SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

SSI
From PostgreSQL wiki

. + & Languages:
E‘-v_f) suag English e Francais

Documentation of Serializable Snapshot Isolation (SSI) in PostgreSQL compared to plain Snapshot
Isolation (SI). These correspond to the SERIALIZABLE and REPEATABLE READ transaction
isolation levels, respectively, in PostgreSQL beginning with version 9.1.

Contents

= | Overview
= 2 Examples
= 2.1 Simple Write Skew
= 2.1.1 Black and White
= 2.1.2 Intersecting Data
= 2.1.3 Overdraft Protection
= 2.2 Three or More Transactions
= 2.2.1 Primary eolors
= 2.3 Enforcing Business Rules in Triggers
= 2.3.1 Unique-Like wonstraints
» 2.3.2 FK-Like wonstraints
m 2.4 Read Only Transactions
= 2.4.1 Deposit Report
= 2.4.2 Rollover

Overview

With true serializable transactions, if you can show that your transaction will do the right thing if there
are no concurrent transactions, it will do the right thing in any mix of serializable transactions or be
rolled back with a serialization failure.

This document shows problems which can occur with certain combinations of transactions at the
REPEATABLE READ transaction isolation level, and how they are avoided at the SERIALIZABLE
transaction isolation level beginning with PostgreSQL version 9.1.

This document is oriented toward the application programmer or database administrator. For internals
of the SSI implementation, please see the Serializable Wiki page. For more information about how to
use this isolation level, see the current PostgreSQL documentation (http://www.postgresql.org
/docs/current/interactive/transaction-iso.html#XAeT-SERIALIZABLE) .

Examples

1 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

In environments which avoid blocking-based integrity protection by counting on SSI, it will be
common for the database to be configured (in postgresgl.conf) with:

Because of this, all examples were tested with this setting, and clutter is avoided by using a simple
"begin" without explicitly declaring the transaction isolation level for each transaction.

Simple Write Skew

When two concurrent transactions each determine what they are writing based on reading a data set
which overlaps what the other is writing, you can get a state which could not occur if either had run
before the other. This is known as wrifte skew, and is the simplest form of serialization anomaly against
which SSI protects you.

When there is write skew in SSI, both transactions proceed until one transaction commits. The first
committer wins and the other transaction is rolled back. The "first committer wins" rule ensures that
there is progress and that the transaction which is rolled back can immediately be retried.

Black and White

In this case there are rows with a color column containing 'black’ or 'white'. Two users concurrently try
to make all rows contain matching color values, but their attempts go in opposite directions. One is
trying to update all white rows to black and the other is trying to update all black rows to white.

If these updates are run serially, all colors will match. If they are run concurrently in REPEATABLE
READ mode, the values will be switched, which is not consistent with any serial order of runs. If they
are run concurrently in SERIALIZABLE mode, SSI will notice the write skew and roll back one of the
transactions.

The example can be set up with these statements:

1
1 1
1 1
! :
: id int not null primary key, '
, color text not null i
') :
iinsert into dots '
1 with x(id) as (select generate_series(1,10)) 1
: select id, case when id % 2 = 1 then 'black' '
1 else 'white' end from x; '
1

1

Black and White Example
session 1 session 2
2 !
begin; '
lupdate dots set color = 'black’ .
1 where color = 'white'; .
N 1
y -~~~ -~~~ °"7"T7T7T°" T TS TTSTTTSTSTTTTSTTTTSTTTTTTTT 1
begin;
1

20f 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki

3 0of 20

IERROR: could not serialize access

: due to read/write dependencies
1 among transactions

DETAIL: Cancelled on identification

1

, as a pivot, during commit attempt.
HINT: The transaction might succeed if retried.
1

A serialization failure. We roll back and try

again.

1

:rollback;

ibegin;

update dots set color = 'black’
: where color = 'white';
:commit;

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

ppdate dots set color = 'white'
1 where color = 'black';

to fail.

This one ran as if by itself.

12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

©CoNOOUTDD WN -

This transaction ran by itself, after the other.

Intersecting Data

This example is taken from the PostgreSQL documentation. Two concurrent transactions read data, and
each uses it to update the range read by the other. A simple, though somewhat contrived, example of
data skew.

