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CHAPTER

ONE

INTRODUCTION - CICE

1.1 About CICE

CICE is a computationally efficient model for simulating the growth, melting, and movement of polar sea ice. Designed
as one component of coupled atmosphere-ocean-land-ice global climate models, today’s CICE model is the outcome
of more than two decades of effort led by scientists at Los Alamos National Laboratory. The current version of the
model has been enhanced greatly through collaborations with members of the community.

CICE has several interacting components: a model of ice dynamics, which predicts the velocity field of the ice pack
based on a model of the material strength of the ice; a transport model that describes advection of the areal concentra-
tion, ice volumes and other state variables; and a vertical physics package, called “Icepack”, which includes mechanical,
thermodynamic, and biogeochemical models to compute thickness changes and the internal evolution of the hydrolog-
ical ice-brine ecosystem. When coupled with other earth system model components, routines external to the CICE
model prepare and execute data exchanges with an external “flux coupler”.

Icepack is implemented in CICE as a git submodule, and it is documented at https://cice-consortium-icepack.
readthedocs.io/en/main/index.html. Development and testing of CICE and Icepack may be done together, but the
repositories are independent. This document describes the remainder of the CICE model. The CICE code is available
from https://github.com/CICE-Consortium/CICE.

The standard standalone CICE test configuration uses a 3 degree grid with atmospheric data from 1997, available at
https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data. A 1-degree configuration and data are also avail-
able, along with some idealized configurations. The data files are designed only for testing the code, not for use in
production runs or as observational data. Please do not publish results based on these data sets.

The CICE model can run serially or in parallel, and the CICE software package includes tests for various configurations.
MPI is used for message passing between processors, and OpenMP threading is available.

Major changes with each CICE release (https://github.com/CICE-Consortium/CICE/releases) will be detailed with the
included release notes. Enhancements and bug fixes made to CICE since the last numbered release can be found on
the CICE wiki (https://github.com/CICE-Consortium/CICE/wiki/CICE-Recent-changes). Please cite any use of the
CICE code. More information can be found at Citing the CICE code.

This document uses the following text conventions: Variable names used in the code are typewritten. Subroutine
names are given in italic. File and directory names are in boldface. A comprehensive Index of primary variables and
parameters, including glossary of symbols with many of their values, appears at the end of this guide.
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1.2 Quick Start

Clone the model from the CICE-Consortium repository:

git clone --recurse-submodules https://github.com/CICE-Consortium/CICE

Instructions for working with Git and GitHub with CICE (and Icepack) can be found in the CICE Git Workflow Guide.

You will probably have to download some input data, see the CICE wiki or Forcing data.

Software requirements are noted in this Software Requirements section.

Porting information can be found in the Porting section. A special porting section for personal computers is in the
Porting to Laptops or Personal Computers section.

From your main CICE directory, execute:

./cice.setup -c ~/mycase1 -g gx3 -m testmachine -s diag1,thread -p 8x1
cd ~/mycase1
./cice.build
./cice.submit

testmachine is a generic machine name included with the cice scripts. The local machine name will have to be
substituted for testmachine and there are working ports for several different machines. If you need to port, see the
Porting section as noted above. Scripts provides more information about how to use the cice.setup and cice.submit
scripts.

Please cite any use of the CICE code. More information can be found at Citing the CICE code.

1.3 Acknowledgements

This work has been completed through the CICE Consortium and its members with funding through the

• Department of Energy (Los Alamos National Laboratory)

• Department of Defense (Navy)

• Department of Commerce (National Oceanic and Atmospheric Administration)

• National Science Foundation (the National Center for Atmospheric Research)

• Environment and Climate Change Canada.

Special thanks are due to participants from these institutions and many others who contributed to previous versions of
CICE or Icepack.

1.4 Citing the CICE code

Each individual release has its own Digital Object Identifier (DOI), e.g. CICE v6.1.2 has DOI 10.5281/zenodo.3888653.
All versions of this lineage (e.g. CICE6) can be cited by using the DOI 10.5281/zenodo.1205674 (https://zenodo.org/
record/1205674). This DOI represents all v6 releases, and will always resolve to the latest one. More information can
be found by following the DOI link to zenodo.

If you use CICE, please cite the version number of the code you are using or modifying.
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If using code from the CICE-Consortium repository main branch that includes modifications that have not yet been
released with a version number, then in addition to the most recent version number, the hash at time of download can
be cited, determined by executing the command git log in your clone.

A hash can also be cited for your own modifications, once they have been committed to a repository branch.

Please also make the CICE Consortium aware of any publications and model use.

1.5 Copyright

© Copyright 2023, Triad National Security LLC. All rights reserved. This software was produced under U.S. Gov-
ernment contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad
National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and dis-
tribute this software. NEITHER THE GOVERNMENT NOR TRIAD NATIONAL SECURITY, LLC MAKES ANY
WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE.
If software is modified to produce derivative works, such modified software should be clearly marked, so as not to
confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Triad National Security, LLC, Los Alamos National Laboratory, LANL, the U.S. Govern-
ment, nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY TRIAD NATIONAL SECURITY, LLC AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL TRIAD NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

1.5. Copyright 3
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CHAPTER

TWO

SCIENCE GUIDE

2.1 Coupling With Other Climate Model Components

The sea ice model exchanges information with the other model components via a flux coupler. CICE has been coupled
into numerous climate models with a variety of coupling techniques. This document is oriented primarily toward the
CESM Flux Coupler [27] from NCAR, the first major climate model to incorporate CICE. The flux coupler was origi-
nally intended to gather state variables from the component models, compute fluxes at the model interfaces, and return
these fluxes to the component models for use in the next integration period, maintaining conservation of momentum,
heat, and fresh water. However, several of these fluxes are now computed in the ice model itself and provided to the flux
coupler for distribution to the other components, for two reasons. First, some of the fluxes depend strongly on the state
of the ice, and vice versa, implying that an implicit, simultaneous determination of the ice state and the surface fluxes
is necessary for consistency and stability. Second, given the various ice types in a single grid cell, it is more efficient
for the ice model to determine the net ice characteristics of the grid cell and provide the resulting fluxes, rather than
passing several values of the state variables for each cell. These considerations are explained in more detail below.

The fluxes and state variables passed between the sea ice model and the CESM flux coupler are listed in the Icepack
documentation. By convention, directional fluxes are positive downward. In CESM, the sea ice model may exchange
coupling fluxes using a different grid than the computational grid. This functionality is activated using the namelist
variable gridcpl_file. Another namelist variable highfreq, allows the high-frequency coupling procedure imple-
mented in the Regional Arctic System Model (RASM). In particular, the relative atmosphere-ice velocity (�⃗�𝑎 − �⃗�) is
used instead of the full atmospheric velocity for computing turbulent fluxes in the atmospheric boundary layer.

The ice fraction 𝑎𝑖 (aice) is the total fractional ice coverage of a grid cell. That is, in each cell,

𝑎𝑖 = 0 if there is no ice
𝑎𝑖 = 1 if there is no open water

0 < 𝑎𝑖 < 1 if there is both ice and open water,

where 𝑎𝑖 is the sum of fractional ice areas for each category of ice. The ice fraction is used by the flux coupler to merge
fluxes from the ice model with fluxes from the other components. For example, the penetrating shortwave radiation
flux, weighted by 𝑎𝑖, is combined with the net shortwave radiation flux through ice-free leads, weighted by (1− 𝑎𝑖), to
obtain the net shortwave flux into the ocean over the entire grid cell. The flux coupler requires the fluxes to be divided
by the total ice area so that the ice and land models are treated identically (land also may occupy less than 100% of an
atmospheric grid cell). These fluxes are “per unit ice area” rather than “per unit grid cell area.”

For CICE run in stand-alone mode (i.e., uncoupled), the AOMIP shortwave and longwave radiation formulas are avail-
able in ice_forcing.F90. In function longwave_rosati_miyakoda, downwelling longwave is computed as

𝐹𝑙𝑤↓ = 𝜖𝜎𝑇 4
𝑠 − 𝜖𝜎𝑇 4

𝑎 (0.39− 0.05𝑒1/2𝑎 )(1− 0.8𝑓𝑐𝑙𝑑)− 4𝜖𝜎𝑇 3
𝑎 (𝑇𝑠 − 𝑇𝑎) (2.1)

where the atmospheric vapor pressure (mb) is 𝑒𝑎 = 1000𝑄𝑎/(0.622 + 0.378𝑄𝑎), 𝜖 = 0.97 is the ocean emissivity, 𝜎
is the Stephan-Boltzman constant, 𝑓𝑐𝑙𝑑 is the cloud cover fraction, and 𝑇𝑎 is the surface air temperature (K). The first
term on the right is upwelling longwave due to the mean (merged) ice and ocean surface temperature, 𝑇𝑠 (K), and the
other terms on the right represent the net longwave radiation patterned after [51].
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The downwelling longwave formula of [44] is also available in function longwave_parkinson_washington:

𝐹𝑙𝑤↓ = 𝜖𝜎𝑇 4
𝑎 (1− 0.261 exp

(︀
−7.77× 10−4𝑇 2

𝑎

)︀
(1 + 0.275𝑓𝑐𝑙𝑑) (2.2)

The value of 𝐹𝑙𝑤↑ is different for each ice thickness category, while 𝐹𝑙𝑤↓ depends on the mean value of surface temper-
ature averaged over all of the thickness categories and open water. The merged ice-ocean temperature in this formula
creates a feedback between longwave radiation and sea surface temperature which is unrealistic, resulting in erroneous
model sensitivities to radiative changes, e.g. other emissivity values, when run in the stand-alone mode. Although
our stand-alone model test configurations are useful for model development purposes, we strongly recommend that
scientific conclusions be drawn using the model only when coupled with other earth system components.

The AOMIP shortwave forcing formula (in subroutine compute_shortwave) incorporates the cloud fraction and humid-
ity through the atmospheric vapor pressure:

𝐹𝑠𝑤↓ =
1353 cos2 𝑍

10−3(cos𝑍 + 2.7)𝑒𝑎 + 1.085 cos𝑍 + 0.1

(︀
1− 0.6𝑓3𝑐𝑙𝑑

)︀
> 0 (2.3)

where cos𝑍 is the cosine of the solar zenith angle.

Many ice models compute the sea surface slope ∇𝐻∘ from geostrophic ocean currents provided by an ocean model or
other data source. In our case, the sea surface height 𝐻∘ is a prognostic variable in POP—the flux coupler can provide
the surface slope directly, rather than inferring it from the currents. (The option of computing it from the currents
is provided in subroutine dyn_prep2.) The sea ice model uses the surface layer currents �⃗�𝑤 to determine the stress
between the ocean and the ice, and subsequently the ice velocity �⃗�. This stress, relative to the ice,

�⃗�𝑤 = 𝑐𝑤𝜌𝑤

⃒⃒⃒
�⃗�𝑤 − �⃗�

⃒⃒⃒ [︁(︁
�⃗�𝑤 − �⃗�

)︁
cos 𝜃 + 𝑘 ×

(︁
�⃗�𝑤 − �⃗�

)︁
sin 𝜃

]︁
(2.4)

is then passed to the flux coupler (relative to the ocean) for use by the ocean model. Here, 𝜃 is the turning angle between
geostrophic and surface currents, 𝑐𝑤 is the ocean drag coefficient, 𝜌𝑤 is the density of seawater, and 𝑘 is the vertical
unit vector. The turning angle is necessary if the top ocean model layers are not able to resolve the Ekman spiral in the
boundary layer. If the top layer is sufficiently thin compared to the typical depth of the Ekman spiral, then 𝜃 = 0 is a
good approximation. Here we assume that the top layer is thin enough.

Please see the Icepack documentation for additional information about atmospheric and oceanic forcing and other data
exchanged between the flux coupler and the sea ice model.

2.2 Fundamental Variables

The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ice, and thick
pressure ridges. The thermodynamic and dynamic properties of the ice pack depend on how much ice lies in each
thickness range. Thus the basic problem in sea ice modeling is to describe the evolution of the ice thickness distribution
(ITD) in time and space.

In addition to an ice thickness distribution, CICE includes an optional capability for a floe size distribution.

Ice floe horizontal size may change through vertical and lateral growth and melting of existing floes, freezing of new ice,
wave breaking, and welding of floes in freezing conditions. The floe size distribution (FSD) is a probability function
that characterizes this variability. The scheme is based on the theoretical framework described in [19] for a joint floe
size and thickness distribution (FSTD), and was implemented by [47] and [48]. The joint floe size distribution is carried
as an area-weighted tracer, defined as the fraction of ice belonging to a given thickness category with lateral floe size
belong to a given floe size class. This development includes interactions between sea ice and ocean surface waves.
Input data on ocean surface wave spectra at a single time is provided for testing, but as with the other CICE datasets,
it should not be used for production runs or publications. It is not recommended to use the FSD without ocean surface
waves.

Additional information about the ITD and joint FSTD for CICE can be found in the Icepack documentation.
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The fundamental equation solved by CICE is [59]:

𝜕𝑔

𝜕𝑡
= −∇ · (𝑔u)− 𝜕

𝜕ℎ
(𝑓𝑔) + 𝜓, (2.5)

where u is the horizontal ice velocity, ∇ = ( 𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ), 𝑓 is the rate of thermodynamic ice growth, 𝜓 is a ridging

redistribution function, and 𝑔 is the ice thickness distribution function. We define 𝑔(x, ℎ, 𝑡) 𝑑ℎ as the fractional area
covered by ice in the thickness range (ℎ, ℎ+ 𝑑ℎ) at a given time and location.

In addition to the fractional ice area, 𝑎𝑖𝑛, we define the following state variables for each category 𝑛. In a change from
previous CICE versions, we no longer carry snow and ice energy as separate variables; instead they and sea ice salinity
are carried as tracers on snow and ice volume.

• 𝑣𝑖𝑛, the ice volume, equal to the product of 𝑎𝑖𝑛 and the ice thickness ℎ𝑖𝑛.

• 𝑣𝑠𝑛, the snow volume, equal to the product of 𝑎𝑖𝑛 and the snow thickness ℎ𝑠𝑛.

• 𝑒𝑖𝑛𝑘, the internal ice energy in layer 𝑘, equal to the product of the ice layer volume, 𝑣𝑖𝑛/𝑁𝑖, and the ice layer
enthalpy, 𝑞𝑖𝑛𝑘. Here 𝑁𝑖 is the total number of ice layers, with a default value 𝑁𝑖 = 4, and 𝑞𝑖𝑛𝑘 is the negative
of the energy needed to melt a unit volume of ice and raise its temperature to 0 ∘C. (NOTE: In the current code,
𝑒𝑖 < 0 and 𝑞𝑖 < 0 with 𝑒𝑖 = 𝑣𝑖𝑞𝑖.)

• 𝑒𝑠𝑛𝑘, the internal snow energy in layer 𝑘, equal to the product of the snow layer volume, 𝑣𝑠𝑛/𝑁𝑠, and the snow
layer enthalpy, 𝑞𝑠𝑛𝑘, where 𝑁𝑠 is the number of snow layers. (Similarly, 𝑒𝑠 < 0 in the code.) CICE allows
multiple snow layers, but the default value is 𝑁𝑠 = 1.

• 𝑆𝑖, the bulk sea ice salt content in layer 𝑘, equal to the product of the ice layer volume and the sea ice salinity
tracer.

• 𝑇𝑠𝑓𝑛, the surface temperature.

Since the fractional area is unitless, the volume variables have units of meters (i.e., m3 of ice or snow per m2 of grid
cell area), and the energy variables have units of J/m2.

The three terms on the right-hand side of Equation (2.5) describe three kinds of sea ice transport: (1) horizontal
transport in (𝑥, 𝑦) space; (2) transport in thickness space ℎ due to thermodynamic growth and melting; and (3) transport
in thickness space ℎ due to ridging and other mechanical processes. We solve the equation by operator splitting in three
stages, with two of the three terms on the right set to zero in each stage. We compute horizontal transport using the
incremental remapping scheme of [10] as adapted for sea ice by [38]; this scheme is discussed in Section Horizontal
Transport. Ice is transported in thickness space using the remapping scheme of [37]. The mechanical redistribution
scheme, based on [59], [52], [16], [12], and [39] is outlined in the Icepack Documentation. To solve the horizontal
transport and ridging equations, we need the ice velocity u, and to compute transport in thickness space, we must know
the the ice growth rate 𝑓 in each thickness category. We use the elastic-viscous-plastic (EVP) ice dynamics scheme of
[21], as modified by [8], [20], [22] and [23], or a new elastic-anisotropic-plastic model [65][63][60] to find the velocity,
as described in Section Dynamics. Finally, we use a thermodynamic model to compute 𝑓 . The order in which these
computations are performed in the code itself was chosen so that quantities sent to the coupler are consistent with each
other and as up-to-date as possible. The Delta-Eddington radiative scheme computes albedo and shortwave components
simultaneously, and in order to have the most up-to-date values available for the coupler at the end of the timestep, the
order of radiation calculations is shifted. Albedo and shortwave components are computed after the ice state has been
modified by both thermodynamics and dynamics, so that they are consistent with the ice area and thickness at the end
of the step when sent to the coupler. However, they are computed using the downwelling shortwave from the beginning
of the timestep. Rather than recompute the albedo and shortwave components at the beginning of the next timestep
using new values of the downwelling shortwave forcing, the shortwave components computed at the end of the last
timestep are scaled for the new forcing.

2.2. Fundamental Variables 7
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2.3 Tracers

The basic conservation equations for ice area fraction 𝑎𝑖𝑛, ice volume 𝑣𝑖𝑛, and snow volume 𝑣𝑠𝑛 for each thickness
category 𝑛 are

𝜕

𝜕𝑡
(𝑎𝑖𝑛) +∇ · (𝑎𝑖𝑛u) = 0, (2.6)

𝜕𝑣𝑖𝑛
𝜕𝑡

+∇ · (𝑣𝑖𝑛u) = 0, (2.7)

𝜕𝑣𝑠𝑛
𝜕𝑡

+∇ · (𝑣𝑠𝑛u) = 0. (2.8)

The ice and snow volumes can be written equivalently in terms of tracers, ice thickness ℎ𝑖𝑛 and snow depth ℎ𝑠𝑛:

𝜕ℎ𝑖𝑛𝑎𝑖𝑛
𝜕𝑡

+∇ · (ℎ𝑖𝑛𝑎𝑖𝑛u) = 0, (2.9)

𝜕ℎ𝑠𝑛𝑎𝑖𝑛
𝜕𝑡

+∇ · (ℎ𝑠𝑛𝑎𝑖𝑛u) = 0. (2.10)

Although we maintain ice and snow volume instead of the thicknesses as state variables in CICE, the tracer form is
used for volume transport (section Horizontal Transport). There are many other tracers available, whose values are
contained in the trcrn array. Their transport equations typically have one of the following three forms

𝜕 (𝑎𝑖𝑛𝑇𝑛)

𝜕𝑡
+∇ · (𝑎𝑖𝑛𝑇𝑛u) = 0, (2.11)

𝜕 (𝑣𝑖𝑛𝑇𝑛)

𝜕𝑡
+∇ · (𝑣𝑖𝑛𝑇𝑛u) = 0, (2.12)

𝜕 (𝑣𝑠𝑛𝑇𝑛)

𝜕𝑡
+∇ · (𝑣𝑠𝑛𝑇𝑛u) = 0. (2.13)

Equation (2.11) describes the transport of surface temperature, whereas Equation (2.12) and Equation (2.13) describe
the transport of ice and snow enthalpy, salt, and passive tracers such as volume-weighted ice age and snow age. Each
tracer field is given an integer index, trcr_depend, which has the value 0, 1, or 2 depending on whether the appropriate
conservation equation is Equation (2.11), Equation (2.12), or Equation (2.13), respectively. The total number of tracers
is 𝑁𝑡𝑟 ≥ 1. Table Tracers provides an overview of available tracers, including the namelist flags that turn them on
and off, and their indices in the tracer arrays. If any of the three explicit pond schemes is on, then tr_pond is true.
Biogeochemistry tracers can be defined in the skeletal layer, dependent on the ice area fraction, or through the full
depth of snow and ice, in which case they utilize the bio grid and can depend on the brine fraction or the ice volume,
if the brine fraction is not in use.

Table 1: Tracer flags and indices
flag num tracers dependency index (CICE grid) index (bio grid)
default 1 aice nt_Tsfc=1
default 1 vice nt_qice
default 1 vsno nt_qsno
default 1 vice nt_sice
tr_iage 1 vice nt_iage
tr_FY 1 aice nt_FY
tr_lvl 2 aice nt_alvl

vice nt_vlvl
tr_pond_lvl 3 aice nt_apnd

apnd nt_vpnd
continues on next page
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Table 1 – continued from previous page
flag num tracers dependency index (CICE grid) index (bio grid)

apnd nt_ipnd
tr_pond_topo 3 aice nt_apnd

apnd nt_vpnd
apnd nt_ipnd

tr_aero n_aero vice, vsno nt_aero
tr_iso n_iso vice, vsno nt_iso
tr_brine vice nt_fbri
tr_fsd nfsd aice nt_fsd
tr_snow nslyr vsno nt_rsnw

nslyr vsno nt_rhos
nslyr vsno nt_smice
nslyr vsno nt_smliq

tr_bgc_N n_algae fbri or (a,v)ice nt_bgc_N nlt_bgc_N
tr_bgc_Nit fbri or (a,v)ice nt_bgc_Nit nlt_bgc_Nit
tr_bgc_C n_doc fbri or (a,v)ice nt_bgc_DOC nlt_bgc_DOC

n_dic fbri or (a,v)ice nt_bgc_DIC nlt_bgc_DIC
tr_bgc_chl n_algae fbri or (a,v)ice nt_bgc_chl nlt_bgc_chl
tr_bgc_Am fbri or (a,v)ice nt_bgc_Am nlt_bgc_Am
tr_bgc_Sil fbri or (a,v)ice nt_bgc_Sil nlt_bgc_Sil
tr_bgc_DMS fbri or (a,v)ice nt_bgc_DMSPp nlt_bgc_DMSPd

fbri or (a,v)ice nt_bgc_DMSPd nlt_bgc_DMSPd
fbri or (a,v)ice nt_bgc_DMS nlt_bgc_DMS

tr_bgc_PON fbri or (a,v)ice nt_bgc_PON nlt_bgc_PON
tr_bgc_DON fbri or (a,v)ice nt_bgc_DON nlt_bgc_DON
tr_bgc_Fe n_fed fbri or (a,v)ice nt_bgc_Fed nlt_bgc_Fed

n_fep fbri or (a,v)ice nt_bgc_Fep nlt_bgc_Fep
tr_bgc_hum fbri or (a,v)ice nt_bgc_hum nlt_bgc_hum
tr_zaero n_zaero fbri or (a,v)ice nt_zaero nlt_zaero

1 fbri nt_zbgc_frac

Users may add any number of additional tracers that are transported conservatively, provided that the dependency
trcr_depend is defined appropriately. See Section Adding Tracers for guidance on adding tracers.

Please see the Icepack documentation for additional information about tracers that depend on other tracers, the floe size
distribution, advanced snow physics, age of the ice, aerosols, water isotopes, brine height, and the sea ice ecosystem.

2.4 Horizontal Transport

We wish to solve the continuity or transport equation (Equation (2.6)) for the fractional ice area in each thickness
category 𝑛. Equation (2.6) describes the conservation of ice area under horizontal transport. It is obtained from
Equation (2.5) by discretizing 𝑔 and neglecting the second and third terms on the right-hand side, which are treated
separately (As described in the Icepack Documentation).

There are similar conservation equations for ice volume (Equation (2.7)), snow volume (Equation (2.8)), ice energy
and snow energy:

𝜕𝑒𝑖𝑛𝑘
𝜕𝑡

+∇ · (𝑒𝑖𝑛𝑘u) = 0, (2.14)

𝜕𝑒𝑠𝑛𝑘
𝜕𝑡

+∇ · (𝑒𝑠𝑛𝑘u) = 0. (2.15)
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By default, ice and snow are assumed to have constant densities, so that volume conservation is equivalent to mass
conservation. Variable-density ice and snow layers can be transported conservatively by defining tracers corresponding
to ice and snow density, as explained in the introductory comments in ice_transport_remap.F90. Prognostic equations
for ice and/or snow density may be included in future model versions but have not yet been implemented.

Two transport schemes are available: upwind and the incremental remapping scheme of [10] as modified for sea ice by
[38].

• The upwind scheme uses velocity points at the East and North face (i.e. 𝑢𝑣𝑒𝑙𝐸 = 𝑢 at the E point and 𝑣𝑣𝑒𝑙𝑁 = 𝑣
at the N point) of a T gridcell. As such, the prognostic C grid velocity components (𝑢𝑣𝑒𝑙𝐸 and 𝑣𝑣𝑒𝑙𝑁 ) can
be passed directly to the upwind transport scheme. If the upwind scheme is used with the B grid, the B grid
velocities, 𝑢𝑣𝑒𝑙𝑈 and 𝑣𝑣𝑒𝑙𝑈 (respectively 𝑢 and 𝑣 at the U point) are interpolated to the E and N points first.
(Note however that the upwind scheme does not transport all potentially available tracers.)

• Remapping is naturally a B-grid transport scheme as the corner (U point) velocity components 𝑢𝑣𝑒𝑙𝑈 and 𝑣𝑣𝑒𝑙𝑈
are used to calculate departure points. Nevertheless, the remapping scheme can also be used with the C grid by
first interpolating 𝑢𝑣𝑒𝑙𝐸 and 𝑣𝑣𝑒𝑙𝑁 to the U points.

The remapping scheme has several desirable features:

• It conserves the quantity being transported (area, volume, or energy).

• It is non-oscillatory; that is, it does not create spurious ripples in the transported fields.

• It preserves tracer monotonicity. That is, it does not create new extrema in the thickness and enthalpy fields; the
values at time 𝑚+ 1 are bounded by the values at time 𝑚.

• It is second-order accurate in space and therefore is much less diffusive than first-order schemes (e.g., upwind).
The accuracy may be reduced locally to first order to preserve monotonicity.

• It is efficient for large numbers of categories or tracers. Much of the work is geometrical and is performed only
once per grid cell instead of being repeated for each quantity being transported.

The time step is limited by the requirement that trajectories projected backward from grid cell corners are confined
to the four surrounding cells; this is what is meant by incremental remapping as opposed to general remapping. This
requirement leads to a CFL-like condition,

max |u|∆𝑡
∆𝑥

≤ 1.

For highly divergent velocity fields the maximum time step must be reduced by a factor of two to ensure that trajectories
do not cross. However, ice velocity fields in climate models usually have small divergences per time step relative to the
grid size.

The remapping algorithm can be summarized as follows:

1. Given mean values of the ice area and tracer fields in each grid cell, construct linear approximations of these
fields. Limit the field gradients to preserve monotonicity.

2. Given ice velocities at grid cell corners, identify departure regions for the fluxes across each cell edge. Divide
these departure regions into triangles and compute the coordinates of the triangle vertices.

3. Integrate the area and tracer fields over the departure triangles to obtain the area, volume, and energy transported
across each cell edge.

4. Given these transports, update the state variables.

Since all scalar fields are transported by the same velocity field, step (2) is done only once per time step. The other
three steps are repeated for each field in each thickness category. These steps are described below.

After the transport calculation, the sum of ice and open water areas within a grid cell may not add up to 1. The
mechanical deformation parameterization in Icepack corrects this issue by ridging the ice and creating open water such
that the ice and open water areas again add up to 1.
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2.4.1 Reconstructing area and tracer fields

First, using the known values of the state variables, the ice area and tracer fields are reconstructed in each grid cell as
linear functions of 𝑥 and 𝑦. For each field we compute the value at the cell center (i.e., at the origin of a 2D Cartesian
coordinate system defined for that grid cell), along with gradients in the 𝑥 and 𝑦 directions. The gradients are limited
to preserve monotonicity. When integrated over a grid cell, the reconstructed fields must have mean values equal to the
known state variables, denoted by �̄� for fractional area, ℎ̃ for thickness, and 𝑞 for enthalpy. The mean values are not,
in general, equal to the values at the cell center. For example, the mean ice area must equal the value at the centroid,
which may not lie at the cell center.

Consider first the fractional ice area, the analog to fluid density 𝜌 in [10]. For each thickness category we construct a
field 𝑎(r) whose mean is �̄�, where r = (𝑥, 𝑦) is the position vector relative to the cell center. That is, we require∫︁

𝐴

𝑎 𝑑𝐴 = �̄� 𝐴, (2.16)

where 𝐴 =
∫︀
𝐴
𝑑𝐴 is the grid cell area. Equation (2.16) is satisfied if 𝑎(r) has the form

𝑎(r) = �̄�+ 𝛼𝑎 ⟨∇𝑎⟩ · (r− r̄), (2.17)

where ⟨∇𝑎⟩ is a centered estimate of the area gradient within the cell, 𝛼𝑎 is a limiting coefficient that enforces mono-
tonicity, and r̄ is the cell centroid:

r̄ =
1

𝐴

∫︁
𝐴

r 𝑑𝐴.

It follows from Equation (2.17) that the ice area at the cell center (r = 0) is

𝑎𝑐 = �̄�− 𝑎𝑥𝑥− 𝑎𝑦𝑦,

where 𝑎𝑥 = 𝛼𝑎(𝜕𝑎/𝜕𝑥) and 𝑎𝑦 = 𝛼𝑎(𝜕𝑎/𝜕𝑦) are the limited gradients in the 𝑥 and 𝑦 directions, respectively, and the
components of r̄, 𝑥 =

∫︀
𝐴
𝑥 𝑑𝐴/𝐴 and 𝑦 =

∫︀
𝐴
𝑦 𝑑𝐴/𝐴, are evaluated using the triangle integration formulas described

in Section Integrating fields. These means, along with higher-order means such as 𝑥2, 𝑥𝑦, and 𝑦2, are computed once
and stored.

Next consider the ice and snow thickness and enthalpy fields. Thickness is analogous to the tracer concentration 𝑇 in
[10], but there is no analog in [10] to the enthalpy. The reconstructed ice or snow thickness ℎ(r) and enthalpy 𝑞(r)
must satisfy ∫︁

𝐴

𝑎 ℎ 𝑑𝐴 = �̄� ℎ̃ 𝐴, (2.18)

∫︁
𝐴

𝑎 ℎ 𝑞 𝑑𝐴 = �̄� ℎ̃ 𝑞 𝐴, (2.19)

where ℎ̃ = ℎ(r̃) is the thickness at the center of ice area, and 𝑞 = 𝑞(r̂) is the enthalpy at the center of ice or snow
volume. Equations (2.18) and (2.19) are satisfied when ℎ(r) and 𝑞(r) are given by

ℎ(r) = ℎ̃+ 𝛼ℎ ⟨∇ℎ⟩ · (r− r̃), (2.20)

𝑞(r) = 𝑞 + 𝛼𝑞 ⟨∇𝑞⟩ · (r− r̂), (2.21)

where 𝛼ℎ and 𝛼𝑞 are limiting coefficients. The center of ice area, r̃, and the center of ice or snow volume, r̂, are given
by

r̃ =
1

�̄� 𝐴

∫︁
𝐴

𝑎 r 𝑑𝐴,
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r̂ =
1

�̄� ℎ̃ 𝐴

∫︁
𝐴

𝑎 ℎ r 𝑑𝐴.

Evaluating the integrals, we find that the components of r̃ are

�̃� =
𝑎𝑐𝑥+ 𝑎𝑥𝑥2 + 𝑎𝑦𝑥𝑦

�̄�
,

𝑦 =
𝑎𝑐𝑦 + 𝑎𝑥𝑥𝑦 + 𝑎𝑦𝑦2

�̄�
,

and the components of r̂ are

�̂� =
𝑐1𝑥+ 𝑐2𝑥2 + 𝑐3𝑥𝑦 + 𝑐4𝑥3 + 𝑐5𝑥2𝑦 + 𝑐6𝑥𝑦2

�̄� ℎ̃
,

𝑦 =
𝑐1𝑦 + 𝑐2𝑥𝑦 + 𝑐3𝑦2 + 𝑐4𝑥2𝑦 + 𝑐5𝑥𝑦2 + 𝑐6𝑦3

�̄� ℎ̃
,

where

𝑐1 ≡ 𝑎𝑐ℎ𝑐,

𝑐2 ≡ 𝑎𝑐ℎ𝑥 + 𝑎𝑥ℎ𝑐,

𝑐3 ≡ 𝑎𝑐ℎ𝑦 + 𝑎𝑦ℎ𝑐,

𝑐4 ≡ 𝑎𝑥ℎ𝑥,

𝑐5 ≡ 𝑎𝑥ℎ𝑦 + 𝑎𝑦ℎ𝑥,

𝑐6 ≡ 𝑎𝑦ℎ𝑦.

From Equation (2.20) and Equation (2.21), the thickness and enthalpy at the cell center are given by

ℎ𝑐 = ℎ̃− ℎ𝑥�̃�− ℎ𝑦𝑦,

𝑞𝑐 = 𝑞 − 𝑞𝑥�̂�− 𝑞𝑦𝑦,

where ℎ𝑥, ℎ𝑦 , 𝑞𝑥 and 𝑞𝑦 are the limited gradients of thickness and enthalpy. The surface temperature is treated the
same way as ice or snow thickness, but it has no associated enthalpy. Tracers obeying conservation equations of the
form Equation (2.12) and Equation (2.13) are treated in analogy to ice and snow enthalpy, respectively.

We preserve monotonicity by van Leer limiting. If 𝜑(𝑖, 𝑗) denotes the mean value of some field in grid cell (𝑖, 𝑗), we
first compute centered gradients of 𝜑 in the 𝑥 and 𝑦 directions, then check whether these gradients give values of 𝜑
within cell (𝑖, 𝑗) that lie outside the range of 𝜑 in the cell and its eight neighbors. Let 𝜑max and 𝜑min be the maximum
and minimum values of 𝜑 over the cell and its neighbors, and let 𝜑max and 𝜑min be the maximum and minimum values
of the reconstructed 𝜑 within the cell. Since the reconstruction is linear, 𝜑max and 𝜑min are located at cell corners. If
𝜑max > 𝜑max or 𝜑min < 𝜑min, we multiply the unlimited gradient by 𝛼 = min(𝛼max, 𝛼min), where

𝛼max = (𝜑max − 𝜑)/(𝜑max − 𝜑),

𝛼min = (𝜑min − 𝜑)/(𝜑min − 𝜑).

Otherwise the gradient need not be limited.

Earlier versions of CICE (through v3.14) computed gradients in physical space. Starting in v4.0, gradients are computed
in a scaled space in which each grid cell has sides of unit length. The origin is at the cell center, and the four vertices are
located at (0.5, 0.5), (-0.5,0.5),(-0.5, -0.5) and (0.5, -0.5). In this coordinate system, several of the above grid-cell-mean
quantities vanish (because they are odd functions of x and/or y), but they have been retained in the code for generality.
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2.4.2 Locating departure triangles

The method for locating departure triangles is discussed in detail by [10]. The basic idea is illustrated in Departure
Region, which shows a shaded quadrilateral departure region whose contents are transported to the target or home grid
cell, labeled 𝐻 . The neighboring grid cells are labeled by compass directions: 𝑁𝑊 , 𝑁 , 𝑁𝐸, 𝑊 , and 𝐸. The four
vectors point along the velocity field at the cell corners, and the departure region is formed by joining the starting
points of these vectors. Instead of integrating over the entire departure region, it is convenient to compute fluxes
across cell edges. We identify departure regions for the north and east edges of each cell, which are also the south
and west edges of neighboring cells. Consider the north edge of the home cell, across which there are fluxes from
the neighboring 𝑁𝑊 and 𝑁 cells. The contributing region from the 𝑁𝑊 cell is a triangle with vertices 𝑎𝑏𝑐, and
that from the 𝑁 cell is a quadrilateral that can be divided into two triangles with vertices 𝑎𝑐𝑑 and 𝑎𝑑𝑒. Focusing on
triangle 𝑎𝑏𝑐, we first determine the coordinates of vertices 𝑏 and 𝑐 relative to the cell corner (vertex 𝑎), using Euclidean
geometry to find vertex 𝑐. Then we translate the three vertices to a coordinate system centered in the 𝑁𝑊 cell. This
translation is needed in order to integrate fields (Section Integrating fields) in the coordinate system where they have
been reconstructed (Section Reconstructing area and tracer fields). Repeating this process for the north and east edges
of each grid cell, we compute the vertices of all the departure triangles associated with each cell edge.

Fig. 1: Departure Region

Figure Departure Region shows that in incremental remapping, conserved quantities are remapped from the shaded
departure region, a quadrilateral formed by connecting the backward trajectories from the four cell corners, to the grid
cell labeled 𝐻 . The region fluxed across the north edge of cell 𝐻 consists of a triangle (𝑎𝑏𝑐) in the 𝑁𝑊 cell and a
quadrilateral (two triangles, 𝑎𝑐𝑑 and 𝑎𝑑𝑒) in the 𝑁 cell.

Figure Triangles, reproduced from [10], shows all possible triangles that can contribute fluxes across the north edge
of a grid cell. There are 20 triangles, which can be organized into five groups of four mutually exclusive triangles as
shown in Triangular Contributions. In this table, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the Cartesian coordinates of the departure
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points relative to the northwest and northeast cell corners, respectively. The departure points are joined by a straight
line that intersects the west edge at (0, 𝑦𝑎) relative to the northwest corner and intersects the east edge at (0, 𝑦𝑏) relative
to the northeast corner. The east cell triangles and selecting conditions are identical except for a rotation through 90
degrees.

Fig. 2: Triangles

Table Triangular Contributions show the evaluation of contributions from the 20 triangles across the north cell edge.
The coordinates 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦𝑎, and 𝑦𝑏 are defined in the text. We define 𝑦1 = 𝑦1 if 𝑥1 > 0, else 𝑦1 = 𝑦𝑎. Similarly,
𝑦2 = 𝑦2 if 𝑥2 < 0, else 𝑦2 = 𝑦𝑏.
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Table 2: Triangular Contributions
Triangle group Triangle label Selecting logical condition
1 NW 𝑦𝑎 > 0 and 𝑦1 ≥ 0 and 𝑥1 < 0

NW1 𝑦𝑎 < 0 and 𝑦1 ≥ 0 and 𝑥1 < 0
W 𝑦𝑎 < 0 and 𝑦1 < 0 and 𝑥1 < 0
W2 𝑦𝑎 > 0 and 𝑦1 < 0 and 𝑥1 < 0

2 NE 𝑦𝑏 > 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
NE1 𝑦𝑏 < 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
E 𝑦𝑏 < 0 and 𝑦2 < 0 and 𝑥2 > 0
E2 𝑦𝑏 > 0 and 𝑦2 < 0 and 𝑥2 > 0

3 W1 𝑦𝑎 < 0 and 𝑦1 ≥ 0 and 𝑥1 < 0
NW2 𝑦𝑎 > 0 and 𝑦1 < 0 and 𝑥1 < 0
E1 𝑦𝑏 < 0 and 𝑦2 ≥ 0 and 𝑥2 > 0
NE2 𝑦𝑏 > 0 and 𝑦2 < 0 and 𝑥2 > 0

4 H1a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 < 0
N1a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 > 0
H1b 𝑦𝑎𝑦𝑏 < 0 and 𝑦1 < 0
N1b 𝑦𝑎𝑦𝑏 < 0 and 𝑦1 > 0

5 H2a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 < 0
N2a 𝑦𝑎𝑦𝑏 ≥ 0 and 𝑦𝑎 + 𝑦𝑏 > 0
H2b 𝑦𝑎𝑦𝑏 < 0 and 𝑦2 < 0
N2b 𝑦𝑎𝑦𝑏 < 0 and 𝑦2 > 0

This scheme was originally designed for rectangular grids. Grid cells in CICE actually lie on the surface of a sphere and
must be projected onto a plane. The projection used in CICE maps each grid cell to a square with sides of unit length.
Departure triangles across a given cell edge are computed in a coordinate system whose origin lies at the midpoint of
the edge and whose vertices are at (-0.5, 0) and (0.5, 0). Intersection points are computed assuming Cartesian geometry
with cell edges meeting at right angles. Let CL and CR denote the left and right vertices, which are joined by line CLR.
Similarly, let DL and DR denote the departure points, which are joined by line DLR. Also, let IL and IR denote the
intersection points (0, 𝑦𝑎) and (0, 𝑦𝑏) respectively, and let IC = (𝑥𝑐, 0) denote the intersection of CLR and DLR. It can
be shown that 𝑦𝑎, 𝑦𝑏, and 𝑥𝑐 are given by

𝑦𝑎 =
𝑥𝐶𝐿(𝑦𝐷𝑀 − 𝑦𝐷𝐿) + 𝑥𝐷𝑀𝑦𝐷𝐿 − 𝑥𝐷𝐿𝑦𝐷𝑀

𝑥𝐷𝑀 − 𝑥𝐷𝐿,

𝑦𝑏 =
𝑥𝐶𝑅(𝑦𝐷𝑅 − 𝑦𝐷𝑀 )− 𝑥𝐷𝑀𝑦𝐷𝑅 + 𝑥𝐷𝑅𝑦𝐷𝑀

𝑥𝐷𝑅 − 𝑥𝐷𝑀 ,

𝑥𝑐 = 𝑥𝐷𝐿 − 𝑦𝐷𝐿

(︂
𝑥𝐷𝑅 − 𝑥𝐷𝐿

𝑦𝐷𝑅 − 𝑦𝐷𝐿

)︂
Each departure triangle is defined by three of the seven points (CL, CR, DL, DR, IL, IR, IC).

Given a 2D velocity field u, the divergence ∇ · u in a given grid cell can be computed from the local velocities and
written in terms of fluxes across each cell edge:

∇ · u =
1

𝐴

[︂(︂
𝑢𝑁𝐸 + 𝑢𝑆𝐸

2

)︂
𝐿𝐸 +

(︂
𝑢𝑁𝑊 + 𝑢𝑆𝑊

2

)︂
𝐿𝑊 +

(︂
𝑢𝑁𝐸 + 𝑢𝑁𝑊

2

)︂
𝐿𝑁 +

(︂
𝑢𝑆𝐸 + 𝑢𝑆𝑊

2

)︂
𝐿𝑆

]︂
,

(2.22)
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where 𝐿 is an edge length and the indices 𝑁,𝑆,𝐸,𝑊 denote compass directions. Equation (2.22) is equivalent to the
divergence computed in the EVP dynamics (Section Dynamics). In general, the fluxes in this expression are not equal to
those implied by the above scheme for locating departure regions. For some applications it may be desirable to prescribe
the divergence by prescribing the area of the departure region for each edge. This can be done by setting l_fixed_area
= true in ice_transport_driver.F90 and passing the prescribed departure areas (edgearea_e and edgearea_n) into the
remapping routine. An extra triangle is then constructed for each departure region to ensure that the total area is equal
to the prescribed value. This idea was suggested and first implemented by Mats Bentsen of the Nansen Environmental
and Remote Sensing Center (Norway), who applied an earlier version of the CICE remapping scheme to an ocean
model. The implementation in CICE is somewhat more general, allowing for departure regions lying on both sides of
a cell edge. The extra triangle is constrained to lie in one but not both of the grid cells that share the edge.

The default value for the B grid is l_fixed_area = false. However, idealized tests with the C grid have shown that
prognostic fields such as sea ice concentration exhibit a checkerboard pattern with l_fixed_area = false. The logical
l_fixed_area is therefore set to true when using the C grid. The edge areas edgearea_e and edgearea_n are in this case
calculated with the C grid velocity components 𝑢𝑣𝑒𝑙𝐸 and 𝑣𝑣𝑒𝑙𝑁 .

We made one other change in the scheme of [10] for locating triangles. In their paper, departure points are defined by
projecting cell corner velocities directly backward. That is,

xD = −u∆𝑡, (2.23)

where x𝐷 is the location of the departure point relative to the cell corner and u is the velocity at the corner. This
approximation is only first-order accurate. Accuracy can be improved by estimating the velocity at the midpoint of the
trajectory.

2.4.3 Integrating fields

Next, we integrate the reconstructed fields over the departure triangles to find the total area, volume, and energy trans-
ported across each cell edge. Area transports are easy to compute since the area is linear in 𝑥 and 𝑦. Given a triangle
with vertices xi = (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {1, 2, 3}, the triangle area is

𝐴𝑇 =
1

2
|(𝑥2 − 𝑥1)(𝑦3 − 𝑦1)− (𝑦2 − 𝑦1)(𝑥3 − 𝑥1)| .

The integral 𝐹𝑎 of any linear function 𝑓(r) over a triangle is given by

𝐹𝑎 = 𝐴𝑇 𝑓(x0), (2.24)

where x0 = (𝑥0, 𝑦0) is the triangle midpoint,

x0 =
1

3

3∑︁
𝑖=1

x𝑖.

To compute the area transport, we evaluate the area at the midpoint,

𝑎(x0) = 𝑎𝑐 + 𝑎𝑥𝑥0 + 𝑎𝑦𝑦0,

and multiply by 𝐴𝑇 . By convention, northward and eastward transport is positive, while southward and westward
transport is negative.

Equation (2.24) cannot be used for volume transport, because the reconstructed volumes are quadratic functions of
position. (They are products of two linear functions, area and thickness.) The integral of a quadratic polynomial over
a triangle requires function evaluations at three points,

𝐹ℎ =
𝐴𝑇

3

3∑︁
𝑖=1

𝑓 (x′
𝑖) , (2.25)
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where x′
𝑖 = (x0 + x𝑖)/2 are points lying halfway between the midpoint and the three vertices. [10] use this formula

to compute transports of the product 𝜌 𝑇 , which is analogous to ice volume. Equation (2.25) does not work for ice and
snow energies, which are cubic functions—products of area, thickness, and enthalpy. Integrals of a cubic polynomial
over a triangle can be evaluated using a four-point formula [56]:

𝐹𝑞 = 𝐴𝑇

[︃
− 9

16
𝑓(x0) +

25

48

3∑︁
𝑖=1

𝑓(x′′
𝑖 )

]︃
(2.26)

where xi
′′ = (3x0 + 2x𝑖)/5. To evaluate functions at specific points, we must compute many products of the form

𝑎(x)ℎ(x) and 𝑎(x)ℎ(x) 𝑞(x), where each term in the product is the sum of a cell-center value and two displacement
terms. In the code, the computation is sped up by storing some sums that are used repeatedly.

