
Brewmeister Documentation
Release 0.1.0dev

Matthias Vogelgesang

August 07, 2014

Contents

1 Features 3

2 Documentation 5

3 Screenshot 7

4 Contents 9
4.1 Installation . 9
4.2 Development . 9

5 License 13

HTTP Routing Table 15

i

ii

Brewmeister Documentation, Release 0.1.0dev

Brewmeister is a server application to organize and control beer brewing processes. It provides an HTML interface
for human brewers and a REST-API for machine consumption. It also works perfectly nice with its Brewslave
minion.

Contents 1

http://en.wikipedia.org/wiki/Brewing
https://github.com/maximweb/brewslave

Brewmeister Documentation, Release 0.1.0dev

2 Contents

CHAPTER 1

Features

• Based on Flask + MongoDB

• Simple REST API

• i18n and l10n for German and Czech

• Client- and server-side validation via JSON schemas

• Temperature control based on a state machine

• Bottle cap label generator

• Absolutely no security measures

3

Brewmeister Documentation, Release 0.1.0dev

4 Chapter 1. Features

CHAPTER 2

Documentation

Is hosted at readthedocs.org.

5

http://brewmeister.readthedocs.org

Brewmeister Documentation, Release 0.1.0dev

6 Chapter 2. Documentation

CHAPTER 3

Screenshot

7

Brewmeister Documentation, Release 0.1.0dev

8 Chapter 3. Screenshot

CHAPTER 4

Contents

4.1 Installation

Prepare a virtualenv and install all requirements:

$ pip install --upgrade -r requirements.txt

Setup a MongoDB instance, e.g.

$ sudo apt-get install mongodb-server

For testing purposes you can pre-populate the database with:

$ make init

Generate translation data base and run the debug server with:

$ make

By default, a dummy controller is running with which you can brew a virtual beer.

4.1.1 Customization

You can edit brew/settings.py and change the following configuration options:

BREW_CONTROLLER_TYPE Can be either dummy or arduino.
BREW_CONTROLLER_ARDUINO_DEVICEDevice filename of the serial connection to the Arduino device. It is is

/dev/ttyUSB0 by default.
BREW_CONTROLLER_DUMMY_SLOPETemperature increase in degrees per minute of the dummy controller.

4.2 Development

4.2.1 Contributing

Brewmeister is free and open source software and you are encouraged to report bugs, contribute features and bug
fixes as well as translating the Brewmeister into your language.

Bug reports and feature requests

All bugs and feature requests should be reported at the GitHub issue tracker.

9

http://www.virtualenv.org/en/latest/
https://github.com/matze/brewmeister/issues

Brewmeister Documentation, Release 0.1.0dev

Code contributions

Common open source practices apply to the Brewmeister development too. First of all, all code contributions are
reviewed and merged through a GitHub pull request. Please base your changes on a feature branched off of master
and not master itself. Name it according to your intended changes, e.g. fix-bug-123 or add-magic-hops.

Within your code, you should follow PEP8 with one exception: the line length can be up to 100 characters per line
instead of 80.

Translations

The easiest way to add or improve translations is to go to the Transifex project page and request a new language or
start digging on the existing ones. This is the preferred way for translators, as the messages source file is uploaded
when necessary.

You can also add and translate manually. First create a new language with
make createpo, enter the targetted language code and edit the translation file in
brew/translations/<lang>/LC_MESSAGES/messages.po. Once finished, you can add and
commit this file and issue a pull request on GitHub.

4.2.2 Arduino Brew Control Protocol

The Arduino Brew Control Protocol (short ABCP) is a simple, compact, stateless and command-based wire pro-
tocol for communicating with a Brewmeister-compatible Arduino.

The following specification assumes, the host to be the machine that communicates with the Arduino via a serial
line interface.

Protocol sequence

Communication is always initiated by the host using a simple call-response sequence:

1. Host sends command packet specifying either to read or to write data.

2. Host sends device packet specifying which device is addressed.

3. In case of a write command, the host sends the data.

4. The Arduino answers with a status code and depending on the command, optional data.

Command packet

The command packet is sent by the host and consists of one header byte

Code Meaning
0xf0 Read data
0xf1 Write data

and one device byte.

Code Instrument Data type Meaning
0xf1 Temperature float Temperature in degree Celsius.
0xf2 Heat bool On or off.
0xf3 Stir bool On or off.

Data types

Data can – as of now – be sent and read as floats or boolean data types. A float is a four byte IEEE compliant
float data type in x86-compatible little endian format. The boolean type is one byte, with 0 denoting false and 1
denoting true.

10 Chapter 4. Contents

https://github.com/matze/brewmeister/pull
https://www.transifex.com/projects/p/brewmeister

Brewmeister Documentation, Release 0.1.0dev

4.2.3 RESTful HTTP API

Recipes

POST /api/recipe
Create a new recipe. The data must be encoded as a JSON data structure according to the JSON schema
stored in data/recipe.schema.json.

PUT /api/recipe/(int: recipe_id)
Recipe data of (recipe_id).

Brews

GET /api/brews
List of brew IDs.

GET /api/brews/(int: brew_id)/temperature
Archived temperature data for (brew_id).

GET /api/brews/(int: brew_id)/label
Return a PDF called qr.pdf containing small QR codes for bottle caps.

GET /api/brews/(int: brew_id)/temperature
Get all recorded temperatures of the specified brew.

GET /api/brews/(int: brew_id)/label/prepare
Prepare a label asynchronously.

PUT /api/brews/(int: brew_id)/note
Update notes of brew.

GET /api/status
Status of the current brew.

Hardware access

PUT /api/reconnect
Try to reconnect again with the set controller.

GET /api/status/(str: device)
Get running status of device.

PUT /api/start/(str: device)
Start the device.

PUT /api/stop/(str: device)
Stop the device.

4.2. Development 11

Brewmeister Documentation, Release 0.1.0dev

12 Chapter 4. Contents

CHAPTER 5

License

Brewmeister is created by Matthias Vogelgesang.

The favicon is an adapted beer icon from GLYPHICONS.com, released under Creative Commons Attribution 3.0
Unported (CC BY 3.0).

13

http://glyphicons.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Brewmeister Documentation, Release 0.1.0dev

14 Chapter 5. License

HTTP Routing Table

/api
GET /api/brews, 11
GET /api/brews/(int:brew_id)/label, 11
GET /api/brews/(int:brew_id)/label/prepare,

11
GET /api/brews/(int:brew_id)/temperature,

11
GET /api/status, 11
GET /api/status/(str:device), 11
POST /api/recipe, 11
PUT /api/brews/(int:brew_id)/note, 11
PUT /api/recipe/(int:recipe_id), 11
PUT /api/reconnect, 11
PUT /api/start/(str:device), 11
PUT /api/stop/(str:device), 11

15

	Features
	Documentation
	Screenshot
	Contents
	Installation
	Development

	License
	HTTP Routing Table