The example can be set up with these statements:

\CREATE TABLE mytab

1

(

1

: class int NOT NULL,

1 value int NOT NULL

1

)i

1

"INSERT INTO mytab VALUES
(1, 10), (1, 20), (2, 100), (2, 200);
1

I o o o o o o o o m E E E E E En En En En En En B B Em BN Em Em Em Em Em Em BN Em BN BN BN BN AN AN AN BN AN BN AN AN AN AN AN AN AN AN AN AN BN AN AN AN AN Em AN AN AN Em Em Am Em Em Em Em Em Em Em Em Em -
Intersecting Data Example
session 1 session 2
Fm e e e e e e e e e e e —m e - 1
! 1
'BEGIN; .
SELECT SUM(value) FROM mytab WHERE class = 1; :
! 1
e -
1
1 1
1.sum 1
" 1
1 1
1 30 1
1 1
(1 row) '
o e e e e e e e 4
1
'INSERT INTO mytab VALUES (2, 30); :
o e e e e e e e e 4
Ll T R R] =
! 1
'BEGIN; .
SELECT SUM(value) FROM mytab WHERE class = 2; :
1
L e e e e e e e e e e e e e e !
A
1 1
1.sum 1
L 1
1 1
' 300 !
(1 row) 1
1
L e e e e e e e a
A
INSERT INTO mytab VALUES (1, 300); :
1
b o oo oo e e e e e e e Em Em Em Em Em Em Em em e e e e e e -

4 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki

5 of 20

1
{ERROR: could not serialize access 1
: due to read/write dependencies ,
1 among transactions ,
DETAIL: Cancelled on identification 1
. . . 1

! as a pivot, during commit attempt. '
:

1

HINT: The transaction might succeed if retried.
1

So now we roll back the failed transaction and
retry it from the beginning.

'ROLLBACK; :
'BEGIN; :
SELECT SUM(value) FROM mytab WHERE class = 1; .
1

1

1
1 1
1 sum 1
1 1
| I 1
' 330 '
1(1 row) 1

1
e e e e e a
:' """""""""""""""""""" 1
'INSERT INTO mytab VALUES (2, 330); :
(COMMIT; :

1

This succeeds, leaving an end result consistent
with a serial execution of the transactions.

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

Each transaction has modified what the other
transaction would have read. If both were allowed
to commit, this would break serializable behavior,
because if they were run one at a time, one of the
transactions would have seen the INSERT the other
committed. We wait for a successful « OMMIT of
one of the transactions before we roll anything
back, though, to ensure progress and prevent

thrashing.

F-- - s e T e E e T e E e e e EEEEEEEEEE l
1

1ICOMMIT; '

L e e e e e e mmmmm— e 4

12/05/2015 09:05 PM

SSI - PostgreSQL wiki

6 of 20

Overdraft Protection

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

The hypothetical case is that there is a bank which allows depositors to withdraw money up to the total
of what they have in all accounts. The bank will later automatically transfer funds as needed to close

the day with a positive balance in each account. Within a single transaction they check that the total of
all accounts exceeds the amount requested.

Someone's trying to get clever and trick the bank by submitting $900 withdrawals to two accounts with
$500 balances simultaneously. At the REPEATABLE READ transaction isolation level, that could
work; but if the SERTALIZABLE transaction isolation level is used, SSI will detect a "dangerous
structure" in the read/write pattern and reject one of the transactions.

The example can be set up with these statements:

create table account

(

name text not null,
type text not null,

balance money not null default '0.00'::money,

)i

insert into account values
('kevin', 'saving', 500),
('kevin', 'checking', 500);

begin;

1
1
1
1
1
1
1
1
, primary key (name, type)
1
1
1
1
1
1
1
1
1

iselect type, balance from account
1 where name = 'kevin';

1
, type

1 saving
1

$500.00

: checking | $500.00

:(2 rows)

Overdraft Protection Example

The total is $1000, so a $900 withdrawal is

OK.

session 2
yoTTTTTTETTET T A EEEmmEEEEEEEEEmmmm e mmmE T '
begin; '
iselect type, balance from account .
1 where name = 'kevin'; :
S 1
:' """"""""""""""""""""""" 1

1
' type | balance 1
I-------- - +--------- :
1 saving | $500.00 '
1 checking | $500.00 1
1(2 rows) ,
! 1

The total is $1000, so a $900 withdrawal is OK.

12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

jupdate account :
1 oset balance = balance - 900::money ,
1 where name = 'kevin' and type = 'saving';:

1

So far everything's OK.

update account :
1 set balance = balance - 900::money .
1 where name = 'kevin' and type = 'checking'; .

1

Now we have a problem. This can't co-exist with the
other transaction's activity. We don't cancel yet, because
the transaction would fail on the same conflicts if retried.
The first committer will win, and the other transaction
will fail when it tries to continue after that.

