
Advanced Python Documentation
Release 0.3

Jason McVetta

Nov 14, 2017

Contents

1 Introduction 1
1.1 Background Assumptions . 1
1.2 Resources . 1

2 Tool Setup 3
2.1 System Packages . 3
2.2 Virtual Environments . 4
2.3 Python Packages . 5
2.4 Aptana Studio . 6
2.5 Simulating Remote Hosts . 17
2.6 Lab Files . 19

3 Using Fabric for SSH 21
3.1 fab Command . 21
3.2 Library Usage . 23
3.3 Lab – Average Uptime . 23

4 Accessing RESTful APIs 25
4.1 What is a RESTful API? . 25
4.2 Requests Library . 26
4.3 Generate a Github OAuth2 Token . 27
4.4 Lab – List Github Repositories . 31

5 Django 33
5.1 What is Django? . 33
5.2 Django Tutorial . 33

6 Work In Progress 35

i

ii

CHAPTER 1

Introduction

This class will familiarize the student with modern tools, libraries, and techniques used by Python programmers.

Classroom delivery of this course is available from Silicon Bay Training, who sponsored its development.

1.1 Background Assumptions

• Solid understanding of Python language syntax and conventions. Successful completion of Python Essentials
or equivalent.

• Basic level familiarity with Linux command line.

• Significant familiarity with web concepts such as HTML syntax, HTTP requests and responses, APIs, etc.

1.2 Resources

The Sphinx source code for this curriculum can be found on Github.

The latest version this curriculum is published at Read the Docs. It is also available in PDF and ePub formats.

1

http://sbtrain.com/
http://sphinx.pocoo.org/
http://github.com/jmcvetta/curriculum-advanced-python
http://advanced-python.readthedocs.org/
https://media.readthedocs.org/pdf/advanced-python/latest/advanced-python.pdf
https://media.readthedocs.org/epub/advanced-python/latest/advanced-python.epub

Advanced Python Documentation, Release 0.3

2 Chapter 1. Introduction

CHAPTER 2

Tool Setup

2.1 System Packages

Since we are starting with a fresh install of Ubuntu 12.04, we need to install various useful libraries and applications.
Ubuntu, like most Linux systems, uses a package manager to control installation of software packages. The Ubuntu
package manager is called apt-get.

If you are using a version of Ubuntu other than 12.04, or a different unix system, the package names will probably be
similar but not exactly the same.

2.1.1 Package Descriptions

The following packages are required to complete this course:

Package Description
openjdk-7-jdk Java Development Kit
openssh-server SSH server
postgresql-9.1 Database Server
postgresql-server-dev-9.1 Development headers for PostgreSQL
python-pip Python package manager
python-virtualenv Python virtual environment support
python2.7-dev Python development headers
virtualenvwrapper Tool for convenient virtual environment usage

2.1.2 Installation

Use apt-get install to install the required packages, as well as their dependencies:

$ sudo apt-get install \
openjdk-7-jdk \
openssh-server \

3

http://en.wikipedia.org/wiki/Package_management_system

Advanced Python Documentation, Release 0.3

postgresql-9.1 \
postgresql-server-dev-9.1 \
python-pip \
python-virtualenv \
python2.7-dev \
virtualenvwrapper

2.2 Virtual Environments

A virtual environment is a local Python environment isolated from the system-wide environment.

2.2.1 virtualenv

The term “virtualenv” can refer to the command virtualenv, used to create a virtual environment, or to the virutal
environment itself.

2.2.2 virtualenvwrapper

virtualenvwrapper is a set of extensions to the virtualenv tool. The extensions include wrappers for creat-
ing and deleting virtual environments and otherwise managing your development workflow, making it easier to work
on more than one project at a time without introducing conflicts in their dependencies1.

