
AltaPay Python SDK Documentation
Release 0.1

Coolshop.com

April 19, 2016

Contents

1 Guide 3
1.1 Introduction . 3
1.2 Create Payment . 4
1.3 Callback Handling . 5
1.4 Working with Transactions . 6

2 API Documentation 9
2.1 API . 9
2.2 Resource . 10
2.3 Payment . 10
2.4 Callback . 11
2.5 Transaction . 11
2.6 Funding . 12
2.7 FundingList . 12
2.8 Exceptions . 13
2.9 Utilities . 13

3 Indices and tables 15

Python Module Index 17

i

ii

AltaPay Python SDK Documentation, Release 0.1

This is an unofficial Python SDK for AltaPay (formerly Pensio), https://altapay.com/. The SDK is maintained by
Coolshop.com, https://www.coolshop.com/.

The AltaPay Python SDK attempts to consume the AltaPay API in a clean and Pythonic way, without getting in your
way. As a result, you will often find yourself thinking that the API is similar, but has been changed ever so slightly to
make it easier for you to use.

As a simple example, once you have your API credentials and a terminal, it is very easy to create a payment in the test
environment and get a redirect URL to the payment page.

>>> from altapay import API, Payment
>>> api = API(mode='test', account='login', password='password')
>>> payment = Payment(api=api)
>>> payment.create('Test Terminal', 1234567, 13.95, 'EUR')
>>> payment.success
True
>>> print(payment.url)
'https://...'

Contents 1

https://altapay.com/
https://www.coolshop.com/

AltaPay Python SDK Documentation, Release 0.1

2 Contents

CHAPTER 1

Guide

1.1 Introduction

The Python SDK for AltaPay attempts to make it possible to work with the AltaPay API in the most Pythonic way
possible. As such, several things are slightly different, and will not match exactly to what is described in the docu-
mentation.

Noticeable differences are;

• The Python SDK is object based, with an object per resource (e.g. an altapay.Payment resource). Actions
are performed on these objects in order to carry out API calls in the AltaPay API

• All values that you receive from responses are accessbile as attributes on the objects. Note that if an attributes
contains a dictionary, the values of this dictionary of course needs to be accessed as it is - a dictionary. If
you, for whatever reason, needs access to the underlying dictionary representation, it is available at the attribute
__data__

• To make the naming scheme feel more Pythonic, names returned by AltaPay is mapped accordingly; e.g.
CamelCase becomes camel_case

• In the AltaPay API, when you send parameters to calls, and these contains nested structures in the form of either
arrays or hashed values, the PHP query parameter syntax is used. In the Python SDK, this has been changed to
lists and dictionaries for easier use. For a concrete use case, see the payment creation examples

1.1.1 The API Object

All resources that expose AltaPay functionality requires an altapay.API object to be passed. The object is what
authenticates you to the AltaPay API service, and is also what determines whether or not you should connect to the
test service or the production service.

from altapay import API

Create an API object that will connect to the test service
api = API(mode='test', account='account', password='password')

If you instead want to create an object for production calls, simply
change the mode
api = API(

mode='production', account='account', password='password',
shop_name='test-shop')

3

AltaPay Python SDK Documentation, Release 0.1

Optionally, the environment variables ALTAPAY_ACCOUNT_NAME and ALTAPAY_ACCOUNT_PASSWORD can be
used instead of passing the account and password directly to altapay.API.

The shop_name parameter will be used to populate the AltaPay service URL, and is not required when running in
test mode.

Making an instance of altapay.API will automatically attempt to do the login service call in the AltaPay API,
which will verify your account and password. This is reccomended behaviour by the AltaPay service, and will only
happen when the instance is created. If this is not the desired behaviour, an optional parameter auto_login can
be set to False to disable the automatic login. If you do this, you should call altapay.API.login() yourself
before you do any other calls.

1.2 Create Payment

Creating a new altapay.Payment resource will result in an URL that you should redirect your customer to.

It is in creating the payment you describe what payment options the customer should have, the total order amount, and
other optional parameters. The parameters you use will depend on the terminal you wish to use.

1.2.1 Basic Payment

In the most basic form, a altapay.Payment object requires a terminal, order ID amount and currency. Creating
such payment will look something like this:

from altapay import API, Payment

Create an API object using your credentials
api = API(...)

