
Building an Interpreter With RPython
Release 0.1.0

Aug 31, 2017





Contents

1 PyPy 3
1.1 Installing PyPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Running PyPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 CyCy 5
2.1 Installing CyCy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Running & Translating CyCy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Some Example Interpreters 9

4 Other Resources 11

5 RPython 13
5.1 Two Specific Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 A Start 15
6.1 Initial Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 A Snap Parser 17
7.1 RPly and an Actual Start to Our Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 More About non-RPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 A Look Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 A Snap Compiler 21
8.1 First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Compiler Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 An Interpreter 23
9.1 The Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.2 Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.3 Wrapper Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 A REPL 25
10.1 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

11 Going Further 27

i



12 Indices and tables 29

ii



Building an Interpreter With RPython, Release 0.1.0

This repository contains introductory material on building a simple interpreter with RPython.

The original slides are also available.

Contents:

Contents 1

http://rpython.readthedocs.org/en/latest/index.html
https://docs.google.com/presentation/d/1Wrtik27xcjGLfa0xJNSLyqUpWMsnDYwfbIbvid_MFME/


Building an Interpreter With RPython, Release 0.1.0

2 Contents



CHAPTER 1

PyPy

Besides being the most prominent example of an interpreter written in RPython, having been the interpreter for which
RPython was developed, we will also use PyPy in order to actually translate our own interpreter, which we will discuss
later.

Below are brief instructions for installing and running PyPy.

Installing PyPy

PyPy can be installed by following the instructions at:

http://pypy.org/download.html

or:

OS X

$ brew install pypy

Windows

Windows binaries are available at the above link.

Linux

PyPy should be available in your Linux distro’s package manager.

Alternatively, tarballs are available at:

https://github.com/squeaky-pl/portable-pypy

which should work across distributions.

3

http://pypy.org/download.html
https://github.com/squeaky-pl/portable-pypy


Building an Interpreter With RPython, Release 0.1.0

Running PyPy

As with CPython, the REPL is accessible via pypy at a terminal.

Feel free to play around a bit if you’ve never done so already, whereby you’ll (hopefully!) notice nothing amiss.

4 Chapter 1. PyPy



CHAPTER 2

CyCy

CyCy is a small C interpreter built during a 48 hour hackathon at Magnetic.

It certainly does not interpret an appreciable amount of C, nor does it run particularly quickly, but it’s a small step
beyond the example interpreter (which we’ll also see soon).

It is highly recommended to resist temptation on directly copying its layout (or the layout of the example interpreter)
line for line. Reading it briefly and using it as a reference when stuck will allow you to proceed without (much)
frustration while still taking time to play with RPython enough to experience it.

Installing CyCy

Clone the CyCy repo which can be found at https://github.com/Magnetic/CyCy:

$ git clone https://github.com/Magnetic/cycy
$ cd cycy

Optional: Create a Virtualenv

Create a virtualenv which you will install CyCy into. If you have no other preference on location, create one within
the CyCy repo checkout:

$ python -m pip install -U virtualenv
$ virtualenv -p pypy venv

which will create a virtualenv (a directory) named venv in the checkout, and will use the PyPy interpreter you’ve
installed inside it.

Install CyCy as you would a normal Python package:

$ venv/bin/pip install -e .

5

http://tech.magnetic.com/2015/03/magnetics-inaugural-hackathon.html
http://www.magnetic.com/
https://github.com/Magnetic/CyCy


Building an Interpreter With RPython, Release 0.1.0

which should fetch all of the necessary dependencies.

Run venv/bin/rpython --help to confirm that the toolchain was successfully installed, and you’re on your
way.

Alternate: Without a Virtualenv

If you do not wish to use a virtualenv, you can install CyCy and its dependencies globally:

$ pip install --user -e .

Follow along with the rest of the document by removing venv/bin/ from the beginning of commands, since your
binaries will be available globally.

Note: If after running the above command you cannot run rpython --help, you likely do not have ~/.local/
bin on your shell’s $PATH. Follow the instructions of your shell on adding it (typically either to .bash_profile
or .zshenv if you’re using bash or zsh respectively).

