
THE OPENSUBMIT PROJECT
How to grade 1200 code submissions

Dr. Peter Tröger, Operating Systems Group, TU Chemnitz
 

(with Frank Feinbube, Bernhard Rabe, Kai Fabian)

https://github.com/troeger/opensubmit

https://github.com/troeger/opensubmit

PART I: PURPOSE
PART II: TECHNOLOGY

BACKGROUND
• University researcher and teacher, 13 years of experience

• Courses from 5 to 6000 participants

• Winter 2015/16:  
Embedded programming course with 300 students,  
~1200 code submissions to grade

• OpenSubmit developed + used at  
Hasso Plattner Institute Potsdam and TU Chemnitz

• Replaced Roundup-based solution (issue tracker)
3

THE ENVIRONMENT
• Homework assignments („Übungsblätter“)

• Often more important than the lecturing

• Students develop text, equations or code

• Written / printed paper, also e-mail and file transfer

• Tutors provide comments (and grade)

• May impact final course grade
4

5

Electronic
Submission

PROBLEM 1: FORMATS

• Students are way too creative

• C code as scanned picture or .docx

• Visual Studio / Eclipse project folder mess

• Archive formats you never heard about (.s7z) or don’t want (.rar)

• Endless dependencies on third-party header files

• Complete repos or third-party sources included

6

PROBLEM 2: REPRODUCIBILITY
• „Must be your fault, it definitely worked on my laptop.“

• „I have this weird compiler message, can you fix it?“

• „I submitted the wrong file, can you replace foo.c with bar.cpp?“

• „We rely on strangelib.so. It’s written in NoTeS/readme.docx.zip“  

• Tasks with special hardware (e.g. OpenCL)

• Test machine on the evening before deadline …
7

PROBLEM 3: GRADING
• Coordinate work of the teaching team

• Keep students informed about grades and comments

• Handle re-submissions and submission corrections

• Manage database of final scores

• Deal with cheaters

• Copying of code on test machines

• Stack-Overflow’ing

8

MOODLE?
• Moodle (and most other LMSs) are all-inclusive

• Online teaching, participant management, grading books,
collaboration, file management, calendar, ….

• Course owners need training. Seriously?

• Assignments are just a small part.

• Plugins for large PHP projects. Not fun.

• OpenSubmit is focussing on assignments only.
9

OPENSUBMIT PRINCIPLES
• I) Minimalism

• Don’t let teaching policies live in code

• Assignment rules vary widely in different institutions and groups

• Example: When and how form student groups.

• Create a tool for humans to implement these policies

• Reduced student interface.

• Clear workflows for teachers.

10

STUDENT UI

11

OPENSUBMIT PRINCIPLES
• II) Teacher-driven development (TDD)

• Develop capabilities ‚on-the-fly‘, focus on needs of correctors

• People sometimes call it user-centric, agile or design thinking

• Your development process must fit to that

12

winter 
term

summer  
term

winter 
term

summer  
term

winter 
term

winter 
term

TEACHER UI

13

EXAMPLE:
DUPLICATE DETECTION

• Good students don’t cheat, bad student cheat badly

• Solvable with half-smart MD5 calculation on student file uploads

• Results in duplicate report for correctors (minimalism policy)

• Added in the last semester in 2 weeks

• Future versions will rely on  
fuzzy content comparison

14

OPENSUBMIT PRINCIPLES
• III) Assignment validation

• Compile and validate
student file uploads

• Different tests and  
tests machines per assignment

• Direct feedback, chance for
withdrawal before deadline

• Dedicated full test for grading
after deadline

15

OpenSubmit
Web

Students

OpenSubmit
Exec

OpenSubmit
Exec

OpenSubmit
Exec

VALIDATION SCRIPT
• Something written by the

assignment creator

• Executor daemon downloads the
student submission and this script

• Must run the (compiled) student
code and print debug output

• STDOUT shown to student,  
error code as success indicator

• Full test works the same way

16

OpenSubmit
Web

Students

OpenSubmit
Exec

OpenSubmit
Exec

OpenSubmit
Exec

STUDENT UI

17

TEACHER UI

18

ASSIGNMENT
• Relates to a course

• Has a grading scheme, start time, hard deadline and description link

• May have a soft deadline

• May include compilation of file upload

• May have a validation script executing the student code

• May have a full test script executing the student code

• Has grading scheme as collection of arbitrary grading strings
19

SUBMISSION
• A submission is handed in by a single student

• Can declare group members, no group management (minimalism)

• Submission and results show up for all of them

• Whole submission can be explicitly withdrawn, not deleted

• Grading and grading notes visible when tutors triggered notification  

• Status from student and tutor perspective looks different
20

STATES

21

 CURRENT FEATURES
• Social login (SAML, OAuth, OpenID)

• Simple student front-end

• Compilation, validation and full test
on assignment-specific test machines

• Output of compilation and validation
scripts shown to students

• E-mail notification on state changes

• History of assignment file uploads

• Central overview of grading progress

• Rich tutor support:  
Archive preview, duplicate detection,
full tests, filtering

• All students notified at-once after
grading is completely finished

• Excel-style grading table

• (Usable) course archive download

22

1200 SUBMISSIONS?
• OpenSubmit supports teachers grading workflow

• Trivial work sharing in the teaching team

• Bad cheaters are already identified

• All student code is proven to work (validation script)

• Triggering an extra test is a mouse click away

• Progress alway visible
23

AUTO GRADING?
• University teachers would love that, especially with MOOCs

• Option 1: Students develop (blindly) against a test suite

• Option 2: Analyze code AST to derive some score

• Option 3: Check for OS-visible behaviors on execution

• Option 4: ???

