
Basilisk Documentation
Release 0.3.8-pre

Brad Shuttleworth

June 18, 2014

Contents

1 User Guide 3
1.1 Why Values? . 3
1.2 Getting Started . 5
1.3 Collections . 7
1.4 Query . 9

2 License 13

i

ii

Basilisk Documentation, Release 0.3.8-pre

Basilisk is a value library for Javascript. It allows you to create immutable data in a familiar way, and to derive new
versions from that data.

var Person = basilisk.makeStruct([’name’, ’age’]),
example = new Person({ name: ’Joe’, age: 32 }),
older = example.with_(’age’, example.age + 2);

Making code which updates deeply nested structures simple and clear is library’s main aim.

// we make a quick alias, to reduce clutter in the code.
var b$ = basilisk.query,

Person = basilisk.makeStruct([’name’, ’age’, ’addresses’]),
Address = basilisk.makeStruct([’city’, ’country’]),

example = new Person({
name: ’Joe’,
age: 32,

addresses = basilisk.Vector.from([
new Address({ city: ’London’, country: ’United Kingdom’ }),
new Address({ city: ’Cape Town’, country: ’South Africa’ })

])
}),
example2, example3;

// first we create a new object, with a US address added.

example2 = b$.swap(example, [’addresses’], function (current) {
return current.push(new Address({ city: ’Boston’, country: ’USA’ }));

});

// and if we have to replace a part of that new address.

example3 = b$.replace(example2, [’addresses’, b$.at(2), ’city’], ’New York’);

Contents 1

Basilisk Documentation, Release 0.3.8-pre

2 Contents

CHAPTER 1

User Guide

1.1 Why Values?

We have a double-standard in programming: when we do simple arithmetic or work with strings we do not expect the
values we’re using to be changed by our work.

var a, b, c;

a = 5;
b = 7;
c = a + b;

// we would not expect that a or b were changed by adding them together.

a = 5;
b = a;
a += 10;

// we expect that b is still "5".

a = "Hello, "
b = "Gill"

c = a + b;

// Again, we believe that a and b would not be changed by this.

We have long known that having simple values makes understanding software a lot simpler: numbers, booleans, and
strings are all commonly immutable now: If you pass one to a function you know that it will not be changed. You
may well be returned a different string to use, but the one you started with is still there for comparison.

In some languages (notably C) strings are mutable: anyone can change that. While that makes in-place modification
faster, it means that any code which interacts with strings needs to know whether it is allowed to change a particular
instance, and it is easy for bugs to arise as a result.

1.1.1 Application data

In Javascript (as with most programming languages) the higher-level objects we use to do most of our programming
are mutable: arrays, objects, and (if you have them in your language) Maps must be changed in-place to effect change,
or they must be “deep-copied” to create a history if comparison is required.

3

Basilisk Documentation, Release 0.3.8-pre

The result of this is that any part of the code-base which can see an object can change that object: we mix up the idea
of “identity” with the idea of “value”. It thus becomes much harder to how your program moves from one state to
another - a fact which looks great in demo code, but which is terrible for making changes or debugging.

1.1.2 Change and Events

The standard solution to the change problem is to use events: when a property is changed the host object (or the
browser) fires an event to which other code can be listening, and which can then perform additional updates as required.
That works reasonably well when you have very flat objects - a “User” object, say, with 10 properties. Change the
username and an event is fired.

This gets harder to manage when you have several properties which must be updated at the same time: say x and y
co-ordinates for an item in a scene. A naive approach would see you updating first the x position, redrawing and then
updating again.

Now: Object.observe provides a better solution to this in the mutable case by delivering a stream of changes to
handlers. However, there are still some hard to follow cases there.

