
CFFI Documentation
Release 1.9.1

Armin Rigo, Maciej Fijalkowski

January 23, 2017

Contents

1 What’s New 3
1.1 v1.9 . 3
1.2 v1.8.3 . 3
1.3 v1.8.2 . 3
1.4 v1.8.1 . 4
1.5 v1.8 . 4
1.6 v1.7 . 4
1.7 v1.6 . 4
1.8 v1.5.2 . 5
1.9 v1.5.1 . 5
1.10 v1.5.0 . 5
1.11 v1.4.2 . 5
1.12 v1.4.1 . 5
1.13 v1.4.0 . 5
1.14 v1.3.1 . 6
1.15 v1.3.0 . 6
1.16 v1.2.1 . 6
1.17 v1.2.0 . 6
1.18 v1.1.2 . 7
1.19 v1.1.1 . 7
1.20 v1.1.0 . 7
1.21 v1.0.3 . 8
1.22 v1.0.2 . 8
1.23 v1.0.1 . 8
1.24 v1.0.0 . 8

2 Installation and Status 9
2.1 Platform-specific instructions . 10

3 Overview 13
3.1 Simple example (ABI level, in-line) . 13
3.2 Real example (API level, out-of-line) . 14
3.3 Struct/Array Example (minimal, in-line) . 15
3.4 Purely for performance (API level, out-of-line) . 15
3.5 Out-of-line, ABI level . 16
3.6 Embedding . 17
3.7 What actually happened? . 18
3.8 ABI versus API . 18

i

4 Using the ffi/lib objects 21
4.1 Working with pointers, structures and arrays . 21
4.2 Python 3 support . 24
4.3 An example of calling a main-like thing . 25
4.4 Function calls . 25
4.5 Variadic function calls . 26
4.6 Extern “Python” (new-style callbacks) . 27
4.7 Callbacks (old style) . 31
4.8 Windows: calling conventions . 32
4.9 FFI Interface . 33

5 CFFI Reference 35
5.1 FFI Interface . 35
5.2 Conversions . 42

6 Preparing and Distributing modules 45
6.1 ffi/ffibuilder.cdef(): declaring types and functions . 47
6.2 ffi.dlopen(): loading libraries in ABI mode . 48
6.3 ffibuilder.set_source(): preparing out-of-line modules . 49
6.4 Letting the C compiler fill the gaps . 50
6.5 ffibuilder.compile() etc.: compiling out-of-line modules . 51
6.6 ffi/ffibuilder.include(): combining multiple CFFI interfaces . 52
6.7 ffi.cdef() limitations . 52
6.8 Debugging dlopen’ed C libraries . 53
6.9 ffi.verify(): in-line API-mode . 53
6.10 Upgrading from CFFI 0.9 to CFFI 1.0 . 54

7 Using CFFI for embedding 57
7.1 Usage . 57
7.2 More reading . 59
7.3 Troubleshooting . 60
7.4 Issues about using the .so . 60
7.5 Using multiple CFFI-made DLLs . 61
7.6 Multithreading . 61
7.7 Testing . 62
7.8 Embedding and Extending . 62

8 Goals 65

9 Comments and bugs 67

ii

CFFI Documentation, Release 1.9.1

C Foreign Function Interface for Python. Interact with almost any C code from Python, based on C-like declarations
that you can often copy-paste from header files or documentation.

• Goals

– Comments and bugs

Contents 1

CFFI Documentation, Release 1.9.1

2 Contents

CHAPTER 1

What’s New

1.1 v1.9

• Structs with variable-sized arrays as their last field: now we track the length of the array after ffi.new()
is called, just like we always tracked the length of ffi.new("int[]", 42). This lets us detect out-of-
range accesses to array items. This also lets us display a better repr(), and have the total size returned by
ffi.sizeof() and ffi.buffer(). Previously both functions would return a result based on the size of
the declared structure type, with an assumed empty array. (Thanks andrew for starting this refactoring.)

• Add support in cdef()/set_source() for unspecified-length arrays in typedefs: typedef int
foo_t[...];. It was already supported for global variables or structure fields.

• I turned in v1.8 a warning from cffi/model.py into an error: ’enum xxx’ has no values
explicitly defined: refusing to guess which integer type it is meant to
be (unsigned/signed, int/long). Now I’m turning it back to a warning again; it seems that
guessing that the enum has size int is a 99%-safe bet. (But not 100%, so it stays as a warning.)

• Fix leaks in the code handling FILE * arguments. In CPython 3 there is a remaining issue that is hard to fix:
if you pass a Python file object to a FILE * argument, then os.dup() is used and the new file descriptor is
only closed when the GC reclaims the Python file object—and not at the earlier time when you call close(),
which only closes the original file descriptor. If this is an issue, you should avoid this automatic convertion of
Python file objects: instead, explicitly manipulate file descriptors and call fdopen() from C (...via cffi).

1.2 v1.8.3

• When passing a void * argument to a function with a different pointer type, or vice-versa, the cast occurs
automatically, like in C. The same occurs for initialization with ffi.new() and a few other places. However,
I thought that char * had the same property—but I was mistaken. In C you get the usual warning if you try to
give a char * to a char ** argument, for example. Sorry about the confusion. This has been fixed in CFFI
by giving for now a warning, too. It will turn into an error in a future version.

1.3 v1.8.2

• Issue #283: fixed ffi.new() on structures/unions with nested anonymous structures/unions, when there is at
least one union in the mix. When initialized with a list or a dict, it should now behave more closely like the {
} syntax does in GCC.

3

CFFI Documentation, Release 1.9.1

1.4 v1.8.1

• CPython 3.x: experimental: the generated C extension modules now use the “limited API”, which means that,
as a compiled .so/.dll, it should work directly on any version of CPython >= 3.2. The name produced by distutils
is still version-specific. To get the version-independent name, you can rename it manually to NAME.abi3.so,
or use the very recent setuptools 26.

• Added ffi.compile(debug=...), similar to python setup.py build --debug but defaulting
to True if we are running a debugging version of Python itself.

1.5 v1.8

• Removed the restriction that ffi.from_buffer() cannot be used on byte strings. Now you can get a char
* out of a byte string, which is valid as long as the string object is kept alive. (But don’t use it to modify the
string object! If you need this, use bytearray or other official techniques.)

• PyPy 5.4 can now pass a byte string directly to a char * argument (in older versions, a copy would be made).
This used to be a CPython-only optimization.

1.6 v1.7

• ffi.gc(p, None) removes the destructor on an object previously created by another call to ffi.gc()

• bool(ffi.cast("primitive type", x)) now returns False if the value is zero (including -0.0),
and True otherwise. Previously this would only return False for cdata objects of a pointer type when the pointer
is NULL.

• bytearrays: ffi.from_buffer(bytearray-object) is now supported. (The reason it was not sup-
ported was that it was hard to do in PyPy, but it works since PyPy 5.3.) To call a C function with a char *
argument from a buffer object—now including bytearrays—you write lib.foo(ffi.from_buffer(x)).
Additionally, this is now supported: p[0:length] = bytearray-object. The problem with this was
that a iterating over bytearrays gives numbers instead of characters. (Now it is implemented with just a memcpy,
of course, not actually iterating over the characters.)

• C++: compiling the generated C code with C++ was supposed to work, but failed if you make use the bool
type (because that is rendered as the C _Bool type, which doesn’t exist in C++).

• help(lib) and help(lib.myfunc) now give useful information, as well as dir(p) where p is a struct
or pointer-to-struct.

1.7 v1.6

• ffi.list_types()

• ffi.unpack()

• extern “Python+C”

• in API mode, lib.foo.__doc__ contains the C signature now. On CPython you can say help(lib.foo),
but for some reason help(lib) (or help(lib.foo) on PyPy) is still useless; I haven’t yet figured out the
hacks needed to convince pydoc to show more. (You can use dir(lib) but it is not most helpful.)

• Yet another attempt at robustness of ffi.def_extern() against CPython’s interpreter shutdown logic.

4 Chapter 1. What’s New

CFFI Documentation, Release 1.9.1

1.8 v1.5.2

• Fix 1.5.1 for Python 2.6.

1.9 v1.5.1

• A few installation-time tweaks (thanks Stefano!)

• Issue #245: Win32: __stdcall was never generated for extern "Python" functions

• Issue #246: trying to be more robust against CPython’s fragile interpreter shutdown logic

1.10 v1.5.0

• Support for using CFFI for embedding.

1.11 v1.4.2

Nothing changed from v1.4.1.

1.12 v1.4.1

• Fix the compilation failure of cffi on CPython 3.5.0. (3.5.1 works; some detail changed that makes some
underscore-starting macros disappear from view of extension modules, and I worked around it, thinking it
changed in all 3.5 versions—but no: it was only in 3.5.1.)

1.13 v1.4.0

• A better way to do callbacks has been added (faster and more portable, and usually cleaner). It is a mechanism
for the out-of-line API mode that replaces the dynamic creation of callback objects (i.e. C functions that invoke
Python) with the static declaration in cdef() of which callbacks are needed. This is more C-like, in that you
have to structure your code around the idea that you get a fixed number of function pointers, instead of creating
them on-the-fly.

• ffi.compile() now takes an optional verbose argument. When True, distutils prints the calls to the
compiler.

• ffi.compile() used to fail if given sources with a path that includes "..". Fixed.

• ffi.init_once() added. See docs.

• dir(lib) now works on libs returned by ffi.dlopen() too.

• Cleaned up and modernized the content of the demo subdirectory in the sources (thanks matti!).

• ffi.new_handle() is now guaranteed to return unique void * values, even if called twice on the same
object. Previously, in that case, CPython would return two cdata objects with the same void * value. This
change is useful to add and remove handles from a global dict (or set) without worrying about duplicates. It
already used to work like that on PyPy. This change can break code that used to work on CPython by relying on

1.8. v1.5.2 5

CFFI Documentation, Release 1.9.1

the object to be kept alive by other means than keeping the result of ffi.new_handle() alive. (The corresponding
warning in the docs of ffi.new_handle() has been here since v0.8!)

1.14 v1.3.1

• The optional typedefs (bool, FILE and all Windows types) were not always available from out-of-line FFI
objects.

• Opaque enums are phased out from the cdefs: they now give a warning, instead of (possibly wrongly) being
assumed equal to unsigned int. Please report if you get a reasonable use case for them.

• Some parsing details, notably volatile is passed along like const and restrict. Also, older versions of
pycparser mis-parse some pointer-to-pointer types like char * const *: the “const” ends up at the wrong
place. Added a workaround.

1.15 v1.3.0

• Added ffi.memmove().

• Pull request #64: out-of-line API mode: we can now declare floating-point types with typedef float...
foo_t;. This only works if foo_t is a float or a double, not long double.

• Issue #217: fix possible unaligned pointer manipulation, which crashes on some architectures (64-bit, non-x86).

• Issues #64 and #126: when using set_source() or verify(), the const and restrict keywords are
copied from the cdef to the generated C code; this fixes warnings by the C compiler. It also fixes corner cases
like typedef const int T; T a; which would previously not consider a as a constant. (The cdata
objects themselves are never const.)

• Win32: support for __stdcall. For callbacks and function pointers; regular C functions still don’t need to
have their calling convention declared.

• Windows: CPython 2.7 distutils doesn’t work with Microsoft’s official Visual Studio for Python, and I’m told
this is not a bug. For ffi.compile(), we removed a workaround that was inside cffi but which had unwanted
side-effects. Try saying import setuptools first, which patches distutils...

1.16 v1.2.1

Nothing changed from v1.2.0.

1.17 v1.2.0

• Out-of-line mode: int a[][...]; can be used to declare a structure field or global variable which is,
simultaneously, of total length unknown to the C compiler (the a[] part) and each element is itself an array of N
integers, where the value of N is known to the C compiler (the int and [...] parts around it). Similarly, int
a[5][...]; is supported (but probably less useful: remember that in C it means int (a[5])[...];).

• PyPy: the lib.some_function objects were missing the attributes __name__, __module__ and
__doc__ that are expected e.g. by some decorators-management functions from functools.

6 Chapter 1. What’s New

https://bugs.python.org/issue23246
https://bitbucket.org/cffi/cffi/pull-requests/65/remove-_hack_at_distutils-which-imports/diff

CFFI Documentation, Release 1.9.1

• Out-of-line API mode: you can now do from _example.lib import x to import the name x from
_example.lib, even though the lib object is not a standard module object. (Also works in from
_example.lib import *, but this is even more of a hack and will fail if lib happens to declare a name
called __all__. Note that * excludes the global variables; only the functions and constants make sense to
import like this.)

• lib.__dict__ works again and gives you a copy of the dict—assuming that lib has got no symbol called
precisely __dict__. (In general, it is safer to use dir(lib).)

• Out-of-line API mode: global variables are now fetched on demand at every access. It fixes issue #212 (Windows
DLL variables), and also allows variables that are defined as dynamic macros (like errno) or __thread -local
variables. (This change might also tighten the C compiler’s check on the variables’ type.)

• Issue #209: dereferencing NULL pointers now raises RuntimeError instead of segfaulting. Meant as a debugging
aid. The check is only for NULL: if you dereference random or dead pointers you might still get segfaults.

• Issue #152: callbacks: added an argument ffi.callback(..., onerror=...). If the main call-
back function raises an exception and onerror is provided, then onerror(exception, exc_value,
traceback) is called. This is similar to writing a try: except: in the main callback function, but in
some cases (e.g. a signal) an exception can occur at the very start of the callback function—before it had time
to enter the try: except: block.

• Issue #115: added ffi.new_allocator(), which officializes support for alternative allocators.

1.18 v1.1.2

• ffi.gc(): fixed a race condition in multithreaded programs introduced in 1.1.1

1.19 v1.1.1

• Out-of-line mode: ffi.string(), ffi.buffer() and ffi.getwinerror() didn’t accept their argu-
ments as keyword arguments, unlike their in-line mode equivalent. (It worked in PyPy.)

• Out-of-line ABI mode: documented a restriction of ffi.dlopen() when compared to the in-line mode.

• ffi.gc(): when called several times with equal pointers, it was accidentally registering only the last destruc-
tor, or even none at all depending on details. (It was correctly registering all of them only in PyPy, and only with
the out-of-line FFIs.)

1.20 v1.1.0

• Out-of-line API mode: we can now declare integer types with typedef int... foo_t;. The exact size
and signedness of foo_t is figured out by the compiler.

• Out-of-line API mode: we can now declare multidimensional arrays (as fields or as globals) with int
n[...][...]. Before, only the outermost dimension would support the ... syntax.

• Out-of-line ABI mode: we now support any constant declaration, instead of only integers whose value is given
in the cdef. Such “new” constants, i.e. either non-integers or without a value given in the cdef, must correspond
to actual symbols in the lib. At runtime they are looked up the first time we access them. This is useful if the
library defines extern const sometype somename;.

1.18. v1.1.2 7

CFFI Documentation, Release 1.9.1

• ffi.addressof(lib, "func_name") now returns a regular cdata object of type “pointer to function”.
You can use it on any function from a library in API mode (in ABI mode, all functions are already regular cdata
objects). To support this, you need to recompile your cffi modules.

• Issue #198: in API mode, if you declare constants of a struct type, what you saw from lib.CONSTANT was
corrupted.

• Issue #196: ffi.set_source("package._ffi", None)would incorrectly generate the Python source
to package._ffi.py instead of package/_ffi.py. Also fixed: in some cases, if the C file was in
build/foo.c, the .o file would be put in build/build/foo.o.

1.21 v1.0.3

• Same as 1.0.2, apart from doc and test fixes on some platforms.

1.22 v1.0.2

• Variadic C functions (ending in a ”...” argument) were not supported in the out-of-line ABI mode. This was a
bug—there was even a (non-working) example doing exactly that!

1.23 v1.0.1

• ffi.set_source() crashed if passed a sources=[..] argument. Fixed by chrippa on pull request #60.

• Issue #193: if we use a struct between the first cdef() where it is declared and another cdef() where its fields are
defined, then this definition was ignored.

• Enums were buggy if you used too many ”...” in their definition.

1.24 v1.0.0

• The main news item is out-of-line module generation:

– for ABI level, with ffi.dlopen()

– for API level, which used to be with ffi.verify(), now deprecated

• (this page will list what is new from all versions from 1.0.0 forward.)

8 Chapter 1. What’s New

CHAPTER 2

Installation and Status

Quick installation for CPython (cffi is distributed with PyPy):

• pip install cffi

• or get the source code via the Python Package Index.

In more details:

This code has been developed on Linux, but should work on any POSIX platform as well as on Windows 32 and 64.
(It relies occasionally on libffi, so it depends on libffi being bug-free; this may not be fully the case on some of the
more exotic platforms.)

CFFI supports CPython 2.6, 2.7, 3.x (tested with 3.2 to 3.4); and is distributed with PyPy (CFFI 1.0 is distributed with
and requires PyPy 2.6).

The core speed of CFFI is better than ctypes, with import times being either lower if you use the post-1.0 features, or
much higher if you don’t. The wrapper Python code you typically need to write around the raw CFFI interface slows
things down on CPython, but not unreasonably so. On PyPy, this wrapper code has a minimal impact thanks to the JIT
compiler. This makes CFFI the recommended way to interface with C libraries on PyPy.

Requirements:

• CPython 2.6 or 2.7 or 3.x, or PyPy (PyPy 2.0 for the earliest versions of CFFI; or PyPy 2.6 for CFFI 1.0).

• in some cases you need to be able to compile C extension modules; refer to the appropriate docs for your
OS. This includes installing CFFI from sources; or developing code based on ffi.set_source() or
ffi.verify(); or installing such 3rd-party modules from sources.

