
ArgParse.jl Documentation
Release 0.3

Carlo Baldassi

October 06, 2015

Contents

1 Quick overview and a simple example 3

2 The parse_args function 7

3 Settings overview 9

4 General settings 11

5 Argument table basics 13

6 Argument table entries 15
6.1 Argument names . 15
6.2 Argument entry settings . 16
6.3 Available actions and nargs values . 17
6.4 Commands . 19
6.5 Argument groups . 20

7 Importing settings 23

8 Conflicts and overrides 25

9 Parsing to custom types 27

10 Parsing details 29

11 Argument table styles 31

i

ii

ArgParse.jl Documentation, Release 0.3

This module allows the creation of user-friendly command-line interfaces to Julia programs: the program defines
which arguments, options and sub-commands it accepts, and the ArgParse module does the actual parsing, issues
errors when the input is invalid, and automatically generates help and usage messages.

Users familiar with Python’s argparse module will find many similarities, but some important differences as well.

This package can be installed using the Julia package manager from the Julia command line:

julia> Pkg.add("ArgParse")

Contents 1

ArgParse.jl Documentation, Release 0.3

2 Contents

CHAPTER 1

Quick overview and a simple example

First of all, the module needs to be loaded and imported:

using ArgParse

There are two main steps for defining a command-line interface: creating an ArgParseSettings object, and
populating it with allowed arguments and options using either the macro @add_arg_table or the function
add_arg_table (see this section (page 7) for the difference between the two):

s = ArgParseSettings()
@add_arg_table s begin

"--opt1"
help = "an option with an argument"

"--opt2", "-o"
help = "another option with an argument"
arg_type = Int
default = 0

"--flag1"
help = "an option without argument, i.e. a flag"
action = :store_true

"arg1"
help = "a positional argument"
required = true

end

In the macro, options and positional arguments are specified within a begin...end block, by one or more names
in a line, optionally followed by a list of settings. So, in the above example, there are three options:

• the first one, "--opt1" takes an argument, but doesn’t check for its type, and it doesn’t have a default value

• the second one can be invoked in two different forms ("--opt2" and "-o"); it also takes an argument, but it
must be of Int type (or convertible to it) and its default value is 0

• the third one, --flag1, is a flag, i.e. it doesn’t take any argument.

There is also only one positional argument, "arg1", which is declared mandatory.

When the settings are in place, the actual argument parsing is performed via the parse_args function:

parsed_args = parse_args(ARGS, s)

The parameter ARGS can be omitted. In case no errors are found, the result will be a Dict{String,Any}
object. In the above example, it will contain the keys "opt1", "opt2", "flag1" and "arg1", so that e.g.
parsed_args["arg1"] will yield the value associated with the positional argument.

3

ArgParse.jl Documentation, Release 0.3

(The parse_args function also accepts an optional as_symbols keyword argument: when set to true, the
result of the parsing will be a Dict{Symbol,Any}, which can be useful e.g. for passing it as the keywords to a
Julia function.)

Putting all this together in a file, we can see how a basic command-line interface is created:

using ArgParse

function parse_commandline()
s = ArgParseSettings()

@add_arg_table s begin
"--opt1"

help = "an option with an argument"
"--opt2", "-o"

help = "another option with an argument"
arg_type = Int
default = 0

"--flag1"
help = "an option without argument, i.e. a flag"
action = :store_true

"arg1"
help = "a positional argument"
required = true

end

return parse_args(s)
end

function main()
parsed_args = parse_commandline()
println("Parsed args:")
for (arg,val) in parsed_args

println(" $arg => $val")
end

end

main()

If we save this as a file called myprog1.jl, we can see how a --help option is added by default, and a help
message is automatically generated and formatted:

$ julia myprog1.jl --help
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

positional arguments:
arg1 a positional argument

optional arguments:
--opt1 OPT1 an option with an argument
-o, --opt2 OPT2 another option with an argument (type: Int64,

default: 0)
--flag1 an option without argument, i.e. a flag
-h, --help show this help message and exit

Also, we can see how invoking it with the wrong arguments produces errors:

$ julia myprog1.jl
required argument arg1 was not provided
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

4 Chapter 1. Quick overview and a simple example

ArgParse.jl Documentation, Release 0.3

$ julia myprog1.jl somearg anotherarg
too many arguments
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

$ julia myprog1.jl --opt2 1.5 somearg
invalid argument: 1.5 (conversion to type Int64 failed; you may need to overload ArgParse.parse_item;

the error was: ArgumentError("invalid base 10 digit '.' in \"1.5\""))
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] arg1