$ mkvirtualenv class
New python executable in class/bin/python
Installing distribute...
→˓..
→˓..done.
Installing pip...............done.
virtualenvwrapper.user_scripts creating /home/jason/.virtualenvs/class/bin/
→˓predeactivate
virtualenvwrapper.user_scripts creating /home/jason/.virtualenvs/class/bin/
→˓postdeactivate
virtualenvwrapper.user_scripts creating /home/jason/.virtualenvs/class/bin/preactivate
virtualenvwrapper.user_scripts creating /home/jason/.virtualenvs/class/bin/
→˓postactivate
virtualenvwrapper.user_scripts creating /home/jason/.virtualenvs/class/bin/get_env_
→˓details
(class)$ pip freeze # A few packages are installed by default
argparse==1.2.1
distribute==0.6.24
wsgiref==0.1.2

Note that when the virtual environment is active, its name (in this case “class”) is prepended to the shell prompt:

$ # Ordinary shell prompt
(class)$ # Virtual environment "class" is active

If later you have logged out, and want to activate this virtual environment, you can use the workon command:

$ workon class
(class)$

1 http://www.doughellmann.com/projects/virtualenvwrapper/

4 Chapter 2. Tool Setup

http://www.doughellmann.com/projects/virtualenvwrapper/

Advanced Python Documentation, Release 0.3

You can deactivate the virtual environment with the deactivate command:

(class)$ deactivate
$ # Back to normal shell prompt

2.2.3 Location of Virtualenvs

By default, virtualenvwrapper stores your virtual environments in ~/.virtualenvs. However you can
control this by setting the WORKON_HOME environment variable. This could potentially be used for shared virtual
environments, perhaps with group write permission.

export WORKON_HOME=/path/to/virtualenvs

2.2.4 Virtual Environments for Scripts

There are several ways you can run scripts that rely on a virtualenv:

• Use Fabric’s prefix() context manager when calling the script remotely:

def task():
with prefix('workon class'):

run('uptime')
run('uname -a')

• Have whatever is calling your script (cron etc) call workon first.

• Specify your virtualenv’s Python interpreter directly in the script’s bangline.

• Use a bash script as a wrapper. Ugly, but sometimes convenient.

2.3 Python Packages

Earlier we installed packages system-wide using the Ubuntu package manager, apt-get. Now we will install some
Python packages locally, into our virtual environment. We will use Pip, the Python package manager. Pip is aware
of virtual environments. If you have a virtual environment active when you call Pip, the requested packages will be
installed into the active virtual environmentment.

2.3.1 Package Descriptions

The following packages are required to complete this course:

Package Description
argparse Command-line parsing library
django Web application framework
fabric SSH library and command line tool
ipython Interactive Python shell
psycopg2 PostgreSQL driver
requests HTTP for humans

2.3. Python Packages 5

http://docs.fabfile.org/en/1.4.3/api/core/context_managers.html

Advanced Python Documentation, Release 0.3

2.3.2 Installation

Use pip install to install the required packages, as well as their dependencies:

(class)$ pip install \
argparse \
django \
fabric \
ipython \
psycopg2 \
requests \

2.4 Aptana Studio

Aptana Studio is an IDE - integrated development environment - based on the Eclipse framework. It provides powerful
tools for exploring, understanding, and refactoring your code.

Because Aptana Studio is Eclipse + a plugin, in class I may refer to “Aptana” and “Eclipse” interchangeably. Unless
explicitly noted, both terms refer to the combination of Eclipse framework + Aptana Studio plugin.

Aptana’s Python support was formerly a separate Eclipse plugin called PyDev. PyDev was purchased by Aptana and
folded into Aptana Studio. Aptana can be installed as a seperate download, or as an Eclipse plugin. For convenience
we will download the whole application.

http://aptana.com/products/studio3/download

2.4.1 Workspace

When it starts up, Aptana will ask you what folder you want to use as a workspace. The default is not very good, as
its name contains spaces:

Instead use ~/workspace, the standard Eclipse workspace path. You can tell Aptana to remember this workspace
if you like.

6 Chapter 2. Tool Setup

http://aptana.com/
http://en.wikipedia.org/wiki/Integrated_development_environment
http://eclipse.org
http://aptana.com/products/studio3/download

Advanced Python Documentation, Release 0.3

2.4.2 Harmless libjpeg Error

The first time you start Apatana Studio, you will get a frightening-looking error message, complaining that lib-
jpeg.62.so is missing. This error is actually quite harmless - it is caused by Aptana trying to display it’s one-time
splash screen after a new install. To display the splash screen requires a JPEG graphic handling library that we have
not installed.