• on CPython, on non-Windows platforms, you also need to install libffi-dev in order to compile CFFI itself.

• pycparser >= 2.06: https://github.com/eliben/pycparser (automatically tracked by pip install cffi).

• py.test is needed to run the tests of CFFI itself.

Download and Installation:

• http://pypi.python.org/packages/source/c/cffi/cffi-1.9.1.tar.gz

– MD5: b8fa7ccb87790531db3316ab17aa8244

– SHA: 16265a4b305d433fb9089b19278502e904b0cb43

– SHA256: 563e0bd53fda03c151573217b3a49b3abad8813de9dd0632e10090f6190fdaf8

• Or grab the most current version from the Bitbucket page: hg clone
https://bitbucket.org/cffi/cffi

• python setup.py install or python setup_base.py install (should work out of the box on
Linux or Windows; see below for MacOS X or Windows 64.)

9

http://pypi.python.org/pypi/cffi
https://github.com/eliben/pycparser
http://pypi.python.org/pypi/pytest
http://pypi.python.org/packages/source/c/cffi/cffi-1.9.1.tar.gz
https://bitbucket.org/cffi/cffi

CFFI Documentation, Release 1.9.1

• running the tests: py.test c/ testing/ (if you didn’t install cffi yet, you need first python
setup_base.py build_ext -f -i)

Demos:

• The demo directory contains a number of small and large demos of using cffi.

• The documentation below might be sketchy on details; for now the ultimate reference is given by the tests,
notably testing/cffi1/test_verify1.py and testing/cffi0/backend_tests.py.

2.1 Platform-specific instructions

libffi is notoriously messy to install and use — to the point that CPython includes its own copy to avoid relying on
external packages. CFFI does the same for Windows, but not for other platforms (which should have their own working
libffi’s). Modern Linuxes work out of the box thanks to pkg-config. Here are some (user-supplied) instructions
for other platforms.

2.1.1 MacOS X

Homebrew (Thanks David Griffin for this)

1. Install homebrew: http://brew.sh

2. Run the following commands in a terminal

brew install pkg-config libffi
PKG_CONFIG_PATH=/usr/local/opt/libffi/lib/pkgconfig pip install cffi

Aternatively, on OS/X 10.6 (Thanks Juraj Sukop for this)

For building libffi you can use the default install path, but then, in setup.py you need to change:

include_dirs = []

to:

include_dirs = ['/usr/local/lib/libffi-3.0.11/include']

Then running python setup.py build complains about “fatal error: error writing to -: Broken pipe”, which
can be fixed by running:

ARCHFLAGS="-arch i386 -arch x86_64" python setup.py build

as described here.

2.1.2 Windows (regular 32-bit)

Win32 works and is tested at least each official release.

The recommended C compiler compatible with Python 2.7 is this one: http://www.microsoft.com/en-
us/download/details.aspx?id=44266 There is a known problem with distutils on Python 2.7, as explained in
https://bugs.python.org/issue23246, and the same problem applies whenever you want to run compile() to build a
dll with this specific compiler suite download. import setuptools might help, but YMMV

For Python 3.4 and beyond: https://www.visualstudio.com/en-us/downloads/visual-studio-2015-ctp-vs

10 Chapter 2. Installation and Status

https://bitbucket.org/cffi/cffi/src/default/demo
https://bitbucket.org/cffi/cffi/src/default/testing/cffi1/test_verify1.py
https://bitbucket.org/cffi/cffi/src/default/testing/cffi0/backend_tests.py
http://brew.sh
http://superuser.com/questions/259278/python-2-6-1-pycrypto-2-3-pypi-package-broken-pipe-during-build
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.microsoft.com/en-us/download/details.aspx?id=44266
https://bugs.python.org/issue23246
https://www.visualstudio.com/en-us/downloads/visual-studio-2015-ctp-vs

CFFI Documentation, Release 1.9.1

2.1.3 Windows 64

Win64 received very basic testing and we applied a few essential fixes in cffi 0.7. The comment above applies for
Python 2.7 on Windows 64 as well. Please report any other issue.

Note as usual that this is only about running the 64-bit version of Python on the 64-bit OS. If you’re running the 32-bit
version (the common case apparently), then you’re running Win32 as far as we’re concerned.

2.1.4 Linux and OS/X: UCS2 versus UCS4

This is about getting an ImportError about _cffi_backend.so with a message like Symbol not found:
_PyUnicodeUCS2_AsASCIIString. This error occurs in Python 2 as soon as you mix “ucs2” and “ucs4”
builds of Python. It means that you are now running a Python compiled with “ucs4”, but the extension module
_cffi_backend.so was compiled by a different Python: one that was running “ucs2”. (If the opposite problem
occurs, you get an error about _PyUnicodeUCS4_AsASCIIString instead.)

If you are using pyenv, then see https://github.com/yyuu/pyenv/issues/257.

More generally, the solution that should always work is to download the sources of CFFI (instead of a prebuilt binary)
and make sure that you build it with the same version of Python than the one that will use it. For example, with
virtualenv:

• virtualenv ~/venv

• cd ~/path/to/sources/of/cffi

• ~/venv/bin/python setup.py build --force # forcing a rebuild to make sure

• ~/venv/bin/python setup.py install

This will compile and install CFFI in this virtualenv, using the Python from this virtualenv.

2.1. Platform-specific instructions 11

https://github.com/yyuu/pyenv/issues/257

CFFI Documentation, Release 1.9.1

12 Chapter 2. Installation and Status

CHAPTER 3

Overview

Contents

• Overview
– Simple example (ABI level, in-line)
– Real example (API level, out-of-line)
– Struct/Array Example (minimal, in-line)
– Purely for performance (API level, out-of-line)
– Out-of-line, ABI level
– Embedding
– What actually happened?
– ABI versus API

CFFI can be used in one of four modes: “ABI” versus “API” level, each with “in-line” or “out-of-line” preparation (or
compilation).

The ABI mode accesses libraries at the binary level, whereas the API mode accesses them with a C compiler. This is
described in detail below. In the in-line mode, everything is set up every time you import your Python code. In the
out-of-line mode, you have a separate step of preparation (and possibly C compilation) that produces a module which
your main program can then import.

(The examples below assume that you have installed CFFI.)

3.1 Simple example (ABI level, in-line)

>>> from cffi import FFI
>>> ffi = FFI()
>>> ffi.cdef("""
... int printf(const char *format, ...); // copy-pasted from the man page
... """)
>>> C = ffi.dlopen(None) # loads the entire C namespace
>>> arg = ffi.new("char[]", "world") # equivalent to C code: char arg[] = "world";
>>> C.printf("hi there, %s.\n", arg) # call printf
hi there, world.
17 # this is the return value
>>>

Note that on Python 3 you need to pass byte strings to char * arguments. In the above example it would be
b"world" and b"hi there, %s!\n". In general it is somestring.encode(myencoding).

13

CFFI Documentation, Release 1.9.1

This example does not call any C compiler. It works in the so-called ABI mode, which means that it will crash if you
call some function or access some fields of a structure that was slightly misdeclared in the cdef().

If using a C compiler to install your module is an option, it is highly recommended to use the API mode described in
the next paragraph. (It is also a bit faster at runtime.)

3.2 Real example (API level, out-of-line)

file "example_build.py"

Note: we instantiate the same 'cffi.FFI' class as in the previous
example, but call the result 'ffibuilder' now instead of 'ffi';
this is to avoid confusion with the other 'ffi' object you get below

from cffi import FFI
ffibuilder = FFI()

ffibuilder.set_source("_example",
r""" // passed to the real C compiler

#include <sys/types.h>
#include <pwd.h>

""",
libraries=[]) # or a list of libraries to link with
(more arguments like setup.py's Extension class:
include_dirs=[..], extra_objects=[..], and so on)

ffibuilder.cdef(""" // some declarations from the man page
struct passwd {

char *pw_name;
...; // literally dot-dot-dot

};
struct passwd *getpwuid(int uid);

""")

if __name__ == "__main__":
ffibuilder.compile(verbose=True)

You need to run the example_build.py script once to generate “source code” into the file _example.c and
compile this to a regular C extension module. (CFFI selects either Python or C for the module to generate based on
whether the second argument to set_source() is None or not.)

You need a C compiler for this single step. It produces a file called e.g. _example.so or _example.pyd. If needed, it
can be distributed in precompiled form like any other extension module.

Then, in your main program, you use:

from _example import ffi, lib

p = lib.getpwuid(0)
assert ffi.string(p.pw_name) == b'root'

Note that this works independently of the exact C layout of struct passwd (it is “API level”, as opposed to “ABI
level”). It requires a C compiler in order to run example_build.py, but it is much more portable than trying to get
the details of the fields of struct passwd exactly right. Similarly, we declared getpwuid() as taking an int
argument. On some platforms this might be slightly incorrect—but it does not matter.

To integrate it inside a setup.py distribution with Setuptools:

14 Chapter 3. Overview

CFFI Documentation, Release 1.9.1

from setuptools import setup

setup(
...
setup_requires=["cffi>=1.0.0"],
cffi_modules=["example_build.py:ffibuilder"],
install_requires=["cffi>=1.0.0"],

)

3.3 Struct/Array Example (minimal, in-line)

from cffi import FFI
ffi = FFI()
ffi.cdef("""

typedef struct {
unsigned char r, g, b;

} pixel_t;
""")
image = ffi.new("pixel_t[]", 800*600)

f = open('data', 'rb') # binary mode -- important
f.readinto(ffi.buffer(image))
f.close()

image[100].r = 255
image[100].g = 192
image[100].b = 128

f = open('data', 'wb')
f.write(ffi.buffer(image))
f.close()

This can be used as a more flexible replacement of the struct and array modules. You could also call
ffi.new("pixel_t[600][800]") and get a two-dimensional array.

This example does not call any C compiler.

This example also admits an out-of-line equivalent. It is similar to Real example (API level, out-of-line) above, but
passing None as the second argument to ffibuilder.set_source(). Then in the main program you write
from _simple_example import ffi and then the same content as the in-line example above starting from
the line image = ffi.new("pixel_t[]", 800*600).

3.4 Purely for performance (API level, out-of-line)

A variant of the section above where the goal is not to call an existing C library, but to compile and call some C
function written directly in the build script:

file "example_build.py"

from cffi import FFI
ffibuilder = FFI()

ffibuilder.cdef("int foo(int *, int *, int);")

3.3. Struct/Array Example (minimal, in-line) 15

http://docs.python.org/library/struct.html
http://docs.python.org/library/array.html

CFFI Documentation, Release 1.9.1

ffibuilder.set_source("_example",
r"""

static int foo(int *buffer_in, int *buffer_out, int x)
{

/* some algorithm that is seriously faster in C than in Python */
}

""")

if __name__ == "__main__":
ffibuilder.compile(verbose=True)

file "example.py"

from _example import ffi, lib

buffer_in = ffi.new("int[]", 1000)
initialize buffer_in here...

easier to do all buffer allocations in Python and pass them to C,
even for output-only arguments
buffer_out = ffi.new("int[]", 1000)

result = lib.foo(buffer_in, buffer_out, 1000)

You need a C compiler to run example_build.py, once. It produces a file called e.g. _example.so or _example.pyd. If
needed, it can be distributed in precompiled form like any other extension module.

3.5 Out-of-line, ABI level

The out-of-line ABI mode is a mixture of the regular (API) out-of-line mode and the in-line ABI mode. It lets you use
the ABI mode, with its advantages (not requiring a C compiler) and problems (crashes more easily).

This mixture mode lets you massively reduces the import times, because it is slow to parse a large C header. It
also allows you to do more detailed checkings during build-time without worrying about performance (e.g. calling
cdef() many times with small pieces of declarations, based on the version of libraries detected on the system).

file "simple_example_build.py"

from cffi import FFI

ffibuilder = FFI()
ffibuilder.set_source("_simple_example", None)
ffibuilder.cdef("""

int printf(const char *format, ...);
""")

if __name__ == "__main__":
ffibuilder.compile(verbose=True)

Running it once produces _simple_example.py. Your main program only imports this generated module, not
simple_example_build.py any more:

from _simple_example import ffi

lib = ffi.dlopen(None) # Unix: open the standard C library
#import ctypes.util # or, try this on Windows:

16 Chapter 3. Overview

CFFI Documentation, Release 1.9.1

#lib = ffi.dlopen(ctypes.util.find_library("c"))

lib.printf(b"hi there, number %d\n", ffi.cast("int", 2))

Note that this ffi.dlopen(), unlike the one from in-line mode, does not invoke any additional magic to locate the
library: it must be a path name (with or without a directory), as required by the C dlopen() or LoadLibrary()
functions. This means that ffi.dlopen("libfoo.so") is ok, but ffi.dlopen("foo") is not. In the latter
case, you could replace it with ffi.dlopen(ctypes.util.find_library("foo")). Also, None is only
recognized on Unix to open the standard C library.

For distribution purposes, remember that there is a new _simple_example.py file generated. You can either
include it statically within your project’s source files, or, with Setuptools, you can say in the setup.py:

from setuptools import setup

setup(
...
setup_requires=["cffi>=1.0.0"],
cffi_modules=["simple_example_build.py:ffibuilder"],
install_requires=["cffi>=1.0.0"],

)

3.6 Embedding

New in version 1.5.

CFFI can be used for embedding: creating a standard dynamically-linked library (.dll under Windows, .so else-
where) which can be used from a C application.

import cffi
ffibuilder = cffi.FFI()

ffibuilder.embedding_api("""
int do_stuff(int, int);

""")

ffibuilder.set_source("my_plugin", "")

ffibuilder.embedding_init_code("""
from my_plugin import ffi

@ffi.def_extern()
def do_stuff(x, y):

print("adding %d and %d" % (x, y))
return x + y

""")

ffibuilder.compile(target="plugin-1.5.*", verbose=True)

This simple example creates plugin-1.5.dll or plugin-1.5.so as a DLL with a single exported function,
do_stuff(). You execute the script above once, with the interpreter you want to have internally used; it can be
CPython 2.x or 3.x or PyPy. This DLL can then be used “as usual” from an application; the application doesn’t need
to know that it is talking with a library made with Python and CFFI. At runtime, when the application calls int
do_stuff(int, int), the Python interpreter is automatically initialized and def do_stuff(x, y): gets
called. See the details in the documentation about embedding.

3.6. Embedding 17

CFFI Documentation, Release 1.9.1

3.7 What actually happened?

The CFFI interface operates on the same level as C - you declare types and functions using the same syntax as you
would define them in C. This means that most of the documentation or examples can be copied straight from the man
pages.

The declarations can contain types, functions, constants and global variables. What you pass to the cdef() must
not contain more than that; in particular, #ifdef or #include directives are not supported. The cdef in the above
examples are just that - they declared “there is a function in the C level with this given signature”, or “there is a struct
type with this shape”.

In the ABI examples, the dlopen() calls load libraries manually. At the binary level, a program is split into
multiple namespaces—a global one (on some platforms), plus one namespace per library. So dlopen() returns
a <FFILibrary> object, and this object has got as attributes all function, constant and variable symbols that are
coming from this library and that have been declared in the cdef(). If you have several interdependent libraries to
load, you would call cdef() only once but dlopen() several times.

By opposition, the API mode works more closely like a C program: the C linker (static or dynamic) is responsible
for finding any symbol used. You name the libraries in the libraries keyword argument to set_source(), but
never need to say which symbol comes from which library. Other common arguments to set_source() include
library_dirs and include_dirs; all these arguments are passed to the standard distutils/setuptools.

The ffi.new() lines allocate C objects. They are filled with zeroes initially, unless the optional second argument is
used. If specified, this argument gives an “initializer”, like you can use with C code to initialize global variables.

The actual lib.*() function calls should be obvious: it’s like C.

3.8 ABI versus API

Accessing the C library at the binary level (“ABI”) is fraught with problems, particularly on non-Windows platforms.
You are not meant to access fields by guessing where they are in the structures. The C libraries are typically meant to
be used with a C compiler.

The “real example” above shows how to do that: this example uses set_source(..., "C source...") and
never dlopen(). When using this approach, we have the advantage that we can use literally “...” at various places
in the cdef(), and the missing information will be completed with the help of the C compiler. Actually, a single C
source file is produced, which contains first the “C source” part unmodified, followed by some “magic” C code and
declarations derived from the cdef(). When this C file is compiled, the resulting C extension module will contain
all the information we need—or the C compiler will give warnings or errors, as usual e.g. if we misdeclare some
function’s signature.

Note that the “C source” part from set_source() can contain arbitrary C code. You can use this to declare some
more helper functions written in C. To export these helpers to Python, put their signature in the cdef() too. (You can
use the static C keyword in the “C source” part, as in static int myhelper(int x) { return x *
42; }, because these helpers are only referenced from the “magic” C code that is generated afterwards in the same
C file.)

This can be used for example to wrap “crazy” macros into more standard C functions. The extra layer of C can be
useful for other reasons too, like calling functions that expect some complicated argument structures that you prefer
to build in C rather than in Python. (On the other hand, if all you need is to call “function-like” macros, then you can
directly declare them in the cdef() as if they were functions.)

The generated piece of C code should be the same independently on the platform on which you run it (or the Python
version), so in simple cases you can directly distribute the pre-generated C code and treat it as a regular C extension
module (which depends on the _cffi_backend module, on CPython). The special Setuptools lines in the example
above are meant for the more complicated cases where we need to regenerate the C sources as well—e.g. because

18 Chapter 3. Overview

CFFI Documentation, Release 1.9.1

the Python script that regenerates this file will itself look around the system to know what it should include or not.
Note that the “API level + in-line” mode combination exists but is long deprecated. It used to be done with lib
= ffi.verify("C header"). The out-of-line variant with set_source("modname", "C header") is
preferred.

