
Builder Documentation
Release 3.25.2-nightly

Christian Hergert, et al.

Jun 19, 2017

Contents

1 Contents 3
1.1 Installation . 3

1.1.1 via Flatpak . 3
1.1.1.1 Command Line . 3

1.1.2 Local Flatpak Builds . 4
1.1.3 via JHBuild . 4

1.1.3.1 Command Line . 4
1.1.4 via Release Tarball . 5
1.1.5 Troubleshooting . 5

1.2 Exploring the Interface . 5
1.2.1 Project Greeter . 6
1.2.2 Workbench Window . 6
1.2.3 Header Bar . 6
1.2.4 Switching Perspectives . 7
1.2.5 Showing and Hiding Panels . 7
1.2.6 Build your Project . 8
1.2.7 Preferences . 10
1.2.8 Command Bar . 11

1.3 Projects . 12
1.3.1 Creating and Importing Projects . 12

1.3.1.1 Creating a new Project . 12
1.3.1.2 Cloning an Existing Project . 13

1.3.2 Building your Project . 13
1.3.3 Debugging your Project . 14
1.3.4 Profiling your Project . 14
1.3.5 Sharing your Project . 14

1.4 Plugins . 14
1.4.1 Creating Your First Plugin . 15

1.4.1.1 Loading our Plugin . 15
1.4.2 Extending the Workbench . 16

1.4.2.1 The Basics . 16
1.4.2.2 Registering Workbench Actions . 16
1.4.2.3 Adding Widgets to the Header Bar . 17
1.4.2.4 Adding Widgets to the Workbench . 18
1.4.2.5 Registering Perspectives . 18
1.4.2.6 Registering Panels . 18

i

1.4.3 Extending the Greeter . 19
1.4.4 Extending the Editor . 19

1.4.4.1 Managing Buffers . 19
1.4.4.2 Syntax Highlighting . 19
1.4.4.3 Diagnostics and Fix-Its . 20
1.4.4.4 Autocompletion . 20
1.4.4.5 Snippets . 20
1.4.4.6 File Settings and Indentation . 20

1.4.5 Symbols and Semantic Analysis . 20
1.4.5.1 Go To Definition . 20
1.4.5.2 Extending the Symbol Tree . 20
1.4.5.3 Renaming Symbols . 20

1.4.6 Extending the Build Pipeline . 20
1.4.6.1 Implementing a Build System . 20
1.4.6.2 Extending the Build Pipeline . 21

1.4.7 Processes and Containers . 21
1.4.7.1 Application Runtimes and Containers . 21
1.4.7.2 Subprocesses and Psuedo Terminals . 22

1.4.8 Extending the Device Manager . 25
1.4.9 Extending the Run Manager . 25
1.4.10 Registering Keybindings . 25
1.4.11 Integrating Language Servers . 25
1.4.12 Extending Project Search . 25
1.4.13 Extending Application Menus . 25
1.4.14 Registering Application Preferences . 25
1.4.15 Creating and Performing Transfers . 25
1.4.16 Managing Worker Processes . 25
1.4.17 Integrating Version Control . 25

1.5 How-To Guides . 25
1.5.1 Contents . 25

1.5.1.1 Changing Indentation . 25
1.5.1.2 Search and Replace . 26

1.6 Troubleshooting . 26
1.6.1 Verbose Output . 26
1.6.2 Support Log . 26
1.6.3 Counters . 26
1.6.4 Test Builder Nightly . 27
1.6.5 File a Bug . 27

1.7 Contributing . 27
1.7.1 Planning and Project Management . 27

1.7.1.1 Responsibilities . 27
1.7.2 Writing Documentation . 27

1.7.2.1 Submitting Patches . 28
1.7.2.2 Creating a Patch . 28
1.7.2.3 Submitting a Patch . 28
1.7.2.4 GNOME git Best Practices . 29

1.7.3 Contributing Code . 29
1.7.3.1 Where to Contribute? . 29

1.7.4 IRC . 29
1.7.5 File A Bug . 29
1.7.6 Find A Bug To Work On . 29
1.7.7 Building From Source . 30

1.8 Credits . 30

ii

Builder Documentation, Release 3.25.2-nightly

Welcome to the Builder project!

We’re excited to have you here! The Builder project started out of a class teaching people to program for the GNOME
platform. In the process, we realized that we need to improve our tooling so we started creating Builder! We hope you
love using Builder to create great software for GNOME!

Contents 1

Builder Documentation, Release 3.25.2-nightly

2 Contents

CHAPTER 1

Contents

Installation

The preferred installation method for Builder is via Flatpak. This provides a bandwidth efficient and safe to use
installation method that can be easily kept up to date. It is also the engine behind Builder’s powerful SDK!

via Flatpak

If you have a recent Linux distribution, such as Fedora 25, simply download the Stable Flatpak and click Install when
Software opens. If Software does not automatically open, try opening the Stable flatpakref by double clicking it in
your file browser.

If you want to track Builder development, you might want the Nightly channel instead of Stable.

Note: To build flatpak-based applications, ensure that the flatpak-builder program is installed. On Fedora,
this is the flatpak-builder package.