Create an empty payment object using the API
payment = Payment(api=api)

Create a new payment using the AltaPay service.
payment.create('Terminal Name', 'OrderID1234', 13.95, 'EUR')

if payment.success:
Assuming a function redirect() which redirects the customer
redirect(payment.url)

else:
raise Exception('Payment not successful')

This payment is, of course, only very basic, and will only render the standard AltaPay payment form - but it will work.
There are, of course, a lot of configuration options.

For a detailed view of these, see the AltaPay API documentation for API/createPaymentRequest, bearing in
mind the conventions described in Introduction.

1.2.2 Complex Payment

Using only the basic payment information will not get you very far. In reality, you are going to want to customize
it to your liking, for example using a custom callback form and more detailed order and customer information. Our
recommendation would be to always include as much information as possible regarding the order and the customer,
since you will be covered for more of the possible terminals this way.

This following example implements a lot of the different possibilities using the AltaPay service.

4 Chapter 1. Guide

AltaPay Python SDK Documentation, Release 0.1

from altapay import API, Payment

api = API(...)
payment = Payment(api=api)

We can pass all of the optional parameters as keyword arguments to
the payment creation
params = {

'config': {
'callback_form': 'https://your-callback-form/form.html',

},
'transaction_info': [

'ArbitraryInfo1',
'ArbitraryInfo2'

],
'customer_info': {

'billing_postal': '9400',
'billing_address': 'Address 12',
'billing_firstname': 'First name',
'billing_lastname': 'Last name',
'email': 'foo@bar.com'

},
'orderLines': [

{
'description': 'Description of the order line',
'itemId': '123456',
'quantity': 1

}
]

}

payment.create('Terminal name', 'OrderID1234', 13.95, 'EUR', **params)

if payment.success:
redirect(payment.url)

The above example obviously is not complete; there are many more parameters which are described in the AltaPay
API documentation. Remember: more data is better, and will result in more terminals working.

1.3 Callback Handling

To make it easy to parse callbacks received from AltaPay, the special altapay.Callback class can be used. Note
that when you receive callbacks from AltaPay, it comes as an HTTP POST. Within this is a field called xml, and this
is the response you should use for the altapay.Callback class.

Given a callback response in the variable xml, this is how a callback instance can be instantiated:

from altapay import Callback

xml = '' # XML response here

callback = Callback.from_xml_callback(xml)

if callback.result == 'Success':
for transaction in callback.transactions():

print(transaction)

1.3. Callback Handling 5

AltaPay Python SDK Documentation, Release 0.1

else:
raise Exception('Callback not successful')

altapay.Callback.transactions() will contain a list of altapay.Transaction objects. Note that
even if there is only one transaction in the callback, you will have a list of just one altapay.Transaction.

Using altapay.Callback.transactions() it is possible to filter based on a authentication type (this will
depend on what you chose for the payment type). This can be useful if you have chosen to make a subscription and
reservation in the same payment; in this case you can receive a callback with two transactions, and in some cases you
might want to process a specific of them ahead of the other one.

This example extends the usecase described above, and filters out the subscription portion of the payment:

from altapay import Callback

xml = '' # XML response here

callback = Callback.from_xml_callback(xml)

if callback.result == 'Success':
transactions = callback.transactions(auth_type='subscription_payment')
for transaction in transactions:

Will only show transactions of the authentication type
subscription_payment
print(transaction)

else:
raise Exception('Callback not successful')

1.4 Working with Transactions

When the customer completed their payment, you received a callback which contained a transaction ID. From this,
you can load an altapay.Transaction object, which will be used to perform further backoffice functions, such
as capture money on a reservation.

The transaction itself is thought of as a separate resource from the :py:class‘altapay.Payment‘, and can be found using
the altapay.Transaction.find() call:

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)

On the altapay.Transaction object, you will find all of the information described in the AltaPay API, listed
under the API/payments call. The usual rules for naming applies.

1.4.1 Capturing a Transaction

Once you have an instance of altapay.Transaction, it is possible to perform actions on this instance. One of
the most common one, is that of capturing it. In the simplest form, it is possible to capture the full amount on the
transaction:

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)
callback = transaction.capture()

6 Chapter 1. Guide

AltaPay Python SDK Documentation, Release 0.1

if callback.result == 'Success':
Capture was successful
pass

else:
raise Exception('Not able to capture')

The response is an altapay.Callback object and will contain the full response returned by AltaPay.