3.8. ABI versus API 19

CFFI Documentation, Release 1.9.1

20 Chapter 3. Overview

CHAPTER 4

Using the ffi/lib objects

Contents

• Using the ffi/lib objects
– Working with pointers, structures and arrays
– Python 3 support
– An example of calling a main-like thing
– Function calls
– Variadic function calls
– Extern “Python” (new-style callbacks)

* Extern “Python” and void * arguments
* Extern “Python” accessed from C directly
* Extern “Python+C”
* Extern “Python”: reference

– Callbacks (old style)
– Windows: calling conventions
– FFI Interface

Keep this page under your pillow.

4.1 Working with pointers, structures and arrays

The C code’s integers and floating-point values are mapped to Python’s regular int, long and float. Moreover,
the C type char corresponds to single-character strings in Python. (If you want it to map to small integers, use either
signed char or unsigned char.)

Similarly, the C type wchar_t corresponds to single-character unicode strings. Note that in some situations (a
narrow Python build with an underlying 4-bytes wchar_t type), a single wchar_t character may correspond to a pair of
surrogates, which is represented as a unicode string of length 2. If you need to convert such a 2-chars unicode string
to an integer, ord(x) does not work; use instead int(ffi.cast(’wchar_t’, x)).

Pointers, structures and arrays are more complex: they don’t have an obvious Python equivalent. Thus, they correspond
to objects of type cdata, which are printed for example as <cdata ’struct foo_s *’ 0xa3290d8>.

ffi.new(ctype, [initializer]): this function builds and returns a new cdata object of the given ctype.
The ctype is usually some constant string describing the C type. It must be a pointer or array type. If it is a pointer,
e.g. "int *" or struct foo *, then it allocates the memory for one int or struct foo. If it is an array, e.g.
int[10], then it allocates the memory for ten int. In both cases the returned cdata is of type ctype.

The memory is initially filled with zeros. An initializer can be given too, as described later.

21

CFFI Documentation, Release 1.9.1

Example:

>>> ffi.new("int *")
<cdata 'int *' owning 4 bytes>
>>> ffi.new("int[10]")
<cdata 'int[10]' owning 40 bytes>

>>> ffi.new("char *") # allocates only one char---not a C string!
<cdata 'char *' owning 1 bytes>
>>> ffi.new("char[]", "foobar") # this allocates a C string, ending in \0
<cdata 'char[]' owning 7 bytes>

Unlike C, the returned pointer object has ownership on the allocated memory: when this exact object is garbage-
collected, then the memory is freed. If, at the level of C, you store a pointer to the memory somewhere else, then
make sure you also keep the object alive for as long as needed. (This also applies if you immediately cast the returned
pointer to a pointer of a different type: only the original object has ownership, so you must keep it alive. As soon
as you forget it, then the casted pointer will point to garbage! In other words, the ownership rules are attached to the
wrapper cdata objects: they are not, and cannot, be attached to the underlying raw memory.) Example:

global_weakkeydict = weakref.WeakKeyDictionary()

def make_foo():
s1 = ffi.new("struct foo *")
fld1 = ffi.new("struct bar *")
fld2 = ffi.new("struct bar *")
s1.thefield1 = fld1
s1.thefield2 = fld2
here the 'fld1' and 'fld2' object must not go away,
otherwise 's1.thefield1/2' will point to garbage!
global_weakkeydict[s1] = (fld1, fld2)
now 's1' keeps alive 'fld1' and 'fld2'. When 's1' goes
away, then the weak dictionary entry will be removed.
return s1

Usually you don’t need a weak dict: for example, to call a function with a char * * argument that contains a pointer
to a char * pointer, it is enough to do this:

p = ffi.new("char[]", "hello, world") # p is a 'char *'
q = ffi.new("char **", p) # q is a 'char **'
lib.myfunction(q)
p is alive at least until here, so that's fine

However, this is always wrong (usage of freed memory):

p = ffi.new("char **", ffi.new("char[]", "hello, world"))
WRONG! as soon as p is built, the inner ffi.new() gets freed!

This is wrong too, for the same reason:

p = ffi.new("struct my_stuff")
p.foo = ffi.new("char[]", "hello, world")
WRONG! as soon as p.foo is set, the ffi.new() gets freed!

The cdata objects support mostly the same operations as in C: you can read or write from pointers, arrays and structures.
Dereferencing a pointer is done usually in C with the syntax *p, which is not valid Python, so instead you have to use
the alternative syntax p[0] (which is also valid C). Additionally, the p.x and p->x syntaxes in C both become p.x
in Python.

We have ffi.NULL to use in the same places as the C NULL. Like the latter, it is actually defined to be
ffi.cast("void *", 0). For example, reading a NULL pointer returns a <cdata ’type *’ NULL>,

22 Chapter 4. Using the ffi/lib objects

CFFI Documentation, Release 1.9.1

which you can check for e.g. by comparing it with ffi.NULL.

There is no general equivalent to the & operator in C (because it would not fit nicely in the model, and it does not seem
to be needed here). But see ffi.addressof().

Any operation that would in C return a pointer or array or struct type gives you a fresh cdata object. Unlike the
“original” one, these fresh cdata objects don’t have ownership: they are merely references to existing memory.

As an exception to the above rule, dereferencing a pointer that owns a struct or union object returns a cdata struct or
union object that “co-owns” the same memory. Thus in this case there are two objects that can keep the same memory
alive. This is done for cases where you really want to have a struct object but don’t have any convenient place to keep
alive the original pointer object (returned by ffi.new()).

Example:

void somefunction(int *);

x = ffi.new("int *") # allocate one int, and return a pointer to it
x[0] = 42 # fill it
lib.somefunction(x) # call the C function
print x[0] # read the possibly-changed value

The equivalent of C casts are provided with ffi.cast("type", value). They should work in the same cases
as they do in C. Additionally, this is the only way to get cdata objects of integer or floating-point type:

>>> x = ffi.cast("int", 42)
>>> x
<cdata 'int' 42>
>>> int(x)
42

To cast a pointer to an int, cast it to intptr_t or uintptr_t, which are defined by C to be large enough integer
types (example on 32 bits):

>>> int(ffi.cast("intptr_t", pointer_cdata)) # signed
-1340782304
>>> int(ffi.cast("uintptr_t", pointer_cdata)) # unsigned
2954184992L

The initializer given as the optional second argument to ffi.new() can be mostly anything that you would use as
an initializer for C code, with lists or tuples instead of using the C syntax { .., .., .. }. Example:

typedef struct { int x, y; } foo_t;

foo_t v = { 1, 2 }; // C syntax
v = ffi.new("foo_t *", [1, 2]) # CFFI equivalent

foo_t v = { .y=1, .x=2 }; // C99 syntax
v = ffi.new("foo_t *", {'y': 1, 'x': 2}) # CFFI equivalent

Like C, arrays of chars can also be initialized from a string, in which case a terminating null character is appended
implicitly:

>>> x = ffi.new("char[]", "hello")
>>> x
<cdata 'char[]' owning 6 bytes>
>>> len(x) # the actual size of the array
6
>>> x[5] # the last item in the array
'\x00'
>>> x[0] = 'H' # change the first item

4.1. Working with pointers, structures and arrays 23

CFFI Documentation, Release 1.9.1

>>> ffi.string(x) # interpret 'x' as a regular null-terminated string
'Hello'

Similarly, arrays of wchar_t can be initialized from a unicode string, and calling ffi.string() on the cdata object
returns the current unicode string stored in the wchar_t array (adding surrogates if necessary).

Note that unlike Python lists or tuples, but like C, you cannot index in a C array from the end using negative numbers.

More generally, the C array types can have their length unspecified in C types, as long as their length can be derived
from the initializer, like in C:

int array[] = { 1, 2, 3, 4 }; // C syntax
array = ffi.new("int[]", [1, 2, 3, 4]) # CFFI equivalent

As an extension, the initializer can also be just a number, giving the length (in case you just want zero-initialization):

int array[1000]; // C syntax
array = ffi.new("int[1000]") # CFFI 1st equivalent
array = ffi.new("int[]", 1000) # CFFI 2nd equivalent

This is useful if the length is not actually a constant, to avoid things like ffi.new("int[%d]" % x). Indeed,
this is not recommended: ffi normally caches the string "int[]" to not need to re-parse it all the time.

The C99 variable-sized structures are supported too, as long as the initializer says how long the array should be:

typedef struct { int x; int y[]; } foo_t;

p = ffi.new("foo_t *", [5, [6, 7, 8]]) # length 3
p = ffi.new("foo_t *", [5, 3]) # length 3 with 0 in the array
p = ffi.new("foo_t *", {'y': 3}) # length 3 with 0 everywhere

Finally, note that any Python object used as initializer can also be used directly without ffi.new() in assign-
ments to array items or struct fields. In fact, p = ffi.new("T*", initializer) is equivalent to p =
ffi.new("T*"); p[0] = initializer. Examples:

if 'p' is a <cdata 'int[5][5]'>
p[2] = [10, 20] # writes to p[2][0] and p[2][1]

if 'p' is a <cdata 'foo_t *'>, and foo_t has fields x, y and z
p[0] = {'x': 10, 'z': 20} # writes to p.x and p.z; p.y unmodified

if, on the other hand, foo_t has a field 'char a[5]':
p.a = "abc" # writes 'a', 'b', 'c' and '\0'; p.a[4] unmodified

In function calls, when passing arguments, these rules can be used too; see Function calls.

4.2 Python 3 support

Python 3 is supported, but the main point to note is that the char C type corresponds to the bytes Python type, and
not str. It is your responsibility to encode/decode all Python strings to bytes when passing them to or receiving them
from CFFI.

This only concerns the char type and derivative types; other parts of the API that accept strings in Python 2 continue
to accept strings in Python 3.

24 Chapter 4. Using the ffi/lib objects

CFFI Documentation, Release 1.9.1

4.3 An example of calling a main-like thing

Imagine we have something like this:

from cffi import FFI
ffi = FFI()
ffi.cdef("""

int main_like(int argv, char *argv[]);
""")
lib = ffi.dlopen("some_library.so")

Now, everything is simple, except, how do we create the char** argument here? The first idea:

lib.main_like(2, ["arg0", "arg1"])

does not work, because the initializer receives two Python str objects where it was expecting <cdata ’char *’>
objects. You need to use ffi.new() explicitly to make these objects:

lib.main_like(2, [ffi.new("char[]", "arg0"),
ffi.new("char[]", "arg1")])

Note that the two <cdata ’char[]’> objects are kept alive for the duration of the call: they are only freed when
the list itself is freed, and the list is only freed when the call returns.

If you want instead to build an “argv” variable that you want to reuse, then more care is needed:

DOES NOT WORK!
argv = ffi.new("char *[]", [ffi.new("char[]", "arg0"),

ffi.new("char[]", "arg1")])

In the above example, the inner “arg0” string is deallocated as soon as “argv” is built. You have to make sure that you
keep a reference to the inner “char[]” objects, either directly or by keeping the list alive like this:

argv_keepalive = [ffi.new("char[]", "arg0"),
ffi.new("char[]", "arg1")]

argv = ffi.new("char *[]", argv_keepalive)

4.4 Function calls

When calling C functions, passing arguments follows mostly the same rules as assigning to structure fields, and the
return value follows the same rules as reading a structure field. For example:

int foo(short a, int b);

n = lib.foo(2, 3) # returns a normal integer
lib.foo(40000, 3) # raises OverflowError

You can pass to char * arguments a normal Python string (but don’t pass a normal Python string to functions that
take a char * argument and may mutate it!):

size_t strlen(const char *);

assert lib.strlen("hello") == 5

You can also pass unicode strings as wchar_t * arguments. Note that the C language makes no difference between
argument declarations that use type * or type[]. For example, int * is fully equivalent to int[] (or even

4.3. An example of calling a main-like thing 25

CFFI Documentation, Release 1.9.1

int[5]; the 5 is ignored). For CFFI, this means that you can always pass arguments that can be converted to either
int * or int[]. For example:

void do_something_with_array(int *array);

lib.do_something_with_array([1, 2, 3, 4, 5]) # works for int[]

See Reference: conversions for a similar way to pass struct foo_s * arguments—but in general, it is clearer in
this case to pass ffi.new(’struct foo_s *’, initializer).

CFFI supports passing and returning structs and unions to functions and callbacks. Example:

struct foo_s { int a, b; };
struct foo_s function_returning_a_struct(void);

myfoo = lib.function_returning_a_struct()
`myfoo`: <cdata 'struct foo_s' owning 8 bytes>

For performance, non-variadic API-level functions that you get by writing lib.some_function are not <cdata>
objects, but an object of a different type (on CPython, <built-in function>). This means you cannot pass them
directly to some other C function expecting a function pointer argument. Only ffi.typeof() works on them. To
get a cdata containing a regular function pointer, use ffi.addressof(lib, "name").

There are a few (obscure) limitations to the supported argument and return types. These limitations come from libffi
and apply only to calling <cdata> function pointers; in other words, they don’t apply to non-variadic cdef()-
declared functions if you are using the API mode. The limitations are that you cannot pass directly as argument or
return type:

• a union (but a pointer to a union is fine);

• a struct which uses bitfields (but a pointer to such a struct is fine);

• a struct that was declared with “...” in the cdef().

In API mode, you can work around these limitations: for example, if you need to call such a function pointer from
Python, you can instead write a custom C function that accepts the function pointer and the real arguments and that
does the call from C. Then declare that custom C function in the cdef() and use it from Python.

4.5 Variadic function calls

Variadic functions in C (which end with “...” as their last argument) can be declared and called normally, with the
exception that all the arguments passed in the variable part must be cdata objects. This is because it would not be
possible to guess, if you wrote this:

lib.printf("hello, %d\n", 42) # doesn't work!

that you really meant the 42 to be passed as a C int, and not a long or long long. The same issue occurs with
float versus double. So you have to force cdata objects of the C type you want, if necessary with ffi.cast():

lib.printf("hello, %d\n", ffi.cast("int", 42))
lib.printf("hello, %ld\n", ffi.cast("long", 42))
lib.printf("hello, %f\n", ffi.cast("double", 42))

But of course:

lib.printf("hello, %s\n", ffi.new("char[]", "world"))

Note that if you are using dlopen(), the function declaration in the cdef() must match the original one in C
exactly, as usual — in particular, if this function is variadic in C, then its cdef() declaration must also be variadic.

26 Chapter 4. Using the ffi/lib objects

CFFI Documentation, Release 1.9.1

You cannot declare it in the cdef() with fixed arguments instead, even if you plan to only call it with these argument
types. The reason is that some architectures have a different calling convention depending on whether the function
signature is fixed or not. (On x86-64, the difference can sometimes be seen in PyPy’s JIT-generated code if some
arguments are double.)

Note that the function signature int foo(); is interpreted by CFFI as equivalent to int foo(void);. This
differs from the C standard, in which int foo(); is really like int foo(...); and can be called with any
arguments. (This feature of C is a pre-C89 relic: the arguments cannot be accessed at all in the body of foo()
without relying on compiler-specific extensions. Nowadays virtually all code with int foo(); really means int
foo(void);.)

4.6 Extern “Python” (new-style callbacks)

When the C code needs a pointer to a function which invokes back a Python function of your choice, here is how you
do it in the out-of-line API mode. The next section about Callbacks describes the ABI-mode solution.

This is new in version 1.4. Use old-style Callbacks if backward compatibility is an issue. (The original callbacks are
slower to invoke and have the same issue as libffi’s callbacks; notably, see the warning. The new style described in the
present section does not use libffi’s callbacks at all.) In the builder script, declare in the cdef a function prefixed with
extern "Python":

ffibuilder.cdef("""
extern "Python" int my_callback(int, int);

void library_function(int(*callback)(int, int));
""")
ffibuilder.set_source("_my_example", r"""

#include <some_library.h>
""")

The function my_callback() is then implemented in Python inside your application’s code:

from _my_example import ffi, lib

@ffi.def_extern()
def my_callback(x, y):

return 42

You obtain a <cdata> pointer-to-function object by getting lib.my_callback. This <cdata> can be passed
to C code and then works like a callback: when the C code calls this function pointer, the Python function
my_callback is called. (You need to pass lib.my_callback to C code, and not my_callback: the latter
is just the Python function above, which cannot be passed to C.)

CFFI implements this by defining my_callback as a static C function, written after the set_source() code.
The <cdata> then points to this function. What this function does is invoke the Python function object that is, at
runtime, attached with @ffi.def_extern().

The @ffi.def_extern() decorator should be applied to global functions, one for each extern "Python"
function of the same name.

To support some corner cases, it is possible to redefine the attached Python function by calling
@ffi.def_extern() again for the same name—but this is not recommended! Better attach a single global Python
function for this name, and write it more flexibly in the first place. This is because each extern "Python" func-
tion turns into only one C function. Calling @ffi.def_extern() again changes this function’s C logic to call
the new Python function; the old Python function is not callable any more. The C function pointer you get from
lib.my_function is always this C function’s address, i.e. it remains the same.

