
Bro Package Manager Documentation
Release 1.5.0

The Bro Project

Dec 12, 2018

Contents

1 Quickstart Guide 3
1.1 Dependencies . 3
1.2 Installation . 3
1.3 Basic Configuration . 3
1.4 Advanced Configuration . 4
1.5 Usage . 5

2 bro-pkg Command-Line Tool 7
2.1 Commands . 7
2.2 Config File . 14

3 How-To: Create a Package 17
3.1 Walkthroughs . 17
3.2 Package Metadata . 20
3.3 Package Versioning . 26

4 How-To: Create a Package Source 29
4.1 Package Source Setup . 29
4.2 Package Index Files . 29
4.3 Adding Packages . 30
4.4 Removing Packages . 30
4.5 Aggregating Metadata . 30

5 Python API Reference 31
5.1 bropkg.manager module . 31
5.2 bropkg.package module . 39
5.3 bropkg.source module . 43

6 Developer’s Guide 45
6.1 Versioning/Releases . 45
6.2 Documentation . 45

Python Module Index 47

i

ii

Bro Package Manager Documentation, Release 1.5.0

The Bro Package Manager makes it easy for Bro users to install and manage third party scripts as well as plugins for
Bro and BroControl. The command-line tool is preconfigured to download packages from the Bro package source ,
a GitHub repository that has been set up such that any developer can request their Bro package be included. See the
README file of that repository for information regarding the package submission process.

note It’s left up to users to decide for themselves via code review, GitHub comments/stars, or other
metrics whether any given package is trustworthy as there is no implied guarantees that it’s secure
just because it’s been accepted into the default package source.

See the package manager documentation for further usage information, how-to guides, and walkthroughs. For offline
reading, it’s also available in the doc/ directory of the source code distribution.

Contents 1

https://bro.org
https://github.com/bro/packages
http://bro-package-manager.readthedocs.io

Bro Package Manager Documentation, Release 1.5.0

2 Contents

CHAPTER 1

Quickstart Guide

1.1 Dependencies

• Python 2.7+ or 3.0+

• git: https://git-scm.com

• GitPython: https://pypi.python.org/pypi/GitPython

• semantic_version: https://pypi.python.org/pypi/semantic_version

• btest: https://pypi.python.org/pypi/btest

• configparser backport (not needed when using Python 3.5+): https://pypi.python.org/pypi/configparser

Note that following the suggested Installation process via pip will automatically install dependencies for you.

1.2 Installation

Using the latest stable release on PyPI:

$ pip install bro-pkg

Using the latest git development version:

$ pip install git+git://github.com/bro/package-manager@master

1.3 Basic Configuration

After installing via pip, additional configuration is required. First, make sure that the bro-config script that gets
installed with bro is in your PATH. Then, as the user you want to run bro-pkg with, do:

3

https://git-scm.com
https://pypi.python.org/pypi/GitPython
https://pypi.python.org/pypi/semantic_version
https://pypi.python.org/pypi/btest
https://pypi.python.org/pypi/configparser
https://pypi.python.org/pypi

Bro Package Manager Documentation, Release 1.5.0

$ bro-pkg autoconfig

This automatically generates a config file with the following suggested settings that should work for most Bro deploy-
ments:

• script_dir: set to the location of Bro’s site scripts directory (e.g. <bro_install_prefix>/share/
bro/site)

• plugin_dir: set to the location of Bro’s default plugin directory (e.g. <bro_install_prefix>/lib/bro/
plugins)

• bro_dist: set to the location of Bro’s source code. If you didn’t build/install Bro from source code, this field will
not be set, but it’s only needed if you plan on installing packages that have uncompiled Bro plugins.

With those settings, the package manager will install Bro scripts, Bro plugins, and BroControl plugins into directories
where bro and broctlwill, by default, look for them. BroControl clusters will also automatically distribute installed
package scripts/plugins to all nodes.

Note: If your Bro installation is owned by "root" and you intend to run bro-pkg as a different user, then you should
grant "write" access to the directories specified by script_dir and plugin_dir. E.g. you could do something like:

$ sudo chgrp $USER $(bro-config --site_dir) $(bro-config --plugin_dir)
$ sudo chmod g+rwX $(bro-config --site_dir) $(bro-config --plugin_dir)

The final step is to edit your site/local.bro. If you want to have Bro automatically load the scripts from all
installed packages that are also marked as "loaded" add:

@load packages

If you prefer to manually pick the package scripts to load, you may instead add lines like @load
<package_name>, where <package_name> is the shorthand name of the desired package.

If you want to further customize your configuration, see the Advanced Configuration section and also check here for a
full explanation of config file options. Otherwise you’re ready to use bro-pkg.

1.4 Advanced Configuration

If you prefer to not use the suggested Basic Configuration settings for script_dir and plugin_dir, the default configu-
ration will install all package scripts/plugins within ~/.bro-pkg or you may change them to whatever location you
prefer. These will be referred to as "non-standard" locations in the sense that vanilla configurations of either bro or
broctl will not detect scripts/plugins in those locations without additional configuration.

When using non-standard location, follow these steps to integrate with bro and broctl:

• To get command-line bro to be aware of Bro scripts/plugins in a non-standard location, make sure the
bro-config script (that gets installed along with bro) is in your PATH and run:

$ `bro-pkg env`

Note that this sets up the environment only for the current shell session.

• To get broctl to be aware of scripts/plugins in a non-standard location, run:

$ bro-pkg config script_dir

And set the SitePolicyPath option in broctl.cfg based on the output you see. Similarly, run:

4 Chapter 1. Quickstart Guide

Bro Package Manager Documentation, Release 1.5.0

$ bro-pkg config plugin_dir

And set the SitePluginPath option in broctl.cfg based on the output you see.

1.5 Usage

Check the output of bro-pkg –help for an explanation of all available functionality of the command-line tool.

1.5.1 Package Upgrades/Versioning

When installing packages, note that the install command, has a --version flag that may be used to install specific
package versions which may either be git release tags or branch names. The way that bro-pkg receives updates for
a package depends on whether the package is first installed to track stable releases or a specific git branch. See the
package upgrade process documentation to learn how bro-pkg treats each situation.

1.5.2 Offline Usage

It’s common to have limited network/internet access on the systems where Bro is deployed. To accomodate those
scenarios, bro-pkg can be used as normally on a system that does have network access to create bundles of its
package installation environment. Those bundles can then be transferred to the deployment systems via whatever
means are appropriate (SSH, USB flash drive, etc).

For example, on the package management system you can do typical package management tasks, like install and
update packages:

$ bro-pkg install <package name>

Then, via the bundle command, create a bundle file which contains a snapshot of all currently installed packages:

$ bro-pkg bundle bro-packages.bundle

Then transfer bro-packages.bundle to the Bro deployment management host. For Bro clusters using BroCon-
trol, this will be the system acting as the "manager" node. Then on that system (assuming it already as bro-pkg
installed and configured):

$ bro-pkg unbundle bro-packages.bundle

Finally, if you’re using BroControl, and the unbundling process was successful, you need to deploy the changes to
worker nodes:

$ broctl deploy

1.5. Usage 5

https://www.bro.org/sphinx/components/broctl/README.html
https://www.bro.org/sphinx/components/broctl/README.html
https://www.bro.org/sphinx/components/broctl/README.html

Bro Package Manager Documentation, Release 1.5.0

6 Chapter 1. Quickstart Guide

CHAPTER 2

bro-pkg Command-Line Tool

A command-line package manager for Bro.

usage: bro-pkg [-h] [--version] [--configfile CONFIGFILE] [--verbose]
{test,install,bundle,unbundle,remove,purge,refresh,upgrade,load,unload,

→˓pin,unpin,list,search,info,config,autoconfig,env}
...

Options:

--version show program’s version number and exit

--configfile Path to Bro Package Manager config file.

See Config File.

--verbose=0, -v=0 Increase program output for debugging. Use multiple times for more output
(e.g. -vvv).

Environment Variables:

BRO_PKG_CONFIG_FILE: Same as --configfile option, but has less precedence.

2.1 Commands

2.1.1 test

Runs the unit tests for the specified Bro packages. In most cases, the "bro" and "bro-config" programs will need to be
in PATH before running this command.

usage: bro-pkg test [-h] [--version VERSION] package [package ...]

Positional arguments:

7

Bro Package Manager Documentation, Release 1.5.0

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

Options:

--version The version of the package to test. Only one package may be specified at
a time when using this flag. A version tag, branch name, or commit hash
may be specified here. If the package name refers to a local git repo with a
working tree, then its currently active branch is used. The default for other
cases is to use the latest version tag, or if a package has none, the "master"
branch.

2.1.2 install

Installs packages from a configured package source or directly from a git URL. After installing, the package is marked
as being "loaded" (see the load command).

usage: bro-pkg install [-h] [--force] [--skiptests] [--nodeps]
[--nosuggestions] [--version VERSION]
package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

Options:

--force=False Skip the confirmation prompt.

--skiptests=False Skip running unit tests for packages before installation.

--nodeps=False Skip all dependency resolution/checks. Note that using this option risks
putting your installed package collection into a broken or unusable state.

--nosuggestions=False Skip automatically installing suggested packages.