1.1.3 Dancing together

Even these tools don’t work fantastically once you are co-ordinating many objects. Consider a person with a list of
addresses:

var gill = new Person({
name: ’Gill Jones’,
addresses: {

home: { country: ’United Kingdom’, city: ’London’ },
holiday: { country: ’Ireland’, city: ’Dublin’ },
birth: { country: ’South Africa’, city: ’Cape Town’ }

},
currentAddress: ’home’

});

Now: changing something about the ‘home’ address has an impact on anyone who is trying to list Gill’s current
address. We would need to

1. Add a listener to gill to watch for changes to the currentAddress property.

2. Add a listener to gill.addresses in case the home value was replaced

3. Add a listener to gill.addresses[’home’] in case home is changed in some way.

That’s a huge amount of book keeping, just to track potential changes in one place.

The alternative approach (using values) is to

1. Be notified of all changes at the root.

2. Use === to quickly (pointer comparison, so very fast) check if the properties you care about
(.currentAddress, .addresses, .addresses.get(gill.currentAddress))
might have changed.

Vitally, you never have to bind to current instances of the child values: you only ever need access to a single variable
at the top of the tree.

4 Chapter 1. User Guide

Basilisk Documentation, Release 0.3.8-pre

1.1.4 In short

Using events to observe changes to properties is a very easy solution to knowing about changes, but it makes composite
objects very hard to reason about.

Using values makes working with composite objects very simple: more composition doesn’t lead to spiralling com-
plexity.

1.2 Getting Started

1.2.1 Structs

The first important idea in Basilisk is the struct. A struct is an object that has a with_ method.

var joe = new Person({ name: ’Joe’ });

// Properties can be accessed directly.
console.log(’basic value’, joe.name);

// You can derive a new value using ’with_’
console.log(’adjusted’, joe.with_(’name’, ’Joe Bloggs’).name);

// The original value is - of course - not modified by deriving a new value.
console.log(’original value’, joe.name);

An easy way to make constructors for structs is the makeStruct function.

var Person = basilisk.makeStruct([’name’, ’age’]),

joe = new Person({ name: ’Joe’ });

You can of course extend the prototype with any additional methods you like

Person.prototype.toString = function () {
return this.name + ’ (’ + this.age + ’)’;

}

console.log(’I am ’ + joe);

One additional method is created for you automatically: .equals(). We’ll come back to that in a little bit.

1.2.2 Collections

In a huge number of cases, you don’t need to create your own structures to represent data: lists and maps will do just
fine. Basilisk comes with these essential data structures in a persistent 1 and performant form.

// Vectors have fast append, and fast random access (including set)
var numbers = basilisk.Vector.from([]),

numbers = numbers.push(5),
numbers = numbers.push(6),
numbers = numbers.push(7);

console.log(numbers.get(1));
numbers = numbers.set(1, 10);

1 a persistent data structure is a data structure that always preserves the previous version of itself when it is modified.

1.2. Getting Started 5

Basilisk Documentation, Release 0.3.8-pre

// .length is O(1)
console.log(numbers.length);

The StringMap class gives a simple, safe map from strings to any value.

var students = basilisk.StringMap.from({});

students = students.set(’Joe’, ’Joe Bloggs’);

console.log(students.get(’Joe’));
// .get accepts a default (undefined is the default value)
console.log(students.get(’Mary’, ’not present’));

// Unlike normal javascript objects, StringMaps are safe for any string.
students.set(’__proto__’, ’Does not break the object’);

The HashMap class is a more flexible mapping object - see its detailed documentation for more info.

1.2.3 Query

Creating immutable objects in Javascript is actually very easy: just use Object.freeze. However, deriving new
versions of complex objects in a way which is both fast and easy to read is more of a challenge. Basilisk has a query
module to make this easier. We often bind this to b$ to make our code a little clearer.

var b$ = basilisk.query,
example = make_a_complex_object();

console.log(’Deep access:’, example.deep.prop);

// changing ’prop’ to be a new value would involve ’backward’ reasoning
// in most environments:

example = example.with_(’deep’, example.deep.with_(’prop’, 5));

// with basilisk structs, this is clearer:
console.log(b$.replace(example, [’deep’, ’prop’], 5));

// Where you are modifying more properties, or deriving a changed value
// use swap

console.log(b$.swap(example, [’deep’, ’position’], function (current) {
return current

.with_(’x’, current.x + 5)

.with_(’y’, current.y + 10);
}));

// the second parameter (the path) can include more intelligent matchers

console.log(b$.replace(example, [’deep’, b$.at(5)], ’hello’));

// basilisk.query.at() will handle any collection which uses .get and .set
// - so Vector, HashMap, and StringMap at the very least.