When everything goes fine instead, our program will print the resulting Dict:

$ julia myprog1.jl somearg
Parsed args:

arg1 => somearg
opt2 => 0
opt1 => nothing
flag1 => false

$ julia myprog1.jl --opt1 "2+2" --opt2 "4" somearg --flag
Parsed args:

arg1 => somearg
opt2 => 4
opt1 => 2+2
flag1 => true

From these examples, a number of things can be noticed:

• opt1 defaults to nothing, since no default setting was used for it in @add_arg_table

• opt1 argument type, begin unspecified, defaults to Any, but in practice it’s parsed as a string (e.g. "2+2")

• opt2 instead has Int argument type, so "4" will be parsed and converted to an integer, an error is emitted if
the conversion fails

• positional arguments can be passed in between options

• long options can be passed in abbreviated form (e.g. --flag instead of --flag1) as long as there’s no
ambiguity

5

ArgParse.jl Documentation, Release 0.3

6 Chapter 1. Quick overview and a simple example

CHAPTER 2

The parse_args function

parse_args([args], settings; as_symbols::Bool = false)
This is the central function of the ArgParse module. It takes a Vector of arguments and an
ArgParseSettings objects (see this section (page 9)), and returns a Dict{String,Any}. If args
is not provided, the global variable ARGS will be used.

When the keyword argument as_symbols is true, the function will return a Dict{Symbol,Any} instead.

The returned Dict keys are defined (possibly implicitly) in settings, and their associated values are
parsed from args. Special keys are used for more advanced purposes; at the moment, one such key exists:
%COMMAND% (_COMMAND_ when using as_symbols=true; see this section (page 19)).

Arguments are parsed in sequence and matched against the argument table in settings to determine whether
they are long options, short options, option arguments or positional arguments:

•long options begin with a double dash "--"; if a ’=’ character is found, the remainder is the option
argument; therefore, ["--opt=arg"] and ["--opt", "arg"] are equivalent if --opt takes at
least one argument. Long options can be abbreviated (e.g. --opt instead of --option) as long as there
is no ambiguity.

•short options begin with a single dash "-" and their name consists of a single character; they can be
grouped togheter (e.g. ["-x", "-y"] can become ["-xy"]), but in that case only the last option in
the group can take an argument (which can also be grouped, e.g. ["-a", "-f", "file.txt"] can
be passed as ["-affile.txt"] if -a does not take an argument and -f does). The ’=’ character can
be used to separate option names from option arguments as well (e.g. -af=file.txt).

•positional arguments are anything else; they can appear anywhere.

The special string "--" can be used to signal the end of all options; after that, everything is considered as a po-
sitional argument (e.g. if args = ["--opt1", "--", "--opt2"], the parser will recognize --opt1
as a long option without argument, and --opt2 as a positional argument).

The special string "-" is always parsed as a positional argument.

The parsing can stop early if a :show_help or :show_version action is triggered, or if a parsing error is
found.

Some ambiguities can arise in parsing, see this section (page 29) for a detailed description of how they’re solved.

7

ArgParse.jl Documentation, Release 0.3

8 Chapter 2. The parse_args function

CHAPTER 3

Settings overview

The ArgParseSettings object contains all the settings to be used during argument parsing. Settings are divided
in two groups: general settings and argument-table-related settings. While the argument table requires specialized
functions such as add_arg_table to be defined and manipulated, general settings are simply object fields (most of
them are Bool or String) and can be passed to the constructor as keyword arguments, or directly set at any time.

9

ArgParse.jl Documentation, Release 0.3

10 Chapter 3. Settings overview

CHAPTER 4

General settings

This is the list of general settings currently available:

• prog (default = ""): the name of the program, as displayed in the auto-generated help and usage screens. If
left empty, the source file name will be used.

• description (default = ""): a description of what the program does, to be displayed in the auto-generated
help-screen, between the usage lines and the arguments description. It will be automatically formatted, but
you can force newlines by using two consecutive newlines in the string, and manually control spaces by using
non-breakable spaces (the character ’\ua0’).

• epilog (default = ""): like description, but will be displayed at the end of the help-screen, after the
arguments description. The same formatting rules also apply.

• usage (default = ""): the usage line(s) to be displayed in the help screen and when an error is found during
parsing. If left empty, it will be auto-generated.

• version (default = "Unknown version"): version information. It’s used by the :show_version ac-
tion.