--version The version of the package to install. Only one package may be specified
at a time when using this flag. A version tag, branch name, or commit hash
may be specified here. If the package name refers to a local git repo with a
working tree, then its currently active branch is used. The default for other
cases is to use the latest version tag, or if a package has none, the "master"
branch.

8 Chapter 2. bro-pkg Command-Line Tool

Bro Package Manager Documentation, Release 1.5.0

2.1.3 remove

Unloads (see the unload command) and uninstalls a previously installed package.

usage: bro-pkg remove [-h] [--force] package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

Options:

--force=False Skip the confirmation prompt.

2.1.4 purge

Unloads (see the unload command) and uninstalls all previously installed packages.

usage: bro-pkg purge [-h] [--force]

Options:

--force=False Skip the confirmation prompt.

2.1.5 bundle

This command creates a bundle file containing a collection of Bro packages. If --manifest is used, the user supplies
the list of packages to put in the bundle, else all currently installed packages are put in the bundle. A bundle file can be
unpacked on any target system, resulting in a repeatable/specific set of packages being installed on that target system
(see the unbundle command). This command may be useful for those that want to manage packages on a system
that otherwise has limited network connectivity. E.g. one can use a system with an internet connection to create a
bundle, transport that bundle to the target machine using whatever means are appropriate, and finally unbundle/install
it on the target machine.

usage: bro-pkg bundle [-h] [--force] [--nodeps] [--nosuggestions]
[--manifest MANIFEST [MANIFEST ...]]
bundle_filename

Positional arguments:

bundle_filename The path of the bundle file to create. It will be overwritten if it already
exists.

Options:

--force=False Skip the confirmation prompt.

--nodeps=False Skip all dependency resolution/checks. Note that using this option risks
creating a bundle of packages that is in a broken or unusable state.

2.1. Commands 9

Bro Package Manager Documentation, Release 1.5.0

--nosuggestions=False Skip automatically bundling suggested packages.

--manifest This may either be a file name or a list of packages to include in the bun-
dle. If a file name is supplied, it should be in INI format with a single
‘‘[bundle]‘‘ section. The keys in that section correspond to package names
and their values correspond to git version tags, branch names, or commit
hashes. The values may be left blank to indicate that the latest available
version should be used.

2.1.6 unbundle

This command unpacks a bundle file formerly created by the bundle command and installs all the packages contained
within.

usage: bro-pkg unbundle [-h] [--force] [--replace] bundle_filename

Positional arguments:

bundle_filename The path of the bundle file to install.

Options:

--force=False Skip the confirmation prompt.

--replace=False Using this flag first removes all installed packages before then installing
the packages from the bundle.

2.1.7 refresh

Retrieve latest package metadata from sources and checks whether any installed packages have available upgrades.
Note that this does not actually upgrade any packages (see the upgrade command for that).

usage: bro-pkg refresh [-h] [--aggregate] [--push]
[--sources SOURCES [SOURCES ...]]

Options:

--aggregate=False Crawls the urls listed in package source bro-pkg.index files and aggregates
the metadata found in their bro-pkg.meta files. The aggregated metadata is
stored in the local clone of the package source that bro-pkg uses internally
locating package metadata. For each package, the metadata is taken from
the highest available git version tag or the master branch if no version tags
exist

--push=False Push all local changes to package sources to upstream repos

--sources A list of package source names to operate on. If this argument is not used,
then the command will operate on all configured sources.

2.1.8 upgrade

Uprades the specified package(s) to latest available version. If no specific packages are specified, then all installed
packages that are outdated and not pinned are upgraded. For packages that are installed with --version using a git
branch name, the package is updated to the latest commit on that branch, else the package is updated to the highest
available git version tag.

10 Chapter 2. bro-pkg Command-Line Tool

Bro Package Manager Documentation, Release 1.5.0

usage: bro-pkg upgrade [-h] [--force] [--skiptests] [--nodeps]
[--nosuggestions]
[package [package ...]]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

Options:

--force=False Skip the confirmation prompt.

--skiptests=False Skip running unit tests for packages before installation.

--nodeps=False Skip all dependency resolution/checks. Note that using this option risks
putting your installed package collection into a broken or unusable state.

--nosuggestions=False Skip automatically installing suggested packages.

2.1.9 load

The Bro Package Manager keeps track of all packages that are marked as "loaded" and maintains a single Bro script
that, when loaded by Bro (e.g. via @load packages), will load the scripts from all "loaded" packages at once.
This command adds a set of packages to the "loaded packages" list.

usage: bro-pkg load [-h] package [package ...]

Positional arguments:

package Name(s) of package(s) to load.

2.1.10 unload

The Bro Package Manager keeps track of all packages that are marked as "loaded" and maintains a single Bro script
that, when loaded by Bro, will load the scripts from all "loaded" packages at once. This command removes a set of
packages from the "loaded packages" list.

usage: bro-pkg unload [-h] package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package

2.1. Commands 11

Bro Package Manager Documentation, Release 1.5.0

source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

2.1.11 pin

Pinned packages are ignored by the upgrade command.

usage: bro-pkg pin [-h] package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

2.1.12 unpin

Packages that are not pinned are automatically upgraded by the upgrade command

usage: bro-pkg unpin [-h] package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".

2.1.13 list

Outputs a list of packages that match a given category.

usage: bro-pkg list [-h] [--nodesc]
[{all,installed,not_installed,loaded,unloaded,outdated}]

Positional arguments:

category Package category used to filter listing.

Possible choices: all, installed, not_installed, loaded, unloaded, outdated

Options:

--nodesc=False Do not display description text, just the package name(s).

12 Chapter 2. bro-pkg Command-Line Tool

Bro Package Manager Documentation, Release 1.5.0

2.1.14 search

Perform a substring search on package names and metadata tags. Surround search text with slashes to indicate it is a
regular expression (e.g. /text/).

usage: bro-pkg search [-h] search_text [search_text ...]

Positional arguments:

search_text The text(s) or pattern(s) to look for.

2.1.15 info

Shows detailed information/metadata for given packages. If the package is currently installed, additional information
about the status of it is displayed. E.g. the installed version or whether it is currently marked as "pinned" or "loaded."

usage: bro-pkg info [-h] [--version VERSION] [--nolocal] [--json]
[--jsonpretty SPACES] [--allvers]
package [package ...]

Positional arguments:

package The name(s) of package(s) to operate on. The package may be named in
several ways. If the package is part of a package source, it may be referred
to by the base name of the package (last component of git URL) or its path
within the package source. If two packages in different package sources
have conflicting paths, then the package source name may be prepended to
the package path to resolve the ambiguity. A full git URL may also be used
to refer to a package that does not belong to a source. E.g. for a package
source called "bro" that has a package named "foo" located in "alice/bro-
pkg.index" the following names work: "foo", "alice/foo", "bro/alice/foo".
If a single name is given and matches one of the same categories as the
"list" command, then it is automatically expanded to be the names of all
packages which match the given category.

Options:

--version The version of the package metadata to inspect. A version tag, branch
name, or commit hash and only one package at a time may be given when
using this flag. If unspecified, the behavior depends on whether the package
is currently installed. If installed, the metadata will be pulled from the
installed version. If not installed, the latest version tag is used, or if a
package has no version tags, the "master" branch is used.

--nolocal=False Do not read information from locally installed packages. Instead read info
from remote GitHub.

--json=False Output package information as JSON.

--jsonpretty Optional number of spaces to indent for pretty-printed JSON output.

--allvers=False When outputting package information as JSON, show metadata for all ver-
sions. This option can be slow since remote repositories may be cloned
multiple times. Also, installed packages will show metadata only for the
installed version unless the –nolocal option is given.

2.1. Commands 13

Bro Package Manager Documentation, Release 1.5.0

2.1.16 config

The default output of this command is a valid package manager config file that corresponds to the one currently being
used, but also with any defaulted field values filled in. This command also allows for only the value of a specific field
to be output if the name of that field is given as an argument to the command.

usage: bro-pkg config [-h]
[{all,sources,user_vars,state_dir,script_dir,plugin_dir,bro_

→˓dist}]

Positional arguments:

config_param Name of a specific config file field to output.

Possible choices: all, sources, user_vars, state_dir, script_dir, plugin_dir,
bro_dist

2.1.17 autoconfig

The output of this command is a valid package manager config file that is generated by using the bro-config script
that is installed along with Bro. It is the suggested configuration to use for most Bro installations. For this command
to work, the bro-config script must be in PATH.

usage: bro-pkg autoconfig [-h]

2.1.18 env

This command returns shell commands that, when executed, will correctly set BROPATH and BRO_PLUGIN_PATH to
utilize the scripts and plugins from packages installed by the package manager. For this command to function properly,
either have the bro-config script (installed by bro) in PATH, or have the BROPATH and BRO_PLUGIN_PATH
environment variables already set so this command can append package-specific paths to them.

usage: bro-pkg env [-h]

2.2 Config File

The bro-pkg command-line tool uses an INI-format config file to allow users to customize their Package Sources,
Package installation paths, Bro executable/source paths, and other bro-pkg options.