Command Line

You can also use the command line to install Builder:

Stable

$ flatpak install --user --from https://git.gnome.org/browse/gnome-apps-nightly/plain/
→˓gnome-builder.flatpakref?h=stable
$ flatpak run org.gnome.Builder

Nightly

3

https://git.gnome.org/browse/gnome-apps-nightly/plain/gnome-builder.flatpakref?h=stable
https://wiki.gnome.org/Apps/Software
https://wiki.gnome.org/Apps/Software
https://git.gnome.org/browse/gnome-apps-nightly/plain/gnome-builder.flatpakref?h=stable
https://git.gnome.org/browse/gnome-apps-nightly/plain/gnome-builder.flatpakref
https://git.gnome.org/browse/gnome-apps-nightly/plain/gnome-builder.flatpakref?h=stable

Builder Documentation, Release 3.25.2-nightly

$ flatpak install --user --from https://git.gnome.org/browse/gnome-apps-nightly/plain/
→˓gnome-builder.flatpakref
$ flatpak run org.gnome.Builder

Note: Nightly builds are built with tracing enabled. The tracing is fairly lightweight, but it includes a great deal of
more debugging information.

Local Flatpak Builds

You can also build Builder as a flatpak yourself to test local changes. First, make a repo for your local builds:

$ mkdir ~/my-flatpak-builds
$ flatpak remote-add --user --no-gpg-verify my-flatpak-builds ~/my-flatpak-builds

Now, in Builder’s source directory, use flatpak-builder to build a Builder flatpak and install it

$ git clone https://git.gnome.org/browse/gnome-builder/
$ cd gnome-builder
$ mkdir app
$ flatpak-builder --ccache --repo=$HOME/my-flatpak-builds app org.gnome.Builder.json
$ flatpak install --user my-flatpak-builds org.gnome.Builder

Note: After following these steps once you can omit adding the remote or creating the app directory. You’ll also
need to add the --force-clean option to flatpak-builder and use flatpak update rather than flatpak
install.

via JHBuild

If you plan on contributing to the GNOME desktop and application suite, you may want to install Builder via JHBuild.
See the Newcomers Tutorial for more information on joining the community and installing JHBuild.

We are aggressively moving towards using Flatpak for contributing to Builder, but we aren’t quite there yet.

Command Line

Note: Please review the GNOME Newcomers Tutorial on how to build a GNOME application before proceeding.

Make sure you have the following packages installed before starting

On Fedora
$ sudo dnf install clang-devel llvm-devel libssh2-devel

On Ubuntu
$ sudo apt-get install clang-3.9 libclang-3.9-dev llvm-3.9-dev libssh2-1-dev

4 Chapter 1. Contents

https://wiki.gnome.org/Newcomers/BuildGnome
https://wiki.gnome.org/Newcomers
https://wiki.gnome.org/Newcomers/BuildGnome
https://wiki.gnome.org/Newcomers

Builder Documentation, Release 3.25.2-nightly

$ git clone git://git.gnome.org/jhbuild.git
$ cd jhbuild
$./autogen.sh --simple-install
$ make
$ make install
$ jhbuild sysdeps --install gnome-builder
$ jhbuild build gnome-builder
$ jhbuild run gnome-builder

Warning: While it may be tempting to install jhbuild using your Linux distribution’s package manager, it will
lack an updated description of the GNOME modules and is therefore insufficient. Always install jhbuild from git.

via Release Tarball

We do not recommend installing from release tarballs unless you are a Linux distribution. Builder has a complex set
of dependencies which heavily target the current release of GNOME. Keeping up with these requires updating much
of the GNOME desktop.

Please install via Flatpak, which does not have this restriction.

We use Meson (and thereby Ninja) to build Builder.

$ meson . build
$ ninja -C build install

Troubleshooting

If you are having trouble running Builder, start Builder with verbose output. This will log more information about
the running system. The gnome-builder program can take multiple arguments of -v to increase verbosity. For
example, if running from flatpak:

$ flatpak run org.gnome.Builder -vvvv

If you’re running from a system installed package of Builder, the binary name is gnome-builder.

$ gnome-builder -vvvv

If your issue persists, please consider filing a bug.

Exploring the Interface

The following sections will help you get to know Builder.

• Project Greeter

• Workbench Window

• Header Bar

• Switching Perspectives

• Showing and Hiding Panels

1.2. Exploring the Interface 5

https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder

Builder Documentation, Release 3.25.2-nightly

• Build your Project

• Preferences

• Command Bar

Project Greeter

When you start Builder, you will be asked to select a project to be opened:

The window displays projects that were discovered on your system. By default, the ~/Projects directory will be
scanned for projects when Builder starts. Projects you have previously opened will be shown at the top.

Selecting a project row opens the project or pressing “Enter” will open the last project that was open. You can also
start typing to search the projects followed by “Enter” to open.

If you’d like to remove a previously opened project from the list, activate Selection mode. Press the “Select” button in
the top right corner to the left of the close application button and then select the row you would like to remove. Select
the row(s) you’d like to remove and then click “Remove” in the lower left corner of the window.

Workbench Window

The application window containing your project is called the “Workbench Window”. The Workbench is split up into
two main areas. At the top is the Header Bar and below is the current “Perspective”.

Builder has many perspectives, including the Editor, Build Preferences, Application Preferences, and the Profiler.

Header Bar

The header bar is shown below. This contains a button in the top left for Switching Perspectives. In the center is the
“OmniBar” which can be used to Build your Project.

6 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

To the right of the OmniBar is the Run button. Clicking the arrow next to Run allows you to change how Builder will
run your application. You can run normally, with a profiler, or with Valgrind.

On the right is the search box. Type a few characters from the file you would like to open and it will fuzzy search your
project tree. Use “Enter” to complete the request and open the file.

To the right of the search box is the workbench menu. You can find more options here such as Showing and Hiding
Panels.

Switching Perspectives

To switch perspectives, click the perspective selector button in the top left of the workbench window. Perspectives that
support a keyboard accelerator will display the appropriate accelerator next to name of the perspective.

Select the row to change perspectives.

Showing and Hiding Panels

Sometimes panels get in the way of focusing on code. You can move them out of the way using the workbench menu
in the top-right.