Running & Translating CyCy

Take a quick look at the contents of the directories in front of you. We will cover the types of components in them as
we develop our own interpreter, but it will be useful (and perhaps somewhat irresistible) to peek at what reasonably
small amount of code is there.

At a high level, the translation process will take the code you have and translate it into an executable you can run
standalone.

Before we do so, let’s prove that the interpreter can simply be run as a normal program on top of Python. Running:

$ venv/bin/pypy -m cycy

should present you with a CyCy REPL. Here you certainly will notice things amiss (bonus points if you simply crash
the interpreter).

But! If you run something simple, like:

CC-> int main (void) { return 2 + 23; }

you should see:

25

outputted below. There are various slightly more complicated things for which CyCy manages to implement support
for so far.

Note: For both CyCy and the interpreter we will attempt to build, you may find it helpful to install the rlwrap *nix
utility and to use it as a wrapper around the REPL:

$ rlwrap venv/bin/pypy -m cycy

will give you a REPL with readline support provided via rlwrap.

6 Chapter 2. CyCy



Building an Interpreter With RPython, Release 0.1.0

You can find it in homebrew or via your Linux package manager.

Now that we can run CyCy on top of Python, let’s use the RPython toolchain to create an executable that is independent
of the Python runtime.

From the same directory (the root of the checkout)::

$ venv/bin/rpython --output=cycy-nojit cycy/target.py

will produce a long stream of output that you might find interesting to stare out.

After around 2 minutes of churning, out should pop an executable in the current directory which you can run via:

$ ./cycy-nojit

which should produce a REPL with (roughly) the same behavior as before.

This executable depends neither on Python nor the RPython toolchain:

$ file ./cycy-nojit
$ otool -L ./cycy-nojit

which should show you some basic information on the executable (and specifically that it does not in fact try to link
against Python). On Linux, use ldd in place of otool -L.

2.2. Running & Translating CyCy 7



Building an Interpreter With RPython, Release 0.1.0

8 Chapter 2. CyCy



CHAPTER 3

Some Example Interpreters

As we move forward with our own interpreter, it will be helpful to have other interpreters that we can reference if and
when we are stuck, either with design or implementation.

To start with, besides CyCy which we have already cloned, let’s retrieve two more interpreters written with RPython.

First, let’s clone the “official” RPython example interpreter. It lives on BitBucket.

Note: To clone it, you’ll need the mercurial VCS. If you do not already have mercurial, you can install it as any other
Python package via

$ pip install –user mercurial

In this instance personal recommendation is to install mercurial globally, but feel free to install it into a virtualenv as
well if you wish.

Execute:

$ hg clone https://bitbucket.org/pypy/example-interpreter

to grab a copy of it. Take the same quick flip through the source code as you did through CyCy. You’ll hopefully
notice some surface-level similarities because CyCy was written via the same strategy of occasional glancing at the
example interpreter for inspiration.

As we progress through writing our own interpreter, you now have at least a pair of interpreters to reference. In order
of complexity, we have:

• the example interpreter implementing a toy language similar to our own

• CyCy implementing a small subset of C

Let’s also clone the Topaz and PyPy interpreters as well. These interpreters are full-blown (real-world) projects with
all of the considerations that brings, so they come with huge additional levels of complexity. Try not to be flustered by
it, we clone them now for two reasons:

• familiarity with Python might in some way provide additional guidance if you can manage to find the associated
implementation in PyPy

9

https://bitbucket.org/pypy/example-interpreter/


Building an Interpreter With RPython, Release 0.1.0

• both repos are large – we might want to take quick looks at PyPy later in the day, so we’ll clone them up front.
Feel free to leave the clone running in the background while we proceed.