See the default/example config file below for explanations of the available options and how to customize them:

This is an example config file for bro-pkg to explain what
settings are possible as well as their default values.
The order of precedence for how bro-pkg finds/reads config files:
#
(1) bro-pkg --configfile=/path/to/custom/config
(2) the BRO_PKG_CONFIG_FILE environment variable
(3) a config file located at $HOME/.bro-pkg/config
(4) if none of the above exist, then bro-pkg uses builtin/default
values for all settings shown below

[sources]

(continues on next page)

14 Chapter 2. bro-pkg Command-Line Tool

Bro Package Manager Documentation, Release 1.5.0

(continued from previous page)

The default package source repository from which bro-pkg fetches
packages. The default source may be removed, changed, or
additional sources may be added as long as they use a unique key
and a value that is a valid git URL.
bro = https://github.com/bro/packages

[paths]

Directory where source repositories are cloned, packages are
installed, and other package manager state information is
maintained. If left blank, this defaults to $HOME/.bro-pkg
state_dir =

The directory where package scripts are copied upon installation.
A subdirectory named "packages" is always created within the
specified path and the package manager will copy the directory
specified by the "script_dir" option of each package's bro-pkg.meta
file there.
If left blank, this defaults to <state_dir>/script_dir
A typical path to set here is <bro_install_prefix>/share/bro/site
If you decide to change this location after having already
installed packages, bro-pkg will automatically relocate them
the next time you run any bro-pkg command.
script_dir =

The directory where package plugins are copied upon installation.
A subdirectory named "packages" is always created within the
specified path and the package manager will copy the directory
specified by the "plugin_dir" option of each package's bro-pkg.meta
file there.
If left blank, this defaults to <state_dir>/plugin_dir
A typical path to set here is <bro_install_prefix>/lib/bro/plugins
If you decide to change this location after having already
installed packages, bro-pkg will automatically relocate them
the next time you run any bro-pkg command.
plugin_dir =

The directory containing Bro distribution source code. This is only
needed when installing packages that contain Bro plugins that are
not pre-built.
bro_dist =

[user_vars]

For any key in this section that is matched for value interpolation
in a package's bro-pkg.meta file, the corresponding value is
substituted during execution of the package's `build_command`.
This section is typically automatically populated with the
the answers supplied during package installation prompts
and, as a convenience feature, used to recall the last-used settings
during subsequent operations (e.g. upgrades) on the same package.

2.2. Config File 15

Bro Package Manager Documentation, Release 1.5.0

16 Chapter 2. bro-pkg Command-Line Tool

CHAPTER 3

How-To: Create a Package

A Bro package may contain Bro scripts, Bro plugins, or BroControl plugins. Any number or combination of those
components may be included within a single package.

The minimum requirement for a package is that it be in its own git repository and contain a metadata file named
bro-pkg.meta at its top-level that begins with the line:

[package]

This is the package’s metadata file in INI file format and may contain additional fields that describe the package as
well as how it inter-operates with Bro, the package manager, or other packages.

Note that the shorthand name for your package that may be used by bro-pkg and Bro script @load
<package_name> directives will be the last component of its git URL. E.g. a package at https://github.
com/bro/foo may be referred to as foo when using bro-pkg and a Bro script that wants to load all the scripts
within that package can use:

@load foo

3.1 Walkthroughs

3.1.1 Pure Bro Script Package

1. Create a git repository:

$ mkdir foo && cd foo && git init

2. Create a package metadata file, bro-pkg.meta:

$ echo '[package]' > bro-pkg.meta

3. Create a __load__.bro script with example code in it:

17

Bro Package Manager Documentation, Release 1.5.0

$ echo 'event bro_init() { print "foo is loaded"; }' > __load__.bro

4. (Optional) Relocate your __load__.bro script to any subdirectory:

$ mkdir scripts && mv __load__.bro scripts
$ echo 'script_dir = scripts' >> bro-pkg.meta

5. Commit everything to git:

$ git add * && git commit -m 'First commit'

6. (Optional) Test that Bro correctly loads the script after installing the package with bro-pkg:

$ bro-pkg install .
$ bro foo
$ bro-pkg remove .

7. (Optional) Create a release version tag.

See Bro Scripting for more information on developing Bro scripts.

3.1.2 Binary Bro Plugin Package

See Bro Plugins for more complete information on developing Bro plugins, though the following step are the essentials
needed to create a package.

1. Create a plugin skeleton using aux/bro-aux/plugin-support/init-plugin from Bro’s source dis-
tribution:

$ init-plugin ./rot13 Demo Rot13

2. Create a git repository

$ cd rot13 && git init

3. Create a package metadata file, bro-pkg.meta:

[package]
script_dir = scripts/Demo/Rot13
build_command = ./configure --bro-dist=%(bro_dist)s && make

See the Value Interpolation section for more information on what the %(bro_dist)s string does.

4. Add example script code:

$ echo 'event bro_init() { print "rot13 plugin is loaded"; }' >> scripts/__load__.
→˓bro
$ echo 'event bro_init() { print "rot13 script is loaded"; }' >> scripts/Demo/
→˓Rot13/__load__.bro

5. Add an example builtin-function in src/rot13.bif:

module Demo;

function rot13%(s: string%) : string
%{

(continues on next page)

18 Chapter 3. How-To: Create a Package

https://www.bro.org/sphinx/scripting/index.html
https://www.bro.org/sphinx/devel/plugins.html

Bro Package Manager Documentation, Release 1.5.0

(continued from previous page)

char* rot13 = copy_string(s->CheckString());

for (char* p = rot13; *p; p++)
{
char b = islower(*p) ? 'a' : 'A';

*p = (*p - b + 13) % 26 + b;
}

BroString* bs = new BroString(1, reinterpret_cast<byte_vec>(rot13),
strlen(rot13));

return new StringVal(bs);
%}

6. Commit everything to git:

$ git add * && git commit -m 'First commit'

7. (Optional) Test that Bro correctly loads the plugin after installing the package with bro-pkg:

$ bro-pkg install .
$ bro rot13 -e 'print Demo::rot13("Hello")'
$ bro-pkg remove .

8. (Optional) Create a release version tag.

3.1.3 BroControl Plugin Package

1. Create a git repository:

$ mkdir foo && cd foo && git init

2. Create a package metadata file, bro-pkg.meta:

$ echo '[package]' > bro-pkg.meta

3. Create an example BroControl plugin, foo.py:

import BroControl.plugin
from BroControl import config

class Foo(BroControl.plugin.Plugin):
def __init__(self):

super(Foo, self).__init__(apiversion=1)

def name(self):
return "foo"

def pluginVersion(self):
return 1

def init(self):
self.message("foo plugin is initialized")
return True

4. Set the plugin_dir metadata field to directory where the plugin is located:

3.1. Walkthroughs 19

Bro Package Manager Documentation, Release 1.5.0

$ echo 'plugin_dir = .' >> bro-pkg.meta

5. Commit everything to git:

$ git add * && git commit -m 'First commit'

6. (Optional) Test that BroControl correctly loads the plugin after installing the package with bro-pkg:

$ bro-pkg install .
$ broctl
$ bro-pkg remove .

7. (Optional) Create a release version tag.

See BroControl Plugins for more information on developing BroControl plugins.

If you want to distribute a BroControl plugin along with a Bro plugin in the same package, you may need to add
the BroControl plugin’s python script to the bro_plugin_dist_files() macro in the CMakeLists.txt of
the Bro plugin so that it gets copied into build/ along with the built Bro plugin. Or you could also modify your
build_command to copy it there, but what ultimately matters is that the plugin_dir field points to a directory that
contains both the Bro plugin and the BroControl plugin.

3.1.4 Registering to a Package Source

Registering a package to a package source is always the following basic steps:

1. Create a Package Index File for your package.

2. Add the index file to the package source’s git repository.

The full process and conventions for submitting to the default package source can be found in the README at:

https://github.com/bro/packages

3.2 Package Metadata

See the following sub-sections for a full list of available fields that may be used in bro-pkg.meta files.

3.2.1 description field

The description field may be used to give users a general overview of the package and its purpose. The bro-pkg list
will display the first sentence of description fields in the listings it displays. An example bro-pkg.meta using a
description field:

[package]
description = Another example package.

The description text may span multiple
line: when adding line breaks, just
indent the new lines so they are parsed
as part of the 'description' value.

20 Chapter 3. How-To: Create a Package

https://www.bro.org/sphinx/components/broctl/README.html#plugins
https://github.com/bro/packages

Bro Package Manager Documentation, Release 1.5.0

3.2.2 aliases field

The aliases field can be used to specify alternative names for a package. Users can then use @load
<package_alias> for any alias listed in this field. This may be useful when renaming a package’s repository
on GitHub while still supporting users that already installed the package under the previous name. For example, if
package foo were renamed to foo2, then the aliases for it could be:

[package]
aliases = foo2 foo

Currently, the order does not matter, but you should specify the canonical/current alias first. The list is delimited by
commas or whitespace. If this field is not specified, the default behavior is the same as if using a single alias equal to
the package’s name.

The low-level details of the way this field operates is that, for each alias, it simply creates a symlink of the same name
within the directory associated with the script_dir path in the config file.

Available since bro-pkg v1.5.