• add_help (default = true): if true, a --help, -h option (triggering the :show_help action) is added
to the argument table.

• add_version (default = false): if true, a --version option (triggering the :show_version action)
is added to the argument table.

• autofix_names (default = false): if true, will try to automatically fix the uses of dashes (-) and un-
derscores (_) in option names and destinations: all underscores will be converted to dashes in long option
names; also, associated destination names, if auto-generated (see this_section (page 15)), will have dashes re-
placed with underscores, both for long options and for positional arguments. For example, an option declared
as "--my-opt" will be associated with the key "my_opt" by default. It is especially advisable to turn this
option on then parsing with the as_symbols=true argument to parse_args.

• error_on_conflict (default = true): if true, throw an error in case conflicting entries are added to the
argument table; if false, later entries will silently take precedence. See this section (page 25) for a detailed
description of what conflicts are and what is the exact behavior when this setting is false.

• suppress_warnings (default = false): is true, all warnings will be suppressed.

• allow_ambiguous_opts (default = false): if true, ambiguous options such as -1 will be accepted.

• commands_are_required (default = true): if true, commands will be mandatory. See this section
(page 19) for more information on commands.

• exc_handler (default = ArgParse.default_handler): this is a function which is invoked when an
error is detected during parsing (e.g. an option is not recognized, a required argument is not passed etc.). It takes

11

ArgParse.jl Documentation, Release 0.3

two arguments: the settings::ArgParseSettings object and the err::ArgParseError exception.
The default handler prints the error text and the usage screen on standard error and exits with error code 1:

function default_handler(settings::ArgParseSettings, err, err_code::Int = 1)
println(STDERR, err.text)
println(STDERR, usage_string(settings))
exit(err_code)

end

The module also provides a function ArgParse.debug_handler (not exported) which will just rethrow
the error.

Here is a usage example:

settings = ArgParseSettings(description = "This program does something",
commands_are_required = false,
version = "1.0",
add_version = true)

which is also equivalent to:

settings = ArgParseSettings()
settings.description = "This program does something."
settings.commands_are_required = false
settings.version = "1.0"
settings.add_version = true

As a shorthand, the description field can be passed without keyword, which makes this equivalent to the above:

settings = ArgParseSettings("This program does something",
commands_are_required = false,
version = "1.0",
add_version = true)

Most settings won’t take effect until parse_args is invoked, but a few will have immediate effects:
autofix_names, error_on_conflict, suppress_warnings, allow_ambiguous_opts.

12 Chapter 4. General settings

CHAPTER 5

Argument table basics

The argument table is used to store allowed arguments and options in an ArgParseSettings object. There are
two very similar methods to populate it:

@add_arg_table(settings, table...)
This macro adds a table of arguments and options to the given settings. It can be invoked multiple times.
The arguments groups are determined automatically, or the current default group is used if specified (see this
section (page 20) for more details).

The table is a list in which each element can be either String, or a tuple or a vector of String, or an
assigmment expression, or a block:

•a String, a tuple or a vector introduces a new positional argument or option. Tuples and vectors are only
allowed for options and provide alternative names (e.g. ["--opt", "-o"])

•assignment expressions (i.e. expressions using =, := or =>) describe the previous argument behavior
(e.g. help = "an option" or required => false). See this section (page 16) for a complete
description

•blocks (begin...end or lists of expressions in parentheses separated by semicolons) are useful to group
entries and span multiple lines.

These rules allow for a variety usage styles, which are discussed in this section (page 31). In the rest of this
document, we will mostly use this style:

@add_arg_table settings begin
"--opt1", "-o"

help = "an option with an argument"
"--opt2"
"arg1"

help = "a positional argument"
required = true

end

In the above example, the table is put in a single begin...end block and the line "--opt1", "-o" is
parsed as a tuple; indentation is used to help readability.

add_arg_table(settings, [arg_name [,arg_options]]...)
This function is very similar to the macro version. Its syntax is stricter: tuples and blocks are not allowed and
argument options are explicitly specified as Dict objects. However, since it doesn’t involve macros, it offers
more flexibility in other respects, e.g. the arg_name entries need not be explicit, they can be anything which
evaluates to a String or a Vector{String}.

Example:

13

ArgParse.jl Documentation, Release 0.3

add_arg_table(settings,
["--opt1", "-o"],
Dict(

:help => "an option with an argument"
),
"--opt2",
"arg1",
Dict(

:help => "a positional argument"
:required => true

))

Note that the ‘‘Dict‘‘s are constructed using Julia 0.4 syntax in the above example.