2.4.4 Updating state variables

Finally, we compute new values of the state variables in each ice category and grid cell. The new fractional ice areas
𝑎′𝑖𝑛(𝑖, 𝑗) are given by

𝑎′𝑖𝑛(𝑖, 𝑗) = 𝑎𝑖𝑛(𝑖, 𝑗) +
𝐹𝑎𝐸(𝑖− 1, 𝑗)− 𝐹𝑎𝐸(𝑖, 𝑗) + 𝐹𝑎𝑁 (𝑖, 𝑗 − 1)− 𝐹𝑎𝑁 (𝑖, 𝑗)

𝐴(𝑖, 𝑗)
(2.27)

where 𝐹𝑎𝐸(𝑖, 𝑗) and 𝐹𝑎𝑁 (𝑖, 𝑗) are the area transports across the east and north edges, respectively, of cell (𝑖, 𝑗), and
𝐴(𝑖, 𝑗) is the grid cell area. All transports added to one cell are subtracted from a neighboring cell; thus Equation
(2.27) conserves total ice area.

The new ice volumes and energies are computed analogously. New thicknesses are given by the ratio of volume to area,
and enthalpies by the ratio of energy to volume. Tracer monotonicity is ensured because

ℎ′ =

∫︀
𝐴
𝑎 ℎ 𝑑𝐴∫︀

𝐴
𝑎 𝑑𝐴

,

𝑞′ =

∫︀
𝐴
𝑎 ℎ 𝑞 𝑑𝐴∫︀

𝐴
𝑎 ℎ 𝑑𝐴

,

where ℎ′ and 𝑞′ are the new-time thickness and enthalpy, given by integrating the old-time ice area, volume, and energy
over a Lagrangian departure region with area 𝐴. That is, the new-time thickness and enthalpy are weighted averages
over old-time values, with non-negative weights 𝑎 and 𝑎ℎ. Thus the new-time values must lie between the maximum
and minimum of the old-time values.

2.5 Dynamics

The force balance per unit area in the ice pack is given by a two-dimensional momentum equation [15], obtained by
integrating the 3D equation through the thickness of the ice in the vertical direction:

𝑚
𝜕u

𝜕𝑡
= ∇ · 𝜎 + �⃗�𝑎 + �⃗�𝑤 + �⃗�𝑏 − 𝑘 ×𝑚𝑓u−𝑚𝑔∇𝐻∘, (2.28)

where 𝑚 is the combined mass of ice and snow per unit area and �⃗�𝑎 and �⃗�𝑤 are wind and ocean stresses, respectively.
The term �⃗�𝑏 is a seabed stress (also referred to as basal stress) that represents the grounding of pressure ridges in shallow
water [34]. The mechanical properties of the ice are represented by the internal stress tensor 𝜎𝑖𝑗 . The other two terms
on the right hand side are stresses due to Coriolis effects and the sea surface slope. The parameterization for the wind
and ice–ocean stress terms must contain the ice concentration as a multiplicative factor to be consistent with the formal
theory of free drift in low ice concentration regions. A careful explanation of the issue and its continuum solution is
provided in [23] and [8].

2.5. Dynamics 17



CICE Documentation

For clarity, the two components of Equation (2.28) are

𝑚
𝜕𝑢

𝜕𝑡
=
𝜕𝜎1𝑗
𝜕𝑥𝑗

+ 𝜏𝑎𝑥 + 𝑎𝑖𝑐𝑤𝜌𝑤 |U𝑤 − u| [(𝑈𝑤 − 𝑢) cos 𝜃 − (𝑉𝑤 − 𝑣) sin 𝜃]− 𝐶𝑏𝑢+𝑚𝑓𝑣 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥
,

𝑚
𝜕𝑣

𝜕𝑡
=
𝜕𝜎2𝑗
𝜕𝑥𝑗

+ 𝜏𝑎𝑦 + 𝑎𝑖𝑐𝑤𝜌𝑤 |U𝑤 − u| [(𝑈𝑤 − 𝑢) sin 𝜃 + (𝑉𝑤 − 𝑣) cos 𝜃]− 𝐶𝑏𝑣 −𝑚𝑓𝑢−𝑚𝑔
𝜕𝐻∘

𝜕𝑦
.

(2.29)

On the B grid, the equations above are solved at the U point for the collocated u and v components (see figure Schematic
of CICE B-grid.). On the C grid, however, the two components are not collocated: the u component is at the E point
while the v component is at the N point.

The B grid spatial discretization is based on a variational method described in [21] and [22]. A bilinear discretiza-
tion is used for the stress terms 𝜕𝜎𝑖𝑗/𝜕𝑥𝑗 , which enables the discrete equations to be derived from the continuous
equations written in curvilinear coordinates. In this manner, metric terms associated with the curvature of the grid are
incorporated into the discretization explicitly. Details pertaining to the spatial discretization are found in [22]

On the C grid, however, a finite difference approach is used for the spatial discretization. The C grid discretization is
based on [7], [6] and [29].

There are different approaches in the CICE code for representing sea ice rheology and for solving the sea ice momentum
equation: the viscous-plastic (VP) rheology [15] with an implicit method, the elastic-viscous-plastic (EVP) [21] model
which represents a modification of the VP model, the revised EVP (rEVP) approach [35][6] and the elastic-anisotropic-
plastic (EAP) model which explicitly accounts for the sub-continuum anisotropy of the sea ice cover [65][63]. If
kdyn = 1 in the namelist then the EVP model is used (module ice_dyn_evp.F90), while kdyn = 2 is associated with the
EAP model (ice_dyn_eap.F90), and kdyn = 3 is associated with the VP model (ice_dyn_vp.F90). The rEVP approach
can be used by setting kdyn = 1 and revised_evp = true in the namelist.

At times scales associated with the wind forcing, the EVP model reduces to the VP model while the EAP model reduces
to the anisotropic rheology described in detail in [65][60]. At shorter time scales the adjustment process takes place
in both models by a numerically more efficient elastic wave mechanism. While retaining the essential physics, this
elastic wave modification leads to a fully explicit numerical scheme which greatly improves the model’s computational
efficiency. The rEVP is also a fully explicit scheme which by construction should lead to the VP solution.

The EVP sea ice dynamics model is thoroughly documented in [21], [20], [22] and [23] and the EAP dynamics in [60].
Simulation results and performance of the EVP and EAP models have been compared with the VP model and with
each other in realistic simulations of the Arctic respectively in [25] and [60].

The EVP numerical implementation in this code release is that of [22] and [23], with revisions to the numerical solver
as in [6]. Details about the rEVP solver can be found in [35], [6], [28] and [30]. The implementation of the EAP sea
ice dynamics into CICE is described in detail in [60].

The VP solver implementation mostly follows [33], with FGMRES [53] as the linear solver and GMRES as the pre-
conditioner. Note that the VP solver has not yet been tested on the tx1 grid.

The EVP, rEVP, EAP and VP approaches are all available with the B grid. However, at the moment, only the EVP and
rEVP schemes are possible with the C grid.

Here we summarize the equations and direct the reader to the above references for details.
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2.5.1 Momentum time stepping

EVP time discretization and solution

The momentum equation is discretized in time as follows, for the classic EVP approach. In the code, vrel =

𝑎𝑖𝑐𝑤𝜌𝑤
⃒⃒
U𝑤 − u𝑘

⃒⃒
and 𝐶𝑏 = 𝑇𝑏

(︁√︀
(𝑢𝑘)2 + (𝑣𝑘)2 + 𝑢0

)︁−1

, where 𝑘 denotes the subcycling step. The following
equations illustrate the time discretization and define some of the other variables used in the code.(︂

𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
⏟  ⏞  

cca

𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃)⏟  ⏞  
ccb

𝑣𝑙 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗⏟  ⏞  
strintx

+ 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥⏟  ⏞  
forcex

+ vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃)⏟  ⏞  
waterx

+
𝑚

∆𝑡𝑒
𝑢𝑘,

(2.30)

(𝑚𝑓 + vrel sin 𝜃)⏟  ⏞  
ccb

𝑢𝑙 +

(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
⏟  ⏞  

cca

𝑣𝑘+1 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗⏟  ⏞  
strinty

+ 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦⏟  ⏞  
forcey

+ vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃)⏟  ⏞  
watery

+
𝑚

∆𝑡𝑒
𝑣𝑘,

(2.31)

where vrel · waterx(y) = taux(y) and the definitions of 𝑢𝑙 and 𝑣𝑙 vary depending on the grid.

As 𝑢 and 𝑣 are collocated on the B grid, 𝑢𝑙 and 𝑣𝑙 are respectively 𝑢𝑘+1 and 𝑣𝑘+1 such that this system of equations
can be solved as follows. Define

�̂� = 𝐹𝑢 + 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥
+ vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃) +

𝑚

∆𝑡𝑒
𝑢𝑘 (2.32)

𝑣 = 𝐹𝑣 + 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦
+ vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃) +

𝑚

∆𝑡𝑒
𝑣𝑘, (2.33)

where F = ∇ · 𝜎𝑘+1. Then(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃) 𝑣𝑘+1 = �̂�

(𝑚𝑓 + vrel sin 𝜃)𝑢𝑘+1 +

(︂
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏

)︂
𝑣𝑘+1 = 𝑣.

Solving simultaneously for 𝑢𝑘+1 and 𝑣𝑘+1,

𝑢𝑘+1 =
𝑎�̂�+ 𝑏𝑣

𝑎2 + 𝑏2

𝑣𝑘+1 =
𝑎𝑣 − 𝑏�̂�

𝑎2 + 𝑏2
,

where

𝑎 =
𝑚

∆𝑡𝑒
+ vrel cos 𝜃 + 𝐶𝑏 (2.34)

𝑏 = 𝑚𝑓 + vrel sin 𝜃. (2.35)

Note that the time discretization and solution method for the EAP is exactly the same as for the B grid EVP. More
details on the EAP model are given in Section Elastic-Anisotropic-Plastic.

However, on the C grid, 𝑢 and 𝑣 are not collocated. When solving the 𝑢 momentum equation for 𝑢𝑘+1 (at the E point),
𝑣𝑙 = 𝑣𝑘𝑖𝑛𝑡 where 𝑣𝑘𝑖𝑛𝑡 is 𝑣𝑘 from the surrounding N points interpolated to the E point. The same approach is used for
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the 𝑣 momentum equation. With this explicit treatment of the off-diagonal terms [29], 𝑢𝑘+1 and 𝑣𝑘+1 are obtained by
solving

𝑢𝑘+1 =
�̂�+ 𝑏𝑣𝑘𝑖𝑛𝑡

𝑎

𝑣𝑘+1 =
𝑣 − 𝑏𝑢𝑘𝑖𝑛𝑡

𝑎
.

Revised EVP time discretization and solution

The revised EVP approach is based on a pseudo-time iterative scheme [35], [6], [28]. By construction, the revised
EVP approach should lead to the VP solution (given the right numerical parameters and a sufficiently large number
of iterations). To do so, the inertial term is formulated such that it matches the backward Euler approach of implicit
solvers and there is an additional term for the pseudo-time iteration. Hence, with the revised approach, the discretized
momentum equations (2.30) and (2.31) become

𝛽*(𝑢𝑘+1 − 𝑢𝑘)

∆𝑡𝑒
+
𝑚(𝑢𝑘+1 − 𝑢𝑛)

∆𝑡
+ (vrel cos 𝜃 + 𝐶𝑏)𝑢

𝑘+1−(𝑚𝑓 + vrel sin 𝜃)𝑣𝑙 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗
+ 𝜏𝑎𝑥

−𝑚𝑔
𝜕𝐻∘

𝜕𝑥
+ vrel(𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃),

(2.36)

𝛽*(𝑣𝑘+1 − 𝑣𝑘)

∆𝑡𝑒
+
𝑚(𝑣𝑘+1 − 𝑣𝑛)

∆𝑡
+ (vrel cos 𝜃 + 𝐶𝑏)𝑣

𝑘+1+(𝑚𝑓 + vrel sin 𝜃)𝑢𝑙 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗
+ 𝜏𝑎𝑦

−𝑚𝑔
𝜕𝐻∘

𝜕𝑦
+ vrel(𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃),

(2.37)

where 𝛽* is a numerical parameter and 𝑢𝑛, 𝑣𝑛 are the components of the previous time level solution. With 𝛽 =
𝛽*∆𝑡 (𝑚∆𝑡𝑒)

−1 [6], these equations can be written as

(︁
(𝛽 + 1)

𝑚

∆𝑡
+ vrel cos 𝜃 + 𝐶𝑏

)︁
⏟  ⏞  

cca

𝑢𝑘+1 − (𝑚𝑓 + vrel sin 𝜃)⏟  ⏞  
ccb

𝑣𝑙 =
𝜕𝜎𝑘+1

1𝑗

𝜕𝑥𝑗⏟  ⏞  
strintx

+ 𝜏𝑎𝑥 −𝑚𝑔
𝜕𝐻∘

𝜕𝑥⏟  ⏞  
forcex

+ vrel (𝑈𝑤 cos 𝜃 − 𝑉𝑤 sin 𝜃)⏟  ⏞  
waterx

+
𝑚

∆𝑡
(𝛽𝑢𝑘 + 𝑢𝑛),

(2.38)

(𝑚𝑓 + vrel sin 𝜃)⏟  ⏞  
ccb

𝑢𝑙 +
(︁
(𝛽 + 1)

𝑚

∆𝑡
+ vrel cos 𝜃 + 𝐶𝑏

)︁
⏟  ⏞  

cca

𝑣𝑘+1 =
𝜕𝜎𝑘+1

2𝑗

𝜕𝑥𝑗⏟  ⏞  
strinty

+ 𝜏𝑎𝑦 −𝑚𝑔
𝜕𝐻∘

𝜕𝑦⏟  ⏞  
forcey

+ vrel (𝑈𝑤 sin 𝜃 + 𝑉𝑤 cos 𝜃)⏟  ⏞  
watery

+
𝑚

∆𝑡
(𝛽𝑣𝑘 + 𝑣𝑛),

(2.39)

At this point, the solutions 𝑢𝑘+1 and 𝑣𝑘+1 for the B or the C grids are obtained in the same manner as for the standard
EVP approach (see Section EVP time discretization and solution for details).

20 Chapter 2. Science Guide



CICE Documentation

Implicit (VP) time discretization and solution

In the VP approach, equation (2.29) is discretized implicitly using a Backward Euler approach, and stresses are not
computed explicitly:

𝑚
(𝑢𝑛 − 𝑢𝑛−1)

∆𝑡
=
𝜕𝜎𝑛

1𝑗

𝜕𝑥𝑗
− 𝜏𝑛𝑤,𝑥 + 𝜏𝑛𝑏,𝑥 +𝑚𝑓𝑣𝑛 + 𝑟𝑛𝑥 ,

𝑚
(𝑣𝑛 − 𝑣𝑛−1)

∆𝑡
=
𝜕𝜎𝑛

2𝑗

𝜕𝑥𝑗
− 𝜏𝑛𝑤,𝑦 + 𝜏𝑛𝑏,𝑦 −𝑚𝑓𝑢𝑛 + 𝑟𝑛𝑦

(2.40)

where 𝑟 = (𝑟𝑥, 𝑟𝑦) contains all terms that do not depend on the velocities 𝑢𝑛, 𝑣𝑛 (namely the sea surface tilt and the
wind stress). As the water drag, seabed stress and rheology term depend on the velocity field, the only unknowns in
equation (2.40) are 𝑢𝑛 and 𝑣𝑛.

Once discretized in space, equation (2.40) leads to a system of 𝑁 nonlinear equations with 𝑁 unknowns that can be
concisely written as

A(u)u = b(u), (2.41)

where A is an𝑁 ×𝑁 matrix and u and b are vectors of size𝑁 . Note that we have dropped the time level index 𝑛. The
vector u is formed by stacking first the 𝑢 components, followed by the 𝑣 components of the discretized ice velocity.
The vector b is a function of the velocity vector u because of the water and seabed stress terms as well as parts of the
rheology term that depend non-linearly on u.

The nonlinear system (2.41) is solved using a Picard iteration method. Starting from a previous iterate u𝑘−1, the
nonlinear system is linearized by substituting u𝑘−1 in the expression of the matrix A and the vector b:

A(u𝑘−1)u𝑘 = b(u𝑘−1) (2.42)

The resulting linear system is solved using the Flexible Generalized Minimum RESidual (FGMRES, [53]) method and
this process is repeated iteratively.

The maximum number of Picard iterations can be set using the namelist flag maxits_nonlin. The relative tolerance
for the Picard solver can be set using the namelist flag reltol_nonlin. The Picard iterative process stops when
‖u𝑘‖2 < reltol_nonlin · ‖u0‖2 or when maxits_nonlin is reached.

Parameters for the FGMRES linear solver and the preconditioner can be controlled using additional namelist flags (see
dynamics_nml).

2.5.2 Surface stress terms

The formulation for the wind stress is described in Icepack Documentation. Below, some details about the ice-ocean
stress and the seabed stress are given.

Ice-Ocean stress

At the end of each (thermodynamic) time step, the ice–ocean stress must be constructed from taux(y) and the terms
containing vrel on the left hand side of the equations.

The Hibler-Bryan form for the ice-ocean stress [17] is included in ice_dyn_shared.F90 but is currently commented
out, pending further testing.
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Seabed stress

CICE includes two options for calculating the seabed stress, i.e. the term in the momentum equation that repre-
sents the interaction between grounded ice keels and the seabed. The seabed stress can be activated by setting
seabed_stress to true in the namelist. The seabed stress (or basal stress) parameterization of [34] is chosen if
seabed_stress_method = LKD while the approach based on the probability of contact between the ice and the seabed
is used if seabed_stress_method = probabilistic.

For both parameterizations, the components of the seabed stress are expressed as 𝜏𝑏𝑥 = 𝐶𝑏𝑢 and 𝜏𝑏𝑦 = 𝐶𝑏𝑣, where 𝐶𝑏

is a seabed stress coefficient.

The two parameterizations differ in their calculation of the 𝐶𝑏 coefficients.

Note that the user must provide a bathymetry field for using these grounding schemes. It is suggested to have a
bathymetry field with water depths larger than 5 m that represents well shallow water (less than 30 m) regions such as
the Laptev Sea and the East Siberian Sea.

Seabed stress based on linear keel draft (LKD)

This parameterization for the seabed stress is described in [34]. It assumes that the largest keel draft varies linearly
with the mean thickness in a grid cell (i.e. sea ice volume). The 𝐶𝑏 coefficients are expressed as

𝐶𝑏 = 𝑘2 max[0, (ℎ− ℎ𝑐)]𝑒
−𝛼𝑏*(1−𝑎)(

√︀
𝑢2 + 𝑣2 + 𝑢0)

−1, (2.43)

where 𝑘2 determines the maximum seabed stress that can be sustained by the grounded parameterized ridge(s), 𝑢0 is a
small residual velocity and 𝛼𝑏 is a parameter to ensure that the seabed stress quickly drops when the ice concentration
is smaller than 1. In the code, 𝑘2 max[0, (ℎ− ℎ𝑐)]𝑒

−𝛼𝑏*(1−𝑎) is defined as 𝑇𝑏.

On the B grid, the quantities ℎ, 𝑎 and ℎ𝑐 are calculated at the U point and are referred to as ℎ𝑢, 𝑎𝑢 and ℎ𝑐𝑢. They are
respectively given by

ℎ𝑢 = max[𝑣𝑖(𝑖, 𝑗), 𝑣𝑖(𝑖+ 1, 𝑗), 𝑣𝑖(𝑖, 𝑗 + 1), 𝑣𝑖(𝑖+ 1, 𝑗 + 1)], (2.44)

𝑎𝑢 = max[𝑎𝑖(𝑖, 𝑗), 𝑎𝑖(𝑖+ 1, 𝑗), 𝑎𝑖(𝑖, 𝑗 + 1), 𝑎𝑖(𝑖+ 1, 𝑗 + 1)], (2.45)

ℎ𝑐𝑢 = 𝑎𝑢ℎ𝑤𝑢/𝑘1, (2.46)

where the 𝑎𝑖 and 𝑣𝑖 are the total ice concentrations and ice volumes around the U point 𝑖, 𝑗 and 𝑘1 is a parameter
that defines the critical ice thickness ℎ𝑐𝑢 at which the parameterized ridge(s) reaches the seafloor for a water depth
ℎ𝑤𝑢 = min[ℎ𝑤(𝑖, 𝑗), ℎ𝑤(𝑖+1, 𝑗), ℎ𝑤(𝑖, 𝑗+1), ℎ𝑤(𝑖+1, 𝑗+1)]. Given the formulation of 𝐶𝑏 in equation (2.43), the
seabed stress components are non-zero only when ℎ𝑢 > ℎ𝑐𝑢.

As 𝑢 and 𝑣 are not collocated on the C grid, 𝑇𝑏 is calculated at E and N points. For example, at the E point, ℎ𝑒, 𝑎𝑒 and
ℎ𝑐𝑒 are respectively

ℎ𝑒 = max[𝑣𝑖(𝑖, 𝑗), 𝑣𝑖(𝑖+ 1, 𝑗)], (2.47)

𝑎𝑒 = max[𝑎𝑖(𝑖, 𝑗), 𝑎𝑖(𝑖+ 1, 𝑗)], (2.48)

ℎ𝑐𝑒 = 𝑎𝑒ℎ𝑤𝑒/𝑘1, (2.49)

where ℎ𝑤𝑒 = min[ℎ𝑤(𝑖, 𝑗), ℎ𝑤(𝑖+ 1, 𝑗)]. Similar calculations are done at the N points.

To prevent unrealistic grounding, 𝑇𝑏 is set to zero when ℎ𝑤𝑢 is larger than 30 m (same idea on the C grid depending
on ℎ𝑤𝑒 and ℎ𝑤𝑛). This maximum value is chosen based on observations of large keels in the Arctic Ocean [1].

The maximum seabed stress depends on the weight of the ridge above hydrostatic balance and the value of 𝑘2. It is,
however, the parameter 𝑘1 that has the most notable impact on the simulated extent of landfast ice. The value of 𝑘1 can
be changed at runtime using the namelist variable k1.

Seabed stress based on probabilistic approach
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This more sophisticated grounding parameterization computes the seabed stress based on the probability of contact
between the ice thickness distribution (ITD) and the seabed [11]. Multi-thickness category models such as CICE
typically use a few thickness categories (5-10). This crude representation of the ITD does not resolve the tail of the
ITD, which is crucial for grounding events.

To represent the tail of the distribution, the simulated ITD is converted to a positively skewed probability function
𝑓(𝑥) with 𝑥 the sea ice thickness. The mean and variance are set equal to the ones of the original ITD. A log-normal
distribution is used for 𝑓(𝑥).

It is assumed that the bathymetry 𝑦 (at the ‘t’ point) follows a normal distribution 𝑏(𝑦). The mean of 𝑏(𝑦) comes from
the user’s bathymetry field and the standard deviation 𝜎𝑏 is currently fixed to 2.5 m. Two possible improvements would
be to specify a distribution based on high resolution bathymetry data and to take into account variations of the water
depth due to changes in the sea surface height.

Assuming hydrostatic balance and neglecting the impact of snow, the draft of floating ice of thickness 𝑥 is 𝐷(𝑥) =
𝜌𝑖𝑥/𝜌𝑤 where 𝜌𝑖 is the sea ice density. Hence, the probability of contact (𝑃𝑐) between the ITD and the seabed is given
by

𝑃𝑐 =

∫︁ inf

0

∫︁ 𝐷(𝑥)

0

𝑔(𝑥)𝑏(𝑦)𝑑𝑦𝑑𝑥.

𝑇𝑏 is first calculated at the T point (referred to as 𝑇𝑏𝑡). 𝑇𝑏𝑡 depends on the weight of the ridge in excess of hydrostatic
balance. The parameterization first calculates

𝑇 *
𝑏𝑡 = 𝜇𝑠𝑔

∫︁ inf

0

∫︁ 𝐷(𝑥)

0

(𝜌𝑖𝑥− 𝜌𝑤𝑦)𝑔(𝑥)𝑏(𝑦)𝑑𝑦𝑑𝑥, (2.50)

and then obtains 𝑇𝑏𝑡 by multiplying 𝑇 *
𝑏𝑡 by 𝑒−𝛼𝑏*(1−𝑎𝑖) (similar to what is done for seabed_stress_method = LKD).

To calculate 𝑇 *
𝑏𝑡 in equation (2.50), 𝑓(𝑥) and 𝑏(𝑦) are discretized using many small categories (100). 𝑓(𝑥) is discretized

between 0 and 50 m while 𝑏(𝑦) is truncated at plus and minus three 𝜎𝑏. 𝑓(𝑥) is also modified by setting it to zero after
a certain percentile of the log-normal distribution. This percentile, which is currently set to 99.7%, notably affects the
simulation of landfast ice and is used as a tuning parameter. Its impact is similar to the one of the parameter 𝑘1 for the
LKD method.

On the B grid, 𝑇𝑏 at the U point is calculated from the T point values around it according to

𝑇𝑏𝑢 = max[𝑇𝑏𝑡(𝑖, 𝑗), 𝑇𝑏𝑡(𝑖+ 1, 𝑗), 𝑇𝑏𝑡(𝑖, 𝑗 + 1), 𝑇𝑏𝑡(𝑖+ 1, 𝑗 + 1)]. (2.51)

Following again the LKD method, the seabed stress coefficients are finally expressed as

𝐶𝑏 = 𝑇𝑏𝑢(
√︀
𝑢2 + 𝑣2 + 𝑢0)

−1. (2.52)

On the C grid, 𝑇𝑏 is needs to be calculated at the E and N points. 𝑇𝑏𝑒 and 𝑇𝑏𝑛 are respectively given by

𝑇𝑏𝑒 = max[𝑇𝑏𝑡(𝑖, 𝑗), 𝑇𝑏𝑡(𝑖+ 1, 𝑗)], (2.53)

𝑇𝑏𝑛 = max[𝑇𝑏𝑡(𝑖, 𝑗), 𝑇𝑏𝑡(𝑖, 𝑗 + 1)]. (2.54)

The 𝐶𝑏 are different at the E and N points and are respectively 𝑇𝑏𝑒(
√︀
𝑢2 + 𝑣2𝑖𝑛𝑡+𝑢0)

−1 and 𝑇𝑏𝑛(
√︀
𝑢2𝑖𝑛𝑡 + 𝑣2+𝑢0)

−1

where 𝑣𝑖𝑛𝑡 (𝑢𝑖𝑛𝑡) is 𝑣 ( 𝑢) interpolated to the E (N) point.
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2.5.3 Rheology

For convenience we formulate the stress tensor 𝜎 in terms of 𝜎1 = 𝜎11 + 𝜎22 (stressp), 𝜎2 = 𝜎11 − 𝜎22 (stressm),
and introduce the divergence, 𝐷𝐷, and the horizontal tension and shearing strain rates, 𝐷𝑇 and 𝐷𝑆 respectively:

𝐷𝐷 = �̇�11 + �̇�22,

𝐷𝑇 = �̇�11 − �̇�22,

𝐷𝑆 = 2�̇�12,

where

�̇�𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
Note that 𝜎1 and 𝜎2 are not to be confused with the normalized principal stresses, 𝜎𝑛,1 and 𝜎𝑛,2 (sig1 and sig2),
which are defined as:

𝜎𝑛,1, 𝜎𝑛,2 =
1

𝑃

(︃
𝜎1
2

±
√︂(︁𝜎2

2

)︁2
+ 𝜎2

12

)︃

where 𝑃 is the ice strength.

In addition to the normalized principal stresses, CICE can output the internal ice pressure which is an important field
to support navigation in ice-infested water. The internal ice pressure (sigP) is the average of the normal stresses (𝜎11,
𝜎22) multiplied by −1 and is therefore simply equal to −𝜎1/2.

Viscous-Plastic

The VP constitutive law is given by

𝜎𝑖𝑗 = 2𝜂�̇�𝑖𝑗 + (𝜁 − 𝜂)𝐷𝐷 − 𝑃𝑅
𝛿𝑖𝑗
2

(2.55)

where 𝜂 and 𝜁 are the bulk and shear viscosities and 𝑃𝑅 is a “replacement pressure” (see [13], for example), which
serves to prevent residual ice motion due to spatial variations of the ice strength 𝑃 when the strain rates are exactly
zero.

An elliptical yield curve is used, with the viscosities given by

𝜁 =
𝑃 (1 + 𝑘𝑡)

2∆
, (2.56)

𝜂 = 𝑒−2
𝑔 𝜁, (2.57)

where

∆ =

[︃
𝐷2

𝐷 +
𝑒2𝑓
𝑒4𝑔

(︀
𝐷2

𝑇 +𝐷2
𝑆

)︀]︃1/2
. (2.58)

When the deformation ∆ tends toward zero, the viscosities tend toward infinity. To avoid this issue, ∆ needs to be
limited and is replaced by ∆* in equation (2.56). Two methods for limiting ∆ (or for capping the viscosities) are
available in the code. If the namelist parameter capping_method is set to max, ∆* = 𝑚𝑎𝑥(∆,∆𝑚𝑖𝑛) [15] while with
capping_method set to sum, the smoother formulation ∆* = (∆+∆𝑚𝑖𝑛) of [31] is used.

The ice strength 𝑃 is a function of the ice thickness distribution as described in the Icepack Documentation.
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Two other modifications to the standard VP rheology of [15] are available. First, following the approach of [3] (see
also [34]), the elliptical yield curve can be modified such that the ice has isotropic tensile strength. The tensile strength
is expressed as a fraction of 𝑃 , that is 𝑘𝑡𝑃 where 𝑘𝑡 should be set to a value between 0 and 1 (this can be changed at
runtime with the namelist parameter Ktens).

Second, while 𝑒𝑓 is the ratio of the major and minor axes of the elliptical yield curve, the parameter 𝑒𝑔 characterizes the
plastic potential, i.e. another ellipse that decouples the flow rule from the yield curve ([46]). 𝑒𝑓 and 𝑒𝑔 are respectively
called e_yieldcurve and e_plasticpot in the code and can be set in the namelist. The plastic potential can lead to
more realistic fracture angles between linear kinematic features. [46] suggest to set 𝑒𝑓 to a value larger than 1 and to
have 𝑒𝑔 < 𝑒𝑓 .

By default, the namelist parameters are set to 𝑒𝑓 = 𝑒𝑔 = 2 and 𝑘𝑡 = 0 which correspond to the standard VP rheology.

There are four options in the code for solving the sea ice momentum equation with a VP formulation: the standard
EVP approach, a 1d EVP solver, the revised EVP approach and an implicit Picard solver. The choice of the capping
method for the viscosities and the modifications to the yield curve and to the flow rule described above are available
for these four different solution methods. Note that only the EVP and revised EVP methods are currently available if
one chooses the C grid.

Elastic-Viscous-Plastic

In the EVP model the internal stress tensor is determined from a regularized version of the VP constitutive law (2.55).
The constitutive law is therefore

1

𝐸

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝜁

+
𝑃𝑅

2𝜁
= 𝐷𝐷, (2.59)

1

𝐸

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝜂

= 𝐷𝑇 , (2.60)

1

𝐸

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝜂

=
1

2
𝐷𝑆 , (2.61)

Viscosities are updated during the subcycling, so that the entire dynamics component is subcycled within the time step,
and the elastic parameter 𝐸 is defined in terms of a damping timescale 𝑇 for elastic waves, ∆𝑡𝑒 < 𝑇 < ∆𝑡, as

𝐸 =
𝜁

𝑇
,

where 𝑇 = 𝐸∘∆𝑡 and 𝐸∘ (elasticDamp) is a tunable parameter less than one. Including the modification proposed by
[6] for equations (2.60) and (2.61) in order to improve numerical convergence, the stress equations become

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

+
𝑃𝑅

2𝑇
=

𝜁

𝑇
𝐷𝐷,

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝑇

=
𝜂

𝑇
𝐷𝑇 ,

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝑇

=
𝜂

2𝑇
𝐷𝑆 .

Once discretized in time, these last three equations are written as

(𝜎𝑘+1
1 − 𝜎𝑘

1 )

∆𝑡𝑒
+
𝜎𝑘+1
1

2𝑇
+
𝑃 𝑘
𝑅

2𝑇
=

𝜁𝑘

𝑇
𝐷𝑘

𝐷,

(𝜎𝑘+1
2 − 𝜎𝑘

2 )

∆𝑡𝑒
+
𝜎𝑘+1
2

2𝑇
=

𝜂𝑘

𝑇
𝐷𝑘

𝑇 ,

(𝜎𝑘+1
12 − 𝜎𝑘

12)

∆𝑡𝑒
+
𝜎𝑘+1
12

2𝑇
=

𝜂𝑘

2𝑇
𝐷𝑘

𝑆 ,

(2.62)
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where 𝑘 denotes again the subcycling step. All coefficients on the left-hand side are constant except for 𝑃𝑅. This
modification compensates for the decreased efficiency of including the viscosity terms in the subcycling. Choices
of the parameters used to define 𝐸, 𝑇 and ∆𝑡𝑒 are discussed in Sections Revised EVP approach and Choosing an
appropriate time step.

On the B grid, the stresses 𝜎1, 𝜎2 and 𝜎12 are collocated at the U point. To calculate these stresses, the viscosities 𝜁
and 𝜂 and the replacement pressure 𝑃𝑅 are also defined at the U point.

However, on the C grid, 𝜎1 and 𝜎2 are collocated at the T point while 𝜎12 is defined at the U point. During a subcycling
step, 𝜁, 𝜂 and 𝑃𝑅 are first calculated at the T point. To do so, ∆ given by equation (2.58) is calculated following the
approach of [6] (see also [29] for details). With this approach,𝐷2

𝑆 at the T point is obtained by calculating𝐷2
𝑆 at the U

points and interpolating these values to the T point. As 𝜎12 is calculated at the U point, 𝜂 also needs to be computed as
these locations. If visc_method in the namelist is set to avg_zeta (the default value), 𝜂 at the U point is obtained by
interpolating T point values to this location. This corresponds to the approach used by [6] and the one associated with
the C1 configuration of [29]. On the other hand, if visc_method = avg_strength, the strength 𝑃 calculated at T
points is interpolated to the U point and ∆ is calculated at the U point in order to obtain 𝜂 following equations (2.56)
and (2.57). This latter approach is the one used in the C2 configuration of [29].

1d EVP solver

The standard EVP solver iterates hundreds of times, where each iteration includes a communication through MPI and a
limited number of calculations. This limits how much the solver can be optimized as the speed is primarily determined
by the communication. The 1d EVP solver avoids the communication by utilizing shared memory, which removes
the requirement for calls to the MPI communicator. As a consequence of this the potential scalability of the code is
improved. The performance is best on shared memory but the solver is also functional on MPI and hybrid MPI/OpenMP
setups as it will run on the master processor alone.

The scalability of geophysical models is in general terms limited by the memory usage. In order to optimize this
the 1d EVP solver solves the same equations that are outlined in the section Elastic-Viscous-Plastic but it transforms
all matrices to vectors (1d matrices) as this compiles better with the computer hardware. The vectorization and the
contiguous placement of arrays in the memory makes it easier for the compiler to optimize the code and pass pointers
instead of copying the vectors. The 1d solver is not supported for tripole grids and the code will abort if this combination
is attempted.

Revised EVP approach

Introducing the numerical parameter 𝛼 = 2𝑇∆𝑡−1
𝑒 [6], the stress equations in (2.62) become

𝛼(𝜎𝑘+1
1 − 𝜎𝑘

1 ) + 𝜎𝑘
1 + 𝑃 𝑘

𝑅 = 2𝜁𝑘𝐷𝑘
𝐷,

𝛼(𝜎𝑘+1
2 − 𝜎𝑘

2 ) + 𝜎𝑘
2 = 2𝜂𝑘𝐷𝑘

𝑇 ,

𝛼(𝜎𝑘+1
12 − 𝜎𝑘

12) + 𝜎𝑘
12 = 𝜂𝑘𝐷𝑘

𝑆 ,

where as opposed to the classic EVP, the second term in each equation is at iteration 𝑘 [6]. Also, contrary to the classic
EVP, ∆𝑡𝑒 times the number of subcycles (or iterations) does not need to be equal to the advective time step ∆𝑡. Finally,
as with the classic EVP approach, the stresses are initialized using the previous time level values. The revised EVP is
activated by setting the namelist parameter revised_evp = true. In the code 𝛼 is arlx and 𝛽 is brlx (introduced
in Section Revised EVP time discretization and solution). The values of arlx and brlx can be set in the namelist. It
is recommended to use large values of these parameters and to set 𝛼 = 𝛽 [28].
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Elastic-Anisotropic-Plastic

In the EAP model the internal stress tensor is related to the geometrical properties and orientation of underlying virtual
diamond shaped floes (see Diamond-shaped floes). In contrast to the isotropic EVP rheology, the anisotropic plastic
yield curve within the EAP rheology depends on the relative orientation of the diamond shaped floes (unit vector r in
Diamond-shaped floes), with respect to the principal direction of the deformation rate (not shown). Local anisotropy
of the sea ice cover is accounted for by an additional prognostic variable, the structure tensor A defined by

A =

∫︁
S
𝜗(r)rr𝑑r.

where S is a unit-radius circle; A is a unit trace, 2×2 matrix. From now on we shall describe the orientational distri-
bution of floes using the structure tensor. For simplicity we take the probability density function 𝜗(r) to be Gaussian,
𝜗(𝑧) = 𝜔1 exp(−𝜔2𝑧

2), where 𝑧 is the ice floe inclination with respect to the axis 𝑥1 of preferential alignment of ice
floes (see Diamond-shaped floes), 𝜗(𝑧) is periodic with period 𝜋, and the positive coefficients 𝜔1 and 𝜔2 are calculated
to ensure normalization of 𝜗(𝑧), i.e.

∫︀ 2𝜋

0
𝜗(𝑧)𝑑𝑧 = 1. The ratio of the principal components of A, 𝐴1/𝐴2, are derived

from the phenomenological evolution equation for the structure tensor A,

𝐷A

𝐷𝑡
= F𝑖𝑠𝑜(A) + F𝑓𝑟𝑎𝑐(A,𝜎), (2.63)

where 𝑡 is the time, and 𝐷/𝐷𝑡 is the co-rotational time derivative accounting for advection and rigid body rotation
(𝐷A/𝐷𝑡 = 𝑑A/𝑑𝑡 − W · A − A · W𝑇 ) with W being the vorticity tensor. F𝑖𝑠𝑜 is a function that accounts for a
variety of processes (thermal cracking, melting, freezing together of floes) that contribute to a more isotropic nature to
the ice cover. F𝑓𝑟𝑎𝑐 is a function determining the ice floe re-orientation due to fracture, and explicitly depends upon
sea ice stress (but not its magnitude). Following [65], based on laboratory experiments by [54] we consider four failure
mechanisms for the Arctic sea ice cover. These are determined by the ratio of the principal values of the sea ice stress
𝜎1 and 𝜎2: (i) under biaxial tension, fractures form across the perpendicular principal axes and therefore counteract
any apparent redistribution of the floe orientation; (ii) if only one of the principal stresses is compressive, failure occurs
through axial splitting along the compression direction; (iii) under biaxial compression with a low confinement ratio,
(𝜎1/𝜎2 < 𝑅), sea ice fails Coulombically through formation of slip lines delineating new ice floes oriented along the
largest compressive stress; and finally (iv) under biaxial compression with a large confinement ratio, (𝜎1/𝜎2 ≥ 𝑅), the
ice is expected to fail along both principal directions so that the cumulative directional effect balances to zero.

Figure Diamond-shaped floes shows geometry of interlocking diamond-shaped floes (taken from [65]). 𝜑 is half of the
acute angle of the diamonds. 𝐿 is the edge length. 𝑛1, 𝑛2 and 𝜏 1, 𝜏 2 are respectively the normal and tangential unit
vectors along the diamond edges. v = 𝐿𝜏 2 · �̇� is the relative velocity between the two floes connected by the vector
𝐿𝜏 2. r is the unit vector along the main diagonal of the diamond. Note that the diamonds illustrated here represent one
possible realisation of all possible orientations. The angle 𝑧 represents the rotation of the diamonds’ main axis relative
to their preferential orientation along the axis 𝑥1.

The new anisotropic rheology requires solving the evolution Equation (2.63) for the structure tensor in addition to
the momentum and stress equations. The evolution equation for A is solved within the EVP subcycling loop, and
consistently with the momentum and stress evolution equations, we neglect the advection term for the structure tensor.
Equation (2.63) then reduces to the system of two equations:

𝜕𝐴11

𝜕𝑡
= −𝑘𝑡

(︂
𝐴11 −

1

2

)︂
+𝑀11,

𝜕𝐴12

𝜕𝑡
= −𝑘𝑡𝐴12 +𝑀12,

where the first terms on the right hand side correspond to the isotropic contribution, 𝐹𝑖𝑠𝑜, and 𝑀11 and 𝑀12 are
the components of the term 𝐹𝑓𝑟𝑎𝑐 in Equation (2.63) that are given in [65] and [60]. These evolution equations are
discretized semi-implicitly in time. The degree of anisotropy is measured by the largest eigenvalue (𝐴1) of this tensor
(𝐴2 = 1 − 𝐴1). 𝐴1 = 1 corresponds to perfectly aligned floes and 𝐴1 = 0.5 to a uniform distribution of floe
orientation. Note that while we have specified the aspect ratio of the diamond floes, through prescribing 𝜑, we make
no assumption about the size of the diamonds so that formally the theory is scale invariant.
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Fig. 3: Diamond-shaped floes
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As described in greater detail in [65], the internal ice stress for a single orientation of the ice floes can be calculated
explicitly and decomposed, for an average ice thickness ℎ, into its ridging (r) and sliding (s) contributions

𝜎𝑏(r, ℎ) = 𝑃𝑟(ℎ)𝜎
𝑏
𝑟(r) + 𝑃𝑠(ℎ)𝜎

𝑏
𝑠(r), (2.64)

where 𝑃𝑟 and 𝑃𝑠 are the ridging and sliding strengths and the ridging and sliding stresses are functions of the angle
𝜃 = arctan(�̇�𝐼𝐼/�̇�𝐼), the angle 𝑦 between the major principal axis of the strain rate tensor (not shown) and the structure
tensor (𝑥1 axis in Diamond-shaped floes, and the angle 𝑧 defined in Diamond-shaped floes. In the stress expressions
above the underlying floes are assumed parallel, but in a continuum-scale sea ice region the floes can possess different
orientations in different places and we take the mean sea ice stress over a collection of floes to be given by the average

𝜎𝐸𝐴𝑃 (ℎ) = 𝑃𝑟(ℎ)

∫︁
S
𝜗(r)

[︀
𝜎𝑏

𝑟(r) + 𝑘𝜎𝑏
𝑠(r)

]︀
𝑑r (2.65)

where we have introduced the friction parameter 𝑘 = 𝑃𝑠/𝑃𝑟 and where we identify the ridging ice strength 𝑃𝑟(ℎ) with
the strength 𝑃 described in section 1 and used within the EVP framework.

As is the case for the EVP rheology, elasticity is included in the EAP description not to describe any physical effect,
but to make use of the efficient, explicit numerical algorithm used to solve the full sea ice momentum balance. We use
the analogous EAP stress equations,

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

=
𝜎𝐸𝐴𝑃
1

2𝑇
, (2.66)

𝜕𝜎2
𝜕𝑡

+
𝜎2
2𝑇

=
𝜎𝐸𝐴𝑃
2

2𝑇
, (2.67)

𝜕𝜎12
𝜕𝑡

+
𝜎12
2𝑇

=
𝜎𝐸𝐴𝑃
12

2𝑇
, (2.68)

where the anisotropic stress 𝜎𝐸𝐴𝑃 is defined in a look-up table for the current values of strain rate and structure tensor.
The look-up table is constructed by computing the stress (normalized by the strength) from Equations (2.66)–(2.68)
for discrete values of the largest eigenvalue of the structure tensor, 1

2 ≤ 𝐴1 ≤ 1, the angle 0 ≤ 𝜃 ≤ 2𝜋, and the angle
−𝜋/2 ≤ 𝑦 ≤ 𝜋/2 between the major principal axis of the strain rate tensor and the structure tensor [60]. The updated
stress, after the elastic relaxation, is then passed to the momentum equation and the sea ice velocities are updated in
the usual manner within the subcycling loop of the EVP rheology. The structure tensor evolution equations are solved
implicitly at the same frequency, ∆𝑡𝑒, as the ice velocities and internal stresses. Finally, to be coherent with our new
rheology we compute the area loss rate due to ridging as |�̇�|𝛼𝑟(𝜃), with 𝛼𝑟(𝜃) and 𝛼𝑠(𝜃) given by [64],

𝛼𝑟(𝜃) =
𝜎𝑟
𝑖𝑗 �̇�𝑖𝑗

𝑃𝑟|�̇�|
, 𝛼𝑠(𝜃) =

𝜎𝑠
𝑖𝑗 �̇�𝑖𝑗

𝑃𝑠|�̇�|
.

Both ridging rate and sea ice strength are computed in the outer loop of the dynamics.
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3.1 Implementation

CICE is written in FORTRAN90 and runs on platforms using UNIX, LINUX, and other operating systems. The current
coding standard is Fortran2003 with use of Fortran2008 feature CONTIGUOUS in the 1d evp solver. The code is based
on a two-dimensional horizontal orthogonal grid that is broken into two-dimensional horizontal blocks and parallelized
over blocks with MPI and OpenMP threads. The code also includes some optimizations for vector architectures.

