
Armada Documentation
Release 0.2.0

Armada Team

Jul 01, 2020

Contents:

1 Armada 1
1.1 Overview . 1
1.2 Components . 1
1.3 Installation . 2
1.4 Integration Points . 2
1.5 Further Reading . 3

2 Developers Guide 5
2.1 Developer Install Guide . 5
2.2 Contribution Guidelines . 10

3 Operations Guide 11
3.1 Document Authoring Guide . 11
3.2 Configuring Armada . 43
3.3 Armada - Troubleshooting . 44
3.4 Armada Install & Usage Guide . 45
3.5 Metrics . 49
3.6 Exceptions Guide . 50
3.7 Armada Plugin . 51
3.8 Sample Configuration File . 51
3.9 Sample Policy File . 59

4 Commands Guide 61
4.1 Armada - Apply . 61
4.2 Armada - Apply Chart . 62
4.3 Armada - Rollback . 63
4.4 Armada - Test . 64
4.5 Armada - Tiller . 65
4.6 Armada - Validate . 65

5 Indices and tables 67

i

ii

CHAPTER 1

Armada

Armada is a tool for managing multiple Helm charts with dependencies by centralizing all configurations in a single
Armada YAML and providing life-cycle hooks for all Helm releases.

Find more documentation for Armada on Read The Docs.

1.1 Overview

The Armada Python library and command line tool provide a way to synchronize a Helm (Tiller) target with an
operator’s intended state, consisting of several charts, dependencies, and overrides using a single file or directory with
a collection of files. This allows operators to define many charts, potentially with different namespaces for those
releases, and their overrides in a central place. With a single command, deploy and/or upgrade them where applicable.

Armada also supports fetching Helm chart source and then building charts from source from various local and remote
locations, such as Git endpoints, tarballs or local directories.

It will also give the operator some indication of what is about to change by assisting with diffs for both values, values
overrides, and actual template changes.

Its functionality extends beyond Helm, assisting in interacting with Kubernetes directly to perform basic pre- and
post-steps, such as removing completed or failed jobs, running backup jobs, blocking on chart readiness, or deleting
resources that do not support upgrades. However, primarily, it is an interface to support orchestrating Helm.

1.2 Components

Armada consists of two separate but complementary components:

1. CLI component (mandatory) which interfaces directly with Tiller.

2. API component (optional) which services user requests through a wsgi server (which in turn communicates
with the Tiller server) and provides the following additional functionality:

1

https://quay.io/repository/airshipit/armada
https://airship-armada.readthedocs.io/
https://airship-armada.readthedocs.io/
https://docs.helm.sh/using_helm/#easy-in-cluster-installation
https://docs.helm.sh/using_helm/#easy-in-cluster-installation

Armada Documentation, Release 0.2.0

• Role-Based Access Control.

• Limiting projects to specific Tiller functionality by leveraging project-scoping provided by Keystone.

1.3 Installation

1.3.1 Quick Start (via Container)

Armada can be most easily installed as a container, which requires Docker to be executed. To install Docker, please
reference the following install guide.

Afterward, you can launch the Armada container by executing:

$ sudo docker run -d --net host -p 8000:8000 --name armada \
-v ~/.kube/config:/armada/.kube/config \
-v $(pwd)/examples/:/examples quay.io/airshipit/armada:latest-ubuntu_bionic

1.3.2 Manual Installation

For a comprehensive manual installation guide, please see Manual Install Guide.

1.3.3 Usage

To run Armada, simply supply it with your YAML-based intention for any number of charts:

$ armada apply examples/openstack-helm.yaml [--debug]

Which should output something like this:

$ armada apply examples/openstack-helm.yaml 2017-02-10 09:42:36,753

armada INFO Cloning git:
...

For more information on how to install and use Armada, please reference: Armada Quickstart.

1.4 Integration Points

Armada CLI component has the following integration points:

• Tiller manages Armada chart installations.

• Deckhand is one of the supported control document sources for Armada.

• Prometheus exporter is provided for metric data related to application of charts and collections of charts. See
metrics.

In addition, Armada’s API component has the following integration points:

• Keystone (OpenStack’s identity service) provides authentication and support for role-based authorization.

2 Chapter 1. Armada

https://docs.helm.sh/using_helm/#easy-in-cluster-installation
https://github.com/openstack/keystone
https://docs.docker.com/engine/installation/
https://airship-armada.readthedocs.io/en/latest/development/getting-started.html#developer-install-guide
https://airship-armada.readthedocs.io/en/latest/operations/guide-use-armada.html
https://docs.helm.sh/using_helm/#easy-in-cluster-installation
https://github.com/openstack/airship-deckhand
https://prometheus.io
https://airship-armada.readthedocs.io/en/latest/operations/metrics.html#metrics
https://github.com/openstack/keystone

Armada Documentation, Release 0.2.0

1.5 Further Reading

Airship.

1.5. Further Reading 3

https://airshipit.org

Armada Documentation, Release 0.2.0

4 Chapter 1. Armada

CHAPTER 2

Developers Guide

2.1 Developer Install Guide

2.1.1 Quick Start (via Container)

Note: If actively developing new Armada functionality, it is recommended to proceed with Manual Installation
instead.

To use the docker container to develop:

1. Clone the Armada repository.

2. cd into the cloned directory.

$ git clone https://opendev.org/airship/armada.git && cd armada

3. Next, run the following commands to install tox, generate sample policy and configuration files, and build
Armada charts as well as the Armada container image. Armada Dockerfile.DISTRO files are located in
images/armada. Supported DISTROs are ubuntu_bionic and opensuse_leap15. By default, DISTRO is
ubuntu_bionic.

$ pip install tox

$ tox -e genconfig
$ tox -e genpolicy

$ export DISTRO=distro_name
$ docker build -f Dockerfile.${DISTRO} -t armada/latest

$ make images

4. Run the container via Docker:

5

https://opendev.org/airship/armada.git

Armada Documentation, Release 0.2.0

$ docker run -d --name armada -v ~/.kube/:/armada/.kube/ -v $(pwd)/etc:/etc
→˓armada:local

Note: The first build will take several minutes. Afterward, it will build much faster.

2.1.2 Manual Installation

Pre-requisites

Armada has many pre-requisites because it relies on Helm, which itself has pre-requisites. The guide below consol-
idates the installation of all pre-requisites. For help troubleshooting individual resources, reference their installation
guides.

Armada requires a Kubernetes cluster to be deployed, along with kubectl, Helm client, and Tiller (the Helm server).

1. Install Kubernetes (k8s) and deploy a k8s cluster.

Reference the Kubernetes Cluster Management section below for help.

2. Install and configure kubectl

3. Ensure that ~/.kube/config exists and is properly configured by executing:

$ kubectl config view

If the file does not exist, please create it by running:

$ kubectl

4. Install and configure the Helm client.

5. Install and configure Tiller (Helm server).

6. Verify that Tiller is installed and running correctly by running:

$ kubectl get pods -n kube-system

Kubernetes Cluster Management

To test Armada fixes/features a Kubernetes cluster must be installed.

Either software is recommended:

• Kubeadm

• Kubeadm-AIO

Armada CLI Installation

Follow the steps below to install the Armada CLI.

Note: Some commands below use apt-get as the package management software. Use whichever command
corresponds to the Linux distro being used.

6 Chapter 2. Developers Guide

https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#easy-in-cluster-installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#easy-in-cluster-installation
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://docs.openstack.org/openstack-helm/latest/install/developer/all-in-one.html

Armada Documentation, Release 0.2.0

Warning: Armada is tested against a Ubuntu 16.04 and Opensuse(leap15.1)environment.

Clone the Armada repository, cd into it:

git clone https://opendev.org/airship/armada.git && cd armada

It is recommended that Armada be run inside a virtual environment. To do so:

$ virtualenv -p python3 venv
...
>> New python executable in <...>/venv/bin/python3

Afterward, source the executable:

source <...>/venv/bin/activate

Next, ensure that pip is installed.

$ apt-get install -y python3-pip $ pip3 install –upgrade pip

Finally, run (from inside the Armada root directory):

$ (venv) make build

The above command will install pip requirements and execute python setup.py build within the virtual
environment.

Verify that the Armada CLI is installed:

$ armada --help

Which should emit:

>> Usage: armada [OPTIONS] COMMAND [ARGS]...
>>
>> Multi Helm Chart Deployment Manager
...

Armada API Server Installation

The Armada API server is not required in order to use the Armada CLI, which in this sense is standalone. The Armada
CLI communicates with the Tiller server and, as such, no API server needs to be instantiated in order for Armada to
communicate with Tiller. The Armada API server and CLI interface have the exact same functionality. However, the
Armada API server offers the following additional functionality:

• Role-Based Access Control, allowing Armada to provide authorization around specific Armada (and by exten-
sion) Tiller functionality.

• Keystone authentication and project scoping, providing an additional layer of security.

Before proceeding, ensure that the steps in Armada CLI Installation have been followed.

1. Determine where the Armada configuration/deployment files should be stored. The default location is /etc/
armada. To override the default, run:

$ export OS_ARMADA_CONFIG_DIR=<desired_path>

2.1. Developer Install Guide 7

https://opendev.org/openstack/keystone

Armada Documentation, Release 0.2.0

2. If the directory specified by OS_ARMADA_CONFIG_DIR is empty, run (from the Armada root directory):

$ cp etc/armada/* <OS_ARMADA_CONFIG_DIR>/
$ mv <OS_ARMADA_CONFIG_DIR>/armada.conf.sample <OS_ARMADA_CONFIG_DIR>/armada.conf

Install uwsgi:

$ apt-get install uwsgi -y

1. Ensure that port 8000 is available or else change the PORT value in entrypoint.sh.

2. From the root Armada directory, execute:

$./entrypoint.sh server

3. Verify that the Armada server is running by executing:

$ TOKEN=$(openstack token issue --format value -c id)
$ curl -i -X GET localhost:8000/versions -H "X-Auth-Token: $TOKEN"

Note that the port above uses the default value in entrypoint.sh.