14 Chapter 5. Argument table basics

CHAPTER 6

Argument table entries

Argument table entries consist of an argument name and a list of argument settings, e.g.:

"--verbose"
help = "verbose output"
action = :store_true

6.1 Argument names

Argument names are strings or, in the case of options, lists of strings. An argument is an option if it begins with a ’-’
character, otherwise it’a positional argument. A single ’-’ introduces a short option, which must consist of a single
character; long options begin with "--" instead.

Positional argument names can be any string, except all-uppercase strings between ’%’ characters, which are reserved
(e.g. "%COMMAND%"). Option names can contain any character except ’=’, whitespaces and non-breakable spaces.
Depending on the value of the add_help and add_version settings, options --help, -h and --version may
be reserved. If the allow_ambiguous_opts setting is false, some characters are not allowed as short options:
all digits, the dot, the underscore and the opening parethesis (e.g. -1, -., -_, -().

For positional arguments, the argument name will be used as the key in the Dict object returned by the parse_args
function. For options, it will be used to produce a default key in case a dest_name is not explicitly specified in the
table entry, using either the first long option name in the list or the first short option name if no long options are present.
For example:

argument name default dest_name
"--long" "long"
"--long", "-s" "long"
"-s", "--long1", "--long2" "long1"
"-s", "-x" "s"

In case the autofix_names setting is true (it is false by default), dashes in the names of arguments and
long options will be converted to underscores: for example, "--my-opt" will yield "my_opt" as the default
dest_name.

The argument name is also used to generate a default metavar in case metavar is not explicitly set in the table entry.
The rules are the same used to determine the default dest_name, but for options the result will be uppercased (e.g.
"--long" will become LONG). Note that this poses additional constraints on the positional argument names (e.g.
whitespace is not allowed in metavars).

15

ArgParse.jl Documentation, Release 0.3

6.2 Argument entry settings

Argument entry settings determine all aspects of an argument’s behavior. Some settings combinations are contradic-
tory and will produce an error (e.g. using both action = :store_true and nargs = 1, or using action
= :store_true with a positional argument). Also, some settings are only meaningful under some conditions
(e.g. passing a metavar to a flag-like option does not make sense) and will be ignored with a warning (unless the
suppress_warnings general setting is true).

This is the list of all available settings:

• nargs (default = ’A’): the number of extra command-line tokens parsed with the entry. See this section
(page 17) for a complete desctiption.

• action: the action performed when the argument is parsed. It can be passed as a String or as a Symbol (e.g.
both :store_arg and "store_arg" are accepted). The default action is :store_arg unless nargs is
0, in which case the default is :store_true. See this section (page 17) for a list of all available actions and
a detailed explanation.

• arg_type (default = Any): the type of the argument. Only makes sense with non-flag arguments. Only works
out-of-the-box with string and number types, but see this section (page 27) for details on how to make it work
for general types (including user-defined ones).

• default (default = nothing): the default value if the option or positional argument is not parsed. Only
makes sense with non-flag arguments, or when the action is :store_const or :append_const. Unless
it’s nothing, it must be consistent with arg_type and range_tester.

• constant (default = nothing): this value is used by the :store_const and :append_const actions,
or when nargs = ’?’ and the option argument is not provided.

• required (default = false): determines if an argument is required (this setting is ignored by flags, which
are always optional, and in general should be avoided for options if possible).

• range_tester (default = x->true): a function returning a Bool value which tests whether an argument
is allowed (e.g. you could use arg_type = Integer and range_tester = isodd to allow only odd
integer values)

• dest_name (default = auto-generated): the key which will be associated with the argument in the Dict
object returned by parse_args. The auto-generation rules are explained in this section (page 15). Multiple
arguments can share the same destination, provided their actions and types are compatible.

• help (default = ""): the help string which will be shown in the auto-generated help screen. It’s a String
which will be automaticaly formatted; also, arg_type and default will be automatically appended to it if
provided.

• metavar (default = auto-generated): a token which will be used in usage and help screens to describe the
argument syntax. For positional arguments, it will also be used as an identifier in all other messages (e.g. in
reporting errors), therefore it must be unique. The auto-generations rules are explained in this section (page 15).

• force_override: if true, conflicts are ignored when adding this entry in the argument table (see also this
section (page 25)). By default, it follows the general error_on_conflict settings.