4.6. Extern “Python” (new-style callbacks) 27

CFFI Documentation, Release 1.9.1

4.6.1 Extern “Python” and void * arguments

As described just before, you cannot use extern "Python" to make a variable number of C function pointers.
However, achieving that result is not possible in pure C code either. For this reason, it is usual for C to define callbacks
with a void *data argument. You can use ffi.new_handle() and ffi.from_handle() to pass a Python
object through this void * argument. For example, if the C type of the callbacks is:

typedef void (*event_cb_t)(event_t *evt, void *userdata);

and you register events by calling this function:

void event_cb_register(event_cb_t cb, void *userdata);

Then you would write this in the build script:

ffibuilder.cdef("""
typedef ... event_t;
typedef void (*event_cb_t)(event_t *evt, void *userdata);
void event_cb_register(event_cb_t cb, void *userdata);

extern "Python" void my_event_callback(event_t *, void *);
""")
ffibuilder.set_source("_demo_cffi", r"""

#include <the_event_library.h>
""")

and in your main application you register events like this:

from _demo_cffi import ffi, lib

class Widget(object):
def __init__(self):

userdata = ffi.new_handle(self)
self._userdata = userdata # must keep this alive!
lib.event_cb_register(lib.my_event_callback, userdata)

def process_event(self, evt):
print "got event!"

@ffi.def_extern()
def my_event_callback(evt, userdata):

widget = ffi.from_handle(userdata)
widget.process_event(evt)

Some other libraries don’t have an explicit void * argument, but let you attach the void * to an existing structure.
For example, the library might say that widget->userdata is a generic field reserved for the application. If the
event’s signature is now this:

typedef void (*event_cb_t)(widget_t *w, event_t *evt);

Then you can use the void * field in the low-level widget_t * like this:

from _demo_cffi import ffi, lib

class Widget(object):
def __init__(self):

ll_widget = lib.new_widget(500, 500)
self.ll_widget = ll_widget # <cdata 'struct widget *'>
userdata = ffi.new_handle(self)
self._userdata = userdata # must still keep this alive!

28 Chapter 4. Using the ffi/lib objects

CFFI Documentation, Release 1.9.1

ll_widget.userdata = userdata # this makes a copy of the "void *"
lib.event_cb_register(ll_widget, lib.my_event_callback)

def process_event(self, evt):
print "got event!"

@ffi.def_extern()
def my_event_callback(ll_widget, evt):

widget = ffi.from_handle(ll_widget.userdata)
widget.process_event(evt)

4.6.2 Extern “Python” accessed from C directly

In case you want to access some extern "Python" function directly from the C code written in set_source(),
you need to write a forward declaration. (By default it needs to be static, but see next paragraph.) The real imple-
mentation of this function is added by CFFI after the C code—this is needed because the declaration might use types
defined by set_source() (e.g. event_t above, from the #include), so it cannot be generated before.

ffibuilder.set_source("_demo_cffi", r"""
#include <the_event_library.h>

static void my_event_callback(widget_t *, event_t *);

/* here you can write C code which uses '&my_event_callback' */
""")

This can also be used to write custom C code which calls Python directly. Here is an example (inefficient in this case,
but might be useful if the logic in my_algo() is much more complex):

ffibuilder.cdef("""
extern "Python" int f(int);
int my_algo(int);

""")
ffibuilder.set_source("_example_cffi", r"""

static int f(int); /* the forward declaration */

static int my_algo(int n) {
int i, sum = 0;
for (i = 0; i < n; i++)

sum += f(i); /* call f() here */
return sum;

}
""")

4.6.3 Extern “Python+C”

Functions declared with extern "Python" are generated as static functions in the C source. However, in some
cases it is convenient to make them non-static, typically when you want to make them directly callable from other C
source files. To do that, you can say extern "Python+C" instead of just extern "Python". New in version
1.6.

if the cdef contains then CFFI generates
extern "Python" int f(int); static int f(int) { /* code */ }
extern "Python+C" int f(int); int f(int) { /* code */ }

4.6. Extern “Python” (new-style callbacks) 29

CFFI Documentation, Release 1.9.1

The name extern "Python+C" comes from the fact that we want an extern function in both senses: as an extern
"Python", and as a C function that is not static.

You cannot make CFFI generate additional macros or other compiler-specific stuff like the GCC __attribute__.
You can only control whether the function should be static or not. But often, these attributes must be written
alongside the function header, and it is fine if the function implementation does not repeat them:

ffibuilder.cdef("""
extern "Python+C" int f(int); /* not static */

""")
ffibuilder.set_source("_example_cffi", r"""

/* the forward declaration, setting a gcc attribute
(this line could also be in some .h file, to be included
both here and in the other C files of the project) */

int f(int) __attribute__((visibility("hidden")));
""")

4.6.4 Extern “Python”: reference

extern "Python" must appear in the cdef(). Like the C++ extern "C" syntax, it can also be used with braces
around a group of functions:

extern "Python" {
int foo(int);
int bar(int);

}

The extern "Python" functions cannot be variadic for now. This may be implemented in the future. (This demo
shows how to do it anyway, but it is a bit lengthy.)

Each corresponding Python callback function is defined with the @ffi.def_extern() decorator. Be careful when
writing this function: if it raises an exception, or tries to return an object of the wrong type, then the exception cannot
be propagated. Instead, the exception is printed to stderr and the C-level callback is made to return a default value.
This can be controlled with error and onerror, described below. The @ffi.def_extern() decorator takes
these optional arguments:

• name: the name of the function as written in the cdef. By default it is taken from the name of the Python
function you decorate.

• error: the returned value in case the Python function raises an exception. It is 0 or null by default. The
exception is still printed to stderr, so this should be used only as a last-resort solution.

• onerror: if you want to be sure to catch all exceptions, use
@ffi.def_extern(onerror=my_handler). If an exception occurs and onerror is specified,
then onerror(exception, exc_value, traceback) is called. This is useful in some situations
where you cannot simply write try: except: in the main callback function, because it might not catch
exceptions raised by signal handlers: if a signal occurs while in C, the Python signal handler is called as soon as
possible, which is after entering the callback function but before executing even the try:. If the signal handler
raises, we are not in the try: except: yet.

If onerror is called and returns normally, then it is assumed that it handled the exception on its own and
nothing is printed to stderr. If onerror raises, then both tracebacks are printed. Finally, onerror can itself
provide the result value of the callback in C, but doesn’t have to: if it simply returns None—or if onerror
itself fails—then the value of error will be used, if any.

Note the following hack: in onerror, you can access the original callback arguments as follows. First
check if traceback is not None (it is None e.g. if the whole function ran successfully but there was
an error converting the value returned: this occurs after the call). If traceback is not None, then

30 Chapter 4. Using the ffi/lib objects

https://bitbucket.org/cffi/cffi/src/default/demo/extern_python_varargs.py

CFFI Documentation, Release 1.9.1

traceback.tb_frame is the frame of the outermost function, i.e. directly the frame of the function
decorated with @ffi.def_extern(). So you can get the value of argname in that frame by reading
traceback.tb_frame.f_locals[’argname’].

4.7 Callbacks (old style)

Here is how to make a new <cdata> object that contains a pointer to a function, where that function invokes back a
Python function of your choice:

>>> @ffi.callback("int(int, int)")
>>> def myfunc(x, y):
... return x + y
...
>>> myfunc
<cdata 'int(*)(int, int)' calling <function myfunc at 0xf757bbc4>>

Note that "int(*)(int, int)" is a C function pointer type, whereas "int(int, int)" is a C function type.
Either can be specified to ffi.callback() and the result is the same.

Warning: Callbacks are provided for the ABI mode or for backward compatibility. If you are using the out-of-
line API mode, it is recommended to use the extern “Python” mechanism instead of callbacks: it gives faster and
cleaner code. It also avoids a SELinux issue whereby the setting of deny_execmem must be left to off in order
to use callbacks. (A fix in cffi was attempted—see the ffi_closure_alloc branch—but was not merged
because it creates potential memory corruption with fork(). For more information, see here.)

Warning: like ffi.new(), ffi.callback() returns a cdata that has ownership of its C data. (In this case, the necessary C
data contains the libffi data structures to do a callback.) This means that the callback can only be invoked as long
as this cdata object is alive. If you store the function pointer into C code, then make sure you also keep this object
alive for as long as the callback may be invoked. The easiest way to do that is to always use @ffi.callback() at
module-level only, and to pass “context” information around with ffi.new_handle(), if possible. Example:

a good way to use this decorator is once at global level
@ffi.callback("int(int, void *)")
def my_global_callback(x, handle):

return ffi.from_handle(handle).some_method(x)

class Foo(object):

def __init__(self):
handle = ffi.new_handle(self)
self._handle = handle # must be kept alive
lib.register_stuff_with_callback_and_voidp_arg(my_global_callback, handle)

def some_method(self, x):
print "method called!"

(See also the section about extern “Python” above, where the same general style is used.)

Note that callbacks of a variadic function type are not supported. A workaround is to add custom C code. In the
following example, a callback gets a first argument that counts how many extra int arguments are passed:

file "example_build.py"

import cffi

4.7. Callbacks (old style) 31

https://bugzilla.redhat.com/show_bug.cgi?id=1249685

CFFI Documentation, Release 1.9.1

ffibuilder = cffi.FFI()
ffibuilder.cdef("""

int (*python_callback)(int how_many, int *values);
void *const c_callback; /* pass this const ptr to C routines */

""")
ffibuilder.set_source("_example", r"""

#include <stdarg.h>
#include <alloca.h>
static int (*python_callback)(int how_many, int *values);
static int c_callback(int how_many, ...) {

va_list ap;
/* collect the "..." arguments into the values[] array */
int i, *values = alloca(how_many * sizeof(int));
va_start(ap, how_many);
for (i=0; i<how_many; i++)

values[i] = va_arg(ap, int);
va_end(ap);
return python_callback(how_many, values);

}
""")
ffibuilder.compile(verbose=True)

file "example.py"

from _example import ffi, lib

@ffi.callback("int(int, int *)")
def python_callback(how_many, values):

print ffi.unpack(values, how_many)
return 0

lib.python_callback = python_callback

Deprecated: you can also use ffi.callback() not as a decorator but directly as ffi.callback("int(int,
int)", myfunc). This is discouraged: using this a style, we are more likely to forget the callback object too early,
when it is still in use.

The ffi.callback() decorator also accepts the optional argument error, and from CFFI version 1.2 the optional
argument onerror. These two work in the same way as described above for extern “Python”.

4.8 Windows: calling conventions

On Win32, functions can have two main calling conventions: either “cdecl” (the default), or “stdcall” (also known as
“WINAPI”). There are also other rare calling conventions, but these are not supported. New in version 1.3.

When you issue calls from Python to C, the implementation is such that it works with any of these two main calling
conventions; you don’t have to specify it. However, if you manipulate variables of type “function pointer” or declare
callbacks, then the calling convention must be correct. This is done by writing __cdecl or __stdcall in the type,
like in C:

@ffi.callback("int __stdcall(int, int)")
def AddNumbers(x, y):

return x + y

or:

32 Chapter 4. Using the ffi/lib objects

CFFI Documentation, Release 1.9.1

ffibuilder.cdef("""
struct foo_s {

int (__stdcall *MyFuncPtr)(int, int);
};

""")

__cdecl is supported but is always the default so it can be left out. In the cdef(), you can also use WINAPI
as equivalent to __stdcall. As mentioned above, it is mostly not needed (but doesn’t hurt) to say WINAPI or
__stdcall when declaring a plain function in the cdef(). (The difference can still be seen if you take explicitly
a pointer to this function with ffi.addressof(), or if the function is extern "Python".)

These calling convention specifiers are accepted but ignored on any platform other than 32-bit Windows.

In CFFI versions before 1.3, the calling convention specifiers are not recognized. In API mode, you could work around
it by using an indirection, like in the example in the section about Callbacks ("example_build.py"). There was
no way to use stdcall callbacks in ABI mode.

4.9 FFI Interface

(The reference for the FFI interface has been moved to the next page.)

4.9. FFI Interface 33

CFFI Documentation, Release 1.9.1

34 Chapter 4. Using the ffi/lib objects

CHAPTER 5

CFFI Reference

Contents

• CFFI Reference
– FFI Interface

* ffi.NULL
* ffi.error
* ffi.new()
* ffi.cast()
* ffi.errno, ffi.getwinerror()
* ffi.string(), ffi.unpack()
* ffi.buffer(), ffi.from_buffer()
* ffi.memmove()
* ffi.typeof(), ffi.sizeof(), ffi.alignof()
* ffi.offsetof(), ffi.addressof()
* ffi.CData, ffi.CType
* ffi.gc()
* ffi.new_handle(), ffi.from_handle()
* ffi.dlopen(), ffi.dlclose()
* ffi.new_allocator()
* ffi.init_once()
* ffi.getctype(), ffi.list_types()

– Conversions

5.1 FFI Interface

5.1.1 ffi.NULL

ffi.NULL: a constant NULL of type <cdata ’void *’>.

5.1.2 ffi.error

ffi.error: the Python exception raised in various cases. (Don’t confuse it with ffi.errno.)

35

CFFI Documentation, Release 1.9.1

5.1.3 ffi.new()

ffi.new(cdecl, init=None): allocate an instance according to the specified C type and return a pointer to it. The
specified C type must be either a pointer or an array: new(’X *’) allocates an X and returns a pointer to it, whereas
new(’X[n]’) allocates an array of n X’es and returns an array referencing it (which works mostly like a pointer,
like in C). You can also use new(’X[]’, n) to allocate an array of a non-constant length n. See the detailed
documentation for other valid initializers.

When the returned <cdata> object goes out of scope, the memory is freed. In other words the returned <cdata>
object has ownership of the value of type cdecl that it points to. This means that the raw data can be used as long as
this object is kept alive, but must not be used for a longer time. Be careful about that when copying the pointer to the
memory somewhere else, e.g. into another structure.

5.1.4 ffi.cast()

ffi.cast(“C type”, value): similar to a C cast: returns an instance of the named C type initialized with the given value.
The value is casted between integers or pointers of any type.

5.1.5 ffi.errno, ffi.getwinerror()

ffi.errno: the value of errno received from the most recent C call in this thread, and passed to the following C call.
(This is a read-write property.)

ffi.getwinerror(code=-1): on Windows, in addition to errno we also save and restore the GetLastError() value
across function calls. This function returns this error code as a tuple (code, message), adding a readable message
like Python does when raising WindowsError. If the argument code is given, format that code into a message instead
of using GetLastError(). (Note that it is also possible to declare and call the GetLastError() function as
usual.)

5.1.6 ffi.string(), ffi.unpack()

ffi.string(cdata, [maxlen]): return a Python string (or unicode string) from the ‘cdata’.

• If ‘cdata’ is a pointer or array of characters or bytes, returns the null-terminated string. The returned string
extends until the first null character. The ‘maxlen’ argument limits how far we look for a null character. If
‘cdata’ is an array then ‘maxlen’ defaults to its length. See ffi.unpack() below for a way to continue past
the first null character. Python 3: this returns a bytes, not a str.

• If ‘cdata’ is a pointer or array of wchar_t, returns a unicode string following the same rules.

• If ‘cdata’ is a single character or byte or a wchar_t, returns it as a byte string or unicode string. (Note that in
some situation a single wchar_t may require a Python unicode string of length 2.)

• If ‘cdata’ is an enum, returns the value of the enumerator as a string. If the value is out of range, it is simply
returned as the stringified integer.

ffi.unpack(cdata, length): unpacks an array of C data of the given length, returning a Python string/unicode/list. The
‘cdata’ should be a pointer; if it is an array it is first converted to the pointer type. New in version 1.6.

• If ‘cdata’ is a pointer to ‘char’, returns a byte string. It does not stop at the first null. (An equivalent way to do
that is ffi.buffer(cdata, length)[:].)

• If ‘cdata’ is a pointer to ‘wchar_t’, returns a unicode string. (‘length’ is measured in number of wchar_t; it is
not the size in bytes.)

36 Chapter 5. CFFI Reference

CFFI Documentation, Release 1.9.1

• If ‘cdata’ is a pointer to anything else, returns a list, of the given ‘length’. (A slower way to do that is
[cdata[i] for i in range(length)].)

5.1.7 ffi.buffer(), ffi.from_buffer()

ffi.buffer(cdata, [size]): return a buffer object that references the raw C data pointed to by the given ‘cdata’, of ‘size’
bytes. The ‘cdata’ must be a pointer or an array. If unspecified, the size of the buffer is either the size of what cdata
points to, or the whole size of the array. Getting a buffer is useful because you can read from it without an extra copy,
or write into it to change the original value.

Here are a few examples of where buffer() would be useful:

• use file.write() and file.readinto() with such a buffer (for files opened in binary mode)

• use ffi.buffer(mystruct[0])[:] = socket.recv(len(buffer)) to read into a struct over a
socket, rewriting the contents of mystruct[0]

Remember that like in C, you can use array + index to get the pointer to the index’th item of an array. (In C you
might more naturally write &array[index], but that is equivalent.)

The returned object is not a built-in buffer nor memoryview object, because these objects’ API changes too much
across Python versions. Instead it has the following Python API (a subset of Python 2’s buffer):

• buf[:] or bytes(buf): fetch a copy as a regular byte string (or buf[start:end] for a part)

• buf[:] = newstr: change the original content (or buf[start:end] = newstr)

• len(buf), buf[index], buf[index] = newchar: access as a sequence of characters.

The buffer object returned by ffi.buffer(cdata) keeps alive the cdata object: if it was originally an owning
cdata, then its owned memory will not be freed as long as the buffer is alive.