CICE consists of source code under the cicecore/ directory that supports model dynamics and top-level control. The
column physics source code is under the icepack/ directory and this is implemented as a submodule in github from a
separate repository (CICE) There is also a configuration/ directory that includes scripts for configuring CICE cases.

3.1.1 Directory structure

The present code distribution includes source code and scripts. Forcing data is available from the ftp site. The directory
structure of CICE is as follows

LICENSE.pdf
license for using and sharing the code

DistributionPolicy.pdf
policy for using and sharing the code

README.md
basic information and pointers

icepack/
the Icepack module. The icepack subdirectory includes Icepack specific scripts, drivers, and documentation.
CICE only uses the columnphysics source code under icepack/columnphysics/.

cicecore/
CICE source code

cicecore/cicedyn/
routines associated with the dynamics core

cicecore/drivers/
top-level CICE drivers and coupling layers

cicecore/shared/
CICE source code that is independent of the dynamical core

cicecore/version.txt
file that indicates the CICE model version.
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configuration/scripts/
support scripts, see Scripts

doc/
documentation

cice.setup
main CICE script for creating cases

dot files
various files that begin with . and store information about the git repository or other tools.

A case (compile) directory is created upon initial execution of the script cice.setup at the user-specified location pro-
vided after the -c flag. Executing the command ./cice.setup -h provides helpful information for this tool.

3.1.2 Grid, boundary conditions and masks

The spatial discretization of the original implementation is specialized for a generalized orthogonal B-grid as in [42]
or [55]. Figure Schematic of CICE B-grid. is a schematic of CICE B-grid. This cell with the tracer point 𝑡(𝑖, 𝑗) in
the middle is referred to as T-cell. The ice and snow area, volume and energy are given at the t-point. The velocity
u(𝑖, 𝑗) associated with 𝑡(𝑖, 𝑗) is defined in the northeast (NE) corner. The other corners of the T-cell are northwest
(NW), southwest (SW) and southeast (SE). The lengths of the four edges of the T-cell are respectively HTN, HTW,
HTS and HTE for the northern, western, southern and eastern edges. The lengths of the T-cell through the middle are
respectively dxT and dyT along the x and y axis.

We also occasionally refer to “U-cells,” which are centered on the northeast corner of the corresponding T-cells and
have velocity in the center of each. The velocity components are aligned along grid lines.

The internal ice stress tensor takes four different values within a grid cell with the B-grid implementation; bilinear
approximations are used for the stress tensor and the ice velocity across the cell, as described in [22]. This tends to
avoid the grid decoupling problems associated with the B-grid.

Fig. 1: Schematic of CICE B-grid.
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The ability to solve on the C and CD grids was added later. With the C-grid, the u velocity points are located on the
E edges and the v velocity points are located on the N edges of the T cell rather than at the T cell corners. On the
CD-grid, the u and v velocity points are located on both the N and E edges. To support this capability, N and E grids
were added to the existing T and U grids, and the N and E grids are defined at the northern and eastern edge of the T
cell. This is shown in Figure Schematic of CICE CD-grid..

Fig. 2: Schematic of CICE CD-grid.

The user has several ways to initialize the grid: popgrid reads grid lengths and other parameters for a nonuniform grid
(including tripole and regional grids), and rectgrid creates a regular rectangular grid. The input files global_gx3.grid
and global_gx3.kmt contain the ⟨3∘⟩ POP grid and land mask; global_gx1.grid and global_gx1.kmt contain the ⟨1∘⟩
grid and land mask, and global_tx1.grid and global_tx1.kmt contain the ⟨1∘⟩ POP tripole grid and land mask. These
are binary unformatted, direct access, Big Endian files.

The input grid file for the B-grid and CD-grid is identical. That file contains each cells’ HTN, HTE, ULON, ULAT,
and kmt value. From those variables, the longitude, latitude, grid lengths (dx and dy), areas, and masks can be derived
for all grids. Table Primary CICE Prognostic Grid Variable Names lists the primary prognostic grid variable names
on the different grids.
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Table 1: Primary CICE Prognostic Grid Variable Names
variable T U N E
longitude TLON ULON NLON ELON
latitude TLAT ULAT NLAT ELAT
dx dxT dxU dxN dxE
dy dyT dyU dyN dyE
area tarea uarea narea earea
mask (logical) tmask umask nmask emask
mask (real) hm uvm npm epm

In CESM, the sea ice model may exchange coupling fluxes using a different grid than the computational grid. This
functionality is activated using the namelist variable gridcpl_file.

Grid domains and blocks

In general, the global gridded domain is nx_global ×ny_global, while the subdomains used in the block distri-
bution are nx_block ×ny_block. The physical portion of a subdomain is indexed as [ilo:ihi, jlo:jhi], with
nghost “ghost” or “halo” cells outside the domain used for boundary conditions. These parameters are illustrated in
Grid parameters in one dimension. The routines global_scatter and global_gather distribute information from the
global domain to the local domains and back, respectively. If MPI is not being used for grid decomposition in the ice
model, these routines simply adjust the indexing on the global domain to the single, local domain index coordinates.
Although we recommend that the user choose the local domains so that the global domain is evenly divided, if this is
not possible then the furthest east and/or north blocks will contain nonphysical points (“padding”). These points are
excluded from the computation domain and have little effect on model performance. nghost is a hardcoded parameter
in ice_blocks.F90. While the halo code has been implemented to support arbitrary sized halos, nghost is set to 1 and
has not been formally tested on larger halos.

Figure Grid parameters shows the grid parameters for a sample one-dimensional, 20-cell global domain decomposed
into four local subdomains. Each local domain has one ghost (halo) cell on each side, and the physical portion of
the local domains are labeled ilo:ihi. The parameter nx_block is the total number of cells in the local domain,
including ghost cells, and the same numbering system is applied to each of the four subdomains.

The user sets the NTASKS and NTHRDS settings in cice.settings and chooses a block size block_size_x
×block_size_y, max_blocks, and decomposition information distribution_type, processor_shape, and
distribution_type in ice_in. That information is used to determine how the blocks are distributed across the
processors, and how the processors are distributed across the grid domain. The model is parallelized over blocks for
both MPI and OpenMP. Some suggested combinations for these parameters for best performance are given in Section
Performance. The script cice.setup computes some default decompositions and layouts but the user can overwrite the
defaults by manually changing the values in ice_in. At runtime, the model will print decomposition information to the
log file, and if the block size or max blocks is inconsistent with the task and thread size, the model will abort. The code
will also print a warning if the maximum number of blocks is too large. Although this is not fatal, it does use extra
memory. If max_blocks is set to -1, the code will compute a tentative max_blocks on the fly.

A loop at the end of routine create_blocks in module ice_blocks.F90 will print the locations for all of the blocks on
the global grid if the namelist variable debug_blocks is set to be true. Likewise, a similar loop at the end of routine
create_local_block_ids in module ice_distribution.F90 will print the processor and local block number for each block.
With this information, the grid decomposition into processors and blocks can be ascertained. This debug_blocks
variable should be used carefully as there may be hundreds or thousands of blocks to print and this information should be
needed only rarely. debug_blocks can be set to true using the debugblocks option with cice.setup. This information
is much easier to look at using a debugger such as Totalview. There is also an output field that can be activated in
icefields_nml, f_blkmask, that prints out the variable blkmask to the history file and which labels the blocks in the
grid decomposition according to blkmask = my_task + iblk/100.
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Fig. 3: Grid parameters
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The namelist add_mpi_barriers can be set to .true. to help throttle communication for communication intensive
configurations. This may slow the code down a bit. These barriers have been added to a few select locations, but it’s
possible others may be needed. As a general rule, add_mpi_barriers should be .false..

Tripole grids

The tripole grid is a device for constructing a global grid with a normal south pole and southern boundary condition,
which avoids placing a physical boundary or grid singularity in the Arctic Ocean. Instead of a single north pole, it has
two “poles” in the north, both located on land, with a line of grid points between them. This line of points is called the
“fold,” and it is the “top row” of the physical grid. One pole is at the left-hand end of the top row, and the other is in the
middle of the row. The grid is constructed by “folding” the top row, so that the left-hand half and the right-hand half
of it coincide. Two choices for constructing the tripole grid are available. The one first introduced to CICE is called
“U-fold”, which means that the poles and the grid cells between them are U-cells on the grid. Alternatively the poles
and the cells between them can be grid T-cells, making a “T-fold.” Both of these options are also supported by the
OPA/NEMO ocean model, which calls the U-fold an “f-fold” (because it uses the Arakawa C-grid in which U-cells are
on T-rows). The choice of tripole grid is given by the namelist variable ns_boundary_type, ‘tripole’ for the U-fold
and ‘tripoleT’ for the T-fold grid.

In the U-fold tripole grid, the poles have U-index 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙/2 and 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 on the top U-row of the physical grid,
and points with U-index 𝑖 and 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑖 are coincident. Let the fold have U-row index 𝑛 on the global grid; this
will also be the T-row index of the T-row to the south of the fold. There are ghost (halo) T- and U-rows to the north,
beyond the fold, on the logical grid. The point with index i along the ghost T-row of index 𝑛+ 1 physically coincides
with point 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑖+ 1 on the T-row of index 𝑛. The ghost U-row of index 𝑛+ 1 physically coincides with the
U-row of index 𝑛− 1. In the schematics below, symbols A-H represent grid points from 1:nx_global at a given j index
and the setup of the tripole seam is depicted within a few rows of the seam.

Table 2: Tripole (u-fold) Grid Schematic
global j index grid point IDs (i index) global j index source
ny_global+2 H G F E D C B A ny_global-1
ny_global+1 H G F E D C B A ny_global
ny_global A B C D E F G H
ny_global-1 A B C D E F G H

In the T-fold tripole grid, the poles have T-index 1 and and 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙/2+ 1 on the top T-row of the physical grid, and
points with T-index 𝑖 and 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑖 + 2 are coincident. Let the fold have T-row index 𝑛 on the global grid. It is
usual for the northernmost row of the physical domain to be a U-row, but in the case of the T-fold, the U-row of index
𝑛 is “beyond” the fold; although it is not a ghost row, it is not physically independent, because it coincides with U-row
𝑛 − 1, and it therefore has to be treated like a ghost row. Points i on U-row 𝑛 coincides with 𝑛𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑖 + 1 on
U-row 𝑛 − 1. There are still ghost T- and U-rows 𝑛 + 1 to the north of U-row 𝑛. Ghost T-row 𝑛 + 1 coincides with
T-row 𝑛− 1, and ghost U-row 𝑛+ 1 coincides with U-row 𝑛− 2.

Table 3: TripoleT (t-fold) Grid Schematic
global j index grid point IDs (i index) global j index source
ny_global+2 H G F E D C B A ny_global-2
ny_global+1 H G F E D C B A ny_global-1
ny_global A BH CG DF E FD GC HB
ny_global-1 A B C D E F G H
ny_global-2 A B C D E F G H

The tripole grid thus requires two special kinds of treatment for certain rows, arranged by the halo-update routines.
First, within rows along the fold, coincident points must always have the same value. This is achieved by averaging
them in pairs. Second, values for ghost rows and the “quasi-ghost” U-row on the T-fold grid are reflected copies of the
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coincident physical rows. Both operations involve the tripole buffer, which is used to assemble the data for the affected
rows. Special treatment is also required in the scattering routine, and when computing global sums one of each pair of
coincident points has to be excluded. Halos of center, east, north, and northeast points are supported, and each requires
slightly different halo indexing across the tripole seam.

Rectangular grids

Rectangular test grids can be defined for CICE. They are generated internally and defined by several namelist
settings including grid_type = rectangular, nx_global, ny_global, dx_rect, dy_rect, lonrefrect,
and latrefrect. Forcing and initial condition can be set via namelists atm_data_type, ocn_data_type,
ice_data_type, ice_data_conc, ice_data_dist. Variable grid spacing is also supported with the namelist set-
tings scale_dxdy which turns on the option, and dxscale and dyscale which sets the variable grid scaling factor.
Values of 1.0 will produced constant grid spacing. For rectangular grids, lonrefrect and latrefrect define the
lower left longitude and latitude value of the grid, dx_rect and dy_rect define the base grid spacing, and dxscale
and dyscale provide the grid space scaling. The base spacing is set in the center of the rectangular domain and the
scaling is applied symetrically outward as a multiplicative factor in the x and y directions.

Several predefined rectangular grids are available in CICE with cice.setup –grid including gbox12, gbox80, gbox128,
and gbox180 where 12, 80, 128, and 180 are the number of gridcells in each direction. Several predefined op-
tions also exist, set with cice.setup –set, to establish varied idealized configurations of box tests including box2001,
boxadv, boxchan, boxchan1e, boxchan1n, boxnodyn, boxrestore, boxslotcyl, and boxopen, boxclosed, and
boxforcee. See cice.setup –help for a current list of supported settings.

Vertical Grids

The sea ice physics described in a single column or grid cell is contained in the Icepack submodule, which can be run
independently of the CICE model. Icepack includes a vertical grid for the physics and a “bio-grid” for biogeochemistry,
described in the Icepack Documentation. History variables available for column output are ice and snow temperature,
Tinz and Tsnz, and the ice salinity profile, Sinz. These variables also include thickness category as a fourth dimension.

Boundary conditions

Much of the infrastructure used in CICE, including the boundary routines, is adopted from POP. The boundary routines
perform boundary communications among processors when MPI is in use and among blocks whenever there is more
than one block per processor.

Boundary conditions are defined by the ns_boundary_type and ew_boundary_type namelist inputs. Valid val-
ues are open and cyclic. In addition, tripole and tripoleT are options for the ns_boundary_type. Closed
boundary conditions are not supported currently. The domain can be physically closed with the close_boundaries
namelist which forces a land mask on the boundary with a two gridcell depth. Where the boundary is land, the
boundary_type settings play no role. For example, in the displaced-pole grids, at least one row of grid cells along
the north and south boundaries is land. Along the east/west domain boundaries not masked by land, periodic condi-
tions wrap the domain around the globe. In this example, the appropriate namelist settings are nsboundary_type =
open, ew_boundary_type = cyclic, and close_boundaries = .false..

CICE can be run on regional grids with open boundary conditions; except for variables describing grid lengths, non-land
halo cells along the grid edge must be filled by restoring them to specified values. The namelist variable restore_ice
turns this functionality on and off; the restoring timescale trestore may be used (it is also used for restoring ocean sea
surface temperature in stand-alone ice runs). This implementation is only intended to provide the “hooks” for a more
sophisticated treatment; the rectangular grid option can be used to test this configuration. The ‘displaced_pole’ grid
option should not be used unless the regional grid contains land all along the north and south boundaries. The current
form of the boundary condition routines does not allow Neumann boundary conditions, which must be set explicitly.
This has been done in an unreleased branch of the code; contact Elizabeth for more information.
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For exact restarts using restoring, set restart_ext = true in namelist to use the extended-grid subroutines.

On tripole grids, the order of operations used for calculating elements of the stress tensor can differ on either side of
the fold, leading to round-off differences. Although restarts using the extended grid routines are exact for a given run,
the solution will differ from another run in which restarts are written at different times. For this reason, explicit halo
updates of the stress tensor are implemented for the tripole grid, both within the dynamics calculation and for restarts.
This has not been implemented yet for tripoleT grids, pending further testing.

Masks

A land mask hm (𝑀ℎ) is specified in the cell centers (on the T-grid), with 0 representing land and 1 representing ocean
cells. Corresponding masks for the U, N, and E grids are given by

𝑀𝑢(𝑖, 𝑗) = min{𝑀ℎ(𝑙), 𝑙 = (𝑖, 𝑗), (𝑖+ 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖+ 1, 𝑗 + 1)}.

𝑀𝑛(𝑖, 𝑗) = min{𝑀ℎ(𝑙), 𝑙 = (𝑖, 𝑗), (𝑖, 𝑗 + 1)}.

𝑀𝑒(𝑖, 𝑗) = min{𝑀ℎ(𝑙), 𝑙 = (𝑖, 𝑗), (𝑖+ 1, 𝑗)}.

The logical masks tmask, umask, nmask, and emask (which correspond to the real masks hm, uvm, npm, and epm
respectively) are useful in conditional statements.

In addition to the land masks, two other masks are implemented in dyn_prep in order to reduce the dynamics com-
ponent’s work on a global grid. At each time step the logical masks iceTmask and iceUmask are determined from
the current ice extent, such that they have the value “true” wherever ice exists. They also include a border of cells
around the ice pack for numerical purposes. These masks are used in the dynamics component to prevent unnecessary
calculations on grid points where there is no ice. They are not used in the thermodynamics component, so that ice may
form in previously ice-free cells. Like the land masks hm and uvm, the ice extent masks iceTmask and iceUmask are
for T-cells and U-cells, respectively. Note that the ice extent masks iceEmask and iceNmask are also defined when
using the C or CD grid.

Improved parallel performance may result from utilizing halo masks for boundary updates of the full ice state, incre-
mental remapping transport, or for EVP or EAP dynamics. These options are accessed through the logical namelist
flags maskhalo_bound, maskhalo_remap, and maskhalo_dyn, respectively. Only the halo cells containing needed
information are communicated.

Two additional masks are created for the user’s convenience: lmask_n and lmask_s can be used to compute or write
data only for the northern or southern hemispheres, respectively. Special constants (spval and spval_dbl, each equal
to 1030) are used to indicate land points in the history files and diagnostics.

Interpolating between grids

Fields in CICE are generally defined at particular grid locations, such as T cell centers, U corners, or N or E edges.
These are assigned internally in CICE based on the grid_ice namelist variable. Forcing/coupling fields are also
associated with a specific set of grid locations that may or may not be the same as on the internal CICE model grid.
The namelist variables grid_atm and grid_ocn define the forcing/coupling grids. The grid_ice, grid_atm, and
grid_ocn variables are independent and take values like A, B, C, or CD consistent with the Arakawa grid convention
[2]. The relationship between the grid system and the internal grids is shown in Grid System and Type Definitions.

Table 4: Grid System and Type Definitions
grid system thermo grid u dynamic grid v dynamic grid
A T T T
B T U U
C T E N
CD T N+E N+E
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For all grid systems, thermodynamic variables are always defined on the T grid for the model and model forc-
ing/coupling fields. However, the dynamics u and v fields vary. In the CD grid, there are twice as many u and v fields
as on the other grids. Within the CICE model, the variables grid_ice_thrm, grid_ice_dynu, grid_ice_dynv,
grid_atm_thrm, grid_atm_dynu, grid_atm_dynv, grid_ocn_thrm, grid_ocn_dynu, and grid_ocn_dynv are
character strings (T, U, N, E , NE) derived from the grid_ice, grid_atm, and grid_ocn namelist values.

The CICE model has several internal methods that will interpolate (a.k.a. map or average) fields on (T, U, N, E, NE)
grids to (T, U, N, E). An interpolation to an identical grid results in a field copy. The generic interface to this method is
grid_average_X2Y, and there are several forms.

subroutine grid_average_X2Y(type,work1,grid1,work2,grid2)
character(len=*) , intent(in) :: type ! mapping type (S, A, F)
real (kind=dbl_kind), intent(in) :: work1(:,:,:) ! input field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid1 ! work1 grid (T, U, N, E)
real (kind=dbl_kind), intent(out) :: work2(:,:,:) ! output field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid2 ! work2 grid (T, U, N, E)

where type is an interpolation type with the following valid values,

type = S is a normalized, masked, area-weighted interpolation

𝑤𝑜𝑟𝑘2 =

∑︀𝑛
𝑖=1(𝑀1𝑖𝐴1𝑖𝑤𝑜𝑟𝑘1𝑖)∑︀𝑛

𝑖=1(𝑀1𝑖𝐴1𝑖)

type = A is a normalized, unmasked, area-weighted interpolation

𝑤𝑜𝑟𝑘2 =

∑︀𝑛
𝑖=1(𝐴1𝑖𝑤𝑜𝑟𝑘1𝑖)∑︀𝑛

𝑖=1(𝐴1𝑖)

type = F is a normalized, unmasked, conservative flux interpolation

𝑤𝑜𝑟𝑘2 =

∑︀𝑛
𝑖=1(𝐴1𝑖𝑤𝑜𝑟𝑘1𝑖)

𝑛 *𝐴2

with A defined as the appropriate gridcell area and M as the gridcell mask. Another form of the grid_average_X2Y
is

subroutine grid_average_X2Y(type,work1,grid1,wght1,mask1,work2,grid2)
character(len=*) , intent(in) :: type ! mapping type (S, A, F)
real (kind=dbl_kind), intent(in) :: work1(:,:,:) ! input field(nx_block, ny_block,␣

→˓max_blocks)
real (kind=dbl_kind), intent(in) :: wght1(:,:,:) ! input weight(nx_block, ny_block,␣

→˓max_blocks)
real (kind=dbl_kind), intent(in) :: mask1(:,:,:) ! input mask(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid1 ! work1 grid (T, U, N, E)
real (kind=dbl_kind), intent(out) :: work2(:,:,:) ! output field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid2 ! work2 grid (T, U, N, E)

In this case, the input arrays wght1 and mask1 are used in the interpolation equations instead of gridcell area and mask.
This version allows the user to define the weights and mask explicitly. This implementation is supported only for type
= S or A interpolations.

A final form of the grid_average_X2Y interface is
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subroutine grid_average_X2Y(type,work1a,grid1a,work1b,grid1b,work2,grid2)
character(len=*) , intent(in) :: type ! mapping type (S, A, F)
real (kind=dbl_kind), intent(in) :: work1a(:,:,:) ! input field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid1a ! work1 grid (N, E)
real (kind=dbl_kind), intent(in) :: work1b(:,:,:) ! input field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid1b ! work1 grid (N, E)
real (kind=dbl_kind), intent(out) :: work2(:,:,:) ! output field(nx_block, ny_block,␣

→˓max_blocks)
character(len=*) , intent(in) :: grid2 ! work2 grid (T, U)

This version supports mapping from an NE grid to a T or U grid. In this case, the 1a arguments are for either the N or
E field and the 1b arguments are for the complementary field (E or N respectively). At present, only S type mappings
are supported with this interface.

In all cases, the work1, wght1, and mask1 input arrays should have correct halo values when called. Examples of
usage can be found in the source code, but the following example maps the uocn and vocn fields from their native
forcing/coupling grid to the U grid using a masked, area-weighted, average method.

call grid_average_X2Y('S', uocn, grid_ocn_dynu, uocnU, 'U')
call grid_average_X2Y('S', vocn, grid_ocn_dynv, vocnU, 'U')

Performance

Namelist options (domain_nml) provide considerable flexibility for finding efficient processor and block configuration.
Some of these choices are illustrated in Distribution options. Users have control of many aspects of the decomposi-
tion such as the block size (block_size_x, block_size_y), the distribution_type, the distribution_wght,
the distribution_wght_file (when distribution_type = wghtfile), and the processor_shape (when
distribution_type = cartesian).

The user specifies the total number of tasks and threads in cice.settings and the block size and decompostion in the
namelist file. The main trades offs are the relative efficiency of large square blocks versus model internal load balance as
CICE computation cost is very small for ice-free blocks. The code is parallelized over blocks for both MPI and OpenMP.
Smaller, more numerous blocks provides an opportunity for better load balance by allocating each processor both ice-
covered and ice-free blocks. But smaller, more numerous blocks becomes less efficient due to MPI communication
associated with halo updates. In practice, blocks should probably not have fewer than about 8 to 10 grid cells in each
direction, and more square blocks tend to optimize the volume-to-surface ratio important for communication cost. Often
3 to 8 blocks per processor provide the decompositions flexiblity to create reasonable load balance configurations.

Like MPI, load balance of blocks across threads is important for efficient performance. Most of the OpenMP threading
is implemented with SCHEDULE(runtime), so the OMP_SCHEDULE env variable can be used to set the OpenMPI
schedule. The default OMP_SCHEDULE setting is defined by the variable ICE_OMPSCHE in cice.settings. OMP_SCHEDULE
values of “STATIC,1” and “DYNAMIC,1” are worth testing. The OpenMP implementation in CICE is constantly under
review, but users should validate results and performance on their machine. CICE should be bit-for-bit with different
block sizes, different decompositions, different MPI task counts, and different OpenMP threads. Finally, we recommend
the OMP_STACKSIZE env variable should be set to 32M or greater.

The distribution_type options allow standard cartesian distributions of blocks, redistribution via a ‘rake’ algo-
rithm for improved load balancing across processors, and redistribution based on space-filling curves. There are also
additional distribution types (‘roundrobin,’ ‘sectrobin,’ ‘sectcart’, and ‘spiralcenter’) that support alternative decom-
positions and also allow more flexibility in the number of processors used. Finally, there is a ‘wghtfile’ decomposition
that generates a decomposition based on weights specified in an input file.
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Fig. 4: Distribution options

Figure Distribution options shows distribution of 256 blocks across 16 processors, represented by colors, on the gx1
grid: (a) cartesian, slenderX1, (b) cartesian, slenderX2, (c) cartesian, square-ice (square-pop is equivalent here), (d)
rake with block weighting, (e) rake with latitude weighting, (f) spacecurve. Each block consists of 20x24 grid cells,
and white blocks consist entirely of land cells.

Fig. 5: Decomposition options

Figure Decomposition options shows sample decompositions for (a) spiral center and (b) wghtfile for an Arctic polar
grid. (c) is the weight field in the input file use to drive the decompostion in (b).

processor_shape is used with the distribution_type cartesian option, and it allocates blocks to processors in
various groupings such as tall, thin processor domains (slenderX1 or slenderX2, often better for sea ice simulations
on global grids where nearly all of the work is at the top and bottom of the grid with little to do in between) and
close-to-square domains (square-pop or square-ice), which maximize the volume to surface ratio (and therefore
on-processor computations to message passing, if there were ice in every grid cell). In cases where the number of
processors is not a perfect square (4, 9, 16. . . ), the processor_shape namelist variable allows the user to choose how
the processors are arranged. Here again, it is better in the sea ice model to have more processors in x than in y, for
example, 8 processors arranged 4x2 (square-ice) rather than 2x4 (square-pop). The latter option is offered for
direct-communication compatibility with POP, in which this is the default.
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distribution_wght chooses how the work-per-block estimates are weighted. The ‘block’ option is the default in
POP and it weights each block equally. This is useful in POP which always has work in each block and is written
with a lot of array syntax requiring calculations over entire blocks (whether or not land is present). This option is
provided in CICE as well for direct-communication compatibility with POP. Blocks that contain 100% land grid cells
are eliminated with ‘block’. The ‘blockall’ option is identical to ‘block’ but does not do land block elimination. The
‘latitude’ option weights the blocks based on latitude and the number of ocean grid cells they contain. Many of the
non-cartesian decompositions support automatic land block elimination and provide alternative ways to decompose
blocks without needing the distribution_wght.

The rake distribution type is initialized as a standard, Cartesian distribution. Using the work-per-block estimates, blocks
are “raked” onto neighboring processors as needed to improve load balancing characteristics among processors, first
in the x direction and then in y.

Space-filling curves reduce a multi-dimensional space (2D, in our case) to one dimension. The curve is composed of
a string of blocks that is snipped into sections, again based on the work per processor, and each piece is placed on a
processor for optimal load balancing. This option requires that the block size be chosen such that the number of blocks
in the x direction and the number of blocks in the y direction must be factorable as 2𝑛3𝑚5𝑝 where 𝑛,𝑚, 𝑝 are integers.
For example, a 16x16 array of blocks, each containing 20x24 grid cells, fills the gx1 grid (𝑛 = 4,𝑚 = 𝑝 = 0). If
either of these conditions is not met, the spacecurve decomposition will fail.

While the Cartesian distribution groups sets of blocks by processor, the ‘roundrobin’ distribution loops through the
blocks and processors together, putting one block on each processor until the blocks are gone. This provides good load
balancing but poor communication characteristics due to the number of neighbors and the amount of data needed to
communicate. The ‘sectrobin’ and ‘sectcart’ algorithms loop similarly, but put groups of blocks on each processor to
improve the communication characteristics. In the ‘sectcart’ case, the domain is divided into four (east-west,north-
south) quarters and the loops are done over each, sequentially.

The wghtfile decomposition drives the decomposition based on weights provided in a weight file. That file should
be a netCDF file with a double real field called wght containing the relative weight of each gridcell. Decomposition
options (b) and (c) show an example. The weights associated with each gridcell will be summed on a per block basis
and normalized to about 10 bins to carry out the distribution of highest to lowest block weights to processors. Scorecard
provides an overview of the pros and cons of the various distribution types.

Figure Scorecard shows the scorecard for block distribution choices in CICE, courtesy T. Craig. For more information,
see [9] or http://www.cesm.ucar.edu/events/workshops/ws.2012/presentations/sewg/craig.pdf

The maskhalo options in the namelist improve performance by removing unnecessary halo communications where
there is no ice. There is some overhead in setting up the halo masks, which is done during the timestepping procedure
as the ice area changes, but this option usually improves timings even for relatively small processor counts. T. Craig has
found that performance improved by more than 20% for combinations of updated decompositions and masked haloes,
in CESM’s version of CICE.

Throughout the code, (i, j) loops have been combined into a single loop, often over just ocean cells or those containing
sea ice. This was done to reduce unnecessary operations and to improve vector performance.

Timings illustrates the CICE v5 computational expense of various options, relative to the total time (excluding initial-
ization) of a 7-layer configuration using BL99 thermodynamics, EVP dynamics, and the ‘ccsm3’ shortwave parameter-
ization on the gx1 grid, run for one year from a no-ice initial condition. The block distribution consisted of 20 × 192
blocks spread over 32 processors (‘slenderX2’) with no threads and -O2 optimization. Timings varied by about ±3%
in identically configured runs due to machine load. Extra time required for tracers has two components, that needed
to carry the tracer itself (advection, category conversions) and that needed for the calculations associated with the par-
ticular tracer. The age tracers (FY and iage) require very little extra calculation, so their timings represent essentially
the time needed just to carry an extra tracer. The topo melt pond scheme is slightly faster than the others because it
calculates pond area and volume once per grid cell, while the others calculate it for each thickness category.

Figure Timings shows change in ‘TimeLoop’ timings from the 7-layer configuration using BL99 thermodynamics and
EVP dynamics. Timings were made on a nondedicated machine, with variations of about ±3% in identically config-
ured runs (light grey). Darker grey indicates the time needed for extra required options; The Delta-Eddington radiation
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Fig. 6: Scorecard

Fig. 7: Timings
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scheme is required for all melt pond schemes and the aerosol tracers, and the level-ice pond parameterization addition-
ally requires the level-ice tracers.

3.1.3 Time Manager and Initialization

The time manager is an important piece of the CICE model.

Time Manager

The primary prognostic variables in the time manager are myear, mmonth, mday, and msec. These are integers and
identify the current model year, month, day, and second respectively. The model timestep is dt with units of seconds.
See Choosing an appropriate time step for additional information about choosing an appropriate timestep. The internal
variables istep, istep0, and istep1 keep track of the number of timesteps. istep is the counter for the current run
and is set to 0 at the start of each run. istep0 is the step count at the start of a long multi-restart run, and istep1 is
the step count of a long multi-restart run and is continuous across model restarts.

In general, the time manager should be advanced by calling advance_timestep. This subroutine in ice_calendar.F90
automatically advances the model time by dt. It also advances the istep numbers and calls subroutine calendar to
update additional calendar data.

The namelist variable use_restart_time specifies whether to use the time and step numbers saved on a restart file
or whether to set the initial model time to the namelist values defined by year_init, month_init, day_init, and
sec_init. Normally, use_restart_time is set to false on the initial run. In continue mode, use_restart_time is
ignored and the restart date is always used to initialize the model run. More information about the restart capability
can be found in Restart files.

Several different calendars are supported including noleap (365 days per year), 360-day (twelve 30 day months per
year), and gregorian (leap days every 4 years except every 100 years except every 400 years). The gregorian calendar in
CICE is formally a proleptic gregorian calendar without any discontinuties over time. The calendar is set by specifying
days_per_year and use_leap_years in the namelist, and the following combinations are supported,

Table 5: Supported Calendar Options
days_per_year use_leap_years calendar
365 false noleap
365 true gregorian
360 false 360-day

The history (History files) and restart (Restart files) outputs and frequencies are specified in namelist and are computed
relative to a reference date defined by the namelist histfreq_base and dumpfreq_base. Valid values for each are
zero and init. If set to zero, all output will be relative to the absolute reference year-month-day date, 0000-01-01.
This is the default value for histfreq_base, so runs with different initial dates will have identical output. If the
histfreq_base or dumpfreq_base are set to init, all frequencies will be relative to the model initial date specified
by year_init, month_init, and day_init. sec_init plays no role in setting output frequencies. init is the default
for dumpfreq_base and makes it easy to generate restarts 5 or 10 model days after startup as we often do in testing.
Both histfreq_base and dumpfreq_base are arrays and can be set for each stream separately.

In general, output is always written at the start of the year, month, day, or hour without any ability to shift the phase.
For instance, monthly output is always written on the first of the month. It is not possible, for instance, to write monthly
data once a month on the 10th of the month. In the same way, quarterly data for Dec-Jan-Feb vs Jan-Feb-Mar is not
easily controlled. A better approach is to create monthly data and then to aggregate to quarters as a post-processing
step. The history and restart (histfreq, dumpfreq) setting 1 indicates output at a frequency of timesteps. This is the
character 1 as opposed to the integer 1. This frequency output is computed using istep1, the model timestep. This
may vary with each run depending on several factors including the model timestep, initial date, and value of istep0.
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The model year is limited by some integer math. In particular, calculation of elapsed hours in ice_calendar.F90, and
the model year is limited to the value of myear_max set in that file. Currently, that’s 200,000 years.

The time manager was updated in early 2021. The standalone model was modified, and some tests were done in a
coupled framework after modifications to the high level coupling interface. For some coupled models, the coupling
interface may need to be updated when updating CICE with the new time manager. In particular, the old prognostic
variable time no longer exists in CICE, year_init only defines the model initial year, and the calendar subroutine is
called without any arguments. One can set the namelist variables year_init, month_init, day_init, sec_init,
and dt in conjuction with days_per_year and use_leap_years to initialize the model date, timestep, and calendar.
To overwrite the default/namelist settings in the coupling layer, set the ice_calendar.F90 variables myear, mmonth,
mday, msec and dt after the namelists have been read. Subroutine calendar should then be called to update all the
calendar data. Finally, subroutine advance_timestep should be used to advance the model time manager. It advances
the step numbers, advances time by dt, and updates the calendar data. The older method of manually advancing the
steps and adding dt to time should be deprecated.

Initialization and Restarts

The ice model’s parameters and variables are initialized in several steps. Many constants and physical parameters are
set in ice_constants.F90. Namelist variables (Tables of Namelist Options), whose values can be altered at run time,
are handled in input_data and other initialization routines. These variables are given default values in the code, which
may then be changed when the input file ice_in is read. Other physical constants, numerical parameters, and variables
are first set in initialization routines for each ice model component or module. Then, if the ice model is being restarted
from a previous run, core variables are read and reinitialized in restartfile, while tracer variables needed for specific
configurations are read in separate restart routines associated with each tracer or specialized parameterization. Finally,
albedo and other quantities dependent on the initial ice state are set. Some of these parameters will be described in
more detail in Tables of Namelist Options.

The restart files supplied with the code release include the core variables on the default configuration, that is, with
seven vertical layers and the ice thickness distribution defined by kcatbound = 0. Restart information for some tracers
is also included in the netCDF restart files.

Three namelist variables generally control model initialization, runtype, ice_ic, and use_restart_time. The
valid values for runtype are initial or continue. When runtype = continue, the restart filename is stored in a
small text (pointer) file, use_restart_time is forced to true and ice_ic plays no role. When runtype = initial,
ice_ic has three options, none, internal, or filename. These initial states are no-ice, namelist driven initial condi-
tion, and ice defined by a file respectively. If ice_ic is set to internal, the initial state is defined by the namelist
values ice_data_type, ice_data_dist, and ice_data_conc. In initial mode, use_restart_time should gener-
ally be set to false and the initial time is then defined by year_init, month_init, day_init, and sec_init. These
combinations options are summarized in Ice Initialization.

Restart files and initial condition files are generally the same format and can be the same files. They contain the model
state from a particular instance in time. In general, that state includes the physical and dynamical state as well as the
state of optional tracers. Reading of various tracer groups can be independently controlled by various restart flags. In
other words, a restart file can be used to initialize a new configuration where new tracers are used (i.e. bgc). In that
case, the physical state of the model will be read, but if bgc tracers don’t exist on the restart file, they can be initialized
from scratch.

In continue mode, a pointer file is used to restart the model. In this mode, the CICE model writes out a small text
(pointer) file to the run directory that names the most recent restart file. On restart, the model reads the pointer file
which defines the name of the restart file. The model then reads that restart file. By having this feature, the ice namelist
does not need to be constantly updated with the latest restart filename, and the model can be automatically resubmitted.
Manually editing the pointer file in the middle of a run will reset the restart filename and allow the run to continue.

Table Ice Initialization shows runtype, ice_ic, and use_restart_time namelist combinations for initializing the
model. If namelist defines the start date, it’s done with year_init, month_init, day_init, and sec_init.
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Table 6: Ice Initialization
runtype ice_ic use_restart_time Note
initial none not used no ice, namelist defines start date
initial internal or de-

fault
not used set by namelist ice_data_type, ice_data_dist,

ice_data_conc
initial filename false read ice state from filename, namelist defines start date
initial filename true read ice state from filename, restart file defines start date
continue not used not used pointer file defines restart file, restart file defines start date

An additional namelist option, restart_ext specifies whether halo cells are included in the restart files. This option
is useful for tripole and regional grids, but can not be used with PIO.

An additional namelist option, restart_coszen specifies whether the cosine of the zenith angle is included in the
restart files. This is mainly used in coupled models.

MPI is initialized in init_communicate for both coupled and stand-alone MPI runs. The ice component communicates
with a flux coupler or other climate components via external routines that handle the variables listed in the Icepack
documentation. For stand-alone runs, routines in ice_forcing.F90 read and interpolate data from files, and are intended
merely to provide guidance for the user to write his or her own routines. Whether the code is to be run in stand-alone
or coupled mode is determined at compile time, as described below.

Choosing an appropriate time step

The time step is chosen based on stability of the transport component (both horizontal and in thickness space) and on
resolution of the physical forcing. CICE allows the dynamics, advection and ridging portion of the code to be run with
a shorter timestep, ∆𝑡𝑑𝑦𝑛 (dt_dyn), than the thermodynamics timestep ∆𝑡 (dt). In this case, dt and the integer ndtd
are specified, and dt_dyn = dt/ndtd.

A conservative estimate of the horizontal transport time step bound, or CFL condition, under remapping yields

∆𝑡𝑑𝑦𝑛 <
min (∆𝑥,∆𝑦)

2max (𝑢, 𝑣)
.

Numerical estimates for this bound for several POP grids, assuming max(𝑢, 𝑣) = 0.5 m/s, are as follows:

Table 7: Time Step Bound
grid label N pole singularity dimensions min

√
∆𝑥 ·∆𝑦 max ∆𝑡𝑑𝑦𝑛

gx3 Greenland 100× 116 39× 103 m 10.8hr
gx1 Greenland 320× 384 18× 103 m 5.0hr
p4 Canada 900× 600 6.5× 103 m 1.8hr

As discussed in [39], the maximum time step in practice is usually determined by the time scale for large changes in the
ice strength (which depends in part on wind strength). Using the strength parameterization of [52], limits the time step
to ∼30 minutes for the old ridging scheme (krdg_partic = 0), and to ∼2 hours for the new scheme (krdg_partic =
1), assuming ∆𝑥 = 10 km. Practical limits may be somewhat less, depending on the strength of the atmospheric winds.

Transport in thickness space imposes a similar restraint on the time step, given by the ice growth/melt rate and the
smallest range of thickness among the categories, ∆𝑡 < min(∆𝐻)/2max(𝑓), where ∆𝐻 is the distance between
category boundaries and 𝑓 is the thermodynamic growth rate. For the 5-category ice thickness distribution used as the
default in this distribution, this is not a stringent limitation: ∆𝑡 < 19.4 hr, assuming max(𝑓) = 40 cm/day.

In the classic EVP or EAP approach (kdyn = 1 or 2, revised_evp = false), the dynamics component is subcycled
ndte (𝑁 ) times per dynamics time step so that the elastic waves essentially disappear before the next time step. The
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subcycling time step (∆𝑡𝑒) is thus

𝑑𝑡𝑒 = 𝑑𝑡_𝑑𝑦𝑛/𝑛𝑑𝑡𝑒.

A second parameter,𝐸∘ (elasticDamp), defines the elastic wave damping timescale𝑇 , described in Section Dynamics,
as elasticDamp * dt_dyn. The forcing terms are not updated during the subcycling. Given the small step (dte)
at which the EVP dynamics model is subcycled, the elastic parameter 𝐸 is also limited by stability constraints, as
discussed in [21]. Linear stability analysis for the dynamics component shows that the numerical method is stable as
long as the subcycling time step ∆𝑡𝑒 sufficiently resolves the damping timescale 𝑇 . For the stability analysis we had to
make several simplifications of the problem; hence the location of the boundary between stable and unstable regions
is merely an estimate. The current default parameters for the EVP and EAP are 𝑛𝑑𝑡𝑒 = 240 and 𝐸∘ = 0.36. For high
resolution applications, it is however recommended to increase the value of 𝑛𝑑𝑡𝑒 [30], [5].

Note that only 𝑇 and ∆𝑡𝑒 figure into the stability of the dynamics component; ∆𝑡 does not. Although the time step
may not be tightly limited by stability considerations, large time steps (e.g., ∆𝑡 = 1 day, given daily forcing) do not
produce accurate results in the dynamics component. The reasons for this error are discussed in [21]; see [25] for its
practical effects. The thermodynamics component is stable for any time step, as long as the surface temperature 𝑇𝑠𝑓𝑐
is computed internally. The numerical constraint on the thermodynamics time step is associated with the transport
scheme rather than the thermodynamic solver.

For the revised EVP approach (kdyn = 1, revised_evp = true), the relaxation parameter arlx1i effectively sets
the damping timescale in the problem, and brlx represents the effective subcycling [6] (see Section Revised EVP
approach).

3.1.4 Model Input and Output

IO Overview

CICE provides the ability to read and write binary unformatted or netCDF data via a number of different methods. The
IO implementation is specified both at build-time (via selection of specific source code) and run-time (via namelist).
Three different IO packages are available in CICE under the directory cicecore/cicedyn/infrastructure/io. Those are
io_binary, io_netcdf, and io_pio2, and those support IO thru binary, netCDF (https://www.unidata.ucar.edu/software/
netcdf), and PIO (https://github.com/NCAR/ParallelIO) interfaces respectively. The io_pio2 directory supports both
PIO1 and PIO2 and can write data thru the netCDF or parallel netCDF (pnetCDF) interface. The netCDF history
files are CF-compliant, and header information for data contained in the netCDF files is displayed with the command
ncdump -h filename.nc. To select the io source code, set ICE_IOTYPE in cice.settings to binary, netcdf, pio1,
or pio2.

At run-time, more detailed IO settings are available. restart_format and history_format namelist options specify
the method and format further. Valid options are listed in CICE IO formats. These options specify the format of new
files created by CICE. Existing files can be read in any format as long as it’s consistent with ICE_IOTYPE defined. Note
that with ICE_IOTYPE = binary, the format name is actually ignored. The CICE netCDF output contains a global
metadata attribute, io_flavor, that indicates the format chosen for the file. ncdump -k filename.nc also provides
information about the specific netCDF file format. In general, the detailed format is not enforced for input files, so any
netCDF format can be read in CICE regardless of CICE namelist settings.
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Table 8: CICE IO formats
Namelist Option Format Written Thru Valid With ICE_IOTYPE
binary Fortran binary fortran binary
cdf1 netCDF3-classic netCDF netcdf, pio1, pio2
cdf2 netCDF3-64bit-offset netCDF netcdf, pio1, pio2
cdf5 netCDF3-64bit-data netCDF netcdf, pio1, pio2
default binary or cdf1, depends on ICE_IOTYPE varies binary, netcdf, pio1, pio2
hdf5 netCDF4 hdf5 netCDF netcdf, pio1, pio2
pnetcdf1 netCDF3-classic pnetCDF pio1, pio2
pnetcdf2 netCDF3-64bit-offset pnetCDF pio1, pio2
pnetcdf5 netCDF3-64bit-data pnetCDF pio1, pio2

There are additional namelist options that affect PIO performance for both restart and history output. [history_,
restart_] [iotasks,root,stride] namelist options control the PIO processor/task usage and specify the total num-
ber of IO tasks, the root IO task, and the IO task stride respectively. history_rearranger and restart_rearranger
define the PIO rearranger strategy. Finally, [history_,restart_] [deflate,chunksize] provide controls for hdf5
compression and chunking for the hdf5 options in both netCDF and PIO output. hdf5 is written serially thru the
netCDF library and in parallel thru the PIO library in CICE. Additional details about the netCDF and PIO settings
and implementations can found in (https://www.unidata.ucar.edu/software/netcdf) and (https://github.com/NCAR/
ParallelIO).

netCDF requires CICE compilation with a netCDF library built externally. PIO requires CICE compilation with a PIO
and netCDF library built externally. Both netCDF and PIO can be built with many options which may require additional
libraries such as MPI, hdf5, or pnetCDF.

History files

CICE provides history data output in binary unformatted or netCDF formats via separate implementations of binary,
netCDF, and PIO interfaces as described above. In addition, history_format as well as other history namelist options
control the specific file format as well as features related to IO performance, see IO Overview.

The data is written at the period(s) given by histfreq and histfreq_n relative to a reference date speci-
fied by histfreq_base. The files are written to binary or netCDF files prepended by the history_file
and history_suffix namelist setting. The settings for history files are set in the setup_nml sec-
tion of ice_in (see Tables of Namelist Options). The history filenames will have a form like [his-
tory_file][history_suffix][_freq].[timeID].[nc,da] depending on the namelist options chosen. With binary files, a
separate header file is written with equivalent information. Standard fields are output according to settings in the ice-
fields_nml section of ice_in (see Tables of Namelist Options). The user may add (or subtract) variables not already
available in the namelist by following the instructions in section Adding History fields.