• group: the option group to which the argument will be assigned to (see this section (page 20)). By default, the
current default group is used if specified, otherwise the assignment is automatic.

• eval_arg (default: false): if true, the argument will be parsed as a Julia expression and evaluated, which
means that for example "2+2" will yield the integer 4 rather than a string. Note that this is a security risk
for outside-facing programs and should generally be avoided: overload ArgParse.parse_item instead (see this
section (page 27)). Only makes sense for non-flag arguments.

16 Chapter 6. Argument table entries

ArgParse.jl Documentation, Release 0.3

6.3 Available actions and nargs values

The nargs and action argument entry settings are used together to determine how many tokens will be parsed
from the command line and what action will be performed on them.

The nargs setting can be a number or a character; the possible values are:

• ’A’: automatic, i.e. inferred from the action (this is the default). In practice, it means 0 for flag-like options
and 1 for non-flag-like options (but it’s different from using an explicit 1 because the result is not stored in a
Vector).

• 0: this is the only possibility (besides ’A’) for flag-like actions (see below), and it means no extra tokens will
be parsed from the command line. If action is not specified, setting nargs to 0 will make action default
to :store_true.

• a positive integer number N: exactly N tokens will be parsed from the command-line, and the result stored into
a Vector of length N (even for N=1).

• ’?’: optional, i.e. a token will only be parsed if it does not look like an option (see this section (page 29) for
a discussion of how exactly this is established), otherwise the constant argument entry setting will be used
instead. This only makes sense with options.

• ’*’: any number, i.e. all subsequent tokens are stored into a Vector, up until a token which looks like an
option is encountered, or all tokens are consumed.

• ’+’: like ’*’, but at least one token is required.

• ’R’: all remainder tokens, i.e. like ’*’ but it does not stop at options.

Actions can be categorized in many ways; one prominent distinction is flag vs. non-flag: some actions are for options
which take no argument (i.e. flags), all others (except command, which is special) are for other options and positional
arguments:

• flag actions are only compatible with nargs = 0 or nargs = ’A’

• non-flag actions are not compatible with nargs = 0.

This is the list of all available actions (in each example, suppose we defined settings =
ArgParseSettings()):

• store_arg (non-flag): store the argument. This is the default unless nargs is 0. Example:

julia> @add_arg_table(settings, "arg", action => :store_arg);

julia> parse_args(["x"], settings)
{"arg"=>"x"}

The result is a vector if nargs is a non-zero number, or one of ’*’, ’+’, ’R’:

julia> @add_arg_table(settings, "arg", action => :store_arg, nargs => 2);

julia> parse_args(["x", "y"], settings)
{"arg"=>{"x", "y"}}

• store_true (flag): store true if given, otherwise false. Example:

julia> @add_arg_table(settings, "-v", action => :store_true);

julia> parse_args([], settings)
{"v"=>false}

6.3. Available actions and nargs values 17

ArgParse.jl Documentation, Release 0.3

julia> parse_args(["-v"], settings)
{"v"=>true}

• store_false (flag): store false if given, otherwise true. Example:

julia> @add_arg_table(settings, "-v", action => :store_false);

julia> parse_args([], settings)
{"v"=>true}

julia> parse_args(["-v"], settings)
{"v"=>false}

• store_const (flag): store the value passed as constant in the entry settings if given, otherwise default.
Example:

julia> @add_arg_table(settings, "-v", action => :store_const, constant => 1, default => 0);

julia> parse_args([], settings)
{"v"=>0}

julia> parse_args(["-v"], settings)
{"v"=>1}

• append_arg (non-flag): append the argument to the result. Example:

julia> @add_arg_table(settings, "-x", action => :append_arg);

julia> parse_args(["-x", "1", "-x", "2"], settings)
{"x"=>{"1", "2"}}

The result will be a Vector{Vector} if nargs is a non-zero number, or one of ’*’, ’+’, ’R’:

julia> @add_arg_table(settings, "-x", action => :append_arg, nargs => '*');

julia> parse_args(["-x", "1", "2", "-x", "3"], settings)
{"x"=>{{"1", "2"}, {"3"}}

• append_const (flag): append the value passed as constant in the entry settings. Example:

julia> @add_arg_table(settings, "-x", action => :append_const, constant => 1);

julia> parse_args(["-x", "-x", "-x"], settings)
{"x"=>{1, 1, 1}}

• count_invocations (flag): increase a counter; the final result will be the number of times the option was
invoked. Example:

julia> @add_arg_table(settings, "-x", action => :count_invocations);

julia> parse_args(["-x", "-x", "-x"], settings)
{"x"=>3}

• show_help (flag): show the help screen and exit. This is useful if the add_help general setting is false.
Example:

julia> settings.add_help = false;

julia> @add_arg_table(settings, "-x", action => :show_help);