2.4. Aptana Studio 7

Advanced Python Documentation, Release 0.3

Click OK, and Eclipse will ask if you want to exit. Say yes, wait for Eclipse to exit, then launch it again. You will
only see this error message the first time; thereafter, launch will be error-free.

This bug can be avoided entirely by installing libjpeg62:

8 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

$ sudo apt-get install libjpeg62

However this is not strictly necessary, as the bug does not damage anything, and appears only the first time a new
Apatana installation is run.

2.4.3 Installing Eclipse Plugins

Each Eclipse plugin has an Update Site URL, from which it can be installed.

To install a plugin in Eclipse, choose Install New Software... from the Help menu. Click the Add...
button to add a new plugin repository. Put the plugin’s Update Site URL in the Location: field.

Once you have added the plugin repository, check the box of the plugin you want to install. Click Next >, then click
thru until it is installed. Normally Eclipse will want to restart itself after a new plugin has been installed.

Vwrapper

Vrapper is an Eclipse plugin providing VI-keys support. Only install this plugin if you are certain you want it.

Update site:

http://vrapper.sourceforge.net/update-site/stable

2.4.4 Python Perspective

Eclipse refers to collections of windows (views in Eclipse terminology) and their arrangement on screen as a perspec-
tive. There is a Python perspective available, pre-configured with the views one typically wants while working on
Python code.

You can select the Python perspective by going to the perspective menu - it is in the upper right corner of the window,
and looks like a grid with a plus sign. Click on it, select “Other...”, and choose “PyDev Perspective” from the ensuing
dialog.

2.4. Aptana Studio 9

Advanced Python Documentation, Release 0.3

You will now be in the Python perspective.

2.4.5 Working with Virtual Environments

Unfortunately, Aptana is not aware of virtual environments by default. This can be worked around by manually
configuring Aptana to use the Python interpreter from the virtual environment. We will configure the interpreter in the
course of starting a new project below.

2.4.6 Starting a New Project

Start a new project by clicking on the new project menu - it looks like a window with a plus sign - in the upper left
corner of the window. Click on the new project menu, and select “PyDev Project”.

10 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

A new project dialog will appear. Fill in the name you want for your project, then click on the blue “Please configure
an interpreter” link.

2.4. Aptana Studio 11

Advanced Python Documentation, Release 0.3

You will be taken to Eclipse’s Python interpreter settings page.

12 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

Click the “New...” button. A select file dialog will open; go to your home folder. Once there, right-click on the file
list, and choose “Show Hidden Files” from the context menu.

2.4. Aptana Studio 13

Advanced Python Documentation, Release 0.3

Click thru to select the python executable at ~/.virtualenvs/class/bin/python.

14 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

Click OK, and you will return to the Select Interpreter dialog, which will look like this:

Click “OK”, and you will return to the PyDev Project dialog. From the “Interpreter” popup menu, choose “class”, the
virtualenv we just configured.

2.4. Aptana Studio 15

Advanced Python Documentation, Release 0.3

Click “Finish” and you will have successfully created a new project! Your new project will now be visible in the
Project Explorer view.

16 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

2.5 Simulating Remote Hosts

Some of the class examples involve communicating with remote unix servers. Since the class will not necessarily have
access to real remote servers, we will use /etc/hosts to simulate remote servers using only our local system.

Earlier we installed package openssh-server, the OpenSSH secure shell server. This will allow us to login to our
VMs using SSH.

2.5.1 /etc/hosts

When a unix system attempts to resolve a domain name into an IP address, it first looks in the file /etc/hosts. If
an entry is found, the name is resolved to that address. Otherwise, the system then queries a DNS server.

We will add two entries, named newyork and seattle to our /etc/hosts file, pointing those names to 127.0.0.1,
the loopback IP address. (I.e. pointing them back at our local host.)