1.2. Exploring the Interface 7

Builder Documentation, Release 3.25.2-nightly

Additionally, you can use the “left-visible”, “right-visible”, “bottom-visible” commands from the Command Bar to
toggle their visibility.

Build your Project

To build your project, use the OmniBar in the center of the header bar. To the right of the OmniBar is a button for
starting a build as shown in the image below.

8 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

You can also use the “build”, “rebuild”, or “clean” commands from the command bar.

While the project is building, the build button will change to a cancel button. Clicking the cancel button will abort the
current build.

1.2. Exploring the Interface 9

Builder Documentation, Release 3.25.2-nightly

Preferences

The preferences perspective allows you to change settings for Builder and its plugins. You can search for preferences
using the keyword search in the top left of the preferences perspective.

10 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Command Bar

The command bar provides a command-line-interface into Builder. You can type various actions to activate them. If
Vim-mode is enabled, you can also activate some Vim-inspired commands here.

The command bar includes tab completion as shown below.

1.2. Exploring the Interface 11

Builder Documentation, Release 3.25.2-nightly

Projects

Whether you want to create a new project or import an existing project, Builder has features that can help you. Take a
look below to learn how to create or import a project, build, and profile your application. As we add new features you
can learn about them here.

Creating and Importing Projects

Builder supports creating new projects and importing existing projects. When importing a project, you can either open
it from your local computer or clone it from a remote git repository.

Creating a new Project

To create a new project, select “New” from the project greeter. The project creation guide will be displayed.

Give your project a meaningful name, as this is not easily changeable later. The project name should not include
spaces and if the project needs multiple words, use a hyphen “-” to separate the words.

Choose the language you would like to use for the project. Depending on the language, different templates are
available.

Choosing a license helps promote sharing of your application. Builder is licensed as GPLv3 or newer and we suggest
using GPLv3 when writing new applications for GNOME.

If you do not want git-based version control, turn off the switch to disable git support.

Lastly, select a suitable template for your application. Some patterns are available to speed up the bootstrapping of
your project.

12 Chapter 1. Contents

http://www.gnu.org/licenses/gpl-3.0.html

Builder Documentation, Release 3.25.2-nightly

Cloning an Existing Project

To clone an existing project, you will need the URL of your git repository. For example, to clone the Builder project,
you could specify: git://git.gnome.org/gnome-builder.git

After entering the URL, press the “Clone” button in the upper-right corner of the window and wait for the operation
to complete. Once the project has been cloned, you will be shown the workbench window.

Note: If the remote repository requires authorization a dialog will be displayed for you to input your credentials.

Building your Project

There are multiple ways to activate a build for your project:

• Press the Build Button on the right of the OmniBar as shown in the figure below

• Press the Control and F7 keys together

• Activate the command bar at the bottom of the Builder window by pressing Control and Enter and typing
“build” followed by the Enter key

• Click the OmniBar and press the Build button in the lower-left corner of the dialog window

1.3. Projects 13

Builder Documentation, Release 3.25.2-nightly

Debugging your Project

Warning: Builder does not currently support debugging, but it is expected in version 3.26.

Profiling your Project

Builder integrates with the Sysprof profiler to provide a robust sampling profiler.

Sharing your Project

Plugins

The following provides examples of various ways you can extend Builder. All examples are provided in the Python 3
language for succinctness. You can also implement plugins in C or Vala.

14 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Creating Your First Plugin

Plugins consist of two things. First, a meta-data file describing the plugin which includes things like a name, the
author, and where to find the plugin. Second, the plugin code which can take the form of a shared library or python
module.

Builder supports writing plugins in C, C++, Vala, or Python. We will be using Python for our examples in this tutorial
because it is both succinct and easy to get started with.

First, we will look at our plugin meta-data file. The file should have the file-suffix of ”.plugin” and it’s format is
familiar. It starts with a line containing “[Plugin]” indicating this is plugin meta-data. Then it is followed by a series
of “Key=Value” key-pairs.

my_plugin.plugin
[Plugin]
Name=My Plugin
Loader=python3
Module=my_plugin
Author=Angela Avery

Now we can create a simple plugin that will print “hello” when Builder starts and “goodbye” when Builder exits.

my_plugin.py

import gi

from gi.repository import GObject
from gi.repository import Ide

class MyAppAddin(GObject.Object, Ide.ApplicationAddin):

def do_load(self, application):
print("hello")

def do_unload(self, application):
print("goodbye")

In the python file above, we define a new extension called MyAppAddin. It inherits from GObject.Object (which
is our base object) and implements the interface Ide.ApplicationAddin. We wont get too much into objects
and interfaces here, but the plugin manager uses this information to determine when and how to load our extension.

The Ide.ApplicationAddin requires that two methods are implemented. The first is called do_load and is
executed when the extension should load. And the second is called do_unload and is executed when the plugin
should cleanup after itself. Each of the two functions take a parameter called application which is an Ide.
Application instance.

Loading our Plugin

Now place the two files in ~/.local/share/gnome-builder/plugins as my_plugin.plugin and
my_plugin.py. If we run Builder from the command line, we should see the output from our plugin!

[angela@localhost ~] gnome-builder
hello

Now if we close the window, we should see that our plugin was unloaded.

1.4. Plugins 15

Builder Documentation, Release 3.25.2-nightly

[angela@localhost ~] gnome-builder
hello
goodbye

Next, continue on to learn about other interfaces you can implement in Builder to extend it’s features!

Extending the Workbench

The Basics

The basic mechanics of extending the workbench requires first creating an Ide.WorkbenchAddin. Your subclass
will created for each instance of the Ide.Workbench. This conveniently allows you to track the state needed for
your plugin for each workbench.