3.2.3 tags field

The tags field contains a comma-delimited set of metadata tags that further classify and describe the purpose of the
package. This is used to help users better discover and search for packages. The bro-pkg search command will inspect
these tags. An example bro-pkg.meta using tags:

[package]
tags = bro plugin, broctl plugin, scan detection, intel

Suggested Tags

Some ideas for what to put in the tags field for packages:

• bro scripting

– conn

– intel

– geolocation

– file analysis

– sumstats, summary statistics

– input

– log, logging

– notices

• <network protocol name>

• <file format name>

• signatures

• bro plugin

– protocol analyzer

– file analyzer

3.2. Package Metadata 21

Bro Package Manager Documentation, Release 1.5.0

– bifs

– packet source

– packet dumper

– input reader

– log writer

• broctl plugin

3.2.4 script_dir field

The script_dir field is a path relative to the root of the package that contains a file named __load__.bro and
possibly other Bro scripts. The files located in this directory are copied into <user_script_dir>/packages/
<package>/, where <user_script_dir> corresponds to the script_dir field of the user’s config file (typically
<bro_install_prefix>/share/bro/site).

When the package is loaded, an @load <package_name> directive is added to <user_script_dir>/
packages/packages.bro.

You may place any valid Bro script code within __load__.bro, but a package that contains many Bro scripts will
typically have __load__.bro just contain a list of @load directives to load other Bro scripts within the package.
E.g. if you have a package named foo installed, then it’s __load__.bro will be what Bro loads when doing @load
foo or running bro foo on the command-line.

An example bro-pkg.meta:

[package]
script_dir = scripts

For a bro-pkg.meta that looks like the above, the package should have a file called scripts/__load__.bro.

If the script_dir field is not present in bro-pkg.meta, it defaults to checking the top-level directory of the package
for a __load__.bro script. If it’s found there, bro-pkg use the top-level package directory as the value for
script_dir. If it’s not found, then bro-pkg assumes the package contains no Bro scripts (which may be the case for
some plugins).

3.2.5 plugin_dir field

The plugin_dir field is a path relative to the root of the package that contains either pre-built Bro Plugins, BroControl
Plugins, or both.

An example bro-pkg.meta:

[package]
script_dir = scripts
plugin_dir = plugins

For the above example, Bro and BroControl will load any plugins found in the installed package’s plugins/ direc-
tory.

If the plugin_dir field is not present in bro-pkg.meta, it defaults to a directory named build/ at the top-level of
the package. This is the default location where Bro binary plugins get placed when building them from source code
(see the build_command field).

22 Chapter 3. How-To: Create a Package

https://www.bro.org/sphinx/devel/plugins.html
https://www.bro.org/sphinx/components/broctl/README.html#plugins
https://www.bro.org/sphinx/components/broctl/README.html#plugins

Bro Package Manager Documentation, Release 1.5.0

This field may also be set to the location of a tarfile that has a single top- level directory inside it contain-
ing the Bro plugin. The default CMake skeleton for Bro plugins produces such a tarfile located at build/
<namespace>_<plugin>.tgz. This is a good choice to use for packages that will be published to a wider
audience as installing from this tarfile contains the minimal set of files needed for the plugin to work whereas some
extra files will get installed to user systems if the plugin_dir uses the default build/ directory.

3.2.6 build_command field

The build_command field is an arbitrary shell command that the package manager will run before installing the pack-
age.

This is useful for distributing Bro Plugins as source code and having the package manager take care of building it on
the user’s machine before installing the package.

An example bro-pkg.meta:

[package]
script_dir = scripts/Demo/Rot13
build_command = ./configure --bro-dist=%(bro_dist)s && make

In the above example, the %(bro_dist)s string is substituted for the path the user has set for the bro_dist field in
the package manager config file.

The default CMake skeleton for Bro plugins will use build/ as the directory for the final/built version of the plugin,
which matches the defaulted value of the omitted plugin_dir metadata field.

The script_dir field is set to the location where the author has placed custom scripts for their plugin. When a package
has both a Bro plugin and Bro script components, the "plugin" part is always unconditionally loaded by Bro, but the
"script" components must either be explicitly loaded (e.g. @load <package_name>) or the package marked as
loaded.

Value Interpolation

The build_command field may reference the settings any given user has in their customized package manager config
file.

For example, if a metadata field’s value contains the %(bro_dist)s string, then bro-pkg operations that use that
field will automatically substitute the actual value of bro_dist that the user has in their local config file. Note the trailing
’s’ character at the end of the interpolation string, %(bro_dist)s is intended/necessary for all such interpolation
usages.

Besides the bro_dist config key, any key inside the user_vars sections of their package manager config file that matches
the key of an entry in the package’s user_vars field will be interpolated.

Internally, the value substitution and metadata parsing is handled by Python’s configparser interpolation. See its
documentation if you’re interested in the details of how the interpolation works.

3.2.7 user_vars field

The user_vars field is used to solicit feedback from users for use during execution of the build_command field.

An example bro-pkg.meta:

3.2. Package Metadata 23

https://www.bro.org/sphinx/devel/plugins.html
https://docs.python.org/3/library/configparser.html#interpolation-of-values

Bro Package Manager Documentation, Release 1.5.0

[package]
build_command = ./configure --bro-dist=%(bro_dist)s --with-librdkafka=%(LIBRDKAFKA_
→˓ROOT)s --with-libdub=%(LIBDBUS_ROOT)s && make
user_vars =

LIBRDKAFKA_ROOT [/usr] "Path to librdkafka installation"
LIBDBUS_ROOT [/usr] "Path to libdbus installation"

The format of the field is a sequence entries of the format:

key [value] "description"

The key is the string that should match what you want to be interpolated within the build_command field.

The value is provided as a convenient default value that you’d typically expect to work for most users.

The description is provided as an explanation for what the value will be used for.

Here’s what a typical user would see:

$ bro-pkg install bro-test-package
The following packages will be INSTALLED:

bro/jsiwek/bro-test-package (1.0.5)

Proceed? [Y/n] y
bro/jsiwek/bro-test-package asks for LIBRDKAFKA_ROOT (Path to librdkafka
→˓installation) ? [/usr] /usr/local
Saved answers to config file: /Users/jon/.bro-pkg/config
Installed "bro/jsiwek/bro-test-package" (master)
Loaded "bro/jsiwek/bro-test-package"

The bro-pkg command will iterate over the user_vars field of all packages involved in the operation and prompt the
user to provide a value that will work for their system.

If a user is using the --force option to bro-pkg commands or they are using the Python API directly, it will first
look within the user_vars section of the user’s package manager config file and, if it can’t find the key there, it will
fallback to use the default value from the package’s metadata.

In any case, the user may choose to supply the value of a user_vars key via an environment variable, in which case,
prompts are skipped for any keys located in the environment. The environment is also given priority over any values
in the user’s package manager config file.

Available since bro-pkg v1.1.

3.2.8 test_command field

The test_command field is an arbitrary shell command that the package manager will run when a user either manually
runs the test command or before the package is installed or upgraded.

An example bro-pkg.meta:

[package]
test_command = cd testing && btest -d tests

The recommended test framework for writing package unit tests is btest. See its documentation for further explanation
and examples.

24 Chapter 3. How-To: Create a Package

https://github.com/bro/btest

Bro Package Manager Documentation, Release 1.5.0

3.2.9 config_files field

The config_files field may be used to specify a list of files that users are intended to directly modify after installation.
Then, on operations that would otherwise destroy a user’s local modifications to a config file, such as upgrading to a
newer package version, bro-pkg can instead save a backup and possibly prompt the user to review the differences.

An example bro-pkg.meta:

[package]
script_dir = scripts
config_files = scripts/foo_config.bro, scripts/bar_config.bro

The value of config_files is a comma-delimited string of config file paths that are relative to the root directory of the
package. Config files should either be located within the script_dir or plugin_dir.

3.2.10 depends field

The depends field may be used to specify a list of dependencies that the package requires.

An example bro-pkg.meta:

[package]
depends =

bro >=2.5.0
foo *
https://github.com/bro/bar >=2.0.0
package_source/path/bar branch=name_of_git_branch

The field is a list of dependency names and their version requirement specifications.

A dependency name may be either bro, bro-pkg, a full git URL of the package, or a package shorthand name.

• The special bro dependency refers not to a package, but the version of Bro that the package requires in order to
function. If the user has bro-config in their PATH when installing/upgrading a package that specifies a bro
dependency, then bro-pkg will enforce that the requirement is satisfied.

• The special bro-pkg dependency refers to the version of the package manager that is required by the package.
E.g. if a package takes advantage of new features that are not present in older versions of the package manager,
then it should indicate that so users of those old version will see an error message an know to upgrade in-
stead of seeing a cryptic error/exception, or worse, seeing no errors, but without the desired functionality being
performed. Note that this feature itself is only available since bro-pkg v1.2.

• The full git URL may be directly specified in the depends metadata if you want to force the dependency to
always resolve to a single, canonical git repository. Typically this is the safe approach to take when listing
package dependencies and for publicly visible packages.

• When using shorthand package dependency names, the user’s bro-pkg will try to resolve the name into a full
git URL based on the package sources they have configured. Typically this approach may be most useful for
internal or testing environments.