You can find Topaz at https://github.com/topazproject/topaz

10 Chapter 3. Some Example Interpreters

https://github.com/topazproject/topaz


CHAPTER 4

Other Resources

There are a number of other resources that will be useful as we work:

• the RPython documentation which you’ll likely want to keep open for reference throughout the tutorial

• the #pypy IRC channel on Freenode which you might like to join, especially if you have an issue that we can’t
figure out in person. See http://webchat.freenode.net/ to connect if you do not already have an IRC client.

11

http://rpython.readthedocs.org/en/latest/
http://webchat.freenode.net/


Building an Interpreter With RPython, Release 0.1.0

12 Chapter 4. Other Resources



CHAPTER 5

RPython

There is an introduction to RPython in the RPython language documentation, which explains what subset of Python
constitutes valid RPython.

It is not critical that you read that page from top to bottom (yet, probably not even at all at least for today).

The most important things to remember from the start are:

• You cannot mix objects of “un-unifyable” types in the same collection. Lists must contain all strs, or all instances
of a class. It does not have to be the same exact class, the classes just have to be unifyable, which means that
there is some common base class between them (at the RPython level this cannot be object, so you can’t mix
ints with instances of your RPython class). Relatedly, you can mix None with some types, but not others. See
the documentation page above for details.

• Most of the (Python) standard library (and similarly external modules) are not valid RPython. There is a separate,
smaller RPython standard library. With a few exceptions, it comprises the external RPython code you have
available.

• Write simple code and it is likely to be easily converted to RPython even if it is invalid. If your code is complex,
it will likely need untangling once you try and translate it.

Unfortunately the most important rule though is the one at the top of the documentation, that if it translates, it’s valid,
and if it ain’t, it isn’t.

Two Specific Notes

Besides the above, there are two specific things which you might find surprising initially that are worth learning
upfront.

Firstly, the RPython toolchain will expect an entry point similar to the one expected when writing C code. By default
it will expect a function called main in the file you pass to the rpython binary (explained shortly). The function
should return an int as main would in C. This is where the translation process which we’ll discuss (as well as your
interpreter) will begin.

13

http://rpython.readthedocs.org/en/latest/rpython.html
http://rpython.readthedocs.org/en/latest/rlib.html


Building an Interpreter With RPython, Release 0.1.0

Secondly, the assert statement in RPython has special semantics. Whereas in Python it is generally used to describe
invariants that should never be false in a piece of code, in RPython it additionally makes an assertion of that invariant
to the toolchain itself so that the toolchain can make use of that information.

As a quick example, you’ll likely soon notice once we begin writing our parser that the toolchain will complain during
translation if for instance you have:

class Parent(object):
...

class ChildA(Parent):
attr_only_on_this_child = 12

class ChildB(Parent):
...

and you try and access attr_only_on_this_child even if you only pass in instances of ChildA. You will
need to tell the toolchain that you are guaranteeing that only instances of ChildA will be there, and not ChildB, and
the way to do so is by saying assert isinstance(myinstance, ChildA), which signals that exact fact.

14 Chapter 5. RPython



CHAPTER 6

A Start

The “language” we’ll implement is exceedingly simple. We’ll aim for a small initial goal:

• variable assignment

• string and integer literals

• simple output to stdout

We’ll call our interpreter (and language) Snap. Don’t bother Googling it.

The simple syntax for our language will lead us to aim directly for the following small program:

foo = 2 + 7
bar = "cat" + "dog"
print(foo)
print(bar)

where we will want:

$ snap example.snap

containing the above program to put the appropriate output on stdout.

We’ll tackle our interpreter in 3 phases, a small parser, a small corresponding bytecode compiler, and then a small
corresponding bytecode interpreter.

After that we’ll embellish!

Initial Setup

Fork the repo containing these instructions, which you can use to house your interpreter (feel free to just use the local
clone if you prefer). You can use the CyCy repo as a guide (or any of the other interpreters) for all of the basic steps
below. We will assume a similar layout for the remainder of this session.

It lives at https://github.com/Julian/BuildingAnInterpreter.