Listing 1.1: A Basic WorkbenchAddin to demonstrate scaffolding

import gi

from gi.repository import GObject
from gi.repository import Ide

class BasicWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench: Ide.Workbench):
pass

def do_unload(self, workbench: Ide.Workbench):
pass

You will notice that at the top we import the packages we’ll be using. Here we use the GObject and Ide packages
from GObject Introspection.

We then create a class which inherits from GObject.Object and implements the Ide.WorkbenchAddin in-
terface. The Ide.WorkbenchAddin interface has two virtual methods to override, Ide.WorkbenchAddin.
load() and Ide.WorkbenchAddin.unload().

Note: PyGObject uses do_ prefix to indicate we are overriding a virtual method.

The load virtual method is called to allow the plugin to initialize itself. This method is called when the workbench
is setup or your plugin is loaded.

When the unload virtual method is called the plugin should clean up after itself to leave Builder and the workbench
in a consistent state. This method is called when the workbench is destroyed or your plugin is unloaded.

Registering Workbench Actions

Using Gio.Action is a convenient way to attach actions to the workbench that contain state. For example, maybe
for use by a button that should be insensitive when it cannot be used. Additionally, actions registered on the workbench
can be activated using the command bar plugin.

16 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Listing 1.2: Registering an action on the workbench

import gi

from gi.repository import GObject
from gi.repository import Gio
from gi.repository import Ide

class MyWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench):
action = Gio.SimpleAction.new('hello', None)
action.connect('activate', self.hello_activate)
workbench.add_action(action)

def do_unload(self, workbench):
workbench.remove_action('hello')

def hello_activate(self, action, param):
print('Hello activated!')

This adds a new action named hello to the workbench. It can be connected to widgets by using the win.hello
action-name. Additionally, you can call the action with hello from the command bar.

To toggle whether or not the action can be activated, set the Gio.SimpleAction:enabled property.

Adding Widgets to the Header Bar

You might want to add a button to the workbench header bar. To do this, use an Ide.WorkbenchAddin and fetch
the header bar using Ide.Workbench.get_headerbar(). You can attach your widget to either the left or the
right side of the Ide.OmniBar in the center of the header bar. Additionally, by specifying a Gtk.PackType, you
can align the button within the left or right of the header bar.

We suggest using Gio.SimpleAction to attach an action to the workbench and then activating the action using
the Gtk.Button:action-name property.

Listing 1.3: Adding a button to the workbench header bar

import gi

from gi.repository import GObject
from gi.repository import Ide

class MyWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench):
headerbar = workbench.get_headerbar()

Add button to top-center-left
self.button = Gtk.Button(label='Click', action_name='win.hello', visible=True)
headerbar.insert_left(self.button, Gtk.PackType.PACK_END, 0)

def do_unload(self, workbench):
remove the button we added
self.button.destroy()
self.button = None

1.4. Plugins 17

Builder Documentation, Release 3.25.2-nightly

Adding Widgets to the Workbench

my_plugin.py

import gi

from gi.repository import GObject
from gi.repository import Ide

class MyWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench):
pass

def do_unload(self, workbench):
pass

Registering Perspectives

my_plugin.py

import gi

from gi.repository import GObject
from gi.repository import Ide

class MyWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench):
pass

def do_unload(self, workbench):
pass

Registering Panels

my_plugin.py

import gi

from gi.repository import GObject
from gi.repository import Ide

class MyWorkbenchAddin(GObject.Object, Ide.WorkbenchAddin):

def do_load(self, workbench):
pass

def do_unload(self, workbench):
pass

18 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Extending the Greeter

Extending the Editor

Managing Buffers

Syntax Highlighting

Regex-based Highlighting

Syntax highlighting in Builder is performed by the GtkSourceView project. By providing an XML description of the
syntax, GtkSourceView can automatically highlight the language of your choice. Thankfully, GtkSourceView already
supports a large number of languages so the chances you need to add a new language is low. However, if you do, we
suggest that you work with GtkSourceView to ensure that all applications, such as Gedit, benefit from your work.

Chances are you can find existing language syntax files on your system in /usr/share/gtksourceview-3.0/
language-specs/. These language-spec files serve as a great example of how to make your own. If it is not there,
chances are there is already a .lang file created but it has not yet been merged upstream.

Bundling Language Specs

Should you need to bundle your own language-spec, consider using GResources to embed the language-spec within
your plugin. Then append the directory path of your language-specs to the GtkSource.LanguageManager so it
knows where to locate them.

from gi.repository import GtkSource

manager = GtkSource.LanguageManager.get_default()
paths = manager.get_search_path()
paths.append('resources:///org/gnome/builder/plugins/my-plugin/language-specs/')
manager.set_search_path(paths)

Symantic Highlighting

If the language you are using provides an AST you may want to highlight additional information not easily decern-
able by a regex-based highlighter. To simplify this, Builder provides the Ide.HighlightEngine and Ide.
Highlighter abstractions.

The Ide.HighlightEngine provides background updating of the document so that your Ide.Highlighter
implementation can focus on highlighting without dealing with performance impacts.

Out of simplicity, most Ide.Highlighter implementations in Builder today use a simple word index and highlight
based on the word. However, this is not required if you prefer to do something more technical such as matching ranges
to the AST.

1.4. Plugins 19

Builder Documentation, Release 3.25.2-nightly

Diagnostics and Fix-Its

Autocompletion

Snippets

File Settings and Indentation

Symbols and Semantic Analysis

Go To Definition

Extending the Symbol Tree

Renaming Symbols

Extending the Build Pipeline

Implementing a Build System

Builder has support for many build systems such as autotools, meson, cmake, etc. The build system knows how to
find build targets (binaries or scripts that are installed) for the runner, knows how to find build flags used by the clang
service, and it can define where the build directory is. It also has an associated Ide.BuildPipelineAddin (see
the next section) that specifies how to do operations like build, rebuild, clean, etc.