This one happened to commit first. Its work
is persisted.

ERROR: could not serialize access :
' due to read/write dependencies ,
1 among transactions '
DETAIL: Cancelled on identification 1
! as a pivot, during commit attempt. ,

:

1

:HINT: The transaction might succeed if retried.
1

This transaction failed to withdraw the money. Now we
roll back and retry the transaction.

L 1
:rollback; :
begin; ,
:select type, balance from account '
1 where name = 'kevin'; f
E e e e e e e e a
:' """"""""""""""""""""""" 1
' type | balance :
Im==-==-=---=-- +---------- :
| saving | -$400.00 !
' checking | $500.00 1
1(2 rows) :
E e e e e e e e 2

We see they have a net of $100. This request for $900
will be rejected by the application.

7 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki

8 of 20

Three or More Transactions

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

Serialization anomalies can result from more complex patterns of access, involving three or more

transactions.

Primary Colors

This is similar to the "Black and White" write skew example, except that we're using the three primary
colors. One transaction is trying to update red to yellow, the next is trying to update yellow to blue, and
the third is trying to update blue to red. If these were executed one at a time, you would be left with
either one or two colors in the table, depending on the order of execution. If any two are executed
concurrently, the one trying to read the rows being updated by the other will appear to execute first,
since it won't see the work of the other transaction, so there is no problem there. Whether the other
transaction is run before that or after that, the results are consistent with some serial order of execution.

If all three are run concurrently, there is a cycle in the apparent order of execution. A Repeatable Read
transaction would not detect this, and the table would still have three colors. A Serializable transaction
will detect the problem and roll one of the transactions back with a serialization failure.

The example can be set up with these statements:

icreate table dots
1
(
id int not null primary key,
color text not null
);
insert into dots
with x(id) as (select generate series(1,9000))
select id, case when id % 3 = 1 then 'red’
when id % 3 = 2 then 'yellow'
else 'blue' end from x;
lcreate index dots color on dots (color);
ianalyze dots;
1

Primary eolors Example

session 1 session 2
2 1
begin; :
:update dots set color = 'yellow'
! where color = 'red'; !
It e e e e e e e e, e, e, e, e, e, e, e, e, 1
L
begin;
:update dots set color = 'blue'
1 where color = 'yellow';

session

begin;
:update dots set col
1 where color = 'bI

At this point at leas
three transactions i:
fail. To ensure prog

12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

until one of them ¢
commit will succee
not only ensure tha
made but that an in
retry of a failed tra
fail again on the sar
combination of trar

First commit wins. Session 2 is
bound to fail at this point,
because during commit it was
determined that it had the better
chance of succeeding if retried
immediately.

iselect color, count(*) from dotsi

' group by color
1 order by color;

1
' color | count :
! 1
I-------- +------- f
y blue | 3000 '
'yellow | 6000 1
1(2 rows) :
1

This appears to have run before
the other updates.

This works if attenr
point. If session 2 ¢
work first, this tran
also need to be can
retried.

iselect color, count
\ group by color

1 order by color;
1
I e e e e e e e e - - ===

1

' color | count
1

I-------- +-------
, red | 3000
! yellow | 6000

1(2 rows)

This appears to hay

9 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

the transaction on s

{ERROR: could not serialize access :
: due to read/write dependencies .
1 among transactions ,
{DETAIL: Cancelled on identification)
! as a pivot, during commit attempt. .

:

1

HINT: The transaction might succeed if retried.
1

A serialization failure. We roll back and try
again.

1

irollback; I

begin; .

wupdate dots set color = 'blue’ !

' where color = 'yellow'; 1

commit; ,
1

iselect color, count(*) from dots :
1\ group by color ,
1 order by color; .

1

1
1 color | count :
_______ P '
blue | 6000 ,
:
1
1

1

1

1 red | 3000
1(2 rows)

1

This appears to have run last, which it did.

An interesting point is that if session 2 attempted to commit after session 1 and before session 3, it
would still have failed, and a retry would still have succeeded, but the fate of the transaction on session
3 is not deterministic. It might have succeeded or it might have gotten a serialization failure and
required a retry.

This is because the predicate locking used as part of conflict detection works based on pages and tuples
actually accessed, and there is a random factor used in inserting index entries which have equal keys, in
order to minimize contention; so even with identical run sequences it is possible to see differences in
where serialization failures occur. That is why it is important, when relying on serializable transactions
for managing concurrency, to have some generalized technique for identifying serialization failures and
retrying transactions from the beginning.

