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1 Introduction

This tutorial shows the steps to build a breast tumour classifier using netDx
(Ref 1) by integrating gene expression and DNA copy number variants (CNV).
Based on the expression of 50 genes, breast tumours are traditionally classified
into one of four broad categories: Luminal A, Luminal B, HER2-enriched, and
basal-like (Ref 2). Each category of tumour has different prognostic value and
response to chemotherapy and/or hormone therapy. To keep things simple, in
this tutorial we build a binary classifier that discriminates between the Luminal
A and other subtypes. The Luminal A subtype is a low-grade tumour with good
prognosis; as it expresses the estrogen receptor, this type of tumour is a good
candidate for hormone therapy (Ref 3).

Through this exercise, we will use the following capabilities of netDx:

• Perform feature selection on the training set

• Assess performance on the test set

• Generate patient similarity networks from more than one type of data

The workflow is shown in Figure 1. The algorithm proceeds in two steps:

1. Feature selection: Two-thirds of the samples from each class are desig-
nated as training samples. Feature selection is carried out twice, once for
LumA samples and once for non-LumA samples. For details, see Ref 1.

2. Predicting classes of test samples: The other one-third of samples in each
class are designed as test samples. For each class, a single integrated
GeneMANIA network (or database) is constructed, comprising of those
networks feature-selected in the previous step. This network should con-
tain all patients in the database (train and test). A GeneMANIA query is
then run against each database, using training samples from the respective
class as query. This step obtains a class-similarity ranking for each test

1



sample. These ranks are then normalized and the patient is assigned to
the class for which it has a higher rank.

Figure 1: netDx workflow for a binary tumour classifier from gene expression
and CNV data.
A. Two sets of patient similarity networks are generated: the first based on
correlation of gene expression in cellular pathways (magenta), and the second
based on shared overlap of CNVs in cellular pathways (teal). Each datatype
generates 1,000-2,000 networks, and these are integrated into a single database
by GeneMANIA.
B. Feature selection is separately carried out for the ‘LumA’ class for the ‘other’
class. A GeneMANIA query is run on the integrated database is queried 10
times; each time a different 9/10th of the training “+” samples is used as query.
A network’s score is the frequency with which GeneMANIA marks it as being
informative. Networks scoring 9 or 10 out of 10 are feature selected. Before
patient classification, two enriched databases are constructed (orange and grey
cylinders); each contain feature selected nets and train as well as test samples.
C. Patient similarity to a class is ranked by running a query against the class
database; this is done once per class. Test patients are assigned to the class for
which they have the highest-ranking similarity.
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2 Set up environment

A multi-core compute node is highly recommended.

rm(list=ls())

# Change this to a local directory where you have write permission

outDir <- "~/tmp/TCGA_BRCA"

numCores <- 8L # num cores available for parallel processing

GMmemory <- 4L # java memory in Gb

cutoff <- 9L # score cutoff for feature-selected networks

TRAIN_PROP <- 0.67 # fraction of samples to use for training

if (file.exists(outDir)) unlink(outDir,recursive=TRUE)

dir.create(outDir)

Load the netDx software and data packages. Finally, load the breast cancer
dataset.

require(netDx)

## Loading required package: netDx

## Loading required package: bigmemory

## Loading required package: bigmemory.sri

## Loading required package: foreach

## foreach: simple, scalable parallel programming from Revolution

Analytics

## Use Revolution R for scalability, fault tolerance and more.

## http://www.revolutionanalytics.com

## Loading required package: doParallel

## Loading required package: iterators

## Loading required package: parallel

## Loading required package: combinat

##

## Attaching package: ’combinat’

## The following object is masked from ’package:utils’:

##

## combn

## Loading required package: GenomicRanges

## Loading required package: BiocGenerics

##

## Attaching package: ’BiocGenerics’

## The following objects are masked from ’package:parallel’:

##

## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
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## clusterExport, clusterMap, parApply, parCapply, parLapply,