Listing 1.4: An outline for a Buildsystem

import gi

from gi.repository import Gio, Ide

class BasicBuildSystem(Ide.Object, Ide.BuildSystem, Gio.AsyncInitable):

def do_init_async(self, priority, cancel, callback, data=None):
task = Gio.Task.new(self, cancel, callback)
task.set_priority(priority)
do something, like check if a build file exists
task.return_boolean(True)

def do_init_finish(self, result):
return result.propagate_boolean()

def do_get_priority(self):
return 0 # Choose a priority based on other build systems' priority

def do_get_build_flags_async(self, ifile, cancellable, callback, data=None):
task = Gio.Task.new(self, cancellable, callback)
task.ifile = ifile
task.build_flags = []
get the build flags
task.return_boolean(True)

def do_get_build_flags_finish(self, result):
if result.propagate_boolean():

return result.build_flags

20 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

def do_get_build_targets_async(self, cancellable, callback, data=None):
task = Gio.Task.new(self, cancellable, callback)
task.build_targets = []
get the build targets
task.return_boolean(True)

def do_get_build_targets_finish(self, result):
if result.propagate_boolean():

return result.build_targets

How does Builder know which build system to use for a project? Each has an associated “project file” (configure.ac
for autotools) that has to exist in the source directory for the build system to be used. If a project has multiple project
files, the priorities of each are used to decide which to use. You can see where the priority is defined in the code above.
The project file is defined in the .plugin file with these lines (in the case of the make plugin):

Listing 1.5: A snippet from a .plugin file

X-Project-File-Filter-Pattern=Makefile
X-Project-File-Filter-Name=Makefile Project

When a project has the right file, the build system will be initialized by IdeContext during its own initialization
process.

Extending the Build Pipeline

Processes and Containers

Builder needs to support a wide variety of ways to spawn processes. Whether that is inside a build environment,
container, on the host, terminals, or even a remote system. The following sections describe some of the scenarios and
how to best perform the task at hand.

Application Runtimes and Containers

A core abstraction in the design of builder is Ide.Runtime. This provides a way to setup and execute processes
within a given environment. That environment could be your host operating system, a container, a build environment,
or even a remote system.

For example, if we want to run the make command for your project and that project is targeting the GNOME Sdk we
need to first enter the SDK environment. The Flatpak plugin provides an Ide.Runtime implementation to do this
so that before your subprocess is lanched, the runtime is setup and initialized for execution with an alternate mount
namespace, network namespace, and more.

How to get a runtime

If you need to run a process within the build environment you will want to access the runtime for the current build
configuration. The current build configuration can be accessed from the Ide.ConfigurationManager object.

config_manager = context.get_configuration_manager()
config = config_manager.get_current()
runtime = config.get_runtime()

1.4. Plugins 21

https://flatpak.org

Builder Documentation, Release 3.25.2-nightly

Note: It is possible that the configured runtime does not yet exist, so remember to check for None.

Creating a Subprocess

To create a subprocess in the runtime, use the Ide.Subprocess.create_launcher() method and then spawn
a process using that launcher.

try:
launcher = runtime.create_launcher()
launcher.push_argv('which')
launcher.push_argv('make')
subprocess = launcher.spawn(None)
_, stdout, stderr = subprocess.communicate_utf8(None, None)

except Exception as ex:
print("Failed to create launcher: " + repr(ex))
return

Subprocesses and Psuedo Terminals

Creating Subprocesses

Builder provides a powerful abstraction for creating subprocesses. Ide.Subprocess allows you to setup and
modify how a processes should be launched without the burden of how to launch the subprocess. This means that
Builder can use different strategies based on the host system, subprocess requirements, and plugins that may need to
modify the program arguments.

When Builder is not running in a sandbox, it can generally execute subprocesses the normal way using fork and exec.
However, if Builder is sandboxed, it may need to run the subprocess on the host rather than inside the sandbox. To
ensure your subprocess is run on the host, use Ide.Subprocess.set_run_on_host().

Note: You can only run programs on the host that are already installed. Use which program-name to determine
if the process is available on the host.

If you are integrating an external tool, such as Valgrind, you might need to inject arguments into the argument array.
For the Valgrind case, Ide.Subprocess.prepend_argv() of "valgrind" would be appropriate.

Some runtime plugins may need to modify the argument array even further. For example, the Flatpak plugin will
require that all commands start with flatpak build ... so that the commands are never run on the host system,
but instead inside the runtime. Plugins that require this should inject their additional arguments from the Ide.
SubprocessLauncher.spawn() virtual-method so that plugins do not get confused about the placement of
arguments.

from gi.repository import GLib
from gi.repository import Ide

You may want access to stdin/stdout/stderr. If so, ensure you specify
the appropriate Gio.SubprocessFlags for your subprocess.
launcher = Ide.SubprocessLauncher.new(Gio.SubprocessFlags.STDOUT_PIPE |

Gio.SubprocessFlags.STDERR_PIPE |
Gio.SubprocessFlags.STDIN_PIPE)

22 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

If you need to specify where to launch the process. The default
is the home directory.
launcher.set_cwd(os.path.join(GLib.get_home_dir(), 'Projects'))

Push some arguments onto argv
launcher.push_argv('which')
launcher.push_argv('ls')

Set some environment variables
launcher.setenv('LANG', 'C', True)

Spawn the process. If you pass in a Gio.Cancellable, you can kill the
subprocess by calling Gio.Cancellable.cancel().
subprocess = launcher.spawn(None)

We need to wait for the child to complete. If you want to read the
output of the subprocess, see Ide.Subprocess.communicate_utf8().
wait_check() will ensure the return value is zero. If you do not
care about the return value, just use wait().
try:

subprocess.wait_check(None)
except Exception as ex:

print(repr(ex))

May Ide.Subprocess API have async variants. Consider using them to
avoid needlessly blocking threads.