The history implementation has been divided into several modules based on the desired formatting and on the variables
themselves. Parameters, variables and routines needed by multiple modules is in ice_history_shared.F90, while the
primary routines for initializing and accumulating all of the history variables are in ice_history.F90. These routines
call format-specific code in the io_binary, io_netcdf and io_pio2 directories. History variables specific to certain com-
ponents or parameterizations are collected in their own history modules (ice_history_bgc.F90, ice_history_drag.F90,
ice_history_mechred.F90, ice_history_pond.F90).

The history modules allow output at different frequencies. Five output options (1, h, d, m, y) are available simultaneously
for histfreq during a run, and each stream must have a unique value for histfreq. In other words, d cannot be used
by two different streams. Each stream has an associated frequency set by histfreq_n. The frequency is relative to
a reference date specified by the corresponding entry in histfreq_base. Each stream can be instantaneous or time
averaged data over the frequency internal. The hist_avg namelist turns on time averaging for each stream individually.
The same model variable can be written to multiple history streams (ie. daily d and monthly m) via its namelist flag,
f_ ⟨𝑣𝑎𝑟⟩, while x turns that history variable off. For example, f_aice = 'md' will write aice to the monthly and
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daily streams. Grid variable history output flags are logicals and written to all stream files if turned on. If there are
no namelist flags with a given histfreq value, or if an element of histfreq_n is 0, then no file will be written at
that frequency. The history filenames are set in the subroutine construct_filename in ice_history_shared.F90. In
cases where two streams produce the same identical filename, the model will abort. Use the namelist hist_suffix
to make stream filenames unique. More information about how the frequency is computed is found in Time Manager.
Also, some Earth Sytem Models require the history file time axis to be centered in the averaging interval. The flag
hist_time_axis will allow the user to chose begin, middle, or end for the time stamp.

For example, in the namelist:

histfreq = '1', 'h', 'd', 'm', 'y'
histfreq_n = 1 , 6 , 0 , 1 , 1
histfreq_base = 'zero','zero','zero','zero','zero'
hist_avg = .true.,.true.,.true.,.true.,.true.
f_hi = '1'
f_hs = 'h'
f_Tsfc = 'd'
f_aice = 'm'
f_meltb = 'mh'
f_iage = 'x'

Here, hi will be written to a file on every timestep, hs will be written once every 6 hours, aice once a month, meltb
once a month AND once every 6 hours, and Tsfc and iage will not be written. All streams are time averaged over the
interval although because one stream has histfreq=1 and histfreq_n=1, that is equivalent to instantaneous output
each model timestep.

From an efficiency standpoint, it is best to set unused frequencies in histfreq to ‘x’. Having output at all 5 frequencies
takes nearly 5 times as long as for a single frequency. If you only want monthly output, the most efficient setting is
histfreq = ’m’,’x’,’x’,’x’,’x’. The code counts the number of desired streams (nstreams) based on histfreq.

There is no restart capability built into the history implementation. If the model stops in the middle of a history
accumulation period, that data is lost on restart, and the accumulation is zeroed out at startup. That means the dump
frequency (see Restart files) and history frequency need to be somewhat coordinated. For example, if monthly history
files are requested, the dump frequency should be set to an integer number of months.

The history variable names must be unique for netCDF, so in cases where a variable is written at more than one
frequency, the variable name is appended with the frequency in files after the first one. In the example above, meltb
is called meltb in the monthly file (for backward compatibility with the default configuration) and meltb_h in the
6-hourly file.

If write_ic is set to true in ice_in, a snapshot of the same set of history fields at the start of the run will be written
to the history directory in iceh_ic.[timeID].nc(da). Several history variables are hard-coded for instantaneous output
regardless of the hist_avg averaging flag, at the frequency given by their namelist flag.

The normalized principal components of internal ice stress (sig1, sig2) are computed in principal_stress and written
to the history file. This calculation is not necessary for the simulation; principal stresses are merely computed for
diagnostic purposes and included here for the user’s convenience.

Several history variables are available in two forms, a value representing an average over the sea ice fraction of the
grid cell, and another that is multiplied by 𝑎𝑖, representing an average over the grid cell area. Our naming convention
attaches the suffix “_ai” to the grid-cell-mean variable names.

Beginning with CICE v6, history variables requested by the Sea Ice Model Intercomparison Project (SIMIP) [43]
have been added as possible history output variables (e.g. f_sithick, f_sidmassgrowthbottom, etc.). The lists
of monthly and daily requested SIMIP variables provide the names of possible history fields in CICE. However, each
of the additional variables can be output at any temporal frequency specified in the icefields_nml section of ice_in
as detailed above. Additionally, a new history output variable, f_CMIP, has been added. When f_CMIP is added to

3.1. Implementation 49

http://clipc-services.ceda.ac.uk/dreq/u/MIPtable::SImon.html
http://clipc-services.ceda.ac.uk/dreq/u/MIPtable::SIday.html


CICE Documentation

the icefields_nml section of ice_in then all SIMIP variables will be turned on for output at the frequency specified by
f_CMIP.

It may also be helpful for debugging to increase the precision of the history file output from 4 bytes to 8 bytes. This is
changed through the history_precision namelist flag.

Diagnostic files

Like histfreq, the parameter diagfreq can be used to regulate how often output is written to a log file. The log
file unit to which diagnostic output is written is set in ice_fileunits.F90. If diag_type = ‘stdout’, then it is written to
standard out (or to ice.log.[ID] if you redirect standard out as in cice.run); otherwise it is written to the file given by
diag_file.

In addition to the standard diagnostic output (maximum area-averaged thickness, velocity, average albedo, total ice area,
and total ice and snow volumes), the namelist options print_points and print_global cause additional diagnostic
information to be computed and written. print_global outputs global sums that are useful for checking global
conservation of mass and energy. print_points writes data for two specific grid points defined by the input namelist
lonpnt and latpnt. By default, one point is near the North Pole and the other is in the Weddell Sea; these may be
changed in ice_in.

The namelist debug_model prints detailed debug diagnostics for a single point as the model advances. The point
is defined by the namelist debug_model_i, debug_model_j, debug_model_iblk, and debug_model_task. These
are the local i, j, block, and mpi task index values of the point to be diagnosed. This point is defined in local index space
and can be values in the array halo. If the local point is not defined in namelist, the point associated with lonpnt(1)
and latpnt(1) is used. debug_model is normally used when the model aborts and needs to be debugged in detail at
a particular (usually failing) grid point.

Memory use diagnostics are controlled by the logical namelist memory_stats. This feature uses an intrinsic query in
C defined in ice_memusage_gptl.c. Memory diagnostics will be written at the the frequency defined by diagfreq.

Timers are declared and initialized in ice_timers.F90, and the code to be timed is wrapped with calls to ice_timer_start
and ice_timer_stop. Finally, ice_timer_print writes the results to the log file. The optional “stats” argument (true/false)
prints additional statistics. The “stats” argument can be set by the timer_stats namelist. Calling ice_timer_print_all
prints all of the timings at once, rather than having to call each individually. Currently, the timers are set up as in CICE
timers. Section Adding Timers contains instructions for adding timers.

The timings provided by these timers are not mutually exclusive. For example, the Column timer includes the timings
from several other timers, while timer Bound is called from many different places in the code, including the dynamics
and advection routines. The Dynamics, Advection, and Column timers do not overlap and represent most of the overall
model work.

The timers use MPI_WTIME for parallel runs and the F90 intrinsic system_clock for single-processor runs.
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Table 9: CICE timers
Timer
Index Label
1 Total the entire run
2 Timeloop total minus initialization and exit
3 Dynamics dynamics
4 Advection horizontal transport
5 Column all vertical (column) processes
6 Thermo vertical thermodynamics, part of Column timer
7 Shortwave SW radiation and albedo, part of Thermo timer
8 Ridging mechanical redistribution, part of Column timer
9 FloeSize flow size, part of Column timer
10 Coupling sending/receiving coupler messages
11 ReadWrite reading/writing files
12 Diags diagnostics (log file)
13 History history output
14 Bound boundary conditions and subdomain communications
15 BundBound halo update bundle copy
16 BGC biogeochemistry, part of Thermo timer
17 Forcing forcing
18 1d-evp 1d evp, part of Dynamics timer
19 2d-evp 2d evp, part of Dynamics timer
20 UpdState update state

Restart files

CICE reads and writes restart data in binary unformatted or netCDF formats via separate implementations of binary,
netCDF, and PIO interfaces as described above. In addition, restart_format as well as other restart namelist options
control the specific file format as well as features related to IO performance, see IO Overview.

The restart files created by CICE contain all of the variables needed for a full, exact restart. The filename begins
with the character string defined by the restart_file namelist input, and the restart dump frequency is given by the
namelist variables dumpfreq and dumpfreq_n relative to a reference date specified by dumpfreq_base. Multiple
restart frequencies are supported in the code with a similar mechanism to history streams. The pointer to the filename
from which the restart data is to be read for a continuation run is set in pointer_file. The code assumes that auxiliary
binary tracer restart files will be identified using the same pointer and file name prefix, but with an additional character
string in the file name that is associated with each tracer set. All variables are included in netCDF restart files.

Additional namelist flags provide further control of restart behavior. dump_last = true causes a set of restart files to
be written at the end of a run when it is otherwise not scheduled to occur. The flag use_restart_time enables the
user to choose to use the model date provided in the restart files for initial runs. If use_restart_time = false then
the initial model date stamp is determined from the namelist parameters, year_init, month_init, day_init, and
sec_init. lcdf64 = true sets 64-bit netCDF output, allowing larger file sizes.

Routines for gathering, scattering and (unformatted) reading and writing of the “extended” global grid, including the
physical domain and ghost (halo) cells around the outer edges, allow exact restarts on regional grids with open boundary
conditions, and they will also simplify restarts on the various tripole grids. They are accessed by setting restart_ext
= true in namelist. Extended grid restarts are not available when using PIO; in this case extra halo update calls fill ghost
cells for tripole grids (do not use PIO for regional grids).

Restart files are available for the CICE code distributions for the gx3 and gx1 grids (see Forcing data for information
about obtaining these files). They were created using the default model configuration and run for multiple years using
the JRA55 forcing.
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3.2 Running CICE

Quick-start instructions are provided in the Quick Start section.

3.2.1 Software Requirements

To run stand-alone, CICE requires

• bash and csh

• gmake (GNU Make)

• Fortran and C compilers (Intel, PGI, GNU, Cray, NVHPC, AOCC, and NAG have been tested)

• NetCDF (optional, but required to test standard configurations that have netCDF grid, input, and forcing files)

• MPI (optional, but required for running on more than 1 processor)

• PIO (optional, but required for running with PIO I/O interfaces)

Below are lists of software versions that the Consortium has tested at some point. There is no guarantee that all compiler
versions work with all CICE model versions. At any given point, the Consortium is regularly testing on several different
compilers, but not necessarily on all possible versions or combinations. CICE supports both PIO1 and PIO2. To use
PIO1, the USE_PIO1 macro should also be set. A CICE goal is to be relatively portable across different hardware,
compilers, and other software. As a result, the coding implementation tends to be on the conservative side at times. If
there are problems porting to a particular system, please let the Consortium know.

The Consortium has tested the following compilers at some point,

• AOCC 3.0.0

• Intel ifort 15.0.3.187

• Intel ifort 16.0.1.150

• Intel ifort 17.0.1.132

• Intel ifort 17.0.2.174

• Intel ifort 17.0.5.239

• Intel ifort 18.0.1.163

• Intel ifort 18.0.5

• Intel ifort 19.0.2

• Intel ifort 19.0.3.199

• Intel ifort 19.1.0.166

• Intel ifort 19.1.1.217

• Intel ifort 19.1.2.254

• Intel ifort 2021.4.0

• Intel ifort 2021.6.0

• Intel ifort 2021.8.0

• Intel ifort 2021.9.0

• Intel ifort 2022.2.1

• PGI 16.10.0
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• PGI 19.9-0

• PGI 20.1-0

• PGI 20.4-0

• GNU 6.3.0

• GNU 7.2.0

• GNU 7.3.0

• GNU 7.7.0

• GNU 8.3.0

• GNU 9.3.0

• GNU 10.1.0

• GNU 11.2.0

• GNU 12.1.0

• GNU 12.2.0

• Cray CCE 8.5.8

• Cray CCE 8.6.4

• Cray CCE 13.0.2

• Cray CCE 14.0.3

• Cray CCE 15.0.1

• NAG 6.2

• NVC 23.5-0

The Consortium has tested the following MPI implementations and versions,

• MPICH 7.3.2

• MPICH 7.5.3

• MPICH 7.6.2

• MPICH 7.6.3

• MPICH 7.7.0

• MPICH 7.7.6

• MPICH 7.7.7

• MPICH 7.7.19

• MPICH 7.7.20

• MPICH 8.1.14

• MPICH 8.1.21

• MPICH 8.1.25

• Intel MPI 18.0.1

• Intel MPI 18.0.4

• Intel MPI 2019 Update 6
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• Intel MPI 2019 Update 8

• MPT 2.14

• MPT 2.17

• MPT 2.18

• MPT 2.19

• MPT 2.20

• MPT 2.21

• MPT 2.22

• MPT 2.25

• mvapich2-2.3.3

• OpenMPI 1.6.5

• OpenMPI 4.0.2

The NetCDF implementation is relatively general and should work with any version of NetCDF 3 or 4. The Consortium
has tested

• NetCDF 4.3.0

• NetCDF 4.3.2

• NetCDF 4.4.0

• NetCDF 4.4.1.1.3

• NetCDF 4.4.1.1.6

• NetCDF 4.4.1.1

• NetCDF 4.4.2

• NetCDF 4.5.0

• NetCDF 4.5.2

• NetCDF 4.6.1.3

• NetCDF 4.6.3

• NetCDF 4.6.3.2

• NetCDF 4.7.2

• NetCDF 4.7.4

• NetCDF 4.8.1

• NetCDF 4.8.1.1

• NetCDF 4.8.1.3

• NetCDF 4.9.0.1

• NetCDF 4.9.0.3

• NetCDF 4.9.2

CICE has been tested with

• PIO 1.10.1
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• PIO 2.5.4

• PIO 2.5.9

• PIO 2.6.0

• PIO 2.6.1

• PnetCDF 1.12.2

• PnetCDF 1.12.3

• PnetCDF 2.6.2

Please email the Consortium if this list can be extended.

3.2.2 Scripts

The CICE scripts are written to allow quick setup of cases and tests. Once a case is generated, users can manually
modify the namelist and other files to custom configure the case. Several settings are available via scripts as well.

Overview

Most of the scripts that configure, build and run CICE are contained in the directory configuration/scripts/, except for
cice.setup, which is in the main directory. cice.setup is the main script that generates a case.

Users may need to port the scripts to their local machine. Specific instructions for porting are provided in Porting.

cice.setup -h will provide the latest information about how to use the tool. cice.setup --help will provide an
extended version of the help. There are three usage modes,

• --case or -c creates individual stand alone cases.

• --test creates individual tests. Tests are just cases that have some extra automation in order to carry out par-
ticular tests such as exact restart.

• --suite creates a test suite. Test suites are predefined sets of tests and --suite provides the ability to quickly
setup, build, and run a full suite of tests.

All modes will require use of --mach or -m to specify the machine. Use of --env is also recommended to specify
the compilation environment. --case and --test modes can use --set or -s which will turn on various model
options. --test and --suite will require --testid to be set and can use --bdir, --bgen, --bcmp, and --diff to
generate (save) results for regression testing (comparison with prior results). --tdir will specify the location of the
test directory. Testing will be described in greater detail in the Testing CICE section.

Again, cice.setup --help will show the latest usage information including the available --set options, the current
ported machines, and the test choices.

To create a case, run cice.setup:

cice.setup -c mycase -m machine -e intel
cd mycase

Once a case/test is created, several files are placed in the case directory

• env.[machine]_[env] defines the environment

• cice.settings defines many variables associated with building and running the model

• makdep.c is a tool that will automatically generate the make dependencies

• Macros.[machine]_[env] defines the Makefile macros
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• Makefile is the makefile used to build the model

• cice.build is a script that calls the Makefile and compiles the model

• ice_in is the namelist input file

• setup_run_dirs.csh is a script that will create the run directories. This will be called automatically from the
cice.run script if the user does not invoke it.

• cice.run is a batch run script

• cice.submit is a simple script that submits the cice.run script

Once the case is created, all scripts and namelist are fully resolved. Users can edit any of the files in the case directory
manually to change the model configuration, build options, or batch settings. The file dependency is indicated in the
above list. For instance, if any of the files before cice.build in the list are edited, cice.build should be rerun.

The casescripts/ directory holds scripts used to create the case and can largely be ignored. Once a case is created,
the cice.build script should be run interactively and then the case should be submitted by executing the cice.submit
script interactively. The cice.submit script submits the cice.run script or cice.test script. These scripts can also be
run interactively or submitted manually without the cice.submit script.

Some hints:

• To change namelist, manually edit the ice_in file

• To change batch settings, manually edit the top of the cice.run or cice.test (if running a test) file

• When the run scripts are submitted, the current ice_in, cice.settings, and env.[machine] files are copied from
the case directory into the run directory. Users should generally not edit files in the run directory as these are
overwritten when following the standard workflow. cice.settings can be sourced to establish the case values in
the login shell.

• Some useful aliases can be found in the Use of Shell Aliases section

• To turn on the debug compiler flags, set ICE_BLDDEBUG in cice.setttings to true. It is also possible to use the
debug option (-s debug) when creating the case with cice.setup to set this option automatically.

• To change compiler options, manually edit the Macros file. To add user defined preprocessor macros, modify
ICE_CPPDEFS in cice.settings using the syntax -DCICE_MACRO.

• To clean the build before each compile, set ICE_CLEANBUILD in cice.settings to true (this is the default value),
or use the buildclean option (-s buildclean) when creating the case with cice.setup. To not clean be-
fore the build, set ICE_CLEANBUILD in cice.settings to false, or use the buildincremental option (-s
buildincremental) when creating the case with cice.setup. It is recommended that the ICE_CLEANBUILD
be set to true if there are any questions about whether the build is proceeding properly.

To build and run:

./cice.build

./cice.submit

The build and run log files will be copied into the logs subdirectory in the case directory. Other model output will be
in the run directory. The run directory is set in cice.settings via the ICE_RUNDIR variable. To modify the case setup,
changes should be made in the case directory, NOT the run directory.
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cice.setup Command Line Options

cice.setup -h provides a summary of the command line options. There are three different modes, --case, --test,
and --suite. This section provides details about the relevant options for setting up cases with examples. Testing will
be described in greater detail in the Testing CICE section.

--help, -h
prints cice.setup help information to the terminal and exits.

--version
prints the CICE version to the terminal and exits.

--setvers VERSION
internally updates the CICE version in your sandbox. Those changes can then be commited (or not) to the
repository. –version will show the updated value. The argument VERSION is typically a string like “5.1.2” but
could be any alphanumeric string.

--case, -c CASE
specifies the case name. This can be either a relative path of an absolute path. This cannot be used with –test or
–suite. Either --case, --test, or --suite is required.

--mach, -mMACHINE
specifies the machine name. This should be consistent with the name defined in the Macros and env files in con-
figurations/scripts/machines. This is required in all modes and is paired with --env to define the compilation
environment.

--env, -e ENVIRONMENT1,ENVIRONMENT2,ENVIRONMENT3 specifies the compilation environment associ-
ated with the machine. This should be consistent with the name defined in the Macros and env files in configu-
rations/scripts/machines. Each machine can have multiple supported environments including support for different
compilers, different compiler versions, different mpi libraries, or other system settigs. When used with --suite or
--test, the ENVIRONMENT can be a set of comma deliminated values with no spaces and the tests will then be run
for all of those environments. With --case, only one ENVIRONMENT should be specified. (default is intel)

--pes, -pMxN[[xBXxBY[xMB]
specifies the number of tasks and threads the case should be run on. This only works with --case. The format
is tasks x threads or “M”x”N” where M is tasks and N is threads and both are integers. BX, BY, and MB can
also be set via this option where BX is the x-direction blocksize, BY is the y-direction blocksize, and MB is the
max-blocks setting. If BX, BY, and MB are not set, they will be computed automatically based on the grid size
and the task/thread count. More specifically, this option has three modes, –pes MxN, –pes MxNxBXxBY, and
–pes MxNxBXxBYxMB. (default is 4x1)

--acct ACCOUNT
specifies a batch account number. This is optional. See Machine Account Settings for more information.

--queue QUEUE
specifies a batch queue name. This is optional. See Machine Queue Settings for more information.

--grid, -g GRID
specifies the grid. This is a string and for the current CICE driver, gx1, gx3, and tx1 are supported. (default =
gx3)

--set, -s SET1,SET2,SET3
specifies the optional settings for the case. The settings for --suite are defined in the suite file. Multiple settings
can be specified by providing a comma deliminated set of values without spaces between settings. The available
settings are in configurations/scripts/options and cice.setup --help will also list them. These settings files
can change either the namelist values or overall case settings (such as the debug flag). For cases and tests (not
suites), settings defined in ~/.cice_set (if it exists) will be included in the –set options. This behaviour can be
overridden with the –ignore-user-set` command line option.
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--ignore-user-set
ignores settings defined in ~/.cice.set (if it exists) for cases and tests. ~/.cice_set is always ignored for test suites.

For CICE, when setting up cases, the --case and --mach must be specified. It’s also recommended that --env be
set explicitly as well. --pes and --grid can be very useful. --acct and --queue are not normally used. A more
convenient method is to use the ~/cice_proj file, see Machine Account Settings. The --set option can be extremely
handy. The --set options are documented in Preset Options.

Preset Options

There are several preset options. These are hardwired in configurations/scripts/options and are specfied for a case or
test by the --set command line option. You can see the full list of settings by doing cice.setup --help.

The default CICE namelist and CICE settings are specified in the files configuration/scripts/ice_in and configura-
tion/scripts/cice.settings respectively. When picking settings (options), the set_env.setting and set_nml.setting will
be used to change the defaults. This is done as part of the cice.setup and the modifications are resolved in the
cice.settings and ice_in file placed in the case directory. If multiple options are chosen that conflict, then the last
option chosen takes precedence. Not all options are compatible with each other.

Settings defined in ~/.cice_set (if it exists) will be included in the --set options. This behaviour can be overridden
with the –ignore-user-set` command line option. The format of the ~/.cice_set file is a identical to the --set option,
a single comma-delimited line of options. Settings on the command line will take precedence over settings defined in
~/.cice_set.

Some of the options are

debug which turns on the compiler debug flags

buildclean which turns on the option to clean the build before each compile

buildincremental which turns off the option to clean the build before each compile

short, medium, long which change the batch time limit

gx3, gx1, tx1 are associate with grid specific settings

diag1 which turns on diagnostics each timestep

run10day, run1year, etc which specifies a run length

dslenderX1, droundrobin, dspacecurve, etc specify decomposition options

bgcISPOL and bgcNICE specify bgc options

boxadv, boxnodyn, and boxrestore are simple box configurations

alt* which turns on various combinations of dynamics and physics options for testing

and there are others. These may change as needed. Use cice.setup --help to see the latest. To add a new option,
just add the appropriate file in configuration/scripts/options. For more information, see Test Options
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Examples

The simplest case is just to setup a default configuration specifying the case name, machine, and environment:

cice.setup --case mycase1 --mach spirit --env intel

To add some optional settings, one might do:

cice.setup --case mycase2 --mach spirit --env intel --set debug,diag1,run1year

Once the cases are created, users are free to modify the cice.settings and ice_in namelist to further modify their setup.

More about cice.build

cice.build is copied into the case directory and should be run interactively from the case directory to build the model.
CICE is built with make and there is a generic Makefile and a machine specific Macros file in the case directory.
cice.build is a wrapper for a call to make that includes several other features.

CICE is built as follows. First, the makdep binary is created by compiling a small C program. The makdep binary is
then run and dependency files are created. The dependency files are included into the Makefile automatically. As a
result, make dependencies do not need to be explicitly defined by the user. In the next step, make compiles the CICE
code and generates the cice binary.

The standard and recommended way to run is with no arguments

cice.build

However, cice.build does support a couple other use modes.

cice.build [-h|--help]

provides a summary of the usage.

cice.build [make arguments] [target]

turns off most of the features of the cice.build script and turns it into a wrapper for the make call. The arguments and/or
target are passed to make and invoked more or less like make [make arguments] [target]. This will be the case if either
or both the arguments or target are passed to cice.build. Some examples of that are

cice.build --version

which will pass –version to make.

cice.build targets

is a valid target of the CICE Makefile and simply echos all the valid targets of the Makefile.

cice.build cice

or

cice.build all

are largely equivalent to running cice.build without an argument, although as noted earlier, many of the extra features
of the cice.build script are turned off when calling cice.build with a target or an argument. Any of the full builds will
compile makdep, generate the source code dependencies, and compile the source code.
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cice.build [clean|realclean]
cice.build [db_files|db_flags]
cice.build [makdep|depends]

are other valid options for cleaning the build, writing out information about the Makefile setup, and building just the
makdep tool or the dependency file. It is also possible to target a particular CICE object file.

Finally, there is one important parameter in cice.settings. The ICE_CLEANBUILD variable defines whether the model is
cleaned before a build is carried out. By default, this variable is true which means each invokation of cice.build
will automatically clean the prior build. If incremental builds are desired to save time during development, the
ICE_CLEANBUILD setting in cice.settings should be modified.

C Preprocessor (CPP) Macros

There are a number of C Preprocessing Macros supported in the CICE model. These allow certain coding features like
NetCDF, MPI, or specific Fortran features to be excluded or included during the compile.

The CPPs are defined by the CPPDEFS variable in the Makefile. They are defined by passing the -D[CPP] to the C
and Fortran compilers (ie. -DUSE_NETCDF) and this is what needs to be set in the CPPDEFS variable. The value
of ICE_CPPDEFS in cice.settings is copied into the Makefile CPPDEFS variable as are settings hardwired into the
Macros.[machine]_[environment] file.

In general, -DFORTRANUNDERSCORE should always be set to support the Fortran/C interfaces in ice_shr_reprosum.c.
In addition, if NetCDF is used, -DUSE_NETCDF should also be defined. A list of available CPPs can be found in Table
of C Preprocessor (CPP) Macros.

3.2.3 Porting

There are four basic issues that need to be addressed when porting, and these are addressed in four separate files in the
script system,

• setup of the environment such as compilers, environment variables, and other support software (in
env.[machine]_[environment])

• setup of the Macros file to support the model build (in Macros.[machine]_[environment])

• setup of the batch submission scripts (in cice.batch.csh)

• setup of the model launch command (in cice.launch.csh)

To port, an env.[machine]_[environment] and Macros.[machine]_[environment] file have to be added to
the configuration/scripts/machines/ directory and the configuration/scripts/cice.batch.csh and configura-
tion/scripts/cice.launch.csh files need to be modified. In general, the machine is specified in cice.setupwith --mach
and the environment (compiler) is specified with --env. mach and env in combination define the compiler, compiler
version, supporting libaries, and batch information. Multiple compilation environments can be created for a single
machine by choosing unique env names.

• cd to configuration/scripts/machines/

• Copy an existing env and a Macros file to new names for your new machine

• Edit your env and Macros files, update as needed

• cd .. to configuration/scripts/

• Edit the cice.batch.csh script to add a section for your machine with batch settings

• Edit the cice.batch.csh script to add a section for your machine with job launch settings

60 Chapter 3. User Guide



CICE Documentation

• Download and untar a forcing dataset to the location defined by ICE_MACHINE_INPUTDATA in the env file

In fact, this process almost certainly will require some iteration. The easiest way to carry this out is to cre-
ate an initial set of changes as described above, then create a case and manually modify the env.[machine]
file and Macros.[machine] file until the case can build and run. Then copy the files from the case direc-
tory back to configuration/scripts/machines/ and update the configuration/scripts/cice.batch.csh and configu-
ratin/scripts/cice.launch.csh files, retest, and then add and commit the updated machine files to the repository.

Machine variables

There are several machine specific variables defined in the env.$[machine]. These variables are used to generate
working cases for a given machine, compiler, and batch system. Some variables are optional.

Table 10: Machine Settings
variable format description
ICE_MACHINE_MACHNAMEstring machine name
ICE_MACHINE_MACHINFO string machine information
ICE_MACHINE_ENVNAME string env/compiler name
ICE_MACHINE_ENVINFO string env/compiler information
ICE_MACHINE_MAKE string make command
ICE_MACHINE_WKDIR string root work directory
ICE_MACHINE_INPUTDATAstring root input data directory
ICE_MACHINE_BASELINE string root regression baseline directory
ICE_MACHINE_SUBMIT string batch job submission command
ICE_MACHINE_TPNODE integer machine maximum MPI tasks per node
ICE_MACHINE_MAXPES integer machine maximum total processors per job (op-

tional)
ICE_MACHINE_MAXTHREADSinteger machine maximum threads per mpi task (optional)
ICE_MACHINE_MAXRUNLENGTHinteger batch wall time limit in hours (optional)
ICE_MACHINE_ACCT string batch default account
ICE_MACHINE_QUEUE string batch default queue
ICE_MACHINE_BLDTHRDS integer number of threads used during build
ICE_MACHINE_QSTAT string batch job status command (optional)
ICE_MACHINE_QUIETMODEtrue/false flag to reduce build output (optional)

Cross-compiling

It can happen that the model must be built on a platform and run on another, for example when the run environment is
only available in a batch queue. The program makdep (see Overview), however, is both compiled and run as part of
the build process.

In order to support this, the Makefile uses a variable CFLAGS_HOST that can hold compiler flags specfic to the
build machine for the compilation of makdep. If this feature is needed, add the variable CFLAGS_HOST to the
Macros.[machine]_[environment] file. For example :

CFLAGS_HOST = -xHost
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Machine Account Settings

The machine account default is specified by the variable ICE_MACHINE_ACCT in the env.[machine] file. The easiest
way to change a user’s default is to create a file in your home directory called .cice_proj and add your preferred
account name to the first line. There is also an option (--acct) in cice.setup to define the account number. The order
of precedence is cice.setup command line option, .cice_proj setting, and then value in the env.[machine] file.

Machine Queue Settings

Supported machines will have a default queue specified by the variable ICE_MACHINE_QUEUE in the env.[machine]
file. This can also be manually changed in the cice.run or cice.test scripts or even better, use the --queue option in
cice.setup.

3.2.4 Porting to Laptops or Personal Computers

To get the required software necessary to build and run CICE, and use the plotting and quality control scripts included
in the repository, a conda environment file is available at :

configuration/scripts/machines/environment.yml.

This configuration is supported by the Consortium on a best-effort basis on macOS and GNU/Linux. It is untested
under Windows, but might work using the Windows Subsystem for Linux.

Once you have installed Miniconda and created the cice conda environment by following the procedures in this section,
CICE should run on your machine without having to go through the formal Porting process outlined above.

Installing Miniconda

We recommend the use of the Miniconda distribution to create a self-contained conda environment from the
environment.yml file. This process has to be done only once. If you do not have Miniconda or Anaconda installed,
you can install Miniconda by following the official instructions, or with these steps:

On macOS:

# Download the Miniconda installer to ~/miniconda.sh
curl -L https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o ~/
→˓miniconda.sh
# Install Miniconda
bash ~/miniconda.sh

# Follow the prompts

# Close and reopen your shell

On GNU/Linux:

# Download the Miniconda installer to ~/miniconda.sh
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/
→˓miniconda.sh
# Install Miniconda
bash ~/miniconda.sh

# Follow the prompts
(continues on next page)
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(continued from previous page)

# Close and reopen your shell

Note: on some Linux distributions (including Ubuntu and its derivatives), the csh shell that comes with the system
is not compatible with conda. You will need to install the tcsh shell (which is backwards compatible with csh), and
configure your system to use tcsh as csh:

# Install tcsh
sudo apt-get install tcsh
# Configure your system to use tcsh as csh
sudo update-alternatives --set csh /bin/tcsh

Initializing your shell for use with conda

We recommend initializing your default shell to use conda. This process has to be done only once.

The Miniconda installer should ask you if you want to do that as part of the installation procedure. If you did not answer
“yes”, you can use one of the following procedures depending on your default shell. Bash should be your default shell
if you are on macOS (10.14 and older) or GNU/Linux.

Note: answering “yes” during the Miniconda installation procedure will only initialize the Bash shell for use with
conda.

If your Mac has macOS 10.15 or higher, your default shell is Zsh.

These instructions make sure that the conda command is available when you start your shell by modifying your shell’s
startup file. Also, they make sure not to activate the “base” conda environment when you start your shell. This conda
environment is created during the Miniconda installation but is not used for CICE.

For Bash:

# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/bin/activate
conda init bash

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For Zsh (Z shell):

# Initialize Zsh to use conda
source $HOME/miniconda3/bin/activate
conda init zsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For tcsh:
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# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/etc/profile.d/conda.csh
conda init tcsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For fish:

# Install miniconda as indicated above, then initialize your shell to use conda:
source $HOME/miniconda3/etc/fish/conf.d/conda.fish
conda init fish

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

For xonsh:

# Install miniconda as indicated above, then initialize your shell to use conda:
source-bash $HOME/miniconda3/bin/activate
conda init xonsh

# Don't activate the "base" conda environment on shell startup
conda config --set auto_activate_base false

# Close and reopen your shell

Initializing your shell for conda manually

If you prefer not to modify your shell startup files, you will need to run the appropriate source command below
(depending on your default shell) before using any conda command, and before compiling and running CICE. These
instructions make sure the conda command is available for the duration of your shell session.

For Bash and Zsh:

# Initialize your shell session to use conda:
source $HOME/miniconda3/bin/activate

For tcsh:

# Initialize your shell session to use conda:
source $HOME/miniconda3/etc/profile.d/conda.csh

For fish:

# Initialize your shell session to use conda:
source $HOME/miniconda3/etc/fish/conf.d/conda.fish

For xonsh:
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# Initialize your shell session to use conda:
source-bash $HOME/miniconda3/bin/activate

Creating CICE directories and the conda environment

The conda configuration expects some directories and files to be present at $HOME/cice-dirs:

cd $HOME
mkdir -p cice-dirs/runs cice-dirs/baseline cice-dirs/input
# Download the required forcing from https://github.com/CICE-Consortium/CICE/wiki/CICE-
→˓Input-Data
# and untar it at $HOME/cice-dirs/input

This step needs to be done only once.

If you prefer that some or all of the CICE directories be located somewhere else, you can create a symlink from your
home to another location:

# Create the CICE directories at your preferred location
cd ${somewhere}
mkdir -p cice-dirs/runs cice-dirs/baseline cice-dirs/input
# Download the required forcing from https://github.com/CICE-Consortium/CICE/wiki/CICE-
→˓Input-Data
# and untar it at cice-dirs/input

# Create a symlink to cice-dirs in your $HOME
cd $HOME
ln -s ${somewhere}/cice-dirs cice-dirs

Note: if you wish, you can also create a complete machine port for your computer by leveraging the conda configuration
as a starting point. See Porting.

Next, create the “cice” conda environment from the environment.yml file in the CICE source code repository. You
will need to clone CICE to run the following command:

conda env create -f configuration/scripts/machines/environment.yml

This step needs to be done only once and will maintain a static conda environment. To update the conda environment
later, use

conda env create -f configuration/scripts/machines/environment.yml --force

This will update the conda environment to the latest software versions.
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Using the conda configuration

Follow the general instructions in Overview, using the conda machine name and macos or linux as compiler names.

On macOS:

./cice.setup -m conda -e macos -c ~/cice-dirs/cases/case1
cd ~/cice-dirs/cases/case1
./cice.build
./cice.run

On GNU/Linux:

./cice.setup -m conda -e linux -c ~/cice-dirs/cases/case1
cd ~/cice-dirs/cases/case1
./cice.build
./cice.run

A few notes about the conda configuration:

• This configuration always runs the model interactively, such that ./cice.run and ./cice.submit are the
same.

• You should not update the packages in the cice conda environment, nor install additional packages.

• Depending on the numbers of CPUs in your machine, you might not be able to run with the default MPI config-
uration (-p 4x1). You likely will get an OpenMPI error such as:

There are not enough slots available in the system to satisfy the 4 slots that were requested by the
application: ./cice

You can run CICE in serial mode by specifically requesting only one process:

./cice.setup -m conda -e linux -p 1x1 ...

If you do want to run with more MPI processes than the number of available CPUs in your machine, you can add
the --oversubscribe flag to the mpirun call in cice.run:

# For a specific case:
# Open cice.run and replace the line
mpirun -np <num> ./cice >&! $ICE_RUNLOG_FILE
# with
mpirun -np <num> --oversubscribe ./cice >&! $ICE_RUNLOG_FILE

# For all future cases:
# Open configuration/scripts/cice.launch.csh and replace the line
mpirun -np ${ntasks} ./cice >&! \$ICE_RUNLOG_FILE
# with
mpirun -np ${ntasks} --oversubscribe ./cice >&! \$ICE_RUNLOG_FILE

• It is not recommeded to run other test suites than quick_suite or travis_suite on a personal computer.

• The conda environment is automatically activated when compiling or running the model using the ./cice.
build and ./cice.run scripts in the case directory. These scripts source the file env.conda_{linux.macos},
which calls conda activate cice.

• To use the “cice” conda environment with the Python plotting (see Timeseries Plotting) and quality control (QC)
scripts (see Code Validation Testing Procedure), you must manually activate the environment:
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cd ~/cice-dirs/cases/case1
conda activate cice
python timeseries.py ~/cice-dirs/cases/case1/logs
conda deactivate # to deactivate the environment

• The environment also contains the Sphinx package necessesary to build the HTML documentation :

cd doc
conda activate cice
make html
# Open build/html/index.html in your browser
conda deactivate # to deactivate the environment

3.2.5 Forcing data

The input data space is defined on a per machine basis by the ICE_MACHINE_INPUTDATA variable in the env.[machine]
file. That file space is often shared among multiple users, and it can be desirable to consider using a common file space
with group read and write permissions such that a set of users can update the inputdata area as new datasets are available.

CICE input datasets are stored on an anonymous ftp server. More information about how to download the input data can
be found at https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data. Test forcing datasets are available for
various grids at the ftp site. These data files are designed only for testing the code, not for use in production runs or as
observational data. Please do not publish results based on these data sets.

3.2.6 Run Directories

The cice.setup script creates a case directory. However, the model is actually built and run under the ICE_OBJDIR
and ICE_RUNDIR directories as defined in the cice.settings file. It’s important to note that when the run scripts are
submitted, the current ice_in, cice.settings, and env.[machine] files are copied from the case directory into the run
directory. Users should generally not edit files in the run directory as these are overwritten when following the standard
workflow.

Build and run logs will be copied from the run directory into the case logs/ directory when complete.

3.2.7 Local modifications

Scripts and other case settings can be changed manually in the case directory and used. Source code can be modified
in the main sandbox. When changes are made, the code should be rebuilt before being resubmitted. It is always
recommended that users modify the scripts and input settings in the case directory, NOT the run directory. In general,
files in the run directory are overwritten by versions in the case directory when the model is built, submitted, and run.

3.2.8 Use of Shell Aliases

This section provides a list of some potentially useful shell aliases that leverage the CICE scripts. These are not defined
by CICE and are not required for using CICE. They are provided as an example of what can be done by users. The
current ice_in, cice.settings, and env.[machine] files are copied from the case directory into the run directory when
the model is run. Users can create aliases leveraging the variables in these files. Aliases like the following can be
established in shell startup files or otherwise at users discretion:
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#!/bin/tcsh
# From a case or run directory, source the necessary environment files to run CICE
alias cice_env 'source env.*; source cice.settings'
# Go from case directory to run directory and back (see https://stackoverflow.com/a/
→˓34874698/)
alias cdrun 'set rundir=`\grep "setenv ICE_RUNDIR" cice.settings | awk "{print "\$"NF}
→˓"` && cd $rundir'
alias cdcase 'set casedir=`\grep "setenv ICE_CASEDIR" cice.settings | awk "{print "\$"NF}
→˓"` && cd $casedir'

#!/bin/bash
# From case/test directory, go to run directory
alias cdrun='cd $(cice_var ICE_RUNDIR)'
# From run directory, go to case/test directory
alias cdcase='cd $(cice_var ICE_CASEDIR)'
# monitor current cice run (from ICE_RUNDIR directory)
alias cice_tail='tail -f $(ls -1t cice.runlog.* |head -1)'
# open log from last CICE run (from ICE_CASEDIR directory)
alias cice_lastrun='$EDITOR $(ls -1t logs/cice.runlog.* |head -1)'
# open log from last CICE build (from ICE_CASEDIR directory)
alias cice_lastbuild='$EDITOR $(ls -1t logs/cice.bldlog.* |head -1)'
# show CICE run directory when run in the case directory
alias cice_rundir='cice_var ICE_RUNDIR'
# open a tcsh shell and source env.* and cice.settings (useful for launching CICE in a␣
→˓debugger)
alias cice_shell='tcsh -c "cice_env; tcsh"'

## Functions
# Print the value of a CICE variable ($1) from cice.settings
cice_var() {
\grep "setenv $1" cice.settings | awk "{print "\$"3}"
}

3.2.9 Timeseries Plotting

The CICE scripts include two scripts that will generate timeseries figures from a diagnostic output file, a Python version
(timeseries.py) and a csh version (timeseries.csh). Both scripts create the same set of plots, but the Python script
has more capabilities, and it’s likely that the csh script will be removed in the future.

To use the timeseries.py script, the following requirements must be met:

• Python v2.7 or later

• numpy Python package

• matplotlib Python package

• datetime Python package

See Code Validation Testing Procedure for additional information about how to setup the Python environment, but we
recommend using pip as follows:

pip install --user numpy
pip install --user matplotlib
pip install --user datetime
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When creating a case or test via cice.setup, the timeseries.csh and timeseries.py scripts are automatically
copied to the case directory. Alternatively, the plotting scripts can be found in ./configuration/scripts, and can
be run from any directory.

The Python script can be passed a directory, a specific log file, or no directory at all:

• If a directory is passed, the script will look either in that directory or in directory/logs for a filename like cice.run*.
As such, users can point the script to either a case directory or the logs directory directly. The script will use
the file with the most recent creation time.

• If a specific file is passed the script parses that file, assuming that the file matches the same form of cice.run*
files.

• If nothing is passed, the script will look for log files or a logs directory in the directory from where the script
was run.

For example:

Run the timeseries script on the desired case.

$ python timeseries.py /p/work1/turner/CICE_RUNS/conrad_intel_smoke_col_1x1_diag1_
→˓run1year.t00/

or

$ python timeseries.py /p/work1/turner/CICE_RUNS/conrad_intel_smoke_col_1x1_diag1_
→˓run1year.t00/logs

The output figures are placed in the directory where the timeseries.py script is run.

The plotting script will plot the following variables by default, but you can also select specific plots to create via the
optional command line arguments.

• total ice area (𝑘𝑚2)

• total ice extent (𝑘𝑚2)

• total ice volume (𝑚3)

• total snow volume (𝑚3)

• RMS ice speed (𝑚/𝑠)

For example, to plot only total ice volume and total snow volume

$ python timeseries.py /p/work1/turner/CICE_RUNS/conrad_intel_smoke_col_1x1_diag1_
→˓run1year.t00/ --volume --snw_vol

To generate plots for all of the cases within a suite with a testid, create and run a script such as

#!/bin/csh
foreach dir (`ls -1 | grep testid`)
echo $dir
python timeseries.py $dir

end

Plots are only made for a single output file at a time. The ability to plot output from a series of cice.run* files is not
currently possible, but may be added in the future. However, using the --bdir option will plot two datasets (from log
files) on the same figure.

For the latest help information for the script, run
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$ python timeseries.py -h

The timeseries.csh script works basically the same way as the Python version, however it does not include all of
the capabilities present in the Python version.

To use the C-Shell version of the script,

$ ./timeseries.csh /p/work1/turner/CICE_RUNS/conrad_intel_smoke_col_1x1_diag1_run1year.
→˓t00/

3.3 Testing CICE

This section documents primarily how to use the CICE scripts to carry out CICE testing. Exactly what to test is
a separate question and depends on the kinds of code changes being made. Prior to merging changes to the CICE
Consortium main, changes will be reviewed and developers will need to provide a summary of the tests carried out.

There is a base suite of tests provided by default with CICE and this may be a good starting point for testing.

The testing scripts support several features

• Ability to test individual (via --test) or multiple tests (via --suite) using an input file to define the suite

• Ability to use test suites defined in the package or test suites defined by the user

• Ability to store test results for regresssion testing (--bgen)

• Ability to compare results to prior baselines to verify bit-for-bit (--bcmp)

• Ability to define where baseline tests are stored (--bdir)

• Ability to compare tests against each other (--diff)

• Ability to set or overide the batch account number (--acct) and queue name (--queue)

• Ability to control how test suites execute (--setup-only, --setup-build, --setup-build-run,
--setup-build-submit)

3.3.1 Individual Tests

The CICE scripts support both setup of individual tests as well as test suites. Individual tests are run from the command
line:

./cice.setup --test smoke --mach conrad --env cray --set diag1,debug --testid myid

Tests are just like cases but have some additional scripting around them. Individual tests can be created and manually
modified just like cases. Many of the command line arguments for individual tests are similar to cice.setup Command
Line Options for --case. For individual tests, the following command line options can be set

--test TESTNAME
specifies the test type. This is probably either smoke or restart but see cice.setup –help for the latest. This is
required instead of --case.

--testid ID
specifies the testid. This is required for every use of --test and --suite. This is a user defined string that will
allow each test to have a unique case and run directory name. This is also required.