A version requirement may be either a git branch name or a semantic version specification. When using a branch as a
version requirement, prefix the branchname with branch=, else see the Semantic Version Specification documenta-
tion for the complete rule set of acceptable version requirement strings. Here’s a summary:

• *: any version (this will also satisfy/match on git branches)

• <1.0.0: versions less than 1.0.0

• <=1.0.0: versions less than or equal to 1.0.0

3.2. Package Metadata 25

https://python-semanticversion.readthedocs.io/en/latest/reference.html#version-specifications-the-spec-class

Bro Package Manager Documentation, Release 1.5.0

• >1.0.0: versions greater than 1.0.0

• >=1.0.0: versions greater than or equal to 1.0.0

• ==1.0.0: exactly version 1.0.0

• !=1.0.0: versions not equal to 1.0.0

• ^1.3.4: versions between 1.3.4 and 2.0.0 (not including 2.0.0)

• ~1.2.3: versions between 1.2.3 and 1.3.0 (not including 1.3.0)

• ~=2.2: versions between 2.2.0 and 3.0.0 (not included 3.0.0)

• ~=1.4.5: versions between 1.4.5 and 1.5.0 (not including 3.0.0)

• Any of the above may be combined by a separating comma to logically "and" the requirements together. E.g.
>=1.0.0,<2.0.0 means "greater or equal to 1.0.0 and less than 2.0.0".

Note that these specifications are strict semantic versions. Even if a given package chooses to use the vX.Y.Z format
for its git version tags, do not use the ’v’ prefix in the version specifications here as that is not part of the semantic
version.

3.2.11 external_depends field

The external_depends field follows the same format as the depends field, but the dependency names refer to
external/third-party software packages. E.g. these would be set to typical package names you’d expect the package
manager from any given operating system to use, like ’libpng-dev’. The version specification should also generally
be given in terms of semantic versioning where possible. In any case, the name and version specification for an exter-
nal dependency are only used for display purposes – to help users understand extra pre-requisites that are needed for
proceeding with package installation/upgrades.

Available since bro-pkg v1.1.

3.2.12 suggests field

The suggests field follows the same format as the depends field, but it’s used for specifying optional packages that users
may want to additionally install. This is helpful for suggesting complementary packages that aren’t strictly required
for the suggesting package to function properly.

A package in suggests is functionaly equivalent to a package in depends except in the way it’s presented to users
in various prompts during bro-pkg operations. Users also have the option to ignore suggestions by supplying an
additional --nosuggestions flag to bro-pkg commands.

Available since bro-pkg v1.3.

3.3 Package Versioning

3.3.1 Creating New Package Release Versions

Package’s should use git tags for versioning their releases. Use the Semantic Versioning numbering scheme here. For
example, to create a new tag for a package:

$ git tag -a 1.0.0 -m 'Release 1.0.0'

26 Chapter 3. How-To: Create a Package

http://semver.org

Bro Package Manager Documentation, Release 1.5.0

The tag name may also be of the vX.Y.Z form (prefixed by ’v’). Choose whichever you prefer.

Then, assuming you’ve already set up a public/remote git repository (e.g. on GitHub) for your package, remember to
push the tag to the remote repository:

$ git push --tags

Alternatively, if you expect to have a simple development process for your package, you may choose to not create
any version tags and just always make commits directly to your package’s master branch. Users will receive package
updates differently depending on whether you decide to use release version tags or not. See the package upgrade
process documentation for more details on the differences.

3.3.2 Package Upgrade Process

The install command will either install a stable release version or the latest commit on a specific git branch of a
package.

The default installation behavior of bro-pkg is to look for the latest release version tag and install that. If there are
no such version tags, it will fall back to installing the latest commit of the package’s master branch

Upon installing a package via a git version tag, the upgrade command will only upgrade the local installation of that
package if a greater version tag is available. In other words, you only receive stable release upgrades for packages
installed in this way.

Upon installing a package via a git branch name, the upgrade command will upgrade the local installation of the
package whenever a new commit becomes available at the end of the branch. This method of tracking packages is
suitable for testing out development/experimental versions of packages.

If a package was installed via a specific commit hash, then the package will never be eligible for automatic upgrades.

3.3. Package Versioning 27

Bro Package Manager Documentation, Release 1.5.0

28 Chapter 3. How-To: Create a Package

CHAPTER 4

How-To: Create a Package Source

bro-pkg, by default, is configured to obtain packages from a single "package source", the Bro Packages Git Repository,
which is hosted by and loosely curated by the Bro Team. However, users may configure bro-pkg to use other package
sources: either ones they’ve set up themselves for organization purposes or those hosted by other third parties.

4.1 Package Source Setup

In order to set up such a package source, one simply has to create a git repository and then add Package Index Files to
it. These files may be created at any path in the package source’s git repository. E.g. the Bro Packages Git Repository
organizes package index files hierarchically based on package author names such as alice/bro-pkg.index or
bob/bro-pkg.index where alice and bob are usually GitHub usernames or some unique way of identifying
the organization/person that maintains Bro packages. However, a source is free to use a flat organization with a single,
top-level bro-pkg.index.

After creating a git repo for the package source and adding package index files to it, it’s ready to be used by bro-pkg.

4.2 Package Index Files

Files named bro-pkg.index are used to describe the Bro Packages found within the package source. They are
simply a list of git URLs pointing to the git repositories of packages. For example:

https://github.com/bro/foo
https://github.com/bro/bar
https://github.com/bro/baz

Local filesystem paths are also valid if the package source is only meant for your own private usage or testing.

29

https://github.com/bro/packages
https://github.com/bro/packages

Bro Package Manager Documentation, Release 1.5.0

4.3 Adding Packages

Adding packages is as simple as adding new Package Index Files or extending existing ones with new URLs and then
commiting/pushing those changes to the package source git repository.

bro-pkg will see new packages listed the next time it uses the refresh command.

4.4 Removing Packages

Just remove the package’s URL from the Package Index File that it’s contained within.

After the next time bro-pkg uses the refresh command, it will no longer see the now-removed package when viewing
package listings via by the list command.

Users that had previously installed the now-removed package may continue to use it and receive updates for it.

4.5 Aggregating Metadata

The maintainer/operator of a package source may choose to periodically aggregate the metadata contained in its
package’s bro-pkg.meta files. The bro-pkg refresh is used to perform the task. For example:

$ bro-pkg refresh --aggregate --push --sources my_source

The optional --push flag is helpful for setting up cron jobs to automatically perform this task periodically, assuming
you’ve set up your git configuration to push changesets without interactive prompts. E.g. to set up pushing to remote
servers you could set up SSH public key authentication.

Aggregated metadata gets written to a file named aggregate.meta at the top-level of a package source and the
list, search, and info all may access this file. Having access to the aggregated metadata in this way is beneficial to all
bro-pkg users because they then will not have to crawl the set of packages listed in a source in order to obtain this
metadata as it will have already been pre-aggregated by the operator of the package source.

30 Chapter 4. How-To: Create a Package Source

CHAPTER 5

Python API Reference

This package defines a Python interface for installing, managing, querying, and performing other operations on Bro
Packages and Package Sources. The main entry point is the Manager class.

This package provides a logger named LOG to which logging stream handlers may be added in order to help log/debug
applications.

The following Python modules are all provided as part of the bropkg public interface:

5.1 bropkg.manager module

A module defining the main Bro Package Manager interface which supplies methods to interact with and operate on
Bro packages.

class bropkg.manager.Manager(state_dir, script_dir, plugin_dir, bro_dist=”, user_vars=None)
Bases: object

A package manager object performs various operations on packages.

It uses a state directory and a manifest file within it to keep track of package sources, installed packages and
their statuses.

sources
dictionary package sources keyed by the name given to add_source()

Type dict of str -> source.Source

installed_pkgs
a dictionary of installed packaged keyed on package names (the last component of the package’s git URL)

Type dict of str -> package.InstalledPackage

bro_dist
path to the Bro source code distribution. This is needed for packages that contain Bro plugins that need to
be built from source code.

Type str

31

Bro Package Manager Documentation, Release 1.5.0

state_dir
the directory where the package manager will a maintain manifest file, package/source git clones, and
other persistent state the manager needs in order to operate

Type str

user_vars
dictionary of key-value pairs where the value will be substituted into package build commands in place of
the key.

Type dict of str -> str

backup_dir
a directory where the package manager will store backup files (e.g. locally modified package config files)

Type str

log_dir
a directory where the package manager will store misc. logs files (e.g. package build logs)

Type str

scratch_dir
a directory where the package manager performs miscellaneous/temporary file operations

Type str

script_dir
the directory where the package manager will copy each installed package’s script_dir (as given by its
bro-pkg.meta file). Each package gets a subdirectory within script_dir associated with its name.

Type str

plugin_dir
the directory where the package manager will copy each installed package’s plugin_dir (as given by its
bro-pkg.meta file). Each package gets a subdirectory within plugin_dir associated with its name.

Type str

source_clonedir
the directory where the package manager will clone package sources. Each source gets a subdirectory
associated with its name.

Type str

package_clonedir
the directory where the package manager will clone installed packages. Each package gets a subdirectory
associated with its name.

Type str

package_testdir
the directory where the package manager will run tests. Each package gets a subdirectory associated with
its name.

