), intent(out), optional :: &
dpscale_out, & ! alter e-folding time scale for flushing
rfracmin_out, & ! minimum retained fraction of meltwater
rfracmax_out, & ! maximum retained fraction of meltwater
pndaspect_out, & ! ratio of pond depth to pond fraction
hs1_out ! tapering parameter for snow on pond ice

! topo ponds
real (kind=dbl_kind), intent(out), optional :: &

hp1_out ! critical parameter for pond ice thickness

!-----------------------------------------------------------------------
! Parameters for snow redistribution, metamorphosis
!-----------------------------------------------------------------------

character (len=*), intent(out), optional :: &
snwredist_out, & ! type of snow redistribution
snw_aging_table_out ! snow aging lookup table

logical (kind=log_kind), intent(out), optional :: &
use_smliq_pnd_out, &! use liquid in snow for ponds
snwgrain_out ! snow metamorphosis

real (kind=dbl_kind), intent(out), optional :: &
rsnw_fall_out, & ! radius of new snow (10^-6 m)
rsnw_tmax_out, & ! maximum snow radius (10^-6 m)
rhosnew_out, & ! new snow density (kg/m^3)
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rhosmin_out, & ! minimum snow density (kg/m^3)
rhosmax_out, & ! maximum snow density (kg/m^3)
windmin_out, & ! minimum wind speed to compact snow (m/s)
drhosdwind_out, & ! wind compaction factor (kg s/m^4)
snwlvlfac_out ! fractional increase in snow depth

integer (kind=int_kind), intent(out), optional :: &
isnw_T_out, & ! maxiumum temperature index
isnw_Tgrd_out, & ! maxiumum temperature gradient index
isnw_rhos_out ! maxiumum snow density index

real (kind=dbl_kind), dimension(:), intent(out), optional :: &
snowage_rhos_out, & ! snowage dimension data
snowage_Tgrd_out, & !
snowage_T_out !

real (kind=dbl_kind), dimension(:,:,:), intent(out), optional :: &
snowage_tau_out, & ! (10^-6 m)
snowage_kappa_out, &!
snowage_drdt0_out ! (10^-6 m/hr)

character (len=char_len), intent(out), optional :: &
snw_ssp_table_out ! lookup table: 'snicar' or 'test'

icepack_write_parameters

! subroutine to write the column package internal parameters

subroutine icepack_write_parameters(iounit)

integer (kind=int_kind), intent(in) :: &
iounit ! unit number for output

icepack_recompute_constants

! subroutine to reinitialize some derived constants

subroutine icepack_recompute_constants()
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4.4.11 icepack_shortwave.F90

icepack_init_radiation

! Initialize data needed for shortwave radiation calculations
! This should be called after values are set via icepack_init_parameters

subroutine icepack_init_radiation()

icepack_prep_radiation

! Scales radiation fields computed on the previous time step.
!
! authors: Elizabeth Hunke, LANL

subroutine icepack_prep_radiation(aice, aicen, &
swvdr, swvdf, &
swidr, swidf, &
alvdr_ai, alvdf_ai, &
alidr_ai, alidf_ai, &
scale_factor, &
fswsfcn, fswintn, &
fswthrun, &
fswthrun_vdr, &
fswthrun_vdf, &
fswthrun_idr, &
fswthrun_idf, &
fswpenln, &
Sswabsn, Iswabsn)

real (kind=dbl_kind), intent(in) :: &
aice , & ! ice area fraction
swvdr , & ! sw down, visible, direct (W/m^2)
swvdf , & ! sw down, visible, diffuse (W/m^2)
swidr , & ! sw down, near IR, direct (W/m^2)
swidf , & ! sw down, near IR, diffuse (W/m^2)
! grid-box-mean albedos aggregated over categories (if calc_Tsfc)
alvdr_ai , & ! visible, direct (fraction)
alidr_ai , & ! near-ir, direct (fraction)
alvdf_ai , & ! visible, diffuse (fraction)
alidf_ai ! near-ir, diffuse (fraction)

real (kind=dbl_kind), dimension(:), intent(in) :: &
aicen ! ice area fraction in each category

real (kind=dbl_kind), intent(inout) :: &
scale_factor ! shortwave scaling factor, ratio new:old

real (kind=dbl_kind), dimension(:), intent(inout) :: &
fswsfcn , & ! SW absorbed at ice/snow surface (W m-2)
fswintn , & ! SW absorbed in ice interior, below surface (W m-2)
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fswthrun ! SW through ice to ocean (W/m^2)

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
fswthrun_vdr , & ! vis dir SW through ice to ocean (W/m^2)
fswthrun_vdf , & ! vis dif SW through ice to ocean (W/m^2)
fswthrun_idr , & ! nir dir SW through ice to ocean (W/m^2)
fswthrun_idf ! nir dif SW through ice to ocean (W/m^2)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
fswpenln , & ! visible SW entering ice layers (W m-2)
Iswabsn , & ! SW radiation absorbed in ice layers (W m-2)
Sswabsn ! SW radiation absorbed in snow layers (W m-2)

icepack_step_radiation

! Computes radiation fields
!
! authors: William H. Lipscomb, LANL
! David Bailey, NCAR
! Elizabeth C. Hunke, LANL

subroutine icepack_step_radiation (dt, &
swgrid, igrid, &
fbri, &
aicen, vicen, &
vsnon, Tsfcn, &
alvln, apndn, &
hpndn, ipndn, &
aeron, &
bgcNn, zaeron, &
trcrn_bgcsw, &
TLAT, TLON, &
calendar_type, &
days_per_year, &
nextsw_cday, &
yday, sec, &
swvdr, swvdf, &
swidr, swidf, &
coszen, fsnow, &
alvdrn, alvdfn, &
alidrn, alidfn, &
fswsfcn, fswintn, &
fswthrun, &
fswthrun_vdr, &
fswthrun_vdf, &
fswthrun_idr, &
fswthrun_idf, &
fswpenln, &
Sswabsn, Iswabsn, &
albicen, albsnon, &
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albpndn, apeffn, &
snowfracn, &
dhsn, ffracn, &
rsnow, &
l_print_point, &
initonly)

real (kind=dbl_kind), intent(in) :: &
dt , & ! time step (s)
swvdr , & ! sw down, visible, direct (W/m^2)
swvdf , & ! sw down, visible, diffuse (W/m^2)
swidr , & ! sw down, near IR, direct (W/m^2)
swidf , & ! sw down, near IR, diffuse (W/m^2)
fsnow , & ! snowfall rate (kg/m^2 s)
TLAT, TLON ! latitude and longitude (radian)

integer (kind=int_kind), intent(in) :: &
sec ! elapsed seconds into date

real (kind=dbl_kind), intent(in) :: &
yday ! day of the year

character (len=char_len), intent(in), optional :: &
calendar_type ! differentiates Gregorian from other calendars

integer (kind=int_kind), intent(in), optional :: &
days_per_year ! number of days in one year

real (kind=dbl_kind), intent(in), optional :: &
nextsw_cday ! julian day of next shortwave calculation

real (kind=dbl_kind), intent(inout) :: &
coszen ! cosine solar zenith angle, < 0 for sun below horizon

real (kind=dbl_kind), dimension (:), intent(in) :: &
igrid ! biology vertical interface points

real (kind=dbl_kind), dimension (:), intent(in) :: &
swgrid ! grid for ice tracers used in dEdd scheme

real (kind=dbl_kind), dimension(:), intent(in) :: &
aicen , & ! ice area fraction in each category
vicen , & ! ice volume in each category (m)
vsnon , & ! snow volume in each category (m)
Tsfcn , & ! surface temperature (deg C)
alvln , & ! level-ice area fraction
apndn , & ! pond area fraction
hpndn , & ! pond depth (m)
ipndn , & ! pond refrozen lid thickness (m)
fbri ! brine fraction

real(kind=dbl_kind), dimension(:,:), intent(in) :: &
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aeron , & ! aerosols (kg/m^3)
bgcNn , & ! bgc Nit tracers
zaeron ! bgcz aero tracers

real(kind=dbl_kind), dimension(:,:), intent(inout) :: &
trcrn_bgcsw ! zaerosols (kg/m^3) and chla (mg/m^3)

real (kind=dbl_kind), dimension(:), intent(inout) :: &
alvdrn , & ! visible, direct albedo (fraction)
alidrn , & ! near-ir, direct (fraction)
alvdfn , & ! visible, diffuse (fraction)
alidfn , & ! near-ir, diffuse (fraction)
fswsfcn , & ! SW absorbed at ice/snow surface (W m-2)
fswintn , & ! SW absorbed in ice interior, below surface (W m-2)
fswthrun , & ! SW through ice to ocean (W/m^2)
snowfracn , & ! snow fraction on each category
dhsn , & ! depth difference for snow on sea ice and pond ice
ffracn , & ! fraction of fsurfn used to melt ipond

! albedo components for history
albicen , & ! bare ice
albsnon , & ! snow
albpndn , & ! pond
apeffn ! effective pond area used for radiation calculation

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
fswthrun_vdr , & ! vis dir SW through ice to ocean (W/m^2)
fswthrun_vdf , & ! vis dif SW through ice to ocean (W/m^2)
fswthrun_idr , & ! nir dir SW through ice to ocean (W/m^2)
fswthrun_idf ! nir dif SW through ice to ocean (W/m^2)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
fswpenln , & ! visible SW entering ice layers (W m-2)
Iswabsn , & ! SW radiation absorbed in ice layers (W m-2)
Sswabsn ! SW radiation absorbed in snow layers (W m-2)

logical (kind=log_kind), intent(in) :: &
l_print_point ! flag for printing diagnostics

real (kind=dbl_kind), dimension(:,:), intent(inout), optional :: &
rsnow ! snow grain radius tracer (10^-6 m)

logical (kind=log_kind), optional :: &
initonly ! flag to indicate init only, default is false
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4.4.12 icepack_snow.F90

icepack_init_snow

! Updates snow tracers
!
! authors: Elizabeth C. Hunke, LANL
! Nicole Jeffery, LANL

subroutine icepack_init_snow

icepack_step_snow

! Updates snow tracers
!
! authors: Elizabeth C. Hunke, LANL
! Nicole Jeffery, LANL

subroutine icepack_step_snow(dt, nilyr, &
nslyr, ncat, &
wind, aice, &
aicen, vicen, &
vsnon, Tsfc, &
zqin1, zSin1, &
zqsn, &
alvl, vlvl, &
smice, smliq, &
rsnw, rhos_cmpn, &
fresh, fhocn, &
fsloss, fsnow)

integer (kind=int_kind), intent(in) :: &
nslyr, & ! number of snow layers
nilyr, & ! number of ice layers
ncat ! number of thickness categories

real (kind=dbl_kind), intent(in) :: &
dt , & ! time step
wind , & ! wind speed (m/s)
fsnow , & ! snowfall rate (kg m-2 s-1)
aice ! ice area fraction

real (kind=dbl_kind), dimension(:), intent(in) :: &
aicen, & ! ice area fraction
vicen, & ! ice volume (m)
Tsfc , & ! surface temperature (C)
zqin1, & ! ice upper layer enthalpy
zSin1, & ! ice upper layer salinity
alvl, & ! level ice area tracer
vlvl ! level ice volume tracer
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real (kind=dbl_kind), intent(inout) :: &
fresh , & ! fresh water flux to ocean (kg/m^2/s)
fhocn , & ! net heat flux to ocean (W/m^2)
fsloss ! rate of snow loss to leads (kg/m^2/s)

real (kind=dbl_kind), dimension(:), intent(inout) :: &
vsnon ! snow volume (m)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
zqsn , & ! snow enthalpy (J/m^3)
smice , & ! tracer for mass of ice in snow (kg/m^3)
smliq , & ! tracer for mass of liquid in snow (kg/m^3)
rsnw , & ! snow grain radius (10^-6 m)
rhos_cmpn ! effective snow density: compaction (kg/m^3)

4.4.13 icepack_therm_itd.F90

icepack_step_therm2

! Driver for thermodynamic changes not needed for coupling:
! transport in thickness space, lateral growth and melting.
!
! authors: William H. Lipscomb, LANL
! Elizabeth C. Hunke, LANL

subroutine icepack_step_therm2 (dt, ncat, nltrcr, &
nilyr, nslyr, &
hin_max, nblyr, &
aicen, &
vicen, vsnon, &
aicen_init, vicen_init, &
trcrn, &
aice0, aice, &
trcr_depend, &
trcr_base, n_trcr_strata, &
nt_strata, &
Tf, sss, &
salinz, &
rside, meltl, &
fside, wlat, &
frzmlt, frazil, &
frain, fpond, &
fresh, fsalt, &
fhocn, update_ocn_f, &
bgrid, cgrid, &
igrid, faero_ocn, &
first_ice, fzsal, &
flux_bio, ocean_bio, &
frazil_diag, &
frz_onset, yday, &
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fiso_ocn, HDO_ocn, &
H2_16O_ocn, H2_18O_ocn, &
nfsd, wave_sig_ht, &
wave_spectrum, &
wavefreq, &
dwavefreq, &
d_afsd_latg, d_afsd_newi, &
d_afsd_latm, d_afsd_weld, &
floe_rad_c, floe_binwidth)

use icepack_parameters, only: icepack_init_parameters

integer (kind=int_kind), intent(in) :: &
ncat , & ! number of thickness categories
nltrcr , & ! number of zbgc tracers
nblyr , & ! number of bio layers
nilyr , & ! number of ice layers
nslyr ! number of snow layers

integer (kind=int_kind), intent(in), optional :: &
nfsd ! number of floe size categories

logical (kind=log_kind), intent(in), optional :: &
update_ocn_f ! if true, update fresh water and salt fluxes

real (kind=dbl_kind), dimension(0:ncat), intent(in) :: &
hin_max ! category boundaries (m)

real (kind=dbl_kind), intent(in) :: &
dt , & ! time step
Tf , & ! freezing temperature (C)
sss , & ! sea surface salinity (ppt)
rside , & ! fraction of ice that melts laterally
frzmlt ! freezing/melting potential (W/m^2)

integer (kind=int_kind), dimension (:), intent(in) :: &
trcr_depend, & ! = 0 for aicen tracers, 1 for vicen, 2 for vsnon
n_trcr_strata ! number of underlying tracer layers

real (kind=dbl_kind), dimension (:,:), intent(in) :: &
trcr_base ! = 0 or 1 depending on tracer dependency

! argument 2: (1) aice, (2) vice, (3) vsno

integer (kind=int_kind), dimension (:,:), intent(in) :: &
nt_strata ! indices of underlying tracer layers

real (kind=dbl_kind), dimension (nblyr+2), intent(in) :: &
bgrid ! biology nondimensional vertical grid points

real (kind=dbl_kind), dimension (nblyr+1), intent(in) :: &
igrid ! biology vertical interface points
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real (kind=dbl_kind), dimension (nilyr+1), intent(in) :: &
cgrid ! CICE vertical coordinate

real (kind=dbl_kind), dimension(:), intent(in) :: &
salinz , & ! initial salinity profile
ocean_bio ! ocean concentration of biological tracer

real (kind=dbl_kind), intent(inout) :: &
aice , & ! sea ice concentration
aice0 , & ! concentration of open water
fside , & ! lateral heat flux (W/m^2)
frain , & ! rainfall rate (kg/m^2 s)
fpond , & ! fresh water flux to ponds (kg/m^2/s)
fresh , & ! fresh water flux to ocean (kg/m^2/s)
fsalt , & ! salt flux to ocean (kg/m^2/s)
fhocn , & ! net heat flux to ocean (W/m^2)
meltl , & ! lateral ice melt (m/step-->cm/day)
frazil , & ! frazil ice growth (m/step-->cm/day)
frazil_diag ! frazil ice growth diagnostic (m/step-->cm/day)

real (kind=dbl_kind), intent(inout), optional :: &
fzsal ! salt flux to ocean from zsalinity (kg/m^2/s) (deprecated)

real (kind=dbl_kind), intent(in), optional :: &
wlat ! lateral melt rate (m/s)

real (kind=dbl_kind), dimension(:), intent(inout) :: &
aicen_init,& ! initial concentration of ice
vicen_init,& ! initial volume per unit area of ice (m)
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon , & ! volume per unit area of snow (m)
faero_ocn, & ! aerosol flux to ocean (kg/m^2/s)
flux_bio ! all bio fluxes to ocean