Initially your /etc/hosts file should look something like this:

127.0.0.1 localhost
127.0.1.1 sbtrain-vbox

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

2.5. Simulating Remote Hosts 17

Advanced Python Documentation, Release 0.3

Modify it to look like this:

127.0.0.1 localhost
127.0.0.1 newyork
127.0.0.1 seattle
127.0.1.1 sbtrain-vbox

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

2.5.2 SSH Key Setup

We will now configure our VM’s SSH keys, so we can login without typing our credentials.

Generate a Key Pair

Generate a new public/private SSH keypair:

student@sbtrain-vbox:~$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/student/.ssh/id_rsa):
Created directory '/home/student/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/student/.ssh/id_rsa.
Your public key has been saved in /home/student/.ssh/id_rsa.pub.
The key fingerprint is:
38:a2:64:4a:9b:25:17:36:67:4b:a0:4a:42:ae:0e:90 student@sbtrain-vbox
The key's randomart image is:
+--[RSA 2048]----+
| . . |
|o.. . |
|E+ + + |
|* . * .. |
|+ooo..o S |
|++*. . . |
|.+. |
| |
| |
+-----------------+
student@sbtrain-vbox:~/.ssh$ ls
id_rsa id_rsa.pub

Authorized Keys

Create an authorized_keys file containing the newly created public key:

student@sbtrain-vbox:~/.ssh$ cat id_rsa.pub >> authorized_keys

18 Chapter 2. Tool Setup

Advanced Python Documentation, Release 0.3

Verify Key Fingerprints

For each of our simulated hosts, we will need to verify the SSH key fingerprint one time before we can do fully
automated logins:

student@sbtrain-vbox:~/.ssh$ ssh seattle
The authenticity of host 'seattle (127.0.0.1)' can't be established.
ECDSA key fingerprint is f3:c7:4b:87:c2:31:6d:ef:44:45:85:9a:21:e6:3c:7b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'seattle' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-generic-pae i686)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

student@sbtrain-vbox:~$ exit
logout
Connection to seattle closed.
student@sbtrain-vbox:~/.ssh$

Repeat the same command for newyork and localhost.

2.5.3 Automatic Login

If you have completed all steps above successfully, you should now be able to login to any of our “remote” hosts
without any keyboard interaction:

student@sbtrain-vbox:~/.ssh$ ssh seattle
Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-generic-pae i686)

* Documentation: https://help.ubuntu.com/

Last login: Mon Nov 5 16:50:03 2012 from localhost
student@sbtrain-vbox:~$ exit
logout
Connection to seattle closed.
student@sbtrain-vbox:~/.ssh$

2.6 Lab Files

Code templates are provided as a starting point for several labs. Download the labs tarball.

You can extract the files using the tar command:

student@sbtrain-vbox:~/workspace$ tar zxvf /path/to/labs.tgz
labs/
labs/fabric/
labs/fabric/uptime.py

2.6. Lab Files 19

../_static/labs.tgz

Advanced Python Documentation, Release 0.3

labs/rest_api/
labs/rest_api/list_repos.py
student@sbtrain-vbox:~/workspace$

20 Chapter 2. Tool Setup

CHAPTER 3

Using Fabric for SSH

Fabric is a library and command-line tool for streamlining the use of SSH for application deployment or systems
administration tasks.

It provides a basic suite of operations for executing local or remote shell commands (normally or via sudo) and up-
loading/downloading files, as well as auxiliary functionality such as prompting the running user for input, or aborting
execution.

3.1 fab Command

Fabric provides a command line utility fab, which reads its configuration from a file named fabfile.py in di-
rectory from which it is run. A typical fabfile contains one or more functions to be executed on a group of remote
hosts.

The following example provides functions to check free disk space and host type, as well as defining a group of hosts
on which to run:

1 from fabric.api import run
2

3 def host_type():
4 run('uname -s')
5

6 def diskspace():
7 run('df')

Once a task is defined, it may be run on one or more servers, like so:

(sysadmin)$ fab -H newyork,seattle host_type
[newyork] run: uname -s
[newyork] out: Linux
[seattle] run: uname -s
[seattle] out: Linux

Done.

21

Advanced Python Documentation, Release 0.3

Disconnecting from newyork... done.
Disconnecting from seattle... done.