--tdir PATH
specifies the test directory. Testcases will be created in this directory. (default is .)
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--mach MACHINE (see cice.setup Command Line Options)

--env ENVIRONMENT1 (see cice.setup Command Line Options)

--set SET1,SET2,SET3 (see cice.setup Command Line Options)

--ignore-user-set (see cice.setup Command Line Options)

--acct ACCOUNT (see cice.setup Command Line Options)

--grid GRID (see cice.setup Command Line Options)

--pes MxNxBXxBYxMB (see cice.setup Command Line Options)

There are several additional options that come with --test that are not available with --case for regression and
comparision testing,

--bdir DIR
specifies the top level location of the baseline results. This is used in conjuction with --bgen and --bcmp. The
default is set by ICE_MACHINE_BASELINE in the env.[machine]_[environment] file.

--bgen DIR
specifies the name of the directory under [bdir] where test results will be stored. When this flag is set, it automat-
ically creates that directory and stores results from the test under that directory. If DIR is set to default, then
the scripts will automatically generate a directory name based on the CICE hash and the date and time. This can
be useful for tracking the baselines by hash.

--bcmp DIR
specifies the name of the directory under [bdir] that the current tests will be compared to. When this flag is set, it
automatically invokes regression testing and compares results from the current test to those prior results. If DIR
is set to default, then the script will automatically generate the last directory name in the [bdir] directory. This
can be useful for automated regression testing.

--diff LONG_TESTNAME
invokes a comparison against another local test. This allows different tests to be compared to each other for bit-
for-bit-ness. This is different than --bcmp. --bcmp is regression testing, comparing identical test results between
different model versions. --diff allows comparison of two different test cases against each other. For instance,
different block sizes, decompositions, and other model features are expected to produced identical results and
--diff supports that testing. The restrictions for use of --diff are that the test has to already be completed
and the testid has to match. The LONG_TESTNAME string should be of format [test]_[grid]_[pes]_[sets]. The
[machine], [env], and [testid] will be added to that string to complete the testname being compared. (See also
Individual Test Examples #5)

The format of the case directory name for a test will always be [machine]_[env]_[test]_[grid]_[pes]_[sets].
[testid] The [sets] will always be sorted alphabetically by the script so --set debug,diag1 and --set diag1,
debug produces the same testname and test with _debug_diag1 in that order.

To build and run a test after invoking the ./cice.setup command, the process is the same as for a case. cd to the test
directory, run the build script, and run the submit script:

cd [test_case]
./cice.build
./cice.submit

The test results will be generated in a local file called test_output. To check those results:

cat test_output

Tests are defined under configuration/scripts/tests/. Some tests currently supported are:
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• smoke - Runs the model for default length. The length and options can
be set with the --set command line option. The test passes if the model completes successfully.

• restart - Runs the model for 10 days, writing a restart file at the end of day 5 and
again at the end of the run. Runs the model a second time starting from the day 5 restart and writes a restart
at then end of day 10 of the model run. The test passes if both runs complete and if the restart files at the
end of day 10 from both runs are bit-for-bit identical.

• decomp - Runs a set of different decompositions on a given configuration

Please run ./cice.setup --help for the latest information.

Adding a new test

See Test scripts

Individual Test Examples

1) Basic default single test

Define the test, mach, env, and testid.

./cice.setup --test smoke --mach wolf --env gnu --testid t00
cd wolf_gnu_smoke_col_1x1.t00
./cice.build
./cice.submit
./cat test_output

2) Simple test with some options

Add --set

./cice.setup --test smoke --mach wolf --env gnu --set diag1,debug --testid t00
cd wolf_gnu_smoke_col_1x1_debug_diag1.t00
./cice.build
./cice.submit
./cat test_output

3) Single test, generate a baseline dataset

Add --bgen

./cice.setup --test smoke --mach wolf -env gnu --bgen cice.v01 --testid t00 --set␣
→˓diag1
cd wolf_gnu_smoke_col_1x1_diag1.t00
./cice.build
./cice.submit
./cat test_output

4) Single test, compare results to a prior baseline

Add --bcmp. For this to work, the prior baseline must exist and have the exact same base testname [ma-
chine]_[env]_[test]_[grid]_[pes]_[sets]
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./cice.setup --test smoke --mach wolf -env gnu --bcmp cice.v01 --testid t01 --set␣
→˓diag1
cd wolf_gnu_smoke_col_1x1_diag1.t01
./cice.build
./cice.submit
./cat test_output

5) Simple test, generate a baseline dataset and compare to a prior baseline

Use --bgen and --bcmp. The prior baseline must exist already.

./cice.setup --test smoke --mach wolf -env gnu --bgen cice.v02 --bcmp cice.v01 --
→˓testid t02 --set diag1
cd wolf_gnu_smoke_col_1x1_diag1.t02
./cice.build
./cice.submit
./cat test_output

6) Simple test, comparison against another test

--diff provides a way to compare tests with each other. For this to work, the tests have to be run in a specific
order and the testids need to match. The test is always compared relative to the current case directory.

To run the first test,

./cice.setup --test smoke --mach wolf -env gnu --testid tx01 --set debug
cd wolf_gnu_smoke_col_1x1_debug.tx01
./cice.build
./cice.submit
./cat test_output

Then to run the second test and compare to the results from the first test

./cice.setup --test smoke --mach wolf -env gnu --testid tx01 --diff smoke_col_1x1_
→˓debug
cd wolf_gnu_smoke_col_1x1.tx01
./cice.build
./cice.submit
./cat test_output

The scripts will add a [machine]_[environment] to the beginning of the diff argument and the same testid to
the end of the diff argument. Then the runs will be compared for bit-for-bit and a result will be produced in
test_output.

Specific Test Cases

In addition to the test implemented in the general testing framework, specific tests have been developed to validate
specific portions of the model. These specific tests are detailed in this section.
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box2001

The box2001 test case is configured to perform the rectangular-grid box test detailed in [20]. It is configured to run a
72-hour simulation with thermodynamics disabled in a rectangular domain (80 x 80 grid cells) with a land boundary
around the entire domain. It includes the following namelist modifications:

• dxrect: 16.e5 cm

• dyrect: 16.e5 cm

• ktherm: -1 (disables thermodynamics)

• coriolis: constant (f=1.46e-4 s−1)

• ice_data_type : box2001 (special initial ice mask)

• ice_data_conc : p5

• ice_data_dist : box2001 (special ice concentration initialization)

• atm_data_type : box2001 (special atmospheric and ocean forcing)

Ocean stresses are computed as in [20] where they are circular and centered in the square domain. The ice distribution
is fixed, with a constant 2 meter ice thickness and a concentration field that varies linearly in the x-direction from 0 to
1 and is constant in the y-direction. No islands are included in this configuration. The test is configured to run on a
single processor.

To run the test:

./cice.setup -m <machine> --test smoke -s box2001 --testid <test_id> --grid gbox80 --
→˓acct <queue manager account> -p 1x1

boxslotcyl

The boxslotcyl test case is an advection test configured to perform the slotted cylinder test detailed in [67]. It is
configured to run a 12-day simulation with thermodynamics, ridging and dynamics disabled, in a square domain (80 x
80 grid cells) with a land boundary around the entire domain. It includes the following namelist modifications:

• dxrect: 10.e5 cm (10 km)

• dyrect: 10.e5 cm (10 km)

• ktherm: -1 (disables thermodynamics)

• kridge: -1 (disables ridging)

• kdyn: -1 (disables dynamics)

• ice_data_type : boxslotcyl (special initial ice mask)

• ice_data_conc : c1

• ice_data_dist : uniform

Dynamics is disabled because we directly impose a constant ice velocity. The ice velocity field is circular and centered
in the square domain, and such that the slotted cylinder makes a complete revolution with a period 𝑇 = 12 days :

(𝑢, 𝑣) = 𝑢0

(︂
2𝑦 − 𝐿

𝐿
,
−2𝑥+ 𝐿

𝐿

)︂
(3.1)

where 𝐿 is the physical domain length and 𝑢0 = 𝜋𝐿/𝑇 . The initial ice distribution is a slotted cylinder of radius
𝑟 = 3𝐿/10 centered at (𝑥, 𝑦) = (𝐿/2, 3𝐿/4). The slot has a width of 𝐿/6 and a depth of 5𝐿/6 and is placed radially.
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The time step is one hour, which with the above speed and mesh size yields a Courant number of 0.86.

The test can run on multiple processors.

To run the test:

./cice.setup -m <machine> --test smoke -s boxslotcyl --testid <test_id> --grid gbox80 --
→˓acct <queue manager account> -p nxm

3.3.2 Test suites

Test suites support running multiple tests specified via an input file. When invoking the test suite option (--suite) with
cice.setup, all tests will be created, built, and submitted automatically under a local directory called testsuite.[testid]
as part of involing the suite.:

./cice.setup --suite base_suite --mach wolf --env gnu --testid myid

Like an individual test, the --testid option must be specified and can be any string. Once the tests are complete,
results can be checked by running the results.csh script in the testsuite.[testid]:

cd testsuite.[testid]
./results.csh

Multiple suites are supported on the command line as comma separated arguments:

./cice.setup --suite base_suite,decomp_suite --mach wolf --env gnu --testid myid

If a user adds --set to the suite, all tests in that suite will add that option:

./cice.setup --suite base_suite,decomp_suite --mach wolf --env gnu --testid myid -s debug

The option settings defined at the command line have precedence over the test suite values if there are conflicts.

The predefined test suites are defined under configuration/scripts/tests and the files defining the suites have a suffix
of .ts in that directory. Some of the available tests suites are

quick_suite
consists of a handful of basic CICE tests

base_suite
consists of a much large suite of tests covering much of the CICE functionality

decomp_suite
checks that different decompositions and pe counts produce bit-for-bit results

omp_suite
checks that OpenMP single thread and multi-thread cases are bit-for-bit identical

io_suite
tests the various IO options including binary, netcdf, and pio. PIO should be installed locally and accessible to
the CICE build system to make full use of this suite.

perf_suite
runs a series of tests to evaluate model scaling and performance

reprosum_suite
verifies that CICE log files are bit-for-bit with different decompositions and pe counts when the bfbflag is set to
reprosum
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gridsys_suite
tests B, C, and CD grid_ice configurations

prod_suite
consists of a handful of tests running 5 to 10 model years and includes some QC testing. These tests will be
relatively expensive and take more time compared to other suites.

unittest_suite
runs unit tests in the CICE repository

travis_suite
consists of a small suite of tests suitable for running on low pe counts. This is the suite used with Github Actions
for CI in the workflow.

first_suite
this small suite of tests is redundant with tests in other suites. It runs several of the critical baseline tests that
other test compare to. It can improve testing turnaround if listed first in a series of test suites.

When running multiple suites on the command line (i.e. --suite first_suite,base_suite,omp_suite) the
suites will be run in the order defined by the user and redundant tests across multiple suites will be created and executed
only once.

The format for the test suite file is relatively simple. It is a text file with white space delimited columns that define a
handful of values in a specific order. The first column is the test name, the second the grid, the third the pe count, the
fourth column is the --set options and the fifth column is the --diff argument. The fourth and fifth columns are
optional. Lines that begin with # or are blank are ignored. For example,

#Test Grid PEs Sets Diff
smoke col 1x1 diag1
smoke col 1x1 diag1,run1year smoke_col_1x1_diag1
smoke col 1x1 debug,run1year
restart col 1x1 debug
restart col 1x1 diag1
restart col 1x1 pondlvl
restart col 1x1 pondtopo

The argument to --suite defines the test suite (.ts) filename and that argument can contain a path. cice.setup will look
for the filename in the local directory, in configuration/scripts/tests/, or in the path defined by the --suite option.

Because many of the command line options are specified in the input file, ONLY the following options are valid for
suites,

--suite filename
required, input filename with list of suites

--machMACHINE
required

--env ENVIRONMENT1,ENVIRONMENT2
strongly recommended

--set SET1,SET2
optional

--acct ACCOUNT
optional

--tdir PATH
optional
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--testid ID
required

--bdir DIR
optional, top level baselines directory and defined by default by ICE_MACHINE_BASELINE in
env.[machine]_[environment].

--bgen DIR
recommended, test output is copied to this directory under [bdir]

--bcmp DIR
recommended, test output are compared to prior results in this directory under [bdir]

--report
This is only used by --suite and when set, invokes a script that sends the test results to the results page when
all tests are complete. Please see Test Reporting for more information.

--coverage
When invoked, code coverage diagnostics are generated. This will modify the build and reduce optimization and
generate coverage reports using lcov or codecov tools. General use is not recommended, this is mainly used as
a diagnostic to periodically assess test coverage. Please see Code Coverage Testing for more information.

--setup-only
This is only used by --suite and when set, just creates the suite testcases. It does not build or submit them to
run. By default, the suites do --setup-build-submit.

--setup-build
This is only used by --suite and when set, just creates and builds the suite testcases. It does not submit them
to run. By default, the suites do --setup-build-submit.

--setup-build-run
This is only used by --suite and when set, runs the test cases interactively instead of submitting them in batch.
By default, the suites do --setup-build-submit.

--setup-build-submit
This is only used by --suite and when set, sets up the cases, builds them, and submits them. This is the default
behavior of suites.

Please see cice.setup Command Line Options and Individual Tests for more details about how these options are used.

As indicated above, cice.setup with --suite will create a directory called testsuite.[testid]. cice.setup also generates
a script called suite.submit in that directory. suite.submit is the script that builds and submits the various test cases
in the test suite.

The cice.setup* options --setup-only, --setup-build, and --setup-build-run modify how suite.submit is
run by cice.setup. suite.submit can also be run manually, and the environment variables, SUITE_BUILD (builds the
testcases), SUITE_RUN (runs the testcases interactively), and SUITE_SUBMIT (submit the testcases to run) control
suite.submit. The default values for these variables are

SUITE_BUILD = true
SUITE_RUN = false
SUITE_SUBMIT = true

which means by default the test suite builds and submits the jobs. By defining other values for those environment
variables, users can control the suite script. When using suite.submit manually, the string true (all lowercase) is the
only string that will turn on a feature, and both SUITE_RUN and SUITE_SUBMIT cannot be true at the same time.

By leveraging the cice.setup command line arguments --setup-only, --setup-build, and --setup-build-run
as well as the environment variables SUITE_BUILD, SUITE_RUN, and SUITE_SUBMIT, users can run cice.setup
and suite.submit in various combinations to quickly setup, setup and build, submit, resubmit, run interactively, or
rebuild and resubmit full testsuites quickly and easily. See Test Suite Examples for an example.
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The script create_fails.csh will process the output from results.csh and generate a new test suite file, fails.ts, from
the failed tests. fails.ts can then be edited and passed into cice.setup --suite fails.ts ... to rerun subsets of
failed tests to more efficiently move thru the development, testing, and validation process. However, a full test suite
should be run on the final development version of the code.

To report the test results, as is required for Pull Requests to be accepted into the main the CICE Consortium code see
Test Reporting.

If using the --tdir option, that directory must not exist before the script is run. The tdir directory will be created by
the script and it will be populated by all tests as well as scripts that support the test suite:

./cice.setup --suite base_suite --mach wolf --env gnu --testid myid --tdir /scratch/
→˓$user/testsuite.myid

Test Suite Examples

1) Basic test suite

Specify suite, mach, env, testid.

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a
cd testsuite.v01a
# wait for runs to complete
./results.csh

2) Basic test suite with user defined test directory

Specify suite, mach, env, testid, tdir.

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓tdir /scratch/$user/ts.v01a
cd /scratch/$user/ts.v01a
# wait for runs to complete
./results.csh

3) Basic test suite on multiple environments

Specify multiple envs.

./cice.setup --suite base_suite --mach conrad --env cray,pgi,intel,gnu --
→˓testid v01a
cd testsuite.v01a
# wait for runs to complete
./results.csh

Each env can be run as a separate invokation of cice.setup but if that approach is taken, it is recom-
mended that different testids be used.

4) Basic test suite with generate option defined

Add --set

./cice.setup --suite base_suite --mach conrad --env gnu --testid v01b --
→˓set diag1
cd testsuite.v01b
# wait for runs to complete

./results.csh
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If there are conflicts between the --set options in the suite and on the command line, the command
line options will take precedence.

5) Multiple test suites from a single command line

Add comma delimited list of suites

./cice.setup --suite base_suite,decomp_suite --mach conrad --env gnu --
→˓testid v01c
cd testsuite.v01c
# wait for runs to complete
./results.csh

If there are redundant tests in multiple suites, the scripts will understand that and only create one test.

6) Basic test suite, store baselines in user defined name

Add --bgen

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen cice.v01a
cd testsuite.v01a
# wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under the subdirectory cice.v01a.

7) Basic test suite, store baselines in user defined top level directory

Add --bgen and --bdir

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen cice.v01a --bdir /tmp/user/CICE_BASELINES
cd testsuite.v01a
# wait for runs to complete
./results.csh

This will store the results in /tmp/user/CICE_BASELINES/cice.v01a.

8) Basic test suite, store baselines in auto-generated directory

Add --bgen default

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --
→˓bgen default
cd testsuite.v01a
# wait for runs to complete
./results.csh

This will store the results in the default [bdir] directory under a directory name generated by the
script that includes the hash and date.

9) Basic test suite, compare to prior baselines

Add --bcmp

./cice.setup --suite base_suite --mach conrad --env cray --testid v02a --
→˓bcmp cice.v01a
cd testsuite.v02a

(continues on next page)
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(continued from previous page)

# wait for runs to complete
./results.csh

This will compare to results saved in the baseline [bdir] directory under the subdirectory cice.v01a.
With the --bcmp option, the results will be tested against prior baselines to verify bit-for-bit, which
is an important step prior to approval of many (not all, see Code Validation Test (non bit-for-bit
validation)) Pull Requests to incorporate code into the CICE Consortium main branch. You can use
other regression options as well. (--bdir and --bgen)

10) Basic test suite, use of default string in regression testing

default is a special argument to --bgen and --bcmp. When used, the scripts will automate
generation of the directories. In the case of --bgen, a unique directory name consisting of
the hash and a date will be created. In the case of --bcmp, the latest directory in [bdir] will
automatically be used. This provides a number of useful features

• the --bgen directory will be named after the hash automatically

• the --bcmp will always find the most recent set of baselines

• the --bcmp reporting will include information about the comparison directory name which
will include hash information

• automation can be invoked easily, especially if --bdir is used to create separate baseline
directories as needed.

Imagine the case where the default settings are used and --bdir is used to create a unique
location. You could easily carry out regular builds automatically via,

set mydate = `date -u "+%Y%m%d"`
git clone https://github.com/myfork/cice cice.$mydate --recursive
cd cice.$mydate
./cice.setup --suite base_suite --mach conrad --env cray,gnu,intel,pgi␣
→˓--testid $mydate --bcmp default --bgen default --bdir /tmp/work/user/
→˓CICE_BASELINES_MAIN

When this is invoked, a new set of baselines will be generated and compared to the prior results
each time without having to change the arguments.

11) Reusing a test suite

Add the buildincremental option (-s buildincremental). This permits the suite to be rerun
without recompiling the whole code.

./cice.setup --suite base_suite --mach conrad --env intel --testid␣
→˓v01b --set buildincremental
cd testsuite.v01b
# wait for runs to complete
./results.csh
# modify code
./suite.submit
# wait for runs to complete
./results.csh

Only modified files will be recompiled, and the suite will be rerun.

12) Create and test a custom suite

Create your own input text file consisting of 5 columns of data,

80 Chapter 3. User Guide



CICE Documentation

• Test

• Grid

• pes

• sets (optional)

• diff test (optional)

such as

> cat mysuite
smoke col 1x1 diag1,debug
restart col 1x1
restart col 1x1 diag1,debug restart_col_1x1
restart col 1x1 mynewoption,diag1,debug

then use that input file, mysuite

./cice.setup --suite mysuite --mach conrad --env cray --testid v01a --
→˓bgen default
cd testsuite.v01a
# wait for runs to complete
./results.csh

You can use all the standard regression testing options (--bgen, --bcmp, --bdir). Make sure
any “diff” testing that goes on is on tests that are created earlier in the test list, as early as
possible. Unfortunately, there is still no absolute guarantee the tests will be completed in the
correct sequence.

13) Test suite generation then manual build followed by manual submission

Specify suite, mach, env, testid.

./cice.setup --suite quick_suite,base_suite --mach conrad --env cray,
→˓gnu --testid v01a --setup-only
cd testsuite.v01a
setenv SUITE_BUILD true
setenv SUITE_RUN false
setenv SUITE_SUBMIT false
./suite.submit
setenv SUITE_BUILD false
setenv SUITE_RUN false
setenv SUITE_SUBMIT true
./suite.submit
# wait for runs to complete
./results.csh

The setenv syntax is for csh/tcsh. In bash, the syntax would be SUITE_BUILD=true.
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3.3.3 Unit Testing

Unit testing is supported in the CICE scripts. Unit tests are implemented via a distinct top level driver that tests CICE
model features explicitly. These drivers can be found in cicecore/drivers/unittest/. In addition, there are some script
files that also support the unit testing.

The unit tests build and run very much like the standard CICE model. A case is created and model output is saved to
the case logs directory. Unit tests can be run as part of a test suite and the output is compared against an earlier set of
output using a simple diff of the log files.

For example, to run the existing calendar unit test as a case,

./cice.setup -m onyx -e intel --case calchk01 -p 1x1 -s calchk
cd calchk01
./cice.build
./cice.submit

Or to run the existing calendar unit test as a test,

./cice.setup -m onyx -e intel --test unittest -p 1x1 --testid cc01 -s calchk --bgen cice.
→˓cc01
cd onyx_intel_unittest_gx3_1x1_calchk.cc01/
./cice.build
./cice.submit

To create a new unit test, add a new driver in cicecore/driver/unittest. The directory name should be the name of the
test. Then create the appropriate set_nml or set_env files for the new unittest name in configuration/scripts/options.
In particular, ICE_DRVOPT and ICE_TARGET need to be defined in a set_env file. Finally, edit configura-
tion/scripts/Makefile and create a target for the unit test. The unit tests calchk or helloworld can be used as examples.

The following strings should be written to the log file at the end of the unit test run. The string “COMPLETED
SUCCESSFULLY” will indicate the run ran to completion. The string “TEST COMPLETED SUCCESSFULLY” will
indicate all the unit testing passed during the run. The unit test log file output is compared as part of regression testing.
The string “RunningUnitTest” indicates the start of the output to compare. That string should be written to the log file
at the start of the unit test model output. These strings will be queried by the testing scripts and will impact the test
reporting. See other unit tests for examples about how these strings could be written.

The following are brief descriptions of some of the current unit tests,

• bcstchk is a unit test that exercises the methods in ice_broadcast.F90. This test does not depend on the CICE
grid to carry out the testing. By testing with a serial and mpi configuration, both sets of software are tested
independently and correctness is verified.

• calchk is a unit test that exercises the CICE calendar over 100,000 years and verifies correctness. This test does
not depend on the CICE initialization.

• gridavgchk is a unit test that exercises the CICE grid_average_X2Y methods and verifies results.

• halochk is a unit test that exercises the CICE haloUpdate methods and verifies results.

• helloworld is a simple test that writes out helloworld and uses no CICE infrastructure. This tests exists to demon-
strate how to build a unit test by specifying the object files directly in the Makefile

• optargs is a unit test that tests passing optional arguments down a calling tree and verifying that the optional
attribute is preserved correctly.

• opticep is a cice test that turns off the icepack optional arguments passed into icepack. This can only be run with
a subset of CICE/Icepack cases to verify the optional arguments are working correctly.
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• sumchk is a unit test that exercises the methods in ice_global_reductions.F90. This test requires that a CICE
grid and decomposition be initialized, so CICE_InitMod.F90 is leveraged to initialize the model prior to running
a suite of unit validation tests to verify correctness.

3.3.4 Test Reporting

The CICE testing scripts have the capability to post test results to the official CICE Consortium Test-Results wiki page.
You may need write permission on the wiki. If you are interested in using the wiki, please contact the Consortium. Note
that in order for code to be accepted to the CICE main branch through a Pull Request it is necessary for the developer
to provide proof that their code passes relevant tests. This can be accomplished by posting the full results to the wiki,
or by copying the testing summary to the Pull Request comments.

To post results, once a test suite is complete, run results.csh and report_results.csh from the suite directory,

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a
cd testsuite.v01a
#wait for runs to complete
./results.csh
./report_results.csh

report_results.csh will run results.csh by default automatically, but we recommmend running it manually first
to verify results before publishing them. report_results.csh -n will turn off automatic running of results.csh.

The reporting can also be automated in a test suite by adding --report to cice.setup

./cice.setup --suite base_suite --mach conrad --env cray --testid v01a --report

With --report, the suite will create all the tests, build and submit them, wait for all runs to be complete, and run the
results and report_results scripts.

3.3.5 Code Coverage Testing

The --coverage feature in cice.setup provides a method to diagnose code coverage. This argument turns on special
compiler flags including reduced optimization and then invokes the gcov tool. Once runs are complete, either lcov
or codecov can be used to analyze the results. This option is currently only available with the gnu compiler and on a
few systems with modified Macros files. In the current implementation, when --coverage is invoked, the sandbox is
copied to a new sandbox called something like cice_lcov_yymmdd-hhmmss. The source code in the new sandbox is
modified slightly to improve coverage statistics and the full coverage suite is run there.

At the present time, the --coverage flag invokes the lcov analysis automatically by running the report_lcov.csh script
in the test suite directory. The output will show up at the CICE lcov website. To use the tool, you should have write
permission for that repository. The lcov tool should be run on a full multi-suite test suite, and it can take several hours
to process the data once the test runs are complete. A typical instantiation would be

./cice.setup --suite first_suite,base_suite,travis_suite,decomp_suite,reprosum_suite,io_
→˓suite,quick_suite --mach cheyenne --env gnu --testid cc01 --coverage

Alternatively, codecov analysis can be carried out by manually running the report_codecov.csh script from the
test suite directory, but there are several ongoing problems with this approach and it is not generally recom-
mended. A script that summarizes the end-to-end process for codecov analysis can be found in ..**configura-
tion/scripts/tests/cice_test_codecov.csh**. The codecov analysis is largely identical to the analysis performed by lcov,
codecov just provides a nicer web experience to view the output.

This is a special diagnostic test and is not part of the standard model testing. General use is not recommended, this is
mainly used as a diagnostic to periodically assess test coverage.
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..Because codecov.io does not support git submodule analysis right now, a customized ..repository has to be created to
test CICE with Icepack integrated directly. The repository ..https://github.com/apcraig/Test_CICE_Icepack serves as
the current default test repository. ..In general, to setup the code coverage test in CICE, the current CICE main has ..to
be copied into the Test_CICE_Icepack repository, then the full test suite ..can be run with the gnu compiler with the
--coverage argument.

..The test suite will run and then a report will be generated and uploaded to ..the codecov.io site by the ..**re-
port_codecov.csh** script. The env variable CODECOV_TOKEN needs to be defined ..either in the environment or
in a file named ~/.codecov_cice_token. That ..token provides write permission to the Test_CICE_Icepack codecov.io
site and is available ..by contacting the Consortium team directly.

..A script that carries out the end-to-end testing can be found in ..**configuration/scripts/tests/cice_test_codecov.csh**

..This is a special diagnostic test and does not constitute proper model testing. ..General use is not recommended, this
is mainly used as a diagnostic to periodically ..assess test coverage. The interaction with codecov.io is not always robust
and ..can be tricky to manage. Some constraints are that the output generated at runtime ..is copied into the directory
where compilation took place. That means each ..test should be compiled separately. Tests that invoke multiple runs
..(such as exact restart and the decomp test) will only save coverage information ..for the last run, so some coverage
information may be lost. The gcov tool can ..be a little slow to run on large test suites, and the codecov.io bash uploader
..(that runs gcov and uploads the data to codecov.io) is constantly evolving. ..Finally, gcov requires that the diagnostic
output be copied into the git sandbox for ..analysis. These constraints are handled by the current scripts, but may change
..in the future.

3.3.6 Code Validation Test (non bit-for-bit validation)

A core tenet of CICE dycore and CICE innovations is that they must not change the physics and biogeochemistry of
existing model configurations, notwithstanding obsolete model components. Therefore, alterations to existing CICE
Consortium code must only fix demonstrable numerical or scientific inaccuracies or bugs, or be necessary to introduce
new science into the code. New physics and biogeochemistry introduced into the model must not change model answers
when switched off, and in that case CICEcore and CICE must reproduce answers bit-for-bit as compared to previous
simulations with the same namelist configurations. This bit-for-bit requirement is common in Earth System Modeling
projects, but often cannot be achieved in practice because model additions may require changes to existing code. In
this circumstance, bit-for-bit reproducibility using one compiler may not be unachievable on a different computing
platform with a different compiler. Therefore, tools for scientific testing of CICE code changes have been developed
to accompany bit-for-bit testing. These tools exploit the statistical properties of simulated sea ice thickness to confirm
or deny the null hypothesis, which is that new additions to the CICE dycore and CICE have not significantly altered
simulated ice volume using previous model configurations. Here we describe the CICE testing tools, which are applies
to output from five-year gx-1 simulations that use the standard CICE atmospheric forcing. A scientific justification of
the testing is provided in [24]. The following sections follow [49].

Two-Stage Paired Thickness Test

The first quality check aims to confirm the null hypotheses 𝐻0 : 𝜇𝑑=0 at every model grid point, given the mean
thickness difference 𝜇𝑑 between paired CICE simulations ‘𝑎’ and ‘𝑏’ that should be identical. 𝜇𝑑 is approximated as
ℎ̄𝑑 = 1

𝑛

∑︀𝑛
𝑖=1(ℎ𝑎𝑖−ℎ𝑏𝑖) for 𝑛 paired samples of ice thickness ℎ𝑎𝑖 and ℎ𝑏𝑖 in each grid cell of the gx-1 mesh. Following

[66], the associated 𝑡-statistic expects a zero mean, and is therefore

𝑡 =
ℎ̄𝑑

𝜎𝑑/
√
𝑛𝑒𝑓𝑓

(3.2)

given variance 𝜎 2
𝑑 = 1

𝑛−1

∑︀𝑛
𝑖=1(ℎ𝑑𝑖 − ℎ̄𝑑)

2 of ℎ𝑑𝑖=(ℎ𝑎𝑖−ℎ𝑏𝑖) and effective sample size

𝑛𝑒𝑓𝑓=𝑛
(1− 𝑟1)

(1 + 𝑟1)
(3.3)
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for lag-1 autocorrelation:

𝑟1 =

𝑛−1∑︀
𝑖=1

[︀
(ℎ𝑑𝑖 − ℎ̄𝑑1:𝑛−1)(ℎ𝑑𝑖+1 − ℎ̄𝑑2:𝑛)

]︀
√︃

𝑛−1∑︀
𝑖=1

(ℎ𝑑𝑖 − ℎ̄𝑑1:𝑛−1)2
𝑛∑︀

𝑖=2

(ℎ𝑑𝑖 − ℎ̄𝑑2:𝑛)2

. (3.4)

Here, ℎ̄𝑑1:𝑛−1 is the mean of all samples except the last, and ℎ̄𝑑2:𝑛 is the mean of samples except the first, and both
differ from the overall mean ℎ̄𝑑 in equations ((3.2)). That is:

ℎ̄𝑑1:𝑛−1 =
1

𝑛−1

𝑛−1∑︁
𝑖=1

ℎ𝑑𝑖, ℎ̄𝑑2:𝑛 =
1

𝑛−1

𝑛∑︁
𝑖=2

ℎ𝑑𝑖, ℎ̄𝑑 =
1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑑𝑖 (3.5)

Following [68], the effective sample size is limited to 𝑛𝑒𝑓𝑓 ∈ [2, 𝑛]. This definition of 𝑛𝑒𝑓𝑓 assumes ice thickness
evolves as an AR(1) process [62], which can be justified by analyzing the spectral density of daily samples of ice
thickness from 5-year records in CICE Consortium member models [24]. The AR(1) approximation is inadmissible
for paired velocity samples, because ice drift possesses periodicity from inertia and tides [18][36][50]. Conversely,
tests of paired ice concentration samples may be less sensitive to ice drift than ice thickness. In short, ice thickness is
the best variable for CICE Consortium quality control (QC), and for the test of the mean in particular.

Care is required in analyzing mean sea ice thickness changes using ((3.2)) with 𝑁=𝑛𝑒𝑓𝑓−1 degrees of freedom. [68]
demonstrate that the 𝑡-test in ((3.2)) becomes conservative when 𝑛𝑒𝑓𝑓 < 30, meaning that 𝐻0 may be erroneously
confirmed for highly auto-correlated series. Strong autocorrelation frequently occurs in modeled sea ice thickness, and
𝑟1 > 0.99 is possible in parts of the gx-1 domain for the five-year QC simulations. In the event that𝐻0 is confirmed but
2 ≤ 𝑛𝑒𝑓𝑓 < 30, the 𝑡-test progresses to the ‘Table Lookup Test’ of [68], to check that the first-stage test using ((3.2))
was not conservative. The Table Lookup Test chooses critical 𝑡 values |𝑡| < 𝑡𝑐𝑟𝑖𝑡(1−𝛼/2, 𝑁) at the 𝛼 significance
level based on 𝑟1. It uses the conventional 𝑡 = ℎ̄𝑑

√
𝑛/𝜎𝑑 statistic with degrees of freedom 𝑁=𝑛−1, but with 𝑡𝑐𝑟𝑖𝑡

values generated using the Monte Carlo technique described in [68], and summarized in Two-sided t_{crit} values for
5-year QC simulations (𝑁 = 1824) at the two-sided 80% confidence interval (𝛼 = 0.2). We choose this interval to
limit Type II errors, whereby a QC test erroneously confirms 𝐻0.

Table Two-sided t_{crit} values shows the summary of two-sided 𝑡𝑐𝑟𝑖𝑡 values for the Table Lookup Test of [68] at the
80% confidence interval generated for 𝑁 = 1824 degrees of freedom and lag-1 autocorrelation 𝑟1.

Table 11: Two-sided 𝑡𝑐𝑟𝑖𝑡 values
𝑟1 -0.05 0.0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.99
𝑡𝑐𝑟𝑖𝑡 1.32 1.32 1.54 2.02 2.29 2.46 3.17 3.99 5.59 8.44 10.85 20.44

Quadratic Skill Validation Test

In addition to the two-stage test of mean sea ice thickness, we also check that paired simulations are highly correlated
and have similar variance using a skill metric adapted from [58]. A general skill score applicable to Taylor diagrams
takes the form

𝑆𝑚 =
4(1 +𝑅)𝑚

(�̂�𝑓 + 1/�̂�𝑓 )2(1 +𝑅0)𝑚
(3.6)

where 𝑚 = 1 for variance-weighted skill, and 𝑚 = 4 for correlation-weighted performance, as given in equations (4)
and (5) of [58], respectively. We choose 𝑚 = 2 to balance the importance of variance and correlation reproduction
in QC tests, where �̂�𝑓 = 𝜎𝑏/𝜎𝑎 is the ratio of the standard deviations of simulations ‘𝑏’ and ‘𝑎’, respectively, and
simulation ‘𝑎’ is the control. 𝑅0 is the maximum possible correlation between two series for correlation coefficient 𝑅
calculated between respective thickness pairs ℎ𝑎 and ℎ𝑏. Bit-for-bit reproduction of previous CICE simulations means
that perfect correlation is possible, and so 𝑅0 = 1, giving the quadratic skill of run ‘𝑏’ relative to run ‘𝑎’:

𝑆 =

[︂
(1 +𝑅)(𝜎𝑎𝜎𝑏)

(𝜎𝑎2 + 𝜎𝑏2)

]︂2
(3.7)
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This provides a skill score between 0 and 1. We apply this 𝑆 metric separately to the northern and southern hemispheres
of the gx-1 grid by area-weighting the daily thickness samples discussed in the Two-Stage Paired Thickness QC Test.
The hemispheric mean thickness over a 5-year simulation for run ‘𝑎’ is:

ℎ̄𝑎 =
1

𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 ℎ𝑎𝑖,𝑗 (3.8)

at time sample 𝑖 and grid point index 𝑗, with an equivalent equation for simulation ‘𝑏’. 𝑛 is the total number of time
samples (nominally 𝑛 = 1825) and 𝐽 is the total number of grid points on the gx-1 grid. 𝑊𝑗 is the weight attributed
to each grid point according to its area 𝐴𝑗 , given as

𝑊𝑗 =
𝐴𝑗∑︀𝐽
𝑗=1𝐴𝑗

(3.9)

for all grid points within each hemisphere with one or more non-zero thicknesses in one or both sets of samples ℎ𝑎𝑖,𝑗

or ℎ𝑏𝑖,𝑗 . The area-weighted variance for simulation ‘𝑎’ is:

𝜎 2
𝑎 =

𝐽

(𝑛𝐽 − 1)

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 (ℎ𝑎𝑖,𝑗 − ℎ̄𝑎)
2 (3.10)

where 𝐽 is the number of non-zero𝑊𝑗 weights, and 𝜎𝑏 is calculated equivalently for run ‘𝑏’. In this context,𝑅 becomes
a weighted correlation coefficient, calculated as

𝑅 =
cov(ℎ𝑎, ℎ𝑏)
𝜎𝑎 𝜎𝑏

(3.11)

given the weighted covariance

cov(ℎ𝑎, ℎ𝑏) =
𝐽

(𝑛𝐽 − 1)

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑊𝑗 (ℎ𝑎𝑖,𝑗
− ℎ̄𝑎)(ℎ𝑏𝑖,𝑗 − ℎ̄𝑏). (3.12)

Using equations ((3.7)) to ((3.12)), the skill score 𝑆 is calculated separately for the northern and southern hemispheres,
and must exceed a critical value nominally set to 𝑆𝑐𝑟𝑖𝑡 = 0.99 to pass the test. Practical illustrations of this test and the
Two-Stage test described in the previous section are provided in [24].

Code Validation Testing Procedure

The CICE code validation (QC) test is performed by running a python script (configurations/scripts/tests/QC/cice.t-
test.py). In order to run the script, the following requirements must be met:

• Python v2.7 or later

• netcdf Python package

• numpy Python package

• matplotlib Python package (optional)

• basemap Python package (optional)

QC testing should be carried out using configurations (ie. namelist settings) that exercise the active code modifications.
Multiple configurations may need to be tested in some cases. Developers can contact the Consortium for guidance or
if there are questions.

In order to generate the files necessary for the validation test, test cases should be created with the qc option (i.e.,
--set qc) when running cice.setup. This option results in daily, non-averaged history files being written for a 5 year
simulation.

To install the necessary Python packages, the pip Python utility can be used.
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pip install --user netCDF4
pip install --user numpy
pip install --user matplotlib
pip install --user cartopy

You can also setup a conda env with the same utitities

conda env create -f configuration/scripts/tests/qctest.yml
conda activate qctest

To run the validation test, setup a baseline run with the original baseline model and then a perturbation run based on
recent model changes. Use --set qc in both runs in addition to other settings needed. Then use the QC script to
compare history output,

cp configuration/scripts/tests/QC/cice.t-test.py .
./cice.t-test.py /path/to/baseline/history /path/to/test/history

The script will produce output similar to:

INFO:__main__:Number of files: 1825
INFO:__main__:Two-Stage Test Passed
INFO:__main__:Quadratic Skill Test Passed for Northern Hemisphere
INFO:__main__:Quadratic Skill Test Passed for Southern Hemisphere
INFO:__main__:
INFO:__main__:Quality Control Test PASSED

Additionally, the exit code from the test (echo $?) will be 0 if the test passed, and 1 if the test failed.

The cice.t-test.py requires memory to store multiple two-dimensional fields spanning 1825 unique timesteps,
a total of several GB. An appropriate resource is needed to run the script. If the script runs out of memory on an
interactive resource, try logging into a batch resource or finding a large memory node.

The cice.t-test.py script will also attempt to generate plots of the mean ice thickness for both the baseline and test
cases. Additionally, if the 2-stage test fails then the script will attempt to plot a map showing the grid cells that failed
the test. For a full list of options, run python cice.t-test.py -h.

End-To-End Testing Procedure

Below is an example of a step-by-step procedure for testing a code change that might result in non bit-for-bit results.
First, run a regression test,

# Run a full regression test to verify bit-for-bit

# Create a baseline dataset (only necessary if no baseline exists on the system)
# if you want to replace an existing baseline, you should first delete the directory␣
→˓cice.my.baseline in ${ICE_BASELINE}.
# git clone the baseline code

./cice.setup -m onyx -e intel --suite base_suite --testid base0 --bgen cice.my.baseline

# Check the results

cd testsuite.base0
./results.csh

(continues on next page)
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(continued from previous page)

# Run the test suite with the new code
# git clone the new code

./cice.setup -m onyx -e intel --suite base_suite --testid test0 --bcmp cice.my.baseline

# Check the results

cd testsuite.test0
./results.csh

# Note which tests failed and determine which namelist options are responsible for the␣
→˓failures

If the regression comparisons fail, then you may want to run the QC test,

# Run the QC test

# Create a QC baseline
# From the baseline sandbox
# Generate the test case(s) using options or namelist changes to activate new code␣
→˓modifications

./cice.setup -m onyx -e intel --test smoke -g gx1 -p 44x1 --testid qc_base -s qc,medium
cd onyx_intel_smoke_gx1_44x1_medium_qc.qc_base
# modify ice_in to activate the namelist options that were determined above
./cice.build
./cice.submit

# Create the t-test testing data
# From the updated sandbox
# Generate the same test case(s) as the baseline using options or namelist changes to␣
→˓activate new code modifications

./cice.setup -m onyx -e intel --test smoke -g gx1 -p 44x1 --testid qc_test -s qc,medium
cd onyx_intel_smoke_gx1_44x1_medium_qc.qc_test
# modify ice_in to activate the namelist options that were determined above
./cice.build
./cice.submit

# Wait for runs to finish
# Perform the QC test

# From the updated sandbox
cp configuration/scripts/tests/QC/cice.t-test.py .
./cice.t-test.py /p/work/turner/CICE_RUNS/onyx_intel_smoke_gx1_44x1_medium_qc.qc_base \

/p/work/turner/CICE_RUNS/onyx_intel_smoke_gx1_44x1_medium_qc.qc_test

# Example output:
INFO:__main__:Number of files: 1825
INFO:__main__:Two-Stage Test Passed
INFO:__main__:Quadratic Skill Test Passed for Northern Hemisphere

(continues on next page)
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(continued from previous page)

INFO:__main__:Quadratic Skill Test Passed for Southern Hemisphere
INFO:__main__:
INFO:__main__:Quality Control Test PASSED

3.4 Case Settings, Model Namelist, and CPPs

There are two important files that define the case, cice.settings and ice_in. cice.settings is a list of env variables that
define many values used to setup, build and run the case. ice_in is the input namelist file for CICE. Variables in both
files are described below. In addition, the first table lists available preprocessor macros to activate or deactivate various
features when compiling.

3.4.1 Table of C Preprocessor (CPP) Macros

The CICE model supports a number of C Preprocessor (CPP) Macros. These can be turned on during compilation to
activate different pieces of source code. The main purpose is to introduce build-time code modifications to include
or exclude certain libraries or Fortran language features. More information can be found in C Preprocessor (CPP)
Macros. The following CPPs are available.
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Table 12: CPP Macros
CPP name description

General Macros
CESM1_PIO Provide backwards compatible support for PIO interfaces/version released with CESM1 in

about 2010
ESMF_INTERFACE Turns on ESMF support in a subset of driver code. Also USE_ESMF_LIB and

USE_ESMF_METADATA
FORTRANUN-
DERSCORE

Used in ice_shr_reprosum86.c to support Fortran-C interfaces. This should generally be
turned on at all times. There are other CPPs (FORTRANDOUBULEUNDERSCORE, FOR-
TRANCAPS, etc) in ice_shr_reprosum.c that are generally not used in CICE but could be
useful if problems arise in the Fortran-C interfaces

GPTL Turns on GPTL initialization if needed for PIO
NO_F2003 Turns off some Fortran 2003 features
NO_I8 Converts integer*8 to integer*4. This could have adverse affects for certain algorithms in-

cluding the ddpdd implementation associated with the bfbflag
NO_R16 Converts real*16 to real*8. This could have adverse affects for certain algorithms including

the lsum16 implementation associated with the bfbflag
NO_SNICARHC Does not compile hardcoded (HC) 5 band snicar tables tables needed by

shortwave=dEdd_snicar_ad. May reduce compile time.
USE_NETCDF Turns on netCDF code. This is normally on and is needed for released configurations. An

older value, ncdf, is still supported.
USE_PIO1 Modifies CICE PIO implementation to be compatible with PIO1. By default, code is com-

patible with PIO2

Application
Macros
CESMCOUPLED Turns on code changes for the CESM coupled application
CICE_IN_NEMO Turns on code changes for coupling in the NEMO ocean model
CICE_DMI Turns on code changes for the DMI coupled model application
ICE_DA Turns on code changes in the hadgem driver
RASM_MODS Turns on code changes for the RASM coupled application

Library Macros
_OPENMP Automatically defined when compiling with OpenMP
_OPENACC Automatically defined when compiling with OpenACC

3.4.2 Table of CICE Settings

The cice.settings file contains a number of environment variables that define configuration, file system, run, and build
settings. Several variables are set by the cice.setup script. This file is created on a case by case basis and can be
modified as needed.