Supervising Subprocesses

There are times where you might want to respawn a process in case it exits prematurely. Builder provides the Ide.
SubprocessSupervisor abstraction to simplify this for you.

The Ide.SubprocessSupervisor has a simple API. Just attach your Ide.SubprocessLauncher using
Ide.SubprocessSupervisor.set_launcher() and call Ide.SubprocessSupervisor.start().

If the subprocess begins flapping (exiting immediately after spawning) some delay will be added to slow things down.

To stop the subprocess, use Ide.SubprocessSupervisor.stop().

If you need access to the subprocess, you can access it either via the Ide.SubprocessSupervisor.
get_subprocess() method or by connecting to the Ide.SubprocessSupervisor::spawned() signal.

def on_subprocess_spawned(supervisor, subprocess):
print("Spawned process " + subprocess.get_identifier())

launcher = create_launcher()

supervisor = Ide.SubprocessSupervisor()
supervisor.set_launcher(launcher)
supervisor.connect('spawned', on_subprocess_spawned)
supervisor.start()

Psuedo Terminals

Psuedo terminals are tricky business. In general, if you need access to a PTY, use the VTE library like Builder’s
terminal plugin. For an example of how to setup the PTY, we use a flow like this.

1.4. Plugins 23

Builder Documentation, Release 3.25.2-nightly

// This code does little to no error checking.
// Your code should be more careful.

// First create our PTY master
VtePty *pty = vte_terminal_pty_new_sync (terminal,

VTE_PTY_DEFAULT | VTE_PTY_NO_LASTLOG | VTE_
→˓PTY_NO_UTMP | VTE_PTY_NO_WTMP,

NULL, &error);

// Now go through the PTY slave setup
int master_fd = vte_pty_get_fd (pty);

assert (grantpt (master_fd) != 0);
assert (unlockpt (master_fd) != 0);

// Get the path to the PTY slave
char name[PATH_MAX];
assert (ptsname_r (master_fd, name, sizeof name - 1) != 0);
name [sizeof name - 1] = '\0';

// Open the PTY slave
int slave_fd = open (name, O_RDWR | O_CLOEXEC);

// Now, when spawning a process, you can set stdin/stdout/stderr to the FD
// of the slave. We use dup() because the callee takes ownership.
ide_subprocess_launcher_take_stdin_fd (launcher, dup (slave_fd));
ide_subprocess_launcher_take_stdout_fd (launcher, dup (slave_fd));
ide_subprocess_launcher_take_stderr_fd (launcher, dup (slave_fd));
close (slave_fd);

When launching the subprocess with Builder, it will detect that stdin, stdout, or stderr are pseudo terminals
and perform the proper ioctl() setup for you. This allows for the PTY to cross the sandbox boundary to the host,
ensuring that you may have a host-based shell with a PTY from within the sandbox.

24 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Extending the Device Manager

Extending the Run Manager

Registering Keybindings

Integrating Language Servers

Extending Project Search

Extending Application Menus

Registering Application Preferences

Creating and Performing Transfers

Managing Worker Processes

Integrating Version Control

How-To Guides

These quick and to the point “How To” articles are meant to help you answer common questions. If you have an
addition to the list, please let us know!

Contents

Changing Indentation

To change the indentation rules you have two options. Either globally for your system, or for just the current project.

Project-Wide

If you would like to change settings for just your project, use a .editorconfig file. You can add a .
editorconfig file to the root of your project in the editorconfig format.

It looks something like:

root = true

[*]
charset = utf-8
end_of_line = lf

Globally

If you would like to change the indentation rules for your user, and thereby all projects which do not contain an .
editorconfig file, use the application preferences. You can access the preferences through the perspective selector
or using the Command+, keyboard shortcut.

1.5. How-To Guides 25

http://editorconfig.org/

Builder Documentation, Release 3.25.2-nightly

First select “Programming Languages” from the sidebar on the left. Then select the programming language from the
list of options. On the right you will now see a list of preferences that may be tweaked for that language. Change the
indentation level to your desired preference.

Search and Replace

Search and replace can be used to replace all instances of a keyword with another form of text. To bring up the “Search
and Replace” tool, use Ctrl+h while focused in the editor.

Note: If you are using an alternate keyboard shortcut theme, your shortcut might be different.

Enter the search text in the first text entry. Enter the replacement text in the second text entry.

Tip: The replacement text may contain “regex backreferences” such as \1 and others. See the g_regex_replace
documentation for more information.

Select “Replace” to replace the next match or “Replace All” to replace all matches.

Troubleshooting

If you are having trouble with Builder you can help us help you by trying to do some basic troubleshooting. Here are
some steps you can go through to try to discover what is going wrong.

Verbose Output

You can increase the log verbosity of Builder by adding up to four -v when launching from the command line.

If running from flatpak
flatpak run org.gnome.Builder -vvvv

If using distribution packages
gnome-builder -vvvv

Support Log

Builder has support to generate a support log which can provide us with details. From the application menu, select
“Generate Support Log”. It will place a log file in your home directory.

Counters

Builder has internal counters which can be useful to debug problems. Use the command bar (activated by
Control+Enter) and type “counters” followed by Enter. This will bring up a new window containing the current
values of the counters.

If Builder has locked up, you can access the counters from outside of Builder. The command line tool
dazzle-list-counters, can be used to access the counters.