Rather than supplying hostnames on the command line, you can also define the group of hosts on which tasks will be
run with env.hosts:

1 from fabric.api import run
2 from fabric.api import env
3

4 env.hosts = [
5 'newyork',
6 'seattle',
7 'localhost',
8]
9

10 def host_type():
11 run('uname -s')
12

13 def diskspace():
14 run('df')

Now run fab without a -H argument:

(sysadmin)$ fab host_type
[newyork] run: uname -s
[newyork] out: Linux
[seattle] run: uname -s
[seattle] out: Linux
[localhost] run: uname -s
[localhost] out: Linux

Done.
Disconnecting from newyork... done.
Disconnecting from seattle... done.
Disconnecting from localhost... done.

3.1.1 Task arguments

It’s often useful to pass runtime parameters into your tasks, just as you might during regular Python programming.
Fabric has basic support for this using a shell-compatible notation: <task name>:<arg>,<kwarg>=<value>,
.... It’s contrived, but let’s extend the above example to say hello to you personally:1

def hello(name="world"):
print("Hello %s!" % name)

By default, calling fab hello will still behave as it did before; but now we can personalize it:

(sysadmin)$ fab hello:name=Jeff
Hello Jeff!

Done.

Those already used to programming in Python might have guessed that this invocation behaves exactly the same way:

1 http://docs.fabfile.org/en/1.4.2/tutorial.html#task-arguments

22 Chapter 3. Using Fabric for SSH

http://docs.fabfile.org/en/1.4.2/tutorial.html#task-arguments

Advanced Python Documentation, Release 0.3

(sysadmin)$ fab hello:Jeff
Hello Jeff!

Done.

For the time being, your argument values will always show up in Python as strings and may require a bit of string
manipulation for complex types such as lists. Future versions may add a typecasting system to make this easier.

3.2 Library Usage

In addition to use via the fab tool, Fabric’s components may be imported into other Python code, providing a Pythonic
interface to the SSH protocol suite at a higher level than that provided by e.g. the ssh library (which Fabric itself
uses.)2

3.3 Lab – Average Uptime

Consider the case where we want to collect average uptime from a group of hosts. File labs/fabric/uptime.py
will get you started:

1 '''
2 Lab - Average Uptime
3

4 Write a script that uses the Fabric library to poll a group of hosts for their
5 uptimes, and displays their average uptime for the user.
6 '''
7

8

9 from fabric import tasks
10 from fabric.api import run
11 from fabric.api import env
12 from fabric.network import disconnect_all
13

14

15 env.hosts = [
16 'newyork',
17 'seattle',
18 'localhost',
19]
20

21 def uptime():
22 res = run('cat /proc/uptime')
23 #
24 # Now, examine the result and extract the average uptime
25 #
26

27

28 def main():
29 uts_dict = tasks.execute(uptime)
30 #
31 # Now, calculate average uptime...
32 #
33 disconnect_all() # Call this when you are done, or get an ugly exception!

2 http://stackoverflow.com/a/8166050

3.2. Library Usage 23

http://stackoverflow.com/a/8166050

Advanced Python Documentation, Release 0.3

34

35

36 if __name__ == '__main__':
37 main()
38

24 Chapter 3. Using Fabric for SSH

CHAPTER 4

Accessing RESTful APIs

4.1 What is a RESTful API?

A ‘RESTful API’ is a remote API that follows the REST style of software architecture.

4.1.1 REST - Representational State Transfer

REpresentational State Transfer (REST) is a style of software architecture for distributed systems such as the World
Wide Web. REST has emerged as a predominant Web service design model.1

The term representational state transfer was introduced and defined in 2000 by Roy Fielding in his doctoral dissertation.
Fielding is one of the principal authors of the Hypertext Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

Conforming to the REST constraints is generally referred to as being “RESTful”.

The REST Constraints

The REST architectural style describes the following six constraints applied to the architecture, while leaving the
implementation of the individual components free to design:2

Client–server

A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not
concerned with data storage, which remains internal to each server, so that the portability of client code is improved.
Servers are not concerned with the user interface or user state, so that servers can be simpler and more scalable. Servers
and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless

The client–server communication is further constrained by no client context being stored on the server between re-
quests. Each request from any client contains all of the information necessary to service the request, and any session
state is held in the client.