It is also worth noting that if session 2 committed the retry transaction before session 3 committed its
transaction, any subsequent query which viewed rows successfully updated from yellow to blue by
session 2 would deterministically doom the transaction on session 3, because these would not be rows
which session 3 would see as blue and update to red. For the transaction on session 3 to successfully
commit, it must be considered to have run before the successful transaction on session 2, so exposing a

10 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki

11 of 20

state in which the work of the transaction on session 2 is visible, but not the work of the transaction on
session 3, means that the transaction on session 3 must fail. The act of observing a recently modified
database state can cause serialization failures. This will be further explored in other examples.

Enforcing Business Rules in Triggers

If all transactions are serializable, business rules can be enforced in triggers without the problems
associated with other transaction isolation levels. Where a declarative constraint works, it will generally
be faster, easier to implement and maintain, and less prone to bugs -- so triggers should only be used
this way where a declarative constraint won't work.

Unique-Like Constraints

Say you want something similar to a unique constraint, but it's a little more complicated. For this
example, we want uniqueness in the first six characters of the text column.

The example can be set up with these statements:

:create table t (id int not null, val text not null);

with x (n) as (select generate series(1,10000))

1 insert into t select x.n, md5(x.n::text) from x;

alter table t add primary key(id);

create index t_val on t (val);

wacuum analyze t;

icreate function t_func()

 returns trigger

1 language plpgsql as $$

declare

1 st text;

begin
st := substring(new.val from 1 for 6);

if tg _op = 'UPDATE' and substring(old.val from 1 for 6) = st then
return new;

end if;
if exists (select * from t where val between st and st || 'z') then
raise exception 't.val not unique on first six characters: "%"', st;
end if;
y return new;
lend;
1$$;

create trigger t_trig

1 before insert or update on t

1 for each row execute procedure t_func();

To confirm that the trigger is enforcing the business rule when there are no concurrency issues, on a
single connection:

insert into t values (-1, 'this old dog');
iinsert into t values (-2, 'this old cat');
1

Now we try in two concurrent sessions.

Unique-Like eonstraint Example
session 1 session 2

12/05/2015 09:05 PM

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

1
:begin;
iinsert into t values (-3, 'the river flows');

1
:begin;
iinsert into t values (-4, 'the right stuft

This works for the moment, because the wi
of the other transaction is not visible to thi:
transaction, but both transactions may not

commit without violating the business rule.

The first committer wins. This transaction
safe.

A commit here would fail, but so would an attempt to run
any other statement within this doomed transaction.

IERROR: could not serialize access :
' due to read/write dependencies .
1 among transactions '
DETAIL: Canceled on identification as a pivot, 1
! during conflict out checking. .

:

1

HINT: The transaction might succeed if retried.
1

retried.

irollback; :
'begin; ,
iinsert into t values (-3, 'the river flows'); :
1

1

Frr ST E S SRR EEEEEE 1
ERROR: t.val not unique on first six characters: "the rim
L e e e e e e e e e e mmmmmmm—an -
FK-Like Constraints

Sometimes two tables must have a relationship very similar to a foreign key relationship, but there are
extra criteria which makes a foreign key insufficient to completely cover the necessary integrity
checking. In this example a project table contains a reference to a person table's key in a
project_manager column, but not just any person will do; the person specified must be flagged as a

12 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

project manager.

The example can be set up with these statements:

icreate table person
v
: person_id int not null primary key,
, person_name text not null,
' is_project_manager boolean not null
o)
icreate table project
v
: project_id int not null primary key,
, project_name text not null,
' project_manager int not null
o)
icreate index project_manager
' on project (project_manager);
1
icreate function person_func()
' returns trigger
1 language plpgsql as $$
begin
v if tg_op = 'DELETE' and old.is_project_manager then
if exists (select * from project
where project manager = old.person_id) then
raise exception
'person cannot be deleted while manager of any project';
end if;
end if;
if tg_op = 'UPDATE' then
if new.person_id is distinct from old.person_id then
raise exception 'change to person_id is not allowed';
end if;
if old.is project _manager and not new.is project manager then
if exists (select * from project
where project manager = old.person_id) then
raise exception
'person must remain a project manager while managing any projects';
end if;
end if;
end if;
if tg _op = 'DELETE' then
return old;
else
return new;
end if;
:end;
1$$;
lcreate trigger person_trig
' before update or delete on person
for each row execute procedure person_func();

create function project_func()
returns trigger
language plpgsql as $$

begin
if tg_op = 'INSERT'
or (tg_op = 'UPDATE' and new.project manager <> old.project _manager) then

if not exists (select * from person
where person_id = new.project manager
and is _project _manager) then
raise exception
'project _manager must be defined as a project manager in the person table';

end if;
end if;
return new;
lend;
1$$;
icreate trigger project_trig
1

13 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

14 of 20

. before insert or update on project
1 for each row execute procedure project_func();
1

iinsert into person values (2, 'Peter Parker', true);
iinsert into project values (101, 'parallel processing', 1);
1