26 Chapter 1. Contents

https://developer.gnome.org/glib/stable/glib-Perl-compatible-regular-expressions.html#g-regex-replace

Builder Documentation, Release 3.25.2-nightly

dazzle-list-counters `pidof gnome-builder`

Note: When running Builder from Flatpak, we do not currently expose the counters to the host. Use flatpak
enter $PID /bin/bash to enter the mount namespace and then run dazzle-list-counters.

Test Builder Nightly

If you are running the stable branch or an older distribution package, please consider trying our Nightly release to see
if the bug has already been fixed. Doing this before reporting bugs helps reduce the amount of bug traffic we need to
look at. We’ll usually ask you to try Nightly anyway before continuing the troubleshooting process.

See installing from Flatpak for installation notes.

File a Bug

We can help you troubleshoot! File a bug if you’re stuck and we can help you help us.

See the Builder Bugzilla for creating a bug report.

Contributing

If you’re interested in contributing to Builder and GNOME at large, we would love for you to join us! Only with people
like you can GNOME exist. We love seeing people that use GNOME transform into people that create GNOME.

Planning and Project Management

Many of us that work on the Builder code-base are great at writing code. But we are not so great at managing schedules,
planning feature priorities, and coordinating with other projects. Helping us do this in Builder will make you a shepard
of geeks.

Responsibilities

• Helping us stay on schedule with GNOME releases and releasing tarballs on time.

• Ensure that we plan the feature before writing it.

• Helping to plan features on realistic timelines.

• Planning a roadmap that makes sense. Some features do not matter unless other features are implemented first.

• Help us find new contributors and ensure that our community is healthy towards new recruits.

Writing Documentation

We are using sphinix to write our new documentation.

In conf.py you’ll see that we use the theme from readthedocs.io. That means you need to install that theme as well
as sphinx to build the documetnation.

1.7. Contributing 27

https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder&component=general

Builder Documentation, Release 3.25.2-nightly

Listing 1.6: Install dependencies for building documentation (Fedora 25)

sudo dnf install python3-sphinx python3-sphinx_rtd_theme

Listing 1.7: Now build the documentation with sphinx

[user@host gnome-builder/]$ cd doc
[user@host doc/]$ sphinx-build . _build
[user@host doc/]$ xdg-open _build/index.html

The first command builds the documentation. Pay attention to warnings which will be shown in red. Some of them
may be useful to help you track down issues quickly.

To open the documentation with your web browser, use xdg-open _build/index.html.

Submitting Patches

We will accept patches for documentation no matter how you get them to us. However, you will save us a lot of time
if you can:

• Create a patch with git.

• Create a new bug on Builder Bugzilla and attach the patch.

Creating a Patch

First off, if you have not configured git to include your full name and email, type the following in a terminal:

$ git config --global user.name 'My Full Name'
$ git config --global user.email 'example@example.com'

After you have modified the documentation to your liking, prepare the files to be committed to git. The add a short
commit message and commit the files.

[user@host doc/]$ git add path/to/file.rst
[user@host doc/]$ git commit -m 'doc: update example documentation'

Now we can export the patch to be uploaded to Builder Bugzilla

[user@host doc/]$ git format-patch HEAD^

At this point you’ll see a file similar to 0001-doc-update-example-documentation.patch in the current
directory. We want to upload this patch to Builder Bugzilla.

Submitting a Patch

Now that we have our patch file, we need to create a new bug. Head over to Builder Bugzilla and fill out the bug
details.

Just give a bit of information about what you documented, and then find the “Add an Attachment” section near the
bottom. Upload the patch file you exported with git format-patch HEAD^ above.

Click “Submit Bug” and we’ll take care of the rest!

28 Chapter 1. Contents

https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder&component=docs
https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder&component=docs
https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder&component=docs
https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder&component=docs

Builder Documentation, Release 3.25.2-nightly

GNOME git Best Practices

To learn more about using git with GNOME, including how to set up git, submitting patches, and good commit
messages, visit the git workflow GNOME wiki page.

Contributing Code

Where to Contribute?

Builder wants to become a powerful tool to enable GNOME developers to build great software. To do this we need
your help.

Do you have knowledge in a particular area of software development? You can use that knowledge to help Builder
expand it’s area of expertise.

Generally, code contributions fall into one of two categories: Application Plumbing or Plugins.

Application Plumbing

If you like working on application plumbing, which is the infrastructure that makes implementing plugins simple, then
you want to look at libide. Many of the core features of Builder are implemented here. That includes the application
window, plugin interfaces and core machinery of Builder.

Plugins

Plugins are how we integrate features into Builder for a specific problem. For example, the git plugin is the glue
between the version control abstraction in libide and git.

There are many existing plugins already. You might want to contribute to an existing one that does not yet serve your
needs well. Or maybe you want to create a new plugin that integrates a feature missing from Builder.

IRC

One great way to get started is to join us on IRC where you can chat with others who work on the Builder project. The
Builder developer team can be found on the Builder IRC channel.

File A Bug

If you think you’ve found a bug in Builder, head over to Builder Bug Tracker and file a report. We will get back to you
on any further details we need to track down the issue as soon as we can. Filing bugs helps us improve the softwrae
for everyone and we really appreciate your time.

For various spam reasons our bugtracker requires that you create an account. We hope this minor inconvenience is not
too much trouble.

Find A Bug To Work On

If you wish to start contributing code to Builder, simply pick a bug from this list of newcomer bugs.