2.1.3 Development Utilities

Armada comes equipped with many utilities useful for developers, such as unit test or linting jobs.

Many of these commands require that tox be installed. To do so, run:

$ pip3 install tox

To run the Python linter, execute:

$ tox -e pep8

or

$ make test-pep8

To lint Helm charts, execute:

$ make lint

To run unit tests, execute:

$ tox -e py35

or

$ make test-unit

To run the test coverage job:

$ tox -e coverage

or

$ make test-coverage

8 Chapter 2. Developers Guide

Armada Documentation, Release 0.2.0

To run security checks via Bandit execute:

$ tox -e bandit

or

$ make test-bandit

To build the docker images:

$ make images

To build all Armada charts, execute:

$ make charts

To build a helm template for the charts:

$ make dry-run

To run lint, charts, and image targets all at once:

$ make all

To render any documentation that has build steps:

$ tox -e docs

or

$ make docs

To build armada’s image:

$ make run_armada

To build all images:

$ make run_images

To generate sample configuration and policy files needed for Armada deployment, execute (respectively):

$ tox -e genconfig
$ tox -e genpolicy

2.1.4 Troubleshooting

The error messages are included in bullets below and tips to resolution are included beneath each bullet.

• “FileNotFoundError: [Errno 2] No such file or directory: ‘/etc/armada/api-paste.ini’”

Reason: this means that Armada is trying to instantiate the server but failing to do so because it can’t find an
essential configuration file.

Solution:

2.1. Developer Install Guide 9

https://opendev.org/openstack/bandit

Armada Documentation, Release 0.2.0

$ cp etc/armada/armada.conf.sample /etc/armada/armada.conf

This copies the sample Armada configuration file to the appropriate directory.

• For any errors related to tox:

Ensure that tox is installed:

$ sudo apt-get install tox -y

• For any errors related to running tox -e py35:

Ensure that python3-dev is installed:

$ sudo apt-get install python3-dev -y

2.2 Contribution Guidelines

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:

https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are set up, you
can skip to the development workflow section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

10 Chapter 2. Developers Guide

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow

CHAPTER 3

Operations Guide

3.1 Document Authoring Guide

3.1.1 v1

v1 Authoring

armada/Manifest/v1

keyword type action
release_prefixstring appends to the front of all charts released by the manifest in order to manage releases

throughout their lifecycle
chart_groups ar-

ray
references ChartGroup document of all groups

Manifest Example

schema: armada/Manifest/v1
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- chart_group

11

Armada Documentation, Release 0.2.0

armada/ChartGroup/v1

keyword type action
description string description of chart set
chart_group array reference to chart document
sequenced bool enables sequenced chart deployment in a group
test_charts bool run pre-defined helm tests in a ChartGroup (DEPRECATED)

Danger: DEPRECATION: The test_charts key will be removed, as Armada will run helm tests for all charts
by default.

Chart Group Example

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
sequenced: False
chart_group:
- chart
- chart

armada/Chart/v1

Danger: DEPRECATION: timeout key-value will be removed timeout will be defined under wait object.

12 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

Chart

key-
word

type action

chart_namestring name for the chart
release string name of the release (Armada will prepend with release-prefix during processing)
names-
pace

string namespace of your chart

wait ob-
ject

See Wait.

pro-
tected

ob-
ject

do not delete FAILED releases when encountered from previous run (provide the ‘con-
tinue_processing’ bool to continue or halt execution (default: halt))

test ob-
ject

See Test.

install ob-
ject

install the chart into your Kubernetes cluster

up-
grade

ob-
ject

upgrade the chart managed by the armada yaml

delete ob-
ject

See Delete.

values ob-
ject

override any default values in the charts

source ob-
ject

provide a path to a git repo, local dir, or tarball url chart

depen-
dencies

ob-
ject

(optional) Override the builtin chart dependencies with a list of Chart documents to use as depen-
dencies instead. NOTE: Builtin “.tgz” dependencies are not yet supported.

timeout int time (in seconds) allotted for chart to deploy when ‘wait’ flag is set (DEPRECATED)

Wait

key-
word

type action

time-
out

int time (in seconds) to wait for chart to deploy

re-
sources

array Array of Wait Resource to wait on, with labels added to each item. Defaults to pods and jobs
(if any exist) matching labels.

labels ob-
ject

Base mapping of labels to wait on. They are added to any labels in each item in the resources
array.

native boolean See Wait Native.

3.1. Document Authoring Guide 13

https://helm.sh/docs/developing_charts/#chart-dependencies

Armada Documentation, Release 0.2.0

Wait Resource

key-
word

type action

type string k8s resource type, supports: controllers (‘deployment’, ‘daemonset’, ‘statefulset’), ‘pod’, ‘job’
la-
bels

ob-
ject

mapping of kubernetes resource labels

min_readyint
string

Only for controller type``s. Amount of pods in a controller which must
be ready. Can be integer or percent string e.g. ``80%. Default 100%.

Wait Native

Config for the native helm (install|upgrade) --wait flag.

keyword type action
enabled boolean defaults to true

Test

Run helm tests on the chart after install/upgrade.

keyword type action
enabled bool whether to enable/disable helm tests for this chart (default True)
timeout int time (in sec) to wait for completion of Helm tests. Default 300.
options object See Test Options.

Note: Armada will attempt to run helm tests by default. They may be disabled by setting the enabled key to
False.

Danger: DEPRECATION: In addition to an object with the above fields, the test key currently also supports
bool, which maps to enabled, but this is deprecated and will be removed. The cleanup option below is set
to true in this case for backward compatibility.

Test Options

Test options to pass through directly to helm.

keyword type action
cleanup bool cleanup test pods after test completion, defaults to false

Note: If cleanup is true this prevents being able to debug a test in the event of failure.

Historically, the preferred way to achieve test cleanup has been to add a pre-upgrade delete action on the test pod.

14 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

This still works, however it is usually no longer necessary as Armada now automatically cleans up any test pods which
match the wait.labels of the chart, immediately before running tests. Similar suggestions have been made for
how helm test --cleanup itself ought to work (https://github.com/helm/helm/issues/3279).

Upgrade - Pre

keyword type action
pre object actions performed prior to updating a release

Upgrade - Actions

keyword type action
update object update daemonsets in pre-upgrade update actions
delete sequence delete jobs and pods in pre-upgrade delete actions

Upgrade - Actions - Update/Delete

keyword type action
name string name of action
type string type of Kubernetes workload to execute in scope for action
labels object k:v mapping of labels to select Kubernetes resources

Note: Update Actions only support type: ‘daemonset’

Note: Delete Actions support type: ‘pod’, ‘job’, ‘cronjob’

Chart Example

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1
release: blog-1
namespace: default
wait:
timeout: 100

protected:
continue_processing: false

test:

(continues on next page)

3.1. Document Authoring Guide 15

https://github.com/helm/helm/issues/3279

Armada Documentation, Release 0.2.0

(continued from previous page)

enabled: true
install:
no_hooks: false

upgrade:
no_hooks: false
pre:

update:
- name: test-daemonset
type: daemonset
labels:
foo: bar
component: bar
rak1: enabled

delete:
- name: test-job
type: job
labels:
foo: bar
component: bar
rak1: enabled

values: {}
source:
type: git
location: https://github.com/namespace/repo
subpath: .
reference: master

Delete

keyword type action
timeout integer time (in seconds) to wait for chart to be deleted

Source

keyword type action
type string source to build the chart: git, local, or tar
location string url or path to the chart’s parent directory
subpath string (optional) relative path to target chart from parent (. if not specified)
reference string (optional) branch, commit, or reference in the repo (master if not specified)
proxy_server string (optional) proxy server URL for downloading git or tar charts

Source Example

type git

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1

(continues on next page)

16 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

name: blog-1
data:

chart_name: blog-1
release: blog-1
namespace: default
wait:
timeout: 100
labels:

component: blog
install:
no_hooks: false

upgrade:
no_hooks: false

values: {}
source:
type: git
location: https://github.com/namespace/repo
subpath: .
reference: master

type local

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1
release: blog-1
namespace: default
wait:
timeout: 100

install:
no_hooks: false

upgrade:
no_hooks: false

values: {}
source:
type: local
location: /path/to/charts
subpath: chart
reference: master

type tar

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1
release: blog-1
namespace: default
wait:
timeout: 100

install:
no_hooks: false

(continues on next page)

3.1. Document Authoring Guide 17

Armada Documentation, Release 0.2.0

(continued from previous page)

upgrade:
no_hooks: false

values: {}
source:
type: tar
location: https://localhost:8879/charts/chart-0.1.0.tgz
subpath: mariadb
reference: null
proxy_server: http://my.proxy.server:8888

Defining a Manifest

To define your Manifest you need to define a armada/Manifest/v1 document, armada/ChartGroup/v1
document, armada/Chart/v1. Following the definitions above for each document you will be able to construct an
armada manifest.