1 http://en.wikipedia.org/wiki/Representational_state_transfer
2 http://en.wikipedia.org/wiki/Representational_state_transfer#Constraints

25

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer#Constraints

Advanced Python Documentation, Release 0.3

Cacheable

As on the World Wide Web, clients can cache responses. Responses must therefore, implicitly or explicitly, define
themselves as cacheable, or not, to prevent clients reusing stale or inappropriate data in response to further requests.
Well^managed caching partially or completely eliminates some client–server interactions, further improving scalabil-
ity and performance.

Layered system

A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way.
Intermediary servers may improve system scalability by enabling load^balancing and by providing shared caches.
They may also enforce security policies.

Code on demand (optional)

Servers are able temporarily to extend or customize the functionality of a client by the transfer of executable code.
Examples of this may include compiled components such as Java applets and client^side scripts such as JavaScript.

Uniform interface

The uniform interface between clients and servers, discussed below, simplifies and decouples the architecture, which
enables each part to evolve independently. The four guiding principles of this interface are detailed below.

The only optional constraint of REST architecture is code on demand. If a service violates any other constraint, it
cannot strictly be considered RESTful.

Complying with these constraints, and thus conforming to the REST architectural style enables any kind of distributed
hypermedia system to have desirable emergent properties, such as performance, scalability, simplicity, modifiability,
visibility, portability, and reliability.

4.1.2 JSON - Javascript Object Notation

JSON, or JavaScript Object Notation, is a text-based open standard designed for human-readable data interchange. It
is derived from the JavaScript scripting language for representing simple data structures and associative arrays, called
objects. Despite its relationship to JavaScript, it is language-independent, with parsers available for many languages.3

The JSON format was originally specified by Douglas Crockford, and is described in RFC 4627. The official Internet
media type for JSON is application/json. The JSON filename extension is .json.

The JSON format is often used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative to XML.

Citations

4.2 Requests Library

Requests is an ISC Licensed HTTP library, written in Python, for human beings.1

Requests takes all of the work out of Python HTTP/1.1 — making your integration with web services seamless.
There’s no need to manually add query strings to your URLs, or to form-encode your POST data. Keep-alive and
HTTP connection pooling are 100% automatic, powered by urllib3, which is embedded within Requests.

3 http://en.wikipedia.org/wiki/JSON
1 http://docs.python-requests.org/

26 Chapter 4. Accessing RESTful APIs

http://opensource.org/licenses/ISC
https://github.com/shazow/urllib3
http://en.wikipedia.org/wiki/JSON
http://docs.python-requests.org/

Advanced Python Documentation, Release 0.3

4.3 Generate a Github OAuth2 Token

There are two ways to authenticate with the GitHub API: HTTP basic auth, and OAuth2.1 It is preferable to use
OAuth2, so your script can run without user input, and without storing your password.

The OAauth2 token can be sent in the request header, or as a parameter. We will send it as a header in later examples.

4.3.1 POST Request

First, we will prompt the user for username/password, and compose a POST request to the API. The request format is
documented in the OAuth section of the Github API docs.

1 GITHUB_API = 'https://api.github.com'
2

3

4 import requests
5 import json
6 from urlparse import urljoin
7

8

9 def main():
10 #
11 # User Input
12 #
13 username = raw_input('Github username: ')
14 password = raw_input('Github password: ')
15 #
16 # Compose Request
17 #
18 url = urljoin(GITHUB_API, 'authorizations')
19 payload = {}
20 res = requests.post(
21 url,
22 auth = (username, password),
23 data = json.dumps(payload),
24)
25 print res.text
26

27 if __name__ == '__main__':
28 main()

Let’s give it a try:

(class)$ python authtoken.py
Github username: jmcvetta
Github password: fooba

That’s not good - our password is shown when we type it!

4.3.2 Password Privacy

We can protect the user’s privacy while inputting their password with the getpass library. While we’re at it, we can
prompt the user for an optional note to describe how this token will be used.