Python 2/3 compatibility note: you should avoid using str(buf), because it gives inconsistent results between
Python 2 and Python 3. (This is similar to how str() gives inconsistent results on regular byte strings). Use
buf[:] instead.

ffi.from_buffer(python_buffer): return a <cdata ’char[]’> that points to the data of the given Python object,
which must support the buffer interface. This is the opposite of ffi.buffer(). It gives a reference to the existing
data, not a copy; for this reason, and for PyPy compatibility, it does not work with the built-in type unicode; nor
buffers/memoryviews to byte or unicode strings. It is meant to be used on objects containing large quantities of raw
data, like bytearrays or array.array or numpy arrays. It supports both the old buffer API (in Python 2.x) and the
new memoryview API. Note that if you pass a read-only buffer object, you still get a regular <cdata ’char[]’>;
it is your responsibility not to write there if the original buffer doesn’t expect you to. The original object is kept alive
(and, in case of memoryview, locked) as long as the cdata object returned by ffi.from_buffer() is alive.

A common use case is calling a C function with some char * that points to the internal buffer of a Python object;
for this case you can directly pass ffi.from_buffer(python_buffer) as argument to the call.

New in version 1.7: the python_buffer can be a bytearray object. Be careful: if the bytearray gets resized (e.g. its
.append() method is called), then the <cdata> object will point to freed memory and must not be used any more.

New in version 1.8: the python_buffer can be a byte string (but still not a buffer/memoryview on a string).

5.1.8 ffi.memmove()

ffi.memmove(dest, src, n): copy n bytes from memory area src to memory area dest. See examples below. Inspired
by the C functions memcpy() and memmove()—like the latter, the areas can overlap. Each of dest and src can
be either a cdata pointer or a Python object supporting the buffer/memoryview interface. In the case of dest, the

5.1. FFI Interface 37

CFFI Documentation, Release 1.9.1

buffer/memoryview must be writable. Unlike ffi.from_buffer(), there are no restrictions on the type of buffer.
New in version 1.3. Examples:

• ffi.memmove(myptr, b"hello", 5) copies the 5 bytes of b"hello" to the area that myptr points
to.

• ba = bytearray(100); ffi.memmove(ba, myptr, 100) copies 100 bytes from myptr into the
bytearray ba.

• ffi.memmove(myptr + 1, myptr, 100) shifts 100 bytes from the memory at myptr to the memory
at myptr + 1.

5.1.9 ffi.typeof(), ffi.sizeof(), ffi.alignof()

ffi.typeof(“C type” or cdata object): return an object of type <ctype> corresponding to the parsed string, or to the
C type of the cdata instance. Usually you don’t need to call this function or to explicitly manipulate <ctype> objects
in your code: any place that accepts a C type can receive either a string or a pre-parsed ctype object (and because of
caching of the string, there is no real performance difference). It can still be useful in writing typechecks, e.g.:

def myfunction(ptr):
assert ffi.typeof(ptr) is ffi.typeof("foo_t*")
...

Note also that the mapping from strings like "foo_t*" to the <ctype> objects is stored in some internal dictionary.
This guarantees that there is only one <ctype ’foo_t *’> object, so you can use the is operator to compare it.
The downside is that the dictionary entries are immortal for now. In the future, we may add transparent reclamation of
old, unused entries. In the meantime, note that using strings like "int[%d]" % length to name a type will create
many immortal cached entries if called with many different lengths.

ffi.sizeof(“C type” or cdata object): return the size of the argument in bytes. The argument can be either a C type, or
a cdata object, like in the equivalent sizeof operator in C.

For array = ffi.new("T[]", n), then ffi.sizeof(array) returns n * ffi.sizeof("T"). New
in version 1.9: Similar rules apply for structures with aa variable-sized array at the end. More precisely, if p was
returned by ffi.new("struct foo *", ...), then ffi.sizeof(p[0]) now returns the total allocated
size. In previous versions, it used to just return ffi.sizeof(ffi.typeof(p[0])), which is the size of the
structure ignoring the variable-sized part. (Note that due to alignment, it is possible for ffi.sizeof(p[0]) to
return a value smaller than ffi.sizeof(ffi.typeof(p[0])).)

ffi.alignof(“C type”): return the natural alignment size in bytes of the argument. Corresponds to the __alignof__
operator in GCC.

5.1.10 ffi.offsetof(), ffi.addressof()

ffi.offsetof(“C struct or array type”, *fields_or_indexes): return the offset within the struct of the given field.
Corresponds to offsetof() in C.

You can give several field names in case of nested structures. You can also give numeric values which correspond to
array items, in case of a pointer or array type. For example, ffi.offsetof("int[5]", 2) is equal to the size
of two integers, as is ffi.offsetof("int *", 2).

ffi.addressof(cdata, *fields_or_indexes): limited equivalent to the ‘&’ operator in C:

1. ffi.addressof(<cdata ’struct-or-union’>) returns a cdata that is a pointer to this struct or union.
The returned pointer is only valid as long as the original cdata object is; be sure to keep it alive if it was obtained
directly from ffi.new().

38 Chapter 5. CFFI Reference

CFFI Documentation, Release 1.9.1

2. ffi.addressof(<cdata>, field-or-index...) returns the address of a field or array item inside the
given structure or array. In case of nested structures or arrays, you can give more than one field or index to look
recursively. Note that ffi.addressof(array, index) can also be expressed as array + index: this is
true both in CFFI and in C, where &array[index] is just array + index.

3. ffi.addressof(<library>, "name") returns the address of the named function or global variable from
the given library object. For functions, it returns a regular cdata object containing a pointer to the function.

Note that the case 1. cannot be used to take the address of a primitive or pointer, but only a struct or union. It would
be difficult to implement because only structs and unions are internally stored as an indirect pointer to the data. If you
need a C int whose address can be taken, use ffi.new("int[1]") in the first place; similarly, for a pointer, use
ffi.new("foo_t *[1]").

5.1.11 ffi.CData, ffi.CType

ffi.CData, ffi.CType: the Python type of the objects referred to as <cdata> and <ctype> in the rest of this docu-
ment. Note that some cdata objects may be actually of a subclass of ffi.CData, and similarly with ctype, so you
should check with if isinstance(x, ffi.CData). Also, <ctype> objects have a number of attributes for
introspection: kind and cname are always present, and depending on the kind they may also have item, length,
fields, args, result, ellipsis, abi, elements and relements.

5.1.12 ffi.gc()

ffi.gc(cdata, destructor): return a new cdata object that points to the same data. Later, when this new cdata
object is garbage-collected, destructor(old_cdata_object) will be called. Example of usage: ptr =
ffi.gc(lib.malloc(42), lib.free). Note that like objects returned by ffi.new(), the returned pointer
objects have ownership, which means the destructor is called as soon as this exact returned object is garbage-collected.

ffi.gc(ptr, None): removes the ownership on a object returned by a regular call to ffi.gc, and no destructor will be
called when it is garbage-collected. The object is modified in-place, and the function returns None. New in version
1.7: ffi.gc(ptr, None)

Note that ffi.gc() should be avoided for large memory allocations or for limited resources. This is particularly
true on PyPy: its GC does not know how much memory or how many resources the returned ptr holds. It will only
run its GC when enough memory it knows about has been allocated (and thus run the destructor possibly later than
you would expect). Moreover, the destructor is called in whatever thread PyPy is at that moment, which might be
a problem for some C libraries. In these cases, consider writing a wrapper class with custom __enter__() and
__exit__() methods, allocating and freeing the C data at known points in time, and using it in a with statement.

5.1.13 ffi.new_handle(), ffi.from_handle()

ffi.new_handle(python_object): return a non-NULL cdata of type void * that contains an opaque reference
to python_object. You can pass it around to C functions or store it into C structures. Later, you can use
ffi.from_handle(p) to retrieve the original python_object from a value with the same void * pointer. Call-
ing ffi.from_handle(p) is invalid and will likely crash if the cdata object returned by new_handle() is not kept alive!

See a typical usage example below.

(In case you are wondering, this void * is not the PyObject * pointer. This wouldn’t make sense on PyPy
anyway.)

The ffi.new_handle()/from_handle() functions conceptually work like this:

• new_handle() returns cdata objects that contains references to the Python objects; we call them collectively
the “handle” cdata objects. The void * value in these handle cdata objects are random but unique.

5.1. FFI Interface 39

CFFI Documentation, Release 1.9.1

• from_handle(p) searches all live “handle” cdata objects for the one that has the same value p as its void
* value. It then returns the Python object referenced by that handle cdata object. If none is found, you get
“undefined behavior” (i.e. crashes).

The “handle” cdata object keeps the Python object alive, similar to how ffi.new() returns a cdata object that keeps
a piece of memory alive. If the handle cdata object itself is not alive any more, then the association void * ->
python_object is dead and from_handle() will crash.

New in version 1.4: two calls to new_handle(x) are guaranteed to return cdata objects with different void *
values, even with the same x. This is a useful feature that avoids issues with unexpected duplicates in the follow-
ing trick: if you need to keep alive the “handle” until explicitly asked to free it, but don’t have a natural Python-
side place to attach it to, then the easiest is to add() it to a global set. It can later be removed from the set by
global_set.discard(p), with p any cdata object whose void * value compares equal. Usage example:
suppose you have a C library where you must call a lib.process_document() function which invokes some
callback. The process_document() function receives a pointer to a callback and a void * argument. The
callback is then invoked with the void *data argument that is equal to the provided value. In this typical case, you
can implement it like this (out-of-line API mode):

class MyDocument:
...

def process(self):
h = ffi.new_handle(self)
lib.process_document(lib.my_callback, # the callback

h, # 'void *data'
args...)

'h' stays alive until here, which means that the
ffi.from_handle() done in my_callback() during
the call to process_document() is safe

def callback(self, arg1, arg2):
...

the actual callback is this one-liner global function:
@ffi.def_extern
def my_callback(arg1, arg2, data):

return ffi.from_handle(data).callback(arg1, arg2)

5.1.14 ffi.dlopen(), ffi.dlclose()

ffi.dlopen(libpath, [flags]): opens and returns a “handle” to a dynamic library, as a <lib> object. See Preparing and
Distributing modules.

ffi.dlclose(lib): explicitly closes a <lib> object returned by ffi.dlopen().

ffi.RLTD_...: constants: flags for ffi.dlopen().

5.1.15 ffi.new_allocator()

ffi.new_allocator(alloc=None, free=None, should_clear_after_alloc=True): returns a new allocator. An “allocator”
is a callable that behaves like ffi.new() but uses the provided low-level alloc and free functions. New in
version 1.2.

alloc() is invoked with the size as sole argument. If it returns NULL, a MemoryError is raised. Later, if
free is not None, it will be called with the result of alloc() as argument. Both can be either Python func-
tion or directly C functions. If only free is None, then no free function is called. If both alloc and free

40 Chapter 5. CFFI Reference

CFFI Documentation, Release 1.9.1

are None, the default alloc/free combination is used. (In other words, the call ffi.new(*args) is equivalent
to ffi.new_allocator()(*args).)

If should_clear_after_alloc is set to False, then the memory returned by alloc() is assumed to be already
cleared (or you are fine with garbage); otherwise CFFI will clear it.

5.1.16 ffi.init_once()

ffi.init_once(function, tag): run function() once. The tag should be a primitive object, like a string, that iden-
tifies the function: function() is only called the first time we see the tag. The return value of function()
is remembered and returned by the current and all future init_once() with the same tag. If init_once() is
called from multiple threads in parallel, all calls block until the execution of function() is done. If function()
raises an exception, it is propagated and nothing is cached (i.e. function() will be called again, in case we catch
the exception and try init_once() again). New in version 1.4.

Example:

from _xyz_cffi import ffi, lib

def initlib():
lib.init_my_library()

def make_new_foo():
ffi.init_once(initlib, "init")
return lib.make_foo()

init_once() is optimized to run very quickly if function() has already been called. (On PyPy, the cost is
zero—the JIT usually removes everything in the machine code it produces.)

Note: one motivation for init_once() is the CPython notion of “subinterpreters” in the embedded case. If you are
using the out-of-line API mode, function() is called only once even in the presence of multiple subinterpreters,
and its return value is shared among all subinterpreters. The goal is to mimic the way traditional CPython C extension
modules have their init code executed only once in total even if there are subinterpreters. In the example above, the C
function init_my_library() is called once in total, not once per subinterpreter. For this reason, avoid Python-
level side-effects in function() (as they will only be applied in the first subinterpreter to run); instead, return a
value, as in the following example:

def init_get_max():
return lib.initialize_once_and_get_some_maximum_number()

def process(i):
if i > ffi.init_once(init_get_max, "max"):

raise IndexError("index too large!")
...

5.1.17 ffi.getctype(), ffi.list_types()

ffi.getctype(“C type” or <ctype>, extra=””): return the string representation of the given C type. If non-
empty, the “extra” string is appended (or inserted at the right place in more complicated cases); it can
be the name of a variable to declare, or an extra part of the type like "*" or "[5]". For example
ffi.getctype(ffi.typeof(x), "*") returns the string representation of the C type “pointer to the same
type than x”; and ffi.getctype("char[80]", "a") == "char a[80]".

ffi.list_types(): Returns the user type names known to this FFI instance. This returns a tuple containing three lists of
names: (typedef_names, names_of_structs, names_of_unions). New in version 1.6.

5.1. FFI Interface 41

https://bitbucket.org/cffi/cffi/issues/233/

CFFI Documentation, Release 1.9.1

5.2 Conversions

This section documents all the conversions that are allowed when writing into a C data structure (or passing arguments
to a function call), and reading from a C data structure (or getting the result of a function call). The last column gives
the type-specific operations allowed.

C type writing into reading from other
operations

integers
and
enums
(*****)

an integer or anything on which
int() works (but not a float!).
Must be within range.

a Python int or
long, depending
on the type

int(), bool()
(******)

char a string of length 1 or another
<cdata char>

a string of length
1

int(), bool()

wchar_t a unicode of length 1 (or maybe
2 if surrogates) or another <cdata
wchar_t>

a unicode of
length 1 (or
maybe 2 if
surrogates)

int(), bool()

float,
double

a float or anything on which
float() works

a Python float float(), int(),
bool()

long
double

another <cdata> with a long
double, or anything on which
float() works

a <cdata>, to
avoid loosing
precision (***)

float(), int(),
bool()

pointers another <cdata> with a
compatible type (i.e. same type
or void*, or as an array instead)
(*)

a <cdata>
[] (****),
+, -,
bool()

void * another <cdata> with any pointer
or array type

pointers
to
structure
or union

same as pointers [], +, -,
bool(), and
read/write
struct fields

function
pointers

same as pointers bool(), call (**)

arrays a list or tuple of items
a <cdata>

len(), iter(), []
(****), +, -

char[] same as arrays, or a Python string len(), iter(),
[], +, -

wchar_t[]same as arrays, or a Python
unicode

len(), iter(),
[], +, -

structure a list or tuple or dict of the field
values, or a same-type <cdata> a <cdata> read/write

fields
union same as struct, but with at most

one field
read/write
fields

(*) item * is item[] in function arguments:

In a function declaration, as per the C standard, a item * argument is identical to a item[] argument
(and ffi.cdef() doesn’t record the difference). So when you call such a function, you can pass
an argument that is accepted by either C type, like for example passing a Python string to a char *
argument (because it works for char[] arguments) or a list of integers to a int * argument (it works
for int[] arguments). Note that even if you want to pass a single item, you need to specify it in a list
of length 1; for example, a struct point_s * argument might be passed as [[x, y]] or [{’x’:

42 Chapter 5. CFFI Reference

CFFI Documentation, Release 1.9.1

5, ’y’: 10}].

As an optimization, CFFI assumes that a function with a char * argument to which you pass a Python
string will not actually modify the array of characters passed in, and so passes directly a pointer inside the
Python string object. (On PyPy, this optimization is only available since PyPy 5.4 with CFFI 1.8.)

(**) C function calls are done with the GIL released.

Note that we assume that the called functions are not using the Python API from Python.h. For example,
we don’t check afterwards if they set a Python exception. You may work around it, but mixing CFFI with
Python.h is not recommended. (If you do that, on PyPy and on some platforms like Windows, you may
need to explicitly link to libpypy-c.dll to access the CPython C API compatibility layer; indeed,
CFFI-generated modules on PyPy don’t link to libpypy-c.dll on their own. But really, don’t do that
in the first place.)

(***) long double support:

We keep long double values inside a cdata object to avoid loosing precision. Normal Python floating-
point numbers only contain enough precision for a double. If you really want to convert such an object
to a regular Python float (i.e. a C double), call float(). If you need to do arithmetic on such numbers
without any precision loss, you need instead to define and use a family of C functions like long double
add(long double a, long double b);.

(****) Slicing with x[start:stop]:

Slicing is allowed, as long as you specify explicitly both start and stop (and don’t give any step).
It gives a cdata object that is a “view” of all items from start to stop. It is a cdata of type “array” (so
e.g. passing it as an argument to a C function would just convert it to a pointer to the start item). As
with indexing, negative bounds mean really negative indices, like in C. As for slice assignment, it accepts
any iterable, including a list of items or another array-like cdata object, but the length must match. (Note
that this behavior differs from initialization: e.g. you can say chararray[10:15] = "hello", but
the assigned string must be of exactly the correct length; no implicit null character is added.)

(*****) Enums are handled like ints:

Like C, enum types are mostly int types (unsigned or signed, int or long; note that GCC’s first choice is
unsigned). Reading an enum field of a structure, for example, returns you an integer. To compare their
value symbolically, use code like if x.field == lib.FOO. If you really want to get their value as
a string, use ffi.string(ffi.cast("the_enum_type", x.field)).

(******) bool() on a primitive cdata:

New in version 1.7. In previous versions, it only worked on pointers; for primitives it always returned
True.