Type str

manifest
the path to the package manager’s manifest file. This file maintains a list of installed packages and their
status.

Type str

32 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

autoload_script
path to a Bro script named packages.bro that the package manager maintains. It is a list of @load for
each installed package that is marked as loaded (see load()).

Type str

autoload_package
path to a Bro __load__.bro script which is just a symlink to autoload_script. It’s always located in
a directory named packages, so as long as BROPATH is configured correctly, @load packages will
load all installed packages that have been marked as loaded.

Type str

add_source(name, git_url)
Add a git repository that acts as a source of packages.

Parameters

• name (str) – a short name that will be used to reference the package source.

• git_url (str) – the git URL of the package source

Returns empty string if the source is successfully added, else the reason why it failed.

Return type str

backup_modified_files(backup_subdir, modified_files)
Creates backups of modified config files

Parameters

• modified_files (list of (str, str)) – the return value of
modified_config_files().

• backup_subdir (str) – the subdir of backup_dir in which

Returns paths indicating the backup locations. The order of the returned list corresponds di-
rectly to the order of modified_files.

Return type list of str

bro_plugin_path()
Return the path where installed package plugins are located.

This path can be added to BRO_PLUGIN_PATH for interoperability with Bro.

bropath()
Return the path where installed package scripts are located.

This path can be added to BROPATH for interoperability with Bro.

bundle(bundle_file, package_list, prefer_existing_clones=False)
Creates a package bundle.

Parameters

• bundle_file (str) – filesystem path of the zip file to create.

• package_list (list of (str, str)) – a list of (git URL, version) string tuples
to put in the bundle. If the version string is empty, the latest available version of the
package is used.

• prefer_existing_clones (bool) – if True and the package list contains a package
at a version that is already installed, then the existing git clone of that package is put into
the bundle instead of cloning from the remote repository.

5.1. bropkg.manager module 33

Bro Package Manager Documentation, Release 1.5.0

Returns empty string if the bundle is successfully created, else an error string explaining what
failed.

Return type str

bundle_info(bundle_file)
Retrieves information on all packages contained in a bundle.

Parameters bundle_file (str) – the path to the bundle to inspect.

Returns a tuple with the the first element set to an empty string if the information successfully
retrieved, else an error message explaining why the bundle file was invalid. The second
element of the tuple is a list containing information on each package contained in the bundle:
the exact git URL and version string from the bundle’s manifest along with the package info
object retrieved by inspecting git repo contained in the bundle.

Return type (str, list of (str, str, package.PackageInfo))

find_installed_package(pkg_path)
Return an package.InstalledPackage if one matches the name.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

A package’s name is the last component of it’s git URL.

has_scripts(installed_pkg)
Return whether a package.InstalledPackage installed scripts.

Parameters installed_pkg (package.InstalledPackage) – the installed package
to check for whether it has installed any Bro scripts.

Returns True if the package has installed Bro scripts.

Return type bool

info(pkg_path, version=”, prefer_installed=True)
Retrieves information about a package.

Parameters

• pkg_path (str) – the full git URL of a package or the shortened path/name that refers
to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the pack-
age: "foo", "alice/foo", or "bro/alice/foo".

• version (str) – may be a git version tag, branch name, or commit hash from which
metadata will be pulled. If an empty string is given, then the latest git version tag is used
(or the "master" branch if no version tags exist).

• prefer_installed (bool) – if this is set, then the information from any current
installation of the package is returned instead of retrieving the latest information from
the package’s git repo. The version parameter is also ignored when this is set as it uses
whatever version of the package is currently installed.

Returns A package.PackageInfo object.

install(pkg_path, version=”)
Install a package.

Parameters

34 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

• pkg_path (str) – the full git URL of a package or the shortened path/name that refers
to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the pack-
age: "foo", "alice/foo", or "bro/alice/foo".

• version (str) – if not given, then the latest git version tag is installed (or if no version
tags exist, the "master" branch is installed). If given, it may be either a git version tag, a
git branch name, or a git commit hash.

Returns empty string if package installation succeeded else an error string explaining why it
failed.

Return type str

Raises IOError – if the manifest can’t be written

installed_packages()
Return list of package.InstalledPackage.

load(pkg_path)
Mark an installed package as being "loaded".

The collection of "loaded" packages is a convenient way for Bro to more simply load a whole group of
packages installed via the package manager.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns empty string if the package is successfully marked as loaded, else an explanation of
why it failed.

Return type str

Raises IOError – if the loader script or manifest can’t be written

loaded_packages()
Return list of loaded package.InstalledPackage.

match_source_packages(pkg_path)
Return a list of package.Package that match a given path.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

modified_config_files(installed_pkg)
Return a list of package config files that the user has modified.

Parameters installed_pkg (package.InstalledPackage) – the installed package
to check for whether it has installed any Bro scripts.

Returns tuples that describe the modified config files. The first element is the config file as
specified in the package metadata (a file path relative to the package’s root directory). The
second element is an absolute file system path to where that config file is currently installed.

Return type list of (str, str)

package_build_log(pkg_path)
Return the path to the package manager’s build log for a package.

5.1. bropkg.manager module 35

Bro Package Manager Documentation, Release 1.5.0

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

package_versions(installed_package)
Returns a list of version number tags available for a package.

Parameters installed_package (package.InstalledPackage) – the package for
which version number tags will be retrieved.

Returns the version number tags.

Return type list of str

pin(pkg_path)
Pin a currently installed package to the currently installed version.

Pinned packages are never upgraded when calling upgrade().

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns None if no matching installed package could be found, else the installed package that
was pinned.

Return type package.InstalledPackage

Raises IOError – when the manifest file can’t be written

refresh_installed_packages()
Fetch latest git information for installed packages.

This retrieves information about outdated packages, but does not actually upgrade their installations.

Raises IOError – if the package manifest file can’t be written

refresh_source(name, aggregate=False, push=False)
Pull latest git information from a package source.

This makes the latest pre-aggregated package metadata available or performs the aggregation locally in
order to push it to the actual package source. Locally aggregated data also takes precedence over the
source’s pre-aggregated data, so it can be useful in the case the operator of the source does not update their
pre-aggregated data at a frequent enough interval.

Parameters

• name (str) – the name of the package source. E.g. the same name used as a key to
add_source().

• aggregate (bool) – whether to perform a local metadata aggregation by crawling all
packages listed in the source’s index files.

• push (bool) – whether to push local changes to the aggregated metadata to the remote
package source. If the aggregate flag is set, the data will be pushed after the aggregation
is finished.

Returns an empty string if no errors occurred, else a description of what went wrong.

Return type str

remove(pkg_path)
Remove an installed package.

36 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns True if an installed package was removed, else False.

Return type bool

Raises

• IOError – if the package manifest file can’t be written

• OSError – if the installed package’s directory can’t be deleted

save_temporary_config_files(installed_pkg)
Return a list of temporary package config file backups.

Parameters installed_pkg (package.InstalledPackage) – the installed package
to save temporary config file backups for.

Returns tuples that describe the config files backups. The first element is the config file as
specified in the package metadata (a file path relative to the package’s root directory). The
second element is an absolute file system path to where that config file has been copied. It
should be considered temporary, so make use of it before doing any further operations on
packages.

Return type list of (str, str)

source_packages()
Return a list of package.Package within all sources.

test(pkg_path, version=”)
Test a package.

Parameters

• pkg_path (str) – the full git URL of a package or the shortened path/name that refers
to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the pack-
age: "foo", "alice/foo", or "bro/alice/foo".

• version (str) – if not given, then the latest git version tag is used (or if no version
tags exist, the "master" branch is used). If given, it may be either a git version tag or a git
branch name.

Returns a tuple containing an error message string, a boolean indicating whether the tests
passed, as well as a path to the directory in which the tests were run. In the case where
tests failed, the directory can be inspected to figure out what went wrong. In the case where
the error message string is not empty, the error message indicates the reason why tests could
not be run.

Return type (str, bool, str)

unbundle(bundle_file)
Installs all packages contained within a bundle.

Parameters bundle_file (str) – the path to the bundle to install.

Returns an empty string if the operation was successful, else an error message indicated what
went wrong.

Return type str

5.1. bropkg.manager module 37

Bro Package Manager Documentation, Release 1.5.0

unload(pkg_path)
Unmark an installed package as being "loaded".

The collection of "loaded" packages is a convenient way for Bro to more simply load a whole group of
packages installed via the package manager.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns True if a package is successfully unmarked as loaded.

Return type bool

Raises IOError – if the loader script or manifest can’t be written

unpin(pkg_path)
Unpin a currently installed package and allow it to be upgraded.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns None if no matching installed package could be found, else the installed package that
was unpinned.

Return type package.InstalledPackage

Raises IOError – when the manifest file can’t be written

upgrade(pkg_path)
Upgrade a package to the latest available version.

Parameters pkg_path (str) – the full git URL of a package or the shortened path/name that
refers to it within a package source. E.g. for a package source called "bro" with package
named "foo" in alice/bro-pkg.index, the following inputs may refer to the package:
"foo", "alice/foo", or "bro/alice/foo".

Returns an empty string if package upgrade succeeded else an error string explaining why it
failed.