## parLapplyLB, parRapply, parSapply, parSapplyLB

## The following object is masked from ’package:stats’:

##

## xtabs

## The following objects are masked from ’package:base’:

##

## Filter, Find, Map, Position, Reduce, anyDuplicated, append,

## as.data.frame, as.vector, cbind, colnames, do.call,

## duplicated, eval, evalq, get, intersect, is.unsorted, lapply,

## mapply, match, mget, order, paste, pmax, pmax.int, pmin,

## pmin.int, rank, rbind, rep.int, rownames, sapply, setdiff,

## sort, table, tapply, union, unique, unlist, unsplit

## Loading required package: S4Vectors

## Loading required package: stats4

## Loading required package: IRanges

## Loading required package: GenomeInfoDb

## Loading required package: ROCR

## Loading required package: gplots

##

## Attaching package: ’gplots’

## The following object is masked from ’package:IRanges’:

##

## space

## The following object is masked from ’package:stats’:

##

## lowess

## Loading required package: pracma

##

## Attaching package: ’pracma’

## The following object is masked from ’package:combinat’:

##

## fact

## Loading required package: RColorBrewer

require(netDx.examples)

## Loading required package: netDx.examples

data(TCGA_BRCA)
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3 Split data into training and test sets

subtypes<- c("LumA")

pheno$STATUS[which(!pheno$STATUS %in% subtypes)] <- "other"

subtypes <- c(subtypes,"other") # add residual

pheno$TT_STATUS <- splitTestTrain(pheno,

pctT = TRAIN_PROP,setSeed = 42,predClass = "LumA" )

## Setting seed for reproducibility: 42

## IS_TRAIN

## STATUS TRAIN TEST

## LumA 103 51

## other 129 65

## # training: N=232 (LumA = 103, (other) = 129)

## # test: N=116 (LumA = 51, (other) = 65)

4 Create patient similarity networks

Figure 1A shows the workflow for this step. The goal is to create input networks
for all possible predictors, before proceeding to feature selection (next section).
Note that as our goal is feature selection, only the training samples are used to
generate input networks here.

We limit CNV and gene expression data to the samples for which we have
labels and keep only the data for training samples.

pheno_FULL <- pheno

xpr_FULL <- xpr

cnv_FULL <- cnv_GR

pheno <- subset(pheno,TT_STATUS %in% "TRAIN")

xpr <- xpr[,which(colnames(xpr)%in% pheno$ID)]

cnv_GR <- cnv_GR[which(cnv_GR$ID %in% pheno$ID)]
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4.1 Lists of pathways

First we create a list of pathways using a .gmt file with pathway definitions
from curated databases (Reactome, HumanCyc, Panther,etc.,)

pathFile <- sprintf("%s/extdata/Human_160124_AllPathways.gmt",

path.package("netDx.examples"))

pathwayList <- readPathways(pathFile)

## ---------------------------------------

## File: Human_160124_AllPathways.gmt

##

## Read 2760 pathways in total, internal list has 2712 entries

## FILTER: sets with num genes in [10, 500]

## => 911 pathways excluded

## => 1801 left

head(pathwayList)