5.2. Conversions 43

CFFI Documentation, Release 1.9.1

44 Chapter 5. CFFI Reference

CHAPTER 6

Preparing and Distributing modules

Contents

• Preparing and Distributing modules
– ffi/ffibuilder.cdef(): declaring types and functions
– ffi.dlopen(): loading libraries in ABI mode
– ffibuilder.set_source(): preparing out-of-line modules
– Letting the C compiler fill the gaps
– ffibuilder.compile() etc.: compiling out-of-line modules
– ffi/ffibuilder.include(): combining multiple CFFI interfaces
– ffi.cdef() limitations
– Debugging dlopen’ed C libraries
– ffi.verify(): in-line API-mode
– Upgrading from CFFI 0.9 to CFFI 1.0

There are three or four different ways to use CFFI in a project. In order of complexity:

• The “in-line”, “ABI mode”:

import cffi

ffi = cffi.FFI()
ffi.cdef("C-like declarations")
lib = ffi.dlopen("libpath")

use ffi and lib here

• The “out-of-line”, but still “ABI mode”, useful to organize the code and reduce the import time:

in a separate file "package/foo_build.py"
import cffi

ffibuilder = cffi.FFI()
ffibuilder.set_source("package._foo", None)
ffibuilder.cdef("C-like declarations")

if __name__ == "__main__":
ffibuilder.compile()

Running python foo_build.py produces a file _foo.py, which can then be imported in the main pro-
gram:

45

CFFI Documentation, Release 1.9.1

from package._foo import ffi
lib = ffi.dlopen("libpath")

use ffi and lib here

• The “out-of-line”, “API mode” gives you the most flexibility to access a C library at the level of C, instead of
at the binary level:

in a separate file "package/foo_build.py"
import cffi

ffibuilder = cffi.FFI()
ffibuilder.set_source("package._foo", r"""real C code""") # <=
ffibuilder.cdef("C-like declarations with '...'")

if __name__ == "__main__":
ffibuilder.compile(verbose=True)

Running python foo_build.py produces a file _foo.c and invokes the C compiler to turn it into a file
_foo.so (or _foo.pyd or _foo.dylib). It is a C extension module which can be imported in the main
program:

from package._foo import ffi, lib
no ffi.dlopen()

use ffi and lib here

• Finally, you can (but don’t have to) use CFFI’s Distutils or Setuptools integration when writing a setup.py.
For Distutils (only in out-of-line API mode):

setup.py (requires CFFI to be installed first)
from distutils.core import setup

import foo_build # possibly with sys.path tricks to find it

setup(
...,
ext_modules=[foo_build.ffibuilder.distutils_extension()],

)

For Setuptools (out-of-line, but works in ABI or API mode; recommended):

setup.py (with automatic dependency tracking)
from setuptools import setup

setup(
...,
setup_requires=["cffi>=1.0.0"],
cffi_modules=["package/foo_build.py:ffibuilder"],
install_requires=["cffi>=1.0.0"],

)

• Note that some bundler tools that try to find all modules used by a project, like PyInstaller, will miss
_cffi_backend in the out-of-line mode because your program contains no explicit import cffi or
import _cffi_backend. You need to add _cffi_backend explicitly (as a “hidden import” in PyIn-
staller, but it can also be done more generally by adding the line import _cffi_backend in your main
program).

Note that CFFI actually contains two different FFI classes. The page Using the ffi/lib objects describes the common
functionality. It is what you get in the from package._foo import ffi lines above. On the other hand, the

46 Chapter 6. Preparing and Distributing modules

CFFI Documentation, Release 1.9.1

extended FFI class is the one you get from import cffi; ffi_or_ffibuilder = cffi.FFI(). It has
the same functionality (for in-line use), but also the extra methods described below (to prepare the FFI). NOTE: We use
the name ffibuilder instead of ffi in the out-of-line context, when the code is about producing a _foo.so file;
this is an attempt to distinguish it from the different ffi object that you get by later saying from _foo import
ffi.

The reason for this split of functionality is that a regular program using CFFI out-of-line does not need to import the
cffi pure Python package at all. (Internally it still needs _cffi_backend, a C extension module that comes with
CFFI; this is why CFFI is also listed in install_requires=.. above. In the future this might be split into a
different PyPI package that only installs _cffi_backend.)

Note that a few small differences do exist: notably, from _foo import ffi returns an object of a type writ-
ten in C, which does not let you add random attributes to it (nor does it have all the underscore-prefixed internal
attributes of the Python version). Similarly, the lib objects returned by the C version are read-only, apart from
writes to global variables. Also, lib.__dict__ does not work before version 1.2 or if lib happens to declare
a name called __dict__ (use instead dir(lib)). The same is true for lib.__class__, lib.__all__ and
lib.__name__ added in successive versions.

6.1 ffi/ffibuilder.cdef(): declaring types and functions

ffi/ffibuilder.cdef(source): parses the given C source. It registers all the functions, types, constants and global vari-
ables in the C source. The types can be used immediately in ffi.new() and other functions. Before you can access
the functions and global variables, you need to give ffi another piece of information: where they actually come from
(which you do with either ffi.dlopen() or ffi.set_source()). The C source is parsed internally (using
pycparser). This code cannot contain #include. It should typically be a self-contained piece of declarations
extracted from a man page. The only things it can assume to exist are the standard types:

• char, short, int, long, long long (both signed and unsigned)

• float, double, long double

• intN_t, uintN_t (for N=8,16,32,64), intptr_t, uintptr_t, ptrdiff_t, size_t, ssize_t

• wchar_t (if supported by the backend)

• _Bool and bool (equivalent). If not directly supported by the C compiler, this is declared with the size of
unsigned char.

• FILE. You can declare C functions taking a FILE * argument and call them with a Python file object. If
needed, you can also do c_f = ffi.cast("FILE *", fileobj) and then pass around c_f.

• all common Windows types are defined if you run on Windows (DWORD, LPARAM, etc.). Exception:
TBYTE TCHAR LPCTSTR PCTSTR LPTSTR PTSTR PTBYTE PTCHAR are not automatically defined;
see ffi.set_unicode().

• the other standard integer types from stdint.h, like intmax_t, as long as they map to integers of 1, 2, 4 or 8
bytes. Larger integers are not supported.

The declarations can also contain “...” at various places; these are placeholders that will be completed by the
compiler. More information about it below in Letting the C compiler fill the gaps.

Note that all standard type names listed above are handled as defaults only (apart from the ones that are keywords
in the C language). If your cdef contains an explicit typedef that redefines one of the types above, then the default
described above is ignored. (This is a bit hard to implement cleanly, so in some corner cases it might fail, notably with
the error Multiple type specifiers with a type tag. Please report it as a bug if it does.)

Multiple calls to ffi.cdef() are possible. Beware that it can be slow to call ffi.cdef() a lot of times, a
consideration that is important mainly in in-line mode.

6.1. ffi/ffibuilder.cdef(): declaring types and functions 47

http://msdn.microsoft.com/en-us/library/windows/desktop/aa383751%28v=vs.85%29.aspx

CFFI Documentation, Release 1.9.1

The ffi.cdef() call takes an optional argument packed: if True, then all structs declared within this cdef are
“packed”. (If you need both packed and non-packed structs, use several cdefs in sequence.) This has a meaning
similar to __attribute__((packed)) in GCC. It specifies that all structure fields should have an alignment
of one byte. (Note that the packed attribute has no effect on bit fields so far, which mean that they may be packed
differently than on GCC. Also, this has no effect on structs declared with "...;"—more about it later in Letting the
C compiler fill the gaps.)

Note that you can use the type-qualifiers const and restrict (but not __restrict or __restrict__) in
the cdef(), but this has no effect on the cdata objects that you get at run-time (they are never const). The effect
is limited to knowing if a global variable is meant to be a constant or not. Also, new in version 1.3: when using
set_source() or verify(), these two qualifiers are copied from the cdef to the generated C code; this fixes
warnings by the C compiler.

Note a trick if you copy-paste code from sources in which there are extra macros (for example, the Windows docu-
mentation uses SAL annotations like _In_ or _Out_). These hints must be removed in the string given to cdef(), but
it can be done programmatically like this:

ffi.cdef(re.sub(r"\b(_In_|_Inout_|_Out_|_Outptr_)(opt_)?\b", " ",
"""
DWORD WINAPI GetModuleFileName(

_In_opt_ HMODULE hModule,
Out LPTSTR lpFilename,
In DWORD nSize

);
"""))

ffi.set_unicode(enabled_flag): Windows: if enabled_flag is True, enable the UNICODE and _UNICODE de-
fines in C, and declare the types TBYTE TCHAR LPCTSTR PCTSTR LPTSTR PTSTR PTBYTE PTCHAR to be
(pointers to) wchar_t. If enabled_flag is False, declare these types to be (pointers to) plain 8-bit characters.
(These types are not predeclared at all if you don’t call set_unicode().)

The reason behind this method is that a lot of standard functions have two versions, like MessageBoxA() and
MessageBoxW(). The official interface is MessageBox() with arguments like LPTCSTR. Depending on whether
UNICODE is defined or not, the standard header renames the generic function name to one of the two specialized
versions, and declares the correct (unicode or not) types.

Usually, the right thing to do is to call this method with True. Be aware (particularly on Python 2) that, afterwards,
you need to pass unicode strings as arguments instead of byte strings.

6.2 ffi.dlopen(): loading libraries in ABI mode

ffi.dlopen(libpath, [flags]): this function opens a shared library and returns a module-like library ob-
ject. Use this when you are fine with the limitations of ABI-level access to the system. In case of doubt, read again
ABI versus API in the overview.

You can use the library object to call the functions previously declared by ffi.cdef(), to read constants, and to
read or write global variables. Note that you can use a single cdef() to declare functions from multiple libraries, as
long as you load each of them with dlopen() and access the functions from the correct one.

The libpath is the file name of the shared library, which can contain a full path or not (in which case it is searched
in standard locations, as described in man dlopen), with extensions or not. Alternatively, if libpath is None, it
returns the standard C library (which can be used to access the functions of glibc, on Linux).

Let me state it again: this gives ABI-level access to the library, so you need to have all types declared manually exactly
as they were while the library was made. No checking is done. Mismatches can cause random crashes.

48 Chapter 6. Preparing and Distributing modules

CFFI Documentation, Release 1.9.1

Note that only functions and global variables live in library objects; the types exist in the ffi instance independently
of library objects. This is due to the C model: the types you declare in C are not tied to a particular library, as long
as you #include their headers; but you cannot call functions from a library without linking it in your program, as
dlopen() does dynamically in C.

For the optional flags argument, see man dlopen (ignored on Windows). It defaults to ffi.RTLD_NOW.

This function returns a “library” object that gets closed when it goes out of scope. Make sure you keep the library
object around as long as needed. (Alternatively, the out-of-line FFIs have a method ffi.dlclose(lib).) Note:
the old version of ffi.dlopen() from the in-line ABI mode tries to use ctypes.util.find_library()
if it cannot directly find the library. The newer out-of-line ffi.dlopen() no longer does it automat-
ically; it simply passes the argument it receives to the underlying dlopen() or LoadLibrary() func-
tion. If needed, it is up to you to use ctypes.util.find_library() or any other way to look for
the library’s filename. This also means that ffi.dlopen(None) no longer work on Windows; try instead
ffi.dlopen(ctypes.util.find_library(’c’)).

6.3 ffibuilder.set_source(): preparing out-of-line modules

ffibuilder.set_source(module_name, c_header_source, [**keywords...]): prepare the ffi for producing out-of-line
an external module called module_name.

ffibuilder.set_source() by itself does not write any file, but merely records its arguments for later. It can
therefore be called before or after ffibuilder.cdef().

In ABI mode, you call ffibuilder.set_source(module_name, None). The argument is the name (or
dotted name inside a package) of the Python module to generate. In this mode, no C compiler is called.

In API mode, the c_header_source argument is a string that will be pasted into the .c file generated. Typically, it
is specified as r""" ...multiple lines of C code... """ (the r prefix allows these lines to contain
a literal \n, for example). This piece of C code typically contains some #include, but may also contain more, like
definitions for custom “wrapper” C functions. The goal is that the .c file can be generated like this:

// C file "module_name.c"
#include <Python.h>

...c_header_source...

...magic code...

where the “magic code” is automatically generated from the cdef(). For example, if the cdef() contains int
foo(int x); then the magic code will contain logic to call the function foo() with an integer argument, itself
wrapped inside some CPython or PyPy-specific code.

The keywords arguments to set_source() control how the C compiler will be called. They are passed directly
to distutils or setuptools and include at least sources, include_dirs, define_macros, undef_macros,
libraries, library_dirs, extra_objects, extra_compile_args and extra_link_args. You
typically need at least libraries=[’foo’] in order to link with libfoo.so or libfoo.so.X.Y, or
foo.dll on Windows. The sources is a list of extra .c files compiled and linked together (the file
module_name.c shown above is always generated and automatically added as the first argument to sources).
See the distutils documentations for more information about the other arguments.

An extra keyword argument processed internally is source_extension, defaulting to ".c". The file generated
will be actually called module_name + source_extension. Example for C++ (but note that there are still a
few known issues of C-versus-C++ compatibility):

ffibuilder.set_source("mymodule", r'''
extern "C" {

6.3. ffibuilder.set_source(): preparing out-of-line modules 49

http://docs.python.org/distutils/setupscript.html#describing-extension-modules
https://pythonhosted.org/setuptools/setuptools.html
http://docs.python.org/distutils/setupscript.html#library-options

CFFI Documentation, Release 1.9.1

int somefunc(int somearg) { return real_cpp_func(somearg); }
}
''', source_extension='.cpp')

6.4 Letting the C compiler fill the gaps

If you are using a C compiler (“API mode”), then:

• functions taking or returning integer or float-point arguments can be misdeclared: if e.g. a function is declared
by cdef() as taking a int, but actually takes a long, then the C compiler handles the difference.

• other arguments are checked: you get a compilation warning or error if you pass a int * argument to a function
expecting a long *.

• similarly, most other things declared in the cdef() are checked, to the best we implemented so far; mistakes
give compilation warnings or errors.

Moreover, you can use “...” (literally, dot-dot-dot) in the cdef() at various places, in order to ask the C compiler
to fill in the details. These places are:

• structure declarations: any struct { } that ends with “...;” as the last “field” is partial: it may be missing
fields and/or have them declared out of order. This declaration will be corrected by the compiler. (But note that
you can only access fields that you declared, not others.) Any struct declaration which doesn’t use “...” is
assumed to be exact, but this is checked: you get an error if it is not correct.

• integer types: the syntax “typedef int... foo_t;” declares the type foo_t as an integer type
whose exact size and signedness is not specified. The compiler will figure it out. (Note that this requires
set_source(); it does not work with verify().) The int... can be replaced with long... or
unsigned long long... or any other primitive integer type, with no effect. The type will always map to
one of (u)int(8,16,32,64)_t in Python, but in the generated C code, only foo_t is used.

• New in version 1.3: floating-point types: “typedef float... foo_t;” (or equivalently “typedef
double... foo_t;”) declares foo_t as a-float-or-a-double; the compiler will figure out which it is.
Note that if the actual C type is even larger (long double on some platforms), then compilation will fail.
The problem is that the Python “float” type cannot be used to store the extra precision. (Use the non-dot-dot-dot
syntax typedef long double foo_t; as usual, which returns values that are not Python floats at all but
cdata “long double” objects.)

• unknown types: the syntax “typedef ... foo_t;” declares the type foo_t as opaque. Useful mainly
for when the API takes and returns foo_t * without you needing to look inside the foo_t. Also works with
“typedef ... *foo_p;” which declares the pointer type foo_p without giving a name to the opaque
type itself. Note that such an opaque struct has no known size, which prevents some operations from working
(mostly like in C). You cannot use this syntax to declare a specific type, like an integer type! It declares opaque
struct-like types only. In some cases you need to say that foo_t is not opaque, but just a struct where you don’t
know any field; then you would use “typedef struct { ...; } foo_t;”.

• array lengths: when used as structure fields or in global variables, arrays can have an unspecified length, as in
“int n[...];”. The length is completed by the C compiler. This is slightly different from “int n[];”,
because the latter means that the length is not known even to the C compiler, and thus no attempt is made to
complete it. This supports multidimensional arrays: “int n[...][...];”.

New in version 1.2: “int m[][...];”, i.e. ... can be used in the innermost dimensions without being also
used in the outermost dimension. In the example given, the length of the m array is assumed not to be known to
the C compiler, but the length of every item (like the sub-array m[0]) is always known the C compiler. In other
words, only the outermost dimension can be specified as [], both in C and in CFFI, but any dimension can be
given as [...] in CFFI.

50 Chapter 6. Preparing and Distributing modules

CFFI Documentation, Release 1.9.1

• enums: if you don’t know the exact order (or values) of the declared constants, then use this syntax: “enum
foo { A, B, C, ... };” (with a trailing “...”). The C compiler will be used to figure out the exact
values of the constants. An alternative syntax is “enum foo { A=..., B, C };” or even “enum foo
{ A=..., B=..., C=... };”. Like with structs, an enum without “...” is assumed to be exact, and
this is checked.

• integer constants and macros: you can write in the cdef the line “#define FOO ...”, with any macro
name FOO but with ... as a value. Provided the macro is defined to be an integer value, this value will be
available via an attribute of the library object. The same effect can be achieved by writing a declaration static
const int FOO;. The latter is more general because it supports other types than integer types (note: the C
syntax is then to write the const together with the variable name, as in static char *const FOO;).