18 Chapter 6. Argument table entries

ArgParse.jl Documentation, Release 0.3

julia> parse_args(["-x"], settings)
usage: <command> [-x]

optional arguments:
-x

• show_version (flag): show the version information and exit. This is useful if the add_version general
setting is false. Example:

julia> settings.version = "1.0";

julia> @add_arg_table(settings, "-x", action => :show_version);

julia> parse_args(["-v"], settings)
1.0

• command (special): the argument or option is a command, i.e. it starts a sub-parsing session (see this section
(page 19))

6.4 Commands

Commands are a special kind of arguments which introduce sub-parsing sessions as soon as they are encountered by
parse_args (and are therefore mutually exclusive). The ArgParse module allows commands to look both as
positional arguments or as flags, with minor differences between the two.

Commands are introduced by the action = :command setting in the argument table. Suppose we save the follow-
ing script in a file called cmd_example.jl:

require("argparse")
using ArgParse

function parse_commandline()
s = ArgParseSettings()

@add_arg_table s begin
"cmd1"

help = "first command"
action = :command

"cmd2"
help = "second command"
action = :command

end

return parse_args(s)
end

parsed_args = parse_commandline()
println(parsed_args)

Invoking the script from the command line, we would get the following help screen:

$ julia cmd_example.jl --help
usage: cmd_example.jl [-h] {cmd1|cmd2}

commands:
cmd1 first command
cmd2 second command

6.4. Commands 19

ArgParse.jl Documentation, Release 0.3

optional arguments:
-h, --help show this help message and exit

If commands are present in the argument table, parse_args will set the special key "%COMMAND%" in the returned
Dict and fill it with the invoked command (or nothing if no command was given):

$ julia cmd_example.jl cmd1
{"%COMMAND%"=>"cmd1", "cmd1"=>{}}

This is unless parse_args is invoked with as_symbols=true, in which case the special key becomes
:_COMMAND_. (In that case, no other argument is allowed to use _COMMAND_ as its dest_name, or an error
will be raised.)

Since commands introduce sub-parsing sessions, an additional key will be added for the called command ("cmd1" in
this case) whose associated value is another Dict{String, Any} containing the result of the sub-parsing (in the
above case it’s empty). In fact, with the default settings, commands have their own help screens:

$ julia cmd_example.jl cmd1 --help
usage: cmd_example.jl cmd1 [-h]

optional arguments:
-h, --help show this help message and exit

The argument settings and tables for commands can be accessed by using a dict-like notation, i.e.
settings["cmd1"] is an ArgParseSettings object specific to the "cmd1" command. Therefore, to popu-
late a command sub-argument-table, simply use @add_arg_table(settings["cmd1"], table...) and
similar.

These sub-settings are created when a command is added to the argument table, and by default they inherit their parent
general settings except for the prog setting (which is auto-generated, as can be seen in the above example) and the
description, epilog and usage settings (which are left empty).

Commands can also have sub-commands.

By default, if commands exist, they are required; this can be avoided by setting the commands_are_required =
false general setting.

The only meaningful settings for commands in an argument entry besides action are help, force_override,
group and (for flags only) dest_name.

The only differences between positional-arguments-like and flag-like commands are in the way they are parsed, the
fact that flags accept a dest_name setting, and that flags can have multiple names (e.g. a long and short form).

Note that short-form flag-like commands will be still be recognized in the middle of a short options group and trigger
a sub-parsing session: for example, if a flag -c is associated to a command, then -xch will parse option -x according
to the parent settings, and option -h according to the command sub-settings.

6.5 Argument groups

By default, the auto-generated help screen divides arguments into three groups: commands, positional arguments and
optional arguments, displayed in that order. Example:

julia> settings = ArgParseSettings();

julia> @add_arg_table settings begin
"--opt"
"arg"

20 Chapter 6. Argument table entries

ArgParse.jl Documentation, Release 0.3

required = true
"cmd1"

action = :command
"cmd2"

action = :command
end;

julia> parse_args(["--help"], settings)
usage: <command> [--opt OPT] [-h] arg {cmd1|cmd2}

commands:
cmd1
cmd2

positional arguments:
arg

optional arguments:
--opt OPT
-h, --help show this help message and exit

It is possible to partition the arguments differently by defining and using customized argument groups.

add_arg_group(settings, description[, name[, set_as_default]])
This function adds an argument group to the argument table in settings. The description is a String
used in the help screen as a title for that group. The name is a unique name which can be provided to refer to
that group at a later time.