Of course, this is often not the desired behaviour. You can provider further information to
altapay.Transaction.capture() as described in the AltaPay API of API/captureReservation. For
example, you can capture a partial amount in the following way, which also shows how to supply an order line.

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)
respnse = transaction.capture(

orderLines=[{
'description': 'Blue Shirt',
'itemId': '12345',
'quantity': 1.0,
'unitPrice': 19.95

}],
amount=19.95)

1.4.2 Charging a Subscription

Given a altapay.Transaction which is a subscription, it is possible to make a charge (effectively issuing a
capture directly on the subscription):

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)
callback = transaction.charge_subscription(amount=49.00)

Charging a subscription will return a Callback object that has a list of transactions; one representing the original
altapay.Transaction you charged on, and a new one for the actual capture.

As always, see the AltaPay documentation for a list of possible arguments.

1.4.3 Reserving a Subscription

Reserving a transaction works much like Charging a Subscription. The only difference is of course in the name: the
amount will create a reservation instead of directly charging the amount straight away.

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)
callback = transaction.reserve_subscription_charge(amount=49.00)

Reserving an amount on a will return a Callback object that has a list of transactions; one representing the original
altapay.Transaction you reserved on, and a new one for the actual reservation.

As always, see the AltaPay documentation for a list of possible arguments.

1.4. Working with Transactions 7

AltaPay Python SDK Documentation, Release 0.1

1.4.4 Releasing a Reservation

In some cases you may choose to not capture your reservation. If so, it’s better to release the reservation you have.
This is also a good practice in cases where you have a subscription setup on a transaction ID, but you do not have any
need for it anymore (for example if your customer cancels their subscription).

Note that there are certain edge cases for calling this method, see the AltaPay documentation for
API/releaseReservation for full details.

from altapay import Transaction

transaction = Transaction.find('TransactionID', api=api)
callback = transaction.release()

if callback.result != 'Success':
raise Exception('Could not release the reservation')

1.4.5 Creating an Invoice Reservation

In some cases, you might want to create an invoice reservation without first creating a Payment object. This could be if
you do not want to redirect your customer to the payment provider for validation. In the example of Klarna payments,
if you provide the customer’s personal identification number together with the normal payment parameters, you can
complete the transaction without further confirmation.

Note that this might require approval by the invoice company you are using

As always, see the full list of possible arguments in the AltaPay documentation.

from altapay import Callback

parameters = {
'terminal': 'AltaPay Test Terminal',
'shop_orderid': 'asdf23',
'amount': 20.0,
'currency': 'EUR',
'customer_info': {

'billing_postal': '1234',
'billing_address': 'Test Street',
'email': 'foo@bar.com'

},
'personalIdentifyNumber': '123456-1234'

}

transaction = Callback.create_invoice_reservation(api=api, **parameters)

8 Chapter 1. Guide

CHAPTER 2

API Documentation

2.1 API

class altapay.API(**kwargs)

download(resource, parameters={}, headers={})
Downloads a resource. Acts as a custom HTTP GET. Not that it is considered the callers responsibility to
actually flush/close the stream.

get(resource, parameters={}, headers={})
Perform a GET HTTP request on a resource.

Parameters

• resource – the resource to GET

• parameters – a dictionary of GET parameters for the resource

• headers – optional headers. If specified, these will override the default headers.

Returns A response from the AltaPay service as a dict.

Raises

UnauthorizedAccessError If the supplied credentials are not valid.

ResponseStatusError If the response code from AltaPay is not a subset of the allowed
response codes.

login()
Validates the account name and password against the AltaPay service. This method should always be
called before attempting any other calls, and is automatically called once the altapay.api.API object
is instantiated, unless explictly disabled.

Raises: UnauthorizedAccessError: if the supplied credentials are not valid.

post(resource, parameters={}, data={}, headers={})
Perform a POST HTTP requeste on a resource.

Parameters

• resource – the resource to POST to

• parameters – a dictionary of GET parameters for the resource

• data – a dictionary of POST parameters for the resource

9

AltaPay Python SDK Documentation, Release 0.1

• headers – optional headers. If specified, these will override the default headers.

Returns A response from the AltaPay service as a dict.

Raises

UnauthorizedAccessError If the supplied credentials are not valid.

ResponseStatusError If the response code from AltaPay is not a subset of the allowed
response codes.

test_connection()
Tests the connection to the AltaPay service. This operation does not require valid API credentials, and as
such can only be used to assert if AltaPay is responding.