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
trcrn ! tracers

logical (kind=log_kind), dimension(:), intent(inout) :: &
first_ice ! true until ice forms

real (kind=dbl_kind), intent(inout), optional :: &
frz_onset ! day of year that freezing begins (congel or frazil)

real (kind=dbl_kind), intent(in), optional :: &
yday ! day of year

! water isotopes
real (kind=dbl_kind), dimension(:), intent(inout), optional :: &

fiso_ocn ! isotope flux to ocean (kg/m^2/s)

real (kind=dbl_kind), intent(in), optional :: &
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HDO_ocn , & ! ocean concentration of HDO (kg/kg)
H2_16O_ocn , & ! ocean concentration of H2_16O (kg/kg)
H2_18O_ocn ! ocean concentration of H2_18O (kg/kg)

real (kind=dbl_kind), intent(in), optional :: &
wave_sig_ht ! significant height of waves in ice (m)

real (kind=dbl_kind), dimension(:), intent(in), optional :: &
wave_spectrum ! ocean surface wave spectrum E(f) (m^2 s)

real(kind=dbl_kind), dimension(:), intent(in), optional :: &
wavefreq, & ! wave frequencies (s^-1)
dwavefreq ! wave frequency bin widths (s^-1)

real (kind=dbl_kind), dimension(:), intent(out), optional :: &
! change in floe size distribution (area)

d_afsd_latg, & ! due to fsd lateral growth
d_afsd_newi, & ! new ice formation
d_afsd_latm, & ! lateral melt
d_afsd_weld ! welding

real (kind=dbl_kind), dimension (:), intent(in), optional :: &
floe_rad_c, & ! fsd size bin centre in m (radius)
floe_binwidth ! fsd size bin width in m (radius)

4.4.14 icepack_therm_shared.F90

icepack_init_thermo

! Initialize the vertical profile of ice salinity and melting temperature.
!
! authors: C. M. Bitz, UW
! William H. Lipscomb, LANL

subroutine icepack_init_thermo(nilyr, sprofile)

integer (kind=int_kind), intent(in) :: &
nilyr ! number of ice layers

real (kind=dbl_kind), dimension(:), intent(out) :: &
sprofile ! vertical salinity profile
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icepack_salinity_profile

! Initial salinity profile
!
! authors: C. M. Bitz, UW
! William H. Lipscomb, LANL

function icepack_salinity_profile(zn) result(salinity)

real(kind=dbl_kind), intent(in) :: &
zn ! depth

real(kind=dbl_kind) :: &
salinity ! initial salinity profile

icepack_init_trcr

!
subroutine icepack_init_trcr(Tair, Tf, &

Sprofile, Tprofile, &
Tsfc, &
nilyr, nslyr, &
qin, qsn)

integer (kind=int_kind), intent(in) :: &
nilyr, & ! number of ice layers
nslyr ! number of snow layers

real (kind=dbl_kind), intent(in) :: &
Tair, & ! air temperature (K)
Tf ! freezing temperature (C)

real (kind=dbl_kind), dimension(:), intent(in) :: &
Sprofile, & ! vertical salinity profile (ppt)
Tprofile ! vertical temperature profile (C)

real (kind=dbl_kind), intent(out) :: &
Tsfc ! surface temperature (C)

real (kind=dbl_kind), dimension(:), intent(out) :: &
qin, & ! ice enthalpy profile (J/m3)
qsn ! snow enthalpy profile (J/m3)
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icepack_liquidus_temperature

! compute liquidus temperature

function icepack_liquidus_temperature(Sin) result(Tmlt)

real(dbl_kind), intent(in) :: Sin
real(dbl_kind) :: Tmlt

icepack_sea_freezing_temperature

! compute ocean freezing temperature

function icepack_sea_freezing_temperature(sss) result(Tf)

real(dbl_kind), intent(in) :: sss
real(dbl_kind) :: Tf

icepack_ice_temperature

! compute ice temperature

function icepack_ice_temperature(qin, Sin) result(Tin)

real(kind=dbl_kind), intent(in) :: qin, Sin
real(kind=dbl_kind) :: Tin

icepack_snow_temperature

! compute snow temperature

function icepack_snow_temperature(qin) result(Tsn)

real(kind=dbl_kind), intent(in) :: qin
real(kind=dbl_kind) :: Tsn

4.4.15 icepack_therm_vertical.F90

icepack_step_therm1

! Driver for thermodynamic changes not needed for coupling:
! transport in thickness space, lateral growth and melting.
!
! authors: William H. Lipscomb, LANL
! Elizabeth C. Hunke, LANL
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subroutine icepack_step_therm1(dt, ncat, nilyr, nslyr, &
aicen_init , &
vicen_init , vsnon_init , &
aice , aicen , &
vice , vicen , &
vsno , vsnon , &
uvel , vvel , &
Tsfc , zqsn , &
zqin , zSin , &
alvl , vlvl , &
apnd , hpnd , &
ipnd , &
iage , FY , &
aerosno , aeroice , &
isosno , isoice , &
uatm , vatm , &
wind , zlvl , &
Qa , rhoa , &
Qa_iso , &
Tair , Tref , &
Qref , Uref , &
Qref_iso , &
Cdn_atm_ratio, &
Cdn_ocn , Cdn_ocn_skin, &
Cdn_ocn_floe, Cdn_ocn_keel, &
Cdn_atm , Cdn_atm_skin, &
Cdn_atm_floe, Cdn_atm_pond, &
Cdn_atm_rdg , hfreebd , &
hdraft , hridge , &
distrdg , hkeel , &
dkeel , lfloe , &
dfloe , &
strax , stray , &
strairxT , strairyT , &
potT , sst , &
sss , Tf , &
strocnxT , strocnyT , &
fbot , &
Tbot , Tsnice , &
frzmlt , rside , &
fside , wlat , &
fsnow , frain , &
fpond , fsloss , &
fsurf , fsurfn , &
fcondtop , fcondtopn , &
fcondbot , fcondbotn , &
fswsfcn , fswintn , &
fswthrun , &
fswthrun_vdr, &
fswthrun_vdf, &
fswthrun_idr, &
fswthrun_idf, &
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fswabs , &
flwout , &
Sswabsn , Iswabsn , &
flw , &
fsens , fsensn , &
flat , flatn , &
evap , &
evaps , evapi , &
fresh , fsalt , &
fhocn , &
fswthru , &
fswthru_vdr , &
fswthru_vdf , &
fswthru_idr , &
fswthru_idf , &
flatn_f , fsensn_f , &
fsurfn_f , fcondtopn_f , &
faero_atm , faero_ocn , &
fiso_atm , fiso_ocn , &
fiso_evap , &
HDO_ocn , H2_16O_ocn , &
H2_18O_ocn , &
dhsn , ffracn , &
meltt , melttn , &
meltb , meltbn , &
melts , meltsn , &
congel , congeln , &
snoice , snoicen , &
dsnow , dsnown , &
meltsliq , meltsliqn , &
rsnwn , &
smicen , smliqn , &
lmask_n , lmask_s , &
mlt_onset , frz_onset , &
yday , prescribed_ice, &
zlvs)

integer (kind=int_kind), intent(in) :: &
ncat , & ! number of thickness categories
nilyr , & ! number of ice layers
nslyr ! number of snow layers

real (kind=dbl_kind), intent(in) :: &
dt , & ! time step
uvel , & ! x-component of velocity (m/s)
vvel , & ! y-component of velocity (m/s)
strax , & ! wind stress components (N/m^2)
stray , & !
yday ! day of year

logical (kind=log_kind), intent(in) :: &
lmask_n , & ! northern hemisphere mask
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lmask_s ! southern hemisphere mask

logical (kind=log_kind), intent(in), optional :: &
prescribed_ice ! if .true., use prescribed ice instead of computed

real (kind=dbl_kind), intent(inout) :: &
aice , & ! sea ice concentration
vice , & ! volume per unit area of ice (m)
vsno , & ! volume per unit area of snow (m)
zlvl , & ! atm level height for momentum (and scalars if zlvs is not␣

→˓present) (m)
uatm , & ! wind velocity components (m/s)
vatm , & ! (m/s)
wind , & ! wind speed (m/s)
potT , & ! air potential temperature (K)
Tair , & ! air temperature (K)
Qa , & ! specific humidity (kg/kg)
rhoa , & ! air density (kg/m^3)
frain , & ! rainfall rate (kg/m^2 s)
fsnow , & ! snowfall rate (kg/m^2 s)
fpond , & ! fresh water flux to ponds (kg/m^2/s)
fresh , & ! fresh water flux to ocean (kg/m^2/s)
fsalt , & ! salt flux to ocean (kg/m^2/s)
fhocn , & ! net heat flux to ocean (W/m^2)
fswthru , & ! shortwave penetrating to ocean (W/m^2)
fsurf , & ! net surface heat flux (excluding fcondtop)(W/m^2)
fcondtop , & ! top surface conductive flux (W/m^2)
fcondbot , & ! bottom surface conductive flux (W/m^2)
fsens , & ! sensible heat flux (W/m^2)
flat , & ! latent heat flux (W/m^2)
fswabs , & ! shortwave flux absorbed in ice and ocean (W/m^2)
flw , & ! incoming longwave radiation (W/m^2)
flwout , & ! outgoing longwave radiation (W/m^2)
evap , & ! evaporative water flux (kg/m^2/s)
evaps , & ! evaporative water flux over snow(kg/m^2/s)
evapi , & ! evaporative water flux over ice (kg/m^2/s)
congel , & ! basal ice growth (m/step-->cm/day)
snoice , & ! snow-ice formation (m/step-->cm/day)
Tref , & ! 2m atm reference temperature (K)
Qref , & ! 2m atm reference spec humidity (kg/kg)
Uref , & ! 10m atm reference wind speed (m/s)
Cdn_atm , & ! atm drag coefficient
Cdn_ocn , & ! ocn drag coefficient
hfreebd , & ! freeboard (m)
hdraft , & ! draft of ice + snow column (Stoessel1993)
hridge , & ! ridge height
distrdg , & ! distance between ridges
hkeel , & ! keel depth
dkeel , & ! distance between keels
lfloe , & ! floe length
dfloe , & ! distance between floes
Cdn_atm_skin, & ! neutral skin drag coefficient
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Cdn_atm_floe, & ! neutral floe edge drag coefficient
Cdn_atm_pond, & ! neutral pond edge drag coefficient
Cdn_atm_rdg , & ! neutral ridge drag coefficient
Cdn_ocn_skin, & ! skin drag coefficient
Cdn_ocn_floe, & ! floe edge drag coefficient
Cdn_ocn_keel, & ! keel drag coefficient
Cdn_atm_ratio,& ! ratio drag atm / neutral drag atm
strairxT , & ! stress on ice by air, x-direction
strairyT , & ! stress on ice by air, y-direction
strocnxT , & ! ice-ocean stress, x-direction
strocnyT , & ! ice-ocean stress, y-direction
fbot , & ! ice-ocean heat flux at bottom surface (W/m^2)
frzmlt , & ! freezing/melting potential (W/m^2)
rside , & ! fraction of ice that melts laterally
fside , & ! lateral heat flux (W/m^2)
sst , & ! sea surface temperature (C)
Tf , & ! freezing temperature (C)
Tbot , & ! ice bottom surface temperature (deg C)
Tsnice , & ! snow ice interface temperature (deg C)
sss , & ! sea surface salinity (ppt)
meltt , & ! top ice melt (m/step-->cm/day)
melts , & ! snow melt (m/step-->cm/day)
meltb , & ! basal ice melt (m/step-->cm/day)
mlt_onset , & ! day of year that sfc melting begins
frz_onset ! day of year that freezing begins (congel or frazil)

real (kind=dbl_kind), intent(out), optional :: &
wlat ! lateral melt rate (m/s)

real (kind=dbl_kind), intent(inout), optional :: &
fswthru_vdr , & ! vis dir shortwave penetrating to ocean (W/m^2)
fswthru_vdf , & ! vis dif shortwave penetrating to ocean (W/m^2)
fswthru_idr , & ! nir dir shortwave penetrating to ocean (W/m^2)
fswthru_idf , & ! nir dif shortwave penetrating to ocean (W/m^2)
dsnow , & ! change in snow depth (m/step-->cm/day)
fsloss ! rate of snow loss to leads (kg/m^2/s)

real (kind=dbl_kind), intent(out), optional :: &
meltsliq ! mass of snow melt (kg/m^2)

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
Qa_iso , & ! isotope specific humidity (kg/kg)
Qref_iso , & ! isotope 2m atm ref spec humidity (kg/kg)
fiso_atm , & ! isotope deposition rate (kg/m^2 s)
fiso_ocn , & ! isotope flux to ocean (kg/m^2/s)
fiso_evap ! isotope evaporation (kg/m^2/s)

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
meltsliqn ! mass of snow melt (kg/m^2)

real (kind=dbl_kind), dimension(:,:), intent(inout), optional :: &
rsnwn , & ! snow grain radius (10^-6 m)
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smicen , & ! tracer for mass of ice in snow (kg/m^3)
smliqn ! tracer for mass of liq in snow (kg/m^3)

real (kind=dbl_kind), intent(in), optional :: &
HDO_ocn , & ! ocean concentration of HDO (kg/kg)
H2_16O_ocn , & ! ocean concentration of H2_16O (kg/kg)
H2_18O_ocn , & ! ocean concentration of H2_18O (kg/kg)
zlvs ! atm level height for scalars (if different than zlvl) (m)

real (kind=dbl_kind), dimension(:), intent(inout) :: &
aicen_init , & ! fractional area of ice
vicen_init , & ! volume per unit area of ice (m)
vsnon_init , & ! volume per unit area of snow (m)
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon , & ! volume per unit area of snow (m)
Tsfc , & ! ice/snow surface temperature, Tsfcn
alvl , & ! level ice area fraction
vlvl , & ! level ice volume fraction
apnd , & ! melt pond area fraction
hpnd , & ! melt pond depth (m)
ipnd , & ! melt pond refrozen lid thickness (m)
iage , & ! volume-weighted ice age
FY , & ! area-weighted first-year ice area
fsurfn , & ! net flux to top surface, excluding fcondtop
fcondtopn , & ! downward cond flux at top surface (W m-2)
fcondbotn , & ! downward cond flux at bottom surface (W m-2)
flatn , & ! latent heat flux (W m-2)
fsensn , & ! sensible heat flux (W m-2)
fsurfn_f , & ! net flux to top surface, excluding fcondtop
fcondtopn_f , & ! downward cond flux at top surface (W m-2)
flatn_f , & ! latent heat flux (W m-2)
fsensn_f , & ! sensible heat flux (W m-2)
fswsfcn , & ! SW absorbed at ice/snow surface (W m-2)
fswintn , & ! SW absorbed in ice interior, below surface (W m-2)
faero_atm , & ! aerosol deposition rate (kg/m^2 s)
faero_ocn , & ! aerosol flux to ocean (kg/m^2/s)
dhsn , & ! depth difference for snow on sea ice and pond ice
ffracn , & ! fraction of fsurfn used to melt ipond
meltsn , & ! snow melt (m)
melttn , & ! top ice melt (m)
meltbn , & ! bottom ice melt (m)
congeln , & ! congelation ice growth (m)
snoicen , & ! snow-ice growth (m)
dsnown ! change in snow thickness (m/step-->cm/day)

real (kind=dbl_kind), dimension(:), intent(in) :: &
fswthrun ! SW through ice to ocean (W/m^2)

real (kind=dbl_kind), dimension(:), intent(in), optional :: &
fswthrun_vdr , & ! vis dir SW through ice to ocean (W/m^2)
fswthrun_vdf , & ! vis dif SW through ice to ocean (W/m^2)
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fswthrun_idr , & ! nir dir SW through ice to ocean (W/m^2)
fswthrun_idf ! nir dif SW through ice to ocean (W/m^2)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
zqsn , & ! snow layer enthalpy (J m-3)
zqin , & ! ice layer enthalpy (J m-3)
zSin , & ! internal ice layer salinities
Sswabsn , & ! SW radiation absorbed in snow layers (W m-2)
Iswabsn ! SW radiation absorbed in ice layers (W m-2)

real (kind=dbl_kind), dimension(:,:,:), intent(inout) :: &
aerosno , & ! snow aerosol tracer (kg/m^2)
aeroice ! ice aerosol tracer (kg/m^2)

real (kind=dbl_kind), dimension(:,:), intent(inout), optional :: &
isosno , & ! snow isotope tracer (kg/m^2)
isoice ! ice isotope tracer (kg/m^2)