Armada - Deploy Behavior

1. Armada will perform set of pre-flight checks to before applying the manifest - validate input manifest - check
tiller service is Running - check chart source locations are valid

2. Deploying Armada Manifest

1. If the chart is not found

• we will install the chart

3. If exist then

• Armada will check if there are any differences in the chart

• if the charts are different then it will execute an upgrade

• else it will not perform any actions

Note: You can use references in order to build your charts, this will reduce the size of the chart definition will show
example in multichart below

Simple Example

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1
release: blog-1
namespace: default
values: {}
source:
type: git

(continues on next page)

18 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

location: https://github.com/namespace/repo
subpath: blog-1
reference: new-feat

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
sequenced: False
chart_group:
- blog-1

schema: armada/Manifest/v1
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group

Multichart Example

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1
release: blog-1
namespace: default
values: {}
source:
type: git
location: https://github.com/namespace/repo
subpath: blog1
reference: master

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-2

data:
chart_name: blog-2
release: blog-2
namespace: default
values: {}
source:
type: tar
location: https://github.com/namespace/repo/blog2.tgz
subpath: blog2

(continues on next page)

3.1. Document Authoring Guide 19

Armada Documentation, Release 0.2.0

(continued from previous page)

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-3

data:
chart_name: blog-3
release: blog-3
namespace: default
values: {}
source:
type: local
location: /home/user/namespace/repo/blog3

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group-1

data:
description: Deploys Simple Service
sequenced: False
chart_group:
- blog-2

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group-2

data:
description: Deploys Simple Service
sequenced: False
chart_group:
- blog-1
- blog-3

schema: armada/Manifest/v1
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group-1
- blog-group-2

Dependency Override Example

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
chart_name: blog-1

(continues on next page)

20 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

release: blog-1
namespace: default
values: {}
source:
type: git
location: https://github.com/namespace/repo
subpath: blog-1
reference: new-feat

dependencies:
- blog-1-dep

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1-dep

data:
chart_name: blog-1-dep
release: blog-1-dep
namespace: default
values: {}
source:
type: git
location: https://github.com/namespace/dep-repo
subpath: blog-1-dep
reference: new-feat

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
sequenced: False
chart_group:
- blog-1

schema: armada/Manifest/v1
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group

References

For working examples please check the examples in our repo here.

v1 Schemas

Below are the schemas Armada uses to validate Charts, Chart Groups, and Manifests.

3.1. Document Authoring Guide 21

https://opendev.org/airship/armada/src/branch/master/examples

Armada Documentation, Release 0.2.0

Charts

Charts consist of the smallest building blocks in Armada. A Chart is comparable to a Helm chart. Charts consist of
all the labels, dependencies, install and upgrade information, hooks and additional information needed to convey to
Tiller.

Chart Groups

A Chart Group consists of a list of charts. Chart Group documents are useful for managing a group of Chart
documents together.

Manifests

A Manifest is the largest building block in Armada. Manifest documents are responsible for managing collec-
tions of Chart Group documents.

Validation Schemas

Introduction

All schemas below are Deckhand DataSchema documents, which are essentially JSON schemas, with additional meta-
data useful for Deckhand to perform layering and substitution.

The validation schemas below are used by Armada to validate all ingested Charts, Chart Groups, and Manifests. Use
the schemas below as models for authoring Armada documents.

Schemas

• Chart schema.

JSON schema against which all documents with armada/Chart/v1 metadata.name are validated.

Listing 1: Schema for armada/Chart/v1 documents.

NOTE: Do not modify this schema, it is deprecated.

schema: deckhand/DataSchema/v1
metadata:
name: armada/Chart/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
definitions:

labels:
type: object
additionalProperties:
type: string

hook_action:
type: array
items:
properties:

(continues on next page)

22 Chapter 3. Operations Guide

https://airship-deckhand.readthedocs.io/en/latest/document-types.html?highlight=dataschema#dataschema
https://airship-deckhand.readthedocs.io/en/latest/layering.html
https://airship-deckhand.readthedocs.io/en/latest/substitution.html

Armada Documentation, Release 0.2.0

(continued from previous page)

name:
type: string

type:
type: string

labels:
$ref: '#/definitions/labels'

required:
- type

additionalProperties: false
type: object
properties:

release:
type: string

chart_name:
type: string

namespace:
type: string

values:
type: object

dependencies:
type: array
items:
type: string

protected:
type: object
properties:
continue_processing:

type: boolean
additionalProperties: false

test:
anyOf:
- type: boolean
- type: object
properties:

enabled:
type: boolean

timeout:
type: integer

options:
type: object
properties:

cleanup:
type: boolean

additionalProperties: false
additionalProperties: false

timeout:
type: integer

wait:
type: object
properties:
timeout:
type: integer

resources:
type: array
items:

properties:
type:

(continues on next page)

3.1. Document Authoring Guide 23

Armada Documentation, Release 0.2.0

(continued from previous page)

type: string
labels:
$ref: '#/definitions/labels'

min_ready:
anyOf:
- type: integer
- type: string

required:
- type

additionalProperties: false
labels:
$ref: "#/definitions/labels"

Config for helm's native `--wait` param.
native:
type: object
properties:
TODO: Add separate timeout for native wait?
enabled:
type: boolean

additionalProperties: false
additionalProperties: false

source:
type: object
properties:
type:
type: string

location:
type: string

subpath:
type: string

reference:
type: string

proxy_server:
type: string

auth_method:
type: string

required:
- location
- subpath
- type

delete:
type: object
properties:
timeout:
type: integer

install:
NOTE(sh8121att) Not clear that this key is actually used
in the code. Will leave it here for backward compatabilities
until an additional audit is done.
type: object

upgrade:
type: object
properties:
no_hooks:

type: boolean
pre:
type: object

(continues on next page)

24 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

additionalProperties: false
properties:
delete:
$ref: '#/definitions/hook_action'

update:
$ref: '#/definitions/hook_action'

create:
$ref: '#/definitions/hook_action'

post:
type: object
additionalProperties: false
properties:
create:
$ref: '#/definitions/hook_action'

options:
type: object
properties:
force:
type: boolean

recreate_pods:
type: boolean

additionalProperties: false
required:

- no_hooks
additionalProperties: false

required:
- namespace
- chart_name
- release
- source

additionalProperties: false
...

This schema is used to sanity-check all Chart documents that are passed to Armada.

• Chart Group schema.

JSON schema against which all documents with armada/Chart/v1 metadata.name are validated.

Listing 2: Schema for armada/ChartGroup/v1 documents.

NOTE: Do not modify this schema, it is deprecated.

schema: deckhand/DataSchema/v1
metadata:
name: armada/ChartGroup/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
properties:

name:
type: string

description:
type: string

sequenced:
type: boolean

TODO(MarshM): Deprecate `test_charts`, it is no longer useful

(continues on next page)

3.1. Document Authoring Guide 25

Armada Documentation, Release 0.2.0

(continued from previous page)

test_charts:
type: boolean

chart_group:
type: array
items:
type: string

required:
- chart_group

additionalProperties: false
...

This schema is used to sanity-check all Chart Group documents that are passed to Armada.

• Manifest schema.

JSON schema against which all documents with armada/Manifest/v1 metadata.name are validated.

Listing 3: Schema for armada/Manifest/v1 documents.

NOTE: Do not modify this schema, it is deprecated.

schema: deckhand/DataSchema/v1
metadata:
name: armada/Manifest/v1
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
properties:

release_prefix:
type: string

chart_groups:
type: array
items:
type: string

required:
- chart_groups
- release_prefix

additionalProperties: false
...

This schema is used to sanity-check all Manifest documents that are passed to Armada.

Authoring Guidelines

All Armada documents must use the deckhand/DataSchema/v1 schema.

3.1.2 v2 (EXPERIMENTAL!)

v2 Authoring

Danger: EXPERIMENTAL: v2 docs are still experimental and WILL have breaking changes before they are
finalized.

26 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

armada/Manifest/v2

keyword type action
release_prefixstring appends to the front of all charts released by the manifest in order to manage releases

throughout their lifecycle
chart_groups ar-

ray
A list of the metadata.name of each ChartGroup to deploy in order.

Manifest Example

schema: armada/Manifest/v2
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- chart_group

armada/ChartGroup/v2

keyword type action
description string description of chart set
chart_group array A list of the metadata.name of each Chart to deploy.
sequenced bool If true, deploys each chart in sequence, else in parallel. Default false.

Chart Group Example

schema: armada/ChartGroup/v2
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
chart_group:
- chart1
- chart2

armada/Chart/v2

3.1. Document Authoring Guide 27

Armada Documentation, Release 0.2.0

Chart

key-
word

type action

re-
lease

string name of the release (Armada will prepend with release-prefix during processing)

names-
pace

string namespace of your chart

wait ob-
ject

See Wait.

pro-
tected

ob-
ject

do not delete FAILED releases when encountered from previous run (provide the ‘con-
tinue_processing’ bool to continue or halt execution (default: halt))

test ob-
ject

See Test.

up-
grade

ob-
ject

See Upgrade.

delete ob-
ject

See Delete.

val-
ues

ob-
ject

(optional) override any default values in the charts

source ob-
ject

provide a path to a git repo, local dir, or tarball url chart

de-
pen-
den-
cies

ob-
ject

(optional) Override the builtin chart dependencies with a list of Chart documents to use as depen-
dencies instead. NOTE: Builtin “.tgz” dependencies are not yet supported. NOTE: This field is not
supported in the ArmadaChart CRD.

28 Chapter 3. Operations Guide

https://helm.sh/docs/developing_charts/#chart-dependencies

Armada Documentation, Release 0.2.0

Wait

keyword type action
timeout int time (in seconds) to wait for chart to

deploy
resources dict | array Wait Resource s to wait on. De-

faults to all supported resource types
(see Wait Resource .type), with
required: false.
dict - Maps resource types to one of:

• Wait Resource
without .type
(single config)

• list of Wait Re-
source without
.type (multiple
configs)

• false (disabled)
Any resource type
not overridden re-
tains its default config
mentioned above.

array - Lists all Wait Resource s to
use, completely overriding the de-
fault. Can be set to [] to dis-
able all resource types. NOTE: To
use the array form with the Ar-
madaChart CRD, the keyword must
be resources_list instead of
resources.
See also Wait Resources Examples.

labels object Base mapping of labels to wait on.
They are added to any labels in each
item in the resources array.

native boolean See Wait Native.