## $GUANOSINE_NUCLEOTIDES__I_DE_NOVO__I__BIOSYNTHESIS

## [1] "NME7" "NME6" "RRM2B" "GMPS" "NME2" "NME3" "NME4"

## [8] "NME5" "RRM2" "NME1" "GUK1" "RRM1" "IMPDH2" "IMPDH1"

##

## $RETINOL_BIOSYNTHESIS

## [1] "RDH10" "DHRS4" "LRAT" "LIPC" "CES5A" "DHRS9" "RDH11" "DHRS3"

## [9] "CES1" "RBP1" "CES4A" "RBP2" "PNLIP" "RBP5" "RBP4" "CES2"

##

## $`MUCIN_CORE_1_AND_CORE_2__I_O__I_-GLYCOSYLATION`

## [1] "GALNT1" "GCNT4" "GALNT7" "GCNT3" "GCNT7" "GALNT6" "GALNT4"

## [8] "GALNT5" "ST3GAL2" "ST3GAL1" "ST3GAL4" "GALNT10" "GALNT15" "GALNTL6"

## [15] "B3GNT3" "GALNT16" "GALNT18" "GALNT11" "GALNT12" "GCNT1" "C1GALT1"

## [22] "GALNT13" "GALNT14" "WBSCR17" "GALNT8" "GALNT9" "GALNT2" "GALNT3"

##

## $`SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM`

## [1] "MINPP1" "INPP5A" "INPP5B" "INPP5K" "INPP5J" "ITPKA" "PTEN"

## [8] "INPP5D" "IPMK" "SYNJ2" "INPP5F" "IMPA1" "INPP1" "INPPL1"

## [15] "IMPA2" "IMPAD1" "ITPKC" "OCRL" "SYNJ1" "ITPKB"

##

## $`D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_DEGRADATION`

## [1] "INPP5A" "INPP5B" "INPP5K" "INPP5J" "SYNJ2" "INPP5F" "IMPA1"

## [8] "INPP1" "INPPL1" "IMPA2" "IMPAD1" "OCRL" "SYNJ1"

##

## $MRNA_CAPPING

## [1] "CCNH" "RNGTT" "MNAT1" "GTF2F1" "GTF2F2" "SUPT5H" "ERCC2"

## [8] "ERCC3" "POLR2A" "POLR2B" "POLR2C" "POLR2D" "POLR2I" "POLR2J"

## [15] "POLR2K" "POLR2L" "POLR2E" "POLR2G" "POLR2F" "NCBP2" "POLR2H"

## [22] "RNMT" "NCBP1" "GTF2H2" "GTF2H1" "CDK7" "GTF2H3" "GTF2H5"

## [29] "GTF2H4"
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4.2 Gene expression data

From gene expression data, we create one network per cellular pathway. Similar-
ity between two patients is defined as the Pearson correlation of the expression
vector; each network is limited to genes for the corresponding pathway.

The function that generates the networks from submatrices of the gene ex-
pression data is makePSN NamedMatrix(). In this case, we are generating “pro-
files”, or simply writing submatrices corresponding to the pathways (note the
writeProfiles=TRUE argument). As these profiles will create completely con-
nected networks with (N choose 2) edges, weaker edges will first be pruned
for computational feasibility. We use GeneMANIA to “sparsify” the networks
in the GM createDB() subroutine. Note that netList contains the names of
networks, rather than the contents; the profiles are written to profDir. Profile
file names end with .profile.

profDir <- sprintf("%s/profiles",outDir)

netDir <- sprintf("%s/networks",outDir)

netList <- makePSN_NamedMatrix(xpr, rownames(xpr),

pathwayList,profDir,verbose=FALSE,

numCores=numCores,writeProfiles=TRUE)

netList <- unlist(netList)

head(netList)

## [1] "GUANOSINE_NUCLEOTIDES__I_DE_NOVO__I__BIOSYNTHESIS.profile"

## [2] "RETINOL_BIOSYNTHESIS.profile"

## [3] "MUCIN_CORE_1_AND_CORE_2__I_O__I_-GLYCOSYLATION.profile"

## [4] "SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM.profile"

## [5] "D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_DEGRADATION.profile"

## [6] "MRNA_CAPPING.profile"

4.3 Copy number variants

Similarly, we construct networks based on shared overlap of CNVs. For each
cellular pathway, we create a network consisting of patients with CNVs in the
member genes of that pathway (or gene-set). The edge weight here is binary; all
patients in the network have an edge weight of one. Those not in the network
implicitly have a weight of zero.

Genomic events need to first be mapped to unit variables before being
grouped into sets or pathways; here, ranges of CNV “events” need to be labelled
by the gene which these overlap. This mapping is achieved by mapNamedRangesToSets().
The function used to construct networks from genomic events is makePSN RangeSets().
As with the gene-expression nets, CNV nets are written to profDir. All input
networks must be in the same directory. Interaction network names end with
cont.txt.
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data(genes)

gene_GR <- GRanges(genes$chrom,

IRanges(genes$txStart,genes$txEnd),

name=genes$name2)

path_GRList <- mapNamedRangesToSets(gene_GR,pathwayList)

names(path_GRList) <- paste("CNV_",names(path_GRList),sep="")

## warning: this step can take 2-5 minutes depending on the

## number of processes running in parallel

netList2 <- makePSN_RangeSets(cnv_GR, path_GRList,profDir,verbose=F)