• Very hard to generalize. Also a legal problem.

• Validation script concept allows all of them.

24

PART I: PURPOSE
PART II: TECHNOLOGY

OPENSUBMIT-WEB
• Django web application

• Started with Django 1.3, followed
all migrations up to recent 1.9

• Python 2.7 (sorry Martin),
mod_wsgi, Apache 2.4,
PostgreSQL

• Varying set of third-party code,
including JavaScript libs

• Some experiences over the years

26

OpenSubmit
Web

Students

OpenSubmit
Exec

OpenSubmit
Exec

OpenSubmit
Exec

EXPERIENCES:
THIRD-PARTY CODE

• Pro: Other people solve your existing problem

• Authentication, templating, API management, fancy UI, crypto, testing, …

• They fix the really bad bugs for you

• Con: Other people create your new problem

• Your environment is not their environment

• Even when you fix it, the pull request may take some time

• You must be willing to understand their code, too

27

EXPERIENCES:
THIRD-PARTY CODE

• Development vs. integration trade-off

• The maintenance problem is always there, but in different flavors

• Example: django-reversion vs. own model implementation

• Example: Django REST framework vs. custom HTTP API

• Lessons learned

• Popularity and age are good indicators (djangopackages.com)

• Avoid solutions with „advanced magic“

28

http://djangopackages.com

EXPERIENCES: 
DATA MIGRATION

• Database migration needed on model changes

• South was ok for that, Django>=1.7 support is even better

• They handle model migration, but data migration is your problem

• Lessons learned

• Create migration-friendly data models. You have only one try.

• Data attributes may later become 1:N relationships.

• Put more in queries and less in foreign keys (Django reverse lookup)
29

EXPERIENCES:
WEB AUTHENTICATION

• I hate separate accounts.

• There is only social login in this project.

• All universities anyway have their own single sign-on.

• python-social has pluggable backends and seamless Django integration

• Lessons learned

• If you change your authentication code base, hell breaks lose.

• Identity mapping based on e-mail no longer helps.

30

OPENSUBMIT-EXEC
• Python 3 script on test machines

• Download of validator and student  
code from predefined web host

• Called by cron, or manually for testing

• Isolation of student code through  
dedicated (virtual) machines

• Timeout for deadlocking student code, always report a result

• Handling of archive obscurities on the test machine, not on web server

31

OpenSubmit
Web

OpenSubmit
Exec

OpenSubmit
Exec

OpenSubmit
ExecStudents

EXPERIENCES:
PUSH VS. PULL

• Executors ask for jobs via HTTP

• Pulling high frequency cron job

• Push-receiving daemon would reduce  
latency, but increases complexity

• Trivial to operate, good enough  
for the scale of this application

• No inbound connectivity needed, outbound connectivity restricted

• Load peaks shortly before assignment deadline, handled by dynamic VM creation

32

OpenSubmit
Web OpenSubmit

Exec

OpenSubmit
Exec

OpenSubmit
ExecStudents

REGRETTABLE THINGS
• Some early design mistakes hunt you forever

• No central state transition (!) logic

• View-driven development, instead of API focus

• Half-baked configuration management

• Missing consideration of installation maintenance

• Missed chance for on-the-fly manual writing

• Ignorance of the async job queue problem.

33

THINGS DONE RIGHT
• Ignorance of performance issues (until they show up)

• Ignorance of PEP-8 (with 1,5 developers)

• Ignorance of test coverage for non-security stuff

• Minimalism policy

• Trivial UI for most users, complex UI for power users

• Making terrible code public.

• Python, Django, PostgreSQL. They just do the job.

34

DJANGO IS STILL AWESOME
• Fulfilled its promises from day one

• Fantastic documentation

• Powerful ORM query features

• Django Admin is the core of the teacher backend

• Stupidity protection layer (e.g. XSS, input sanitization)

• Healthy feature addition / deprecation ratio

• Trustworthy deprecation policy, no surprises on updates

35

BIKE-SHEDDING
• „… disproportionate weight to trivial issues“ [Wikipedia]

• In combination with users that see you as vendor, this is annoying

• Explain your prioritization policy

• Be the representative for all silent (student) users

• Remain grateful that they contribute ‚something‘

• There are books about that.

• It’s open source. Let them fork and see what happens.
36

FUTURE STEPS
• More test coverage (for the GitHub badge)

• More documentation (for the users)

• Test machines with Vagrant / Docker / libvirt

• „Hyper-agile cloud-scale load management“

• UI homogenization with (Django) Grappelli

• LTI provider

• Improved grading with sophisticated in-browser preview
37

CONCLUSION
• OpenSubmit brings the KISS principle to learning management

• Focus on one problem, and do this right

• Developing your own tools for daily work is fun, but …

• Consider that you will create  
technical debt.

• If you want people to use it,  
you need advertising.

38

39

OpenSubmit Web

• Python + Django
• PostgreSQL
• python-social

Students

OpenSubmit Exec

OpenSubmit Exec

OpenSubmit Exec

• Python + Linux

https://github.com/troeger/opensubmit

Student
Code

Validation
Script

https://github.com/troeger/opensubmit