Currently, it is not supported to find automatically which of the various integer or float types you need at which place.
If a type is named, and an integer type, then use typedef int... the_type_name;. In the case of function
arguments or return type, when it is a simple integer/float type, it may be misdeclared (if you misdeclare a function
void f(long) as void f(int), it still works, but you have to call it with arguments that fit an int). But it
doesn’t work any longer for more complex types (e.g. you cannot misdeclare a int * argument as long *) or in
other locations (e.g. a global array int a[5]; must not be misdeclared long a[5];). CFFI considers all types
listed above as primitive (so long long a[5]; and int64_t a[5] are different declarations). The reason for
that is detailed in a comment about an issue.

6.5 ffibuilder.compile() etc.: compiling out-of-line modules

You can use one of the following functions to actually generate the .py or .c file prepared with
ffibuilder.set_source() and ffibuilder.cdef().

Note that these function won’t overwrite a .py/.c file with exactly the same content, to preserve the mtime. In some
cases where you need the mtime to be updated anyway, delete the file before calling the functions.

New in version 1.8: the C code produced by emit_c_code() or compile() contains #define
Py_LIMITED_API. This means that on CPython >= 3.2, compiling this source produces a binary .so/.dll that should
work for any version of CPython >= 3.2 (as opposed to only for the same version of CPython x.y). However, the stan-
dard distutils package will still produce a file called e.g. NAME.cpython-35m-x86_64-linux-gnu.so.
You can manually rename it to NAME.abi3.so, or use setuptools version 26 or later. Also, note that compiling with
a debug version of Python will not actually define Py_LIMITED_API, as doing so makes Python.h unhappy.

ffibuilder.compile(tmpdir=’.’, verbose=False, debug=None): explicitly generate the .py or .c file, and (if .c) compile
it. The output file is (or are) put in the directory given by tmpdir. In the examples given here, we use if __name__
== "__main__": ffibuilder.compile() in the build scripts—if they are directly executed, this makes
them rebuild the .py/.c file in the current directory. (Note: if a package is specified in the call to set_source(),
then a corresponding subdirectory of the tmpdir is used.)

New in version 1.4: verbose argument. If True, it prints the usual distutils output, including the command lines that
call the compiler. (This parameter might be changed to True by default in a future release.)

New in version 1.8.1: debug argument. If set to a bool, it controls whether the C code is compiled in debug mode or
not. The default None means to use the host Python’s sys.flags.debug. Starting with version 1.8.1, if you are
running a debug-mode Python, the C code is thus compiled in debug mode by default (note that it is anyway necessary
to do so on Windows).

ffibuilder.emit_python_code(filename): generate the given .py file (same as ffibuilder.compile() for ABI
mode, with an explicitly-named file to write). If you choose, you can include this .py file pre-packaged in your own
distributions: it is identical for any Python version (2 or 3).

ffibuilder.emit_c_code(filename): generate the given .c file (for API mode) without compiling it. Can be used if you
have some other method to compile it, e.g. if you want to integrate with some larger build system that will compile
this file for you. You can also distribute the .c file: unless the build script you used depends on the OS or platform, the

6.5. ffibuilder.compile() etc.: compiling out-of-line modules 51

https://bitbucket.org/cffi/cffi/issues/265/cffi-doesnt-allow-creating-pointers-to#comment-28406958

CFFI Documentation, Release 1.9.1

.c file itself is generic (it would be exactly the same if produced on a different OS, with a different version of CPython,
or with PyPy; it is done with generating the appropriate #ifdef).

ffibuilder.distutils_extension(tmpdir=’build’, verbose=True): for distutils-based setup.py files. Calling this
creates the .c file if needed in the given tmpdir, and returns a distutils.core.Extension instance.

For Setuptools, you use instead the line cffi_modules=["path/to/foo_build.py:ffibuilder"] in
setup.py. This line asks Setuptools to import and use a helper provided by CFFI, which in turn executes the file
path/to/foo_build.py (as with execfile()) and looks up its global variable called ffibuilder. You
can also say cffi_modules=["path/to/foo_build.py:maker"], where maker names a global function;
it is called with no argument and is supposed to return a FFI object.

6.6 ffi/ffibuilder.include(): combining multiple CFFI interfaces

ffi/ffibuilder.include(other_ffi): includes the typedefs, structs, unions, enums and constants defined in another FFI
instance. This is meant for large projects where one CFFI-based interface depends on some types declared in a different
CFFI-based interface.

Note that you should only use one ffi object per library; the intended usage of ffi.include() is if you want to interface
with several inter-dependent libraries. For only one library, make one ffi object. (You can write several cdef()
calls over the same ffi from several Python files, if one file would be too large.)

For out-of-line modules, the ffibuilder.include(other_ffibuilder) line should occur in the build
script, and the other_ffibuilder argument should be another FFI instance that comes from another build
script. When the two build scripts are turned into generated files, say _ffi.so and _other_ffi.so, then im-
porting _ffi.so will internally cause _other_ffi.so to be imported. At that point, the real declarations from
_other_ffi.so are combined with the real declarations from _ffi.so.

The usage of ffi.include() is the cdef-level equivalent of a #include in C, where a part of the program might
include types and functions defined in another part for its own usage. You can see on the ffi object (and associated
lib objects on the including side) the types and constants declared on the included side. In API mode, you can also
see the functions and global variables directly. In ABI mode, these must be accessed via the original other_lib
object returned by the dlopen() method on other_ffi.

6.7 ffi.cdef() limitations

All of the ANSI C declarations should be supported in cdef(), and some of C99. (This excludes any #include or
#ifdef.) Known missing features that are either in C99, or are GCC or MSVC extensions:

• Any __attribute__ or #pragma pack(n)

• Additional types: complex numbers, special-size floating and fixed point types, vector types, and so on. You
might be able to access an array of complex numbers by declaring it as an array of struct my_complex
{ double real, imag; }, but in general you should declare them as struct { ...; } and can-
not access them directly. This means that you cannot call any function which has an argument or re-
turn value of this type (this would need added support in libffi). You need to write wrapper functions in
C, e.g. void foo_wrapper(struct my_complex c) { foo(c.real + c.imag*1j); }, and
call foo_wrapper rather than foo directly.

Note that declarations like int field[]; in structures are interpreted as variable-length structures. Declarations
like int field[...]; on the other hand are arrays whose length is going to be completed by the compiler. You
can use int field[]; for array fields that are not, in fact, variable-length; it works too, but in this case, as CFFI
believes it cannot ask the C compiler for the length of the array, you get reduced safety checks: for example, you risk
overwriting the following fields by passing too many array items in the constructor.

52 Chapter 6. Preparing and Distributing modules

CFFI Documentation, Release 1.9.1

New in version 1.2: Thread-local variables (__thread) can be accessed, as well as variables defined as dynamic
macros (#define myvar (*fetchme())). Before version 1.2, you need to write getter/setter functions.

Note that if you declare a variable in cdef() without using const, CFFI assumes it is a read-write variable and
generates two pieces of code, one to read it and one to write it. If the variable cannot in fact be written to in C code,
for one reason or another, it will not compile. In this case, you can declare it as a constant: for example, instead of
foo_t *myglob; you would use foo_t *const myglob;. Note also that const foo_t *myglob; is a
variable; it contains a variable pointer to a constant foo_t.

6.8 Debugging dlopen’ed C libraries

A few C libraries are actually hard to use correctly in a dlopen() setting. This is because most C libraries are
intented for, and tested with, a situation where they are linked with another program, using either static linking or
dynamic linking — but from a program written in C, at start-up, using the linker’s capabilities instead of dlopen().

This can occasionally create issues. You would have the same issues in another setting than CFFI, like with ctypes
or even plain C code that calls dlopen(). This section contains a few generally useful environment variables (on
Linux) that can help when debugging these issues.

export LD_TRACE_LOADED_OBJECTS=all

provides a lot of information, sometimes too much depending on the setting. Output verbose debugging
information about the dynamic linker. If set to all prints all debugging information it has, if set to help
prints a help message about which categories can be specified in this environment variable

export LD_VERBOSE=1

(glibc since 2.1) If set to a nonempty string, output symbol versioning information about the program if
querying information about the program (i.e., either LD_TRACE_LOADED_OBJECTS has been set, or
--list or --verify options have been given to the dynamic linker).

export LD_WARN=1

(ELF only)(glibc since 2.1.3) If set to a nonempty string, warn about unresolved symbols.

6.9 ffi.verify(): in-line API-mode

ffi.verify() is supported for backward compatibility, but is deprecated. ffi.verify(c_header_source,
tmpdir=.., ext_package=.., modulename=.., flags=.., **kwargs) makes and compiles a C
file from the ffi.cdef(), like ffi.set_source() in API mode, and then immediately loads and returns the
dynamic library object. Some non-trivial logic is used to decide if the dynamic library must be recompiled or not; see
below for ways to control it.

The c_header_source and the extra keyword arguments have the same meaning as in ffi.set_source().

One remaining use case for ffi.verify() would be the following hack to find explicitly the size of any type, in
bytes, and have it available in Python immediately (e.g. because it is needed in order to write the rest of the build
script):

ffi = cffi.FFI()
ffi.cdef("const int mysize;")
lib = ffi.verify("const int mysize = sizeof(THE_TYPE);")
print lib.mysize

Extra arguments to ffi.verify():

6.8. Debugging dlopen’ed C libraries 53

CFFI Documentation, Release 1.9.1

• tmpdir controls where the C files are created and compiled. Unless the CFFI_TMPDIR environment variable
is set, the default is directory_containing_the_py_file/__pycache__ using the directory name
of the .py file that contains the actual call to ffi.verify(). (This is a bit of a hack but is generally consistent
with the location of the .pyc files for your library. The name __pycache__ itself comes from Python 3.)

• ext_package controls in which package the compiled extension module should be looked from. This is only
useful after distributing ffi.verify()-based modules.

• The tag argument gives an extra string inserted in the middle of the extension module’s name:
cffi<tag>_<hash>. Useful to give a bit more context, e.g. when debugging.

• The modulename argument can be used to force a specific module name, overriding the name
cffi<tag>_<hash>. Use with care, e.g. if you are passing variable information to verify() but
still want the module name to be always the same (e.g. absolute paths to local files). In this case, no hash is
computed and if the module name already exists it will be reused without further check. Be sure to have other
means of clearing the tmpdir whenever you change your sources.

• source_extension has the same meaning as in ffibuilder.set_source().

• The optional flags argument (ignored on Windows) defaults to ffi.RTLD_NOW; see man dlopen. (With
ffibuilder.set_source(), you would use sys.setdlopenflags().)

• The optional relative_to argument is useful if you need to list local files passed to the C compiler:

ext = ffi.verify(..., sources=['foo.c'], relative_to=__file__)

The line above is roughly the same as:

ext = ffi.verify(..., sources=['/path/to/this/file/foo.c'])

except that the default name of the produced library is built from the CRC checkum of the argument sources,
as well as most other arguments you give to ffi.verify() – but not relative_to. So if you used
the second line, it would stop finding the already-compiled library after your project is installed, because the
’/path/to/this/file’ suddenly changed. The first line does not have this problem.

Note that during development, every time you change the C sources that you pass to cdef() or verify(), then
the latter will create a new module file name, based on two CRC32 hashes computed from these strings. This creates
more and more files in the __pycache__ directory. It is recommended that you clean it up from time to time. A
nice way to do that is to add, in your test suite, a call to cffi.verifier.cleanup_tmpdir(). Alternatively,
you can manually remove the whole __pycache__ directory.

An alternative cache directory can be given as the tmpdir argument to verify(), via the environment variable
CFFI_TMPDIR, or by calling cffi.verifier.set_tmpdir(path) prior to calling verify.

6.10 Upgrading from CFFI 0.9 to CFFI 1.0

CFFI 1.0 is backward-compatible, but it is still a good idea to consider moving to the out-of-line approach new in 1.0.
Here are the steps.

ABI mode if your CFFI project uses ffi.dlopen():

import cffi

ffi = cffi.FFI()
ffi.cdef("stuff")
lib = ffi.dlopen("libpath")

54 Chapter 6. Preparing and Distributing modules

CFFI Documentation, Release 1.9.1

and if the “stuff” part is big enough that import time is a concern, then rewrite it as described in the out-of-line but
still ABI mode above. Optionally, see also the setuptools integration paragraph. API mode if your CFFI project uses
ffi.verify():

import cffi

ffi = cffi.FFI()
ffi.cdef("stuff")
lib = ffi.verify("real C code")

then you should really rewrite it as described in the out-of-line, API mode above. It avoids a number of issues that
have caused ffi.verify() to grow a number of extra arguments over time. Then see the distutils or setuptools
paragraph. Also, remember to remove the ext_package=".." from your setup.py, which was sometimes
needed with verify() but is just creating confusion with set_source(). The following example should work
both with old (pre-1.0) and new versions of CFFI—supporting both is important to run on old versions of PyPy (CFFI
1.0 does not work in PyPy < 2.6):

in a separate file "package/foo_build.py"
import cffi

ffi = cffi.FFI()
C_HEADER_SRC = r'''

#include "somelib.h"
'''
C_KEYWORDS = dict(libraries=['somelib'])

if hasattr(ffi, 'set_source'):
ffi.set_source("package._foo", C_HEADER_SRC, **C_KEYWORDS)

ffi.cdef('''
int foo(int);

''')

if __name__ == "__main__":
ffi.compile()

And in the main program:

try:
from package._foo import ffi, lib

except ImportError:
from package.foo_build import ffi, C_HEADER_SRC, C_KEYWORDS
lib = ffi.verify(C_HEADER_SRC, **C_KEYWORDS)

(FWIW, this latest trick can be used more generally to allow the import to “work” even if the _foo module was not
generated.)

Writing a setup.py script that works both with CFFI 0.9 and 1.0 requires explicitly checking the version of CFFI
that we can have—it is hard-coded as a built-in module in PyPy:

if '_cffi_backend' in sys.builtin_module_names: # PyPy
import _cffi_backend
requires_cffi = "cffi==" + _cffi_backend.__version__

else:
requires_cffi = "cffi>=1.0.0"

Then we use the requires_cffi variable to give different arguments to setup() as needed, e.g.:

6.10. Upgrading from CFFI 0.9 to CFFI 1.0 55

CFFI Documentation, Release 1.9.1

if requires_cffi.startswith("cffi==0."):
backward compatibility: we have "cffi==0.*"
from package.foo_build import ffi
extra_args = dict(

ext_modules=[ffi.verifier.get_extension()],
ext_packages="...", # if needed

)
else:

extra_args = dict(
setup_requires=[requires_cffi],
cffi_modules=['package/foo_build.py:ffi'],

)
setup(

name=...,
...,
install_requires=[requires_cffi],

**extra_args
)

56 Chapter 6. Preparing and Distributing modules

CHAPTER 7

Using CFFI for embedding

Contents

• Using CFFI for embedding
– Usage
– More reading
– Troubleshooting
– Issues about using the .so
– Using multiple CFFI-made DLLs
– Multithreading
– Testing
– Embedding and Extending

You can use CFFI to generate a .so/.dll/.dylib which exports the API of your choice to any C application that
wants to link with this .so/.dll/.dylib.

The general idea is as follows:

• You write and execute a Python script, which produces a .so/.dll/.dylib file with the API of your choice.
The script also gives some Python code to be “frozen” inside the .so.

• At runtime, the C application loads this .so/.dll/.dylib without having to know that it was produced by
Python and CFFI.

• The first time a C function is called, Python is initialized and the frozen Python code is executed.

• The frozen Python code attaches Python functions that implement the C functions of your API, which are then
used for all subsequent C function calls.

One of the goals of this approach is to be entirely independent from the CPython C API: no Py_Initialize() nor
PyRun_SimpleString() nor even PyObject. It works identically on CPython and PyPy.

This is entirely new in version 1.5. (PyPy contains CFFI 1.5 since release 5.0.)

7.1 Usage

See the paragraph in the overview page for a quick introduction. In this section, we explain every step in more details.
We will use here this slightly expanded example:

/* file plugin.h */
typedef struct { int x, y; } point_t;
extern int do_stuff(point_t *);

57

CFFI Documentation, Release 1.9.1

/* file plugin.h, Windows-friendly version */
typedef struct { int x, y; } point_t;

/* When including this file from ffibuilder.set_source(), the
following macro is defined to '__declspec(dllexport)'. When
including this file directly from your C program, we define
it to 'extern __declspec(dllimport)' instead.

With non-MSVC compilers we simply define it to 'extern'.
(The 'extern' is needed for sharing global variables;
functions would be fine without it. The macros always
include 'extern': you must not repeat it when using the
macros later.)

*/
#ifndef CFFI_DLLEXPORT
if defined(_MSC_VER)
define CFFI_DLLEXPORT extern __declspec(dllimport)
else
define CFFI_DLLEXPORT extern
endif
#endif

CFFI_DLLEXPORT int do_stuff(point_t *);

file plugin_build.py
import cffi
ffibuilder = cffi.FFI()

with open('plugin.h') as f:
read plugin.h and pass it to embedding_api(), manually
removing the '#' directives and the CFFI_DLLEXPORT
data = ''.join([line for line in f if not line.startswith('#')])
data = data.replace('CFFI_DLLEXPORT', '')
ffibuilder.embedding_api(data)

ffibuilder.set_source("my_plugin", r'''
#include "plugin.h"

''')

ffibuilder.embedding_init_code("""
from my_plugin import ffi

@ffi.def_extern()
def do_stuff(p):

print("adding %d and %d" % (p.x, p.y))
return p.x + p.y

""")

ffibuilder.compile(target="plugin-1.5.*", verbose=True)

Running the code above produces a DLL, i,e, a dynamically-loadable library. It is a file with the extension .dll
on Windows, .dylib on Mac OS/X, or .so on other platforms. As usual, it is produced by generating some
intermediate .c code and then calling the regular platform-specific C compiler. See below for some pointers to C-
level issues with using the produced library. Here are some details about the methods used above:

• ffibuilder.embedding_api(source): parses the given C source, which declares functions that you want to be
exported by the DLL. It can also declare types, constants and global variables that are part of the C-level API of

58 Chapter 7. Using CFFI for embedding

CFFI Documentation, Release 1.9.1

your DLL.

