
auth.credential Documentation
Release 1.0

Massimo Paladin

November 28, 2013

Contents

1 Credential Abstraction 3
1.1 Synopsis . 3
1.2 Description . 4
1.3 String representation . 4
1.4 Structured representation . 4

2 Credential Modules 7
2.1 None Credential . 7
2.2 Plain Credential . 7
2.3 X509 Credential . 8

3 Errors 9

4 Indices and tables 11

Python Module Index 13

i

ii

auth.credential Documentation, Release 1.0

Contents:

Contents 1

auth.credential Documentation, Release 1.0

2 Contents

CHAPTER 1

Credential Abstraction

Credential() - abstraction of a credential

1.1 Synopsis

Example:

import auth.credential as credential
from auth.credential.modules.plain import Plain

try:
from urllib.request import Request

except ImportError:
from urllib2 import Request

creation
option = {’scheme’ : ’plain’, ’name’ : ’system’, ’pass’ : ’manager’}
cred = credential.new(**option)
assert option[’scheme’] == cred[’scheme’]
assert option[’pass’] == cred[’pass’]
idem directly using the sub-class
del(option[’scheme’])
cred = Plain(**option)

access the credential attributes
if (cred.scheme == "plain"):

print("user name is %s", cred.name)

HTTP examples

use the prepare() method to get ready-to-use data
headers = {"Authorization" : cred.prepare(’HTTP.Basic’)}
req = Request("http://localhost", headers=headers)

stomppy examples

import stomp

3

auth.credential Documentation, Release 1.0

plain example
host_and_ports = [(’localhost’, 61613)]
params = cred.prepare(’stomppy.plain’)
conn = stomp.Connection(host_and_ports, **params)

x509 example
host_and_ports = [(’localhost’, 61612)]
option = {’scheme’ : ’x509’, ’key’ : ’path/to/key’, ’cert’ : ’path/to/cert’}
cred = credential.new(**option)
params = cred.prepare(’stomppy.x509’)
conn = stomp.Connection(host_and_ports, **params)

1.2 Description

This module offers an abstraction of a credential, i.e. something that can be used to authenticate. It allows the creation
and manipulation of credentials. In particular, it defines a standard string representation (so that credentials can be
given to external programs as command line options), a standard structured representation (so that credentials can be
stored in structured configuration files or using JSON) and “preparators” that can transform credentials into ready-to-
use data for well known targets.

Different authentication schemes (aka credential types) are supported. This package currently supports none, plain
and x509 but others can be added by providing the supporting code in a separate module.

For a given scheme, a credential is represented by an object with a fixed set of string attributes. For instance, the plain
scheme has two attributes: name and pass. More information is provided by the scheme specific module, for instance
Plain.

1.3 String representation

The string representation of a credential is made of its scheme followed by its attributes as key=value pairs, seperated
by space.

For instance, for the none scheme with no attributes:

none

And the the plain scheme with a name and password:

plain name=system pass=manager

If needed, the characters can be URI-quoted, see urllib. All non-alphanumerical characters should be escaped to avoid
parsing ambiguities.

The string representation is useful to give a program through its command line options. For instance:

myprog --uri http://foo:80 --auth "plain name=system pass=manager"

1.4 Structured representation

The structured representation of a credential is made of its scheme and all its attributes as a string table.

Here is for instance how it could end up using JSON:

4 Chapter 1. Credential Abstraction

auth.credential Documentation, Release 1.0

{"scheme":"plain","name":"system","pass":"manager"}

The same information could be stored in a configuration file.

Copyright (C) 2013 CERN

auth.credential.credential.new(**option)
Return a Credential object according to the option passed and the given scheme.

auth.credential.credential.parse(string)
Parse a string containing authentication information and return a dictionary.

1.4. Structured representation 5

auth.credential Documentation, Release 1.0

6 Chapter 1. Credential Abstraction

CHAPTER 2

Credential Modules

Credential modules.

Copyright (C) 2013 CERN

2.1 None Credential

Non() - abstraction of a none credential

2.1.1 Description

This helper module for Credential implements a none credential, that is the absence of authentication credential.

It does not support any attributes.

Copyright (C) 2013 CERN

2.2 Plain Credential

Plain() - abstraction of a plain credential

2.2.1 Description

This helper module for Credential implements a plain credential, that is a pair of name and clear text password.

It supports the following attributes:

name the (usually user) name

pass the associated (clear text) password

Copyright (C) 2013 CERN

7

auth.credential Documentation, Release 1.0

2.3 X509 Credential

X509() - abstraction of an X.509 credential

2.3.1 Description

This helper module for Credential implements an X.509 credential, see http://en.wikipedia.org/wiki/X.509.

It supports the following attributes:

cert the path of the file holding the certificate

key the path of the file holding the private key

pass the pass-phrase protecting the private key (optional)

ca the path of the directory containing trusted certificates (optional)

Copyright (C) 2013 CERN

8 Chapter 2. Credential Modules

http://en.wikipedia.org/wiki/X.509

CHAPTER 3

Errors

Errors used in the module.

Copyright (C) 2013 CERN

exception auth.credential.error.InvalidCredential
Raised when errors occurs during credentials handling.

This module offers an abstraction of a credential, i.e. something that can be used to authenticate. It allows the creation
and manipulation of credentials. In particular, it defines a standard string representation (so that credentials can be
given to external programs as command line options), a standard structured representation (so that credentials can be
stored in structured configuration files or using JSON) and “preparators” that can transform credentials into ready-to-
use data for well known targets.

You can download the module at the following link: http://pypi.python.org/pypi/auth.credential/

An Perl implementation of the same credential abstraction is available in CPAN: http://search.cpan.org/dist/Authen-
Credential/

Copyright (C) 2013 CERN

9

http://pypi.python.org/pypi/auth.credential/
http://search.cpan.org/dist/Authen-Credential/
http://search.cpan.org/dist/Authen-Credential/

auth.credential Documentation, Release 1.0

10 Chapter 3. Errors

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

auth.credential Documentation, Release 1.0

12 Chapter 4. Indices and tables

Python Module Index

a
auth.credential, 9
auth.credential.credential, 3
auth.credential.error, 9
auth.credential.modules, 7
auth.credential.modules.non, 7
auth.credential.modules.plain, 7
auth.credential.modules.x509, 7

13

	Credential Abstraction
	Synopsis
	Description
	String representation
	Structured representation

	Credential Modules
	None Credential
	Plain Credential
	X509 Credential

	Errors
	Indices and tables
	Python Module Index