After invoking this function, all subsequent invocations of the @add_arg_table macro and
add_arg_table function will use the new group as the default, unless set_as_default is set to false
(the default is true, and the option can only be set if providing a name). Therefore, the most obvious usage
pattern is: for each group, add it and populate the argument table of that group. Example:

julia> settings = ArgParseSettings();

julia> add_arg_group(settings, "custom group");

julia> @add_arg_table settings begin
"--opt"
"arg"

end;

julia> parse_args(["--help"], settings)
usage: <command> [--opt OPT] [-h] [arg]

optional arguments:
-h, --help show this help message and exit

custom group:
--opt OPT
arg

As seen from the example, new groups are always added at the end of existing ones.

The name can also be passed as a Symbol. Forbidden names are the standard groups names ("command",
"positional" and "optional") and those beginning with a hash character ’#’.

set_default_arg_group(settings[, name])
Set the default group for subsequent invocations of the @add_arg_table macro and add_arg_table

6.5. Argument groups 21

ArgParse.jl Documentation, Release 0.3

function. name is a String, and must be one of the standard group names ("command", "positional"
or "optional") or one of the user-defined names given in add_arg_group (groups with no assigned name
cannot be used with this function).

If name is not provided or is the empty string "", then the default behavior is reset (i.e. arguments will be
automatically assigned to the standard groups). The name can also be passed as a Symbol.

Besides setting a default group with add_arg_group and set_default_group, it’s also possible to assign
individual arguments to a group by using the group setting in the argument table entry, which follows the same rules
as set_default_group.

Note that if the add_help or add_version general settings are true, the --help, -h and --version
options will always be added to the optional group.

22 Chapter 6. Argument table entries

CHAPTER 7

Importing settings

It may be useful in some cases to import an argument table into the one which is to be used, for example to create
specialized versions of a common interface.

import_settings(settings, other_settings[, args_only])
Imports other_settings into settings, where both are ArgParseSettings objects. If args_only
is true (this is the default), only the argument table will be imported; otherwise, the default argument group
will also be imported, and all general settings except prog, description, epilog and usage.

Sub-settings associated with commands will also be imported recursively; the args_only setting applies to
those as well. If there are common commands, their sub-settings will be merged.

While importing, conflicts may arise: if settings.error_on_conflict is true, this will result in an
error, otherwise conflicts will be resolved in favor of other_settings (see this section (page 25) for a
detailed discussion of how conflicts are handled).

Argument groups will also be imported; if two groups in settings and other_settings match, they are
merged (groups match either by name, or, if unnamed, by their description).

Note that the import will have effect immediately: any subsequent modification of other_settings will not
have any effect on settings.

This function can be used at any time.

23

ArgParse.jl Documentation, Release 0.3

24 Chapter 7. Importing settings

CHAPTER 8

Conflicts and overrides

Conflicts between arguments, be them options, positional arguments or commands, can arise for a variety of reasons:

• Two options have the same name (either long or short)

• Two arguments have the same destination key, but different types (e.g. one is Any and the other String)

• Two arguments have the same destination key, but incompatible actions (e.g. one does :store_arg and the
other :append_arg)

• Two positional arguments have the same metavar (and are therefore indistinguishable in the usage and help
screens and in error messages)

• An argument and a command, or two commands, have the same destination key.

When the general setting error_on_conflict is true, or any time the specific force_override table entry
setting is false, any of the above conditions leads to an error.

On the other hand, setting error_on_conflict to false, or force_override to true, will try to force the
resolution of most of the conflicts in favor of the newest added entry. The general rules are the following:

• In case of duplicate options, all conflicting forms of the older options are removed; if all forms of an option are
removed, the option is deleted entirely

• In case of duplicate destination key and incompatible types or actions, the older argument is deleted

• In case of duplicate positional arguments metavars, the older argument is deleted

• A command can override an argument with the same destination key

• However, an argument can never override a command if they have the same destination key; neither can a
command override another command when added with @add_arg_table (compatible commands are merged
by import_settings though)