Table 13: CICE settings
variable options/format description default value
ICE_CASENAME string case name set by cice.setup
ICE_SANDBOX string sandbox directory set by cice.setup
ICE_MACHINE string machine name set by cice.setup
ICE_ENVNAME string environment name set by cice.setup

continues on next page
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Table 13 – continued from previous page
variable options/format description default value
ICE_MACHCOMP string machine_environment name set by cice.setup
ICE_SCRIPTS string scripts directory set by cice.setup
ICE_CASEDIR string case directory set by cice.setup
ICE_RUNDIR string run directory set by cice.setup
ICE_OBJDIR string compile directory ${ICE_RUNDIR}/compile
ICE_RSTDIR string unused ${ICE_RUNDIR}/restart
ICE_HSTDIR string unused ${ICE_RUNDIR}/history
ICE_LOGDIR string log directory ${ICE_CASEDIR}/logs
ICE_DRVOPT string unused standalone/cice
ICE_TARGET string build target set by cice.setup
ICE_IOTYPE string I/O source code set by cice.setup

binary uses io_binary directory, no support
for netCDF files

netcdf uses io_netCDF directory, supports
netCDF files

pio1 uses io_pio directory with PIO1 li-
brary, supports netCDF and parallel
netCDF thru PIO interfaces

pio2 uses io_pio directory with PIO2 li-
brary, supports netCDF and parallel
netCDF thru PIO interfaces

ICE_CLEANBUILD true, false automatically clean before building true
ICE_CPPDEFS user defined prepro-

cessor macros for
build

null

ICE_QUIETMODE true, false reduce build output to the screen false
ICE_GRID string (see below) grid set by cice.setup

gbox12 12x12 box
gbox80 80x80 box
gbox128 128x128 box
gbox180 180x180 box
gx1 1-deg displace-pole (Greenland)

global grid
gx3 3-deg displace-pole (Greenland)

global grid
tx1 1-deg tripole global grid

ICE_NTASKS integer number of MPI tasks set by cice.setup
ICE_NTHRDS integer number of threads per task set by cice.setup
ICE_OMPSCHED string OpenMP SCHEDULE env setting static,1
ICE_TEST string test setting if using a test set by cice.setup
ICE_TESTNAME string test name if using a test set by cice.setup
ICE_TESTID string test name testid set by cice.setup
ICE_BASELINE string baseline directory name, associated

with cice.setup –bdir
set by cice.setup

ICE_BASEGEN string baseline directory name for regres-
sion generation, associated with
cice.setup -bgen

set by cice.setup

ICE_BASECOM string baseline directory name for regres-
sion comparison, associated with
cice.setup -bcmp

set by cice.setup

continues on next page
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Table 13 – continued from previous page
variable options/format description default value
ICE_BFBCOMP string location of case for comparison, as-

sociated with cice.setup –bcmp
set by cice.setup

ICE_BFBTYPE string type and files used in BFBCOMP restart
log log file comparison for bit for bit
logrest log and restart files for bit for bit
qcchk QC test for same climate
qcchkf QC test for different climate
restart restart files for bit for bit

ICE_SPVAL string special value for cice.settings strings set by cice.setup
ICE_RUNLENGTH integer (see below) batch run length default set by cice.setup

-1 15 minutes (default)
0 30 minutes
1 59 minutes
2 2 hours
other 2 < 𝑁 < 8 N hours
8 or larger 8 hours

ICE_ACCOUNT string batch account number set by cice.setup, .cice_proj
or by default

ICE_QUEUE string batch queue name set by cice.setup or by de-
fault

ICE_THREADED true, false force threading in compile,
will always compile threaded if
ICE_NTHRDS > 1

false

ICE_COMMDIR mpi, serial specify infrastructure comm version set by ICE_NTASKS
ICE_SNICARHC true, false turn on hardcoded (HC) SNICAR ta-

bles in Icepack
false

ICE_BLDDEBUG true, false turn on compile debug flags false
ICE_COVERAGE true, false turn on code coverage flags false

3.4.3 Tables of Namelist Options

CICE reads a namelist input file, ice_in, consisting of several namelist groups. The tables below summarize the different
groups and the variables in each group. The variables are organized alphabetically and the default values listed are the
values defined in the source code. Those values will be used unless overridden by the CICE namelist file, ice_in. The
source code default values as listed in the table are not necessarily the recommended production values.

setup_nml

Table 14: setup_nml namelist options
variable options/format description default value

bfbflag off local reduction then global scalar sum off
lsum4 local reduction with real*4 then global

scalar sum
lsum8 local reduction with real*8 then global

scalar sum
continues on next page
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Table 14 – continued from previous page
variable options/format description default value

lsum16 local reduction with real*16 then global
scalar sum

ddpdd parallel double double algorithm
reprosum fixed point double integer sum

conserv_check logical check conservation .false.
cpl_bgc logical couple bgc thru driver .false.
days_per_year integer number of days in a model year 365
day_init integer the initial day of the month if not using

restart
1

debug_forcing logical write extra forcing diagnostics .false.
debug_model logical write extended model point diagnostics .false.
debug_model_i integer local i index of debug_model point -1
debug_model_iblk integer iblk value for debug_model point -1
debug_model_j integer local j index of debug_model point -1
debug_model_task integer mpi task value for debug_model point -1
debug_model_step logical initial timestep to write debug_model out-

put
0

diagfreq integer frequency of diagnostic output in timesteps 24
diag_type stdout write diagnostic output to stdout stdout

file write diagnostic output to file
diag_file string diagnostic output file ‘ice_diag.d’
dt real thermodynamics time step length in seconds

3600.

dumpfreq d write restart every dumpfreq_n days ‘y’,’x’,’x’,’x’,’x’
d1 write restart once after dumpfreq_n days
h write restart every dumpfreq_n hours
h1 write restart once after dumpfreq_n hours
m write restart every dumpfreq_n months
m1 write restart once after dumpfreq_nmonths
y write restart every dumpfreq_n years
y1 write restart once after dumpfreq_n years
1 write restart every dumpfreq_n time steps
11 write restart once after dumpfreq_n time

steps
dumpfreq_base init restart output frequency relative to year_init,

month_init, day_init
‘init’,’init’,’init’,’init’,’init’

zero restart output frequency relative to year-
month-day of 0000-01-01

dumpfreq_n integer array write restart frequency with dumpfreq 1,1,1,1,1
dump_last logical write restart on last time step of simulation .false.
histfreq d write history every histfreq_n days ‘1’,’h’,’d’,’m’,’y’

h write history every histfreq_n hours
m write history every histfreq_n months
x unused frequency stream (not written)
y write history every histfreq_n years
1 write history every histfreq_n time step

histfreq_base init history output frequency relative to
year_init, month_init, day_init

‘zero’,’zero’,’zero’,’zero’,’zero’

continues on next page
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Table 14 – continued from previous page
variable options/format description default value

zero history output frequency relative to year-
month-day of 0000-01-01

histfreq_n integer array frequency history output is written with
histfreq

1,1,1,1,1

history_chunksize integer array chunksizes (x,y) for history output (hdf5
only)

0,0

history_deflate integer compression level (0 to 9) for history output
(hdf5 only)

0

history_dir string path to history output directory ‘./’
history_file string output file for history ‘iceh’
history_format binary write history files with binary format cdf1

cdf1 write history files with netcdf cdf1 (netcdf3-
classic) format

cdf2 write history files with netcdf cdf2 (netcdf3-
64bit-offset) format

cdf5 write history files with netcdf cdf5 (netcdf3-
64bit-data) format

default write history files in default format
hdf5 write history files with netcdf hdf5 (netcdf4)

format
pio_pnetcdf write history files with pnetcdf in PIO, dep-

recated
pio_netcdf write history files with netcdf in PIO, depre-

cated
pnetcdf1 write history files with pnetcdf cdf1

(netcdf3-classic) format
pnetcdf2 write history files with pnetcdf cdf2

(netcdf3-64bit-offset) format
pnetcdf5 write history files with pnetcdf cdf5

(netcdf3-64bit-data) format
history_iotasks integer pe io tasks for history output with his-

tory_root and history_stride (PIO only), -
99=internal default

-99

history_precision integer history file precision: 4 or 8 byte 4
history_rearrangerbox box io rearranger option for history output

(PIO only)
default

default internal default io rearranger option for his-
tory output

subset subset io rearranger option for history output
history_root integer pe root task for history output with his-

tory_iotasks and history_stride (PIO only),
-99=internal default

-99

history_stride integer pe stride for history output with his-
tory_iotasks and history_root (PIO only), -
99=internal default

-99

hist_avg logical write time-averaged data .true.,.true.,.
true.,.true.,.
true.

hist_suffix character array appended to history_file when not x x,x,x,x,x

continues on next page
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Table 14 – continued from previous page
variable options/format description default value
hist_time_axis character history file time axis interval location: be-

gin, middle, end
end

ice_ic default equal to internal default
internal initial conditions set based on

ice_data_type,conc,dist inputs
none no ice
‘path/file’ restart file name

incond_dir string path to initial condition directory ‘./’
incond_file string output file prefix for initial condition ‘iceh_ic’
istep0 integer initial time step number 0
latpnt real latitude of (2) diagnostic points 90.0,-65.0
lcdf64 logical use 64-bit netCDF format, deprecated, see

history_format, restart_format
.false.

lonpnt real longitude of (2) diagnostic points 0.0,-45.0
memory_stats logical turns on memory use diagnostics .false.
month_init integer the initial month if not using restart 1
ndtd integer number of dynam-

ics/advection/ridging/steps per thermo
timestep

1

npt integer total number of npt_units to run the model 99999
npt_unit d run npt days 1

h run npt hours
m run npt months
s run npt seconds
y run npt years
1 run npt timesteps

numin integer minimum internal IO unit number 11
numax integer maximum internal IO unit number 99
pointer_file string restart pointer filename ‘ice.restart_file’
print_global logical print global sums diagnostic data .true.
print_points logical print diagnostic data for two grid points .false.
restart logical exists but deprecated, now set internally

based on other inputs
restart_chunksize integer array chunksizes (x,y) for restart output (hdf5

only)
0,0

restart_deflate integer compression level (0 to 9) for restart output
(hdf5 only)

0

restart_dir string path to restart directory ‘./’
restart_ext logical read/write halo cells in restart files .false.
restart_file string output file prefix for restart dump ‘iced’
restart_format binary write restart files with binary format cdf1

cdf1 write restart files with netcdf cdf1 (netcdf3-
classic) format

cdf2 write restart files with netcdf cdf2 (netcdf3-
64bit-offset) format

cdf5 write restart files with netcdf cdf5 (netcdf3-
64bit-data) format

default write restart files in default format
hdf5 write restart files with netcdf hdf5 (netcdf4)

format
continues on next page
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Table 14 – continued from previous page
variable options/format description default value

pio_pnetcdf write restart files with pnetcdf in PIO, dep-
recated

pio_netcdf write restart files with netcdf in PIO, depre-
cated

pnetcdf1 write restart files with pnetcdf cdf1 (netcdf3-
classic) format

pnetcdf2 write restart files with pnetcdf cdf2 (netcdf3-
64bit-offset) format

pnetcdf5 write restart files with pnetcdf cdf5 (netcdf3-
64bit-data) format

restart_iotasks integer pe io tasks for restart output with restart_root
and restart_stride (PIO only), -99=internal
default

-99

restart_rearrangerbox box io rearranger option for restart output
(PIO only)

default

default internal default io rearranger option for
restart output

subset subset io rearranger option for restart output
restart_root integer pe root task for restart output with

restart_iotasks and restart_stride (PIO
only), -99=internal default

-99

restart_stride integer pe stride for restart output with
restart_iotasks and restart_root (PIO
only), -99=internal default

-99

runid string label for run (currently CESM only) ‘unknown’
runtype continue restart using pointer_file initial

initial start from ice_ic
sec_init integer the initial second if not using restart 0
timer_stats logical controls extra timer output .false.
use_leap_years logical include leap days .false.
use_restart_time logical set initial date using restart file on initial

runtype only
.false.

version_name string model version ‘un-
known_version_name’

write_ic logical write initial condition .false.
year_init integer the initial year if not using restart 0

grid_nml

Table 15: grid_nml namelist options
variable options/format description default value

bathymetry_file string name of bathymetry file to be read ‘un-
known_bathymetry_file’

bathymetry_format default NetCDF depth field ‘default’
pop pop thickness file in cm in ascii format

continues on next page
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Table 15 – continued from previous page
variable options/format description default value
close_boundaries logical force two gridcell wide land mask on bound-

aries for rectangular grids
.false.

dxrect real x-direction grid spacing for rectangular grid
in cm

0.0

dxscale real user defined rectgrid x-grid scale factor 1.0
dyrect real y-direction grid spacing for rectangular grid

in cm
0.0

dyscale real user defined rectgrid y-grid scale factor 1.0
gridcpl_file string input file for coupling grid info ‘un-

known_gridcpl_file’
grid_atm A atm forcing/coupling grid, all fields on T

grid
A

B atm forcing/coupling grid, thermo fields on
T grid, dyn fields on U grid

C atm forcing/coupling grid, thermo fields on
T grid, dynu fields on E grid, dynv fields on
N grid

CD atm forcing/coupling grid, thermo fields on
T grid, dyn fields on N and E grid

grid_file string name of grid file to be read ‘un-
known_grid_file’

grid_format bin read direct access grid and kmt files bin
nc read grid and kmt files

grid_ice B use B grid structure with T at center and U
at NE corner

B

C use C grid structure with T at center, U at E
edge, V at N edge

grid_ocn A ocn forcing/coupling grid, all fields on T
grid

A

B ocn forcing/coupling grid, thermo fields on
T grid, dyn fields on U grid

C ocn forcing/coupling grid, thermo fields on
T grid, dynu fields on E grid, dynv fields on
N grid

CD ocn forcing/coupling grid, thermo fields on
T grid, dyn fields on N and E grid

grid_type displaced_pole read from file in popgrid rectangular
rectangular defined in rectgrid
regional read from file in popgrid
tripole read from file in popgrid

kcatbound -1 single category formulation 1
0 old formulation
1 new formulation with round numbers
2 WMO standard categories
3 asymptotic scheme

kmt_file string name of land mask file to be read unknown_kmt_file
kmt_type boxislands ocean/land mask set internally, complex test

geometory
file

channel ocean/land mask set internally as zonal
channel

continues on next page
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Table 15 – continued from previous page
variable options/format description default value

channel_oneeast ocean/land mask set internally as single
gridcell east-west zonal channel

channel_onenorth ocean/land mask set internally as single
gridcell north-south zonal channel

default ocean/land mask set internally, land in upper
left and lower right of domain,

file ocean/land mask setup read from file, see
kmt_file

wall ocean/land mask set at right edge of domain
latrefrect real lower left corner lat for rectgrid in deg 71.35
lonrefrect real lower left corner lon for rectgrid in deg -156.5
nblyr integer number of zbgc layers 0
ncat integer number of ice thickness categories 0
nfsd integer number of floe size categories 1
nilyr integer number of vertical layers in ice 0
nslyr integer number of vertical layers in snow 0
orca_halogrid logical use orca haloed grid for data/grid read .false.
scale_dxdy logical apply dxscale, dyscale to rectgrid false
use_bathymetry logical use read in bathymetry file for seabedstress

option
.false.

domain_nml

Table 16: domain_nml namelist options
variable options/format description default value

add_mpi_barriers logical throttle communication .false.
block_size_x integer block size in x direction -1
block_size_y integer block size in y direction -1
debug_blocks logical add additional print statements to debug the

block decomposition
.false.

distribution_type cartesian 2D cartesian block distribution method cartesian
rake redistribute blocks among neighbors
roundrobin 1 block per proc until blocks are used
sectcart blocks distributed to domain quadrants
sectrobin several blocks per proc until used
spacecurve distribute blocks via space-filling curves
spiralcenter distribute blocks via roundrobin from center

of grid outward in a spiral
wghtfile distribute blocks based on weights specified

in distribution_wght_file
distribution_wght block full block weight method with land block

elimination
latitude

blockall full block weight method without land block
elimination

latitude latitude/ocean sets work_per_block
continues on next page
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variable options/format description default value
distribution_wght_filestring distribution weight file when distribu-

tion_type is wghtfile
‘unknown’

ew_boundary_type cyclic periodic boundary conditions in x-direction cyclic
open Dirichlet boundary conditions in x

maskhalo_dyn logical mask unused halo cells for dynamics .false.
maskhalo_remap logical mask unused halo cells for transport .false.
maskhalo_bound logical mask unused halo cells for boundary updates .false.
max_blocks integer maximum number of blocks per MPI task for

memory allocation
-1

nprocs integer number of processors to use -1
ns_boundary_type cyclic periodic boundary conditions in y-direction open

open Dirichlet boundary conditions in y
tripole U-fold tripole boundary conditions in y
tripoleT T-fold tripole boundary conditions in y

nx_global integer global grid size in x direction -1
ny_global integer global grid size in y direction -1
processor_shape slenderX1 1 processor in the y direction used with

distribution_type=cartesian
slenderX2

slenderX1 1 processor in the y direction (tall, thin)
slenderX2 2 processors in the y direction (thin)
square-ice more processors in x than y, ∼ square
square-pop more processors in y than x, ∼ square

tracer_nml

Table 17: tracer_nml namelist options
variable options/format description default value

n_aero integer number of aerosol tracers 0
n_algae 0,1,2,3 number of algal tracers 0
n_dic 0,1 number of dissolved inorganic carbon 0
n_doc 0,1,2,3 number of dissolved organic carbon 0
n_don 0,1 number of dissolved organize nitrogen 0
n_fed 0,1,2 number of dissolved iron tracers 0
n_fep 0,1,2 number of particulate iron tracers 0
n_iso integer number of isotope tracers 0
n_zaero 0,1,2,3,4,5,6 number of z aerosol tracers in use 0
tr_aero logical aerosols .false.
tr_fsd logical floe size distribution .false.
tr_FY logical first-year ice area .false.
tr_iage logical ice age .false.
tr_iso logical isotopes .false.
tr_lvl logical level ice area and volume .false.
tr_pond_lvl logical level-ice melt ponds .false.
tr_pond_cesm DEPRECATED
tr_pond_topo logical topo melt ponds .false.
tr_snow logical advanced snow physics .false.

continues on next page
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variable options/format description default value
restart_aero logical restart tracer values from file .false.
restart_age logical restart tracer values from file .false.
restart_fsd logical restart floe size distribution values from file .false.
restart_FY logical restart tracer values from file .false.
restart_iso logical restart tracer values from file .false.
restart_lvl logical restart tracer values from file .false.
restart_pond_lvl logical restart tracer values from file .false.
restart_pond_topo logical restart tracer values from file .false.
restart_snow logical restart snow tracer values from file .false.

thermo_nml

Table 18: thermo_nml namelist options
variable options/format description default value

a_rapid_mode real brine channel diameter in m 0.5e-3
aspect_rapid_mode real brine convection aspect ratio 1.0
conduct bubbly conductivity scheme [45] bubbly

MU71 conductivity [40]
dSdt_slow_mode real slow drainage strength parameter m/s/K -1.5e-7
floediam real effective floe diameter for lateral melt in m 300.0
hfrazilmin real min thickness of new frazil ice in m 0.05
hi_min real minimum ice thickness in m 0.01
kitd 0 delta function ITD approximation 1

1 linear remapping ITD approximation
ksno real snow thermal conductivity 0.3
ktherm -1 thermodynamic model disabled 1

1 Bitz and Lipscomb thermodynamic model
2 mushy-layer thermodynamic model

phi_c_slow_mode 0 < 𝜑𝑐 < 1 critical liquid fraction 0.05
phi_i_mushy 0 < 𝜑𝑖 < 1 solid fraction at lower boundary 0.85
Rac_rapid_mode real critical Rayleigh number 10.0
Tliquidus_max real maximum liquidus temperature of mush (C) 0.0

dynamics_nml

Table 19: dynamics_nml namelist options
variable options/format description default value

advection remap linear remapping advection scheme remap
upwind donor cell advection

algo_nonlin anderson use nonlinear anderson algorithm for im-
plicit solver

picard

picard use picard algorithm
continues on next page
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Table 19 – continued from previous page
variable options/format description default value
alphab real 𝛼𝑏 factor in [34] 20.0
arlx real revised_evp value 300.0
brlx real revised_evp value 300.0
capping_method max max capping in [15] max

sum sum capping in [31]
Cf real ratio of ridging work to PE change in ridging 17.0
coriolis constant constant coriolis value = 1.46e-4 s−1 latitude

latitude coriolis variable by latitude
zero zero coriolis

Cstar real constant in Hibler strength formula 20
deltaminEVP real minimum delta for viscosities 1e-11
deltaminVP real minimum delta for viscosities 2e-9
dim_fgmres integer maximum number of Arnoldi iterations for

FGMRES solver
50

dim_pgmres integer maximum number of Arnoldi iterations for
PGMRES preconditioner

5

e_plasticpot real aspect ratio of elliptical plastic potential 2.0
e_yieldcurve real aspect ratio of elliptical yield curve 2.0
elasticDamp real elastic damping parameter 0.36
evp_algorithm standard_2d standard 2d EVP memory parallel solver standard_2d

shared_mem_1d 1d shared memory solver
kdyn -1 dynamics algorithm OFF 1

0 dynamics OFF
1 EVP dynamics
2 EAP dynamics
3 VP dynamics

kstrength 0 ice strength formulation [15] 1
1 ice strength formulation [52]

krdg_partic 0 old ridging participation function 1
1 new ridging participation function

krdg_redist 0 old ridging redistribution function 1
1 new ridging redistribution function

kridge -1 ridging disabled 1
1 ridging enabled

ktransport -1 transport disabled 1
1 transport enabled

Ktens real Tensile strength factor (see [3]) 0.0
k1 real 1st free parameter for landfast parameteriza-

tion
7.5

k2 real 2nd free parameter (N/m3) for landfast pa-
rameterization

15.0

maxits_fgmres integer maximum number of restarts for FGMRES
solver

1

maxits_nonlin integer maximum number of nonlinear iterations for
VP solver

10

maxits_pgmres integer maximum number of restarts for PGMRES
preconditioner

1

monitor_fgmres logical write velocity norm at each FGMRES itera-
tion

.false.

continues on next page

3.4. Case Settings, Model Namelist, and CPPs 101



CICE Documentation

Table 19 – continued from previous page
variable options/format description default value
monitor_nonlin logical write velocity norm at each nonlinear itera-

tion
.false.

monitor_pgmres logical write velocity norm at each PGMRES itera-
tion

.false.

mu_rdg real e-folding scale of ridged ice for
krdg_partic = 1 in m^0.5

3.0

ndte integer number of EVP subcycles 120
ortho_type cgs Use classical Gram-Shchmidt in FGMRES

solver
mgs

mgs Use modified Gram-Shchmidt in FGMRES
solver

precond diag Use Jacobi preconditioner for the FGMRES
solver

pgmres

ident Don’t use a preconditioner for the FGMRES
solver

pgmres Use GMRES as preconditioner for FGM-
RES solver

Pstar real constant in Hibler strength formula (N/m2) 2.75e4
reltol_fgmres real relative tolerance for FGMRES solver 1e-1
reltol_nonlin real relative tolerance for nonlinear solver 1e-8
reltol_pgmres real relative tolerance for PGMRES precondi-

tioner
1e-6

revised_evp logical use revised EVP formulation .false.
seabed_stress logical use seabed stress parameterization for land-

fast ice
.false.

seabed_stress_methodLKD linear keel draft method [34] LKD
probabilistic probability of contact method [11]

ssh_stress coupled computed from coupled sea surface height
gradient

geostrophic

geostropic computed from ocean velocity
threshold_hw real Max water depth for grounding (see [1])

30.

use_mean_vrel logical Use mean of two previous iterations for vrel
in VP

.true.

visc_method avg_strength average strength for viscosities on U grid avg_zeta
avg_zeta average zeta for viscosities on U grid

yield_curve ellipse elliptical yield curve ellipse

102 Chapter 3. User Guide



CICE Documentation

shortwave_nml

Table 20: shortwave_nml namelist options
variable options/format description default value

ahmax real albedo is constant above this thickness in
meters

0.3

albedo_type ccsm3` NCAR CCSM3 albedo implementation ccsm3
constant four constant albedos

albicei 0 < 𝛼 < 1 near infrared ice albedo for thicker ice 0.36
albicev 0 < 𝛼 < 1 visible ice albedo for thicker ice 0.78
albsnowi 0 < 𝛼 < 1 near infrared, cold snow albedo 0.70
albsnowv 0 < 𝛼 < 1 visible, cold snow albedo 0.98
dT_mlt real ∆ temperature per ∆ snow grain radius 1.5
kalg real absorption coefficient for algae 0.6
rsnw_mlt real maximum melting snow grain radius

1500.

R_ice real tuning parameter for sea ice albedo from
Delta-Eddington shortwave

0.0

R_pnd real tuning parameter for ponded sea ice albedo
from Delta-Eddington shortwave

0.0

R_snw real tuning parameter for snow (broadband
albedo) from Delta-Eddington shortwave

1.5

shortwave ccsm3 NCAR CCSM3 shortwave distribution
method

ccsm3

dEdd Delta-Eddington method (3-band)
dEdd_snicar_ad Delta-Eddington method with 5 band snow

snw_ssp_table snicar lookup table for dEdd_snicar_ad test
test reduced lookup table for dEdd_snicar_ad

testing
sw_dtemp real temperature difference from melt to start re-

distributing
0.02

sw_frac real fraction redistributed 0.9
sw_redist logical redistribute internal shortwave to surface .false.
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ponds_nml

Table 21: ponds_nml namelist options
variable options/format description default value

dpscale real time scale for flushing in permeable ice 1.0
frzpnd cesm CESM pond refreezing forumulation cesm

hlid Stefan refreezing with pond ice thickness
hp1 real critical ice lid thickness for topo ponds in m 0.01
hs0 real snow depth of transition to bare sea ice in m
hs1 real snow depth of transition to pond ice in m 0.03
pndaspect real aspect ratio of pond changes (depth:area) 0.8
rfracmax 0 ≤ 𝑟𝑚𝑎𝑥 ≤ 1 maximum melt water added to ponds 0.85
rfracmin 0 ≤ 𝑟𝑚𝑖𝑛 ≤ 1 minimum melt water added to ponds 0.15
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snow_nml

Table 22: snow_nml namelist options
variable options/format description default value

drhosdwind real wind compactions factor for now in kg-
s/m^4

27.3

rhosmax real maximum snow density in kg/m^3
450.

rhosmin real minimum snow density in kg/m^3
100.

rhosnew real new snow density in kg/m^3
100.

rsnw_fall real radius of new snow in 1.0e-6 m
100.

rsnw_tmax real maximum snow radius in 1.0e-6 m
1500.

snwgrain logical snow metamorophsis flag .false.
snwlvlfac real fractional increase in snow 0.3
snwredist bulk bulk snow redistribution scheme none

ITD ITD snow redistribution scheme
ITDrdg ITDrdg snow redistribution scheme
none snow redistribution scheme off

snw_aging_table file read 1D and 3D fields for dry metamoroph-
sis lookup table

test

snicar read 3D fields for dry metamorophsis lookup
table

test internally generated dry metamorophsis
lookup table for testing

snw_drdt0_fname string snow aging file drdt0 fieldname unknown
snw_filename string snow aging table data filename unknown
snw_kappa_fname string snow aging file kappa fieldname unknown
snw_rhos_fname string snow aging file rhos fieldname unknown
snw_T_fname string snow aging file T fieldname unknown
snw_tau_fname string snow aging file tau fieldname unknown
snw_Tgrd_fname string snow aging file Tgrd fieldname unknown
use_smliq_pnd logical use liquid in snow for ponds .false.
windmin real minimum wind speed to compact snow in

m/s 10.
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forcing_nml

Table 23: forcing_nml namelist options
variable options/format description default value

atmbndy string bulk transfer coefficients similarity
similarity stability-based boundary layer
constant constant-based boundary layer
mixed stability-based boundary layer for wind

stress, constant-based for sensible+latent
heat fluxes

atmiter_conv real convergence criteria for ustar 0.0
atm_data_dir string path or partial path to atmospheric forcing

data directory
atm_data_format bin read direct access binary atmo forcing file

format
bin

nc read netcdf atmo forcing files
atm_data_type box2001 forcing data for [20] box problem default

default constant values defined in the code
hycom HYCOM atm forcing data in netCDF format
JRA55 JRA55 forcing data [61]
JRA55do JRA55do forcing data [61]
monthly monthly forcing data
ncar NCAR bulk forcing data
oned column forcing data

atm_data_version string date of atm data forcing file creation _undef
bgc_data_dir string path to oceanic forcing data directory ‘un-

known_bgc_data_dir’
bgc_data_type clim bgc climatological data default

default constant values defined in the code
hycom HYCOM ocean forcing data in netCDF for-

mat
ncar POP ocean forcing data

calc_strair .false. read wind stress and speed from files .true.
.true. calculate wind stress and speed

calc_Tsfc logical calculate surface temperature .true.
cpl_frazil external frazil water/salt fluxes are handled outside of

Icepack
fresh_ice_correction

fresh_ice_correctioncorrect fresh-ice frazil water/salt fluxes for
mushy physics

internal send full frazil water/salt fluxes for mushy
physics

default_season summer forcing initial summer values winter
winter forcing initial winter values

emissivity real emissivity of snow and ice 0.985
fbot_xfer_type Cdn_ocn variable ocean heat transfer coefficient

scheme
constant

constant constant ocean heat transfer coefficient
fe_data_type clim ocean climatology forcing value for iron default

default default forcing value for iron
formdrag logical calculate form drag .false.

continues on next page
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Table 23 – continued from previous page
variable options/format description default value
fyear_init integer first year of atmospheric forcing data 1900
highfreq logical high-frequency atmo coupling .false.
ice_data_conc box2001 ice distribution ramped from 0 to 1 west to

east consistent with box2001 test ([20])
default

c1 initial ice concentation of 1.0
default same as parabolic
p5 initial concentration of 0.5
p8 initial concentration of 0.8
p9 initial concentration of 0.9
parabolic parabolic in ice thickness space with sum of

aicen=1.0
ice_data_dist box2001 ice distribution ramped from 0 to 1 west to

east consistent with box2001 test ([20])
default

default uniform distribution, equivalent to uniform
gauss gauss distbution of ice with a peak in the cen-

ter of the domain
uniform uniform distribution, equivalent to default

ice_data_type block ice block covering about 25 percent of the
area in center of domain

default

boxslotcyl slot cylinder ice mask associated with boxs-
lotcyl test ([67])

box2001 box2001 ice mask associate with box2001
test ([20])

channel ice defined on entire grid in i-direction and
50% in j-direction in center of domain

default same as latsst
eastblock ice block covering about 25 percent of do-

main at the east edge of the domain
latsst ice dependent on latitude and ocean temper-

ature
uniform ice defined at all grid points

ice_ref_salinity real sea ice salinity for coupling fluxes (ppt) 4.0
iceruf real ice surface roughness at atmosphere inter-

face in meters
0.0005

l_mpond_fresh .false. release pond water immediately to ocean .false.
true retain (topo) pond water until ponds drain

natmiter integer number of atmo boundary layer iterations 5
nfreq integer number of frequencies in ocean surface wave

spectral forcing
25

oceanmixed_file string data file containing ocean forcing data ‘un-
known_oceanmixed_file’

oceanmixed_ice logical active ocean mixed layer calculation .false.
ocn_data_dir string path to oceanic forcing data directory ‘un-

known_ocn_data_dir’
ocn_data_format bin read direct access binary ocean forcing files bin

nc read netCDF ocean forcing files
ocn_data_type clim ocean climatological data formulation default

default constant values defined in the code
hycom HYCOM ocean forcing data in netCDF for-

mat
continues on next page
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Table 23 – continued from previous page
variable options/format description default value

ncar POP ocean forcing data
precip_units mks liquid precipitation data units mks

mm_per_month
mm_per_sec (same as MKS units)
m_per_sec

restart_coszen logical read/write coszen in restart files .false.
restore_ocn logical restore sst to data .false.
restore_ice logical restore ice state along lateral boundaries .false.
rotate_wind logical rotate wind from east/north to computation

grid
.true.

saltflux_option constant computed using ice_ref_salinity constant
prognostic computed using prognostic salinity

tfrz_option constant constant ocean freezing temperature (Tocn-
frz)

mushy

linear_salt linear function of salinity (ktherm=1)
minus1p8 constant ocean freezing temperature

(−1.8∘𝐶)
mushy matches mushy-layer thermo (ktherm=2)

trestore integer sst restoring time scale (days) 90
ustar_min real minimum value of ocean friction velocity in

m/s
0.0005

update_ocn_f .false. do not include frazil water/salt fluxes in ocn
fluxes

.false.

true include frazil water/salt fluxes in ocn fluxes
wave_spec_file string data file containing wave spectrum forcing

data
wave_spec_type constant wave data file is provided, constant wave

spectrum, for testing
none

none no wave data provided, no wave-ice interac-
tions

profile no wave data file is provided, use fixed
dummy wave spectrum, for testing

random wave data file is provided, wave spectrum
generated using random number

ycycle integer number of years in forcing data cycle 1

zbgc_nml

Table 24: zbgc_nml namelist options
variable options/format description default value

algaltype_diatoms real mobility type between stationary and mobile
algal diatoms

0.0

algaltype_phaeo real mobility type between stationary and mobile
algal phaeocystis

0.5

algaltype_sp real mobility type between stationary and mobile
small plankton

0.5

continues on next page

108 Chapter 3. User Guide



CICE Documentation

Table 24 – continued from previous page
variable options/format description default value
algal_vel real [32] 1.11e-8
alpha2max_low_diatomsreal light limitation diatoms 1/(W/m^2) 0.8
alpha2max_low_phaeoreal light limitation phaeocystis 1/(W/m^2) 0.67
alpha2max_low_sp real light limitation small plankton 1/(W/m^2) 0.67
ammoniumtype real mobility type between stationary and mobile

ammonium
1.0

beta2max_diatoms real light inhibition diatoms 1/(W/m^2) 0.18
beta2max_phaeo real light inhibition phaeocystis 1/(W/m^2) 0.01
beta2max_sp real light inhibition small plankton 1/(W/m^2) 0.0025
bgc_flux_type constant constant ice–ocean flux velocity Jin2006

Jin2006 ice–ocean flux velocity of [26]
chlabs_diatoms real chl absorbtion diatoms 1/m/(mg/m^3) 0.03
chlabs_phaeo real chl absorbtion phaeocystis 1/m/(mg/m^3) 0.05
chlabs_sp real chl absorbtion small plankton

1/m/(mg/m^3)
0.01

dEdd_algae logical .false.
dmspdtype real mobility type between stationary and mobile

dmspd
-1.0

dmspptype real mobility type between stationary and mobile
dmspp

0.5

doctype_l real mobility type between stationary and mobile
doc lipids

0.5

doctype_s real mobility type between stationary and mobile
doc saccharids

0.5

dontype_protein real mobility type between stationary and mobile
don proteins

0.5

dustFe_sol real solubility fraction 0.005
fedtype_1 real mobility type between stationary and mobile

fed lipids
0.5

feptype_1 real mobility type between stationary and mobile
fep lipids

0.5

frazil_scav real increase in initial bio bracer from ocean
scavenging

1.0

fr_dFe real fraction of remineralized nitrogen in units of
algal iron

0.3

fr_graze_diatoms real fraction grazed diatoms 0.01
fr_graze_e real fraction of assimilation excreted 0.5
fr_graze_phaeo real fraction grazed phaeocystis 0.1
fr_graze_s real fraction of grazing spilled or slopped 0.5
fr_graze_sp real fraction grazed small plankton 0.1
fr_mort2min real fractionation of mortality to Am 0.5
fr_resp real frac of algal growth lost due to respiration 0.05
fr_resp_s real DMSPd fraction of respiration loss as DM-

SPd
0.75

fsal real salinity limitation ppt 1.0
F_abs_chl_diatoms real scales absorbed radiation for dEdd chl di-

atoms
2.0

F_abs_chl_phaeo real scales absorbed radiation for dEdd chl
phaeocystis

5.0

continues on next page
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Table 24 – continued from previous page
variable options/format description default value
F_abs_chl_sp real scales absorbed radiation for dEdd small

plankton
4.0

f_doc_l real fraction of mortality to DOC lipids 0.4
f_doc_s real fraction of mortality to DOC saccharides 0.4
f_don_Am_protein real fraction of remineralized DON to ammo-

nium
0.25

f_don_protein real fraction of spilled grazing to proteins 0.6
f_exude_l real fraction of exudation to DOC lipids 1.0
f_exude_s real fraction of exudation to DOC saccharids 1.0
grid_o real z biology for bottom flux 5.0
grid_o_t real z biology for top flux 5.0
grid_oS real zsalinity DEPRECATED
grow_Tdep_diatoms real temperature dependence growth diatoms per

degC
0.06

grow_Tdep_phaeo real temperature dependence growth phaeocystis
per degC

0.06

grow_Tdep_sp real temperature dependence growth small
plankton per degC

0.06

humtype real mobility type between stationary and mobile
hum

1.0

initbio_frac real fraction of ocean trcr concentration in bio
tracers

1.0

K_Am_diatoms real ammonium half saturation diatoms
mmol/m^3

0.3

K_Am_phaeo real ammonium half saturation phaeocystis
mmol/m^3

0.3

K_Am_sp real ammonium half saturation small plankton
mmol/m^3

0.3

k_bac_l real Bacterial degredation of DOC lipids per day 0.03
k_bac_s real Bacterial degredation of DOC saccharids

per day
0.03

k_exude_diatoms real algal exudation diatoms per day 0.0
k_exude_phaeo real algal exudation phaeocystis per day 0.0
k_exude_sp real algal exudation small plankton per day 0.0
K_Fe_diatoms real iron half saturation diatoms nM 1.0
K_Fe_phaeo real iron half saturation phaeocystis nM 0.1
K_Fe_sp real iron half saturation small plankton nM 0.2
k_nitrif real nitrification rate per day 0.0
K_Nit_diatoms real nitrate half saturation diatoms mmol/m^3 1.0
K_Nit_phaeo real nitrate half saturation phaeocystis

mmol/m^3
1.0

K_Nit_sp real nitrate half saturation small plankton
mmol/m^3

1.0

K_Sil_diatoms real silicate half saturation diatoms mmol/m^3 4.0
K_Sil_phaeo real silicate half saturation phaeocystis

mmol/m^3
0.0

K_Sil_sp real silicate half saturation small plankton
mmol/m^3

0.0

kn_bac_protein real bacterial degradation of DON per day 0.03
l_sk real characteristic diffusive scale in m 7.0

continues on next page
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Table 24 – continued from previous page
variable options/format description default value
l_skS real zsalinity DEPRECATED
max_dfe_doc1 real max ratio of dFe to saccharides in the ice in

nm Fe / muM C
0.2

max_loss real restrict uptake to percent of remaining value 0.9
modal_aero logical modal aerosols .false.
mort_pre_diatoms real mortality diatoms 0.007
mort_pre_phaeo real mortality phaeocystis 0.007
mort_pre_sp real mortality small plankton 0.007
mort_Tdep_diatoms real temperature dependence of mortality di-

atoms per degC
0.03

mort_Tdep_phaeo real temperature dependence of mortality phaeo-
cystis per degC

0.03

mort_Tdep_sp real temperature dependence of mortality small
plankton per degC

0.03

mu_max_diatoms real maximum growth rate diatoms per day 1.2
mu_max_phaeo real maximum growth rate phaeocystis per day 0.851
mu_max_sp real maximum growth rate small plankton per

day
0.851

nitratetype real mobility type between stationary and mobile
nitrate

-1.0

op_dep_min real light attenuates for optical depths exceeding
min

0.1

phi_snow real snow porosity for brine height tracer 0.5
ratio_chl2N_diatomsreal algal chl to N in mg/mmol diatoms 2.1
ratio_chl2N_phaeo real algal chl to N in mg/mmol phaeocystis 0.84
ratio_chl2N_sp real algal chl to N in mg/mmol small plankton 1.1
ratio_C2N_diatoms real algal C to N in mol/mol diatoms 7.0
ratio_C2N_phaeo real algal C to N in mol/mol phaeocystis 7.0
ratio_C2N_proteinsreal algal C to N in mol/mol proteins 7.0
ratio_C2N_sp real algal C to N in mol/mol small plankton 7.0
ratio_Fe2C_diatomsreal algal Fe to C in umol/mol diatoms 0.0033
ratio_Fe2C_phaeo real algal Fe to C in umol/mol phaeocystis 1.0
ratio_Fe2C_sp real algal Fe to C in umol/mol small plankton 0.0033
ratio_Fe2N_diatomsreal algal Fe to N in umol/mol diatoms 0.23
ratio_Fe2N_phaeo real algal Fe to N in umol/mol phaeocystis 0.7
ratio_Fe2N_sp real algal Fe to N in umol/mol small plankton 0.23
ratio_Fe2DOC_s real Fe to C of DON saccharids nmol/umol 1.0
ratio_Fe2DOC_l real Fe to C of DOC lipids nmol/umol 0.033
ratio_Fe2DON real Fe to C of DON nmol/umol 0.023
ratio_Si2N_diatomsreal algal Si to N in mol/mol diatoms 1.8
ratio_Si2N_phaeo real algal Si to N in mol/mol phaeocystis 0.0
ratio_Si2N_sp real algal Si to N in mol/mol small plankton 0.0
ratio_S2N_diatoms real algal S to N in mol/mol diatoms 0.03
ratio_S2N_phaeo real algal S to N in mol/mol phaeocystis 0.03
ratio_S2N_sp real algal S to N in mol/mol small plankton 0.03
restart_bgc logical restart tracer values from file .false.
restart_hbrine logical .false.
restart_zsal logical zsalinity DEPRECATED .false.
restore_bgc logical restore bgc to data .false.

continues on next page
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Table 24 – continued from previous page
variable options/format description default value
R_dFe2dust real g/g [57] 0.035
scale_bgc logical .false.
silicatetype real mobility type between stationary and mobile

silicate
-1.0

skl_bgc logical biogeochemistry .false.
solve_zbgc logical .false.
solve_zsal logical zsalinity DEPRECATED, update salinity

tracer profile
.false.

tau_max real long time mobile to stationary exchanges 1.73e-5
tau_min real rapid module to stationary exchanges

5200.

tr_bgc_Am logical ammonium tracer .false.
tr_bgc_C logical algal carbon tracer .false.
tr_bgc_chl logical algal chlorophyll tracer .false.
tr_bgc_DMS logical DMS tracer .false.
tr_bgc_DON logical DON tracer .false.
tr_bgc_Fe logical iron tracer .false.
tr_bgc_hum logical .false.
tr_bgc_Nit logical .false.
tr_bgc_PON logical PON tracer .false.
tr_bgc_Sil logical silicate tracer .false.
tr_brine logical brine height tracer .false.
tr_zaero logical vertical aerosol tracers .false.
t_iron_conv real desorption loss pFe to dFe in days

3065.

t_sk_conv real Stefels conversion time in days 3.0
t_sk_ox real DMS oxidation time in days 10.0
T_max real maximum temperature degC 0.0
y_sk_DMS real fraction conversion given high yield 0.5
zaerotype_bc1 real mobility type between stationary and mobile

zaero bc1
1.0

zaerotype_bc2 real mobility type between stationary and mobile
zaero bc2

1.0

zaerotype_dust1 real mobility type between stationary and mobile
zaero dust1

1.0

zaerotype_dust2 real mobility type between stationary and mobile
zaero dust2

1.0

zaerotype_dust3 real mobility type between stationary and mobile
zaero dust3

1.0

zaerotype_dust4 real mobility type between stationary and mobile
zaero dust4

1.0

z_tracers logical .false.
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icefields_nml

There are several icefield namelist groups to control model history output. See the source code for a full list of supported
output fields.

• icefields_nml is in cicecore/cicedyn/analysis/ice_history_shared.F90

• icefields_bgc_nml is in cicecore/cicedyn/analysis/ice_history_bgc.F90

• icefields_drag_nml is in cicecore/cicedyn/analysis/ice_history_drag.F90

• icefields_fsd_nml is in cicecore/cicedyn/analysis/ice_history_fsd.F90

• icefields_mechred_nml is in cicecore/cicedyn/analysis/ice_history_mechred.F90

• icefields_pond_nml is in cicecore/cicedyn/analysis/ice_history_pond.F90

• icefields_snow_nml is in cicecore/cicedyn/analysis/ice_history_snow.F90

Table 25: icefields_nml namelist options
variable options/format description default value

f_<var> d write field var every histfreq_n days
h write field var every histfreq_n hours
m write field var every histfreq_n months
x do not write var to history
y write field var every histfreq_n years
1 write field var every time step
md e.g., write both monthly and daily files

f_<var>_ai d write field cell average var every
histfreq_n days

h write field cell average var every
histfreq_n hours

m write field cell average var every
histfreq_n months

x do not write cell average var to history
y write field cell average var every

histfreq_n years
1 write field cell average var every time step
md e.g., write both monthly and daily files

3.5 Troubleshooting

Check the FAQ: https://github.com/CICE-Consortium/CICE/wiki
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3.5.1 Directory Structure

In November, 2022, the cicedynB directory was renamed to cicedyn.

3.5.2 Initial setup

If there are problems, you can manually edit the env, Macros, and cice.run files in the case directory until things are
working properly. Then you can copy the env and Macros files back to configuration/scripts/machines.

Changes made directly in the run directory, e.g. to the namelist file, will be overwritten if scripts in the case directory
are run again later.

If changes are needed in the cice.run.setup.csh script, it must be manually modified.

Ensure that the block size block_size_x, block_size_y, and max_blocks is compatible with the processor_shape
and other domain options in ice_in

If using the rake or space-filling curve algorithms for block distribution (distribution_type in ice_in) the code will abort
if max_blocks is not large enough. The correct value is provided in the diagnostic output. Also, the spacecurve setting
can only be used with certain block sizes that results in number of blocks in the x and y directions being only multiples
of 2, 3, or 5.

If starting from a restart file, ensure that kcatbound is the same as that used to create the file (kcatbound = 0 for the files
included in this code distribution). Other configuration parameters, such as NICELYR, must also be consistent between
runs.

For stand-alone runs, check that -Dcoupled is not set in the Macros.* file.

For coupled runs, check that -Dcoupled and other coupled-model-specific (e.g., CESM, popcice or hadgem) prepro-
cessing options are set in the Macros.* file.

Set ICE_CLEANBUILD to true to clean before rebuilding.

3.5.3 Restarts

Manual restart tests require the path to the restart file be included in ice_in in the namelist file.

Ensure that kcatbound is the same as that used to create the restart file. Other configuration parameters, such as
nilyr, must also be consistent between runs.