Wait Resource

key-
word

type action

type string K8s resource type, supports: ‘deployment’, ‘daemonset’, ‘statefulset’, ‘pod’, ‘job’.
NOTE: Omit when Wait .resources is a dict, as then the dict key is used instead.

labels ob-
ject

Kubernetes labels specific to this resource. Wait .labels are included with these, so only define
this if additional labels are needed to identify the targeted resources.

min_readyint |
string

Only for controller type s. Amount of pods in a controller which must be ready. Can be integer
or percent string e.g. 80%. Default 100%.

al-
low_async_updates

booleanOnly for daemonset and statefulset types. Whether to wait for async update strategies,
i.e. OnDelete or partitioned RollingUpdate. Defaults to false in order to fail fast in cases where
the async update is not expected to complete until same point later on.

re-
quired

booleanWhether to require the resource to be found. Defaults to true for explicit items in `wait.
resources. See wait.resources for its overall defaults.

3.1. Document Authoring Guide 29

Armada Documentation, Release 0.2.0

Wait Resources Examples

wait:
...
Disable all waiting.
resources: []

wait:
...
Disable waiting for a given type (job).
resources:
job: false

wait:
...
Use min_ready < 100%.
resources:
daemonset:
min_ready: 80%

wait:
resources:
Multiple configs for same type.
daemonset:
- labels:

component: one
min_ready: 80%

- labels:
component: two

min_ready: 50%

wait:
...
resources:
- type: daemonset

labels:
component: critical

min_ready: 100%
- type: daemonset

labels:
component: best_effort

min_ready: 80%
... (re-include any other resource types needed when using list)

Wait Native

Config for the native helm (install|upgrade) --wait flag.

keyword type action
enabled boolean defaults to false

30 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

Test

Run helm tests on the chart after install/upgrade.

keyword type action
enabled bool whether to enable/disable helm tests for this chart (default True)
timeout int time (in sec) to wait for completion of Helm tests. Default 300.
options object See Test Options.

Note: Armada will attempt to run helm tests by default. They may be disabled by setting the enabled key to
false.

Test Options

Test options to pass through directly to helm.

keyword type action
cleanup bool Same as Helm CLI.

Note: If cleanup is true this prevents being able to debug a test in the event of failure.

Historically, the preferred way to achieve test cleanup has been to add a pre-upgrade delete action on the test pod.

This still works, however it is usually no longer necessary as Armada now automatically cleans up any test pods which
match the wait.labels of the chart, immediately before running tests. Similar suggestions have been made for
how helm test --cleanup itself ought to work (https://github.com/helm/helm/issues/3279).

Upgrade

keyword type action
options object See Upgrade - Options.
pre object See Upgrade - Pre.

Upgrade - Options

Upgrade options to pass through directly to helm.

keyword type action
no_hooks boolean Same as Helm CLI.
force boolean Same as Helm CLI.
recreate_pods boolean Same as Helm CLI.

3.1. Document Authoring Guide 31

https://github.com/helm/helm/issues/3279

Armada Documentation, Release 0.2.0

Upgrade - Pre

keyword type action
delete array List of Upgrade - Pre - Delete.

Upgrade - Pre - Delete

keyword type action
type string type of kubernetes resource to delete supported types are: ‘pod’, ‘job’, ‘cronjob’.
labels object k:v mapping of labels to select Kubernetes resources

Chart Example

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default
wait:
timeout: 100

protected:
continue_processing: false

test:
enabled: true

upgrade:
pre:

delete:
- name: test-job
type: job
labels:

foo: bar
component: bar
rak1: enabled

source:
type: git
location: https://github.com/namespace/repo
reference: master

Delete

keyword type action
timeout integer time (in seconds) to wait for chart to be deleted

32 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

Source

keyword type action
type string source to build the chart: git, local, or tar
location string url or path to the chart’s parent directory
subpath string (optional) relative path to target chart from parent (. if not specified)
reference string (optional) branch, commit, or reference in the repo (master if not specified)
proxy_server string (optional) proxy server URL for downloading git or tar charts

Source Example

type git

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default
wait:
timeout: 100
labels:

component: blog
source:
type: git
location: https://github.com/namespace/repo
proxy_server: http://my.proxy.server:8888

type local

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default
wait:
timeout: 100

source:
type: local
location: /path/to/charts
subpath: chart
reference: master

type tar

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1

(continues on next page)

3.1. Document Authoring Guide 33

Armada Documentation, Release 0.2.0

(continued from previous page)

namespace: default
wait:
timeout: 100

source:
type: tar
location: https://localhost:8879/charts/chart-0.1.0.tgz
subpath: mariadb

Simple Example

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default
source:
type: git
location: https://github.com/namespace/repo
subpath: blog-1
reference: new-feat

schema: armada/ChartGroup/v2
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
chart_group:
- blog-1

schema: armada/Manifest/v2
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group

Multichart Example

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default

(continues on next page)

34 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

source:
type: git
location: https://github.com/namespace/repo
subpath: blog1
reference: master

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-2

data:
release: blog-2
namespace: default
source:
type: tar
location: https://github.com/namespace/repo/blog2.tgz
subpath: blog2

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-3

data:
release: blog-3
namespace: default
source:
type: local
location: /home/user/namespace/repo/blog3

schema: armada/ChartGroup/v2
metadata:

schema: metadata/Document/v1
name: blog-group-1

data:
description: Deploys Simple Service
chart_group:
- blog-2

schema: armada/ChartGroup/v2
metadata:

schema: metadata/Document/v1
name: blog-group-2

data:
description: Deploys Simple Service
chart_group:
- blog-1
- blog-3

schema: armada/Manifest/v2
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group-1
- blog-group-2

3.1. Document Authoring Guide 35

Armada Documentation, Release 0.2.0

Dependency Override Example

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: blog-1
namespace: default
source:
type: git
location: https://github.com/namespace/repo
subpath: blog-1
reference: new-feat

dependencies:
- blog-dep-1

schema: armada/Chart/v2
metadata:

schema: metadata/Document/v1
name: blog-1-dep

data:
release: blog-1-dep
namespace: default
source:
type: git
location: https://github.com/namespace/dep-repo
subpath: blog-1-dep
reference: new-feat

schema: armada/ChartGroup/v2
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Deploys Simple Service
chart_group:
- blog-1

schema: armada/Manifest/v2
metadata:

schema: metadata/Document/v1
name: simple-armada

data:
release_prefix: armada
chart_groups:
- blog-group

References

For working examples please check the examples in our repo here.

36 Chapter 3. Operations Guide

https://opendev.org/airship/armada/src/branch/master/examples

Armada Documentation, Release 0.2.0

v2 Schemas

Below are the schemas Armada uses to validate Charts, Chart Groups, and Manifests.

Charts

Charts consist of the smallest building blocks in Armada. A Chart is comparable to a Helm chart. Charts consist of
all the labels, dependencies, install and upgrade information, hooks and additional information needed to convey to
Tiller.

Chart Groups

A Chart Group consists of a list of charts. Chart Group documents are useful for managing a group of Chart
documents together.

Manifests

A Manifest is the largest building block in Armada. Manifest documents are responsible for managing collec-
tions of Chart Group documents.

Validation Schemas

Introduction

All schemas below are Deckhand DataSchema documents, which are essentially JSON schemas, with additional meta-
data useful for Deckhand to perform layering and substitution.

The validation schemas below are used by Armada to validate all ingested Charts, Chart Groups, and Manifests. Use
the schemas below as models for authoring Armada documents.

Schemas

• Chart schema.

JSON schema against which all documents with armada/Chart/v2 metadata.name are validated.

Listing 4: Schema for armada/Chart/v2 documents.

JSON schema for validating Armada charts.

schema: deckhand/DataSchema/v1
metadata:
name: armada/Chart/v2
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
definitions:

labels:
type: object
additionalProperties:

(continues on next page)

3.1. Document Authoring Guide 37

https://airship-deckhand.readthedocs.io/en/latest/document-types.html?highlight=dataschema#dataschema
https://airship-deckhand.readthedocs.io/en/latest/layering.html
https://airship-deckhand.readthedocs.io/en/latest/substitution.html

Armada Documentation, Release 0.2.0

(continued from previous page)

type: string
hook_action:
type: array
items:
properties:

type:
type: string

labels:
$ref: '#/definitions/labels'

required:
- type

additionalProperties: false
wait_resource_type_config:
properties:
labels:

$ref: '#/definitions/labels'
min_ready:

anyOf:
- type: integer
- type: string

required:
type: boolean

type: object
properties:

release:
type: string

namespace:
type: string

values:
type: object

TODO: Remove this, and just read dependencies out of `chart` dir as helm
CLI does.
dependencies:
type: array
items:
type: string

protected:
type: object
properties:
continue_processing:

type: boolean
additionalProperties: false

test:
type: object
properties:
enabled:
type: boolean

timeout:
type: integer

options:
type: object
properties:

cleanup:
type: boolean

additionalProperties: false
additionalProperties: false

wait:
(continues on next page)

38 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

type: object
properties:
timeout:
type: integer

resources:
anyOf:
- additionalProperties:

anyOf:
- $ref: '#/definitions/wait_resource_type_config'
- type: array
items:
$ref: '#/definitions/wait_resource_type_config'

- type: array
items:
allOf:
- $ref: '#/definitions/wait_resource_type_config'
- properties:

type:
type: string

required:
- type

labels:
$ref: "#/definitions/labels"

Config for helm's native `--wait` param.
native:
type: object
properties:
enabled:
type: boolean

additionalProperties: false
additionalProperties: false

source:
type: object
properties:
type:
type: string

location:
type: string

subpath:
type: string

reference:
type: string

proxy_server:
type: string

auth_method:
type: string

required:
- location
- type

delete:
type: object
properties:
timeout:
type: integer

upgrade:
type: object
properties:

(continues on next page)

3.1. Document Authoring Guide 39

Armada Documentation, Release 0.2.0

(continued from previous page)

pre:
type: object
additionalProperties: false
properties:
delete:
$ref: '#/definitions/hook_action'

options:
type: object
properties:
force:
type: boolean

recreate_pods:
type: boolean

no_hooks:
type: boolean

additionalProperties: false
additionalProperties: false

required:
- namespace
- release
- source

additionalProperties: false
...