6 Chapter 1. User Guide

Basilisk Documentation, Release 0.3.8-pre

1.2.4 Equality

Probably the most useful thing about working with value objects is that strict equality (===) means that the objects
and their children are exactly the same - and the check is incredibly quick.

There are many situations, however, where you want to check if two objects are the same: for this, basilisk supports
.equals.

var personA = new Person({ name: ’Joe’ }),
personB = new Person({ name: ’Mary’ }).with_(’name’, ’Joe’);

console.log(’Not the same: ’, personA === personB);

// however, it *is* valuable to know if they are identical:

basilisk.equals(personA, personB); // returns true.

1.3 Collections

Basilisk has good implementations of the most important data structures for application work. All collections are
immutable - methods which would mutate them (in normal code) return new versions of the collections.

Where time complexity is stated, recall that log[32] of 1 billion is just less than 6.

1.3.1 Vector

class Vector
The Vector class is a random access data structure which can be accessed by numeric key. Push, pop and set are
all O(log[32] n), which makes the time complexity very low for practical datasets.

Note that - as for all Basilisk collections - the constructor is private and the from static method should be used
instead.

static Vector.from([source : mixed])→ Vector
Creates a new Vector from the specified source object.

Parameters source – An array, Vector, or object with a .forEach method. This will be
iterated to fill the vector. Passing null will result in an empty Vector.

Vector.length : number
The number of elements in the Vector. This is a pre-computed property, so access is O(1)

Vector.get(index : number)→ any
Retrieve the value at a particular position in the Vector. Note that (unlike Javascript arrays) retrieving a position
which is outside the range of the collection is an Error. Time complexity: O(log[32] n)

Parameters index – The position in the vector to return. Must be in the range (-length ; length).
Negative indexes are interpreted as being from the end of the vector (ie. .length + index).

Vector.push(value : any)→ Vector
Creates a new Vector which has the specified value in its last position. The instance on which it is called is not
modified. Time complexity: O(log[32] n)

Vector.set(index : number, value : any)→ Vector
Creates a new Vector which has the specified position replaced with the specified value. If the value ‘===‘
the current value in that position, will return this. Time complexity: O(log[32] n)

Parameters index – a number in the range (-length ; length).

1.3. Collections 7

Basilisk Documentation, Release 0.3.8-pre

Vector.pop()→ Vector
Returns a new Vector which has the item in the final position removed. Time complexity: O(log[32] n)

Vector.peek()→ any
Returns the last element in the Vector.

Vector.forEach(callback: function (item : any, index : number), context:any)
Iterates over the Vector in order, calling the callback for each element in turn. It is perfectly valid to pass
a function which takes fewer arguments (ie. function (item) instead of function (item, key) -
this is handled natively by Javascript).

Vector.equals(other : any)→ boolean
Checks whether the two Vectors are equal. Each element is checked in turn. If all elements are equal (see
equality-protocol)

Parameters other – Another object to check for equality. If this is not a Vector, this will never
return true.

1.3.2 StringMap

class StringMap
A HashMap of strings to any other object. In Typescript, this class is generic on type T of the stored objects.

Note that - as for all Basilisk collections - the constructor is private and the from static method should be used
instead.

static StringMap.from([source : mixed])→ StringMap
Create a new StringMap from the specified source object.

If the object is a StringMap, then that object is returned directly.

Finally, the object is iterated using for in and own properties are added to the map.

StringMap.get(key : string[, default: any = undefined])→ any
Retrieve the value stored against the key. If it is not present, then the default will be returned (if none is provided,
undefined is returned.)