4.4.16 icepack_tracers.F90

icepack_init_tracer_flags

! set tracer active flags

subroutine icepack_init_tracer_flags(&
tr_iage_in, tr_FY_in, tr_lvl_in, tr_snow_in, &
tr_pond_in, tr_pond_lvl_in, tr_pond_topo_in, &
tr_fsd_in, tr_aero_in, tr_iso_in, tr_brine_in, tr_zaero_in, &
tr_bgc_Nit_in, tr_bgc_N_in, tr_bgc_DON_in, tr_bgc_C_in, tr_bgc_chl_in, &
tr_bgc_Am_in, tr_bgc_Sil_in, tr_bgc_DMS_in, tr_bgc_Fe_in, tr_bgc_hum_in, &
tr_bgc_PON_in)

logical, intent(in), optional :: &
tr_iage_in , & ! if .true., use age tracer
tr_FY_in , & ! if .true., use first-year area tracer
tr_lvl_in , & ! if .true., use level ice tracer
tr_pond_in , & ! if .true., use melt pond tracer
tr_pond_lvl_in , & ! if .true., use level-ice pond tracer
tr_pond_topo_in , & ! if .true., use explicit topography-based ponds
tr_snow_in , & ! if .true., use snow redistribution or metamorphosis␣

→˓tracers
tr_fsd_in , & ! if .true., use floe size distribution tracers
tr_iso_in , & ! if .true., use isotope tracers
tr_aero_in , & ! if .true., use aerosol tracers
tr_brine_in , & ! if .true., brine height differs from ice thickness
tr_zaero_in , & ! if .true., black carbon is tracers (n_zaero)
tr_bgc_Nit_in , & ! if .true., Nitrate tracer in ice
tr_bgc_N_in , & ! if .true., algal nitrogen tracers (n_algae)
tr_bgc_DON_in , & ! if .true., DON pools are tracers (n_don)
tr_bgc_C_in , & ! if .true., algal carbon tracers + DOC and DIC
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tr_bgc_chl_in , & ! if .true., algal chlorophyll tracers
tr_bgc_Am_in , & ! if .true., ammonia/um as nutrient tracer
tr_bgc_Sil_in , & ! if .true., silicon as nutrient tracer
tr_bgc_DMS_in , & ! if .true., DMS as product tracer
tr_bgc_Fe_in , & ! if .true., Fe as product tracer
tr_bgc_hum_in , & ! if .true., hum as product tracer
tr_bgc_PON_in ! if .true., PON as product tracer

icepack_query_tracer_flags

! query tracer active flags

subroutine icepack_query_tracer_flags(&
tr_iage_out, tr_FY_out, tr_lvl_out, tr_snow_out, &
tr_pond_out, tr_pond_lvl_out, tr_pond_topo_out, &
tr_fsd_out, tr_aero_out, tr_iso_out, tr_brine_out, tr_zaero_out, &
tr_bgc_Nit_out, tr_bgc_N_out, tr_bgc_DON_out, tr_bgc_C_out, tr_bgc_chl_out, &
tr_bgc_Am_out, tr_bgc_Sil_out, tr_bgc_DMS_out, tr_bgc_Fe_out, tr_bgc_hum_out,␣

→˓&
tr_bgc_PON_out)

logical, intent(out), optional :: &
tr_iage_out , & ! if .true., use age tracer
tr_FY_out , & ! if .true., use first-year area tracer
tr_lvl_out , & ! if .true., use level ice tracer
tr_pond_out , & ! if .true., use melt pond tracer
tr_pond_lvl_out , & ! if .true., use level-ice pond tracer
tr_pond_topo_out , & ! if .true., use explicit topography-based ponds
tr_snow_out , & ! if .true., use snow redistribution or metamorphosis␣

→˓tracers
tr_fsd_out , & ! if .true., use floe size distribution
tr_iso_out , & ! if .true., use isotope tracers
tr_aero_out , & ! if .true., use aerosol tracers
tr_brine_out , & ! if .true., brine height differs from ice thickness
tr_zaero_out , & ! if .true., black carbon is tracers (n_zaero)
tr_bgc_Nit_out , & ! if .true., Nitrate tracer in ice
tr_bgc_N_out , & ! if .true., algal nitrogen tracers (n_algae)
tr_bgc_DON_out , & ! if .true., DON pools are tracers (n_don)
tr_bgc_C_out , & ! if .true., algal carbon tracers + DOC and DIC
tr_bgc_chl_out , & ! if .true., algal chlorophyll tracers
tr_bgc_Am_out , & ! if .true., ammonia/um as nutrient tracer
tr_bgc_Sil_out , & ! if .true., silicon as nutrient tracer
tr_bgc_DMS_out , & ! if .true., DMS as product tracer
tr_bgc_Fe_out , & ! if .true., Fe as product tracer
tr_bgc_hum_out , & ! if .true., hum as product tracer
tr_bgc_PON_out ! if .true., PON as product tracer
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icepack_write_tracer_flags

! write tracer active flags

subroutine icepack_write_tracer_flags(iounit)

integer, intent(in) :: iounit

icepack_init_tracer_indices

! set the number of column tracer indices

subroutine icepack_init_tracer_indices(&
nt_Tsfc_in, nt_qice_in, nt_qsno_in, nt_sice_in, &
nt_fbri_in, nt_iage_in, nt_FY_in, &
nt_alvl_in, nt_vlvl_in, nt_apnd_in, nt_hpnd_in, nt_ipnd_in, &
nt_smice_in, nt_smliq_in, nt_rhos_in, nt_rsnw_in, &
nt_fsd_in, nt_isosno_in, nt_isoice_in, &
nt_aero_in, nt_zaero_in, nt_bgc_C_in, &
nt_bgc_N_in, nt_bgc_chl_in, nt_bgc_DOC_in, nt_bgc_DON_in, &
nt_bgc_DIC_in, nt_bgc_Fed_in, nt_bgc_Fep_in, nt_bgc_Nit_in, nt_bgc_Am_in, &
nt_bgc_Sil_in, nt_bgc_DMSPp_in, nt_bgc_DMSPd_in, nt_bgc_DMS_in, nt_bgc_hum_in,

→˓ &
nt_bgc_PON_in, nlt_zaero_in, nlt_bgc_C_in, nlt_bgc_N_in, nlt_bgc_chl_in, &
nlt_bgc_DOC_in, nlt_bgc_DON_in, nlt_bgc_DIC_in, nlt_bgc_Fed_in, &
nlt_bgc_Fep_in, nlt_bgc_Nit_in, nlt_bgc_Am_in, nlt_bgc_Sil_in, &
nlt_bgc_DMSPp_in, nlt_bgc_DMSPd_in, nlt_bgc_DMS_in, nlt_bgc_hum_in, &
nlt_bgc_PON_in, nt_zbgc_frac_in, nt_bgc_S_in, nlt_chl_sw_in, &
nlt_zaero_sw_in, &
bio_index_o_in, bio_index_in)

integer, intent(in), optional :: &
nt_Tsfc_in, & ! ice/snow temperature
nt_qice_in, & ! volume-weighted ice enthalpy (in layers)
nt_qsno_in, & ! volume-weighted snow enthalpy (in layers)
nt_sice_in, & ! volume-weighted ice bulk salinity (CICE grid layers)
nt_fbri_in, & ! volume fraction of ice with dynamic salt (hinS/vicen*aicen)
nt_iage_in, & ! volume-weighted ice age
nt_FY_in, & ! area-weighted first-year ice area
nt_alvl_in, & ! level ice area fraction
nt_vlvl_in, & ! level ice volume fraction
nt_apnd_in, & ! melt pond area fraction
nt_hpnd_in, & ! melt pond depth
nt_ipnd_in, & ! melt pond refrozen lid thickness
nt_smice_in,& ! mass of ice in snow
nt_smliq_in,& ! mass of liquid water in snow
nt_rhos_in, & ! snow density
nt_rsnw_in, & ! snow grain radius
nt_fsd_in, & ! floe size distribution
nt_isosno_in, & ! starting index for isotopes in snow
nt_isoice_in, & ! starting index for isotopes in ice
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nt_aero_in, & ! starting index for aerosols in ice
nt_bgc_Nit_in, & ! nutrients
nt_bgc_Am_in, & !
nt_bgc_Sil_in, & !
nt_bgc_DMSPp_in,&! trace gases (skeletal layer)
nt_bgc_DMSPd_in,&!
nt_bgc_DMS_in, & !
nt_bgc_hum_in, & !
nt_bgc_PON_in, & ! zooplankton and detritus
nlt_bgc_Nit_in,& ! nutrients
nlt_bgc_Am_in, & !
nlt_bgc_Sil_in,& !
nlt_bgc_DMSPp_in,&! trace gases (skeletal layer)
nlt_bgc_DMSPd_in,&!
nlt_bgc_DMS_in,& !
nlt_bgc_hum_in,& !
nlt_bgc_PON_in,& ! zooplankton and detritus
nt_zbgc_frac_in,&! fraction of tracer in the mobile phase
nt_bgc_S_in, & ! (deprecated, was related to zsalinity)
nlt_chl_sw_in ! points to total chla in trcrn_sw

integer (kind=int_kind), dimension(:), intent(in), optional :: &
bio_index_o_in, &
bio_index_in

integer (kind=int_kind), dimension(:), intent(in), optional :: &
nt_bgc_N_in , & ! diatoms, phaeocystis, pico/small
nt_bgc_C_in , & ! diatoms, phaeocystis, pico/small
nt_bgc_chl_in, & ! diatoms, phaeocystis, pico/small
nlt_bgc_N_in , & ! diatoms, phaeocystis, pico/small
nlt_bgc_C_in , & ! diatoms, phaeocystis, pico/small
nlt_bgc_chl_in ! diatoms, phaeocystis, pico/small

integer (kind=int_kind), dimension(:), intent(in), optional :: &
nt_bgc_DOC_in, & ! dissolved organic carbon
nlt_bgc_DOC_in ! dissolved organic carbon

integer (kind=int_kind), dimension(:), intent(in), optional :: &
nt_bgc_DON_in, & ! dissolved organic nitrogen
nlt_bgc_DON_in ! dissolved organic nitrogen

integer (kind=int_kind), dimension(:), intent(in), optional :: &
nt_bgc_DIC_in, & ! dissolved inorganic carbon
nlt_bgc_DIC_in ! dissolved inorganic carbon

integer (kind=int_kind), dimension(:), intent(in), optional :: &
nt_bgc_Fed_in, & ! dissolved iron
nt_bgc_Fep_in, & ! particulate iron
nlt_bgc_Fed_in,& ! dissolved iron
nlt_bgc_Fep_in ! particulate iron

integer (kind=int_kind), dimension(:), intent(in), optional :: &
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nt_zaero_in, & ! black carbon and other aerosols
nlt_zaero_in, & ! black carbon and other aerosols
nlt_zaero_sw_in ! black carbon and dust in trcrn_sw

icepack_query_tracer_indices

! query the number of column tracer indices

subroutine icepack_query_tracer_indices(&
nt_Tsfc_out, nt_qice_out, nt_qsno_out, nt_sice_out, &
nt_fbri_out, nt_iage_out, nt_FY_out, &
nt_alvl_out, nt_vlvl_out, nt_apnd_out, nt_hpnd_out, nt_ipnd_out, &
nt_smice_out, nt_smliq_out, nt_rhos_out, nt_rsnw_out, &
nt_fsd_out, nt_isosno_out, nt_isoice_out, &
nt_aero_out, nt_zaero_out, nt_bgc_C_out, &
nt_bgc_N_out, nt_bgc_chl_out, nt_bgc_DOC_out, nt_bgc_DON_out, &
nt_bgc_DIC_out, nt_bgc_Fed_out, nt_bgc_Fep_out, nt_bgc_Nit_out, nt_bgc_Am_out,

→˓ &
nt_bgc_Sil_out, nt_bgc_DMSPp_out, nt_bgc_DMSPd_out, nt_bgc_DMS_out, nt_bgc_

→˓hum_out, &
nt_bgc_PON_out, nlt_zaero_out, nlt_bgc_C_out, nlt_bgc_N_out, nlt_bgc_chl_out,␣

→˓&
nlt_bgc_DOC_out, nlt_bgc_DON_out, nlt_bgc_DIC_out, nlt_bgc_Fed_out, &
nlt_bgc_Fep_out, nlt_bgc_Nit_out, nlt_bgc_Am_out, nlt_bgc_Sil_out, &
nlt_bgc_DMSPp_out, nlt_bgc_DMSPd_out, nlt_bgc_DMS_out, nlt_bgc_hum_out, &
nlt_bgc_PON_out, nt_zbgc_frac_out, nt_bgc_S_out, nlt_chl_sw_out, &
nlt_zaero_sw_out, &
bio_index_o_out, bio_index_out)

integer, intent(out), optional :: &
nt_Tsfc_out, & ! ice/snow temperature
nt_qice_out, & ! volume-weighted ice enthalpy (in layers)
nt_qsno_out, & ! volume-weighted snow enthalpy (in layers)
nt_sice_out, & ! volume-weighted ice bulk salinity (CICE grid layers)
nt_fbri_out, & ! volume fraction of ice with dynamic salt (hinS/vicen*aicen)
nt_iage_out, & ! volume-weighted ice age
nt_FY_out, & ! area-weighted first-year ice area
nt_alvl_out, & ! level ice area fraction
nt_vlvl_out, & ! level ice volume fraction
nt_apnd_out, & ! melt pond area fraction
nt_hpnd_out, & ! melt pond depth
nt_ipnd_out, & ! melt pond refrozen lid thickness
nt_smice_out,& ! mass of ice in snow
nt_smliq_out,& ! mass of liquid water in snow
nt_rhos_out, & ! snow density
nt_rsnw_out, & ! snow grain radius
nt_fsd_out, & ! floe size distribution
nt_isosno_out, & ! starting index for isotopes in snow
nt_isoice_out, & ! starting index for isotopes in ice
nt_aero_out, & ! starting index for aerosols in ice

(continues on next page)

168 Chapter 4. Use in Other Models



Icepack Documentation

(continued from previous page)

nt_bgc_Nit_out, & ! nutrients
nt_bgc_Am_out, & !
nt_bgc_Sil_out, & !
nt_bgc_DMSPp_out,&! trace gases (skeletal layer)
nt_bgc_DMSPd_out,&!
nt_bgc_DMS_out, & !
nt_bgc_hum_out, & !
nt_bgc_PON_out, & ! zooplankton and detritus
nlt_bgc_Nit_out,& ! nutrients
nlt_bgc_Am_out, & !
nlt_bgc_Sil_out,& !
nlt_bgc_DMSPp_out,&! trace gases (skeletal layer)
nlt_bgc_DMSPd_out,&!
nlt_bgc_DMS_out,& !
nlt_bgc_hum_out,& !
nlt_bgc_PON_out,& ! zooplankton and detritus
nt_zbgc_frac_out,&! fraction of tracer in the mobile phase
nt_bgc_S_out, & ! (deprecated, was related to zsalinity)
nlt_chl_sw_out ! points to total chla in trcrn_sw

integer (kind=int_kind), dimension(:), intent(out), optional :: &
bio_index_o_out, &
bio_index_out

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_bgc_N_out , & ! diatoms, phaeocystis, pico/small
nt_bgc_C_out , & ! diatoms, phaeocystis, pico/small
nt_bgc_chl_out, & ! diatoms, phaeocystis, pico/small
nlt_bgc_N_out , & ! diatoms, phaeocystis, pico/small
nlt_bgc_C_out , & ! diatoms, phaeocystis, pico/small
nlt_bgc_chl_out ! diatoms, phaeocystis, pico/small

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_bgc_DOC_out, & ! dissolved organic carbon
nlt_bgc_DOC_out ! dissolved organic carbon

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_bgc_DON_out, & ! dissolved organic nitrogen
nlt_bgc_DON_out ! dissolved organic nitrogen

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_bgc_DIC_out, & ! dissolved inorganic carbon
nlt_bgc_DIC_out ! dissolved inorganic carbon

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_bgc_Fed_out, & ! dissolved iron
nt_bgc_Fep_out, & ! particulate iron
nlt_bgc_Fed_out,& ! dissolved iron
nlt_bgc_Fep_out ! particulate iron

integer (kind=int_kind), dimension(:), intent(out), optional :: &
nt_zaero_out, & ! black carbon and other aerosols

(continues on next page)