1.7. Contributing 29

https://wiki.gnome.org/Newcomers/CodeContributionWorkflow
https://git.gnome.org//browse/gnome-builder/tree/libide/
https://git.gnome.org//browse/gnome-builder/tree/plugins/git/
https://git.gnome.org//browse/gnome-builder/tree/libide/
https://git.gnome.org//browse/gnome-builder/tree/plugins/
https://bugzilla.gnome.org/enter_bug.cgi?product=gnome-builder
https://bugzilla.gnome.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&columnlist=component%2Cchangeddate%2Cbug_severity%2Cpriority%2Cshort_desc&keywords=newcomers&list_id=193415&order=changeddate%20DESC%2Ccomponent&product=gnome-builder&resolution=---

Builder Documentation, Release 3.25.2-nightly

Building From Source

Learn out how to install via JHBuild in our installation documentation.

Currently, JHBuild is how we recommend contributing to Builder. We do expect this to change very soon in that you’ll
be able to easily contribute to Builder from our flatpak-version of Builder.

Credits

Builder was started by Christian Hergert in 2014 to improve the quality of software for the GNOME ecosystem. Many
contributors have helped create and improve Builder to the state you find it today.

Artwork by

Allan Day
Hylke Bons
Jakub Steiner

Code and documentation by

Akshaya Kakkilaya
albfan
Alex285
Alexander Larsson
Alexandre Franke
Allan Day
Andreas Brauchli
Andreas Henriksson
anoop chandu
Anoop Chandu
Antoine Jacoutot
Anwar Sadath
Ben Iofel
Boris Egorov
burningTyger
Carlos Soriano
chandu
Christian Hergert
Cosimo Cecchi
Daiki Ueno
Damien Lespiau
Daniel Boles
Daniel Espinosa
David King
Debarshi
Dimitrios Christidis
Dimitris Zenios
Dor Askayo
Ekta Nandwani
Elad Alfassa
Erick Pérez Castellanos
Evgeny Shulgin
Fabiano Fidêncio
Fangwen Yu
Felix Schwarz
Fernando Fernandez
Florian

30 Chapter 1. Contents

Builder Documentation, Release 3.25.2-nightly

Florian Bäuerle
Florian Müllner
Garrett Regier
Gautier Pelloux-Prayer
Gennady Kovalev
Georges Basile Stavracas Neto
Georg Vienna
Giovanni Campagna
Hashem Nasarat
heroin
Ignacio Casal Quinteiro
Igor Gnatenko
Jakub Steiner
Jasper St. Pierre
Joaquim Rocha
Johan Svensson
Jonathon Jongsma
Jürg Billeter
Kris Thomsen
kritarth
Krzesimir Nowak
Lars Uebernickel
Lionel Landwerlin
Lucie Charvat
Lucie Dvorakova
Marcin Kolny
Marek Černocký
Marinus Schraal
Mario Sanchez Prada
Martin Blanchard
Mathieu Bridon
Mathieu Duponchelle
Matthew Leeds
Matthias Clasen
Megh Parikh
Michael Biebl
Michael Catanzaro
Mohammed Sadiq
Mohan R
namanyadav12
Paolo Borelli
Patrick Griffis
Peter Sonntag
Philip Chimento
Philip Withnall
Piotr Drąg
Raunaq Abhyankar
Ray Strode
Roberto Majadas
Sebastien Lafargue
Sébastien Lafargue
Simon Schampijer
Sourav
Thibault Saunier
Timm Bäder
Ting-Wei Lan
Tobias Schönberg
Trinh Anh Ngoc

1.8. Credits 31

Builder Documentation, Release 3.25.2-nightly

Umang Jain
Wolf Vollprecht
Yannick Inizan
Yosef Or Boczko
Zhang Cheng
zilla@hmt.im

32 Chapter 1. Contents

	Contents
	Installation
	via Flatpak
	Command Line

	Local Flatpak Builds
	via JHBuild
	Command Line

	via Release Tarball
	Troubleshooting

	Exploring the Interface
	Project Greeter
	Workbench Window
	Header Bar
	Switching Perspectives
	Showing and Hiding Panels
	Build your Project
	Preferences
	Command Bar

	Projects
	Creating and Importing Projects
	Creating a new Project
	Cloning an Existing Project

	Building your Project
	Debugging your Project
	Profiling your Project
	Sharing your Project

	Plugins
	Creating Your First Plugin
	Loading our Plugin

	Extending the Workbench
	The Basics
	Registering Workbench Actions
	Adding Widgets to the Header Bar
	Adding Widgets to the Workbench
	Registering Perspectives
	Registering Panels

	Extending the Greeter
	Extending the Editor
	Managing Buffers
	Syntax Highlighting
	Diagnostics and Fix-Its
	Autocompletion
	Snippets
	File Settings and Indentation

	Symbols and Semantic Analysis
	Go To Definition
	Extending the Symbol Tree
	Renaming Symbols

	Extending the Build Pipeline
	Implementing a Build System
	Extending the Build Pipeline

	Processes and Containers
	Application Runtimes and Containers
	Subprocesses and Psuedo Terminals

	Extending the Device Manager
	Extending the Run Manager
	Registering Keybindings
	Integrating Language Servers
	Extending Project Search
	Extending Application Menus
	Registering Application Preferences
	Creating and Performing Transfers
	Managing Worker Processes
	Integrating Version Control

	How-To Guides
	Contents
	Changing Indentation
	Search and Replace

	Troubleshooting
	Verbose Output
	Support Log
	Counters
	Test Builder Nightly
	File a Bug

	Contributing
	Planning and Project Management
	Responsibilities

	Writing Documentation
	Submitting Patches
	Creating a Patch
	Submitting a Patch
	GNOME git Best Practices

	Contributing Code
	Where to Contribute?

	IRC
	File A Bug
	Find A Bug To Work On
	Building From Source

	Credits