CICE v5 and later use a model configuration that makes restarting from older simulations difficult. In particular, the
number of ice categories, the category boundaries, and the number of vertical layers within each category must be the
same in the restart file and in the run restarting from that file. Moreover, significant differences in the physics, such
as the salinity profile, may cause the code to fail upon restart. Therefore, new model configurations may need to be
started using runtype = ‘initial’. Binary restart files that were provided with CICE v4.1 were made using the BL99
thermodynamics with 4 layers and 5 thickness categories (kcatbound = 0) and therefore can not be used for the default
CICE v5 and later configuration (7 layers). In addition, CICE’s default restart file format is now NetCDF instead of
binary.

Restarting a run using runtype = ‘continue’ requires restart data for all tracers used in the new run. If tracer restart data
is not available, use runtype = ‘initial’, setting ice_ic to the name of the core restart file and setting to true the namelist
restart flags for each tracer that is available. The unavailable tracers will be initialized to their default settings.

On tripole grids, use restart_ext = true when using either binary or regular (non-PIO) netcdf.

Provided that the same number of ice layers (default: 4) will be used for the new runs, it is possible to convert v4.1
restart files to the new file structure and then to format. If the same physical parameterizations are used, the code
should be able to execute from these files. However if different physics is used (for instance, mushy thermo instead of
BL99), the code may still fail. To convert a v4.1 restart file, consult section 5.2 in the CICE v5 documentation.
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If restart files are taking a long time to be written serially (i.e., not using PIO), see the next section.

3.5.4 Slow execution

On some architectures, underflows (10−300 for example) are not flushed to zero automatically. Usually a compiler flag is
available to do this, but if not, try uncommenting the block of code at the end of subroutine stress in ice_dyn_evp.F90
or ice_dyn_eap.F90. You will take a hit for the extra computations, but it will not be as bad as running with the
underflows.

3.5.5 Debugging hints

Several utilities are available that can be helpful when debugging the code. Not all of these will work everywhere in
the code, due to possible conflicts in module dependencies.

debug_ice (ice_diagnostics.F90)
A wrapper for print_state that is easily called from numerous points during the timestepping loop.

print_state (ice_diagnostics.F90)
Print the ice state and forcing fields for a given grid cell.

debug_forcing = true (ice_in)
Print numerous diagnostic quantities associated with input forcing.

debug_blocks = true (ice_in)
Print diagnostics during block decomposition and distribution.

debug_model = true (ice_in)
Print extended diagnostics for the first point associated with print_points.

debug_model_i = integer (ice_in)
Defines the local i index for the point to be diagnosed with debug_model.

debug_model_j = integer (ice_in)
Defines the local j index for the point to be diagnosed with debug_model.

debug_model_iblk = integer (ice_in)
Defines the local iblk value for the point to be diagnosed with debug_model.

debug_model_task = integer (ice_in)
Defines the local task value for the point to be diagnosed with debug_model.

debug_model_step = true (ice_in)
Timestep to starting printing diagnostics associated with debug_model.

print_global (ice_in)
If true, compute and print numerous global sums for energy and mass balance analysis. This option can signifi-
cantly degrade code efficiency.

print_points (ice_in)
If true, print numerous diagnostic quantities for two grid cells, defined by lonpnt and latpnt in the namelist
file. This utility also provides the local grid indices and block and processor numbers (ip, jp, iblkp, mtask) for
these points, which can be used in to call print_state. This option can be fairly slow, due to gathering data from
processors.

conserv_check = true (ice_in)
Diagnoses conservation in various algorithms.

global_minval, global_maxval, global_sum (ice_global_reductions.F90)
Compute and print the minimum and maximum values for an individual real array, or its global sum.

3.5. Troubleshooting 115



CICE Documentation

3.5.6 Known bugs

• Fluxes sent to the CESM coupler may have incorrect values in grid cells that change from an ice-free state to
having ice during the given time step, or vice versa, due to scaling by the ice area. The authors of the CESM flux
coupler insist on the area scaling so that the ice and land models are treated consistently in the coupler (but note
that the land area does not suddenly become zero in a grid cell, as does the ice area).

• With the old CCSM radiative scheme (shortwave = ‘default’ or ‘ccsm3’), a sizable fraction (more than 10%) of
the total shortwave radiation is absorbed at the surface but should be penetrating into the ice interior instead.
This is due to use of the aggregated, effective albedo rather than the bare ice albedo when snowpatch < 1.

• The date-of-onset diagnostic variables, melt_onset and frz_onset, are not included in the core restart file, and
therefore may be incorrect for the current year if the run is restarted after Jan 1. Also, these variables were
implemented with the Arctic in mind and may be incorrect for the Antarctic.

• The single-processor system_clock time may give erratic results on some architectures.

• History files that contain time averaged data (hist_avg = true in ice_in) will be incorrect if restarting from midway
through an averaging period.

• In stand-alone runs, restarts from the end of ycycle will not be exact.

• Using the same frequency twice in histfreq will have unexpected consequences and causes the code to abort.

• Latitude and longitude fields in the history output may be wrong when using padding.

3.5.7 Interpretation of albedos

More information about interpretation of albedos can be found in the Icepack documentation.

3.5.8 VP dynamics results

The VP dynamics solver (kdyn=3) requires a global sum. This global sum is computed by default via an efficient
implementation that is not bit-for-bit for different decompositions or pe counts. Bit-for-bit identical results can be
recovered for the VP dynamics solver by setting the namelist bfbflag = reprosum or using the -s reprosum option when
setting up a case.

3.5.9 Proliferating subprocess parameterizations

With the addition of several alternative parameterizations for sea ice processes, a number of subprocesses now appear
in multiple parts of the code with differing descriptions. For instance, sea ice porosity and permeability, along with
associated flushing and flooding, are calculated separately for mushy thermodynamics, topo and level-ice melt ponds,
and for the brine height tracer, each employing its own equations. Likewise, the BL99 and mushy thermodynamics
compute freeboard and snow–ice formation differently, and the topo and level-ice melt pond schemes both allow fresh
ice to grow atop melt ponds, using slightly different formulations for Stefan freezing. These various process parame-
terizations will be compared and their subprocess descriptions possibly unified in the future.
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CHAPTER

FOUR

DEVELOPER GUIDE

4.1 About Development

The CICE model consists of four different parts, the CICE dynamics and supporting infrastructure, the CICE driver
code, the Icepack column physics code, and the scripts. Development of each of these pieces is described separately.

Guiding principles for the creation of CICE include the following:

• CICE can be run in stand-alone or coupled modes. A top layer driver, coupling layer, or model cap can be
used to drive the CICE model.

• The Icepack column physics modules are independent, consist of methods that operate on individual grid-
cells, and contain no underlying infrastructure. CICE must call into Icepack using interfaces and approaches
specified by Icepack.

4.1.1 Git workflow and Pull Requests

There is extensive Information for Developers documentation available. See
https://github.com/CICE-Consortium/About-Us/wiki/Resource-Index#information-for-developers for
information on:

• Contributing to model development

• Software development practices guide

• git Workflow Guide - including extensive information about the Pull Request process and requirements

• Documentation Workflow Guide

4.1.2 Coding Standard

Overall, CICE code should be implemented as follows,

• Adhere to the current coding and naming conventions

• Write readable code. Use meaningful variable names; indent 2 or 3 spaces for loops and conditionals; vertically
align similar elements where it makes sense, and provide concise comments throughout the code.

• Declare common parameters in a shared module. Do not hardwire the same parameter in the code in multiple
places.

• Maintain bit-for-bit output for the default configuration (to the extent possible). Use namelist options to add new
features.

• Maintain global conservation of heat, water, salt
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• Use of C preprocessor (CPP) directives should be minimized and only used for build dependent modifications
such as use of netcdf (or other “optional” libraries) or for various Fortran features that may not be supported by
some compilers. Use namelist to support run-time code options. CPPs should be all caps.

• All modules should have the following set at the top

implicit none
private

Any public module interfaces or data should be explicitly specified

• All subroutines and functions should define the subname character parameter statement to match the interface
name like

character(len=*),parameter :: subname='(advance_timestep)'

• Public Icepack interfaces should be accessed thru the icepack_intfc module like

use icepack_intfc, only: icepack_init_parameters

• Icepack does not write to output or abort, it provides methods to access those features. After each call
to Icepack, icepack_warnings_flush should be called to flush Icepack output to the CICE log file and
icepack_warnings_aborted should be check to abort on an Icepack error as follows,

call icepack_physics()
call icepack_warnings_flush(nu_diag)
if (icepack_warnings_aborted()) call abort_ice(error_message=subname, file=__FILE__,
→˓ line=__LINE__)

• Use ice_check_nc or ice_pio_check after netcdf or pio calls to check for return errors.

• Use subroutine abort_ice to abort the model run. Do not use stop or MPI_ABORT. Use optional arguments
(file=__FILE__, line=__LINE__) in calls to abort_ice to improve debugging

• Write output to stdout from the master task only unless the output is associated with an abort call. Write to unit
nu_diag following the current standard. Do not use units 5 or 6. Do not use the print statement.

• Use of new Fortran features or external libraries need to be balanced against usability and the desire to compile
on as many machines and compilers as possible. Developers are encouraged to contact the Consortium as early
as possible to discuss requirements and implementation in this case.

4.2 Dynamics

The CICE cicecore/ directory consists of the non icepack source code. Within that directory there are the following
subdirectories

cicecore/cicedyn/analysis contains higher level history and diagnostic routines.

cicecore/cicedyn/dynamics contains all the dynamical evp, eap, and transport routines.

cicecore/cicedyn/general contains routines associated with forcing, flux calculation, initialization, and model timestep-
ping.

cicecore/cicedyn/infrastructure contains most of the low-level infrastructure associated with communication (halo
updates, gather, scatter, global sums, etc) and I/O reading and writing binary and netcdf files.

cicecore/drivers/ contains subdirectories that support stand-alone drivers and other high level coupling layers.
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cicecore/shared/ contains some basic methods related to grid decomposition, time managers, constants, kinds, and
restart capabilities.

4.2.1 Dynamical Solvers

The dynamics solvers are found in cicecore/cicedyn/dynamics/. A couple of different solvers are available including
EVP, EAP and VP. The dynamics solver is specified in namelist with the kdyn variable. kdyn=1 is evp, kdyn=2 is eap,
kdyn=3 is VP.

Two alternative implementations of EVP are included. The first alternative is the Revised EVP, triggered when the
revised_evp is set to true. The second alternative is the 1d EVP solver triggered when the evp_algorithm is set
to shared_mem_1d as oppose to the default setting of evp_standard_2d. The solutions with evp_algorithm set to
standard_2d or shared_mem_1d will not be bit-for-bit identical when compared to each other. The reason for this
is floating point round off errors that occur unless strict compiler flags are used. evp_algorithm=shared_mem_1d
is primarily built for OpenMP. If MPI domain splitting is used then the solver will only run on the master processor.
evp_algorithm=shared_mem_1d is not supported with the tripole grid.

4.2.2 Transport

The transport (advection) methods are found in cicecore/cicedyn/dynamics/. Two methods are supported, upwind and
remap. These are set in namelist via the advection variable. Transport can be disabled with the ktransport namelist
variable.

4.3 Infrastructure

4.3.1 Kinds

cicecore/shared/ice_kinds_mod.F90 defines the kinds datatypes used in CICE. These kinds are used throughout CICE
code to define variable types. The CICE kinds are adopted from the kinds defined in Icepack for consistency in inter-
faces.

4.3.2 Constants

cicecore/shared/ice_constants.F90 defines several model constants. Some are hardwired parameters while others
have internal defaults and can be set thru namelist.

4.3.3 Dynamic Array Allocation

CICE v5 and earlier was implemented using mainly static arrays and required several CPPs to be set to define grid
size, blocks sizes, tracer numbers, and so forth. With CICE v6 and later, arrays are dynamically allocated and those
parameters are namelist settings. The following CPPs are no longer used in CICE v6 and later versions,

-DNXGLOB=100 -DNYGLOB=116 -DBLCKX=25 -DBLCKY=29 -DMXBLCKS=4 -DNICELYR=7 -
DNSNWLYR=1 -DNICECAT=5 -DTRAGE=1 -DTRFY=1 -DTRLVL=1 -DTRPND=1 -DTRBRI=0 -
DNTRAERO=1 -DTRZS=0 -DNBGCLYR=7 -DTRALG=0 -DTRBGCZ=0 -DTRDOC=0 -DTRDOC=0
-DTRDIC=0 -DTRDON=0 -DTRFED=0 -DTRFEP=0 -DTRZAERO=0 -DTRBGCS=0 -DNUMIN=11
-DNUMAX=99

as they have been migrated to Tables of Namelist Options
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nx_global, ny_global, block_size_x, block_size_y, max_blocks, nilyr, nslyr, ncat, nblyr, n_aero, n_zaero,
n_algae, n_doc, n_dic, n_don, n_fed, n_fep, numin, numax

4.3.4 Time Manager

Time manager data is module data in cicecore/shared/ice_calendar.F90. Much of the time manager data is public and
operated on during the model timestepping. The model timestepping actually takes place in the CICE_RunMod.F90
file which is part of the driver code.

The time manager was updated in early 2021. Additional information about the time manager can be found here, Time
Manager and Initialization.

4.3.5 Communication

Two low-level communications packages, mpi and serial, are provided as part of CICE. This software provides a middle
layer between the model and the underlying libraries. Only the CICE mpi or serial directories are compiled with CICE,
not both.

cicedyn/infrastructure/comm/mpi/ is based on MPI and provides various methods to do halo updates, global sums,
gather/scatter, broadcasts and similar using some fairly generic interfaces to isolate the MPI calls in the code.

cicedyn/infrastructure/comm/serial/ support the same interfaces, but operates in shared memory mode with no MPI.
The serial library will be used, by default in the CICE scripts, if the number of MPI tasks is set to 1. The serial library
allows the model to be run on a single core or with OpenMP parallelism only without requiring an MPI library.

4.3.6 I/O

There are three low-level IO packages in CICE, io_netcdf, io_binary, and io_pio. This software provides a middle layer
between the model and the underlying IO writing. Only one of the three IO directories can be built with CICE. The
CICE scripts will build with the io_netcdf by default, but other options can be selecting by setting ICE_IOTYPE in
cice.settings in the case. This has to be set before CICE is built.

cicedyn/infrastructure/io/io_netcdf/ is the default for the standalone CICE model, and it supports writing history and
restart files in netcdf format using standard netcdf calls. It does this by writing from and reading to the root task and
gathering and scattering fields from the root task to support model parallelism.

cicedyn/infrastructure/io/io_binary/ supports files in binary format using a gather/scatter approach and reading to
and writing from the root task.

cicedyn/infrastructure/io/io_pio/ support reading and writing through the pio interface. pio is a parallel io library
(https://github.com/NCAR/ParallelIO) that supports reading and writing of binary and netcdf file through various in-
terfaces including netcdf and pnetcdf. pio is generally more parallel in memory even when using serial netcdf than the
standard gather/scatter methods, and it provides parallel read/write capabilities by optionally linking and using pnetcdf.

There is additional IO information in Model Input and Output.
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4.4 Driver and Coupling

The driver and coupling layer is found in cicecore/drivers/. The standalone driver is found under ci-
cecore/drivers/standalone/cice/ and other high level coupling layers are found in other directories. CICE is de-
signed to build with only one of these drivers at a time, depending how the model is run and coupled. Within the
cicecore/drivers/standalone/cice/ directory, the following files are found,

CICE.F90 is the top level program file and that calls CICE_Initialize, CICE_Run, and CICE_Finalize methods.
CICE_InitMod.F90 contains the CICE_Initialize method and other next level source code. CICE_RunMod.F90
contains the CICE_Run method and other next level source code. CICE_FinalMod.F90 contains the CICE_Finalize
method and other next level source code.

The files provide the top level sequencing for calling the standalone CICE model.

4.4.1 Adding a New Driver

The drivers directory contains two levels of subdirectories. The first layer indicates the coupling infrastructure or
strategy and the second later indicates the application or coupler the driver is written for. At the present time, the
directory structures is:

drivers/direct/hadgem3
drivers/mct/cesm1
drivers/nuopc/cmeps
drivers/standalone/cice

The standalone driver is drivers/standalone/cice, and this is the driver used when running with the CICE scripts in
standalone mode. New drivers can be added as needed when coupling to new infrastructure or in new applications.
We encourage the community to use the drivers directory to facilitate reuse with the understanding that the driver code
could also reside in the application. Users should follow the naming strategy as best as possible. Drivers should be
added under the appropriate subdirectory indicative of the coupling infrastructure. New subdirectories (such as oasis
or esmf) can be added in the future as needed. The community will have to decide when it’s appropriate to share drivers
between different applications, when to update drivers, and when to create new drivers. There are a number of trade-
offs to consider including backwards compatibility with earlier versions of applications, code reuse, and independence.
As a general rule, driver directories should not be deleted and names should not be reused to avoid confusion with prior
versions that were fundamentally different. The number of drivers will likely increase over time as new infrastructure
and applications are added and as versions evolve in time.

The current drivers subdirectories are mct, nuopc, standalone, and direct. The standalone subdirectory contains drivers
to run the model in standalone mode as a standalone program. The direct subdirectory contains coupling interfaces
that supporting calling the ice model directory from other models as subroutines. The subdirectory mct contains
subdirectories for applications/couplers that provide coupling via mct interfaces. And the subdirectory nuopc contains
subdirectories for applications/couplers that provide coupling via nuopc interfaces.

The varied cicecore/drivers/ directories are generally implemented similar to the standalone cice case with versions
of CICE_InitMod.F90, CICE_RunMod.F90, and CICE_FinalMod.F90 files in addition to files consistent with the
coupling layer.

As features are added to the CICE model over time that require changes in the calling sequence, it’s possible that
all drivers will need to be updated. These kinds of changes are impactful and not taken lightly. It will be up to the
community as a whole to work together to maintain the various drivers in these situations.
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4.4.2 Calling Sequence

The initialize calling sequence looks something like:

call init_communicate ! initial setup for message passing
call init_fileunits ! unit numbers
call icepack_configure() ! initialize icepack
call input_data ! namelist variables
call init_zbgc ! vertical biogeochemistry namelist
call count_tracers ! count tracers
call init_domain_blocks ! set up block decomposition
call init_grid1 ! domain distribution
call alloc_* ! allocate arrays
call init_ice_timers ! initialize all timers
call init_grid2 ! grid variables
call init_zbgc ! vertical biogeochemistry initialization
call init_calendar ! initialize some calendar stuff
call init_hist (dt) ! initialize output history file
call init_dyn (dt_dyn) ! define dynamics parameters, variables
if (kdyn == 2) then

call init_eap ! define eap dynamics parameters, variables
else if (kdyn == 3) then

call init_vp ! define vp dynamics parameters, variables
endif
call init_coupler_flux ! initialize fluxes exchanged with coupler
call init_thermo_vertical ! initialize vertical thermodynamics
call icepack_init_itd(ncat, hin_max) ! ice thickness distribution
if (tr_fsd) call icepack_init_fsd_bounds ! floe size distribution
call init_forcing_ocn(dt) ! initialize sss and sst from data
call init_state ! initialize the ice state
call init_transport ! initialize horizontal transport
call ice_HaloRestore_init ! restored boundary conditions
call init_restart ! initialize restart variables
call init_diags ! initialize diagnostic output points
call init_history_therm ! initialize thermo history variables
call init_history_dyn ! initialize dynamic history variables
call calc_timesteps ! update timestep counter if not using npt_unit="1"
call init_shortwave ! initialize radiative transfer
call advance_timestep ! advance the time step
call init_forcing_atmo ! initialize atmospheric forcing (standalone)
if (tr_fsd .and. wave_spec) call get_wave_spec ! wave spectrum in ice
call get_forcing* ! read forcing data (standalone)
if (tr_snow) call icepack_init_snow ! advanced snow physics

See a CICE_InitMod.F90 file for the latest.

The run sequence within a time loop looks something like:

call init_mass_diags ! diagnostics per timestep
call init_history_therm
call init_history_bgc

do iblk = 1, nblocks
if (calc_Tsfc) call prep_radiation (dt, iblk)

(continues on next page)
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(continued from previous page)

call step_therm1 (dt, iblk) ! vertical thermodynamics
call biogeochemistry (dt, iblk) ! biogeochemistry
call step_therm2 (dt, iblk) ! ice thickness distribution thermo

enddo ! iblk

call update_state (dt, daidtt, dvidtt, dagedtt, offset)

if (tr_fsd .and. wave_spec) call step_dyn_wave(dt)
do k = 1, ndtd

call step_dyn_horiz (dt_dyn)
do iblk = 1, nblocks

call step_dyn_ridge (dt_dyn, ndtd, iblk)
enddo
call update_state (dt_dyn, daidtd, dvidtd, dagedtd, offset)

enddo

if (tr_snow) then ! advanced snow physics
do iblk = 1, nblocks

call step_snow (dt, iblk)
enddo
call update_state (dt) ! clean up

endif

do iblk = 1, nblocks
call step_radiation (dt, iblk)
call coupling_prep (iblk)

enddo ! iblk

! write data
! update forcing

See a CICE_RunMod.F90 file for the latest.

4.5 Standalone Forcing

Users are strongly encouraged to run CICE in a coupled system (see Coupling With Other Climate Model Components)
to improve quality of science. The standalone mode is best used for technical testing and only preliminary science
testing. Several different input forcing datasets have been implemented over the history of CICE. Some have become
obsolete, others have been supplanted by newer forcing data options, and others have been implemented by outside
users and are not testable by the Consortium. The forcing code has generally not been maintained by the Consortium
and only a subset of the code is tested by the Consortium.

The forcing implementation can be found in the file cicecore/cicedyn/general/ice_forcing.F90. As noted above, only
a subset of the forcing modes are tested and supported. In many ways, the implemetation is fairly primitive, in part due
to historical reasons and in part because standalone runs are discouraged for evaluating complex science. In general,
most implementations use aspects of the following approach,

• Input files are organized by year. The underlying implementation provides for some flexibility
and extensibility in filenames. For instance, JRA55 and JRA55do filenames can have syntax
like [JRA55,JRA55do][_$grid]_03hr_forcing_$year.nc or [JRA55,JRA55do]_03hr_forcing[_$grid]_$year.nc,
where [_$grid] is optional and may be present at one of two locations within the filename. This implementation
exists to support the current naming conventions within the gx1, gx3, and tx1 JRA55 and JRA55do CICE_data
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directory structure automatically. See JRA55_files in ice_forcing.F90 for more details.- Namelist inputs fyear
and ycycle specify the forcing year dataset.

• The forcing year is computed on the fly and is assumed to be cyclical over the forcing dataset length defined by
ycycle.

• The namelist atm_data_dir specifies the full or partial path for the atmosphere input data files, and the namelist
atm_data_type defines the atmospheric forcing mode (see forcing_nml in Tables of Namelist Options). Many
of the forcing options are generated internally. For atmospheric forcing read from files, the directory structure
and filenames depend on the grid and atm_data_type. Many details can be gleaned from the CICE_data
directory and filenames as well as from the implementation in ice_forcing.F90. The primary atm_data_type
forcing for gx1, gx3, and tx1 test grids are JRA55 and JRA55do. For those configurations, the atm_data_dir
should be set to ${CICE_data_root}/forcing/${grid}/[JRA55,JRA55do] and the filenames should be of the form
[JRA55,JRA55do]_${grid}_03hr_forcing${atm_data_version}_yyyy.nc where yyyy is the forcing year. Those
files should be placed under atm_data_dir/8XDAILY. atm_data_version is a string defined in forcing_nml
namelist that supports versioning of the forcing data. atm_data_version could be any string including the null
string. It typically will be something like _yyyymmdd to indicate the date the forcing data was generated.

• The namelist ocn_data_dir specifies the directory of the ocean input data files and the namelist
ocn_data_type defines the ocean forcing mode.

• The filenames follow a particular naming convention that is defined in the source code (ie. subroutine
JRA55_files). The forcing year is typically found just before the .nc part of the filename and there are tools
(subroutine file_year) to update the filename based on the model year and appropriate forcing year.

• The input data time axis is generally NOT read by the forcing subroutine. The forcing frequency is hardwired
into the model and the file record number is computed based on the forcing frequency and model time. Mixing
leap year input data and noleap model calendars (and vice versa) is not handled particularly gracefully. The CICE
model does not read or check against the input data time axis.

• Data is read on the model grid, no spatial interpolation exists.

• Data is often time interpolated linearly between two input timestamps to the model time each model timestep.

In general, the following variables need to be defined by the forcing module,

From Atmosphere:

• zlvl = atmosphere level height (m)

• uatm = model grid i-direction wind velocity component (m/s)

• vatm = model grid j-direction wind velocity component (m/s)

• strax = model grid i-direction wind stress (N/m^2)

• stray = model grid j-direction wind stress (N/m^2)

• potT = air potential temperature (K)

• Tair = air temperature (K)

• Qa = specific humidity (kg/kg)

• rhoa = air density (kg/m^3)

• flw = incoming longwave radiation (W/m^2)

• fsw = incoming shortwave radiation (W/m^2)

• swvdr = sw down, visible, direct (W/m^2)

• swvdf = sw down, visible, diffuse (W/m^2)

• swidr = sw down, near IR, direct (W/m^2)
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• swidf = sw down, near IR, diffuse (W/m^2)

• frain = rainfall rate (kg/m^2 s)

• fsnow = snowfall rate (kg/m^2 s)

From Ocean:

• uocn = ocean current, x-direction (m/s)

• vocn = ocean current, y-direction (m/s)

• ss_tltx = sea surface slope, x-direction (m/m)

• ss_tlty = sea surface slope, y-direction (m/m)

• hwater = water depth for basal stress calc (landfast ice)

• sss = sea surface salinity (ppt)

• sst = sea surface temperature (C)

• frzmlt = freezing/melting potential (W/m^2)

• frzmlt_init= frzmlt used in current time step (W/m^2)

• Tf = freezing temperature (C)

• qdp = deep ocean heat flux (W/m^2), negative upward

• hmix = mixed layer depth (m)

• daice_da= data assimilation concentration increment rate (concentration s-1)(only used in hadgem drivers)

All variables have reasonable but static defaults and these will be used in default mode.

To advance the forcing, the subroutines get_forcing_atmo and get_forcing_ocn are called each timestep from the step
loop. That subroutine computes the forcing year (fyear), calls the appropriate forcing data method, and then calls
prepare_forcing which converts the input data fields to model forcing fields.

4.5.1 JRA55 and JRA55do Atmosphere Forcing

The current default atmosphere forcing for gx3, gx1, and tx1 standalone grids for Consortium testing is the JRA55
forcing dataset [61]. The Consortium has released 5 years of forcing data, 2005-2009 for gx3, gx1, and tx1 grids. Each
year is a separate file and the dataset is on a gregorian time axis which includes leap days.

The forcing is read and interpolated in subroutine JRA55_data. In particular, air temperature (airtmp), east and north
wind speed (wndewd and wndnwd), specific humidity (spchmd), incoming short and longwave radiation (glbrad and
dswsfc), and precipitation (ttlpcp) are read from the input files. The JRA55 reanalysis is run with updated initial
conditions every 6 hours and output is written every 3 hours. The four state fields (air temperature, winds, specific
humidity) are instantaneous data, while the three flux fields (radition, precipitation) are 3 hour averages. In the JRA55
forcing files provided by the Consortium, the time defined for 3 hour average fields is shifted 3 hours to the start time
of the 3 hour interval. NOTE that this is different from the implementation on the original JRA55 files and also
different from how models normally define time on an accumulated/averaged field. This is all shown schematically
in Figure Schematic of JRA55 CICE forcing file generation..

The state fields are linearly time interpolated between input timestamps while the flux fields are read and held constant
during each 3 hour model period. The forcing frequency is hardwired to 3 hours in the implementation, and the record
number is computed based on the time of the current model year. Time interpolation coefficients are computed in the
JRA55_data subroutine.

The forcing data is converted to model inputs in the subroutine prepare_forcing called in get_forcing_atmo. To
clarify, the JRA55 input data includes
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Fig. 1: Schematic of JRA55 CICE forcing file generation.

• uatm = T-cell centered, model grid i-direction wind velocity component (m/s)

• vatm = T-cell-centered, model grid j-direction wind velocity component (m/s)

• Tair = air temperature (K)

• Qa = specific humidity (kg/kg)

• flw = incoming longwave radiation (W/m^2)

• fsw = incoming shortwave radiation (W/m^2)

• fsnow = snowfall rate (kg/m^2 s)

and model forcing inputs are derived from those fields and the defaults.

Because the input files are on the gregorian time axis, the model can run with the regular 365 day (noleap) calendar,
but in that case, the Feb 29 input data will be used on March 1, and all data after March 1 will be shifted one day.
December 31 in leap years will be skipped when running with a CICE calendar with no leap days.

JRA55do forcing is also provided by the Consortium in the same format and scheme. The JRA55do dataset is more
focused on forcing for ocean and ice models, but provides a very similar climate as the JRA55 forcing. To switch
to JRA55do, set the namelist atm_data_type to JRA55do and populate the input data directory with the JRA55do
dataset provided by the Consortium.
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4.5.2 NCAR Atmosphere Forcing

The NCAR atmospheric forcing was used in earlier standalone runs on the gx3 grid, and the Consortium continues to
do some limited testing with this forcing dataset. Monthly average data for fsw, cldf, fsnow are read. 6-hourly data for
Tair, uatm, vatm, rhoa, and Qa are also read. Users are encouraged to switch to the JRA55 (see JRA55 and JRA55do
Atmosphere Forcing) dataset. This atmosphere forcing dataset may be deprecated in the future.

4.5.3 Default Atmosphere Forcing

The default atmosphere forcing option sets the atmosphere forcing internally. No files are read. Values for forcing fields
are defined at initialization in subroutine init_coupler_flux and held constant thereafter. Different conditions can be
specified thru the default_season namelist variable.

4.5.4 Box2001 Atmosphere Forcing

The box2001 forcing dataset in generated internally. No files are read. The dataset is used to test an idealized box case
as defined in [20].

4.5.5 Other Atmosphere Forcing

There are a few other atmospheric forcing modes, as defined by atm_data_type, but they are not tested by the Con-
sortium on a regular basis.

4.5.6 Default Ocean Forcing

The default ocean setting is the standard setting used in standalone CICE runs. In this mode, the sea surface salinity
is set to 34 ppt and the sea surface temperature is set to the freezing temperature at all grid points and held constant
unless the mixed layer parameterization is turned on, in which case the SST evolves. Other ocean coupling fields are
set to zero. No files are read.

4.5.7 Other Ocean Forcing

There are a few other ocean forcing modes, as defined by ocn_data_type, but they are not tested by the Consortium
on a regular basis.

4.6 Icepack

The CICE model calls the Icepack columnphysics source code. The Icepack model is documented separately, see
https://github.com/CICE-Consortium/Icepack.

More specifically, the CICE model uses methods defined in icepack_intfc.F90. It uses the init, query, and write
methods to set, get, and document Icepack values. And it follows the icepack_warnings methodology where
icepack_warnings_aborted is checked and icepack_warnings_flush is called after every call to an Icepack method.
It does not directly “use” Icepack data, accessing Icepack data only thru interfaces.
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4.7 Scripts

The scripts are the third part of the cice package. They support setting up cases, building, and running the cice stand-
alone model.

4.7.1 File List

The directory structure under configure/scripts is as follows.

configuration/scripts/
Makefile primary makefile
cice.batch.csh creates batch scripts for particular machines
cice.build compiles the code
cice.decomp.csh computes a decomposition given a grid and task/thread count
cice.launch.csh creates script logic that runs the executable
cice.run.setup.csh sets up the run scripts
cice.settings defines environment, model configuration and run settings
cice.test.setup.csh creates configurations for testing the model
ice_in namelist input data
machines/ machine specific files to set env and Macros
makdep.c determines module dependencies
options/ other namelist configurations available from the cice.setup command line
parse_namelist.sh replaces namelist with command-line configuration
parse_namelist_from_settings.sh replaces namelist with values from cice.settings
parse_settings.sh replaces settings with command-line configuration
setup_run_dirs.csh creates the case run directories
set_version_number.csh updates the model version number from the cice.setup command line
timeseries.csh generates PNG timeseries plots from output files, using GNUPLOT
timeseries.py generates PNG timeseries plots from output files, using Python
tests/ scripts for configuring and running basic tests

4.7.2 Strategy

The cice scripts are implemented such that everything is resolved after cice.setup is called. This is done by both copying
specific files into the case directory and running scripts as part of the cice.setup command line to setup various files.

cice.setup drives the case setup. It is written in csh. All supporting scripts are relatively simple csh or sh scripts. See
Scripts for additional details.

The file cice.settings specifies a set of env defaults for the case. The file ice_in defines the namelist input for the cice
driver.
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4.7.3 Preset Case Options

The cice.setup --set option allows the user to choose some predetermined cice settings and namelist. Those
options are defined in configurations/scripts/options/ and the files are prefixed by either set_env or set_nml. When
cice.setup is executed, the appropriate files are read from configurations/scripts/options/ and the cice.settings and/or
ice_in files are updated in the case directory based on the values in those files.

The filename suffix determines the name of the -s option. So, for instance,

cice.setup -s diag1,debug,bgcISPOL

will search for option files with suffixes of diag1, debug, and bgcISPOL and then apply those settings.

parse_namelist.sh, parse_settings.sh, and parse_namelist_from_settings.sh are the three scripts that modify ice_in
and cice.settings.

To add new options, just add new files to the configurations/scripts/options/ directory with appropriate names and
syntax. The set_nml file syntax is the same as namelist syntax and the set_env files are consistent with csh setenv
syntax. See other files for examples of the syntax. The name of the option (i.e. diag1, debug, bgcISPOL) should not
have any special characters in the name as this can impact scripts usage.

4.7.4 Build Scripts

CICE uses GNU Make to build the model. There is a common Makefile for all machines. Each machine provides a
Macros file to define some Makefile variables and and an env file to specify the modules/software stack for each com-
piler. The machine is built by the cice.build script which invokes Make. There is a special trap for circular dependencies
in the cice.build script to highlight this error when it occurs.

The cice.build script has some additional features including the ability to pass a Makefile target. This is documented in
More about cice.build. In addition, there is a hidden feature in the cice.build script that allows for reuse of executables.
This is used by the test suites to significantly reduce cost of building the model. It is invoked with the --exe argument
to cice.build and should not be invoked by users interactively.

4.7.5 Machines

Machine specific information is contained in configuration/scripts/machines. That directory contains a Macros file
and an env file for each supported machine. One other files will need to be changed to support a port, that is configu-
ration/scripts/cice.batch.csh. To port to a new machine, see Porting.

4.7.6 Test Options

Values that are associated with the –sets cice.setup are defined in configuration/scripts/options. Those files are text
files and cice.setup uses the values in those files to modify the cice.settings and ice_in files in the case as the case is
created. Files name set_env.$option are associated with values in the cice.settings file. Files named set_nml.$option
are associated with values in ice.in. These files contain simple keyword pair values one line at a time. A line starting
with # is a comment. Files names that start with test_ are used specifically for tests.

That directory also contains files named set_files.$option. This provides an extra layer on top of the individual setting
files that allows settings to be defined based on groups of other settings. The set_files.$option files contain a list of
–sets options to be applied.

The $option part of the filename is the argument to –sets argument in cice.setup. Multiple options can be specified by
creating a comma delimited list. In the case where settings contradict each other, the last defined is used.
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4.7.7 Test scripts

Under configuration/scripts/tests are several files including the scripts to setup the various tests, such as smoke and
restart tests (test_smoke.script, test_restart.script) and the files that describe with options files are needed for each
test (ie. test_smoke.files, test_restart.files). A baseline test script (baseline.script) is also there to setup the general
regression and comparison testing. That directory also contains the preset test suites (ie. base_suite.ts) and a script
(report_results.csh) that pushes results from test suites back to the CICE-Consortium test results wiki page.

To add a new test (for example newtest), several files may be needed,

• configuration/scripts/tests/test_newtest.script defines how to run the test. This chunk of script will be incor-
porated into the case test script

• configuration/scripts/tests/test_newtest.files list the set of options files found in configuration/scripts/options/
needed to run this test. Those files will be copied into the test directory when the test is invoked so they are
available for the test_newtest.script to use.

• some new files may be needed in configuration/scripts/options/. These could be relatively generic set_nml or
set_env files, or they could be test specific files typically carrying a prefix of test_nml.

Generating a new test, particularly the test_newtest.script usually takes some iteration before it’s working properly.

4.7.8 QC Process Validation

The code validation (aka QC or quality control) test validates non bit-for-bit model changes. The directory configura-
tion/scripts/tests/QC contains scripts related to the validation testing, and this process is described in Code Validation
Test (non bit-for-bit validation). This section will describe a set of scripts that test and validate the QC process. This
should be done when the QC test or QC test scripts (i.e., cice.t-test.py) are modified. Again, this section docu-
ments a validation process for the QC scripts; it does not describe to how run the validation test itself.

Two scripts have been created to automatically validate the QC script. These scripts are:

• gen_qc_cases.csh, which creates the 4 test cases required for validation, builds the executable, and submits
to the queue.

• compare_qc_cases.csh, which runs the QC script on three combinations of the 4 test cases and outputs
whether or not the correct response was received.

The gen_qc_cases.csh script allows users to pass some arguments similar to the cice.setup script. These options
include:

• --mach, -m: Machine (REQUIRED)

• --env, -e: Compiler

• --pes, -p: tasks x threads

• --acct : Account number for batch submission

• --grid, -g: Grid

• --queue : Queue for the batch submission

• --testid : test ID, user-defined id for testing

The script creates 4 test cases, with testIDs qc_base, qc_bfb, qc_test, and qc_fail. qc_base is the base test case
with the default QC namelist. qc_bfb is identical to qc_base. qc_test is a test that is not bit-for-bit when compared
to qc_base, but not climate changing. qc_fail is a test that is not bit-for-bit and also climate changing.

In order to run the compare_qc_cases.csh script, the following requirements must be met:

• Python v2.7 or later
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• netcdf Python package

• numpy Python package

To install the necessary Python packages, the pip Python utility can be used.

pip install --user netCDF4
pip install --user numpy

Note: Some machines might report pip: Command not found. If you encounter this error, check to see if there is
any Python module (module avail python) that you might need to load prior to using pip.

To perform the QC validation, execute the following commands.

# From the CICE base directory
cp configuration/scripts/tests/QC/gen_qc_cases.csh .
cp configuration/scripts/tests/QC/compare_qc_cases.csh .

# Create the required test cases
./gen_qc_cases.csh -m <machine> --acct <acct>

# Wait for all 4 jobs to complete

# Perform the comparisons
./compare_qc_cases.csh

The compare_qc_cases.csh script will run the QC script on the following combinations:

• qc_base vs. qc_bfb

• qc_base vs. qc_nonbfb

• qc_base vs. qc_fail

An example of the output from compare_qc_cases.csh is shown below.:

===== Running QC tests and writing output to validate_qc.log =====
Running QC test on base and bfb directories.
Expected result: PASSED
Result: PASSED
-----------------------------------------------
Running QC test on base and non-bfb directories.
Expected result: PASSED
Result: PASSED
-----------------------------------------------
Running QC test on base and climate-changing directories.
Expected result: FAILED
Result: FAILED

QC Test has validated
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4.8 Tools

4.8.1 CICE4 restart conversion

There is a Fortran program in configuration/tools/cice4_restart_conversion that will help convert a CICE4 restart
file into a CICE5 restart file. There is a bit of documentation contained in that source code about how to build, use,
and run the tool. A few prognostic variables were changed from CICE4 to CICE5 which fundamentally altered the
fields saved to the restart file. See configuration/tools/cice4_restart_conversion/convert_restarts.f90 for additional
information.

4.8.2 JRA55 forcing datasets

This section describes how to generate JRA55 forcing data for the CICE model. Raw JRA55 or JRA55do files
have to be interpolated and processed into input files specifically for the CICE model. A tool exists in configura-
tion/tools/jra55_datasets to support that process. The raw JRA55 or JRA55do data is obtained from the NCAR/UCAR
Research Data Archive and the conversion tools are written in python.

Requirements

Python3 is required, and the following python packages are required with the tested version number in parenthesis.
These versions are not necessarily the only versions that work, they just indicate what versions were used when the
script was recently run.

• python3 (python3.7.9)

• numpy (1.18.5)

• netCDF4 (1.5.5)

• ESMPy (8.0.0)

• xesmf (0.3.0)

NCO is required for aggregating the output files into yearly files.

• netcdf (4.7.4)

• nco (4.9.5)

Raw JRA55 forcing data

The raw JRA55 forcing data is obtained from the UCAR/NCAR Research Data Archive, https://rda.ucar.edu/. You
must first register (free) and then sign in. The “JRA-55 Reanalysis Daily 3-Hourly and 6-Hourly Data” is ds628.0 and
can be found here, https://rda.ucar.edu/datasets/ds628.0.

The “Data access” tabs will provide a list of product categories. The JRA55 data of interest are located in 2 separate
products. Winds, air temperature, and specific humidity fields are included in “JRA-55 3-Hourly Model Resolution
2-Dimensional Instantaneous Diagnostic Fields”. Precipitation and downward radiation fluxes are found in “JRA-55
3-Hourly Model Resolution 2-Dimensional Average Diagnostic Fields”. (Note the difference between instantaneous
and averaged data products. There are several JRA55 datasets available, you will likely have to scroll down the page to
find these datasets.) Data are also available on a coarser 1.25° grid, but the tools are best used with the native TL319
JRA55 grid.

The fields needed for CICE are

• specific humidity (3-hourly instantaneous), Qa
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• temperature (3-hourly instantaneous), Tair

• u-component of wind (3-hourly instantaneous), uatm

• v-component of wind(3-hourly instantaneous), vatm

• downward longwave radiation flux (3 hourly average), flw

• downward solar radiation flux (3 hourly average), fsw

• total precipitation (3 hourly average), fsnow

To customize the dataset for download, choose the “Get a Subset” option. Select the desired times in the “Temporal
Selection” section, then click on desired parameters (see list above). After clicking continue, select Output Format
“Converted to NetCDF”.

Once the data request is made, an email notification will be sent with a dedicated URL that will provide a variety of
options for downloading the data remotely. The data will be available to download for 5 days. The raw data consists of
multiple files, each containing three months of data for one field.

Data conversion

The script, configuration/tools/jra55_datasets/interp_jra55_ncdf_bilinear.py, converts the raw data to CICE input
files.

The script uses a bilinear regridding algorithm to regrid from the JRA55 grid to the CICE grid. The scripts use the
Python package ‘xesmf’ to generate bilinear regridding weights, and these regridding weights are written to the file
defined by the variable “blin_grid_name” in interp_jra55_ncdf_bilinear.py. This filename can be modified by edit-
ing interp_jra55_ncdf_bilinear.py. The weights file can be re-used if interpolating different data on the same grid.
Although not tested in this version of the scripts, additional regridding options are available by xesmf, including ‘con-
servative’ and ‘nearest neighbor’. These methods have not been tested in the current version of the scripts. The reader
is referred to the xESMF web page for further documentation (https://xesmf.readthedocs.io/en/latest/ last accessed 5
NOV 2020).

To use the interp_jra55_ncdf_bilinear script, do

python3 interp_jra55_ncdf_bilinear.py –h

to see the latest interface information

usage: interp_jra55_ncdf_bilinear.py [-h] JRADTG gridout ncout

Interpolate JRA55 data to CICE grid

positional arguments:
JRADTG JRA55 input file date time group
gridout CICE grid file (NetCDF)
ncout Output NetCDF filename

optional arguments:
-h, --help show this help message and exit

Sample usage is

./interp_jra55_ncdf_bilinear.py 1996010100_1996033121 grid_gx3.nc JRA55_gx3_03hr_forcing_
→˓1996-q1.nc
./interp_jra55_ncdf_bilinear.py 1996040100_1996063021 grid_gx3.nc JRA55_gx3_03hr_forcing_
→˓1996-q2.nc

(continues on next page)
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(continued from previous page)

./interp_jra55_ncdf_bilinear.py 1996070100_1996093021 grid_gx3.nc JRA55_gx3_03hr_forcing_
→˓1996-q3.nc
./interp_jra55_ncdf_bilinear.py 1996100100_1996123121 grid_gx3.nc JRA55_gx3_03hr_forcing_
→˓1996-q4.nc

In this case, the 4 quarters of 1996 JRA55 data is going to be interpolated to the gx3 grid. NCO can be used to aggregate
these files into a single file

ncrcat JRA55_gx3_03hr_forcing_1996-??.nc JRA55_${grid}_03hr_forcing_1996.nc

NOTES

• The scripts are designed to read a CICE grid file in netCDF format. This is the “grid_gx3.nc” file above. The
NetCDF grid names are hardcoded in interp_jra55_ncdf_bilinear.py. If you are using a different grid file with
different variable names, this subroutine needs to be updated.

• All files should be placed in a common directory. This includes the raw JRA55 input files, the CICE grid file,
and interp_jra55_ncdf_bilinear.py. The output files will be written to the same directory.

• The script configuration/tools/jra55_datasets/make_forcing.csh was used on the NCAR cheyenne machine in
March, 2021 to generate CICE forcing data. It assumes the raw JRA55 is downloaded, but then sets up the python
environment, links all the data in a common directory, runs interp_jra55_ncdf_bilinear.py and then aggregates
the quarterly data using NCO.

• The new forcing files can then be defined in the ice_in namelist file using the input variables, atm_data_type,
atm_data_format, atm_data_dir, fyear_init, and ycycle. See Standalone Forcing for more information.

• The total precipitation field is mm/day in JRA55. This field is initially read in as snow, but prepare_forcing in
ice_forcing.F90 splits that into rain or snow forcing depending on the air temperature.

4.9 Other things

4.9.1 Running with a Debugger

Availability and usage of interactive debuggers varies across machines. Contact your system administrator for additional
information about what’s available on your system. To run with an interactive debugger, the following general steps
should be taken.