4.4. Public Interfaces 169



Icepack Documentation

(continued from previous page)

nlt_zaero_out, & ! black carbon and other aerosols
nlt_zaero_sw_out ! black carbon and dust in trcrn_sw

icepack_write_tracer_indices

! write the number of column tracer indices

subroutine icepack_write_tracer_indices(iounit)

integer, intent(in) :: iounit

icepack_init_tracer_sizes

! set the number of column tracers

subroutine icepack_init_tracer_sizes(&
ncat_in, nilyr_in, nslyr_in, nblyr_in, nfsd_in , &
n_algae_in, n_DOC_in, n_aero_in, n_iso_in, &
n_DON_in, n_DIC_in, n_fed_in, n_fep_in, n_zaero_in, &
ntrcr_in, ntrcr_o_in, nbtrcr_in, nbtrcr_sw_in)

integer (kind=int_kind), intent(in), optional :: &
ncat_in , & ! Categories
nfsd_in , & !
nilyr_in , & ! Layers
nslyr_in , & !
nblyr_in , & !
n_algae_in, & ! Dimensions
n_DOC_in , & !
n_DON_in , & !
n_DIC_in , & !
n_fed_in , & !
n_fep_in , & !
n_zaero_in, & !
n_iso_in , & !
n_aero_in , & !
ntrcr_in , & ! number of tracers in use
ntrcr_o_in, & ! number of non-bio tracers in use
nbtrcr_in , & ! number of bio tracers in use
nbtrcr_sw_in ! number of shortwave bio tracers in use
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icepack_query_tracer_sizes

! query the number of column tracers

subroutine icepack_query_tracer_sizes(&
max_algae_out , max_dic_out , max_doc_out , &
max_don_out , max_fe_out , nmodal1_out , &
nmodal2_out , max_aero_out , max_nbtrcr_out , &
ncat_out, nilyr_out, nslyr_out, nblyr_out, nfsd_out, &
n_algae_out, n_DOC_out, n_aero_out, n_iso_out, &
n_DON_out, n_DIC_out, n_fed_out, n_fep_out, n_zaero_out, &
ntrcr_out, ntrcr_o_out, nbtrcr_out, nbtrcr_sw_out)

integer (kind=int_kind), intent(out), optional :: &
max_algae_out , & ! maximum number of algal types
max_dic_out , & ! maximum number of dissolved inorganic carbon types
max_doc_out , & ! maximum number of dissolved organic carbon types
max_don_out , & ! maximum number of dissolved organic nitrogen types
max_fe_out , & ! maximum number of iron types
nmodal1_out , & ! dimension for modal aerosol radiation parameters
nmodal2_out , & ! dimension for modal aerosol radiation parameters
max_aero_out , & ! maximum number of aerosols
max_nbtrcr_out ! algal nitrogen and chlorophyll

integer (kind=int_kind), intent(out), optional :: &
ncat_out , & ! Categories
nfsd_out , & !
nilyr_out , & ! Layers
nslyr_out , & !
nblyr_out , & !
n_algae_out, & ! Dimensions
n_DOC_out , & !
n_DON_out , & !
n_DIC_out , & !
n_fed_out , & !
n_fep_out , & !
n_zaero_out, & !
n_iso_out , & !
n_aero_out , & !
ntrcr_out , & ! number of tracers in use
ntrcr_o_out, & ! number of non-bio tracers in use
nbtrcr_out , & ! number of bio tracers in use
nbtrcr_sw_out ! number of shortwave bio tracers in use
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icepack_write_tracer_sizes

! write the number of column tracers

subroutine icepack_write_tracer_sizes(iounit)

integer (kind=int_kind), intent(in) :: iounit

icepack_compute_tracers

! Compute tracer fields.
! Given atrcrn = aicen*trcrn (or vicen*trcrn, vsnon*trcrn), compute trcrn.

subroutine icepack_compute_tracers (ntrcr, trcr_depend, &
atrcrn, aicen, &
vicen, vsnon, &
trcr_base, n_trcr_strata, &
nt_strata, trcrn, Tf)

integer (kind=int_kind), intent(in) :: &
ntrcr ! number of tracers in use

integer (kind=int_kind), dimension (ntrcr), intent(in) :: &
trcr_depend, & ! = 0 for aicen tracers, 1 for vicen, 2 for vsnon
n_trcr_strata ! number of underlying tracer layers

real (kind=dbl_kind), dimension (:,:), intent(in) :: &
trcr_base ! = 0 or 1 depending on tracer dependency

! argument 2: (1) aice, (2) vice, (3) vsno

integer (kind=int_kind), dimension (:,:), intent(in) :: &
nt_strata ! indices of underlying tracer layers

real (kind=dbl_kind), dimension (:), intent(in) :: &
atrcrn ! aicen*trcrn or vicen*trcrn or vsnon*trcrn

real (kind=dbl_kind), intent(in) :: &
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon ! volume per unit area of snow (m)

real (kind=dbl_kind), dimension (ntrcr), intent(out) :: &
trcrn ! ice tracers

real (kind=dbl_kind), intent(in) :: &
Tf ! Freezing point
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4.4.17 icepack_warnings.F90

icepack_warnings_aborted

! turn on the abort flag in the icepack warnings package
! pass in an optional error message

logical function icepack_warnings_aborted(instring)

character(len=*),intent(in), optional :: instring

icepack_warnings_clear

! clear all warning messages from the icepack warning buffer

subroutine icepack_warnings_clear()

icepack_warnings_clear

! return an array of all the current warning messages

subroutine icepack_warnings_getall(warningsOut)

character(len=char_len_long), dimension(:), allocatable, intent(out) :: &
warningsOut

icepack_warnings_print

! print all warning messages from the icepack warning buffer

subroutine icepack_warnings_print(iounit)

integer, intent(in) :: iounit

icepack_warnings_flush

! print and clear all warning messages from the icepack warning buffer

subroutine icepack_warnings_flush(iounit)

integer, intent(in) :: iounit
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4.4.18 icepack_wavefracspec.F90

icepack_init_wave

! Initialize the wave spectrum and frequencies for the FSD
!
! authors: 2018 Lettie Roach, NIWA/VUW

subroutine icepack_init_wave(nfreq, &
wave_spectrum_profile, &
wavefreq, dwavefreq)

integer(kind=int_kind), intent(in) :: &
nfreq ! number of wave frequencies

real(kind=dbl_kind), dimension(:), intent(out) :: &
wave_spectrum_profile, & ! ocean surface wave spectrum as a function of␣

→˓frequency
! power spectral density of surface elevation, E(f)␣

→˓(units m^2 s)
wavefreq, & ! wave frequencies (s^-1)
dwavefreq ! wave frequency bin widths (s^-1)

icepack_step_wavefracture

!
! Given fracture histogram computed from local wave spectrum, evolve
! the floe size distribution
!
! authors: 2018 Lettie Roach, NIWA/VUW
!

subroutine icepack_step_wavefracture(wave_spec_type, &
dt, ncat, nfsd, &
nfreq, &
aice, vice, aicen, &
floe_rad_l, floe_rad_c, &
wave_spectrum, wavefreq, dwavefreq, &
trcrn, d_afsd_wave)

character (len=char_len), intent(in) :: &
wave_spec_type ! type of wave spectrum forcing

integer (kind=int_kind), intent(in) :: &
nfreq, & ! number of wave frequency categories
ncat, & ! number of thickness categories
nfsd ! number of floe size categories

real (kind=dbl_kind), intent(in) :: &
dt, & ! time step
aice, & ! ice area fraction

(continues on next page)
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vice ! ice volume per unit area

real (kind=dbl_kind), dimension(ncat), intent(in) :: &
aicen ! ice area fraction (categories)

real(kind=dbl_kind), dimension(:), intent(in) :: &
floe_rad_l, & ! fsd size lower bound in m (radius)
floe_rad_c ! fsd size bin centre in m (radius)

real (kind=dbl_kind), dimension (:), intent(in) :: &
wavefreq, & ! wave frequencies (s^-1)
dwavefreq ! wave frequency bin widths (s^-1)

real (kind=dbl_kind), dimension(:), intent(in) :: &
wave_spectrum ! ocean surface wave spectrum as a function of frequency

! power spectral density of surface elevation, E(f) (units m^2␣
→˓s)

real (kind=dbl_kind), dimension(:,:), intent(inout) :: &
trcrn ! tracer array

real (kind=dbl_kind), dimension(:), intent(out) :: &
d_afsd_wave ! change in fsd due to waves

real (kind=dbl_kind), dimension(nfsd,ncat) :: &
d_afsdn_wave ! change in fsd due to waves, per category

4.4.19 icepack_zbgc.F90

icepack_init_bgc

!
subroutine icepack_init_bgc(ncat, nblyr, nilyr, ntrcr_o, &

cgrid, igrid, ntrcr, nbtrcr, &
sicen, trcrn, sss, ocean_bio_all)

integer (kind=int_kind), intent(in) :: &
ncat , & ! number of thickness categories
nilyr , & ! number of ice layers
nblyr , & ! number of bio layers
ntrcr_o,& ! number of tracers not including bgc
ntrcr , & ! number of tracers in use
nbtrcr ! number of bio tracers in use

real (kind=dbl_kind), dimension (nblyr+1), intent(inout) :: &
igrid ! biology vertical interface points

real (kind=dbl_kind), dimension (nilyr+1), intent(inout) :: &
cgrid ! CICE vertical coordinate

(continues on next page)
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real (kind=dbl_kind), dimension(nilyr, ncat), intent(in) :: &
sicen ! salinity on the cice grid

real (kind=dbl_kind), dimension (:,:), intent(inout) :: &
trcrn ! subset of tracer array (only bgc)

real (kind=dbl_kind), intent(in) :: &
sss ! sea surface salinity (ppt)

real (kind=dbl_kind), dimension (:), intent(inout) :: &
ocean_bio_all ! fixed order, all values even for tracers false

icepack_init_zbgc

!

subroutine icepack_init_zbgc ( &
R_Si2N_in, R_S2N_in, R_Fe2C_in, R_Fe2N_in, R_C2N_in, R_C2N_DON_in, &
R_chl2N_in, F_abs_chl_in, R_Fe2DON_in, R_Fe2DOC_in, chlabs_in, &
alpha2max_low_in, beta2max_in, mu_max_in, fr_graze_in, mort_pre_in, &
mort_Tdep_in, k_exude_in, K_Nit_in, K_Am_in, K_sil_in, K_Fe_in, &
f_don_in, kn_bac_in, f_don_Am_in, f_doc_in, f_exude_in, k_bac_in, &
grow_Tdep_in, zbgc_frac_init_in, &
zbgc_init_frac_in, tau_ret_in, tau_rel_in, bgc_tracer_type_in, &
fr_resp_in, algal_vel_in, R_dFe2dust_in, dustFe_sol_in, T_max_in, &
op_dep_min_in, fr_graze_s_in, fr_graze_e_in, fr_mort2min_in, fr_dFe_in,␣

→˓&
k_nitrif_in, t_iron_conv_in, max_loss_in, max_dfe_doc1_in, &
fr_resp_s_in, y_sk_DMS_in, t_sk_conv_in, t_sk_ox_in, fsal_in)

real (kind=dbl_kind), optional :: R_C2N_in(:) ! algal C to N (mole/mole)
real (kind=dbl_kind), optional :: R_chl2N_in(:) ! 3 algal chlorophyll to N␣

→˓(mg/mmol)
real (kind=dbl_kind), optional :: F_abs_chl_in(:) ! to scale absorption in Dedd
real (kind=dbl_kind), optional :: R_C2N_DON_in(:) ! increase compare to algal R_

→˓Fe2C
real (kind=dbl_kind), optional :: R_Si2N_in(:) ! algal Sil to N (mole/mole)
real (kind=dbl_kind), optional :: R_S2N_in(:) ! algal S to N (mole/mole)
real (kind=dbl_kind), optional :: R_Fe2C_in(:) ! algal Fe to carbon (umol/

→˓mmol)
real (kind=dbl_kind), optional :: R_Fe2N_in(:) ! algal Fe to N (umol/mmol)
real (kind=dbl_kind), optional :: R_Fe2DON_in(:) ! Fe to N of DON (nmol/umol)
real (kind=dbl_kind), optional :: R_Fe2DOC_in(:) ! Fe to C of DOC (nmol/umol)

real (kind=dbl_kind), optional :: fr_resp_in ! frac of algal growth lost␣
→˓due to respiration

real (kind=dbl_kind), optional :: algal_vel_in ! 0.5 cm/d(m/s) Lavoie 2005 ␣
→˓1.5 cm/day

real (kind=dbl_kind), optional :: R_dFe2dust_in ! g/g (3.5% content)␣
→˓Tagliabue 2009
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real (kind=dbl_kind), optional :: dustFe_sol_in ! solubility fraction
real (kind=dbl_kind), optional :: T_max_in ! maximum temperature (C)
real (kind=dbl_kind), optional :: op_dep_min_in ! Light attenuates for␣

→˓optical depths exceeding min
real (kind=dbl_kind), optional :: fr_graze_s_in ! fraction of grazing spilled␣

→˓or slopped
real (kind=dbl_kind), optional :: fr_graze_e_in ! fraction of assimilation␣

→˓excreted
real (kind=dbl_kind), optional :: fr_mort2min_in ! fractionation of mortality␣

→˓to Am
real (kind=dbl_kind), optional :: fr_dFe_in ! fraction of remineralized␣

→˓nitrogen
! (in units of algal iron)

real (kind=dbl_kind), optional :: k_nitrif_in ! nitrification rate (1/day)
real (kind=dbl_kind), optional :: t_iron_conv_in ! desorption loss pFe to dFe␣

→˓(day)
real (kind=dbl_kind), optional :: max_loss_in ! restrict uptake to % of␣

→˓remaining value
real (kind=dbl_kind), optional :: max_dfe_doc1_in ! max ratio of dFe to␣

→˓saccharides in the ice (nM Fe/muM C)
real (kind=dbl_kind), optional :: fr_resp_s_in ! DMSPd fraction of␣

→˓respiration loss as DMSPd
real (kind=dbl_kind), optional :: y_sk_DMS_in ! fraction conversion given␣

→˓high yield
real (kind=dbl_kind), optional :: t_sk_conv_in ! Stefels conversion time (d)
real (kind=dbl_kind), optional :: t_sk_ox_in ! DMS oxidation time (d)
real (kind=dbl_kind), optional :: fsal_in ! salinity limitation factor␣

→˓(1)

real (kind=dbl_kind), optional :: chlabs_in(:) ! chla absorption 1/m/(mg/m^3)
real (kind=dbl_kind), optional :: alpha2max_low_in(:) ! light limitation (1/(W/m^

→˓2))
real (kind=dbl_kind), optional :: beta2max_in(:) ! light inhibition (1/(W/m^2))
real (kind=dbl_kind), optional :: mu_max_in(:) ! maximum growth rate (1/d)
real (kind=dbl_kind), optional :: grow_Tdep_in(:) ! T dependence of growth (1/C)
real (kind=dbl_kind), optional :: fr_graze_in(:) ! fraction of algae grazed
real (kind=dbl_kind), optional :: mort_pre_in(:) ! mortality (1/day)
real (kind=dbl_kind), optional :: mort_Tdep_in(:) ! T dependence of mortality␣

→˓(1/C)
real (kind=dbl_kind), optional :: k_exude_in(:) ! algal carbon exudation␣

→˓rate (1/d)
real (kind=dbl_kind), optional :: K_Nit_in(:) ! nitrate half saturation␣

→˓(mmol/m^3)
real (kind=dbl_kind), optional :: K_Am_in(:) ! ammonium half saturation␣

→˓(mmol/m^3)
real (kind=dbl_kind), optional :: K_Sil_in(:) ! silicon half saturation␣

→˓(mmol/m^3)
real (kind=dbl_kind), optional :: K_Fe_in(:) ! iron half saturation or␣

→˓micromol/m^3
real (kind=dbl_kind), optional :: f_don_in(:) ! fraction of spilled grazing␣

→˓to DON
real (kind=dbl_kind), optional :: kn_bac_in(:) ! Bacterial degredation of␣

(continues on next page)
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→˓DON (1/d)
real (kind=dbl_kind), optional :: f_don_Am_in(:) ! fraction of remineralized␣

→˓DON to Am
real (kind=dbl_kind), optional :: f_doc_in(:) ! fraction of mort_N that␣

→˓goes to each doc pool
real (kind=dbl_kind), optional :: f_exude_in(:) ! fraction of exuded carbon␣

→˓to each DOC pool
real (kind=dbl_kind), optional :: k_bac_in(:) ! Bacterial degredation of␣

