

Disclaimer: sparkles not included

SDN Internet Router
(sir)

Network Engineer @Spotify

● +10 years in the network industry
● Python enthusiastic
● Automation junkie
● Swedish (slow)learner

Myself:
David Barroso

● Cheap
● Scalable
● Extensible
● Intelligent
● Open

SDN Internet Router
(sir)

● Expensive
● Not very extensible
● Not very intelligent
● Thousands of features (that you probably don’t need)
● Did I say expensive?

Internet Routers
today

● Maybe...
● Maybe not.

Do you really need
them?

Why do we have
them?

● +500k prefixes
● Too many to fit them in devices with commodity ASICs (Trident 2 supports 32k

and ARAD 64k prefixes)

The Internet

● Do you carry an Atlas?
● Or do you carry a local map?

So…

● Why do I need all the prefixes?
● What if I only install the prefixes I really need?

When you travel...

● To use a cheap and programmable device
● Compute which prefixes I really need
● Install only those prefixes without hitting any hardware limits

Instead I am going...

Two key components:

● pmacct - Flow collector that can aggregate flows by network, AS, BGP peer, etc…
BGP information can be obtained by peering with other routers.

http://www.pmacct.net/

● Selective route download - Feature that allows you to pick a subset of the routes
on the RIB and install them on the FIB. Available in Cumulus (bird), Arista*, Juniper,
some Cisco routers and probably others.

* If you plan to try on Arista contact your SE.

Before we start...

http://www.pmacct.net/

Overview

● Transit provider is my default exit. They
announce the default route, which is installed
on the FIB of the Internet Router.

● By peering I am able to offload traffic from
my transit provider. They send their prefixes,
which are not installed on the FIB by default.
Instead they are sent to the BGP controller.

● sFlow information is sent from the Internet
Router to the BGP controller.

● As traffic traverses my Internet Router the
BGP controller instructs the Internet Router
to install all necessary prefixes to offload
traffic from the Transit Provider to the Peers.

Time 0

● The Internet Router only knows about the
default route coming from the Transit
provider, so all traffic exits the DC via this
path.

● The Internet Router announces all the DC
prefixes to everybody, so inbound traffic can
come from any path.

● The Internet router starts sending sFlow and
BGP information to the BGP controller

Time 1..N

● The BGP controller computes the topN
prefixes according to the BGP feed and the
flow information and instructs the Internet
Router to install those prefixes.

● The Internet Router now have more routes
pointing to its peers so traffic start flowing on
that direction.

BGP Controller

BGP Controller
Extensibility

cat etc/config.yaml

max_age: 48
csv_delimiter: ";"
max_routes: 30000
min_bytes: 0
packet_sampling: 10000

… (output omitted)

plugins:
 - 'prefix_data.SavePrefixData'
 - 'statistics.RouteStatistics'
 - 'statistics.OffloadedBytes'
 - 'bird.Bird'

… (output omitted)

● The BGP controller by default only
computes top prefixes and passes all
the information used and the results to
‘plugins’.

● Plugins can do with this information
whatever they want:
● Build reports

● Build a prefix list and send it to a
router.

● Compare possible next-hops, AS

PATH… with a monitoring tool to

choose peers based on reliability,
latency, company policies, etc...

BGP Controller
Scalability

BGP Controller
Reliability

● We are not inventing or re-inventing any protocol
● We are just modifying BGP automatically to match

our traffic needs.
● If pmacct or the BGP controller fails, things will

work as they were working before the failure.

Appendix: Bird
Configuration
Example

This file includes the
allow_prefixes() method, which will decide
which prefixes to install on the routing
table.

include "/etc/allow_prefixes.bird";

protocol kernel {
 export filter {

 if from = 10.0.0.1 then accept;
 if allow_prefixes() then accept;
 reject;
 };
}
Transit Provider
protocol bgp {
 local as 65010;
 neighbor 10.0.0.1 as 65001;
}

 # Peer
protocol bgp {
 local as 65010;
 neighbor 10.0.0.2 as 65002;
}
#pmacct/bgp_controller
protocol bgp {
 local as 65534;
 neighbor 192.168.231.1 as 65534;
 add paths tx;

 # We send only prefixes from our peers
 export filter {
 if from = 10.0.0.2 then accept;
 reject;
 };
}

Appendix: pmacct
Configuration
Example

daemonize: True

plugins: print[simpleoutput]

print_output_file[simpleoutput]: /spotify/pmacct-1.5.0/output/simpleoutput-%Y%m%d-%H%M.txt
print_latest_file[simpleoutput]: /spotify/pmacct-1.5.0/output/simpleoutput-latest.txt
files_umask: 022
print_output[simpleoutput]: csv
print_output_separator[simpleoutput]: ;
print_refresh_time[simpleoutput]: 3600
print_output_file_append[simpleoutput]: true
print_history[simpleoutput]: 1h
print_history_roundoff[simpleoutput]: h

… continues

Appendix: pmacct
Configuration
Example

… continues

aggregate: dst_net, dst_mask

bgp_daemon: true
bgp_daemon_ip: 192.168.231.2
bgp_daemon_max_peers: 2
bgp_agent_map: /spotify/pmacct-1.5.0/etc/agent_to_peer.map
bgp_table_dump_file: /spotify/pmacct-1.5.0/output/bgp-$peer_src_ip-%H%M.txt
bgp_table_dump_refresh_time: 60

sfacctd_as_new: bgp
sfacctd_net: bgp
sfacctd_port: 9999
sfacctd_ip: 192.168.231.2

Email: dbarroso@spotify.com
URL: https://github.com/dbarrosop/sir

Questions?

mailto:dbarroso@spotify.com
https://github.com/dbarrosop/sir

Check out spotify.com/jobs or
@Spotifyjobs for more information.

Want to join the
band?

http://www.spotify.com/jobs