15

https://github.com/Julian/BuildingAnInterpreter


Building an Interpreter With RPython, Release 0.1.0

We’ll be creating a fairly typical Python package, despite its purpose, so create the package layout you are comfortable
with, along with a virtualenv for your project (be sure to use -p pypy if you do). Install the rpython toolchain
which we’ll shortly need from PyPI.

We’ll be writing tests! Install your favorite test runner as well, and follow along with the next step, where we finally
start writing our parser.

16 Chapter 6. A Start



CHAPTER 7

A Snap Parser

Our first goal is to be able to successfully parse our goal into an AST. An AST is a programmatic representation of the
structure of our program (which you may have encountered via the ast module in Python).

Create a test file named test_example.py in your Snap package’s test folder, and create a test case within it.
The test case will guide us along the way towards at least being able to parse our example program. We’ll handle
interpreting it soon.

We wish to parse the example program we had earlier:

foo = 2 + 7
bar = "cat" + "dog"
print(foo)
print(bar)

into an AST. There are numerous ways to represent the above source code as an AST. Feel free to be a bit creative, but
as a sampling, we will represent the first sample of this piece of code as the following (RPython) AST:

Assign("foo", BinaryOperation("+", Integer(2), Integer(7)))

See if you can write a (failing) test case that asserts that the result of parsing the above source should produce that
AST. You’ll need to create a few classes corresponding to the various node types in your AST.

Note: Hooray! Tests don’t need to be valid RPython, they won’t run within your interpreter, so you have freedom to
write them however you’d like.

We’ll follow roughly typical TDD (if you’re unfamiliar, don’t worry too much about it), so create the function that
will parse your AST and make your example test pass by simply giving it a fake implementation that simply returns
the (overall) AST we want for our example program.

We’ll now build out our parser in small chunks until we successfully can parse the above program.

17

http://en.wikipedia.org/wiki/Abstract_syntax_tree


Building an Interpreter With RPython, Release 0.1.0

RPly and an Actual Start to Our Parser

We need a way to actually parse our source code into the AST we’ve just designed. There are a number of paths
forward. The most obvious is to implement a parser ourselves “by hand”, but there are a number of tools that exist to
make this easier. The RPython standard library has the rpython.rlib.parsing module, but we’ll use the RPly
library, which has a slightly nicer API.

There are only two pages of documentation, so have a quick read through them to see how you will likely want to
proceed. You’ll likely find consulting the CyCy parser helpful minutes as well but try and wait until you’re off the
ground.

You may want to consult additional resources on EBNF notation if this is your first exposure to it. For our purposes
superficial knowledge should suffice until you want to extend the parser (later) as well, so it can also wait.

Break down the things you will need to parse into smaller chunks, write unit tests for the (small AST) that will result
from parsing them, and then implement enough of a parser to make your tests pass, extending your implementation at
each step. For example, you might want to take the following path:

• Parse integer literals

• Parse sums of integers

• Parse assignment of an integer

• Parse the assignment of a sum

• ...

slowly building up your parser via your unit tests.

Translation

Let’s not forget about translation! Generally speaking, you should not necessarily attempt to translate your code not
after change or commit (it’s tedious and long as you’ll soon notice). Rely on your tests to check that your code works,
then simply periodically attempt to translate, and fix any invalid RPython you’ve introduced since the last time.

Let’s set up enough to be able to translate our project and check if it’s valid RPython. Recall that translation only
operates on code paths that are actually reachable from your entry point, which we’re about to define, and only on
objects after import-time, where you’re able to fully utilize Python.

Note: If you forgot about the type unification requirement of RPython, you’ll likely see your first translation error
with your AST nodes!

These errors are cryptic, but if you stare at them and trust them for long enough, they often are clear enough to point
you in the right direction.

See if you can solve your error.

More About non-RPython

With the above note again in mind about translation operating only on code paths your interpreter will traverse (and
not ones used only during tests or debugging), it’s useful to set yourself up for easy debugging of your parser.

Give your AST nodes a helpful __repr__ and see what you can do in regular Python to help yourself as you go
along.