→˓DOC (1/d)

real (kind=dbl_kind), optional :: zbgc_frac_init_in(:) ! initializes mobile␣
→˓fraction

real (kind=dbl_kind), optional :: bgc_tracer_type_in(:) ! described tracer in␣
→˓mobile or stationary phases

real (kind=dbl_kind), optional :: zbgc_init_frac_in(:) ! fraction of ocean tracer␣
→˓ concentration in new ice

real (kind=dbl_kind), optional :: tau_ret_in(:) ! retention timescale (s),
→˓ mobile to stationary phase

real (kind=dbl_kind), optional :: tau_rel_in(:) ! release timescale (s),
→˓ stationary to mobile phase

icepack_biogeochemistry

!

subroutine icepack_biogeochemistry(dt, &
ntrcr, nbtrcr, &
upNO, upNH, iDi, iki, zfswin, &
zsal_tot, darcy_V, grow_net, &
PP_net, hbri,dhbr_bot, dhbr_top, Zoo,&
fbio_snoice, fbio_atmice, ocean_bio, &
first_ice, fswpenln, bphi, bTiz, ice_bio_net, &
snow_bio_net, fswthrun, Rayleigh_criteria, &
sice_rho, fzsal, fzsal_g, &
bgrid, igrid, icgrid, cgrid, &
nblyr, nilyr, nslyr, n_algae, n_zaero, ncat, &
n_doc, n_dic, n_don, n_fed, n_fep, &
meltbn, melttn, congeln, snoicen, &
sst, sss, fsnow, meltsn, &
hin_old, flux_bio, flux_bio_atm, &
aicen_init, vicen_init, aicen, vicen, vsnon, &
aice0, trcrn, vsnon_init, skl_bgc)

real (kind=dbl_kind), intent(in) :: &
dt ! time step

integer (kind=int_kind), intent(in) :: &
ncat, &
nilyr, &
nslyr, &
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nblyr, &
ntrcr, &
nbtrcr, &
n_algae, n_zaero, &
n_doc, n_dic, n_don, n_fed, n_fep

real (kind=dbl_kind), dimension (:), intent(inout) :: &
bgrid , & ! biology nondimensional vertical grid points
igrid , & ! biology vertical interface points
cgrid , & ! CICE vertical coordinate
icgrid , & ! interface grid for CICE (shortwave variable)
ocean_bio , & ! contains all the ocean bgc tracer concentrations
fbio_snoice , & ! fluxes from snow to ice
fbio_atmice , & ! fluxes from atm to ice
dhbr_top , & ! brine top change
dhbr_bot , & ! brine bottom change
darcy_V , & ! darcy velocity positive up (m/s)
hin_old , & ! old ice thickness
sice_rho , & ! avg sea ice density (kg/m^3)
ice_bio_net , & ! depth integrated tracer (mmol/m^2)
snow_bio_net , & ! depth integrated snow tracer (mmol/m^2)
flux_bio ! all bio fluxes to ocean

logical (kind=log_kind), dimension (:), intent(inout) :: &
first_ice ! distinguishes ice that disappears (e.g. melts)

! and reappears (e.g. transport) in a grid cell
! during a single time step from ice that was
! there the entire time step (true until ice forms)

real (kind=dbl_kind), dimension (:,:), intent(inout) :: &
Zoo , & ! N losses accumulated in timestep (ie. zooplankton/bacteria)

! mmol/m^3
bphi , & ! porosity of layers
bTiz , & ! layer temperatures interpolated on bio grid (C)
zfswin , & ! Shortwave flux into layers interpolated on bio grid (W/m^

→˓2)
iDi , & ! igrid Diffusivity (m^2/s)
iki , & ! Ice permeability (m^2)
trcrn ! tracers

real (kind=dbl_kind), intent(inout) :: &
grow_net , & ! Specific growth rate (/s) per grid cell
PP_net , & ! Total production (mg C/m^2/s) per grid cell
hbri , & ! brine height, area-averaged for comparison with hi (m)
upNO , & ! nitrate uptake rate (mmol/m^2/d) times aice
upNH ! ammonium uptake rate (mmol/m^2/d) times aice

real (kind=dbl_kind), intent(inout), optional :: &
zsal_tot ! Total ice salinity in per grid cell (g/m^2) (deprecated)

real (kind=dbl_kind), intent(inout), optional :: &
fzsal , & ! Total flux of salt to ocean at time step for conservation␣
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→˓(deprecated)
fzsal_g ! Total gravity drainage flux (deprecated)

logical (kind=log_kind), intent(inout), optional :: &
Rayleigh_criteria ! .true. means Ra_c was reached (deprecated)

real (kind=dbl_kind), dimension (:,:), intent(in) :: &
fswpenln ! visible SW entering ice layers (W m-2)

real (kind=dbl_kind), dimension (:), intent(in) :: &
fswthrun , & ! SW through ice to ocean (W/m^2)
meltsn , & ! snow melt in category n (m)
melttn , & ! top melt in category n (m)
meltbn , & ! bottom melt in category n (m)
congeln , & ! congelation ice formation in category n (m)
snoicen , & ! snow-ice formation in category n (m)
flux_bio_atm, & ! all bio fluxes to ice from atmosphere
aicen_init , & ! initial ice concentration, for linear ITD
vicen_init , & ! initial ice volume (m), for linear ITD
vsnon_init , & ! initial snow volume (m), for aerosol
aicen , & ! concentration of ice
vicen , & ! volume per unit area of ice (m)
vsnon ! volume per unit area of snow (m)

real (kind=dbl_kind), intent(in) :: &
aice0 , & ! open water area fraction
sss , & ! sea surface salinity (ppt)
sst , & ! sea surface temperature (C)
fsnow ! snowfall rate (kg/m^2 s)

logical (kind=log_kind), intent(in) :: &
skl_bgc ! if true, solve skeletal biochemistry

icepack_load_ocean_bio_array

! basic initialization for ocean_bio_all

subroutine icepack_load_ocean_bio_array(max_nbtrcr, &
max_algae, max_don, max_doc, max_dic, max_aero, max_fe, &
nit, amm, sil, dmsp, dms, algalN, &
doc, don, dic, fed, fep, zaeros, ocean_bio_all, hum)

integer (kind=int_kind), intent(in) :: &
max_algae , & ! maximum number of algal types
max_dic , & ! maximum number of dissolved inorganic carbon types
max_doc , & ! maximum number of dissolved organic carbon types
max_don , & ! maximum number of dissolved organic nitrogen types
max_fe , & ! maximum number of iron types
max_aero , & ! maximum number of aerosols
max_nbtrcr ! maximum number of bio tracers
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real (kind=dbl_kind), intent(in) :: &
nit , & ! ocean nitrate (mmol/m^3)
amm , & ! ammonia/um (mmol/m^3)
sil , & ! silicate (mmol/m^3)
dmsp , & ! dmsp (mmol/m^3)
dms , & ! dms (mmol/m^3)
hum ! humic material (mmol/m^3)

real (kind=dbl_kind), dimension (max_algae), intent(in) :: &
algalN ! ocean algal nitrogen (mmol/m^3) (diatoms, phaeo, pico)

real (kind=dbl_kind), dimension (max_doc), intent(in) :: &
doc ! ocean doc (mmol/m^3) (proteins, EPS, lipid)

real (kind=dbl_kind), dimension (max_don), intent(in) :: &
don ! ocean don (mmol/m^3)

real (kind=dbl_kind), dimension (max_dic), intent(in) :: &
dic ! ocean dic (mmol/m^3)

real (kind=dbl_kind), dimension (max_fe), intent(in) :: &
fed, fep ! ocean disolved and particulate fe (nM)

real (kind=dbl_kind), dimension (max_aero), intent(in) :: &
zaeros ! ocean aerosols (mmol/m^3)

real (kind=dbl_kind), dimension (max_nbtrcr), intent(inout) :: &
ocean_bio_all ! fixed order, all values even for tracers false

icepack_init_ocean_bio

! Initialize ocean concentration

subroutine icepack_init_ocean_bio (amm, dmsp, dms, algalN, doc, dic, don, &
fed, fep, hum, nit, sil, zaeros, max_dic, max_don, max_fe, max_aero,&
CToN, CToN_DON)

integer (kind=int_kind), intent(in) :: &
max_dic, &
max_don, &
max_fe, &
max_aero

real (kind=dbl_kind), intent(out):: &
amm , & ! ammonium
dmsp , & ! DMSPp
dms , & ! DMS
hum , & ! humic material
nit , & ! nitrate

(continues on next page)
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sil ! silicate

real (kind=dbl_kind), dimension(:), intent(out):: &
algalN , & ! algae
doc , & ! DOC
dic , & ! DIC
don , & ! DON
fed , & ! Dissolved Iron
fep , & ! Particulate Iron
zaeros ! BC and dust

real (kind=dbl_kind), dimension(:), intent(inout), optional :: &
CToN , & ! carbon to nitrogen ratio for algae
CToN_DON ! nitrogen to carbon ratio for proteins
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DEVELOPER GUIDE

5.1 About Development

The Icepack model consists of three different parts, the column physics code, the icepack driver, and the scripts. De-
velopment of each of these pieces will be described below separately.

Subroutine calls and other linkages into Icepack from the host model should only need to access the icepack_intfc*.F90
interface modules within the columnphysics/ directory. The Icepack driver in the configuration/driver/ direc-
tory is based on the CICE model and provides an example of the sea ice host model capabilities needed for inclusion of
Icepack. In particular, host models will need to include code equivalent to that in the modules icedrv_*_column.F90.
Calls into the Icepack interface routines are primarily from icedrv_step_mod.F90 but there are others (search the
driver code for intfc).

Guiding principles for the creation of Icepack include the following:

• The column physics modules shall be independent of all sea ice model infrastructural elements that may vary from
model to model. Examples include input/output, timers, references to CPUs or computational tasks, initialization
other than that necessary for strictly physical reasons, and anything related to a horizontal grid.

• The column physics modules shall not call or reference any routines or code that reside outside of the column-
physics/ directory.

• Any capabilities required by a host sea ice model (e.g. calendar variables, tracer flags, diagnostics) shall be
implemented in the driver and passed into or out of the column physics modules via array arguments.

5.1.1 Git workflow and Pull Requests

There is extensive Information for Developers documentation available. See https://github.com/CICE-Consortium/
About-Us/wiki/Resource-Index#information-for-developers for information on:

• Contributing to model development

• Software development practices guide

• git Workflow Guide - including extensive information about the Pull Request process and requirements

• Documentation Workflow Guide
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5.2 Icepack Column Physics

5.2.1 File List

The column physics source code contains the following files

columnphysics/ the column physics code
icepack_aerosol.F90 handles most work associated with the aerosol tracers
icepack_age.F90 handles most work associated with the age tracer
icepack_algae.F90 biogeochemistry
icepack_atmo.F90 stability-based parameterization for calculation of turbulent ice–atmosphere fluxes
icepack_brine.F90 evolves the brine height tracer
icepack_firstyear.F90 handles most work associated with the first-year ice area tracer
icepack_flux.F90 fluxes needed/produced by the model
icepack_fsd.F90 supports floe size distribution
icepack_intfc.F90 interface routines for linking Icepack with a host sea ice model
icepack_isotope.F90 handles isotopes
icepack_itd.F90 utilities for managing ice thickness distribution
icepack_kinds.F90 basic definitions of reals, integers, etc.
icepack_mechred.F90 mechanical redistribution (ridging)
icepack_meltpond_lvl.F90 level-ice melt pond parameterization
icepack_meltpond_topo.F90 topo melt pond parameterization
icepack_mushy_physics.F90 physics routines for mushy thermodynamics
icepack_ocean.F90 mixed layer ocean model
icepack_orbital.F90 orbital parameters for Delta-Eddington shortwave parameterization
icepack_parameters.F90 basic model parameters including physical and numerical constants requried for
column package
icepack_shortwave.F90 shortwave and albedo parameterizations
icepack_snow.F90 snow physics
icepack_therm_bl99.F90 multilayer thermodynamics of [6]
icepack_therm_itd.F90 thermodynamic changes mostly related to ice thickness distribution
icepack_therm_mushy.F90 mushy-theory thermodynamics of [71]
icepack_therm_shared.F90 code shared by all thermodynamics parameterizations
icepack_therm_vertical.F90 vertical growth rates and fluxes
icepack_tracers.F90 tracer information
icepack_warnings.F90 utilities for writing warning and error messages
icepack_wavefracspec.F90 wave impact on sea ice
icepack_zbgc.F90 driver for ice biogeochemistry and brine tracer motion
icepack_zbgc_shared.F90 parameters and shared code for biogeochemistry and brine height
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5.2.2 Coding Standard

The column physics is a library that solves the sea ice column physics on a timestep by timestep and gridpoint by
gridpoint basis. It consists of Fortran routines with input and output arguments. The model state is saved in the host
model. There is no communication between gridcells so the underlying implementation supports no parallelization. It
however can be called in parallel by a driver that is running on multiple pes with a decomposed grid.

The column physics does not have a time manager. Calendaring is expected to be dealt with by the host model. The
column physics does not read any forcing data, that is passed into the column physics though interfaces. In fact, there
are no direct IO capabilities in the column physics. That is to say, the column physics does not open files to read or
write. However, the column physics contains a warning and abort package (see section Error Messages and Aborts)
that provides the column package with the ability to store log output. That output can be queried by the host model or
it can be written directly via a specific routine. The warning package also provides access to an abort flag that the host
model can query after each call to check for successful completion of the column physics package.

All column physics public interfaces and public data are defined in the icepack_intfc.F90 file (see section Access).
Internal column physics settings should all be accessible through interfaces. The internal constants, parameters, and
tracer settings have init (set), query (get), and write interfaces that provides access to internal column physics settings.
The host model should not have to use “use” statements to access any of the column physics data outside of what is
provided through the icepack_intfc module.

The public column physics interfaces use optional arguments where it makes sense and there is an ongoing effort to
extend the optional arguments supported. It’s strongly recommended that calls to the icepack interfaces be done with
keyword=value arguments. All icepack arguments support this method.

Overall, columnphysics changes in the Icepack model should include the following

• All modules should have the following set at the top

implicit none
private

• Any public module interfaces or data should be explicitly specified

• All subroutines and functions should define the subname character parameter statement to match the interface
name like

character(len=*),parameter :: subname='(lateral_melt_bgc)'

• All interfaces that are public outside the Icepack columnphysics should include autodocument_start and autodoc-
ument_end comment lines with appropriate syntax and location. If any interfaces are added or updated, then the
internal documentation should be updated via

./icepack.setup --docintfc

See also Public Interfaces for more information about the docintfc option.

• The icepack_warnings package should be used to cache log messages and set the abort flag. To add a log message,
use icepack_warnings_add like

call icepack_warnings_add(subname//' algorithm did not converge')

To formally set the abort flag, use

call icepack_warnings_setabort(.true.,__FILE__,__LINE__)

See also Error Messages and Aborts for more information about how the external calling program will write
those message and check whether Icepack aborted.
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• Every interface call within the columnphysics should be followed by

if (icepack_warnings_aborted(subname)) return

to support errors backing up the call tree to the external program

• Variables defined in icepack_kinds, icepack_tracers, icepack_parameters, and icepack_orbital should be ac-
cessed from WITHIN Icepack by Fortran use statements (even though this is not recommended for drivers).
It’s also possible to use the public methods to access internal Icepack variables. Again, from the icepack driver
or other external programs, the columnphysics variables should ALWAYS be access thru the interface methods
and icepack_intfc (see also Access).

• Icepack is a simple serial code. Global flags and parameters should be set identically on all tasks/threads that
call into Icepack. Icepack has no ability to reconcile or identify inconsistencies between different tasks/threads.
All aspects of correct parallel implementation is managed by the driver code.

• Optional arguments are encouraged in the public Icepack interfaces. They provide backwards compatibility in
the public interfaces and allow future extensions. Arguments that are not always required should ultimately be
made optional. There are several ways optional arguments can be passed down the calling tree in Icepack. Two
options, copying into local data or copying into module data are viable. But the recommended approach is to
pass optional arguments down the calling tree,

– Optional arguments can be used as calls are made down the calling tree without regard to whether they are
present or not.

– Use universal flags and parameters to turn on/off features. Avoid having features triggered by the presence
of optional arguments.

– Verify that the optional arguments required for any feature are passed in at the top level of each Icepack
interface. If not, then abort.