This schema is used to sanity-check all Chart documents that are passed to Armada.

• Chart Group schema.

JSON schema against which all documents with armada/Chart/v2 metadata.name are validated.

Listing 5: Schema for armada/ChartGroup/v2 documents.

JSON schema for validating Armada chart groups.

schema: deckhand/DataSchema/v1
metadata:
name: armada/ChartGroup/v2
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
properties:

name:
type: string

description:
type: string

sequenced:
type: boolean

chart_group:
type: array
items:
type: string

required:
TODO: Rename to `charts`?
- chart_group

additionalProperties: false
...

This schema is used to sanity-check all Chart Group documents that are passed to Armada.

40 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

• Manifest schema.

JSON schema against which all documents with armada/Manifest/v2 metadata.name are validated.

Listing 6: Schema for armada/Manifest/v2 documents.

JSON schema for validating Armada manifests.

schema: deckhand/DataSchema/v1
metadata:
name: armada/Manifest/v2
schema: metadata/Control/v1

data:
$schema: http://json-schema.org/schema#
properties:

release_prefix:
type: string

chart_groups:
type: array
items:
type: string

required:
- chart_groups
- release_prefix

additionalProperties: false
...

This schema is used to sanity-check all Manifest documents that are passed to Armada.

Authoring Guidelines

All Armada documents must use the deckhand/DataSchema/v1 schema.

3.1.3 v1-v2 Migration

The following migrations must be done when moving from v1 to v2 docs.

3.1. Document Authoring Guide 41

Armada Documentation, Release 0.2.0

Chart

change migration
chart_name re-
moved

Remove. It was redundant with metadata.name while at the same time not guaranteeing
uniqueness. Log messages now reference metadata.name for improved grep-ability.

test as a boolean
removed

test must now be an object.

timeout re-
moved

Use wait.timeout instead.

install re-
moved

Remove. Previously unused.

upgrade.post
removed

Remove.

upgrade.pre.
update removed

Remove.

upgrade.pre.
create removed

Remove.

upgrade.pre.
delete[*].
name removed

Remove.

upgrade.pre.
delete[*] with
type: job
no longer deletes
cronjobs

If you have an item in upgrade.pre.delete and type: job and you also want to
delete cronjobs, add another item with type: cronjob and same labels.

upgrade.
no_hooks moved
to upgrade.
options.
no_hooks,
and now optional

Remove as desired, otherwise move to the new location.

source.
subpath now
optional, deafults
to no subpath.

Remove as desired.

Template naming
for template files
aligned with Helm
CLI.

If a chart was relying on Armada’s previous misaligned template naming, where it was
omitting the templates/ prefix, such as via include argument, that argument will need
to be updated. This could also theoretically affect whether the file is ignored, if the old or
new name is in .helmignore (unlikely). The fixed template names alone will not cause a
release to be updated, as the diff logic accounts for this.

wait improve-
ments

See Wait Improvements.

Wait Improvements

The v2 wait API includes the following changes.

Breaking changes

1. wait.resources now defaults to all supported resource types, currently job, daemonset,
statefulset, deployment, and pod, with required (a new option) set to false. The previous default

42 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

was the equivalent of pods with required=true, and jobs with required=false.

2. type: pod waits now exclude pods owned by other resources, such as controllers, as one should instead
wait directly on the controller itself, which per 1. is now the default.

3. Waits are no longer retried due to resources having been modified. This was mildly useful before as an indicator
of whether all targeted resources were accounted for, but with 1. and 2. above, we are now tracking top-level
resources directly included in the release, rather than generated resources, such as controller-owned pods, so
there is no need to wait for them to come into existence.

4. wait.native.enabled is now disabled by default. With the above changes, this is no longer useful as
a backup mechanism. Having both enabled leads to ambiguity in which wait would fail in each case. More
importantly, this must be disabled in order to use the min_ready functionality, otherwise tiller will wait for
100% anyway. So this prevents accidentally leaving it enabled in that case. Also when the tiller native wait
times out, this caused the release to be marked FAILED by tiller, which caused it to be purged and re-installed
(unless protected), even though the wait criteria may have eventually succeeded, which is already validated by
armada on a retry.

New features

Per-resource-type overrides

wait.resources can now be a dict, mapping individual resource types to wait configurations (or lists thereof),
such that one can keep the default configuration for the other resource types, and also disable a given resource type,
by mapping it to false.

The ability to provide the entire explicit list for wait.resources remains in place as well.

required

A required field is also exposed for items/values in wait.resources.

allow_async_updates

An allow_async_updates field is added to daemonset and statefulset type items/values in wait.resources.

ChartGroup

change migration
test_charts removed Use the Chart schema’s test.enabled instead.

Manifest

No changes.

3.2 Configuring Armada

Armada uses an INI-like standard oslo_config file. A sample file can be generated via tox

3.2. Configuring Armada 43

Armada Documentation, Release 0.2.0

$ tox -e genconfig
$ tox -e genpolicy

Customize your configuration based on the information below

3.2.1 Keystone Integration

Armada requires a service account to use for validating API tokens

Note: If you do not have a keystone already deploy, then armada can deploy a keystone services:

$ armada apply keystone-manifest.yaml

$ openstack domain create 'ucp'
$ openstack project create --domain 'ucp' 'service'
$ openstack user create --domain ucp --project service --project-domain 'ucp' --
→˓password armada armada
$ openstack role add --project-domain ucp --user-domain ucp --user armada --project
→˓service admin

OR

$./tools/keystone-account.sh

The service account must then be included in the armada.conf

[keystone_authtoken]
auth_type = password
auth_uri = https://<keystone-api>:5000/
auth_url = https://<keystone-api>:35357/
auth_version = 3
delay_auth_decision = true
password = armada
project_domain_name = ucp
project_name = service
user_domain_name = ucp
user_name = armada

3.3 Armada - Troubleshooting

3.3.1 Debugging Pods

Before starting to work in armada we need to check that the tiller pod is active and running.

kubectl get pods -n kube-system | grep tiller

armada tiller --status

44 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

3.3.2 Checking Logs

In order to check the logs the logs file will be in ~/.armada directory.

When running Armada in the container you can execute docker logs to retrieve logs

docker logs [container-name | container-id]

3.3.3 Errors/Exceptions

A guide for interpreting errors/exceptions can be found here.

3.3.4 Working with SSL

You might run into SSL error with armada if you are not using the correct versions of SSL.

Debugging Checklist:

1. python -c “import ssl; print ssl.OPENSSL_VERSION”

If the version that appears is less than 1.0, then problems will occur. Please update to current or use our docker
container solve this issue

2. check your urllib3 version, you could run into urllib3 issues. older versions of this lib can cause SSL errors run
pip install --upgrade urllib3 and it should solve this issue

3.3.5 Issue

If the issue that you are having does not appear here please check the Armada issues on StoryBoard. If the issue does
not exist, please create an issue.

3.4 Armada Install & Usage Guide

3.4.1 Prerequisites

Kubernetes Cluster

Tiller Service

Armada documents

Note: Need to have provided a storage system prior(ceph, nfs)

3.4.2 Usage

Note: The apply command performs two main actions: installing and updating define charts in the armada manifest

1. Pull or Build the Armada Docker Images:

3.4. Armada Install & Usage Guide 45

https://airship-armada.readthedocs.io/en/latest/operations/exceptions/guide-exceptions.html
https://storyboard.openstack.org/#!/project/airship/armada
https://github.com/kubernetes/helm

Armada Documentation, Release 0.2.0

Pull:

docker pull quay.io/airshipit/armada:latest-ubuntu_bionic

Build:

git clone https://opendev.org/airship/armada.git && cd armada/
docker build . -t quay.io/airshipit/armada:latest-ubuntu_bionic

2. Running Armada

a. docker container

Note: Make sure to mount your kubeconfig into /armada/.kube/config in the container

Note: To run you custom Armada.yamls you need to mount them into the container as shown below. This example is
using examples/ directory in armada repo.

docker run -d --net host -p 8000:8000 --name armada -v $(pwd)/etc/:/etc/ -v ~/.kube/:/
→˓armada/.kube/ -v $(pwd)/examples/:/examples quay.io/airshipit/armada:latest-ubuntu_
→˓bionic
docker exec armada armada --help

b. Helm Install

Note: To install Armada via the Helm chart please make sure to provide a Keystone endpoint

make charts

helm install <registry>/armada --name armada --namespace armada

3. Check that tiller is Available

docker exec armada armada tiller --status

4. If tiller is up then we can start deploying our armada yamls

docker exec armada armada apply /examples/openstack-helm.yaml [--debug]

5. Upgrading charts: modify the armada yaml or chart source code and run armada apply above

docker exec armada armada apply /examples/openstack-helm.yaml [--debug]

6. To check deployed releases:

docker exec armada armada tiller --releases

7. Testing Releases:

docker exec armada armada test --release=armada-keystone

OR

(continues on next page)

46 Chapter 3. Operations Guide

https://opendev.org/airship/armada/src/branch/master/examples

Armada Documentation, Release 0.2.0

(continued from previous page)

docker exec armada armada test --file=/examples/openstack-helm.yaml

8. Rolling back Releases:

docker exec armada armada rollback --release=armada-keystone

3.4.3 Overriding Manifest Values

It is possible to override manifest values from the command line using the –set and –values flags. When using the set
flag, the document type should be specified first, with the target values following in this manner:

armada apply --set [document_type]:[document_name]:[data_value]=[value]

Example:

armada apply --set chart:blog-1:release="new-blog"
armada apply --set chart:blog-1:values.blog.new="welcome"

Note: When overriding values using the set flag, new values will be inserted if they do not exist. An error will only
occur if the correct pattern is not used.