• Setup a case

• Modify the env file and Macros file to add appropriate modules and compiler/ linker flags

• Build the model

• Get interactive hardware resources as needed

• Open a csh shell

• Source the env.${machine} file

• Source cice.settings

• Change directories to the run directory

• Manually launch the executable thru the debugger
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4.9.2 Reproducible Sums

Reproducible sums in CICE are set with the namelist bfbflag. CICE prognostics results do NOT depend on the global
sum implementation when using the default dynamics solver (EVP) or the EAP solver. With these solvers, the results
are bit-for-bit identical with any bfbflag. The bfbflag only impacts the results and performance of the global diagnostics
written to the CICE log file (for all dynamics solvers), as well as the model results when using the VP solver. For
best performance, the off setting is recommended. This will probably not produce bit-for-bit results with different
decompositions. For bit-for-bit results, the reprosum setting is recommended. This should be only slightly slower than
the lsum8 implementation.

Global sums of real types are not reproducible due to different order of operations of the sums of the individual data
which introduced roundoff errors. This is caused when the model data is laid out in different block decompositions or
on different pe counts so the data is stored in memory in different orders. Integer data should be bit-for-bit identical
regardless of the order of operation of the sums.

The bfbflag namelist is a character string with several valid settings. The tradeoff in these settings is the likelihood for
bit-for-bit results versus their cost. The bfbflag settings are implemented as follows,

off is the default and mostly equivalent to lsum8 (some computations in the VP solver use a different code path when
lsum8 is chosen).

lsum4 is a local sum computed with single precision (4 byte) data and a scalar mpi allreduce. This is extremely unlikely
to be bit-for-bit for different decompositions. This should generally not be used as the accuracy is very poor for a model
implemented with double precision (8 byte) variables.

lsum8 is a local sum computed with double precision data and a scalar mpi allreduce. This is extremely unlikely to be
bit-for-bit for different decompositions but is fast. For CICE implemented in double precision, the differences in global
sums for different decompositions should be at the roundoff level.

lsum16 is a local sum computed with quadruple precision (16 byte) data and a scalar mpi allreduce. This is very likely
to be bit-for-bit for different decompositions. However, it should be noted that this implementation is not available or
does not work properly with some compiler and some MPI implementation. Support for quad precision and consistency
between underlying fortran and c datatypes can result in inability to compile or incorrect results. The source code
associated with this implementation can be turned off with the cpp, NO_R16. Otherwise, it is recommended that this
option NOT be used or that results be carefully validated on any platform before it is used.

reprosum is a fixed point method based on ordered double integer sums that requires two scalar reductions per global
sum. This is extremely likely to be bfb, but will be slightly more expensive than the lsum algorithms. See [41]

ddpdd is a parallel double-double algorithm using single scalar reduction. This is very likely to be bfb, but is not as
fast or accurate as the reprosum implementation. See [14]

4.9.3 Adding Timers

Timing any section of code, or multiple sections, consists of defining the timer and then wrapping the code with start
and stop commands for that timer. Printing of the timer output is done simultaneously for all timers. To add a timer, first
declare it (timer_[tmr]) at the top of ice_timers.F90 (we recommend doing this in both the mpi/ and serial/ directories),
then add a call to get_ice_timer in the subroutine init_ice_timers. In the module containing the code to be timed, call
ice_timer_start`(`timer_[tmr]) at the beginning of the section to be timed, and a similar call to ice_timer_stop at the
end. A use ice_timers statement may need to be added to the subroutine being modified. Be careful not to have one
command outside of a loop and the other command inside. Timers can be run for individual blocks, if desired, by
including the block ID in the timer calls.
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4.9.4 Adding History fields

To add a variable to be printed in the history output, search for ‘example’ in ice_history_shared.F90:

1. add a frequency flag for the new field

2. add the flag to the namelist (here and also in ice_in)

3. add an index number

and in ice_history.F90:

1. broadcast the flag

2. add a call to define_hist_field

3. add a call to accum_hist_field

The example is for a standard, two-dimensional (horizontal) field; for other array sizes, choose another history variable
with a similar shape as an example. Some history variables, especially tracers, are grouped in other files according to
their purpose (bgc, melt ponds, etc.).

To add an output frequency for an existing variable, see section History files.

4.9.5 Adding Tracers

We require that any changes made to the code be implemented in such a way that they can be “turned off” through
namelist flags. In most cases, code run with such changes should be bit-for-bit identical with the unmodified code.
Occasionally, non-bit-for-bit changes are necessary, e.g. associated with an unavoidable change in the order of opera-
tions. In these cases, changes should be made in stages to isolate the non-bit-for-bit changes, so that those that should
be bit-for-bit can be tested separately.

Tracers added to CICE will also require extensive modifications to the Icepack driver, including initialization, namelist
flags and restart capabilities. Modifications to the Icepack driver should reflect the modifications needed in CICE but
are not expected to match completely. We recommend that the logical namelist variable tr_[tracer] be used for all
calls involving the new tracer outside of ice_[tracer].F90, in case other users do not want to use that tracer.

A number of optional tracers are available in the code, including ice age, first-year ice area, melt pond area and volume,
brine height, aerosols, water isotopes, and level ice area and volume (from which ridged ice quantities are derived).
Salinity, enthalpies, age, aerosols, isotopes, level-ice volume, brine height and most melt pond quantities are volume-
weighted tracers, while first-year area, pond area, and level-ice area are area-weighted tracers. Biogeochemistry tracers
in the skeletal layer are area-weighted, and vertical biogeochemistry tracers are volume-weighted. In the absence of
sources and sinks, the total mass of a volume-weighted tracer such as aerosol (kg) is conserved under transport in
horizontal and thickness space (the mass in a given grid cell will change), whereas the aerosol concentration (kg/m)
is unchanged following the motion, and in particular, the concentration is unchanged when there is surface or basal
melting. The proper units for a volume-weighted mass tracer in the tracer array are kg/m.

In several places in the code, tracer computations must be performed on the conserved “tracer volume” rather than the
tracer itself; for example, the conserved quantity is ℎ𝑝𝑛𝑑𝑎𝑝𝑛𝑑𝑎𝑙𝑣𝑙𝑎𝑖, not ℎ𝑝𝑛𝑑. Conserved quantities are thus computed
according to the tracer dependencies (weights), which are tracked using the arrays trcr_depend (indicates dependency
on area, ice volume or snow volume), trcr_base (a dependency mask), n_trcr_strata (the number of underlying
tracer layers), and nt_strata (indices of underlying layers). Additional information about tracers can be found in the
Icepack documentation.

To add a tracer, follow these steps using one of the existing tracers as a pattern.

1) icepack_tracers.F90 and icepack_[tracer].F90: declare tracers, add flags and indices, and create
physics routines as described in the Icepack documentation

2) ice_arrays_column.F90: declare arrays
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3) ice_init_column.F90: initialize arrays

4) ice_init.F90: (some of this may be done in icepack_[tracer].F90 instead)

• declare tr_[tracer] and nt_[tracer] as needed

• add logical namelist variables tr_[tracer], restart_[tracer]

• initialize and broadcast namelist variables

• check for potential conflicts, aborting if any occur

• print namelist variables to diagnostic output file

• initialize tracer flags etc in icepack (call icepack_init_tracer_flags etc)

• increment number of tracers in use based on namelist input (ntrcr)

• define tracer dependencies

5) CICE_InitMod.F90: initialize tracer (includes reading restart file)

6) CICE_RunMod.F90, ice_step_mod.F90 (and elsewhere as needed):

• call routine to write tracer restart data

• call Icepack or other routines to update tracer value (often called from ice_step_mod.F90)

7) ice_restart.F90: define restart variables (for binary, netCDF and PIO)

8) ice_restart_column.F90: create routines to read, write tracer restart data

9) ice_fileunits.F90: add new dump and restart file units

10) ice_history_[tracer].F90: add history variables (Section Adding History fields)

11) ice_in: add namelist variables to tracer_nml and icefields_nml. Best practice is to set the namelist
values so that the new capability is turned off, and create an option file with your preferred configu-
ration in configuration/scripts/options.

12) If strict conservation is necessary, add diagnostics as noted for topo ponds in the Icepack documen-
tation.

13) Update documentation, including cice_index.rst and ug_case_settings.rst

4.9. Other things 137
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CHAPTER

FIVE

INDEX OF PRIMARY VARIABLES AND PARAMETERS

This index defines many (but not all) of the symbols used frequently in the CICE model code. All quantities in the code
are expressed in MKS units (temperatures may take either Celsius or Kelvin units). Deprecated parameters are listed
at the end.

Namelist variables are partly included here, but they are fully documented in section Tables of Namelist Options.

Table 1: Alphabetical Index

A
a11,a12 structure tensor components
a2D history field accumulations, 2d
a3Dz history field accumulations, 3D vertical
a3Db history field accumulations, 3D bio grid
a3Dc history field accumulations, 3D categories
a3Df history field accumulations, 3D fsd
a4Di history field accumulations, 4D categories, vertical ice
a4Db history field accumulations, 4D categories, vertical bio

grid
a4Ds history field accumulations, 4D categories, vertical

snow
a4Df history field accumulations, 4D categories, fsd
a_min minimum area concentration for computing velocity 0.001
a_rapid_mode brine channel diameter
add_mpi_barriers turns on MPI barriers for communication throttling
advection type of advection algorithm used (‘remap’ or ‘upwind’) remap
afsd(n) floe size distribution (in category n)
ahmax thickness above which ice albedo is constant 0.3m
aice_extmin minimum value for ice extent diagnostic 0.15
aice_init concentration of ice at beginning of timestep
aice0 fractional open water area
aice(n) total concentration of ice in grid cell (in category n)
albedo_type type of albedo parameterization (‘ccsm3’ or ‘constant’)
albcnt counter for averaging albedo
albice bare ice albedo
albicei near infrared ice albedo for thicker ice
albicev visible ice albedo for thicker ice
albocn ocean albedo 0.06
albpnd melt pond albedo
albsno snow albedo

continues on next page
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Table 1 – continued from previous page

albsnowi near infrared, cold snow albedo
albsnowv visible, cold snow albedo
algalN algal nitrogen concentration mmol/m3

alv(n)dr(f) albedo: visible (near IR), direct (diffuse)
alv(n)dr(f)_ai grid-box-mean value of alv(n)dr(f)
amm ammonia/um concentration mmol/m3

ANGLE for conversions between the POP grid and latitude-
longitude grids

radians

ANGLET ANGLE converted to T-cells radians
aparticn participation function
apeff_ai grid-cell-mean effective pond fraction
apondn area concentration of melt ponds
arlx1i relaxation constant for dynamics (stress)
araftn area fraction of rafted ice
aredistrn redistribution function: fraction of new ridge area
ardgn fractional area of ridged ice
aspect_rapid_mode brine convection aspect ratio 1
astar e-folding scale for participation function 0.05
atmiter_conv convergence criteria for ustar 0.00
atm_data_dir directory for atmospheric forcing data
atm_data_format format of atmospheric forcing files
atm_data_type type of atmospheric forcing
atmbndy atmo boundary layer parameterization (‘similarity’,

‘constant’, or ‘mixed’)
avail_hist_fields type for history field data
awtidf weighting factor for near-ir, diffuse albedo 0.36218
awtidr weighting factor for near-ir, direct albedo 0.00182
awtvdf weighting factor for visible, diffuse albedo 0.63282
awtvdr weighting factor for visible, direct albedo 0.00318
B
bfbflag for bit-for-bit reproducible diagnostics, and repro-

ducible outputs when using the VP solver
bgc_data_dir data directory for bgc
bgc_data_type source of silicate, nitrate data
bgc_flux_type ice–ocean flux velocity
bgc_tracer_type tracer_type for bgc tracers
bgrid nondimensional vertical grid points for bio grid
bignum a large number 1030

block data type for blocks
block_id global block number
block_size_x(y) number of cells along x(y) direction of block
blockGlobalID global block IDs
blockLocalID local block IDs
blockLocation processor location of block
blocks_ice local block IDs
bphi porosity of ice layers on bio grid
brlx relaxation constant for dynamics (momentum)
bTiz temperature of ice layers on bio grid
C

continues on next page
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c<n> real(𝑛)
rotate_wind if true, rotate wind/stress components to computational

grid
T

calc_dragio if true, calculate dragio from iceruf_ocn and
thickness_ocn_layer1

F

calc_strair if true, calculate wind stress T
calc_Tsfc if true, calculate surface temperature T
capping parameter associated with capping method of viscosi-

ties
1.0

capping_method namelist to specify capping method hibler
Cdn_atm atmospheric drag coefficient
Cdn_ocn ocean drag coefficient
Cf ratio of ridging work to PE change in ridging

17.

cgrid vertical grid points for ice grid (compare bgrid)
char_len length of character variable strings 80
char_len_long length of longer character variable strings 256
check_step time step on which to begin writing debugging data
check_umax if true, check for ice speed > umax_stab
cldf cloud fraction
cm_to_m cm to meters conversion 0.01
coldice value for constant albedo parameterization 0.70
coldsnow value for constant albedo parameterization 0.81
conduct conductivity parameterization
congel basal ice growth m
conserv_check if true, check conservation
cosw cosine of the turning angle in water

1.

coszen cosine of the zenith angle
Cp proportionality constant for potential energy kg/m2/s2
cpl_frazil ∙ type of frazil ice coupling
cp_air specific heat of air 1005.0 J/kg/K
cp_ice specific heat of fresh ice

2106. J/kg/K

cp_ocn specific heat of sea water
4218. J/kg/K

cp_wv specific heat of water vapor 1.81x103 J/kg/K
cp063 diffuse fresnel reflectivity (above) 0.063
cp455 diffuse fresnel reflectivity (below) 0.455
Cs fraction of shear energy contributing to ridging 0.25
Cstar constant in Hibler ice strength formula

20.

cxm combination of HTN values
cxp combination of HTN values
cym combination of HTE values

continues on next page
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cyp combination of HTE values
D
d_afsd_[proc] change in FSD due to processes
daice_da data assimilation concentration increment rate
daidtd ice area tendency due to dynamics/transport 1/s
daidtt ice area tendency due to thermodynamics 1/s
dalb_mlt [see icepack_shortwave.F90] -0.075
dalb_mlti [see icepack_shortwave.F90] -0.100
dalb_mltv [see icepack_shortwave.F90] -0.150
darcy_V Darcy velocity used for brine height tracer
dardg1(n)dt rate of fractional area loss by ridging ice (category n) 1/s
dardg2(n)dt rate of fractional area gain by new ridges (category n) 1/s
daymo number of days in one month
daycal day number at end of month
days_per_year number of days in one year 365
day_init the initial day of the month
dbl_kind definition of double precision selected_real_kind(13)
debug_blocks write extra diagnostics for blocks and decomposition .false.
debug_forcing write extra diagnostics for forcing inputs .false.
debug_model Logical that controls extended model point debugging.
debug_model_i Local i gridpoint that defines debug_model point out-

put.
debug_model_iblk Local iblk value that defines debug_model point output.
debug_model_j Local j gridpoint that defines debug_model point out-

put.
debug_model_task Local mpi task value that defines debug_model point

output.
debug_model_step Initial timestep for output from the debug_model flag.
Delta function of strain rates (see Section Dynamics) 1/s
deltaminEVP minimum value of Delta for EVP (see Section Dynam-

ics)
1/s

deltaminVP minimum value of Delta for VP (see Section Dynamics) 1/s
default_season Season from which initial values of forcing are set. winter
denom1 combination of constants for stress equation
depressT ratio of freezing temperature to salinity of brine 0.054 deg/ppt
dhbr_bt change in brine height at the bottom of the column
dhbr_top change in brine height at the top of the column
dhsn depth difference for snow on sea ice and pond ice
diag_file diagnostic output file (alternative to standard out)
diag_type where diagnostic output is written stdout
diagfreq how often diagnostic output is written (10 = once per

10 dt)
distrb distribution data type
distrb_info block distribution information
distribution_type method used to distribute blocks on processors
distribution_weight weighting method used to compute work per block
divu strain rate I component, velocity divergence 1/s
divu_adv divergence associated with advection 1/s
DminTarea deltamin * tarea m2/s

continues on next page
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dms dimethyl sulfide concentration mmol/m3

dmsp dimethyl sulfoniopropionate concentration mmol/m3

dpscale time scale for flushing in permeable ice 1× 10−3

drhosdwind wind compaction factor for snow 27.3 kg s/m4

dragio drag coefficient for water on ice 0.00536
dSdt_slow_mode drainage strength parameter
dsnow change in snow thickness m
dt thermodynamics time step

3600. s

dt_dyn dynamics/ridging/transport time step
dT_mlt ∆ temperature per ∆ snow grain radius

1. deg

dte subcycling time step for EVP dynamics (∆𝑡𝑒) s
dte2T dte / 2(damping time scale)
dtei 1/dte, where dte is the EVP subcycling time step 1/s
dump_file output file for restart dump
dumpfreq dump frequency for restarts, y, m, d, h or 1
dumpfreq_base reference date for restart output, zero or init
dumpfreq_n restart output frequency
dump_last if true, write restart on last time step of simulation
dwavefreq widths of wave frequency bins 1/s
dxE width of E cell (∆𝑥) through the middle m
dxN width of N cell (∆𝑥) through the middle m
dxT width of T cell (∆𝑥) through the middle m
dxU width of U cell (∆𝑥) through the middle m
dxhy combination of HTE values
dyE height of E cell (∆𝑦) through the middle m
dyN height of N cell (∆𝑦) through the middle m
dyT height of T cell (∆𝑦) through the middle m
dyU height of U cell (∆𝑦) through the middle m
dyhx combination of HTN values
dvidtd ice volume tendency due to dynamics/transport m/s
dvidtt ice volume tendency due to thermodynamics m/s
dvirdg(n)dt ice volume ridging rate (category n) m/s
E
e11, e12, e22 strain rate tensor components
earea area of E-cell m2

ecci yield curve minor/major axis ratio, squared 1/4
eice(n) energy of melting of ice per unit area (in category n) J/m2

emask land/boundary mask, T east edge (E-cell)
emissivity emissivity of snow and ice 0.985
eps13 a small number 10−13

eps16 a small number 10−16

esno(n) energy of melting of snow per unit area (in category n) J/m2

etax2 2 x eta (shear viscosity) kg/s
evap evaporative water flux kg/m2/s
ew_boundary_type type of east-west boundary condition

continues on next page
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elasticDamp coefficient for calculating the parameter E, 0< elastic-
Damp <1

0.36

e_yieldcurve yield curve minor/major axis ratio 2
e_plasticpot plastic potential minor/major axis ratio 2
F
faero_atm aerosol deposition rate kg/m2/s
faero_ocn aerosol flux to the ocean kg/m2/s
fbot_xfer_type type of heat transfer coefficient under ice
fcondtop(n)(_f) conductive heat flux W/m2

fcor_blk Coriolis parameter 1/s
ferrmax max allowed energy flux error (thermodynamics) 1x 10−3 W/m2

ffracn fraction of fsurfn used to melt pond ice
fhocn net heat flux to ocean W/m2

fhocn_ai grid-box-mean net heat flux to ocean (fhocn) W/m2

field_loc_center field centered on grid cell 1
field_loc_Eface field centered on east face 4
field_loc_NEcorner field on northeast corner 2
field_loc_Nface field centered on north face 3
field_loc_noupdate ignore location of field -1
field_loc_unknown unknown location of field 0
field_loc_Wface field centered on west face 5
field_type_angle angle field type 3
field_type_noupdate ignore field type -1
field_type_scalar scalar field type 1
field_type_unknown unknown field type 0
field_type_vector vector field type 2
first_ice flag for initial ice formation
flat latent heat flux W/m2

floediam effective floe diameter for lateral melt
300. m

floeshape floe shape constant for lateral melt 0.66
floe_rad_l lower bounds for FSD size bins (radius) m
floe_rad_c centers of FSD size bins (radius) m
floe_binwidth width of FSD size bins (radius) m
flux_bio all biogeochemistry fluxes passed to ocean
flux_bio_ai all biogeochemistry fluxes passed to ocean, grid cell

mean
flw incoming longwave radiation W/m2

flwout outgoing longwave radiation W/m2

fmU Coriolis parameter * mass in U cell kg/s
formdrag calculate form drag
fpond fresh water flux to ponds kg/m2/s
fr_resp bgc respiration fraction 0.05
frain rainfall rate kg/m2/s
frazil frazil ice growth m
fresh fresh water flux to ocean kg/m2/s
fresh_ai grid-box-mean fresh water flux (fresh) kg/m2/s
frz_onset day of year that freezing begins

continues on next page
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frzmlt freezing/melting potential W/m2

frzmlt_init freezing/melting potential at beginning of time step W/m2

frzmlt_max maximum magnitude of freezing/melting potential
1000. W/m2

frzpnd Stefan refreezing of melt ponds ‘hlid’
fsalt net salt flux to ocean kg/m2/s
fsalt_ai grid-box-mean salt flux to ocean (fsalt) kg/m2/s
fsens sensible heat flux W/m2

fsnow snowfall rate kg/m2/s
fsnowrdg snow fraction that survives in ridging 0.5
fsurf(n)(_f) net surface heat flux excluding fcondtop W/m2

fsloss rate of snow loss to leads kg/m2 s
fsw incoming shortwave radiation W/m2

fswabs total absorbed shortwave radiation W/m2

fswfac scaling factor to adjust ice quantities for updated data
fswint shortwave absorbed in ice interior W/m2

fswpenl shortwave penetrating through ice layers W/m2

fswthru shortwave penetrating to ocean W/m2

fswthru_vdr visible direct shortwave penetrating to ocean W/m2

fswthru_vdf visible diffuse shortwave penetrating to ocean W/m2

fswthru_idr near IR direct shortwave penetrating to ocean W/m2

fswthru_idf near IR diffuse shortwave penetrating to ocean W/m2

fswthru_ai grid-box-mean shortwave penetrating to ocean
(fswthru)

W/m2

fyear current forcing data year
fyear_final last forcing data year
fyear_init initial forcing data year
G
gravit gravitational acceleration 9.80616 m/s2
grid_atm grid structure for atm forcing/coupling fields, ‘A’, ‘B’,

‘C’, etc
grid_atm_dynu grid for atm dynamic-u forcing/coupling fields, ‘T’, ‘U’,

‘N’, ‘E’
grid_atm_dynv grid for atm dynamic-v forcing/coupling fields, ‘T’, ‘U’,

‘N’, ‘E’
grid_atm_thrm grid for atm thermodynamic forcing/coupling fields,

‘T’, ‘U’, ‘N’, ‘E’
grid_file input file for grid info
grid_format format of grid files
grid_ice structure of the model ice grid, ‘B’, ‘C’, etc
grid_ice_dynu grid for ice dynamic-u model fields, ‘T’, ‘U’, ‘N’, ‘E’
grid_ice_dynv grid for ice dynamic-v model fields, ‘T’, ‘U’, ‘N’, ‘E’
grid_ice_thrm grid for ice thermodynamic model fields, ‘T’, ‘U’, ‘N’,

‘E’
grid_ocn grid structure for ocn forcing/coupling fields, ‘A’, ‘B’,

‘C’, etc
grid_ocn_dynu grid for ocn dynamic-u forcing/coupling fields, ‘T’, ‘U’,

‘N’, ‘E’
continues on next page
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grid_ocn_dynv grid for ocn dynamic-v forcing/coupling fields, ‘T’, ‘U’,
‘N’, ‘E’

grid_ocn_thrm grid for ocn thermodynamic forcing/coupling fields,
‘T’, ‘U’, ‘N’, ‘E’

grid_type ‘rectangular’, ‘displaced_pole’, ‘column’ or ‘regional’
gridcpl_file input file for coupling grid info
grow_net specific biogeochemistry growth rate per grid cell s −1

Gstar piecewise-linear ridging participation function param-
eter

0.15

H
halo_info information for updating ghost cells
hfrazilmin minimum thickness of new frazil ice 0.05 m
hi_min minimum ice thickness for thinnest ice category 0.01 m
hi_ssl ice surface scattering layer thickness 0.05 m
hicen ice thickness in category n m
highfreq high-frequency atmo coupling F
hin_old ice thickness prior to growth/melt m
hin_max category thickness limits m
hist_avg if true, write averaged data instead of snapshots T,T,T,T,T
histfreq units of history output frequency: y, m, w, d or 1 m,x,x,x,x
histfreq_base reference date for history output, zero or init
histfreq_n integer output frequency in histfreq units 1,1,1,1,1
history_chunksize history chunksizes in x,y directions (_format=’hdf5’

only)
0,0

history_deflate compression level for history (_format=’hdf5’ only) 0
history_dir path to history output files
history_file history output file prefix
history_format history file format
history_iotasks history output total number of tasks used
history_precision history output precision: 4 or 8 byte 4
history_rearranger history output io rearranger method
history_root history output io root task id
history_stride history output io task stride
hist_time_axis history file time axis interval location: begin, middle,

end
end

hist_suffix suffix to history_file in filename. x means no suffix x,x,x,x,x
hm land/boundary mask, thickness (T-cell)
hmix ocean mixed layer depth

20. m

hour hour of the year
hp0 pond depth at which shortwave transition to bare ice

occurs
0.2 m

hp1 critical ice lid thickness for topo ponds (dEdd) 0.01 m
hpmin minimum melt pond depth (shortwave) 0.005 m
hpondn melt pond depth m
hs_min minimum thickness for which 𝑇𝑠 is computed 1.×10−4 m
hs0 snow depth at which transition to ice occurs (dEdd) m
hs1 snow depth of transition to pond ice 0.03 m
hs_ssl snow surface scattering layer thickness 0.04 m

continues on next page
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Hstar determines mean thickness of ridged ice
25. m

HTE length of eastern edge (∆𝑦) of T-cell m
HTN length of northern edge (∆𝑥) of T-cell m
HTS length of southern edge (∆𝑥) of T-cell m
HTW length of western edge of (∆𝑦) T-cell m
I
i(j)_glob global domain location for each grid cell
i0vis fraction of penetrating visible solar radiation 0.70
iblkp block on which to write debugging data
i(j)block Cartesian i,j position of block
ice_data_conc ice initialization concentration, used mainly for box

tests
ice_data_dist ice initialization distribution, used mainly for box tests
ice_data_type ice initialization mask, used mainly for box tests
ice_hist_field type for history variables
ice_ic choice of initial conditions (see Ice Initialization)
ice_stdout unit number for standard output
ice_stderr unit number for standard error output
ice_ref_salinity reference salinity for ice–ocean exchanges
icells number of grid cells with specified property (for vec-

torization)
iceruf ice surface roughness at atmosphere interface 5.×10−4 m
iceruf_ocn under-ice roughness (at ocean interface) 0.03 m
iceEmask dynamics ice extent mask (E-cell)
iceNmask dynamics ice extent mask (N-cell)
iceTmask dynamics ice extent mask (T-cell)
iceUmask dynamics ice extent mask (U-cell)
idate the date at the end of the current time step (yyyymmdd)
idate0 initial date
ierr general-use error flag
igrid interface points for vertical bio grid
i(j)hi last i(j) index of physical domain (local)
i(j)lo first i(j) index of physical domain (local)
incond_dir directory to write snapshot of initial condition
incond_file prefix for initial condition file name
int_kind definition of an integer selected_real_kind(6)
integral_order polynomial order of quadrature integrals in remapping 3
ip, jp local processor coordinates on which to write debug-

ging data
istep local step counter for time loop
istep0 number of steps taken in previous run 0
istep1 total number of steps at current time step
Iswabs shortwave radiation absorbed in ice layers W/m2

J
K
kalg absorption coefficient for algae

continues on next page
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kappav visible extinction coefficient in ice,
wavelength<700nm

1.4 m−1

kcatbound category boundary formula
kdyn type of dynamics (1 = EVP, 2 = EAP, 3 = VP, 0,-1 = off) 1
kg_to_g kg to g conversion factor

1000.

kice thermal conductivity of fresh ice ([4]) 2.03 W/m/deg
kitd type of itd conversions (0 = delta function, 1 = linear

remap)
1

kmt_file input file for land mask info
kmt_type file, default, channel, wall, or boxislands file
krdg_partic ridging participation function 1
krdg_redist ridging redistribution function 1
krgdn mean ridge thickness per thickness of ridging ice
ksno thermal conductivity of snow 0.30 W/m/deg
kstrength ice stength formulation (1= [52], 0 = [15]) 1
ktherm thermodynamic formulation (-1 = off, 1 = [4], 2 =

mushy)
L
l_brine flag for brine pocket effects
l_fixed_area flag for prescribing remapping fluxes
l_mpond_fresh if true, retain (topo) pond water until ponds drain
latpnt desired latitude of diagnostic points degrees N
latt(u)_bounds latitude of T(U) grid cell corners degrees N
lcdf64 if true, use 64-bit format
Lfresh latent heat of melting of fresh ice = Lsub - Lvap J/kg
lhcoef transfer coefficient for latent heat
lmask_n(s) northern (southern) hemisphere mask
local_id local address of block in current distribution
log_kind definition of a logical variable kind(.true.)
lonpnt desired longitude of diagnostic points degrees E
lont(u)_bounds longitude of T(U) grid cell corners degrees E
Lsub latent heat of sublimation for fresh water 2.835× 106 J/kg
ltripole_grid flag to signal use of tripole grid
Lvap latent heat of vaporization for fresh water 2.501× 106 J/kg
M
m_min minimum mass for computing velocity 0.01 kg/m2

m_to_cm meters to cm conversion
100.

m1 constant for lateral melt rate 1.6×10−6 m/s deg−𝑚2

m2 constant for lateral melt rate 1.36
m2_to_km2 m2 to km2 conversion 1×10−6

maskhalo_bound turns on bound_state halo masking
maskhalo_dyn turns on dynamics halo masking
maskhalo_remap turns on transport halo masking
master_task task ID for the controlling processor
max_blocks maximum number of blocks per processor

continues on next page
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max_ntrcr maximum number of tracers available 5
maxraft maximum thickness of ice that rafts

1. m

mday model day of the month
meltb basal ice melt m
meltl lateral ice melt m
melts snow melt m
meltsliq snow melt mass kg/m2

meltsliqn snow melt mass in category n kg/m2

meltt top ice melt m
min_salin threshold for brine pockets 0.1 ppt
mlt_onset day of year that surface melt begins
mmonth model month number
monthp previous month number
month_init the initial month
mps_to_cmpdy m per s to cm per day conversion 8.64×106
msec model seconds elasped into day
mtask local processor number that writes debugging data
mu_rdg e-folding scale of ridged ice
myear model year
myear_max maximum allowed model year
my_task task ID for the current processor
N
n_aero number of aerosol species
narea area of N-cell m2

natmiter number of atmo boundary layer iterations 5
nblocks number of blocks on current processor
nblocks_tot total number of blocks in decomposition
nblocks_x(y) total number of blocks in x(y) direction
nbtrcr number of biology tracers
ncat number of ice categories 5
ncat_hist number of categories written to history
ndte number of subcycles 120
ndtd number of dynamics/advection steps under thermo 1
new_day flag for beginning new day
new_hour flag for beginning new hour
new_month flag for beginning new month
new_year flag for beginning new year
nfreq number of wave frequency bins 25
nfsd number of floe size categories 12
nghost number of rows of ghost cells surrounding each subdo-

main
1

ngroups number of groups of flux triangles in remapping 5
nhlat northern latitude of artificial mask edge 30∘S
nilyr number of ice layers in each category 7
nit nitrate concentration mmol/m3

nlt_bgc_[chem] ocean sources and sinks for biogeochemistry
nmask land/boundary mask, T north edge (N-cell)
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nml_filename namelist file name
nprocs total number of processors
npt total run length values associate with npt_unit
npt_unit units of the run length, number set by npt
ns_boundary_type type of north-south boundary condition
nslyr number of snow layers in each category
nspint number of solar spectral intervals
nstreams number of history output streams (frequencies)
nt_<trcr> tracer index
ntrace number of fields being transported
ntrcr number of tracers
nu_diag unit number for diagnostics output file
nu_dump unit number for dump file for restarting
nu_dump_eap unit number for EAP dynamics dump file for restarting
nu_dump_[tracer] unit number for tracer dump file for restarting
nu_forcing unit number for forcing data file
nu_grid unit number for grid file
nu_hdr unit number for binary history header file
nu_history unit number for history file
nu_kmt unit number for land mask file
nu_nml unit number for namelist input file
nu_restart unit number for restart input file
nu_restart_eap unit number for EAP dynamics restart input file
nu_restart_[tracer] unit number for tracer restart input file
nu_rst_pointer unit number for pointer to latest restart file
num_avail_hist_fields_[shape]number of history fields of each array shape
nvar number of horizontal grid fields written to history
nvarz number of category, vertical grid fields written to his-

tory
nx(y)_block total number of gridpoints on block in x(y) direction
nx(y)_global number of physical gridpoints in x(y) direction, global

domain
O
ocean_bio concentrations of bgc constituents in the ocean
oceanmixed_file data file containing ocean forcing data
oceanmixed_ice if true, use internal ocean mixed layer
ocn_data_dir directory for ocean forcing data
ocn_data_format format of ocean forcing files
ocn_data_type source of surface temperature, salinity data
omega angular velocity of Earth 7.292×10−5 rad/s
opening rate of ice opening due to divergence and shear 1/s
P
p001 1/1000
p01 1/100
p025 1/40
p027 1/36
p05 1/20
p055 1/18
p1 1/10
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p111 1/9
p15 15/100
p166 1/6
p2 1/5
p222 2/9
p25 1/4
p333 1/3
p4 2/5
p5 1/2
p52083 25/48
p5625m -9/16
p6 3/5
p666 2/3
p75 3/4
phi_c_slow_mode critical liquid fraction
phi_i_mushy solid fraction at lower boundary
phi_sk skeletal layer porosity
phi_snow snow porosity for brine height tracer
pi 𝜋
pi2 2𝜋
pih 𝜋/2
piq 𝜋/4
pi(j,b,m)loc x (y, block, task) location of diagnostic points
plat grid latitude of diagnostic points
plon grid longitude of diagnostic points
pndaspect aspect ratio of pond changes (depth:area) 0.8
pointer_file input file for restarting
potT atmospheric potential temperature K
PP_net total primary productivity per grid cell mg C/m2/s
precip_units liquid precipitation data units
print_global if true, print global data F
print_points if true, print point data F
processor_shape descriptor for processor aspect ratio
Pstar ice strength parameter 2.75×104N/m2

puny a small positive number 1×10−11

Q
Qa specific humidity at 10 m kg/kg
qdp deep ocean heat flux W/m2

qqqice for saturated specific humidity over ice 1.16378×107kg/m3

qqqocn for saturated specific humidity over ocean 6.275724×106kg/m3

Qref 2m atmospheric reference specific humidity kg/kg
R
R_C2N algal carbon to nitrate factor

7. mole/mole

R_gC2molC mg/mmol carbon 12.01 mg/mole
R_chl2N algal chlorophyll to nitrate factor

3. mg/mmol

continues on next page

151



CICE Documentation

Table 1 – continued from previous page

R_ice parameter for Delta-Eddington ice albedo
R_pnd parameter for Delta-Eddington pond albedo
R_S2N algal silicate to nitrate factor 0.03 mole/mole
R_snw parameter for Delta-Eddington snow albedo
r16_kind definition of quad precision selected_real_kind(26)
Rac_rapid_mode critical Rayleigh number 10
rad_to_deg degree-radian conversion 180/𝜋
radius earth radius 6.37×106 m
rdg_conv convergence for ridging 1/s
rdg_shear shear for ridging 1/s
real_kind definition of single precision real selected_real_kind(6)
refindx refractive index of sea ice 1.310
rep_prs replacement pressure N/m
revp real(revised_evp)
restart if true, initialize ice state from file T
restart_age if true, read age restart file
restart_bgc if true, read bgc restart file
restart_chunksize restart chunksizes in x,y directions (_format=’hdf5’

only)
0,0

restart_deflate compression level for restart (_format=’hdf5’ only) 0
restart_dir path to restart/dump files
restart_file restart file prefix
restart_format restart file format
restart_iotasks restart output total number of tasks used
restart_rearranger restart output io rearranger method
restart_root restart output io root task id
restart_stride restart output io task stride
restart_[tracer] if true, read tracer restart file
restart_ext if true, read/write halo cells in restart file
restart_coszen if true, read/write coszen in restart file
restore_bgc if true, restore nitrate/silicate to data
restore_ice if true, restore ice state along lateral boundaries
restore_ocn restore sst to data
revised_evp if true, use revised EVP parameters and approach
rfracmin minimum melt water fraction added to ponds 0.15
rfracmax maximum melt water fraction added to ponds 1.0
rhoa air density kg/m3

rhofresh density of fresh water 1000.0 kg/m3

rhoi density of ice
917. kg/m3

rhos density of snow
330. kg/m3

rhos_cmp density of snow due to wind compaction kg/m3

rhos_cnt density of ice and liquid content of snow kg/m3

rhosi average sea ice density (for hbrine tracer)
940. kg/m3
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rhosmax maximum snow density 450 kg/m3

rhosmin minimum snow density 100 kg/m3

rhosnew new snow density 100 kg/m3

rhow density of seawater
1026. kg/m3

rnilyr real(nlyr)
rside fraction of ice that melts laterally
rsnw snow grain radius 10−6 m
rsnw_fall freshly fallen snow grain radius

100. × 10−6 m

rsnw_mlt melting snow grain radius
1000. × 10−6 m

rsnw_nonmelt nonmelting snow grain radius
500. × 10−6 m

rsnw_sig standard deviation of snow grain radius
250. × 10−6 m

rsnw_tmax maximum snow radius
1500. × 10−6 m

runid identifier for run
runtype type of initialization used
S
s11, s12, s22 stress tensor components
saltmax max salinity, at ice base ([4]) 3.2 ppt
scale_factor scaling factor for shortwave radiation components
seabed_stress if true, calculate seabed stress F
seabed_stress_method method for calculating seabed stress (‘LKD’ or ‘proba-

bilistic’)
LKD

secday number of seconds in a day
86400.

sec_init the initial second
shcoef transfer coefficient for sensible heat
shear strain rate II component 1/s
shlat southern latitude of artificial mask edge 30∘N
shortwave flag for shortwave parameterization (‘ccsm3’ or ‘dEdd’

or ‘dEdd_snicar_ad’)
sig1(2) principal stress components 𝜎𝑛,1, 𝜎𝑛,2 (diagnostic)
sigP internal ice pressure N/m
sil silicate concentration mmol/m3

sinw sine of the turning angle in water
0.

Sinz ice salinity profile ppt
sk_l skeletal layer thickness 0.03 m
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snoice snow–ice formation m
snowpatch length scale for parameterizing nonuniform snow cov-

erage
0.02 m

skl_bgc biogeochemistry on/off
smassice mass of ice in snow from smice tracer kg/m2

smassliq mass of liquid in snow from smliq tracer kg/m2

snowage_drdt0 initial rate of change of effective snow radius
snowage_rhos snow aging parameter (density)
snowage_kappa snow aging best-fit parameter
snowage_tau snow aging best-fit parameter
snowage_T snow aging parameter (temperature)
snowage_Tgrd snow aging parameter (temperature gradient)
snw_aging_table snow aging lookup table
snw_filename snowtable filename
snw_tau_fname snowtable file tau fieldname
snw_kappa_fname snowtable file kappa fieldname
snw_drdt0_fname snowtable file drdt0 fieldname
snw_rhos_fname snowtable file rhos fieldname
snw_Tgrd_fname snowtable file Tgrd fieldname
snw_T_fname snowtable file T fieldname
snwgrain activate snow metamorphosis
snwlvlfac fractional increase in snow depth for redistribution on

ridges
0.3

snwredist type of snow redistribution
spval special value (single precision) 1030

spval_dbl special value (double precision) 1030

ss_tltx(y) sea surface in the x(y) direction m/m
sss sea surface salinity ppt
sst sea surface temperature C
Sswabs shortwave radiation absorbed in snow layers W/m2

stefan-boltzmann Stefan-Boltzmann constant 5.67×10−8 W/m2K4

stop_now if 1, end program execution
strairx(y)U stress on ice by air in the x(y)-direction (centered in U

cell)
N/m2

strairx(y)T stress on ice by air, x(y)-direction (centered in T cell) N/m2

strax(y) wind stress components from data N/m2

strength ice strength N/m
stress12 internal ice stress, 𝜎12 N/m
stressm internal ice stress, 𝜎11 − 𝜎22 (𝜎2 in the doc) N/m
stressp internal ice stress, 𝜎11 + 𝜎22 (𝜎1 in the doc) N/m
strintx(y)U divergence of internal ice stress, x(y) N/m2

strocnx(y)U ice–ocean stress in the x(y)-direction (U-cell) N/m2

strocnx(y)T ice–ocean stress, x(y)-dir. (T-cell) N/m2

strtltx(y)U surface stress due to sea surface slope N/m2

swv(n)dr(f) incoming shortwave radiation, visible (near IR), direct
(diffuse)

W/m2

T
Tair air temperature at 10 m K
tarea area of T-cell m2
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tarean area of northern hemisphere T-cells m2

tarear 1/tarea 1/m2

tareas area of southern hemisphere T-cells m2

tcstr string identifying T grid for history variables
Tf freezing temperature C
Tffresh freezing temp of fresh ice 273.15 K
tfrz_option form of ocean freezing temperature
saltflux_option form of coupled salt flux
thinS minimum ice thickness for brine tracer
timer_stats logical to turn on extra timer statistics .false.
timesecs total elapsed time in seconds s
time_beg beginning time for history averages
time_bounds beginning and ending time for history averages
time_end ending time for history averages
time_forc time of last forcing update s
Timelt melting temperature of ice top surface

0. C

Tinz Internal ice temperature C
TLAT latitude of cell center radians
Tliquidus_max maximum liquidus temperature of mush

0. C

TLON longitude of cell center radians
tmask land/boundary mask, thickness (T-cell)
tmass total mass of ice and snow kg/m2

Tmin minimum allowed internal temperature -100. C
Tmltz melting temperature profile of ice
Tocnfrz temperature of constant freezing point parameterization -1.8 C
tr_aero if true, use aerosol tracers
tr_bgc_[tracer] if true, use biogeochemistry tracers
tr_brine if true, use brine height tracer
tr_FY if true, use first-year area tracer
tr_iage if true, use ice age tracer
tr_lvl if true, use level ice area and volume tracers
tr_pond_lvl if true, use level-ice melt pond scheme
tr_pond_topo if true, use topo melt pond scheme
trcr ice tracers
trcr_depend tracer dependency on basic state variables
Tref 2m atmospheric reference temperature K
trestore restoring time scale days
tripole if true, block lies along tripole boundary
tripoleT if true, tripole boundary is T-fold; if false, U-fold
Tsf_errmax max allowed 𝑇s𝑓 error (thermodynamics) 5.×10−4deg
Tsfc(n) temperature of ice/snow top surface (in category n) C
Tsnz Internal snow temperature C
Tsmelt melting temperature of snow top surface

0. C
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TTTice for saturated specific humidity over ice 5897.8 K
TTTocn for saturated specific humidity over ocean 5107.4 K
U
uarea area of U-cell m 2

uarear 1/uarea m −2

uatm wind velocity in the x direction m/s
ULAT latitude of U-cell centers radians
ULON longitude of U-cell centers radians
umask land/boundary mask, velocity corner (U-cell)
umax_stab ice speed threshold (diagnostics)

1. m/s

umin min wind speed for turbulent fluxes
1. m/s

uocn ocean current in the x-direction m/s
update_ocn_f if true, include frazil ice fluxes in ocean flux fields
use_leap_years if true, include leap days
use_restart_time if true, use date from restart file
use_smliq_pnd use liquid in snow for ponds
ustar_min minimum friction velocity under ice
ucstr string identifying U grid for history variables
uvel x-component of ice velocity m/s
uvel_init x-component of ice velocity at beginning of time step m/s
uvm land/boundary mask, velocity (U-cell)
V
vatm wind velocity in the y direction m/s
vice(n) volume per unit area of ice (in category n) m
vicen_init ice volume at beginning of timestep m
viscosity_dyn dynamic viscosity of brine 1.79× 10−3 kg/m/s
visc_method method for calculating viscosities (‘avg_strength’ or

‘avg_zeta’)
avg_zeta

vocn ocean current in the y-direction m/s
vonkar von Karman constant 0.4
vort vorticity 1/s
vraftn volume of rafted ice m
vrdgn volume of ridged ice m
vredistrn redistribution function: fraction of new ridge volume
vsno(n) volume per unit area of snow (in category n) m
vvel y-component of ice velocity m/s
vvel_init y-component of ice velocity at beginning of time step m/s
W
warmice value for constant albedo parameterization 0.68
warmsno value for constant albedo parameterization 0.77
wave_sig_ht significant height of waves m
wave_spectrum wave spectrum m2/s
wavefreq wave frequencies 1/s
wind wind speed m/s
windmin minimum wind speed to compact snow 10 m/s
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write_history if true, write history now
write_ic if true, write initial conditions
write_restart if 1, write restart now
X
Y
ycycle number of years in forcing data cycle
yday day of the year, computed in the model calendar
yield_curve type of yield curve ellipse
yieldstress11(12, 22) yield stress tensor components
year_init the initial year
Z
zetax2 2 x zeta (bulk viscosity) kg/s
zlvl atmospheric level height (momentum) m
zlvs atmospheric level height (scalars) m
zref reference height for stability

10. m

zTrf reference height for 𝑇𝑟𝑒𝑓 , 𝑄𝑟𝑒𝑓 , 𝑈𝑟𝑒𝑓

2. m

zvir gas constant (water vapor)/gas constant (air) - 1 0.606
Deprecated options and
parameters
heat_capacity if true, use salinity-dependent thermodynamics T
kseaice thermal conductivity of ice for zero-layer thermody-

namics
2.0 W/m/deg

ktherm thermodynamic formulation (0 = zero-layer, 1 = [4], 2
= mushy)

tr_pond_cesm if true, use CESM melt pond scheme
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