Return type True if a valid response is returned, otherwise False.

2.2 Resource

class altapay.Resource(version=None, header=None, body=None, api=None)
Base class that maps an AltaPay response into a Python like representation.

classmethod create_from_response(response)
Instantiate a new altapay.Resource object from a response.

Parameters response – a response of type dict. The response most conform to the AltaPay
response format, which means it must carry four keys called @version, APIResponse,
Header and Body.

Return type a new version object of type altapay.Resource.

2.3 Payment

class altapay.Payment(version=None, header=None, body=None, api=None)
Bases: altapay.resource.Resource

create(terminal, shop_orderid, amount, currency, **kwargs)
Create a payment request.

Parameters

• terminal – name of the targeted AltaPay terminal

• shop_orderid – your order ID to be attached to the payment resource

• amount – order amount in floating point

• currency – currency for the payment resource

• **kwargs – used for remaining, optional, payment request parameters, see the AltaPay
documentation for a full list. Note that you will need to use lists and dictionaries to map
the URL structures from the AltaPay documentation into these kwargs.

Return type True if a payment was created, otherwise False.

10 Chapter 2. API Documentation

AltaPay Python SDK Documentation, Release 0.1

2.4 Callback

class altapay.Callback(version=None, header=None, body=None, api=None)
Bases: altapay.resource.Resource

classmethod create_invoice_reservation(terminal, shop_orderid, amount, currency, api,
**kwargs)

Create a new invoice without first creating a payment.

Return type altapay.Transaction

classmethod from_xml_callback(callback)
Instantiate a altapay.Callback object from an XML response.

Return type altapay.Callback instance.

transactions(**kwargs)
List all of the transactions returned by the callback.

Parameters auth_type – the authentication type you wish to filter. Defaults to empty string,
which means no filter will be made.

Return type List of altapay.Transaction objects.

2.5 Transaction

class altapay.Transaction(version=None, header=None, body=None, api=None)
Bases: altapay.resource.Resource

capture(**kwargs)
Capture a reservation on a transaction.

Parameters **kwargs – used for optional capture parameters, see the AltaPay documentation
for a full list. Note that you will need to use lists and dictionaries to map the URL structures
from the AltaPay documentation into these kwargs.

Return type altapay.Callback object.

charge_subscription(**kwargs)
This will charge a subscription using a capture. Can be called many times on a subscription.

If amount is not sent as an optinal parameter, the amount specified in the original setup of the subscription
will be used.

Parameters **kwargs – used for optional charge subscription parameters, see the AltaPay
documentation for a full list. Note that you will need to use lists and dictionaries to map the
URL structures from the AltaPay documentation into these kwargs.

Return type altapay.Callback object.

classmethod find(transaction_id, api)
Find exactly one transaction by a transaction ID.

Parameters

• transaction_id – ID of the transaction in AltaPay

• api – An API object which will be used for AltaPay communication.

Return type altapay.Transaction

2.4. Callback 11

AltaPay Python SDK Documentation, Release 0.1

release()
This will release the reservation on the transaction. This is useful if you for whatever reason do not want
to capture the payment.

Refer to the AltaPay documentation for edge cases surround this method.

Return type altapay.Callback object.

reserve_subscription_charge(**kwargs)
This will create a reservation on a subscription. Can be called many times on a subscription.

If amount is not sent as an optinal parameter, the amount specified in the original setup of the subscription
will be used.

Parameters **kwargs – used for optional reserve subscription parameters, see the AltaPay
documentation for a full list. Note that you will need to use lists and dictionaries to map the
URL structures from the AltaPay documentation into these kwargs.

Return type altapay.Callback object.

2.6 Funding

class altapay.Funding(version=None, header=None, body=None, api=None)
Bases: altapay.resource.Resource

A funding file that can be either viewed or downloaded.

content()
The funding file content as bytes.

download(save_to)
Download the CSV funding file.

Parameters save_to – the path to save the funding file to. The filename will match the name
of the file at AltaPay, and will have the extension .csv attached.

Return type a string with the complete filepath to the CSV funding file

2.7 FundingList

class altapay.FundingList(api)
A list of funding files to paginate through.

fundings
altapay.Funding objects on the current page of funding files.

next_page()
Loads the next page of funding files.

