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1. INTRODUCTION

For anyone who has ever studied quantum mechanics, it is well-known that the Schrödinger equation can be very
difficult to solve analytically. Occasionally, certain complex systems allow for approximate solutions through the
use of the WKB method or pertubation theory, but the vast majority of physical systems that occur in nature
are far too complicated to ever solve by hand. Therefore, it is desirable to enlist the aid of computers when
searching for solutions to quantum systems.

One of the more common methods for numerically solving a time-dependent partial differential equation
(PDE) is the finite-difference time-domain algorithm, or FDTD. The basic idea behind FDTD is to discretize the
PDE in space and time and then approximate the derivatives by using finite differences. Essentially, the PDE
is allowed to play itself out by gradually incrementing the time variable in discrete steps. The power behind
FDTD is its simplicity of implementation and its ability to visualize the solutions as they act out in both space
and time.

This paper derives the numerical update equations for the one-dimensional Schrödinger equation and then
solves for the stability conditions on their use. Several examples are also given to demonstrate the FDTD in
action.

2. UPDATE EQUATIONS

The one-dimensional time-dependent Schrödinger equation is given as

jh̄
∂ψ(x, t)
∂t

= − h̄2

2m
∂2ψ(x, t)
∂x2

+ V (x)ψ(x, t) , (1)

where ψ(x, t) is the wave function in space and time, V (x) is the potential function, m is the particle mass, and
h̄ is Plank’s constant. Because complex-valued arithmetic can be numerically costly, it is helpful to first break
up the wave function into real and imaginary components such that

ψ(x, t) = ψR(x, t) + jψI(x, t) . (2)

This step allows us to treat each component seperately and perform only real-valued computations with each
part. Plugging the real and imaginary components back into the Schrödinger equation thus produces two coupled
partial differential equations of the form

h̄
∂ψR(x, t)

∂t
= − h̄2

2m
∂2ψI(x, t)

∂x2
+ V (x)ψI(x, t) , (3)

h̄
∂ψI(x, t)

∂t
= +

h̄2

2m
∂2ψR(x, t)

∂x2
− V (x)ψR(x, t) . (4)



The next step is to define a mesh, which is a discrete set of grid points that sample the wave function in
space and time. If each spatial point is separated by a distance ∆x and each temporal point by ∆t, then the
mesh points are given by

x` = `∆x , and (5)
tn = n∆t , (6)

where 0 ≤ n ≤ N and 0 ≤ ` ≤ L. The wave function at a specific grid point can now be conveniently defined in
terms of a stencil, which is a short-hand notation given by

ψ(x`, tn) = ψn(`) . (7)

With the wave function sampled on a discrete grid, the derivatives must now be approximated by using
finite-differences. For convenience, it helps to define the imaginary part of the wave function to exist at half-step
intervals from the real part. This allows us to use the central-difference method for the time derivatives, which
is more accurante than a forward- or backward-difference method. The time derivative on the real-valued wave
function is therefore given by

∂ψR(x`, tn+1/2)
∂t

≈
ψn+1

R (`)− ψn
R(`)

∆t
. (8)

Similarly, the time derivative on the imaginary-valued wave function is found to be

∂ψI(x`, tn)
∂t

≈
ψ

n+1/2
I (`)− ψ

n−1/2
I (`)

∆t
. (9)

Applying a central-difference on the spatial derivative gives an approximation to the second-partial with the
form

∂2ψR(x`, tn)
∂x2

≈ ψn
R(`+ 1)− 2ψn

R(`) + ψn
R(`− 1)

∆x2
, (10)

with a similar expression for the imaginary component at the (n+1/2) time step. Plugging these approximations
back into Equations 3 and 4 then gives

h̄

∆t
[
ψn+1

R (`)− ψn
R(`)

]
= − h̄2

2m∆x2

[
ψ

n+1/2
I (`+ 1)− 2ψn+1/2

I (`) + ψ
n+1/2
I (`− 1)

]
+ V (`)ψn+1/2

I (`) ,

h̄

∆t

[
ψ

n+1/2
I (`)− ψ

n−1/2
I (`)

]
= +

h̄2

2m∆x2
[ψn

R(`+ 1)− 2ψn
R(`) + ψn

R(`− 1)]− V (`)ψn
R(`)

Note how the real-valued derivative is centered at the time step t = (n + 1/2)∆t, while the imaginary-valued
derivative is centered at t = n∆t.

In practice, the function ψn+1
R (`) is often called the future state of the real-valued wave function. Similarly,

the function ψ
n+1/2
I (`) is future state of the imaginary-valued wave function, while ψn

R(`) and ψ
n−1/2
I (`) are

known as the present states. The goal of the FDTD algorithm is to solve for an unknown future state of the
system in terms of the known present states. Thus, the final step is to solve for ψn+1/2

I (`) and ψn+1
R (`), which

are found to be

ψ
n+1/2
I (`) = +c1 [ψn

R(`+ 1)− 2ψn
R(`) + ψn

R(`− 1)]− c2V (`)ψn
R(`) + ψ

n−1/2
I (`) , (11)

ψn+1
R (`) = −c1

[
ψ

n+1/2
I (`+ 1)− 2ψn+1/2

I (`) + ψ
n+1/2
I (`− 1)

]
+ c2V (`)ψn+1/2

I (`) + ψn
R(`) , (12)

where the constants c1 and c2 are given as

c1 =
h̄∆t

2m∆x2
, (13)

c2 =
∆t
h̄

. (14)



Together, Equations 12 and 11 are called update equations because they give the future state of the wave
function at a point ` in terms of nearby points in space and time. The FDTD algorithm iterates over half-step
intervals in time by first solving for ψn+1/2

I (`) and then ψn+1
R (`) at every value of `. The time step n increments

with each iteration until finally terminating when n = N . The result is a simulated time-progression of the wave
function along a discretized domain in space and time.