## LOCUS_NAMES column not provided; computing overlap of patients

## with regions

## * Preparing patient-locus matrix

## 232 unique patients, 9127 unique locus symbols

##

## ......................

## ................

cat(sprintf("CNV: Got %i networks\n",length(netList2)))

## CNV: Got 1622 networks

Let’s take a look at CNV-based networks:

head(unlist(netList2))

## [1] "CNV_RETINOL_BIOSYNTHESIS_cont.txt"

## [2] "CNV_MUCIN_CORE_1_AND_CORE_2__I_O__I_-GLYCOSYLATION_cont.txt"

## [3] "CNV_SUPERPATHWAY_OF_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_METABOLISM_cont.txt"

## [4] "CNV_D-_I_MYO__I_-INOSITOL__1,4,5_-TRISPHOSPHATE_DEGRADATION_cont.txt"

## [5] "CNV_MRNA_CAPPING_cont.txt"

## [6] "CNV_GLUTATHIONE-MEDIATED_DETOXIFICATION_cont.txt"

4.4 Integrate input nets into GeneMANIA database

Once all our patient networks are constructed, these are integrated into a single
GeneMANIA database for feature selection.

# now create database

dbDir <- GM_createDB(profDir, pheno$ID, outDir,numCores=numCores)

## Got 3423 networks

## * Creating placeholder files

## * Populating database files, recoding identifiers

## * Converting profiles to interaction networks

## user system elapsed
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## 5.356 0.372 585.401

## Got 3423 networks from 3423 profiles

## * Build GeneMANIA index

## * Build GeneMANIA cache

## * Cleanup

5 Feature selection

Figure 1B shows the schematic for feature selection. The goal of this step is to
extract the networks that are most predictive of a given class. For each subtype,
here ”LumA” and ”other”, feature selection is performed once (the large outer
for loop). The key functions are:

• GM runCV featureSet(), which runs the cross-validation with successive
GeneMANIA queries

• GM networkTally(), which loops over all network rank files (or NRANK
files) and computes the network score

## repeat process for each class

for (g in subtypes) {
pDir <- sprintf("%s/%s",outDir,g)

if (file.exists(pDir)) unlink(pDir,recursive=TRUE)

dir.create(pDir)

cat(sprintf("\n******\nSubtype %s\n",g))
pheno_subtype <- pheno

## label patients not in the current class as a residual

pheno_subtype$STATUS[which(!pheno_subtype$STATUS %in% g)] <- "nonpred"

## sanity check

print(table(pheno_subtype$STATUS,useNA="always"))

resDir <- sprintf("%s/GM_results",pDir)

## query for feature selection comprises of training

## samples from the class of interest

trainPred <- pheno$ID[which(pheno$STATUS %in% g)]

# Cross validation

GM_runCV_featureSet(trainPred, resDir, dbDir$dbDir,

nrow(pheno_subtype),verbose=T, numCores=numCores,

GMmemory=GMmemory)

# patient similarity ranks
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prank <- dir(path=resDir,pattern="PRANK$")

# network ranks

nrank <- dir(path=resDir,pattern="NRANK$")

cat(sprintf("Got %i prank files\n",length(prank)))

# Compute network score

pTally <- GM_networkTally(paste(resDir,nrank,sep="/"))

head(pTally)

# write to file

tallyFile <- sprintf("%s/%s_pathway_CV_score.txt",resDir,g)

write.table(pTally,file=tallyFile,sep="\t",col=T,row=F,quote=F)
}
##

## ******

## Subtype LumA

##

## LumA nonpred <NA>

## 103 129 0

## Writing GM queries: Setting seed for reproducibility: 42

## Read 103 IDs

## 10-fold CV

## Each iter will sample 92 records, 10 will be test

## chunk 1: 10 test (1-10); 93 query

## chunk 2: 10 test (11-20); 93 query

## chunk 3: 10 test (21-30); 93 query

## chunk 4: 10 test (31-40); 93 query

## chunk 5: 10 test (41-50); 93 query

## chunk 6: 10 test (51-60); 93 query

## chunk 7: 10 test (61-70); 93 query

## chunk 8: 10 test (71-80); 93 query

## chunk 9: 10 test (81-90); 93 query

## chunk 10: 13 test (91-103); 90 query

## 1 2 3 4 5 6 7 8 9 10 Got 10 prank files

##

## ******

## Subtype other

##

## nonpred other <NA>

## 103 129 0

## Writing GM queries: Setting seed for reproducibility: 42

## Read 129 IDs

## 10-fold CV

## Each iter will sample 116 records, 13 will be test

## chunk 1: 13 test (1-13); 116 query

## chunk 2: 13 test (14-26); 116 query
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## chunk 3: 13 test (27-39); 116 query