Raises: altapay.exceptions.ResourceNotFoundError: if the next page is not available, typ-
ically meaning you have scrolled past the available pages.

number_of_pages
Returns the total amount of pages with fundings. Each page can hold 100 fundings.

12 Chapter 2. API Documentation

AltaPay Python SDK Documentation, Release 0.1

2.8 Exceptions

class altapay.exceptions.AltaPayException
Generic exception class for the AltaPay SDK. All specific exceptions raised from the SDK will inherit from this
exceptions.

class altapay.exceptions.UnauthorizedAccessError
Raised on unauthorized errors against the AltaPay service.

Corresponds to HTTP status code 401.

class altapay.exceptions.ResponseStatusError
The response carried out against the AltaPay service did not respond with the expected response status code.

2.9 Utilities

altapay.utils.etree_to_dict(tree)
Note: This is an internal API and may be changed without notice.

altapay.utils.handle_xml_value(value)
The AltaPay XML does not contain a scheme, and as such, guesswork has to be employed in order to produce
decent values.

This function parses values of the decoded XML, and ensures both digits and boolean values.

Note: This is an internal API and may be changed without notice.

Parameters value – value to be parsed (can be a complex datatype)

Return type depends on the input argument

altapay.utils.http_build_query(payload)
Build a query string that matches the way PHP does it with http_build_query.

In output, this function loosely matches what PHP does in the function http_build_query. It handles
complex types of both dict and list.

If collections.OrderedDict is used, the order of the keys will be preserved in the finalized query string.

Note: This is an internal API and may be changed without notice.

Parameters payload – the payload to convert to a query string. This has to be dict compatible,
but can hold lists as values in the dictionary. Nested dictionaries can be used, and lists can hold
dictionaries.

Return type string that can be used as a GET parameter for HTTP requests

altapay.utils.to_pythonic_name(name)
Create a Pythonic version of a string.

Note: This is an internal API and may be changed without notice.

Parameters name – string to build a Pythonic version of.

Return type string

altapay.utils.to_pythonic_dict(dictionary)
Note: This is an internal API and may be changed without notice.

2.8. Exceptions 13

AltaPay Python SDK Documentation, Release 0.1

14 Chapter 2. API Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

AltaPay Python SDK Documentation, Release 0.1

16 Chapter 3. Indices and tables

Python Module Index

a
altapay, 11
altapay.exceptions, 13
altapay.utils, 13

17

AltaPay Python SDK Documentation, Release 0.1

18 Python Module Index

Index

A
altapay (module), 9–12
altapay.exceptions (module), 13
altapay.utils (module), 13
AltaPayException (class in altapay.exceptions), 13
API (class in altapay), 9

C
Callback (class in altapay), 11
capture() (altapay.Transaction method), 11
charge_subscription() (altapay.Transaction method), 11
content() (altapay.Funding method), 12
create() (altapay.Payment method), 10
create_from_response() (altapay.Resource class method),

10
create_invoice_reservation() (altapay.Callback class

method), 11

D
download() (altapay.API method), 9
download() (altapay.Funding method), 12

E
etree_to_dict() (in module altapay.utils), 13

F
find() (altapay.Transaction class method), 11
from_xml_callback() (altapay.Callback class method), 11
Funding (class in altapay), 12
FundingList (class in altapay), 12
fundings (altapay.FundingList attribute), 12

G
get() (altapay.API method), 9

H
handle_xml_value() (in module altapay.utils), 13
http_build_query() (in module altapay.utils), 13

L
login() (altapay.API method), 9

N
next_page() (altapay.FundingList method), 12
number_of_pages (altapay.FundingList attribute), 12

P
Payment (class in altapay), 10
post() (altapay.API method), 9

R
release() (altapay.Transaction method), 11
reserve_subscription_charge() (altapay.Transaction

method), 12
Resource (class in altapay), 10
ResponseStatusError (class in altapay.exceptions), 13

T
test_connection() (altapay.API method), 10
to_pythonic_dict() (in module altapay.utils), 13
to_pythonic_name() (in module altapay.utils), 13
Transaction (class in altapay), 11
transactions() (altapay.Callback method), 11

U
UnauthorizedAccessError (class in altapay.exceptions),

13

19

	Guide
	Introduction
	Create Payment
	Callback Handling
	Working with Transactions

	API Documentation
	API
	Resource
	Payment
	Callback
	Transaction
	Funding
	FundingList
	Exceptions
	Utilities

	Indices and tables
	Python Module Index