The functions that are found in source will be automatically defined in the .c file: they will contain code that
initializes the Python interpreter the first time any of them is called, followed by code to call the attached Python
function (with @ffi.def_extern(), see next point).

The global variables, on the other hand, are not automatically produced. You have to write their definition
explicitly in ffibuilder.set_source(), as regular C code (see the point after next).

• ffibuilder.embedding_init_code(python_code): this gives initialization-time Python source code. This code is
copied (“frozen”) inside the DLL. At runtime, the code is executed when the DLL is first initialized, just after
Python itself is initialized. This newly initialized Python interpreter has got an extra “built-in” module that can
be loaded magically without accessing any files, with a line like “from my_plugin import ffi, lib”.
The name my_plugin comes from the first argument to ffibuilder.set_source(). This module
represents “the caller’s C world” from the point of view of Python.

The initialization-time Python code can import other modules or packages as usual. You may have typical
Python issues like needing to set up sys.path somehow manually first.

For every function declared within ffibuilder.embedding_api(), the initialization-time Python code
or one of the modules it imports should use the decorator @ffi.def_extern() to attach a corresponding
Python function to it.

If the initialization-time Python code fails with an exception, then you get a traceback printed to stderr, along
with more information to help you identify problems like wrong sys.path. If some function remains
unattached at the time where the C code tries to call it, an error message is also printed to stderr and the
function returns zero/null.

Note that the CFFI module never calls exit(), but CPython itself contains code that calls exit(), for exam-
ple if importing site fails. This may be worked around in the future.

• ffibuilder.set_source(c_module_name, c_code): set the name of the module from Python’s point of view.
It also gives more C code which will be included in the generated C code. In trivial examples it can be an
empty string. It is where you would #include some other files, define global variables, and so on. The
macro CFFI_DLLEXPORT is available to this C code: it expands to the platform-specific way of saying
“the following declaration should be exported from the DLL”. For example, you would put “extern int
my_glob;” in ffibuilder.embedding_api() and “CFFI_DLLEXPORT int my_glob = 42;”
in ffibuilder.set_source().

Currently, any type declared in ffibuilder.embedding_api() must also be present in the c_code.
This is automatic if this code contains a line like #include "plugin.h" in the example above.

• ffibuilder.compile([target=...] [, verbose=True]): make the C code and compile it. By default, it produces
a file called c_module_name.dll, c_module_name.dylib or c_module_name.so, but the default
can be changed with the optional target keyword argument. You can use target="foo.*" with a literal
* to ask for a file called foo.dll on Windows, foo.dylib on OS/X and foo.so elsewhere. One reason
for specifying an alternate target is to include characters not usually allowed in Python module names, like
“plugin-1.5.*”.

For more complicated cases, you can call instead ffibuilder.emit_c_code("foo.c") and compile the
resulting foo.c file using other means. CFFI’s compilation logic is based on the standard library distutils
package, which is really developed and tested for the purpose of making CPython extension modules, not other
DLLs.

7.2 More reading

If you’re reading this page about embedding and you are not familiar with CFFI already, here are a few pointers to
what you could read next:

7.2. More reading 59

CFFI Documentation, Release 1.9.1

• For the @ffi.def_extern() functions, integer C types are passed simply as Python integers; and simple
pointers-to-struct and basic arrays are all straightforward enough. However, sooner or later you will need to read
about this topic in more details here.

• @ffi.def_extern(): see documentation here, notably on what happens if the Python function raises an
exception.

• To create Python objects attached to C data, one common solution is to use ffi.new_handle(). See docu-
mentation here.

• In embedding mode, the major direction is C code that calls Python functions. This is the opposite of the regular
extending mode of CFFI, in which the major direction is Python code calling C. That’s why the page Using the
ffi/lib objects talks first about the latter, and why the direction “C code that calls Python” is generally referred to
as “callbacks” in that page. If you also need to have your Python code call C code, read more about Embedding
and Extending below.

• ffibuilder.embedding_api(source): follows the same syntax as ffibuilder.cdef(), doc-
umented here. You can use the “...” syntax as well, although in practice it may be less useful than
it is for cdef(). On the other hand, it is expected that often the C sources that you need to give to
ffibuilder.embedding_api() would be exactly the same as the content of some .h file that you want
to give to users of your DLL. That’s why the example above does this:

with open('foo.h') as f:
ffibuilder.embedding_api(f.read())

Note that a drawback of this approach is that ffibuilder.embedding_api() doesn’t support #ifdef
directives. You may have to use a more convoluted expression like:

with open('foo.h') as f:
lines = [line for line in f if not line.startswith('#')]
ffibuilder.embedding_api(''.join(lines))

As in the example above, you can also use the same foo.h from ffibuilder.set_source():

ffibuilder.set_source('module_name', r'''
#include "foo.h"

''')

7.3 Troubleshooting

The error message

cffi extension module ‘c_module_name’ has unknown version 0x2701

means that the running Python interpreter located a CFFI version older than 1.5. CFFI 1.5 or newer must be installed
in the running Python.

7.4 Issues about using the .so

This paragraph describes issues that are not necessarily specific to CFFI. It assumes that you have obtained the
.so/.dylib/.dll file as described above, but that you have troubles using it. (In summary: it is a mess. This is
my own experience, slowly built by using Google and by listening to reports from various platforms. Please report
any inaccuracies in this paragraph or better ways to do things.)

• The file produced by CFFI should follow this naming pattern: libmy_plugin.so on Linux,
libmy_plugin.dylib on Mac, or my_plugin.dll on Windows (no lib prefix on Windows).

60 Chapter 7. Using CFFI for embedding

CFFI Documentation, Release 1.9.1

• First note that this file does not contain the Python interpreter nor the standard library of Python. You still need
it to be somewhere. There are ways to compact it to a smaller number of files, but this is outside the scope of
CFFI (please report if you used some of these ways successfully so that I can add some links here).

• In what we’ll call the “main program”, the .so can be either used dynamically (e.g. by calling dlopen()
or LoadLibrary() inside the main program), or at compile-time (e.g. by compiling it with gcc
-lmy_plugin). The former case is always used if you’re building a plugin for a program, and the program
itself doesn’t need to be recompiled. The latter case is for making a CFFI library that is more tightly integrated
inside the main program.

• In the case of compile-time usage: you can add the gcc option -Lsome/path/ before -lmy_plugin to
describe where the libmy_plugin.so is. On some platforms, notably Linux, gcc will complain if it
can find libmy_plugin.so but not libpython27.so or libpypy-c.so. To fix it, you need to call
LD_LIBRARY_PATH=/some/path/to/libpypy gcc.

• When actually executing the main program, it needs to find the libmy_plugin.so but also
libpython27.so or libpypy-c.so. For PyPy, unpack a PyPy distribution and you get a full direc-
tory structure with libpypy-c.so inside a bin subdirectory, or on Windows pypy-c.dll inside the top
directory; you must not move this file around, but just point to it. One way to point to it is by running the main
program with some environment variable: LD_LIBRARY_PATH=/some/path/to/libpypy on Linux,
DYLD_LIBRARY_PATH=/some/path/to/libpypy on OS/X.

• You can avoid the LD_LIBRARY_PATH issue if you compile libmy_plugin.so with the path
hard-coded inside in the first place. On Linux, this is done by gcc -Wl,-rpath=/some/path.
You would put this option in ffibuilder.set_source("my_plugin", ...,
extra_link_args=[’-Wl,-rpath=/some/path/to/libpypy’]). The path can start with
$ORIGIN to mean “the directory where libmy_plugin.so is”. You can then specify a path relative
to that place, like extra_link_args=[’-Wl,-rpath=$ORIGIN/../venv/bin’]. Use ldd
libmy_plugin.so to look at what path is currently compiled in after the expansion of $ORIGIN.)

After this, you don’t need LD_LIBRARY_PATH any more to locate libpython27.so or libpypy-c.so
at runtime. In theory it should also cover the call to gcc for the main program. I wasn’t able to make gcc
happy without LD_LIBRARY_PATH on Linux if the rpath starts with $ORIGIN, though.

• The same rpath trick might be used to let the main program find libmy_plugin.so in the first place
without LD_LIBRARY_PATH. (This doesn’t apply if the main program uses dlopen() to load it as a dy-
namic plugin.) You’d make the main program with gcc -Wl,-rpath=/path/to/libmyplugin, pos-
sibly with $ORIGIN. The $ in $ORIGIN causes various shell problems on its own: if using a common shell
you need to say gcc -Wl,-rpath=\$ORIGIN. From a Makefile, you need to say something like gcc
-Wl,-rpath=\$$ORIGIN.

7.5 Using multiple CFFI-made DLLs

Multiple CFFI-made DLLs can be used by the same process.

Note that all CFFI-made DLLs in a process share a single Python interpreter. The effect is the same as the one you
get by trying to build a large Python application by assembling a lot of unrelated packages. Some of these might be
libraries that monkey-patch some functions from the standard library, for example, which might be unexpected from
other parts.

7.6 Multithreading

Multithreading should work transparently, based on Python’s standard Global Interpreter Lock.

7.5. Using multiple CFFI-made DLLs 61

CFFI Documentation, Release 1.9.1

If two threads both try to call a C function when Python is not yet initialized, then locking occurs. One thread proceeds
with initialization and blocks the other thread. The other thread will be allowed to continue only when the execution
of the initialization-time Python code is done.

If the two threads call two different CFFI-made DLLs, the Python initialization itself will still be serialized, but the
two pieces of initialization-time Python code will not. The idea is that there is a priori no reason for one DLL to wait
for initialization of the other DLL to be complete.

After initialization, Python’s standard Global Interpreter Lock kicks in. The end result is that when one CPU progresses
on executing Python code, no other CPU can progress on executing more Python code from another thread of the same
process. At regular intervals, the lock switches to a different thread, so that no single thread should appear to block
indefinitely.

7.7 Testing

For testing purposes, a CFFI-made DLL can be imported in a running Python interpreter instead of being loaded like
a C shared library.

You might have some issues with the file name: for example, on Windows, Python expects the file to be called
c_module_name.pyd, but the CFFI-made DLL is called target.dll instead. The base name target is the
one specified in ffibuilder.compile(), and on Windows the extension is .dll instead of .pyd. You have to
rename or copy the file, or on POSIX use a symlink.

The module then works like a regular CFFI extension module. It is imported with “from c_module_name
import ffi, lib” and exposes on the lib object all C functions. You can test it by calling these C functions.
The initialization-time Python code frozen inside the DLL is executed the first time such a call is done.

7.8 Embedding and Extending

The embedding mode is not incompatible with the non-embedding mode of CFFI.

You can use both ffibuilder.embedding_api() and ffibuilder.cdef() in the same build script. You
put in the former the declarations you want to be exported by the DLL; you put in the latter only the C functions and
types that you want to share between C and Python, but not export from the DLL.

As an example of that, consider the case where you would like to have a DLL-exported C function written
in C directly, maybe to handle some cases before calling Python functions. To do that, you must not put
the function’s signature in ffibuilder.embedding_api(). (Note that this requires more hacks if you
use ffibuilder.embedding_api(f.read()).) You must only write the custom function definition in
ffibuilder.set_source(), and prefix it with the macro CFFI_DLLEXPORT:

CFFI_DLLEXPORT int myfunc(int a, int b)
{

/* implementation here */
}

This function can, if it wants, invoke Python functions using the general mechanism of “callbacks”—called this way
because it is a call from C to Python, although in this case it is not calling anything back:

ffibuilder.cdef("""
extern "Python" int mycb(int);

""")

ffibuilder.set_source("my_plugin", r"""

62 Chapter 7. Using CFFI for embedding

CFFI Documentation, Release 1.9.1

static int mycb(int); /* the callback: forward declaration, to make
it accessible from the C code that follows */

CFFI_DLLEXPORT int myfunc(int a, int b)
{

int product = a * b; /* some custom C code */
return mycb(product);

}
""")

and then the Python initialization code needs to contain the lines:

@ffi.def_extern()
def mycb(x):

print "hi, I'm called with x =", x
return x * 10

This @ffi.def_extern is attaching a Python function to the C callback mycb(), which in this case is not exported
from the DLL. Nevertheless, the automatic initialization of Python occurs when mycb() is called, if it happens to
be the first function called from C. More precisely, it does not happen when myfunc() is called: this is just a C
function, with no extra code magically inserted around it. It only happens when myfunc() calls mycb().

As the above explanation hints, this is how ffibuilder.embedding_api() actually implements function calls
that directly invoke Python code; here, we have merely decomposed it explicitly, in order to add some custom C code
in the middle.

In case you need to force, from C code, Python to be initialized before the first @ffi.def_extern() is called, you
can do so by calling the C function cffi_start_python() with no argument. It returns an integer, 0 or -1, to tell
if the initialization succeeded or not. Currently there is no way to prevent a failing initialization from also dumping a
traceback and more information to stderr.

7.8. Embedding and Extending 63

CFFI Documentation, Release 1.9.1

64 Chapter 7. Using CFFI for embedding

CHAPTER 8

Goals

The interface is based on LuaJIT’s FFI, and follows a few principles:

• The goal is to call C code from Python without learning a 3rd language: existing alternatives require users to
learn domain specific language (Cython, SWIG) or API (ctypes). The CFFI design requires users to know only
C and Python, minimizing the extra bits of API that need to be learned.

• Keep all the Python-related logic in Python so that you don’t need to write much C code (unlike CPython native
C extensions).

• The preferred way is to work at the level of the API (Application Programming Interface): the C compiler is
called from the declarations you write to validate and link to the C language constructs. Alternatively, it is
also possible to work at the ABI level (Application Binary Interface), the way ctypes work. However, on non-
Windows platforms, C libraries typically have a specified C API but not an ABI (e.g. they may document a
“struct” as having at least these fields, but maybe more).

• Try to be complete. For now some C99 constructs are not supported, but all C89 should be, including macros
(and including macro “abuses”, which you can manually wrap in saner-looking C functions).

• Attempt to support both PyPy and CPython, with a reasonable path for other Python implementations like
IronPython and Jython.

• Note that this project is not about embedding executable C code in Python, unlike Weave. This is about calling
existing C libraries from Python.

Get started by reading the overview.

65

http://luajit.org/ext_ffi.html
http://www.cython.org
http://www.swig.org/
http://docs.python.org/library/ctypes.html
http://docs.python.org/extending/extending.html
http://docs.python.org/extending/extending.html
http://docs.python.org/library/ctypes.html
http://wiki.scipy.org/Weave

CFFI Documentation, Release 1.9.1

66 Chapter 8. Goals

CHAPTER 9

Comments and bugs

The best way to contact us is on the IRC #pypy channel of irc.freenode.net. Feel free to discuss matters
either there or in the mailing list. Please report to the issue tracker any bugs.

As a general rule, when there is a design issue to resolve, we pick the solution that is the “most C-like”. We hope that
this module has got everything you need to access C code and nothing more.

— the authors, Armin Rigo and Maciej Fijalkowski

67

https://groups.google.com/forum/#!forum/python-cffi
https://bitbucket.org/cffi/cffi/issues

	What's New
	v1.9
	v1.8.3
	v1.8.2
	v1.8.1
	v1.8
	v1.7
	v1.6
	v1.5.2
	v1.5.1
	v1.5.0
	v1.4.2
	v1.4.1
	v1.4.0
	v1.3.1
	v1.3.0
	v1.2.1
	v1.2.0
	v1.1.2
	v1.1.1
	v1.1.0
	v1.0.3
	v1.0.2
	v1.0.1
	v1.0.0

	Installation and Status
	Platform-specific instructions

	Overview
	Simple example (ABI level, in-line)
	Real example (API level, out-of-line)
	Struct/Array Example (minimal, in-line)
	Purely for performance (API level, out-of-line)
	Out-of-line, ABI level
	Embedding
	What actually happened?
	ABI versus API

	Using the ffi/lib objects
	Working with pointers, structures and arrays
	Python 3 support
	An example of calling a main-like thing
	Function calls
	Variadic function calls
	Extern ``Python'' (new-style callbacks)
	Callbacks (old style)
	Windows: calling conventions
	FFI Interface

	CFFI Reference
	FFI Interface
	Conversions

	Preparing and Distributing modules
	ffi/ffibuilder.cdef(): declaring types and functions
	ffi.dlopen(): loading libraries in ABI mode
	ffibuilder.set_source(): preparing out-of-line modules
	Letting the C compiler fill the gaps
	ffibuilder.compile() etc.: compiling out-of-line modules
	ffi/ffibuilder.include(): combining multiple CFFI interfaces
	ffi.cdef() limitations
	Debugging dlopen'ed C libraries
	ffi.verify(): in-line API-mode
	Upgrading from CFFI 0.9 to CFFI 1.0

	Using CFFI for embedding
	Usage
	More reading
	Troubleshooting
	Issues about using the .so
	Using multiple CFFI-made DLLs
	Multithreading
	Testing
	Embedding and Extending

	Goals
	Comments and bugs