18 Chapter 7. A Snap Parser

https://rply.readthedocs.org/en/latest/index.html


Building an Interpreter With RPython, Release 0.1.0

You’ve likely already implemented __eq__ and __ne__ methods on your nodes to get your tests to pass. These too
do not need to be valid RPython since they likely will only be used in tests.

A Look Ahead

In a coming exercise we’ll begin writing a simple REPL, similar to the Python REPL (or CyCy REPL).

You might want to look ahead and implement a simple REPL that simply can display the AST for the inputted source
code, which may be helpful as you move forward.

7.4. A Look Ahead 19

http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop


Building an Interpreter With RPython, Release 0.1.0

20 Chapter 7. A Snap Parser



CHAPTER 8

A Snap Compiler

We have the foundation of a parser, which means we now can convert source code into programmatic representations
of an AST.

Our objective now is to be able to compile an AST into bytecode. Our bytecode, roughly speaking, is similar to
bytecode you likely will have encountered at least in passing with Python.

It is a sequence of bytes which program (what will become) our virtual machine, in an analogous way to how machine
code is a sequence of bytes that programs our CPU.

Our compiler will take an AST and walk it to produce a single stream of bytecode that encapsulates the instructions
we need to execute.

Designing bytecode languages is an art unto itself, but our fundamental goal during compilation is to create a simple
language that manipulates a stack which we will maintain as our VM.

For example, here is a human-readable rendering of what adding two numbers might look like for our VM:

LOAD_CONST 0
LOAD_CONST 1
BINARY_ADD

The interpretation of these three instructions are:

• load a particular constant, whose ID is 0 (we’ll maintain constants in an array, so this will be an index specifying
the constant within the array), then push its value onto our stack

• do the same for another constant with ID 1

• pop the top two entries off the stack, perform addition, and push the result back onto the stack

The non-human readable version should use simple bytes to represent the actual instructions ultimately, which the VM
will then dispatch on.

21

http://en.wikipedia.org/wiki/Stack_machine


Building an Interpreter With RPython, Release 0.1.0

First Steps

Your compiler should operate on an AST, and ultimately will produce bytecode: a simple sequence of bytes which our
upcoming VM will execute.

In fairly typical OO style, generally it will simply delegate to each of your AST nodes for compilation, in which case
each node will know how to compile itself by producing a sequence of our bytecode that it corresponds to.

We’ll need to store state during our compilation process. We need at least a place to store variables and one to store
constants that the bytecode we generate will reference.

For a concrete example, a simple constant node like the one we’ll need for integers or strings should compile itself by
simply registering itself as a constant on an object that is keeping context for the compilation. It should then emit a
bytecode that when executed will retrieve the corresponding constant from the context object.

In the bytecode we will emit, loading this constant for use on the stack will consist of accessing an appropriate element
within a registered constants list by index.

Compiler Tests

Write your first compiler test! There are (at least) two ways to test your compiler. One is in integration with your
parser, by asserting that some inputted source code parses and then compiles into an expected piece of bytecode. The
other is to test direct compilation of an AST.

Try out both methods and see which you find easier to read. You may also find it convenient to have a way to produce
human-readable bytecode dumping for your bytecode, which should produce output similar to our first example above,
or to what you’d get out of the dis module.

22 Chapter 8. A Snap Compiler

https://docs.python.org/2/library/dis.html


CHAPTER 9

An Interpreter

Finally! It’s time to actually execute some code.

We have bytecode, which essentially is a tape-like sequence of instructions that we will interpret. We’ve casted our
(potentially) complicated language into a sequence of simple stack manipulation operations.

Some of you will find interpretation to be the most “fun” part of the process. We need to implement the appropriate
stack manipulation for each bytecode we wish to interpret.

The Main Loop

Interpreting bytecode will take place within a main loop similar to the CPython VM’s main loop or PyPy’s main loop.
A giant loop that simply performs whatever bytecode instruction is at the current position we’re processing.

A program counter should keep track of that position within our bytecode. Our interpreter will read sequentially
through the bytecode sequence, possibly moving the program counter to some other position (if you implement a jump
or conditional expression in a later exercise).