– Leverage the icepack subroutine icepack_checkoptargflags which controls how often to check the
optional arguments. The argcheck namelist setting controls when to do the checks, ‘never’, ‘first’, or
‘always’ are valid settings

– Pass optional arguments down the calling tree within Icepack as needed. In Fortran, the present attribute is
carried down the calling tree automatically, but the optional attribute should also be defined in lower level
subroutines. This is not strictly required in cases where the subroutine is always called with the optional
arguments, but it’s good practice.

– An example of how this might look is

use icepack_parameters, only: flag_arg2, flag_arg3

subroutine icepack_public_interface(arg1, arg2, arg3, ...)
real (kind=dbl_kind), intent(inout) :: arg1
real (kind=dbl_kind), optional, dimension(:), intent(inout) :: arg2
real (kind=dbl_kind), optional, intent(inout) :: arg3

logical, save :: first_call = .true.
character(len=*), parameter :: subname = '(icepack_public_interface)'

if (icepack_chkoptargflag(first_call)) then
if (flag_arg2) then

if (.not.present(arg2)) then
call icepack_warnings_setabort(.true.,__FILE__,__LINE__)
call icepack_warnings_add(subname//' flag_arg2 set but arg2 not passed

→˓')
(continues on next page)
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endif
endif
if (flag_arg3) then

if (.not.present(arg3)) then
call icepack_warnings_setabort(.true.,__FILE__,__LINE__)
call icepack_warnings_add(subname//' flag_arg3 set but arg3 not passed

→˓')
endif

endif
if (icepack_warnings_aborted(subname)) return

endif

...
call some_columnphysics_subroutine(arg1, arg2, arg3, ...)
...

first_call = .false.

end subroutine

!------------

subroutine some_columnphysics_subroutine(arg1, arg2, arg3, ...)

real (kind=dbl_kind), intent(inout) :: arg1
real (kind=dbl_kind), optional, dimension(:), intent(inout) :: arg2
real (kind=dbl_kind), optional, intent(inout) :: arg3

if (flag_arg2) then
arg2(:) = ...

endif

if (flag_arg3) then
call someother_columnphysics_subroutine(arg3)

endif

end subroutine

!------------

subroutine someother_columnphysics_subroutine(arg3)

real (kind=dbl_kind), optional, intent(inout) :: arg3

arg3 = ...

end subroutine

Some notes

– If optional arguments are passed but not needed, this is NOT an error. If optional argument are not passed
but needed, this is an error.

– If checking and implementation are done properly, optional arguments that are not needed will never be ref-
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erenced anywhere in Icepack at that timestep. Optional arguments should be matched with the appropriate
flags at the first entry into Icepack as much as possible.

– There is a unit test (optarg) in CICE to verify optional argument passing. There is also a unit test (opticep)
in CICE that checks that NOT passing the optional arguments from CICE is robust.

5.3 Driver Implementation

The icepack driver is Fortran source code and exists to test the column physics in a stand-alone mode for some simple
column configurations.

5.3.1 File List

The icepack driver consists of the following files

configuration/driver/ driver for testing Icepack in stand-alone mode
icedrv_MAIN.F90 main program
icedrv_InitMod.F90 routines for initializing a run
icedrv_RunMod.F90 main driver routines for time stepping
icedrv_arrays_column.F90 essential arrays to describe the state of the ice
icedrv_calendar.F90 keeps track of what time it is
icedrv_constants.F90 physical and numerical constants and parameters
icedrv_diagnostics.F90 miscellaneous diagnostic and debugging routines
icedrv_diagnostics_bgc.F90 diagnostic routines for biogeochemistry
icedrv_domain_size.F90 domain sizes
icedrv_flux.F90 fluxes needed/produced by the model
icedrv_forcing.F90 routines to read and interpolate forcing data for stand-alone model runs
icedrv_forcing_bgc.F90 routines to read and interpolate forcing data for bgc stand-alone model runs
icedrv_init.F90 general initialization routines
icedrv_init_column.F90 initialization routines specific to the column physics
icedrv_restart.F90 driver for reading/writing restart files
icedrv_restart_bgc.F90 restart routines specific to the column physics
icedrv_restart_shared.F90 code shared by all restart options
icedrv_state.F90 essential arrays to describe the state of the ice
icedrv_step.F90 routines for time stepping the major code components
icedrv_system.F90 overall system management calls
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5.3.2 Overview

The icepack driver exists to test the column physics. At the present time, it is hardwired to run 4 different gridcells
on one processor with the same forcing used for all gridcells. There is no MPI and no threading built into the icepack
driver. There is limited IO capabilities, no history files, and no netcdf restart files. The model generally runs very
quickly.

Forcing data and details on these data are available in Forcing data.

5.4 Scripts Implementation

The scripts are the third part of the icepack package. They support setting up cases, building, and running the icepack
stand-alone model.

5.4.1 File List

The directory structure under configure/scripts is as follows.

configuration/scripts/
Makefile primary makefile
icepack.batch.csh creates batch scripts for particular machines
icepack.build compiles the code
icepack.launch.csh creates script logic that runs the executable
icepack.run.setup.csh sets up the run scripts
icepack.run.suite.csh sets up the test suite
icepack.settings defines environment, model configuration and run settings
icepack.test.setup.csh creates configurations for testing the model
icepack_decomp.csh defines the grid size
icepack_in namelist input data
machines/ machine specific files to set env and Macros
makdep.c determines module dependencies
options/ other namelist configurations available from the icepack.setup command line
parse_namelist.sh replaces namelist with command-line configuration
parse_namelist_from_settings.sh replaces namelist with values from icepack.settings
parse_settings.sh replaces settings with command-line configuration
tests/ scripts for configuring and running basic tests

5.4.2 Strategy

The icepack scripts are implemented such that everything is resolved after icepack.setup is called. This is done by
both copying specific files into the case directory and running scripts as part of the icepack.setup command line to
setup various files.

icepack.setup drives the case setup. It is written in csh. All supporting scripts are relatively simple csh or sh scripts.

The file icepack.settings specifies a set of env defaults for the case. The file icepack_in defines the namelist input for
the icepack driver.
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5.4.3 Preset Case Options

icepack.setup -s option allows the user to choose some predetermined icepack settings and namelist. Those options
are defined in configurations/scripts/options/ and the files are prefixed by either set_env, set_nml, or test_nml. When
icepack.setup is executed, the appropriate files are read from configurations/scripts/options/ and the icepack.settings
and/or icepack_in files are updated in the case directory based on the values in those files.

The filename suffix determines the name of the -s option. So, for instance,

icepack.setup -s diag1,debug,bgcISPOL

will search for option files with suffixes of diag1, debug, and bgcISPOL and then apply those settings.

parse_namelist.sh, parse_settings.sh, and parse_namelist_from_settings.sh are the three scripts that modify
icepack_in and icepack.settings.

To add new options, just add new files to the configurations/scripts/options/ directory with appropriate names and
syntax. The set_nml file syntax is the same as namelist syntax and the set_env files are consistent with csh setenv
syntax. See other files for examples of the syntax.

5.4.4 Machines

Machine specific information is contained in configuration/scripts/machines. That directory contains a Macros file
and an env file for each supported machine. For more information on porting to a new machine, see Porting.

5.4.5 Test scripts

Under configuration/scripts/tests are several files including the scripts to setup the various tests, such as smoke and
restart tests (test_smoke.script, test_restart.script). and the files that describe which options files are needed for each
test (ie. test_smoke.files, test_restart.files). A baseline test script (baseline.script) is also there to setup the general
regression and comparison testing. That directory also contains the preset test suites (ie. base_suite.ts) and a file that
supports post-processing on the model output (timeseries.csh). There is also a script report_results.csh that pushes
results from test suites back to the CICE-Consortium test results wiki page.

To add a new test (for example newtest), several files may be needed,

• configuration/scripts/tests/test_newtest.script defines how to run the test. This chunk of script will be incor-
porated into the case test script

• configuration/scripts/tests/test_newtest.files list the set of options files found in configuration/scripts/options/
needed to run this test. Those files will be copied into the test directory when the test is invoked so they are
available for the test_newtest.script to use.

• some new files may be needed in configuration/scripts/options/. These could be relatively generic set_nml or
set_env files, or they could be test specific files typically carrying a prefix of test_nml.

Generating a new test, particularly the test_newtest.script usually takes some iteration before it’s working properly.
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5.5 Adding tracers

We require that any changes made to the code be implemented in such a way that they can be “turned off” through
namelist flags. In most cases, code run with such changes should be bit-for-bit identical with the unmodified code.
Occasionally, non-bit-for-bit changes are necessary, e.g. associated with an unavoidable change in the order of opera-
tions. In these cases, changes should be made in stages to isolate the non-bit-for-bit changes, so that those that should
be bit-for-bit can be tested separately.

Tracers added to Icepack will also require extensive modifications to the host sea ice model, including initialization
on the horizontal grid, namelist flags and restart capabilities. Modifications to the Icepack driver should reflect the
modifications needed in the host model but are not expected to match completely. We recommend that the logical
namelist variable tr_[tracer] be used for all calls involving the new tracer outside of ice_[tracer].F90, in case other
users do not want to use that tracer.

A number of optional tracers are available in the code, including ice age, first-year ice area, melt pond area and volume,
brine height, aerosols, and level ice area and volume (from which ridged ice quantities are derived). Salinity, enthalpies,
age, aerosols, level-ice volume, brine height and most melt pond quantities are volume-weighted tracers, while first-
year area, pond area, and level-ice area are area-weighted tracers. Biogeochemistry tracers in the skeletal layer are
area-weighted, and vertical biogeochemistry tracers are volume-weighted. In the absence of sources and sinks, the
total mass of a volume-weighted tracer such as aerosol (kg) is conserved under transport in horizontal and thickness
space (the mass in a given grid cell will change), whereas the aerosol concentration (kg/m) is unchanged following the
motion, and in particular, the concentration is unchanged when there is surface or basal melting. The proper units for
a volume-weighted mass tracer in the tracer array are kg/m.

In several places in the code, tracer computations must be performed on the conserved “tracer volume” rather than
the tracer itself; for example, the conserved quantity is ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖, not ℎ𝑝𝑛𝑑. Conserved quantities are thus com-
puted according to the tracer dependencies (weights), which are tracked using the arrays trcr_depend (indicates
dependency on area, ice volume or snow volume), trcr_base (a dependency mask), n_trcr_strata (the number of
underlying tracer layers), and nt_strata (indices of underlying layers). See subroutine icepack_compute_tracers in
icepack_tracers.F90.

To add a tracer, follow these steps using one of the existing tracers as a pattern (e.g. age).

1. icedrv_domain_size.F90: increase max_ntrcr (can also add option to icepack.settings and icepack.build)

2. icepack_tracers.F90:

• declare nt_[tracer] and tr_[tracer]

• add flags and indices to the init, query and write subroutines, and call these routines as needed throughout
the code

3. icepack_[tracer].F90: create physics routines

4. icedrv_init.F90: (some of this may be done in icepack_[tracer].F90 instead)

• declare tr_[tracer] and nt_[tracer] as needed

• add logical namelist variable tr_[tracer]

• initialize namelist variable

• print namelist variable to diagnostic output file

• increment number of tracers in use based on namelist input (ntrcr)

• define tracer dependencies

5. icedrv_step_mod.F90 (and elsewhere as needed):

• call physics routines in icepack_[tracer].F90

6. icedrv_restart.F90:
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• define restart variables

• call routines to read, write tracer restart data

7. icepack_in: add namelist variables to tracer_nml and icefields_nml. Best practice is to set the namelist values
so that the new capability is turned off, and create an option file with your preferred configuration in configura-
tion/scripts/options.

8. If strict conservation is necessary, add diagnostics as noted for topo ponds in Section Melt ponds

9. Update documentation, including icepack_index.rst and ug_case_settings.rst

5.6 Adding diagnostics

Icepack produces separate ASCII (text) log output for four cells, each with a different initial condition (full ITD, slab
ice, ice free, land) designated by the variable n here. Each of the diagnostic files contains the state information for that
cell. The procedure for adding diagnostic variables to the output is outlined here.

1. For non-BGC variables, edit icedrv_diagnostics.F90:

• If the variable is already defined within the code, then add it to a “use” statement in the subroutine
runtime_diags.

• Note that if the variable is not readily accessible through a use statement, then a global variable may need
to be defined. This might be in icedrv_state.F90 or icedrv_flux.F90 for example.

• Additionally, if the variable is a derived quantity, then the variables needed to calculate the new quantity
may need to be added to a use statement. For example, see how hiavg and hsavg are computed.

• If the variable is a scalar, then follow the example of aice or hiavg, copying the write statement to an
appropriate place in the output list, and editing as needed. The format “900” is appropriate for most scalars.
The following example adds snow melt (melts).

use icedrv_flux, only: melts

write(nu_diag_out+n-1,900) 'snow melt (m) = ',melts(n) ! snow melt

• If the variable is an array, then you can compute the mean value (e.g. hiavg) or print the array values
(e.g. fiso_evap). This may requires adding the array sizes and a counter for the loop(s). E.g. to print the
category ice area, aicen over ncat thickness categories:

use icedrv_domain_size, only: ncat

use icedrv_state, only: aicen

! local variables

integer (kind=int_kind) :: &
n, nc, k

do nc = 1,ncat
write(nu_diag_out+n-1,901) 'Category ice area = ',aicen(n,nc),nc !␣

→˓category ice area
enddo

• If the variable is a tracer, then in addition to the variable trcr or trcrn, you will need the tracer index (e.g.
nt_Tsfc).
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• In some cases, a new format statement might be needed.

2. For BGC variables, edit icedrv_diagnostics_bgc.F90:

• If the variable is already defined within the code, then add it to a “use” statement in the subroutine
hbrine_diags or bgc_diags and follow a similar procedure for state variables as above.

• Note that the BGC needs to be activated and the particular tracer turned on.

In general, try to format the output statements to line up with the surrounding print messages. This may require a
couple of tries to get it to compile and run.

5.7 Other things

5.7.1 Running with a Debugger

Availability and usage of interactive debuggers varies across machines. Contact your system administrator for additional
information about what’s available on your system. To run with an interactive debugger, the following general steps
should be taken.

• Setup a case

• Modify the env file and Macros file to add appropriate modules and compiler/ linker flags

• Build the model

• Get interactive hardware resources as needed

• Open a csh shell

• Source the env.${machine} file

• Source cice.settings

• Change directories to the run directory

• Manually launch the executable thru the debugger
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SIX

APPENDICES

6.1 Index of primary variables and parameters

This index defines many (but not all) of the symbols used frequently in the ice model code. Values appearing in this
list are fixed or recommended; most namelist parameters are indicated ( ∙) with their default values. All quantities in
the code are expressed in MKS units (temperatures may take either Celsius or Kelvin units). Deprecated parameters
are listed at the end.

Namelist variables are partly included here, but they are fully documented in section Tables of Namelist Options.