There are three types of override types that can be specified: - chart - chart_group - manifest

An example of overriding the location of a chart:

armada apply --set chart:[chart_name]:source.location=test [FILE]

Example:

armada apply --set chart:blog-1:release=test [FILE]

An example of overriding the description of a chart group:

armada apply --set chart_group:[chart_group_name]:description=test [FILE]

Example:

armada apply examples/simple.yaml --set chart_group:blog-group:description=test

An example of overriding the release prefix of a manifest:

armada apply --set manifest:[manifest_name]:release_prefix=[value] [FILE]

Example:

armada apply example/simple.yaml --set manifest:simple-armada:release_prefix=armada-2

Note: The –set flag can be used multiple times.

It is also possible to override manifest values using values specified in a yaml file using the –values flag. When using
the –values flag, a path to the yaml file should be specified in this format:

3.4. Armada Install & Usage Guide 47

Armada Documentation, Release 0.2.0

armada apply --values [path_to_yaml] [FILE]

Example:

armada apply examples/simple.yaml --values examples/simple-ovr-values.yaml

Note: The –values flag, like the –set flag, can be specified more than once. The –set and –values flag can also be
specified at the same time; however, overrides specified by the –set flag take precedence over those specified by the
–values flag.

When creating a yaml file of override values, it should be the same as creating an armada manifest overriding docu-
ments with the same schema and metadata name for example:

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-1

data:
release: chart-example
namespace: blog-blog

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: blog-2

data:
release: chart-example-2
namespace: blog-blog

schema: armada/ChartGroup/v1
metadata:

schema: metadata/Document/v1
name: blog-group

data:
description: Change value deploy
chart_group:
- blog-1

3.4.4 User bearer token

It is possible to pass the user bearer token from the armada CLI to interact with a kubernetes cluster that has been
configured with an external Auth-backend like openstack-keystone.

Example:

armada apply --bearer-token [TOKEN] --values [path_to_yaml] [FILE]

armada tiller --bearer-token [TOKEN] --status

Note: The bearer token option is available for the following commands

48 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

armada apply, armada delete, armada tiller, armada rollback

3.5 Metrics

Armada exposes metric data, for consumption by Prometheus.

3.5.1 Exporting

Metric data can be exported via:

• API: Prometheus exporter in the /metrics endpoint. The Armada chart includes the appropriate Prometheus
scrape configurations for this endpoint.

• CLI: –metrics-output=<path> of apply command. The node exporter text file collector can then be used to
export the produced text files to Prometheus.

3.5.2 Metric Names

Metric names are as follows:

armada_ + <action> + _ + <metric>

3.5.3 Supported <action>s

The below tree of <action>s are measured. Supported prometheus labels are noted. Labels are inherited by sub-actions
except as noted.

• apply:

– description: apply a manifest

– labels: manifest

– sub-actions:

* chart_handle:

· description: fully handle a chart (see below sub-actions)

· labels:

· chart

· action (install|upgrade|noop) (not included in sub-actions)

· sub-actions:

· chart_download

· chart_deploy

· chart_test

* chart_delete:

· description: delete a chart (e.g. due to FAILED status)

· labels: chart

3.5. Metrics 49

https://prometheus.io
https://github.com/prometheus/node_exporter#textfile-collector

Armada Documentation, Release 0.2.0

3.5.4 Supported <metric>s

• failure_total: total failed attempts

• attempt_total: total attempts

• attempt_inprogress: total attempts in progress

• duration_seconds: duration of each attempt

Timeouts

The chart_handle and chart_test actions additionally include the following metrics:

• timeout_duration_seconds: configured chart timeout duration in seconds

• timeout_usage_ratio: = duration_seconds / timeout_duration_seconds

These can help identify charts whose timeouts may need to be changed to avoid potential failures or to acheive faster
failures.

Chart concurrency

The chart_handle action additionally includes the following metric:

• concurrency_count: count of charts being handled concurrently

This can help identify opportunities for greater chart concurrency.

3.6 Exceptions Guide

3.6.1 Armada Exceptions

API Exceptions

Armada Exceptions

Base Exceptions

Chartbuilder Exceptions

Kubernetes Exceptions

Manifest Exceptions

Override Exceptions

Source Exceptions

Tiller Exceptions

50 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

Lint (Validate) Exceptions

3.7 Armada Plugin

The armada plugin extends all the functionality of Armada to be used as a plugin with Helm.

3.7.1 Install Plugin

Install directly from the repository

helm plugin install https://opendev.org/airship/armada.git

Clone and install locally

git clone https://opendev.org/airship/armada.git ~/.helm/plugins/
helm plugin install ~/.helm/plugins/armada

3.7.2 Usage

helm <Name> <action> [options]

helm armada tiller --status
helm armada apply ~/.helm/plugins/armada/examples/simple.yaml

3.8 Sample Configuration File

The following is a sample Armada configuration for adaptation and use. It is auto-generated from Armada when this
documentation is built, so if you are having issues with an option, please compare your version of Armada with the
version of this documentation.

The sample configuration can also be viewed in file form.

[DEFAULT]

#
From oslo.log
#

If set to true, the logging level will be set to DEBUG instead of the default
INFO level. (boolean value)
Note: This option can be changed without restarting.
#debug = false

The name of a logging configuration file. This file is appended to any
existing logging configuration files. For details about logging configuration
files, see the Python logging module documentation. Note that when logging
configuration files are used then all logging configuration is set in the
configuration file and other logging configuration options are ignored (for
example, log-date-format). (string value)
Note: This option can be changed without restarting.
Deprecated group/name - [DEFAULT]/log_config

(continues on next page)

3.7. Armada Plugin 51

../_static/armada.conf.sample

Armada Documentation, Release 0.2.0

(continued from previous page)

#log_config_append = <None>

Defines the format string for %%(asctime)s in log records. Default:
%(default)s . This option is ignored if log_config_append is set. (string
value)
#log_date_format = %Y-%m-%d %H:%M:%S

(Optional) Name of log file to send logging output to. If no default is set,
logging will go to stderr as defined by use_stderr. This option is ignored if
log_config_append is set. (string value)
Deprecated group/name - [DEFAULT]/logfile
#log_file = <None>

(Optional) The base directory used for relative log_file paths. This option
is ignored if log_config_append is set. (string value)
Deprecated group/name - [DEFAULT]/logdir
#log_dir = <None>

Uses logging handler designed to watch file system. When log file is moved or
removed this handler will open a new log file with specified path
instantaneously. It makes sense only if log_file option is specified and
Linux platform is used. This option is ignored if log_config_append is set.
(boolean value)
#watch_log_file = false

Use syslog for logging. Existing syslog format is DEPRECATED and will be
changed later to honor RFC5424. This option is ignored if log_config_append
is set. (boolean value)
#use_syslog = false

Enable journald for logging. If running in a systemd environment you may wish
to enable journal support. Doing so will use the journal native protocol
which includes structured metadata in addition to log messages.This option is
ignored if log_config_append is set. (boolean value)
#use_journal = false

Syslog facility to receive log lines. This option is ignored if
log_config_append is set. (string value)
#syslog_log_facility = LOG_USER

Use JSON formatting for logging. This option is ignored if log_config_append
is set. (boolean value)
#use_json = false

Log output to standard error. This option is ignored if log_config_append is
set. (boolean value)
#use_stderr = false

Log output to Windows Event Log. (boolean value)
#use_eventlog = false

The amount of time before the log files are rotated. This option is ignored
unless log_rotation_type is setto "interval". (integer value)
#log_rotate_interval = 1

Rotation interval type. The time of the last file change (or the time when
the service was started) is used when scheduling the next rotation. (string

(continues on next page)

52 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

value)
Possible values:
Seconds - <No description provided>
Minutes - <No description provided>
Hours - <No description provided>
Days - <No description provided>
Weekday - <No description provided>
Midnight - <No description provided>
#log_rotate_interval_type = days

Maximum number of rotated log files. (integer value)
#max_logfile_count = 30

Log file maximum size in MB. This option is ignored if "log_rotation_type" is
not set to "size". (integer value)
#max_logfile_size_mb = 200

Log rotation type. (string value)
Possible values:
interval - Rotate logs at predefined time intervals.
size - Rotate logs once they reach a predefined size.
none - Do not rotate log files.
#log_rotation_type = none

Format string to use for log messages with context. Used by
oslo_log.formatters.ContextFormatter (string value)
#logging_context_format_string = %(asctime)s.%(msecs)03d %(process)d %(levelname)s
→˓%(name)s [%(request_id)s %(user_identity)s] %(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter (string value)
#logging_default_format_string = %(asctime)s.%(msecs)03d %(process)d %(levelname)s
→˓%(name)s [-] %(instance)s%(message)s

Additional data to append to log message when logging level for the message
is DEBUG. Used by oslo_log.formatters.ContextFormatter (string value)
#logging_debug_format_suffix = %(funcName)s %(pathname)s:%(lineno)d

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter (string value)
#logging_exception_prefix = %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
→˓%(instance)s

Defines the format string for %(user_identity)s that is used in
logging_context_format_string. Used by oslo_log.formatters.ContextFormatter
(string value)
#logging_user_identity_format = %(user)s %(tenant)s %(domain)s %(user_domain)s
→˓%(project_domain)s