3. STABILITY

Suppose the potential function is a constant so that V (`) = V0. Solutions to the Schrödinger equation then take
on the form of free particles with wave functions given by

ψ(x, t) = A1e
j(kx−ωt) +A2e

j(kx+ωt) , (15)

where k is the particle wavenumber and ω is the angular frequency. Without any loss of generality, consider the
simple case of a free particle traveling to the right where A1 = 1 and A2 = 0. Thus, the real and imaginary
components are simply

ψR(x, t) = cos(kx− ωt) ,
ψI(x, t) = sin(kx− ωt) .

In terms of the FDTD stencil, these can be written as

ψn
R(`) = cos(k`∆x− ωn∆t) , (16)
ψn

I (`) = sin(k`∆x− ωn∆t) . (17)

For convenience, let us now define A = k`∆x− ωn∆t so that

ψn
R(`) = cos(A) , (18)
ψn

I (`) = sin(A) . (19)

Furthermore, define the constants B = k∆x and C = ω∆t so that

ψn+1
R (`) = cos(A− C) , (20)

ψ
n+1/2
I (`) = sin(A− C/2) , (21)

ψ
n+1/2
I (`+ 1) = sin(A+B − C/2) , (22)

ψ
n+1/2
I (`− 1) = sin(A−B − C/2) . (23)

Next, plug Equations 18 - 23 back into Equation 12 to find

cos(A−C) = −c1 [sin(A+B − C/2)− 2 sin(A− C/2) + sin(A−B − C/2)] + c2V0 sin(A−C/2) + cos(A) . (24)

The importance of Equation 24 is that it places constraints on the available choices for c1 and c2. If these
constants are not properly defined, then Equation 24 can only be satisfied by allowing for imaginary components
to A, B, or C. Consequently, a real component is introduced to the exponent of Equation 15, and the wave
function increases without bound. When this happens, the simulation is said to be unstable and ”blows up.”

In order to maintain a stable simulation, it is necessary to choose the constants c1 and c2 such that Equation
24 is satisfied by only real values of A, B, and C. The simplest way to do this is by choosing a time step ∆t
that prevents the right-hand side from ever exceeding the natural bounds of the left-hand side. In other words,
we must enforce the condition that

−1 ≤ cos(A− C) ≤ 1 . (25)



The upper bound of this expression occurs when cos(A−C) = 1, or when A = C. Plugging into the right-hand
side of Equation 24 and rearranging therefore gives

1− cos(A) ≥ −c1 [sin(A+B − C/2)− 2 sin(A− C/2) + sin(A−B − C/2)] + c2V0 sin(A− C/2) . (26)

Next, we note that the extreme value on the left-hand side of this expression occurs when cos(A) = −1. Under
this conditon, several simplifications can be made to the right-hand side, and the final result is found to be

2 ≥ −c1 [2 cos(B)− 2] + c2V0 . (27)

Once again, we note that the extreme value of the right-hand side occurs when cos(B) = −1, which gives

2 ≥ 4c1 + c2V0 , (28)

or equivalently

2 ≥ 2h̄∆t
m∆x2

+
∆tV0

h̄
. (29)

Finally, solve for ∆t to find

∆t ≤ h̄
h̄2

m∆x2 + V0
2

. (30)

The upper bound on ∆t is called the critical time step, ∆tc, and represents the maximum allowable time
increment that will maintain a stable simulation. Any value of ∆t greater than ∆tc will introduce unbounded
components into the simulation. If the potential function is not a constant value over all x, then stability is
ensured by simply replacing V0 with the maximum potential over the simulation interval.

4. EXAMPLE: QUANTUM TUNNELING

One of the more interesting predictions of quantum mechanics is that a particle can penetrate through a potential
barrier even if the potential is greater than the kinetic energy of the particle. This phenomenon, called tunneling,
is easily demonstrated through the FDTD algorithm. To begin, we define an initial value for the wave packet
to represent a free particle traveling to the right (see Equation 15) and then localize it in space by multiplying
with a Gaussian envelope. The mean kinetic energy of the particle is then related to the wavenumber by the
expression

KE =
h̄2k2

2m
. (31)

For a potential barrier of thickness T , the potential function is simply defined as V (x) = V0, where −T/2 ≤ x ≤
T/2, and V0 is some potential energy that is only slightly greater than KE.

Figure 1 shows a simulated demonstration of just such a system. A wave packet with mean kinetic energy of
KE = 500 eV is sent towards a potential barrier with V0 = 600 eV. The grid step size is fixed at dx = 0.01 Å,
and the barrier thickness is set to T = 0.25 Å, or 25 grid points. The simulation domain consists of L = 3000
grid points, and the simulation was run for N = 12, 000 time steps. The figure shows four snapshots of the
simulation as it progressed in time. As the particle collides with the potential barrier, some of the wave function
is able to penetrate through while the rest is reflected. Thus, there is a finite probability for the particle to be
found on the right side of the barrier.
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Figure 1. Snapshots of a wave packet as it collides with a potential barrier. The particle has a kinetic energy of 500 eV
and the potential barrier is 600 eV. The thickness of the barrier is 0.25 Å(25 grid points), and some of the probability
penetrates to the other side.