Along with a stack (an RPython list), we’ll implement our plan.

For each bytecode instruction that your compiler produces, implement the appropriate stack manipulation.

Note: Depending on the particular bytecode instruction, you may find it difficult at this stage to write tests without
simply making tests that assert about the internal state of your stack.

Try this out.

You might find it more reasonable as you progress to write tests that use the print bytecode mentioned below instead
once you have a working entry point.

23

https://github.com/python/cpython/blob/2.7/Python/ceval.c#L1102
https://bitbucket.org/pypy/pypy/src/a69d4a5a96389cf0d5478ff9fad898e52153fa92/pypy/interpreter/pyopcode.py?at=default#cl-177


Building an Interpreter With RPython, Release 0.1.0

Print

Until you implement full support for function calls, it will likely be useful to special-case the print() instruction by
giving it its own bytecode.

Note that you cannot use the sys module in RPython for the most part, nor do you have access to open. You may
write to stdout directly via os.write by passing in an fd of 1 for stdout.

You may also want to check out the streamio module from the RPython standard library which can provide some
provisional file-like support for RPython.

Once you have the ability to print values, you can begin print-debugging your own interpreter!

Wrapper Objects

Much like Python, our toy Snap language allows you to print objects that aren’t necessarily strings.

It becomes useful to start applying OOP techniques to objects at your language level and not just at the RPython level
for your interpreter. For example, you may have an integer object which represents a Snap integer within your runtime.

The convention is to call objects like these W_Integer, for example, where the W_ prefix indicates that this object is
a wrapper object.

Once you have wrapper objects, you can begin to encapsulate Snap features on each wrapper object. A W_Integer
for example may have a .to_string method in RPython, which returns a W_String Snap string. Your PRINT
bytecode might then be implemented by simply delegating to this method in order to produce a string, which you can
implement polymorphically on each Snap type you might have.

If you begin to implement method calls in Snap, your to_string method might further become a Snap-accessible
method that you can call on your Snap objects directly if so chosen.

24 Chapter 9. An Interpreter



CHAPTER 10

A REPL

As a somewhat fun additional exercise, let’s implement an interactive interpreter which parses, compiles and executes
your code in the same way the Python interpreter does.

Most of the work here is straightforward.

You do not have access to the code (Python) stdlib module, so it will be up to you to manually implement a simple
execution loop.

Simply repeatedly read a line, and run it through the appropriate steps within your interpreter.

Here specifically you might want to take a look at the streamio module if you did not before.

Final Thoughts

To come full circle, verify that you can run the example that we set out to interpret.

It should produce our expected output.

25



Building an Interpreter With RPython, Release 0.1.0

26 Chapter 10. A REPL



CHAPTER 11

Going Further

At this point you likely have a number of further ideas for extension.

Implement them!

For some further inspiration:

• Loops! Function calls! Methods! More operators. Extend your parser, compiler and interpreter to support these,
turning Snap into an actual programming language.

• Add some more types!

• We haven’t even mentioned how to add a JIT to your interpreter. The RPython docs cover the basics. Your
task will be to inform the RPython toolchain about a number of the fundamentals within your interpreter, such
as where your main loop starts, and what the lifecycles of some of your variables and objects are within your
interpreter.

27



Building an Interpreter With RPython, Release 0.1.0

28 Chapter 11. Going Further



CHAPTER 12

Indices and tables

• genindex

• search

29


	PyPy
	Installing PyPy
	Running PyPy

	CyCy
	Installing CyCy
	Running & Translating CyCy

	Some Example Interpreters
	Other Resources
	RPython
	Two Specific Notes

	A Start
	Initial Setup

	A Snap Parser
	RPly and an Actual Start to Our Parser
	Translation
	More About non-RPython
	A Look Ahead

	A Snap Compiler
	First Steps
	Compiler Tests

	An Interpreter
	The Main Loop
	Print
	Wrapper Objects

	A REPL
	Final Thoughts

	Going Further
	Indices and tables