List of package logging levels in logger=LEVEL pairs. This option is ignored
if log_config_append is set. (list value)
#default_log_levels = amqp=WARN,amqplib=WARN,boto=WARN,qpid=WARN,sqlalchemy=WARN,
→˓suds=INFO,oslo.messaging=INFO,oslo_messaging=INFO,iso8601=WARN,requests.packages.
→˓urllib3.connectionpool=WARN,urllib3.connectionpool=WARN,websocket=WARN,requests.
→˓packages.urllib3.util.retry=WARN,urllib3.util.retry=WARN,keystonemiddleware=WARN,
→˓routes.middleware=WARN,stevedore=WARN,taskflow=WARN,keystoneauth=WARN,oslo.
→˓cache=INFO,oslo_policy=INFO,dogpile.core.dogpile=INFO

(continues on next page)

3.8. Sample Configuration File 53

Armada Documentation, Release 0.2.0

(continued from previous page)

Enables or disables publication of error events. (boolean value)
#publish_errors = false

The format for an instance that is passed with the log message. (string
value)
#instance_format = "[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message. (string
value)
#instance_uuid_format = "[instance: %(uuid)s] "

Interval, number of seconds, of log rate limiting. (integer value)
#rate_limit_interval = 0

Maximum number of logged messages per rate_limit_interval. (integer value)
#rate_limit_burst = 0

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG
or empty string. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered. (string
value)
#rate_limit_except_level = CRITICAL

Enables or disables fatal status of deprecations. (boolean value)
#fatal_deprecations = false

[cors]

#
From oslo.middleware
#

Indicate whether this resource may be shared with the domain received in the
requests "origin" header. Format: "<protocol>://<host>[:<port>]", no trailing
slash. Example: https://horizon.example.com (list value)
#allowed_origin = <None>

Indicate that the actual request can include user credentials (boolean value)
#allow_credentials = true

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple
Headers. (list value)
#expose_headers =

Maximum cache age of CORS preflight requests. (integer value)
#max_age = 3600

Indicate which methods can be used during the actual request. (list value)
#allow_methods = OPTIONS,GET,HEAD,POST,PUT,DELETE,TRACE,PATCH

Indicate which header field names may be used during the actual request.
(list value)
#allow_headers =

(continues on next page)

54 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

[healthcheck]

#
From oslo.middleware
#

DEPRECATED: The path to respond to healtcheck requests on. (string value)
This option is deprecated for removal.
Its value may be silently ignored in the future.
#path = /healthcheck

Show more detailed information as part of the response. Security note:
Enabling this option may expose sensitive details about the service being
monitored. Be sure to verify that it will not violate your security policies.
(boolean value)
#detailed = false

Additional backends that can perform health checks and report that
information back as part of a request. (list value)
#backends =

Check the presence of a file to determine if an application is running on a
port. Used by DisableByFileHealthcheck plugin. (string value)
#disable_by_file_path = <None>

Check the presence of a file based on a port to determine if an application
is running on a port. Expects a "port:path" list of strings. Used by
DisableByFilesPortsHealthcheck plugin. (list value)
#disable_by_file_paths =

[keystone_authtoken]

#
From keystonemiddleware.auth_token
#

Complete "public" Identity API endpoint. This endpoint should not be an
"admin" endpoint, as it should be accessible by all end users.
Unauthenticated clients are redirected to this endpoint to authenticate.
Although this endpoint should ideally be unversioned, client support in the
wild varies. If you're using a versioned v2 endpoint here, then this should
not be the same endpoint the service user utilizes for validating tokens,
because normal end users may not be able to reach that endpoint. (string
value)
#auth_uri = <None>

API version of the admin Identity API endpoint. (string value)
#auth_version = <None>

Do not handle authorization requests within the middleware, but delegate the
authorization decision to downstream WSGI components. (boolean value)
#delay_auth_decision = false

Request timeout value for communicating with Identity API server. (integer
value)
#http_connect_timeout = <None>

(continues on next page)

3.8. Sample Configuration File 55

Armada Documentation, Release 0.2.0

(continued from previous page)

How many times are we trying to reconnect when communicating with Identity
API Server. (integer value)
#http_request_max_retries = 3

Request environment key where the Swift cache object is stored. When
auth_token middleware is deployed with a Swift cache, use this option to have
the middleware share a caching backend with swift. Otherwise, use the
``memcached_servers`` option instead. (string value)
#cache = <None>

Required if identity server requires client certificate (string value)
#certfile = <None>

Required if identity server requires client certificate (string value)
#keyfile = <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections.
Defaults to system CAs. (string value)
#cafile = <None>

Verify HTTPS connections. (boolean value)
#insecure = false

The region in which the identity server can be found. (string value)
#region_name = <None>

Directory used to cache files related to PKI tokens. (string value)
#signing_dir = <None>

Optionally specify a list of memcached server(s) to use for caching. If left
undefined, tokens will instead be cached in-process. (list value)
Deprecated group/name - [keystone_authtoken]/memcache_servers
#memcached_servers = <None>

In order to prevent excessive effort spent validating tokens, the middleware
caches previously-seen tokens for a configurable duration (in seconds). Set
to -1 to disable caching completely. (integer value)
#token_cache_time = 300

Determines the frequency at which the list of revoked tokens is retrieved
from the Identity service (in seconds). A high number of revocation events
combined with a low cache duration may significantly reduce performance. Only
valid for PKI tokens. (integer value)
#revocation_cache_time = 10

(Optional) If defined, indicate whether token data should be authenticated or
authenticated and encrypted. If MAC, token data is authenticated (with HMAC)
in the cache. If ENCRYPT, token data is encrypted and authenticated in the
cache. If the value is not one of these options or empty, auth_token will
raise an exception on initialization. (string value)
Possible values:
None - <No description provided>
MAC - <No description provided>
ENCRYPT - <No description provided>
#memcache_security_strategy = None

(continues on next page)

56 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

(Optional, mandatory if memcache_security_strategy is defined) This string is
used for key derivation. (string value)
#memcache_secret_key = <None>

(Optional) Number of seconds memcached server is considered dead before it is
tried again. (integer value)
#memcache_pool_dead_retry = 300

(Optional) Maximum total number of open connections to every memcached
server. (integer value)
#memcache_pool_maxsize = 10

(Optional) Socket timeout in seconds for communicating with a memcached
server. (integer value)
#memcache_pool_socket_timeout = 3

(Optional) Number of seconds a connection to memcached is held unused in the
pool before it is closed. (integer value)
#memcache_pool_unused_timeout = 60

(Optional) Number of seconds that an operation will wait to get a memcached
client connection from the pool. (integer value)
#memcache_pool_conn_get_timeout = 10

(Optional) Use the advanced (eventlet safe) memcached client pool. The
advanced pool will only work under python 2.x. (boolean value)
#memcache_use_advanced_pool = false

(Optional) Indicate whether to set the X-Service-Catalog header. If False,
middleware will not ask for service catalog on token validation and will not
set the X-Service-Catalog header. (boolean value)
#include_service_catalog = true

Used to control the use and type of token binding. Can be set to: "disabled"
to not check token binding. "permissive" (default) to validate binding
information if the bind type is of a form known to the server and ignore it
if not. "strict" like "permissive" but if the bind type is unknown the token
will be rejected. "required" any form of token binding is needed to be
allowed. Finally the name of a binding method that must be present in tokens.
(string value)
#enforce_token_bind = permissive

If true, the revocation list will be checked for cached tokens. This requires
that PKI tokens are configured on the identity server. (boolean value)
#check_revocations_for_cached = false

Hash algorithms to use for hashing PKI tokens. This may be a single algorithm
or multiple. The algorithms are those supported by Python standard
hashlib.new(). The hashes will be tried in the order given, so put the
preferred one first for performance. The result of the first hash will be
stored in the cache. This will typically be set to multiple values only while
migrating from a less secure algorithm to a more secure one. Once all the old
tokens are expired this option should be set to a single value for better
performance. (list value)
#hash_algorithms = md5

Authentication type to load (string value)
(continues on next page)

3.8. Sample Configuration File 57

Armada Documentation, Release 0.2.0

(continued from previous page)

Deprecated group/name - [keystone_authtoken]/auth_plugin
#auth_type = <None>

Config Section from which to load plugin specific options (string value)
#auth_section = <None>

[oslo_middleware]

#
From oslo.middleware
#

The maximum body size for each request, in bytes. (integer value)
Deprecated group/name - [DEFAULT]/osapi_max_request_body_size
Deprecated group/name - [DEFAULT]/max_request_body_size
#max_request_body_size = 114688

DEPRECATED: The HTTP Header that will be used to determine what the original
request protocol scheme was, even if it was hidden by a SSL termination
proxy. (string value)
This option is deprecated for removal.
Its value may be silently ignored in the future.
#secure_proxy_ssl_header = X-Forwarded-Proto

Whether the application is behind a proxy or not. This determines if the
middleware should parse the headers or not. (boolean value)
#enable_proxy_headers_parsing = false

[oslo_policy]

#
From oslo.policy
#

This option controls whether or not to enforce scope when evaluating
policies. If ``True``, the scope of the token used in the request is compared
to the ``scope_types`` of the policy being enforced. If the scopes do not
match, an ``InvalidScope`` exception will be raised. If ``False``, a message
will be logged informing operators that policies are being invoked with
mismatching scope. (boolean value)
#enforce_scope = false

This option controls whether or not to use old deprecated defaults when
evaluating policies. If ``True``, the old deprecated defaults are not going
to be evaluated. This means if any existing token is allowed for old defaults
but is disallowed for new defaults, it will be disallowed. It is encouraged
to enable this flag along with the ``enforce_scope`` flag so that you can get
the benefits of new defaults and ``scope_type`` together (boolean value)
#enforce_new_defaults = false