StringMap.set(key : string, value: any)→ StringMap
Returns a new StringMap with the added relation. The original map is not changed.

StringMap.remove(key : string)→ StringMap
Returns a new StringMap with the relation removed, if it was ever present. The original map is not changed.

StringMap.has(key : string)→ boolean
Returns whether the specified key is set in the map. Note that undefined is a perfectly legitimate value, so
“set” is not the same as “not undefined”.

StringMap.forEach(function (value : any, key : string)[, context: any = undefined])→ any
Iterate over the elements of the map in an undefined order. The function will be called with the value and key
for each item in turn. Optionally, you can specify a context which will appear as this to the function.

1.3.3 HashMap

class HashMap
A configurable HashMap of values. In Typescript, this class is generic on type T of the stored objects, type K of
keys.

Note that - as for all Basilisk collections - the constructor is private and the from static method should be used
instead.

8 Chapter 1. User Guide

Basilisk Documentation, Release 0.3.8-pre

static HashMap.from(hashFn: function (key : any) -> Number[, source : mixed])→ Vector
Create a new HashMap from the specified source object. The hashFn will be called every time the hash of a
key needs to be evaluated, and should handle any object you might use as a key. basilisk.hashCode is a
standard implementation which should handle most important cases.

If the object is a HashMap and its hashFn === the provided function, then it will be returned directly. Otherwise
it will be iterated and each key passed through the provided hashFunction.

Finally, the object is iterated using for in and own properties are added to the map.

HashMap.get(key : any[, default: any = undefined])→ any
Retrieve the value stored against the key. If it is not present, then the default will be returned (if none is provided,
undefined is returned.)

HashMap.set(key : any, value: any)→ HashMap
Returns a new HashMap with the added relation. The original map is not changed.

HashMap.remove(key : any)→ HashMap
Returns a new HashMap with the relation removed, if it was ever present. The original map is not changed.

HashMap.has(key : any)→ boolean
Returns whether the specified key is set in the map. Note that undefined is a perfectly legitimate value, so
“set” is not the same as “not undefined”.

HashMap.forEach(function (value : any, key : any)[, context: any = undefined])
Iterate over the elements of the map in an undefined order. The function will be called with the value and key
for each item in turn. Optionally, you can specify a context which will appear as this to the function.

hashCode(key:any)→ uint
Generate a hashCode for the provided object. If the object has a hashCode method, that will be called and the
return returned. For strings, numbers, booleans, null and undefined, a default hash implementation is used.

If none of the above apply a TypeError is thrown.

Hash functions should be fast, deterministic, and well distributed over the integers.

1.4 Query

Creating an unchanging value is a very simple thing to do: just instantiate the things you want. Programming is about
change, and that’s where the most important features of Basilisk are targetted.

The query module (which we usually bind to b$ to keep our code clutter-free) allows you to create new versions of
values in a way which is simple to understand.

basilisk.query.replace(initial : any, path : PathSegment[], changed: any)→ any
Given an initial value, this returns a new value which has changed substituted at the end of path.

For example:

var a = new Person({
’name’: ’joe’,
addresses: new basilisk.Vector.from([

new Address({ country: ’RSA’ }),
new Address({ country: ’United Kingdom’ })

])
}),

b;

b = b$.replace(a, [’addresses’, b$.at(0), ’country’], ’South Africa’);

1.4. Query 9

Basilisk Documentation, Release 0.3.8-pre

a.addresses.get(0).country; // ’RSA’;
b.addresses.get(0).country; // ’South Africa’;

Parameters

• initial – a value you wish to derive a new value from.

• path – PathSegments (or strings which will be converted into prop path segments.)

• changed – the value to substitute at the end of the path in the newly created return value.

basilisk.query.swap(initial : any, path : PathSegment[], swapFn : function(value) -> any)→ any
Like replace, but calls swapFn with the current value at the end of the chain, and replaces the end value
with the result.