25

ArgParse.jl Documentation, Release 0.3

26 Chapter 8. Conflicts and overrides

CHAPTER 9

Parsing to custom types

If you specify an arg_type setting (see this section (page 16)) for an option or an argument, parse_args will
try to parse it, i.e. to convert the string to the specified type. This only works for a limited number of types, which
can either be directly constructed from strings or be parsed via the Julia’s built-in parse function. In order to extend
this functionality to other types, including user-defined custom types, you need to overload the ArgParse.parse_item
function. Example:

type CustomType
val::Int

end

function ArgParse.parse_item(::Type{CustomType}, x::AbstractString)
return CustomType(parse(Int, x))

end

Note that the second argument needs to be of type AbstractString (or String in Julia 0.3) to avoid ambiguity warnings.
Also note that if your type is parametric (e.g. CustomType{T}), you need to overload the function like this:
function ArgParse.parse_item{T}(::Type{CustomType{T}, x::AbstractString).

27

ArgParse.jl Documentation, Release 0.3

28 Chapter 9. Parsing to custom types

CHAPTER 10

Parsing details

During parsing, parse_args must determine whether an argument is an option, an option argument, a positional
argument, or a command. The general rules are explained in this section (page 7), but ambiguities may arise under
particular circumstances. In particular, negative numbers like -1 or -.1e5 may look like options. Under the default
settings, such options are forbidden, and therefore those tokens are always recognized as non-options. However, if the
allow_ambiguous_opts general setting is true, existing options in the argument table will take precedence:
for example, if the option -1 is added, and it takes an argument, then -123 will be parsed as that option, and 23 will
be its argument.

Some ambiguities still remains though, because the ArgParse module can actually accept and parse expressions, not
only numbers (although this is not the default), and therefore one may try to pass arguments like -e or -pi; in that
case, these will always be at risk of being recognized as options. The easiest workaround is to put them in parentheses,
e.g. (-e).

When an option is declared to accept a fixed positive number of arguments or the remainder of the command line (i.e.
if nargs is a non-zero number, or ’A’, or ’R’), parse_args will not try to check if the argument(s) looks like an
option.

If nargs is one of ’?’ or ’*’ or ’+’, then parse_args will take in only arguments which do not look like
options.

When nargs is ’+’ or ’*’ and an option is being parsed, then using the ’=’ character will mark what follows
as an argument (i.e. not an option); all which follows goes under the rules explained above. The same is true when
short option groups are being parsed. For example, if the option in question is -x, then both -y -x=-2 4 -y and
-yx-2 4 -y will parse "-2" and "4" as the arguments of -x.

Finally, note that with the eval_arg setting expressions are evaluated during parsing, which means that there is no
safeguard against passing things like run(‘rm -fr someimportantthing‘) and seeing your data evaporate
(don’t try that!). Be careful and generally try to avoid using the eval_arg setting.

29

ArgParse.jl Documentation, Release 0.3

30 Chapter 10. Parsing details

CHAPTER 11

Argument table styles

Here are some examples of styles for the @add_arg_table marco and add_arg_table function invocation:

@add_arg_table settings begin
"--opt", "-o"

help = "an option"
"arg"

help = "a positional argument"
end

@add_arg_table(settings
, ["--opt", "-o"]
, help => "an option"
, "arg"
, help => "a positional argument"
)

@add_arg_table settings begin
(["--opt", "-o"]; help = an option)
("arg"; help = "a positional argument")

end

@add_arg_table(settings,
["-opt", "-o"],
begin

help = "an option"
end,
"arg",
begin

help = "a positional argument"
end)

add_arg_table(settings,
["-opt", "-o"], Dict(:help => "an option"),
"arg" , Dict(:help => "a positional argument")
)

The restrictions are:

• groups introduced by begin...end blocks or semicolon-separated list between parentheses cannot introduce
argument names unless the first item in the block is an argument name.

31

ArgParse.jl Documentation, Release 0.3

32 Chapter 11. Argument table styles

Index

A
add_arg_group() (in module ArgParse), 21
add_arg_table() (in module ArgParse), 13
ArgParse (module), 1

I
import_settings() (in module ArgParse), 23

P
parse_args() (in module ArgParse), 7

S
set_default_arg_group() (in module ArgParse), 21

33

	Quick overview and a simple example
	The parse_args function
	Settings overview
	General settings
	Argument table basics
	Argument table entries
	Argument names
	Argument entry settings
	Available actions and nargs values
	Commands
	Argument groups

	Importing settings
	Conflicts and overrides
	Parsing to custom types
	Parsing details
	Argument table styles