The relative or absolute path of a file that maps roles to permissions for a
given service. Relative paths must be specified in relation to the
configuration file setting this option. (string value)
#policy_file = policy.json

(continues on next page)

58 Chapter 3. Operations Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

Default rule. Enforced when a requested rule is not found. (string value)
#policy_default_rule = default

Directories where policy configuration files are stored. They can be relative
to any directory in the search path defined by the config_dir option, or
absolute paths. The file defined by policy_file must exist for these
directories to be searched. Missing or empty directories are ignored. (multi
valued)
#policy_dirs = policy.d

Content Type to send and receive data for REST based policy check (string
value)
Possible values:
application/x-www-form-urlencoded - <No description provided>
application/json - <No description provided>
#remote_content_type = application/x-www-form-urlencoded

server identity verification for REST based policy check (boolean value)
#remote_ssl_verify_server_crt = false

Absolute path to ca cert file for REST based policy check (string value)
#remote_ssl_ca_crt_file = <None>

Absolute path to client cert for REST based policy check (string value)
#remote_ssl_client_crt_file = <None>

Absolute path client key file REST based policy check (string value)
#remote_ssl_client_key_file = <None>

3.9 Sample Policy File

The following is a sample Armada policy file for adaptation and use. It is auto-generated from Armada when this
documentation is built, so if you are having issues with an option, please compare your version of Armada with the
version of this documentation.

The sample policy file can also be viewed in file form.

3.9. Sample Policy File 59

../_static/armada.policy.yaml.sample

Armada Documentation, Release 0.2.0

60 Chapter 3. Operations Guide

CHAPTER 4

Commands Guide

4.1 Armada - Apply

4.1.1 Commands

Usage: armada apply [OPTIONS] [LOCATIONS]...

This command installs and updates charts defined in Armada manifest.

The apply argument must be relative path to Armada Manifest. Executing
apply command once will install all charts defined in manifest. Re-
executing apply command will execute upgrade.

To see how to create an Armada manifest: https://airship-
armada.readthedocs.io/en/latest/operations/

To install or upgrade charts, run:

$ armada apply examples/simple.yaml

To override a specific value in a Manifest, run:

$ armada apply examples/simple.yaml --set manifest:simple-armada:release=
→˓"wordpress"

Or to override several values in a Manifest, reference a values.yaml-
formatted file:

$ armada apply examples/simple.yaml --values examples/simple-ovr-values.yaml

Options:
--api Contacts service endpoint.
--disable-update-post Disable post-update Tiller operations.

(continues on next page)

61

Armada Documentation, Release 0.2.0

(continued from previous page)

--disable-update-pre Disable pre-update Tiller operations.
--enable-chart-cleanup Clean up unmanaged charts.
--metrics-output TEXT The output path for metric data
--use-doc-ref Use armada manifest file reference.
--set TEXT Use to override Armada Manifest values.

Accepts overrides that adhere to the format
<path>:<to>:<property>=<value> to specify a
primitive or
<path>:<to>:<property>=<value1>,...,<valueN>
to specify a list of values.

--tiller-host TEXT Tiller host IP.
--tiller-port INTEGER Tiller host port.
-tn, --tiller-namespace TEXT Tiller namespace.
--timeout INTEGER Specifies time to wait for each chart to fully

finish deploying.
-f, --values TEXT Use to override multiple Armada Manifest

values by reading overrides from a
values.yaml-type file.

--wait Force Tiller to wait until all charts are
deployed, rather than using each charts
specified wait policy. This is equivalent to
sequenced chartgroups.

--target-manifest TEXT The target manifest to run. Required for
specifying which manifest to run when multiple
are available.

--bearer-token TEXT User Bearer token
--debug Enable debug logging.
--help Show this message and exit.

4.1.2 Synopsis

The apply command will consume an armada manifest which contains group of charts that it will deploy into the tiller
service in your Kubernetes cluster. Executing the armada apply again on existing armada deployment will start
an update of the armada deployed charts.

armada apply armada-manifest.yaml [--debug]

If you remove armada/Charts/v1 from the armada/ChartGroups/v1 in the armada manifest and execute
an armada apply with the --enable-chart-cleanup flag. Armada will remove undefined releases with the
armada manifest’s release_prefix keyword.

4.2 Armada - Apply Chart

4.2.1 Commands

Usage: armada apply_chart [OPTIONS] [LOCATION]

This command installs and updates an Armada chart.

[LOCATION] must be a relative path to Armada Chart or a reference
to an Armada Chart kubernetes CR which has the same format, except as
noted in the :ref:`v2 document authoring documentation <document_authoring_v2>`.

(continues on next page)

62 Chapter 4. Commands Guide

Armada Documentation, Release 0.2.0

(continued from previous page)

To install or upgrade a chart, run:

$ armada apply_chart --release-prefix=armada my-chart.yaml
$ armada apply_chart --release-prefix=armada kube:armadacharts/my-namespace/

→˓my-chart

Options:
--release-prefix TEXT Release prefix to use. [required]
--disable-update-post Disable post-update Tiller operations.
--disable-update-pre Disable pre-update Tiller operations.
--metrics-output TEXT Output path for prometheus metric data, should

end in .prom. By default, no metric data is
output.

--tiller-host TEXT Tiller host IP.
--tiller-port INTEGER Tiller host port.
-tn, --tiller-namespace TEXT Tiller namespace.
--timeout INTEGER Specifies time to wait for each chart to fully

finish deploying.
--wait Force Tiller to wait until the chart is

deployed, rather than using the charts
specified wait policy. This is equivalent to
sequenced chartgroups.

--target-chart TEXT The target chart to deploy. Required for
specifying which chart to deploy when multiple
are available.

--bearer-token TEXT User Bearer token
--debug Enable debug logging.
--help Show this message and exit.

4.2.2 Synopsis

The apply_chart command will deploy an armada chart definition, installing or updating as appropriate.

armada apply_chart --release-prefix=armada my-chart.yaml [--debug] armada
apply_chart --release-prefix=armada kube:armadacharts/my-namespace/my-chart
[--debug]

4.3 Armada - Rollback

4.3.1 Commands

Usage: armada rollback [OPTIONS]

This command performs a rollback on the specified release.

To rollback a release, run:

$ armada rollback --release my_release

Options:
--release TEXT Release to rollback.

(continues on next page)

4.3. Armada - Rollback 63

Armada Documentation, Release 0.2.0

(continued from previous page)

--tiller-host TEXT Tiller Host IP
--tiller-port INTEGER Tiller Host Port
-tn, --tiller-namespace TEXT Tiller Namespace
--timeout INTEGER Tiller Host IP
--version INTEGER Version of release to rollback to. 0 represents the

→˓previous release
--wait Version of release to rollback to. 0 represents the

→˓previous release
--bearer-token User bearer token
--help Show this message and exit.

4.3.2 Synopsis

The rollback command will perform helm rollback on the release.

4.4 Armada - Test

4.4.1 Commands

Usage: armada test [OPTIONS]

This command test deployed charts

The tiller command uses flags to obtain information from tiller services.
The test command will run the release chart tests either via a
manifest or by targeting a release.

To obtain armada deployed releases:

$ armada test --file examples/simple.yaml

To test release:

$ armada test --release blog-1

Options:
--cleanup Delete test pods after test completion
--enable-all Run disabled chart tests
--file TEXT armada manifest
--release TEXT helm release
--tiller-host TEXT Tiller Host IP
--tiller-port INTEGER Tiller Host Port
-tn, --tiller-namespace TEXT Tiller Namespace
--target-manifest TEXT The target manifest to run. Required for

specifying which manifest to run when multiple
are available.

--help Show this message and exit.

4.4.2 Synopsis

The test command will perform helm test defined on the release. Test command can test a single release or a manifest.

64 Chapter 4. Commands Guide

Armada Documentation, Release 0.2.0

4.5 Armada - Tiller

4.5.1 Commands

Usage: armada tiller [OPTIONS]

This command gets tiller information

The tiller command uses flags to obtain information from tiller services

To obtain armada deployed releases:

$ armada tiller --releases

To obtain tiller service status/information:

$ armada tiller --status

Options:
--tiller-host TEXT Tiller host ip
--tiller-port INTEGER Tiller host port
-tn, --tiller-namespace TEXT Tiller namespace
--releases list of deployed releses
--status Status of Armada services
--bearer-token User bearer token
--help Show this message and exit.

4.5.2 Synopsis

The tiller command will perform command directly with tiller to check if tiller in the cluster is running and the list of
releases in tiller cluster.

4.6 Armada - Validate

4.6.1 Commands

Usage: armada validate [OPTIONS] FILENAME

This command validates Armada Manifest

The validate argument must be a relative path to Armada manifest

$ armada validate examples/simple.yaml

Options:
--help Show this message and exit.

4.6.2 Synopsis

The validate command will take in an Armada manifest and will validate if it is correctly defined and consumable.

4.5. Armada - Tiller 65

Armada Documentation, Release 0.2.0

66 Chapter 4. Commands Guide

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

67

	Armada
	Overview
	Components
	Installation
	Integration Points
	Further Reading

	Developers Guide
	Developer Install Guide
	Contribution Guidelines

	Operations Guide
	Document Authoring Guide
	Configuring Armada
	Armada - Troubleshooting
	Armada Install & Usage Guide
	Metrics
	Exceptions Guide
	Armada Plugin
	Sample Configuration File
	Sample Policy File

	Commands Guide
	Armada - Apply
	Armada - Apply Chart
	Armada - Rollback
	Armada - Test
	Armada - Tiller
	Armada - Validate

	Indices and tables