For example:

var a = new Person({
’name’: ’joe’,
addresses: new basilisk.Vector.from([

new Address({ country: ’RSA’ })
])

}),
b;

b = b$.swap(a, [’addresses’, b$.at(0), ’country’], function (country) {
// normalise common abbreviations of South Africa
if (country === ’RSA’ || country == ’ZA’) {

return ’South Africa’;
} else {

return country;
}

});

a.addresses.get(0).country; // ’RSA’;
b.addresses.get(0).country; // ’South Africa’;

Parameters

• initial – a value you wish to derive a new value from.

• path – PathSegments (or strings which will be converted into prop path segments.)

• swapFn – A function to be called with the value at the end of the path. The return value
will be substituted at the end of the path, in the newly created result.

basilisk.query.value(root : any, path: PathSegment[])→ any
Applies the path to the specified root and returns the current value at the end of the chain.

basilisk.query.path(...pathsegments)→ Path
Create a new Path object from the specified Path Segments. strings will be converted into prop segments.

Parameters pathsegments – string‘s or PathSegment‘s which will be stored and can be used
to swap or apply

1.4.1 Path

A Path is an ordered list of Path Segments, which can be applied to many values to produce updated versions.

10 Chapter 1. User Guide

Basilisk Documentation, Release 0.3.8-pre

class Path
(Interface) A Path which can be applied to many different values.

swap(initial : any, swapFn : function(value) -> any)→ any
Like the query.swap method, but with this path applied.

replace(initial : any, changed : any)→ any
Like the query.replace method, but with this path applied.

1.4.2 PathSegment

The swap and replace functions are wrappers around Path objects, which are made up of path segments. A path
object allows you to

• find the next value in a chain.

• replace that value with a new one.

This is where the Struct interface becomes very important:

var b$ = basilisk.query,

Person = basilisk.makeStruct([’name’, ’age’]),
joe = new Person({ name: ’Joe Bloggs’, age: 32 }),

changed,

propSegment;

// basilisk.query.prop is a path segment that looks at Struct properties.

propSegment = b$.prop(’age’);

propSegment.current(joe); // returns ’32’
changed = propSegment.replace(joe, 35);

/**

Changed will now be:

{
name: ’Joe Bloggs’,
age: 35

}

*/

The path constructor (called by swap or replace) will convert any plain string to a prop segment.

The basilisk.query.at path segment will work with any collection or object which has both .get and .set
methods. The .set method must produce a new value with the key replaced. Keys can be any type that the collection
understands (and collections should throw an error if they aren’t).

For example:

var b$ = basilisk.query,

numbers = basilisk.Vector.from([10, 11, 12, 13]),

segment;

1.4. Query 11

Basilisk Documentation, Release 0.3.8-pre

segment = b$.at(3);

segment.current(numbers); // returns 13
segment.replace(numbers, 9); // returns V([10, 11, 12, 9])

Any object can be used in a path, as long as is has all the methods on the PathSegment interface.

class PathSegment
(Interface) Any object which has all the methods on the PathSegment interface can be used in a Path. PathSeg-
ments must be immutable - they can be cached and re-used.

current(from : any)→ any
Given an object, descend a step into it as appropriate for the segment.

For example, prop segments simply do value[key] where key is configured at creation time.

Returns the next value in the path.

replace(from : any, changed : any)→ any
Perform the update appropriate for the path segment on the from parameters, using changed as the property.

1.4.3 Basic Path Segments

Basilisk comes with a small set of generic path segments, which

basilisk.query.prop(propertyName : string)→ PathSegment
Creates a PathSegment which will descend and replace a single property in a Struct.

basilisk.query.at(key : any)→ PathSegment
Creates a PathSegment which will apply the key to the .get and .set methods of a collection.

12 Chapter 1. User Guide

CHAPTER 2

License

Basilisk is licensed under the MIT License by MOO Print Ltd.

13

http://www.moo.com/

	User Guide
	Why Values?
	Getting Started
	Collections
	Query

	License