Table 1: Alphabetical Index of Icepack Variables and Parameters

A
a_rapid_mode ∙ brine channel diameter
afsd(n) floe size distribution (in category n)
ahmax ∙ thickness above which ice albedo is constant 0.3m
aice_init concentration of ice at beginning of timestep
aice0 fractional open water area
aice(n) total concentration of ice in grid cell (in category n)
albedo_type ∙ type of albedo parameterization (‘default’ or ‘con-

stant’)
albice bare ice albedo
albicei ∙ near infrared ice albedo for thicker ice
albicev ∙ visible ice albedo for thicker ice
albocn ocean albedo 0.06
albpnd melt pond albedo
albsno snow albedo
albsnowi ∙ near infrared, cold snow albedo
albsnowv ∙ visible, cold snow albedo
algalN algal nitrogen concentration mmol/m3

alndf albedo: near IR, diffuse
alndr albedo: near IR, direct
alvdf albedo: visible, diffuse
alvdr albedo: visible, direct
alndf_ai grid-box-mean value of alndf
alndr_ai grid-box-mean value of alndr
alvdf_ai grid-box-mean value of alvdf
alvdr_ai grid-box-mean value of alvdr
amm ammonia/um concentration mmol/m3

continues on next page
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Table 1 – continued from previous page

aparticn participation function
apeff_ai grid-cell-mean effective pond fraction
apondn area concentration of melt ponds
araftn area fraction of rafted ice
ardgn fractional area of ridged ice
argcheck optional argument setting first
aspect_rapid_mode ∙ brine convection aspect ratio 1
astar e-folding scale for participation function 0.05
atmiter_conv ∙ convergence criteria for ustar 0.0
atm_data_format ∙ format of atmospheric forcing files
atm_data_type ∙ type of atmospheric forcing
atmbndy ∙ atmo boundary layer parameterization (‘similar-

ity’,‘constant’ or ‘mixed’)
awtidf weighting factor for near-ir, diffuse albedo 0.36218
awtidr weighting factor for near-ir, direct albedo 0.00182
awtvdf weighting factor for visible, diffuse albedo 0.63282
awtvdr weighting factor for visible, direct albedo 0.00318
B
bgc_data_type ∙ forcing type for biogeochemistry
bgc_flux_type ∙ ice-ocean flux velocity type
bgc_tracer_type tracer_type for bgc tracers
bgrid nondimensional vertical grid points for bio grid
bignum a large number 1030

bphi porosity of ice layers on bio grid
bTiz temperature of ice layers on bio grid
C
calc_dragio ∙ if true, calculate dragio from iceruf_ocn and

thickness_ocn_layer1
F

calc_strair ∙ if true, calculate wind stress T
calc_Tsfc ∙ if true, calculate surface temperature T
Cdn_atm atmospheric drag coefficient
Cdn_ocn ocean drag coefficient
Cf ∙ ratio of ridging work to PE change in ridging

17.

cgrid vertical grid points for ice grid (compare bgrid)
char_len length of character variable strings 80
char_len_long length of longer character variable strings 256
check_step time step on which to begin writing debugging data
cldf cloud fraction
cm_to_m cm to meters conversion 0.01
coldice value for constant albedo parameterization 0.70
coldsnow value for constant albedo parameterization 0.81
conduct ∙ conductivity parameterization
congel basal ice growth m
conserv_check if true, check conservation
coszen cosine of the zenith angle
Cp proportionality constant for potential energy kg/m2/s2
cp_air specific heat of air 1005.0 J/kg/K

continues on next page
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cp_ice specific heat of fresh ice
2106. J/kg/K

cp_ocn specific heat of sea water
4218. J/kg/K

cp_wv specific heat of water vapor 1.81x103 J/kg/K
cp063 diffuse fresnel reflectivity (above) 0.063
cp455 diffuse fresnel reflectivity (below) 0.455
cpl_frazil ∙ type of frazil ice coupling
Cs fraction of shear energy contributing to ridging 0.25
Cstar constant in Hibler ice strength formula

20.

D
d_afsd_[proc] change in FSD due to processes
daice_da data assimilation concentration increment rate
daidtd ice area tendency due to dynamics/transport 1/s
daidtt ice area tendency due to thermodynamics 1/s
dalb_mlt [see icepack_shortwave.F90] -0.075
dalb_mlti [see icepack_shortwave.F90] -0.100
dalb_mltv [see icepack_shortwave.F90] -0.150
darcy_V Darcy velocity used for brine height tracer
dardg1(n)dt rate of fractional area loss by ridging ice (category n) 1/s
dardg2(n)dt rate of fractional area gain by new ridges (category n) 1/s
daymo number of days in one month
daycal day number at end of month
days_per_year ∙ number of days in one year 365
dbl_kind definition of double precision selected_real_kind(13)
dbug ∙ write extra diagnostics .false.
depressT ratio of freezing temperature to salinity of brine 0.054 deg/ppt
dhbr_bt change in brine height at the bottom of the column
dhbr_top change in brine height at the top of the column
dhsn depth difference for snow on sea ice and pond ice
diag_file ∙ diagnostic output file (alternative to standard out)
diagfreq ∙ how often diagnostic output is written (10 = once per

10 dt)
divu strain rate I component, velocity divergence 1/s
divu_adv divergence associated with advection 1/s
dms dimethyl sulfide concentration mmol/m3

dmsp dimethyl sulfoniopropionate concentration mmol/m3

dpscale ∙ scaling factor for flushing in permeable ice
(ktherm=1)

1× 10−3

dragio drag coefficient for water on ice 0.00536
dSdt_slow_mode ∙ drainage strength parameter
dsnow change in snow thickness m
dt ∙ thermodynamics time step

3600. s

dt_dyn dynamics/ridging/transport time step
continues on next page
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dT_mlt ∙ ∆ temperature per ∆ snow grain radius
1. deg

dumpfreq ∙ dump frequency for restarts, y, m or d
dumpfreq_n ∙ restart output frequency
dvidtd ice volume tendency due to dynamics/transport m/s
dvidtt ice volume tendency due to thermodynamics m/s
dvirdg(n)dt ice volume ridging rate (category n) m/s
dwavefreq widths of wave freqency bins 1/s
E
eice(n) energy of melting of ice per unit area (in category n) J/m2

emissivity emissivity of snow and ice 0.985
eps13 a small number 10−13

eps16 a small number 10−16

esno(n) energy of melting of snow per unit area (in category n) J/m2

evap evaporative water flux kg/m2/s
F
faero_atm aerosol deposition rate kg/m2/s
faero_ocn aerosol flux to the ocean kg/m2/s
fiso_atm water isotope deposition rate kg/m2/s
fiso_ocn water isotope flux to the ocean kg/m2/s
fiso_evap water isotope evaporation rate kg/m2/s
fbot_xfer_type ∙ type of heat transfer coefficient under ice
fcondtop(n)(_f) conductive heat flux W/m2

ferrmax max allowed energy flux error (thermodynamics) 1x 10−3 W/m2

ffracn fraction of fsurfn used to melt pond ice
fhocn net heat flux to ocean W/m2

fhocn_ai grid-box-mean net heat flux to ocean (fhocn) W/m2

first_ice flag for initial ice formation
flat latent heat flux W/m2

floe_rad_l lower bounds for FSD size bins (radius) m
floe_rad_c centers of FSD size bins (radius) m
floe_binwidth width of FSD size bins (radius) m
floediam effective floe diameter for lateral melt

300. m

floeshape floe shape constant for lateral melt 0.66
flux_bio all biogeochemistry fluxes passed to ocean
flux_bio_ai all biogeochemistry fluxes passed to ocean, grid cell

mean
flw incoming longwave radiation W/m2

flwout outgoing longwave radiation W/m2

formdrag ∙ calculate form drag
fpond fresh water flux to ponds kg/m2/s
fr_resp bgc respiration fraction 0.05
frain rainfall rate kg/m2/s
frazil frazil ice growth m
fresh fresh water flux to ocean kg/m2/s
fresh_ai grid-box-mean fresh water flux (fresh) kg/m2/s

continues on next page
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frz_onset day of year that freezing begins
frzmlt freezing/melting potential W/m2

frzmlt_init freezing/melting potential at beginning of time step W/m2

frzmlt_max maximum magnitude of freezing/melting potential
1000. W/m2

frzpnd ∙ Stefan refreezing of melt ponds ‘hlid’
fsalt net salt flux to ocean kg/m2/s
fsalt_ai grid-box-mean salt flux to ocean (fsalt) kg/m2/s
fsens sensible heat flux W/m2

fsnow snowfall rate kg/m2/s
fsnowrdg snow fraction that survives in ridging 0.5
fsurf(n)(_f) net surface heat flux excluding fcondtop W/m2

fsw incoming shortwave radiation W/m2

fswabs total absorbed shortwave radiation W/m2

fswfac scaling factor to adjust ice quantities for updated data
fswint shortwave absorbed in ice interior W/m2

fswpenl shortwave penetrating through ice layers W/m2

fswthru shortwave penetrating to ocean W/m2

fswthru_vdr visible direct shortwave penetrating to ocean W/m2

fswthru_vdf visible diffuse shortwave penetrating to ocean W/m2

fswthru_idr near IR direct shortwave penetrating to ocean W/m2

fswthru_idf near IR diffuse shortwave penetrating to ocean W/m2

fswthru_ai grid-box-mean shortwave penetrating to ocean
(fswthru)

W/m2

fyear current data year
fyear_final last data year
fyear_init ∙ initial data year
G
gravit gravitational acceleration 9.80616 m/s2
grow_net specific biogeochemistry growth rate per grid cell s −1

Gstar piecewise-linear ridging participation function param-
eter

0.15

H
H2_16O_ocn concentration of H2_16O isotope in ocean kg/kg
H2_18O_ocn concentration of H2_18O isotope in ocean kg/kg
HDO_ocn concentration of HDO isotope in ocean kg/kg
hfrazilmin minimum thickness of new frazil ice 0.05 m
hi_min minimum ice thickness for thinnest ice category m
hi_ssl ice surface scattering layer thickness 0.05 m
hicen ice thickness in category n m
highfreq ∙ high-frequency atmo coupling F
hin_old ice thickness prior to growth/melt m
hin_max category thickness limits m
history_format turns on netcdf history output if set to ‘nc’
hmix ocean mixed layer depth

20. m

hour hour of the year
continues on next page
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hp0 pond depth at which shortwave transition to bare ice
occurs

0.2 m

hp1 ∙ critical ice lid thickness for topo ponds (dEdd) 0.01 m
hpmin minimum melt pond depth (shortwave) 0.005 m
hpondn melt pond depth m
hs_min minimum thickness for which 𝑇𝑠 is computed 1.×10−4 m
hs0 ∙ snow depth at which transition to ice occurs (dEdd)
hs1 ∙ snow depth of transition to pond ice 0.03 m
hs_ssl snow surface scattering layer thickness 0.04 m
Hstar determines mean thickness of ridged ice

25. m

I
i0vis fraction of penetrating visible solar radiation 0.70
lateral_flux_type ∙ laterally flux ice or open water into grid cell when

closing
ice_ic ∙ choice of initial conditions
ice_stdout unit number for standard output
ice_stderr unit number for standard error output
ice_ref_salinity reference salinity for ice–ocean exchanges

4. ppt

iceruf ice surface roughness 5.×10−4 m
iceruf_ocn under-ice roughness 0.03 m
idate the date at the end of the current time step (yyyymmdd)
idate0 initial date
igrid interface points for vertical bio grid
int_kind definition of an 4-byte integer selected_int_kind(6)
int8_kind definition of an 8-byte integer selected_int_kind(13)
istep local step counter for time loop
istep0 ∙ number of steps taken in previous run 0
istep1 total number of steps at current time step
Iswabs shortwave radiation absorbed in ice layers W/m2

J
K
kalg ∙ absorption coefficient for algae
kappav visible extinction coefficient in ice,

wavelength<700nm
1.4 m−1

kcatbound ∙ category boundary formula
kg_to_g kg to g conversion factor

1000.

kice thermal conductivity of fresh ice ([6]) 2.03 W/m/deg
kitd ∙ type of itd conversions (0 = delta function, 1 = linear

remap)
1

krdg_partic ∙ ridging participation function 1
krdg_redist ∙ ridging redistribution function 1
krdgn mean ridge thickness per thickness of ridging ice
ksno thermal conductivity of snow 0.30 W/m/deg
kstrength ∙ ice stength formulation (1= [57], 0 = [21]) 1

continues on next page
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ktherm ∙ thermodynamic formulation (-1 none, 1 = [6], 2 =
mushy)

L
l_brine flag for brine pocket effects
l_mpond_fresh ∙ if true, retain (topo) pond water until ponds drain
Lfresh latent heat of melting of fresh ice = Lsub - Lvap J/kg
lhcoef transfer coefficient for latent heat
lmask_n(s) northern (southern) hemisphere mask
log_kind definition of a logical variable kind(.true.)
Lsub latent heat of sublimation for fresh water 2.835× 106 J/kg
Lvap latent heat of vaporization for fresh water 2.501× 106 J/kg
M
m_to_cm meters to cm conversion

100.

m1 constant for lateral melt rate 1.6×10−6 m/s deg−𝑚2

m2 constant for lateral melt rate 1.36
m2_to_km2 m2 to km2 conversion 1×10−6

max_blocks maximum number of blocks per processor
max_ntrcr maximum number of tracers available 5
maxraft maximum thickness of ice that rafts

1. m

mday day of the month
meltb basal ice melt m
meltl lateral ice melt m
melts snow melt m
meltt top ice melt m
min_salin threshold for brine pockets 0.1 ppt
mlt_onset day of year that surface melt begins
month the month number
monthp previous month number
mps_to_cmpdy m per s to cm per day conversion 8.64×106
mu_rdg ∙ e-folding scale of ridged ice
N
n_aero number of aerosol species
n_iso number of water isotope species
natmiter ∙ number of atmo boundary layer iterations 5
nbtrcr number of biology tracers
ncat number of ice categories 5
ndtd ∙ number of dynamics/advection steps under thermo 1
new_day flag for beginning new day
new_hour flag for beginning new hour
new_month flag for beginning new month
new_year flag for beginning new year
nfreq number of wave frequency bins 25
nfsd number of floe size categories 12
nhlat northern latitude of artificial mask edge 30∘S
nilyr number of ice layers in each category 7

continues on next page
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nit nitrate concentration mmol/m3

nlt_bgc_[chem] ocean sources and sinks for biogeochemistry
nml_filename namelist file name
npt ∙ total number of time steps (dt)
nslyr number of snow layers in each category
nspint number of solar spectral intervals
nt_<trcr> tracer index
ntrcr number of tracers
nu_diag unit number for diagnostics output file
nu_dump unit number for dump file for restarting
nu_forcing unit number for forcing data file
nu_nml unit number for namelist input file
nu_restart unit number for restart input file
nu_rst_pointer unit number for pointer to latest restart file
nx(y)_block total number of gridpoints on block in x(y) direction
nyr year number
O
ocean_bio concentrations of bgc constituents in the ocean
oceanmixed_ice ∙ if true, use internal ocean mixed layer
ocn_data_format ∙ format of ocean forcing files
ocn_data_type ∙ source of ocean surface data
omega angular velocity of Earth 7.292×10−5 rad/s
opening rate of ice opening due to divergence and shear 1/s
P
p001 1/1000
p01 1/100
p025 1/40
p027 1/36
p05 1/20
p055 1/18
p1 1/10
p111 1/9
p15 15/100
p166 1/6
p2 1/5
p222 2/9
p25 1/4
p333 1/3
p4 2/5
p5 1/2
p52083 25/48
p5625m -9/16
p6 3/5
p666 2/3
p75 3/4
phi_c_slow_mode ∙ critical liquid fraction
phi_i_mushy ∙ solid fraction at lower boundary
phi_sk skeletal layer porosity
phi_snow ∙ snow porosity for brine height tracer

continues on next page
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pi 𝜋
pi2 2𝜋
pih 𝜋/2
piq 𝜋/4
pndaspect ∙ aspect ratio of pond changes (depth:area) 0.8
potT atmospheric potential temperature K
PP_net total primary productivity per grid cell mg C/m2/s
precip_units ∙ liquid precipitation data units
print_points ∙ if true, print point data F
Pstar ice strength parameter 2.75×104N/m2

puny a small positive number 1×10−11

Q
Qa specific humidity at 10 m kg/kg
Qa_iso water isotope specific humidity at 10 m kg/kg
qdp deep ocean heat flux W/m2

qqqice for saturated specific humidity over ice 1.16378×107kg/m3

qqqocn for saturated specific humidity over ocean 6.275724×106kg/m3

Qref 2m atmospheric reference specific humidity kg/kg
Qref_iso 2m atmospheric water isotope reference specific hu-

midity
kg/kg

R
R_C2N algal carbon to nitrate factor

7. mole/mole

R_gC2molC mg/mmol carbon 12.01 mg/mole
R_chl2N algal chlorophyll to nitrate factor

3. mg/mmol

R_ice ∙ parameter for Delta-Eddington ice albedo
R_pnd ∙ parameter for Delta-Eddington pond albedo
R_S2N algal silicate to nitrate factor 0.03 mole/mole
R_snw ∙ parameter for Delta-Eddington snow albedo
r16_kind definition of quad precision se-

lected_real_kind(33,4931)
Rac_rapid_mode ∙ critical Rayleigh number 10
rdg_conv convergence for ridging 1/s
rdg_shear shear for ridging 1/s
real_kind definition of single precision real selected_real_kind(6)
refindx refractive index of sea ice 1.310
restart ∙ if true, initialize using restart file instead of defaults T
restart_age ∙ if true, read age restart file
restart_bgc ∙ if true, read bgc restart file
restart_dir ∙ path to restart/dump files
restart_file ∙ restart file prefix
restart_format history files are read/written in binary or netcdf format

if set to ‘bin’ or ‘nc’ respectively
bin

restart_[tracer] ∙ if true, read tracer restart file
restore_bgc ∙ if true, restore nitrate/silicate to data
restore_ice ∙ if true, restore ice state along lateral boundaries

continues on next page
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restore_ocn ∙ restore sst to data
rfracmin ∙ minimum melt water fraction added to ponds 0.15
rfracmax ∙ maximum melt water fraction added to ponds 1.0
rhoa air density kg/m3

rhofresh density of fresh water 1000.0 kg/m3

rhoi density of ice
917. kg/m3

rhos density of snow
330. kg/m3

rhosi average sea ice density (for hbrine tracer)
940. kg/m3

rhow density of seawater
1026. kg/m3

rnilyr real(nlyr)
rside fraction of ice that melts laterally
rsnw_fresh freshly fallen snow grain radius