1 http://developer.github.com/v3/#authentication

4.3. Generate a Github OAuth2 Token 27

http://developer.github.com/v3/oauth/#create-a-new-authorization
http://developer.github.com/v3/#authentication

Advanced Python Documentation, Release 0.3

1 GITHUB_API = 'https://api.github.com'
2

3

4 import requests
5 import getpass
6 import json
7 from urlparse import urljoin
8

9

10 def main():
11 #
12 # User Input
13 #
14 username = raw_input('Github username: ')
15 password = getpass.getpass('Github password: ')
16 note = raw_input('Note (optional): ')
17 #
18 # Compose Request
19 #
20 url = urljoin(GITHUB_API, 'authorizations')
21 payload = {}
22 if note:
23 payload['note'] = note
24 res = requests.post(
25 url,
26 auth = (username, password),
27 data = json.dumps(payload),
28)
29 print res.text
30

31 if __name__ == '__main__':
32 main()

Let’s give it a try:

(class)$ python authtoken.py
Github username: jmcvetta
Github password:
Note (optional): admin script
{"scopes":[],"note_url":null,"created_at":"2012-10-21T05:32:30Z","url":"https://api.
→˓github.com/authorizations/744660","app":{"url":"http://developer.github.com/v3/
→˓oauth/#oauth-authorizations-api","name":"admin script (API)"},"updated_at":"2012-10-
→˓21T05:32:30Z","token":"a977026974077e83e593744aa9308422e92a26bd","note":"admin
→˓script","id":744660}

Seems to have worked! The response is a big JSON blob.

4.3.3 JSON Parsing

We can parse the JSON response and provide just the token, in nice human-readable form, to the user.

Explore the response data by setting a breakpoint and running our program in the debugger. Start by parsing res.
text into JSON, and examining the keys.

The token lives in the creatively-named field token. We will extract it and print it for the user.

28 Chapter 4. Accessing RESTful APIs

Advanced Python Documentation, Release 0.3

1 GITHUB_API = 'https://api.github.com'
2

3

4 import requests
5 import getpass
6 import json
7 from urlparse import urljoin
8

9

10 def main():
11 #
12 # User Input
13 #
14 username = raw_input('Github username: ')
15 password = getpass.getpass('Github password: ')
16 note = raw_input('Note (optional): ')
17 #
18 # Compose Request
19 #
20 url = urljoin(GITHUB_API, 'authorizations')
21 payload = {}
22 if note:
23 payload['note'] = note
24 res = requests.post(
25 url,
26 auth = (username, password),
27 data = json.dumps(payload),
28)
29 #
30 # Parse Response
31 #
32 j = json.loads(res.text)
33 token = j['token']
34 print 'New token: %s' % token
35

36 if __name__ == '__main__':
37 main()

Let’s give it a try:

(class)$ python authtoken.py
Github username: jmcvetta
Github password:
Note (optional): admin script
New token: 9c0e2ab295ee0e92130142ad3c90bbf5fe93642f

Bingo - it worked!

4.3.4 Error Handling

But what if we don’t type the right username/password combo?

(class)$ python authtoken.py
Github username: jmcvetta
Github password:
Note (optional):
Traceback (most recent call last):

4.3. Generate a Github OAuth2 Token 29

Advanced Python Documentation, Release 0.3

File "authtoken.2.py", line 46, in <module>
main()

File "authtoken.2.py", line 42, in main
token = j['token']

KeyError: 'token'

Gross.

Once again we can run our program in the debugger to explore the server’s response. It looks like we have a res.
status_code of 401. Any HTTP response code 400 or above indicates an error. It also looks like the server
helpfully provides a message field with an error message.