Return type str

Raises IOError – if the manifest can’t be written

validate_dependencies(requested_packages, ignore_installed_packages=False, ig-
nore_suggestions=False)

Validates package dependencies.

Parameters

• requested_packages (list of (str, str)) – a list of (package name or git
URL, version) string tuples validate. If the version string is empty, the latest available
version of the package is used.

• ignore_installed_packages (bool) – whether the dependency analysis should
consider installed packages as satisfying dependency requirements.

• ignore_suggestions (bool) – whether the dependency analysis should consider
installing dependencies that are marked in another package’s ’suggests’ metadata field.

38 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

Returns the first element of the tuple is an empty string if dependency graph was successfully
validated, else an error string explaining what is invalid. In the case it was validated, the
second element is a list of tuples where the first elements are dependency packages that
would need to be installed in order to satisfy the dependencies of the requested packages (it
will not include any packages that are already installed or that are in the requested_packages
argument). The second element of tuples in the list is a version string of the associated
package that satisfies dependency requirements. The third element of the tuples in the list
is a boolean value indicating whether the package is included in the list because it’s merely
suggested by another package.

Return type (str, list of (package.PackageInfo, str, bool))

5.2 bropkg.package module

A module with various data structures used for interacting with and querying the properties and status of Bro packages.

class bropkg.package.InstalledPackage(package, status)
Bases: object

An installed package and its current status.

package
the installed package

Type Package

status
the status of the installed package

Type PackageStatus

bropkg.package.METADATA_FILENAME = 'bro-pkg.meta'
The name of files used by packages to store their metadata.

class bropkg.package.Package(git_url, source=”, directory=”, metadata=None, name=None,
canonical=False)

Bases: object

A Bro package.

This class contains properties of a package that are defined by the package git repository itself and the package
source it came from.

git_url
the git URL which uniquely identifies where the Bro package is located

Type str

name
the canonical name of the package, which is always the last component of the git URL path

Type str

source
the package source this package comes from, which may be empty if the package is not a part of a source
(i.e. the user is referring directly to the package’s git URL).

Type str

5.2. bropkg.package module 39

Bro Package Manager Documentation, Release 1.5.0

directory
the directory within the package source where the bro-pkg.index containing this package is located.
E.g. if the package source has a package named "foo" declared in alice/bro-pkg.index, then dir is
equal to "alice". It may also be empty if the package is not part of a package source or if it’s located in a
top-level bro-pkg.index file.

Type str

metadata
the contents of the package’s bro-pkg.meta file. If the package has not been installed then this in-
formation may come from the last aggregation of the source’s aggregate.meta file (it may not be
accurate/up-to-date).

Type dict of str -> str

aliases()
Return a list of package name aliases.

The canonical one is listed first.

dependencies(field=’depends’)
Returns a dictionary of dependency -> version strings.

The keys indicate the name of a package (shorthand name or full git URL) or just ’bro’ to indicate a
dependency on a particular bro version.

The values indicate a semantic version requirement.

If the dependency field is malformed (e.g. number of keys not equal to number of values), then None is
returned.

matches_path(path)
Return whether this package has a matching path/name.

E.g for a package with qualified_name() of "bro/alice/foo", the following inputs will match: "foo",
"alice/foo", "bro/alice/foo"

name_with_source_directory()
Return the package’s within its package source.

E.g. for a package source with a package named "foo" in alice/bro-pkg.index, this method returns
"alice/foo". If the package has no source or sub-directory within the source, then just the package name is
returned.

qualified_name()
Return the shortest name that qualifies/distinguishes the package.

If the package is part of a source, then this returns "source_name/name_with_source_directory()",
else the package’s git URL is returned.

short_description()
Return a short description of the package.

This will be the first sentence of the package’s ’description’ field and may return results from the source’s
aggregated metadata if the package has not been installed yet.

tags()
Return a list of keyword tags associated with the package.

This will be the contents of the package’s tags field and may return results from the source’s aggregated
metadata if the package has not been installed yet.

user_vars()
Returns a list of (str, str, str) from metadata’s ’user_vars’ field.

40 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

Each entry in the returned list is a the name of a variable, it’s value, and its description.

If the ’user_vars’ field is not present, an empty list is returned. If it is malformed, then None is returned.

class bropkg.package.PackageInfo(package=None, status=None, metadata=None, ver-
sions=None, metadata_version=”, invalid_reason=”,
version_type=”)

Bases: object

Contains information on an arbitrary package.

If the package is installed, then its status is also available.

package
the relevant Bro package

Type Package

status
this attribute is set for installed packages

Type PackageStatus

metadata
the contents of the package’s bro-pkg.meta file

Type dict of str -> str

versions
a list of the package’s availabe git version tags

Type list of str

metadata_version
the package version that the metadata is from

version_type
either ’version’, ’branch’, or ’commit’ to indicate whether the package info/metadata was taken from a
release version tag, a branch, or a specific commit hash.

invalid_reason
this attribute is set when there is a problem with gathering package information and explains what went
wrong

Type str

aliases()
Return a list of package name aliases.

The canonical one is listed first.

best_version()
Returns the best/latest version of the package that is available.

If the package has any git release tags, this returns the highest one, else it returns the ’master’ branch.

dependencies(field=’depends’)
Returns a dictionary of dependency -> version strings.

The keys indicate the name of a package (shorthand name or full git URL) or just ’bro’ to indicate a
dependency on a particular bro version.

The values indicate a semantic version requirement.

If the dependency field is malformed (e.g. number of keys not equal to number of values), then None is
returned.

5.2. bropkg.package module 41

Bro Package Manager Documentation, Release 1.5.0

short_description()
Return a short description of the package.

This will be the first sentence of the package’s ’description’ field.

tags()
Return a list of keyword tags associated with the package.

This will be the contents of the package’s tags field.

user_vars()
Returns a list of (str, str, str) from metadata’s ’user_vars’ field.

Each entry in the returned list is a the name of a variable, it’s value, and its description.

If the ’user_vars’ field is not present, an empty list is returned. If it is malformed, then None is returned.

class bropkg.package.PackageStatus(is_loaded=False, is_pinned=False, is_outdated=False,
tracking_method=None, current_version=None, cur-
rent_hash=None)

Bases: object

The status of an installed package.

This class contains properties of a package related to how the package manager will operate on it.

is_loaded
whether a package is marked as "loaded".

Type bool

is_pinned
whether a package is allowed to be upgraded.

Type bool

is_outdated
whether a newer version of the package exists.

Type bool

tracking_method
either "branch", "version", or "commit" to indicate (respectively) whether package upgrades should stick
to a git branch, use git version tags, or do nothing because the package is to always use a specific git
commit hash.

Type str

current_version
the current version of the installed package, which is either a git branch name or a git version tag.

Type str

current_hash
the git sha1 hash associated with installed package’s current version/commit.

Type str

bropkg.package.aliases(metadata_dict)
Return a list of package aliases found in metadata’s ’aliases’ field.

bropkg.package.canonical_url(path)
Returns the url of a package given a path to its git repo.

42 Chapter 5. Python API Reference

Bro Package Manager Documentation, Release 1.5.0

bropkg.package.dependencies(metadata_dict, field=’depends’)
Returns a dictionary of (str, str) based on metadata’s dependency field.

The keys indicate the name of a package (shorthand name or full git URL) or just ’bro’ to indicate a dependency
on a particular bro version.

The values indicate a semantic version requirement.

If the dependency field is malformed (e.g. number of keys not equal to number of values), then None is returned.

bropkg.package.name_from_path(path)
Returns the name of a package given a path to its git repository.

bropkg.package.short_description(metadata_dict)
Returns the first sentence of the metadata’s ’desciption’ field.

bropkg.package.tags(metadata_dict)
Return a list of tag strings found in the metadata’s ’tags’ field.

bropkg.package.user_vars(metadata_dict)
Returns a list of (str, str, str) from metadata’s ’user_vars’ field.

Each entry in the returned list is a the name of a variable, it’s value, and its description.

If the ’user_vars’ field is not present, an empty list is returned. If it is malformed, then None is returned.

5.3 bropkg.source module

A module containing the definition of a "package source": a git repository containing a collection of bro-pkg.
index files. These are simple INI files that can describe many Bro packages. Each section of the file names a Bro
package along with the git URL where it is located and metadata tags that help classify/describe it.

bropkg.source.AGGREGATE_DATA_FILE = 'aggregate.meta'
The name of the package source file where package metadata gets aggregated.

bropkg.source.INDEX_FILENAME = 'bro-pkg.index'
The name of package index files.

class bropkg.source.Source(name, clone_path, git_url)
Bases: object

A Bro package source.

This class contains properties of a package source like its name, remote git URL, and local git clone.

name
The name of the source as given by a config file key in it’s [sources] section.

Type str

git_url
The git URL of the package source.

Type str

clone
The local git clone of the package source.

Type git.Repo

package_index_files()
Return a list of paths to package index files in the source.

5.3. bropkg.source module 43

Bro Package Manager Documentation, Release 1.5.0

packages()
Return a list of package.Package in the source.

44 Chapter 5. Python API Reference

CHAPTER 6

Developer’s Guide

This a guide for developers working on the Bro Package Manager itself.