## chunk 4: 13 test (40-52); 116 query

## chunk 5: 13 test (53-65); 116 query

## chunk 6: 13 test (66-78); 116 query

## chunk 7: 13 test (79-91); 116 query

## chunk 8: 13 test (92-104); 116 query

## chunk 9: 13 test (105-117); 116 query

## chunk 10: 12 test (118-129); 117 query

## 1 2 3 4 5 6 7 8 9 10 Got 10 prank files

6 Rank test patients using trained model

Following feature selection (previous section), we have identified the networks
that are predictive of our two classes of interest: LumA and other. For each
of these classes, we now create a single GeneMANIA database comprising only
of the feature selected nets ; this is equivalent to our trained model for each
class. We rank the similarity of a test patient to each class via a GeneMANIA
query; the query consists of training samples from the corresponding class. For
example:

• RankLumA: GeneMANIA rank for similarity to training ‘LumA’ samples

• Rankother: GeneMANIA rank for similarity to training ‘other’ samples

• Final rank = max(RankLumA, Rankother)

The following code block does all these steps:

1. makePSN NamedMatrix, makePSN RangeSets: Create patient nets for the
feature-selected networks using both training and test samples

2. GM createDB: Create the new database from the resulting nets

3. runGeneMANIA: Run the query with the training samples

4. GM getQueryROC: Get patient rankings

# now create GM databases for each class

# should contain train + test patients

# and be limited to nets that pass feature selection

pheno <- pheno_FULL

predRes <- list()

for (g in subtypes) {
pDir <- sprintf("%s/%s",outDir,g)

# get feature selected net names

pTally <- read.delim(
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sprintf("%s/GM_results/%s_pathway_CV_score.txt",pDir,g),

sep="\t",h=T,as.is=T)
pTally <- pTally[which(pTally[,2]>=cutoff),1]

pTally <- sub(".profile","",pTally)

pTally <- sub("_cont","",pTally)

cat(sprintf("%s: %i pathways\n",g,length(pTally)))
profDir <- sprintf("%s/profiles",pDir)

# prepare nets for new db

tmp <- makePSN_NamedMatrix(xpr_FULL,rownames(xpr),

pathwayList[which(names(pathwayList)%in% pTally)],

profDir,verbose=F,numCores=numCores,writeProfiles=TRUE)

tmp <- makePSN_RangeSets(cnv_FULL,

path_GRList[which(names(path_GRList)%in% pTally)],

profDir,verbose=FALSE)

# create db

dbDir <- GM_createDB(profDir,pheno$ID,pDir,numCores=numCores)

# query of all training samples for this class

qSamps <- pheno$ID[which(pheno$STATUS %in% g & pheno$TT_STATUS%in%"TRAIN")]

qFile <- sprintf("%s/%s_query",pDir,g)

GM_writeQueryFile(qSamps,"all",nrow(pheno),qFile)

resFile <- runGeneMANIA(dbDir$dbDir,qFile,resDir=pDir)

predRes[[g]] <- GM_getQueryROC(sprintf("%s.PRANK",resFile),pheno,g)

}
## LumA: 57 pathways

## LOCUS_NAMES column not provided; computing overlap of patients

## with regions

## * Preparing patient-locus matrix

## 348 unique patients, 241 unique locus symbols

##

## ...Got 57 networks

## * Creating placeholder files

## * Populating database files, recoding identifiers

## * Converting profiles to interaction networks

## user system elapsed

## 0.380 0.012 31.516

## Got 57 networks from 57 profiles

## * Build GeneMANIA index

## * Build GeneMANIA cache

## * Cleanup[1] "java -d64 -Xmx6G -cp /home/spai/R/x86_64-pc-linux-gnu-library/3.2/netDx/java/GeneMANIA-3.2B7.jar org.genemania.plugin.apps.QueryRunner --data ~/tmp/TCGA_BRCA/LumA/dataset --in flat --out flat --threads 1 --results ~/tmp/TCGA_BRCA/LumA ~/tmp/TCGA_BRCA/LumA/LumA_query 2>&1 > ~/tmp/TCGA_BRCA/LumA/LumA_query.log"