We can look for response codes >= 400 and present the user a friendly error message:

1 GITHUB_API = 'https://api.github.com'
2

3

4 import requests
5 import getpass
6 import json
7 from urlparse import urljoin
8

9

10 def main():
11 #
12 # User Input
13 #
14 username = raw_input('Github username: ')
15 password = getpass.getpass('Github password: ')
16 note = raw_input('Note (optional): ')
17 #
18 # Compose Request
19 #
20 url = urljoin(GITHUB_API, 'authorizations')
21 payload = {}
22 if note:
23 payload['note'] = note
24 res = requests.post(
25 url,
26 auth = (username, password),
27 data = json.dumps(payload),
28)
29 #
30 # Parse Response
31 #
32 j = json.loads(res.text)
33 if res.status_code >= 400:
34 msg = j.get('message', 'UNDEFINED ERROR (no error description from server)')
35 print 'ERROR: %s' % msg
36 return
37 token = j['token']
38 print 'New token: %s' % token
39

40 if __name__ == '__main__':
41 main()

Let’s give it a try:

30 Chapter 4. Accessing RESTful APIs

Advanced Python Documentation, Release 0.3

(class)$ python authtoken.py
Github username: jmcvetta
Github password:
Note (optional):
ERROR: Bad credentials

Now we have a friendly, useful program.

4.4 Lab – List Github Repositories

Let’s suppose we want to list all the Github repositories associated with the authenticated user.

Github defines several types of repository that can be listed:

• all

• owner

• public

• private

• member

Our application should query for all by default, but allow the user to specify a different type.

4.4.1 Argparse

A production quality command line utility will typically require the ability to accept arguments when it is called.
While it is possible to parse these arguments manually from sys.argv, the recommended technique is to use the
argparse library. Argparse is part of the Python standard library, and is very well documented.

Note: Argparse was introduced in Python 2.7. Prior versions of Python include an earlier library, optparse. Arg-
parse is intended as a full replacement for optparse, and so usage of the latter is deprecated.

4.4.2 Lab

File labs/rest_api/list_repos.py will get you started:

1 '''
2 Lab - List Repositories
3

4 Write a script that queries the Github API for repositories
5 belonging to the authenticated user.
6

7 For each repo, print out its name, its description, and the number
8 of open issues.
9 '''

10

11 API_TOKEN = 'YOUR_TOKEN_GOES_HERE'
12 VALID_TYPES = ['all', 'owner', 'public', 'private', 'member']
13

14 import requests
15 import argparse
16

17 def main():

4.4. Lab – List Github Repositories 31

http://docs.python.org/dev/library/argparse.html

Advanced Python Documentation, Release 0.3

18 parser = argparse.ArgumentParser(description='List Github repositories.')
19 parser.add_argument('-t', '--type',
20 nargs = 1,
21 dest = 'type',
22 default = 'all',
23 metavar = 'TYPE',
24 choices = VALID_TYPES,
25 help = 'What type of repos to list',
26)
27 args = parser.parse_args() # You can access the 'type' argument as args.type
28 #
29 # Use the authentication token we generated in the previous example
30 #
31 headers = {
32 'Authorization': 'token %s' % API_TOKEN
33 }
34 #
35 # Now, build a REST request, and parse the server's response...
36 #
37

38

39 if __name__ == '__main__':
40 main()

32 Chapter 4. Accessing RESTful APIs

CHAPTER 5

Django

5.1 What is Django?

Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design.1

Django focuses on automating as much as possible and adhering to the DRY principle.

5.2 Django Tutorial

We will follow a modified version of the standard Django Tutorial.

Todo

Include text of a modified (to include class based views, etc) Django tutorial.

1 http://djangoproject.com

33

http://djangoproject.com
https://docs.djangoproject.com/en/dev/intro/tutorial01/
http://djangoproject.com

Advanced Python Documentation, Release 0.3

34 Chapter 5. Django

CHAPTER 6

Work In Progress

This curriculum is a work in progress. Many sections are missing or incomplete. There may still be some TODOs:

Todo

Include text of a modified (to include class based views, etc) Django tutorial.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/advanced-
python/checkouts/latest/django/tutorial.rst, line 10.)

35

	Introduction
	Background Assumptions
	Resources

	Tool Setup
	System Packages
	Virtual Environments
	Python Packages
	Aptana Studio
	Simulating Remote Hosts
	Lab Files

	Using Fabric for SSH
	fab Command
	Library Usage
	Lab – Average Uptime

	Accessing RESTful APIs
	What is a RESTful API?
	Requests Library
	Generate a Github OAuth2 Token
	Lab – List Github Repositories

	Django
	What is Django?
	Django Tutorial

	Work In Progress