100. × 10−6 m

rsnw_mlt ∙ melting snow grain radius
1000. × 10−6 m

rsnw_nonmelt nonmelting snow grain radius
500. × 10−6 m

rsnw_sig standard deviation of snow grain radius
250. × 10−6 m

S
salinz ice salinity profile ppt
saltflux_option constant or prognostic salinity fluxes constant
saltmax max salinity, at ice base ([6]) 3.2 ppt
scale_factor scaling factor for shortwave radiation components
sec seconds elasped into idate
secday number of seconds in a day

86400.

shcoef transfer coefficient for sensible heat
shear strain rate II component 1/s
shlat southern latitude of artificial mask edge 30∘N
shortwave ∙ flag for shortwave parameterization (‘ccsm3’ or

‘dEdd’)
sil silicate concentration mmol/m3

sk_l skeletal layer thickness 0.03 m
snowage_drdt0 snowage table 3D data for drdt0 (10^-6 m/hr)
snowage_kappa snowage table 3D data for kappa (10^-6 m)
snowage_rhos snowage table dimension data for rhos (kg/m^3)

continues on next page
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snowage_T snowage table dimension data for temperature (deg K)
snowage_tau snowage table 3D data for tau (10^-6 m)
snowage_Tgrd snowage table dimension data for temp gradient (deg

K/m)
snoice snow-ice formation m
snowpatch length scale for parameterizing nonuniform snow cov-

erage
0.02 m

skl_bgc ∙ biogeochemistry on/off
spval special value (single precision) 1030

spval_dbl special value (double precision) 1030

ss_tltx(y) sea surface in the x(y) direction m/m
sss sea surface salinity ppt
sst sea surface temperature C
Sswabs shortwave radiation absorbed in snow layers W/m2

stefan-boltzmann Stefan-Boltzmann constant 5.67×10−8 W/m2K4

stop_now if 1, end program execution
strairx(y) stress on ice by air in the x(y)-direction (centered in U

cell)
N/m2

strairx(y)T stress on ice by air, x(y)-direction (centered in T cell) N/m2

strax(y) wind stress components from data N/m2

strength ice strength N/m
stress12 internal ice stress, 𝜎12 N/m
stressm internal ice stress, 𝜎11 − 𝜎22 N/m
stressp internal ice stress, 𝜎11 + 𝜎22 N/m
strintx(y) divergence of internal ice stress, x(y) N/m2

strocnx(y) ice–ocean stress in the x(y)-direction (U-cell) N/m2

strocnx(y)T ice–ocean stress, x(y)-dir. (T-cell) N/m2

strtltx(y) surface stress due to sea surface slope N/m2

swidf incoming shortwave radiation, near IR, diffuse W/m2

swidr incoming shortwave radiation, near IR, direct W/m2

swvdf incoming shortwave radiation, visible, diffuse W/m2

swvdr incoming shortwave radiation, visible, direct W/m2

sw_redist option to redistribute shortwave .false.
sw_frac fraction of redistributed shortwave 0.9
sw_dtemp temperature threshold from melting for redistributed

shortwave
0.02

T
Tair air temperature at 10 m K
tday absolute day number
Tf freezing temperature C
Tffresh freezing temp of fresh ice 273.15 K
tfrz_option ∙ form of ocean freezing temperature
thickness_ocn_layer1 thickness of first ocean level 2.0 m
thinS minimum ice thickness for brine tracer
time total elapsed time s
time_forc time of last forcing update s
Timelt melting temperature of ice top surface

0. C

continues on next page
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tscale_pnd_drain mushy pond macroscopic drainage timescale 10 days
TLAT latitude of cell center radians
Tliquidus_max maximum liquidus temperature of mush

0. C

TLON longitude of cell center radians
tmask land/boundary mask, thickness (T-cell)
tmass total mass of ice and snow kg/m2

Tmin minimum allowed internal temperature -100. C
Tmltz melting temperature profile of ice
Tocnfrz temperature of constant freezing point parameterization C
tr_aero ∙ if true, use aerosol tracers
tr_iso ∙ if true, use water isotope tracers
tr_bgc_[tracer] ∙ if true, use biogeochemistry tracers
tr_brine ∙ if true, use brine height tracer
tr_FY ∙ if true, use first-year area tracer
tr_iage ∙ if true, use ice age tracer
tr_lvl ∙ if true, use level ice area and volume tracers
tr_pond_lvl ∙ if true, use level-ice melt pond scheme
tr_pond_topo ∙ if true, use topo melt pond scheme
trcr ice tracers
trcr_depend tracer dependency on basic state variables
Tref 2m atmospheric reference temperature K
trestore ∙ restoring time scale days
Tsf_errmax max allowed 𝑇s𝑓 error (thermodynamics) 5.×10−4deg
Tsfc(n) temperature of ice/snow top surface (in category n) C
Tsmelt melting temperature of snow top surface

0. C

TTTice for saturated specific humidity over ice 5897.8 K
TTTocn for saturated specific humidity over ocean 5107.4 K
U
uatm wind velocity in the x direction m/s
umin min wind speed for turbulent fluxes

1. m/s

uocn ocean current in the x-direction m/s
update_ocn_f ∙ if true, include frazil ice fluxes in ocean flux fields
use_leap_years ∙ if true, include leap days
ustar_min ∙ minimum friction velocity under ice
uvel x-component of ice velocity m/s
V
vatm wind velocity in the y direction m/s
vice(n) volume per unit area of ice (in category n) m
vicen_init ice volume at beginning of timestep m
viscosity_dyn dynamic viscosity of brine 1.79× 10−3 kg/m/s
vocn ocean current in the y-direction m/s
vonkar von Karman constant 0.4
vraftn volume of rafted ice m

continues on next page
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vrdgn volume of ridged ice m
vsno(n) volume per unit area of snow (in category n) m
vvel y-component of ice velocity m/s
W
warmice value for constant albedo parameterization 0.68
warmsno value for constant albedo parameterization 0.77
wave_sig_ht significant height of waves m
wave_spectrum wave spectrum m/ 2/s
wavefreq wave frequencies 1/s
wind wind speed m/s
write_restart if 1, write restart now
X
Y
ycycle ∙ number of years in forcing data cycle
yday day of the year
year_init ∙ the initial year
Z
zlvl atmospheric level height for momentum (and scalars if

zlvs not present)
m

zlvs atmospheric level height for scalars m
zref reference height for stability

10. m

zTrf reference height for 𝑇𝑟𝑒𝑓 , 𝑄𝑟𝑒𝑓 , 𝑈𝑟𝑒𝑓

2. m

zvir gas constant (water vapor)/gas constant (air) - 1 0.606
Deprecated options and
parameters
heat_capacity if true, use salinity-dependent thermodynamics T
kseaice thermal conductivity of ice for zero-layer thermody-

namics
2.0 W/m/deg

ktherm thermodynamic formulation (0 = zero-layer, 1 = [6], 2
= mushy)

tr_pond_cesm if true, use CESM melt pond scheme

6.2 Icepack Tutorial

6.2.1 Learning Goals

In this activity you will clone the Icepack model code from the Consortium GitHub repository to run standalone Icepack
simulations. You will also make namelist changes and code modifications for experiments and make some basic plots.
If you run into issues, contact dbailey@ucar.edu.

Notes:

• Command line text is shown in highlighted boxes.

• When there is the <X> syntax, you need to fill in your personal information (e.g. a URL or username) for that
command but without the angle brackets. Your GitHub and local computer usernames may not be the same, so
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check which you need to use.

• There is a lot of documentation.

– Icepack User Guide, https://cice-consortium-icepack.readthedocs.io/en/latest/index.html

– CICE-Consortium GitHub Usage Guide, https://github.com/CICE-Consortium/About-Us/wiki/
Git-Workflow-Guide

– CICE and Icepack Resources, https://github.com/CICE-Consortium/About-Us/wiki/Resource-Index

6.2.2 Github One-time Configuration

You need to have your own GitHub account before you can start the following activities, and you should have already
forked the Icepack repository. For information about how to set up a GitHub account for the Icepack repository, see
the Consortium documentation here, https://github.com/CICE-Consortium/About-Us/wiki/Git-Workflow-Guide. The
Consortium recommends that you keep your fork’s main branch in sync with the Consortium version and that you always
work on branches. This is all documented in the Git-Workflow-Guide linked above.

Note:

• The workflow guide is oriented toward setting up CICE rather than Icepack, but the same workflow applies to
Icepack standalone. Icepack can be set up and run as an independent model following the same workflow.

6.2.3 Clone Icepack

Clone your Icepack repository fork (use the URL from your fork) to a local sandbox:

mkdir ~/icepack-dirs
cd ~/icepack-dirs
git clone https://github.com/<github-user>/Icepack

If you have completed this correctly there should be an “Icepack” directory in the icepack-dirs directory. This is the
“sandbox” we will be working in locally on your machine.

Move to the Icepack directory and check which branch you are using. This should be main:

cd Icepack
git status

Take a minute to orient yourself to the big picture structure of the directories and files in Icepack. The documentation
has information about the Icepack Directory structure.

Make sure your main is up to date and create a branch. You can also update your fork directly in github by clicking the
Sync fork button. If your code is already up to date, you can skip this step:

git remote --v (Check the origin and NO upstream)
git remote add upstream https://github.com/CICE-Consortium/Icepack
git remote --v (Check upstream has been added)
git pull upstream main
git push origin main
git branch <branchname>
git checkout <branchname>
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6.2.4 Conda and Laptop One-time Configuration

To build and run Icepack on your laptop, you need to install software via conda. Instructions on how to do that can
be found in the Icepack user guide, Porting to Laptop or Personal Computers. If you have a Windows machine, we
recommend using the Ubuntu Linux application, https://ubuntu.com/desktop/wsl. Make sure to follow the instructions
for installing miniconda. If your laptop has a conda environment already installed, you will still need to activate the
icepack environment, and you may need to do so using the recommended miniconda distribution. Return here after
completing section Porting to Laptop or Personal Computers in the documentation. After installing miniconda, the
main steps are:

cd ~/icepack-dirs/Icepack
conda env create -f configuration/scripts/machines/environment.yml
conda activate icepack

Before you can run Icepack, you have to set up a directory structure and download the input and forcing datasets:

mkdir -p ~/icepack-dirs/runs ~/icepack-dirs/input ~/icepack-dirs/baseline
cd ~/icepack-dirs/input
curl -O https://zenodo.org/records/3728287/files/Icepack_data-20200326.tar.gz
tar -xzf Icepack_data-20200326.tar.gz

You can also run Icepack on an external machine that is supported by the Consortium or to which you have ported the
code. In this case, you do not need to port to your laptop.

6.2.5 Set Up an Icepack Simulation

Use the online Icepack documentation and in particular the Quick Start and Running Icepack sections as guidance and
for details on the command line settings:

cd ~/icepack-dirs
mkdir cases
cd ~/Icepack
./icepack.setup --case ~/icepack-dirs/cases/icepack_test0 --mach <machine> --env <myenv>

Notes:

• If you are doing this in the conda environment, the machine is “conda”.

• Similarly, the <myenv> variable is set to the compiler on your machine. For the conda environment, this is
“macos” or “linux”.

The setup script creates a case consistent with the machine and other defined settings under ~/icepack-dirs/cases/ with
the name you selected (icepack_test0). The case directory will contain build and run scripts, a namelist file, and other
necessary files. Once the case is set up any of these files can be manually edited to refine the desired configuration.

Move to the new case directory and examine the settings:

cd ~/icepack-dirs/cases/icepack_test0

Open the icepack.settings file and look at it briefly. Note the ICE_CASEDIR (it should match this directory) and
the ICE_RUNDIR (where the model will be run and output created). Now look at the default namelist settings in
icepack_in.

Build the code:
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./icepack.build

The build script basically runs gmake under the covers, but there are a number of other tasks that are handled by the
script to make the build more robust. If the build is successful you will see the message “COMPILE SUCCESSFUL”
at the bottom of the screen. You can also check the README.case file to check the status.

Submit the job. The submit script just submits the run scripts. Look at both icepack.run and icepack.submit files to
see more details. The out-of-the-box run has default settings for the physics and other options. You can have a look at
icepack_in and icepack.settings to review those settings. Then:

./icepack.submit

If the run is successful, you will see the message “ICEPACK COMPLETED SUCCESSFULLY” in the icepack run log
file. Note that this job runs quickly - you are running a column model with four grid cells!

Look at the output! Go to the ICE_RUNDIR where output was created. A successful model integration will create
ice_diag.* files and a file in the “restart” directory called “iced.2016-01-01-00000”. The Icepack documentation has
more information about Model output.

Follow the documentation to create some plots of the output using the tools provided with Icepack (Test Plotting). The
conda icepack environment must be activated, if it isn’t already:

cd ~/icepack-dirs/Icepack/configuration/scripts/tests/
conda activate icepack
./timeseries.csh ~/icepack-dirs/runs/icepack_test0/ice_diag.full_ITD

Note that you can run the plotting script on any of the four ice_diag.* files. The .png files are created in the
ICE_RUNDIR directory. Open the files:

cd ~/icepack-dirs/runs/icepack_test0/
open <figurename>.png

Or use your file browser to navigate to the directory and double click on the images.

Questions to think about while looking at the output.

• What time period does an out-of-the-box run cover?

• What are the differences between the full_ITD plots and the icefree plots (or any other combination of the
ice_diag.* output files)? Which fields are the same? Which are different? Why would this be?

• What happens to ice area and ice thickness around October 1, 2015? Why do you see this signal?

• How does your output compare to the sample output provided for this release? (hint: see the wiki!)

Take a step back and think about all the directories and files you have created. The Icepack “sandbox” was cloned from
GitHub and has the actual Icepack code.

• There is a particular case directory for building and launching the code, and some output (e.g. job log) are copied.

• There is a particular run directory for each case. This is where the model is run and big files are found.
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6.2.6 Set Up a Longer Run

Once you have had success with the previous step, you can run another, longer experiment to practice some basic
changes for Icepack. Go back to your Icepack directory:

cd ~/icepack-dirs/Icepack/

You need to set up a new out-of-the-box case (icepack_test1):

./icepack.setup --case ~/icepack-dirs/cases/icepack_test1 --mach <machine> --env <myenv>

Go into the cases/icepack_test1 directory, and build the case. Change the following namelist settings in icepack_in,

npt = 8760

How long is this setting the model to run? Change this to run for 10 years (hint: The timestep is one hour, and there
are 24 steps per day, and 365 days per year).

Details about namelist options are in the documentation (Case Settings, Model Namelist, and CPPs).

Submit the job. Check the output and think about the following:

• Over what dates did the model run this time?

• What date would the model restart from?

6.2.7 Modify a physics option

Set up another case:

./icepack.setup --case ~/icepack-dirs/cases/icepack_test2 --mach <machine> --env <myenv>

Build the code.

Change the thermodynamics option from ktherm = 2 to ktherm = 1 in icepack_in, and set sw_redist = .true. The intent
here is to change the namelist option for the current experiment in the case directory. Think about what would happen
if you changed icepack_in in the source code before creating the case instead (hint: this experiment should work the
same, but what about future experiments?).

Submit the job. Have a look at the output.

• What is different compared to your first run?

• What happens if sw_redist = .false. with ktherm = 1? Why?

6.2.8 Change a Parameter in the Fortran Code

Set up another case:

./icepack.setup --case ~/icepack-dirs/cases/icepack_test3 --mach <machine> --env <myenv>

Change to the source code directory:

cd columnphysics

Edit icepack_mechred.F90 to change the line

fsnowrdg = p5 , & ! snow fraction that survives in ridging
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to

fsnowrdg = c1 , & ! snow fraction that survives in ridging

Build the code and submit the job.

• What is different about this run?

• What do you think the fsnowrdg parameter is doing here?

Revert your code changes:

cd ~/Icepack
git status
git checkout columnphysics/icepack_mechred.F90
git status
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