## * Attempt 1 : LumA_query
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## other: 67 pathways

## LOCUS_NAMES column not provided; computing overlap of patients

## with regions

## * Preparing patient-locus matrix

## 348 unique patients, 2442 unique locus symbols

##

## ...Got 67 networks

## * Creating placeholder files

## * Populating database files, recoding identifiers

## * Converting profiles to interaction networks

## user system elapsed

## 0.100 0.016 23.270

## Got 67 networks from 67 profiles

## * Build GeneMANIA index

## * Build GeneMANIA cache

## * Cleanup[1] "java -d64 -Xmx6G -cp /home/spai/R/x86_64-pc-linux-gnu-library/3.2/netDx/java/GeneMANIA-3.2B7.jar org.genemania.plugin.apps.QueryRunner --data ~/tmp/TCGA_BRCA/other/dataset --in flat --out flat --threads 1 --results ~/tmp/TCGA_BRCA/other ~/tmp/TCGA_BRCA/other/other_query 2>&1 > ~/tmp/TCGA_BRCA/other/other_query.log"

## * Attempt 1 : other_query

7 Assign labels to test patients

In the last section, we obtained two similarity ranks for each test patient. Here
we use GM OneVAll getClass() to label patients by max rank.

predClass <- GM_OneVAll_getClass(predRes)

## *** 232 rows have an NA prediction

cat("Predicted classes\n")

## Predicted classes

Finally, we evaluate the performance of the classifier.

both <- merge(x=pheno,y=predClass,by="ID")

print(table(both[,c("STATUS","PRED_CLASS")]))

## PRED_CLASS

## STATUS LumA other

## LumA 47 4

## other 9 56

pos <- (both$STATUS %in% "LumA")

tp <- sum(both$PRED_CLASS[pos]=="LumA")

fp <- sum(both$PRED_CLASS[!pos]=="LumA")

tn <- sum(both$PRED_CLASS[!pos]=="other")
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fn <- sum(both$PRED_CLASS[pos]=="other")

cat(sprintf("Accuracy = %i of %i (%i %%)\n",tp+tn,nrow(both),
round(((tp+tn)/nrow(both))*100)))

## Accuracy = 103 of 116 (89 %)

cat(sprintf("PPV = %i %%\n", round((tp/(tp+fp))*100)))

## PPV = 84 %

cat(sprintf("Recall = %i %%\n", round((tp/(tp+fn))*100)))

## Recall = 92 %
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8 sessionInfo

sessionInfo()

## R version 3.2.5 (2016-04-14)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Debian GNU/Linux 7 (wheezy)

##

## locale:

## [1] C

##

## attached base packages:

## [1] stats4 parallel stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] netDx.examples_0.0.0.9000 netDx_0.9

## [3] RColorBrewer_1.1-2 pracma_1.9.3

## [5] ROCR_1.0-7 gplots_3.0.1

## [7] GenomicRanges_1.18.4 GenomeInfoDb_1.2.4

## [9] IRanges_2.0.1 S4Vectors_0.4.0

## [11] BiocGenerics_0.12.1 combinat_0.0-8

## [13] doParallel_1.0.10 iterators_1.0.7

## [15] foreach_1.4.2 bigmemory_4.5.8

## [17] bigmemory.sri_0.1.3 knitr_1.13

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.2 XVector_0.6.0 quadprog_1.5-5

## [4] plyr_1.8.3 stringr_0.6.2 highr_0.6

## [7] caTools_1.17.1 tools_3.2.5 KernSmooth_2.23-13

## [10] gtools_3.5.0 reshape2_1.4.1 formatR_1.4

## [13] bitops_1.0-6 codetools_0.2-9 evaluate_0.9

## [16] gdata_2.17.0 compiler_3.2.5
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