6.1 Versioning/Releases

After making a commit to the master branch, you can use the update-changes script in the bro-aux repository to
automatically adapt version numbers and regenerate the bro-pkg man page. Make sure to install the documentation
dependencies before using it.

Releases are hosted at PyPi. To build and upload a release:

1. Finalize the git repo tag and version with update-changes -R <version> if not done already.

2. Upload the distribution (you will need the credentials for the ’bro’ account on PyPi):

$ make upload

6.2 Documentation

Documentation is written in reStructuredText (reST), which Sphinx uses to generate HTML documentation and a man
page.

6.2.1 Dependencies

To build documentation locally, find the requirements in requirements.txt:

Requirements for general bro-pkg usage
GitPython
semantic_version
configparser

(continues on next page)

45

https://github.com/bro/bro-aux
https://pypi.python.org/pypi
http://www.sphinx-doc.org

Bro Package Manager Documentation, Release 1.5.0

(continued from previous page)

btest
Requirements for development (e.g. building docs)
Sphinx
sphinxcontrib-napoleon
sphinx_rtd_theme

They can be installed like:

pip install -r requirements.txt

6.2.2 Local Build/Preview

Use the Makefile targets make html and make man to build the HTML and man page, respectively. To view
the generated HTML output, open doc/_build/index.html. The generated man page is located in doc/man/
bro-pkg.1.

If you have also installed sphinx-autobuild (e.g. via pip), there’s a Makefile target, make livehtml,
you can use to help preview documentation changes as you edit the reST files.

6.2.3 Remote Hosting

The GitHub repository has a webhook configured to automatically rebuild the HTML documentation hosted at Read
the Docs whenever a commit is pushed.

6.2.4 Style Conventions

The following style conventions are (generally) used.

Documentation Subject reST Markup Preview
File Path :file:`path` path
File Path w/ Substitution :file:`{<replace_me>}/path` <replace_me>/path
OS-Level Commands :command:`cmd` cmd
Program Names :program:`prog` prog
Environment Variables :envvar:`VAR`

VAR
Literal Text (e.g. code) ``code`` code
Substituted Literal Text :samp:`code {<replace_me>}` code <replace_me>
Variable/Type Name `x` x
INI File Option `name` name

Python API docstrings roughly follow the Google Style Docstrings format.

46 Chapter 6. Developer’s Guide

https://github.com/bro/package-manager
http://bro-package-manager.readthedocs.io/en/latest
http://bro-package-manager.readthedocs.io/en/latest
http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html

Python Module Index

b
bropkg, 31
bropkg.manager, 31
bropkg.package, 39
bropkg.source, 43

47

Bro Package Manager Documentation, Release 1.5.0

48 Python Module Index

Index

A
add_source() (bropkg.manager.Manager method), 33
AGGREGATE_DATA_FILE (in module bropkg.source),

43
aliases() (bropkg.package.Package method), 40
aliases() (bropkg.package.PackageInfo method), 41
aliases() (in module bropkg.package), 42
autoload_package (bropkg.manager.Manager attribute),

33
autoload_script (bropkg.manager.Manager attribute), 32

B
backup_dir (bropkg.manager.Manager attribute), 32
backup_modified_files() (bropkg.manager.Manager

method), 33
best_version() (bropkg.package.PackageInfo method), 41
bro_dist (bropkg.manager.Manager attribute), 31
BRO_PLUGIN_PATH, 33
bro_plugin_path() (bropkg.manager.Manager method),

33
BROPATH, 33
bropath() (bropkg.manager.Manager method), 33
bropkg (module), 31
bropkg.manager (module), 31
bropkg.package (module), 39
bropkg.source (module), 43
bundle() (bropkg.manager.Manager method), 33
bundle_info() (bropkg.manager.Manager method), 34

C
canonical_url() (in module bropkg.package), 42
clone (bropkg.source.Source attribute), 43
current_hash (bropkg.package.PackageStatus attribute),

42
current_version (bropkg.package.PackageStatus at-

tribute), 42

D
dependencies() (bropkg.package.Package method), 40

dependencies() (bropkg.package.PackageInfo method),
41

dependencies() (in module bropkg.package), 42
directory (bropkg.package.Package attribute), 39

E
environment variable

BRO_PLUGIN_PATH, 33
BROPATH, 33
PATH, 3, 4, 25
VAR, 46

F
find_installed_package() (bropkg.manager.Manager

method), 34

G
git_url (bropkg.package.Package attribute), 39
git_url (bropkg.source.Source attribute), 43

H
has_scripts() (bropkg.manager.Manager method), 34

I
INDEX_FILENAME (in module bropkg.source), 43
info() (bropkg.manager.Manager method), 34
install() (bropkg.manager.Manager method), 34
installed_packages() (bropkg.manager.Manager method),

35
installed_pkgs (bropkg.manager.Manager attribute), 31
InstalledPackage (class in bropkg.package), 39
invalid_reason (bropkg.package.PackageInfo attribute),

41
is_loaded (bropkg.package.PackageStatus attribute), 42
is_outdated (bropkg.package.PackageStatus attribute), 42
is_pinned (bropkg.package.PackageStatus attribute), 42

L
load() (bropkg.manager.Manager method), 35

49

Bro Package Manager Documentation, Release 1.5.0

loaded_packages() (bropkg.manager.Manager method),
35

log_dir (bropkg.manager.Manager attribute), 32

M
Manager (class in bropkg.manager), 31
manifest (bropkg.manager.Manager attribute), 32
match_source_packages() (bropkg.manager.Manager

method), 35
matches_path() (bropkg.package.Package method), 40
metadata (bropkg.package.Package attribute), 40
metadata (bropkg.package.PackageInfo attribute), 41
METADATA_FILENAME (in module bropkg.package),

39
metadata_version (bropkg.package.PackageInfo at-

tribute), 41
modified_config_files() (bropkg.manager.Manager

method), 35

N
name (bropkg.package.Package attribute), 39
name (bropkg.source.Source attribute), 43
name_from_path() (in module bropkg.package), 43
name_with_source_directory() (bropkg.package.Package

method), 40

P
package (bropkg.package.InstalledPackage attribute), 39
package (bropkg.package.PackageInfo attribute), 41
Package (class in bropkg.package), 39
package_build_log() (bropkg.manager.Manager method),

35
package_clonedir (bropkg.manager.Manager attribute),

32
package_index_files() (bropkg.source.Source method),

43
package_testdir (bropkg.manager.Manager attribute), 32
package_versions() (bropkg.manager.Manager method),

36
PackageInfo (class in bropkg.package), 41
packages() (bropkg.source.Source method), 43
PackageStatus (class in bropkg.package), 42
PATH, 3, 4, 25
pin() (bropkg.manager.Manager method), 36
plugin_dir (bropkg.manager.Manager attribute), 32

Q
qualified_name() (bropkg.package.Package method), 40

R
refresh_installed_packages() (bropkg.manager.Manager

method), 36
refresh_source() (bropkg.manager.Manager method), 36

remove() (bropkg.manager.Manager method), 36

S
save_temporary_config_files() (bropkg.manager.Manager

method), 37
scratch_dir (bropkg.manager.Manager attribute), 32
script_dir (bropkg.manager.Manager attribute), 32
short_description() (bropkg.package.Package method),

40
short_description() (bropkg.package.PackageInfo

method), 41
short_description() (in module bropkg.package), 43
source (bropkg.package.Package attribute), 39
Source (class in bropkg.source), 43
source_clonedir (bropkg.manager.Manager attribute), 32
source_packages() (bropkg.manager.Manager method),

37
sources (bropkg.manager.Manager attribute), 31
state_dir (bropkg.manager.Manager attribute), 31
status (bropkg.package.InstalledPackage attribute), 39
status (bropkg.package.PackageInfo attribute), 41

T
tags() (bropkg.package.Package method), 40
tags() (bropkg.package.PackageInfo method), 42
tags() (in module bropkg.package), 43
test() (bropkg.manager.Manager method), 37
tracking_method (bropkg.package.PackageStatus at-

tribute), 42

U
unbundle() (bropkg.manager.Manager method), 37
unload() (bropkg.manager.Manager method), 37
unpin() (bropkg.manager.Manager method), 38
upgrade() (bropkg.manager.Manager method), 38
user_vars (bropkg.manager.Manager attribute), 32
user_vars() (bropkg.package.Package method), 40
user_vars() (bropkg.package.PackageInfo method), 42
user_vars() (in module bropkg.package), 43

V
validate_dependencies() (bropkg.manager.Manager

method), 38
VAR, 46
version_type (bropkg.package.PackageInfo attribute), 41
versions (bropkg.package.PackageInfo attribute), 41

50 Index

	Quickstart Guide
	Dependencies
	Installation
	Basic Configuration
	Advanced Configuration
	Usage

	bro-pkg Command-Line Tool
	Commands
	Config File

	How-To: Create a Package
	Walkthroughs
	Package Metadata
	Package Versioning

	How-To: Create a Package Source
	Package Source Setup
	Package Index Files
	Adding Packages
	Removing Packages
	Aggregating Metadata

	Python API Reference
	bropkg.manager module
	bropkg.package module
	bropkg.source module

	Developer's Guide
	Versioning/Releases
	Documentation

	Python Module Index