1
1
:
1
Winsert into person values (1, 'Kevin Grittner', true); 1
1
1
1
:
FK-Like eonstraints Example
session 1 session 2

One person is being updated to no longer be a
project manager.

:begin;

uupdate person

1 set is_project_manager = false
' where person_id = 2;

At the same time, a project is being updated to
make that person the manager of that project.

begin;

update project

! set project manager = 2
1 where project_id = 101;

These can't both be committed. The first commit
will win.

The assignment of the person to the project
commits first, so the other transaction is now
doomed to fail. If either transaction had run at a
different isolation level, both transactions could
have committed, resulting in a violation of the
business rules.

1
{ERROR: could not serialize access 1
, due to read/write dependencies :
1 among transactions ,
:DETAIL: Cancelled on identification 1

. . . 1
! as a pivot, during commit attempt. '
:
1

:HINT: The transaction might succeed if retried.
1

'rollback; I
:begin; i
|

12/05/2015 09:05 PM

SSI - PostgreSQL wiki

update person
I set is project _manager = false
1 where person_id = 2;

:ERROR: person must remain a project manager
i while managing any projects

On the retry we get a meaningful message.

Read Only Transactions

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

While a Read Only transaction cannot contribute to an anomaly which persists in the database, under
Repeatable Read transaction isolation it can see a state which is not consistent with any serial (one-at-
a-time) execution of transactions. A Serializable transaction implemented with SSI will never see such

transient anomalies.

Deposit Report

A general class of problems involving read only transactions is batch processing, where one table
controls which batch is currently the target of inserts. A batch is closed by updating the control table, at
which point the batch is considered "locked" against further change, and processing of that batch

ocCcCurs.

A particular example of this which occurs in real-world bookkeeping is receipting. Receipts might be
added to a batch identified by the deposit date, or (if more than one deposit per day is possible) an
abstract receipt batch number. At some point during the day, while the bank is still open, the batch is
closed, a report is printed of the money received, and the money is taken to the bank for deposit.

The example can be set up with these statements:

icreate table control
'
. deposit_no int not null
1
)i
1
:insert into control values (1);
icreate table receipt
(
receipt no serial primary key,
deposit_no int not null,
payee text not null,
amount money not null
);
insert into receipt
(deposit_no, payee, amount)
1 values ((select deposit_no from control),
insert into receipt
' (deposit_no, payee, amount)
1 values ((select deposit_no from control),
insert into receipt
' (deposit_no, payee, amount)
1 values ((select deposit_no from control),

'Crosby', '100');

'Stills', '200");

'Nash', '300');

Deposit Report Example

session 1

session 2

12/05/2015 09:05 PM

SSI - PostgreSQL wiki

16 of 20

At a receipting counter, another receipt is added
to the current batch.

begin; - Tl

iinsert into receipt

, (deposit_no, payee, amount)

1 values

o

: (select deposit_no from control),
, ‘Young', '100‘

1

1

This transaction can see its own insert, but it's not
visible to other transactions until commit.

%]
D
—~
D
(@]
~+
*
—
-
[}
3
S
(13
0
[0}
-
o
—~+

receipt_no | deposit_no | payee | amount

1

1
pmmm e e R - -- - m- - :
: 1| 1 | Crosby | $100.00 ,
' 2| 1 | Stills | $200.00 '
. 3| 1 | Nash | $300.00 :
: 4 | 1 | Young | $100.00 ,
1 1
1 1

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

At about the same time, a supervisor clicks a button
to close the receipt batch.

:' --------------------------------------- nl
begin; -- T2 :
iselect deposit no from control;

1

L e e e e e e e e e e e e e — e e e m e e m e e mmmmmmmmm——- 2
nl
: deposit_no :
1 1
[I 1
1 1 1
1 1
(1 row) '
1 1

The application notes the receipting batch which is
about to be closed, increments the batch number,
and saves that to the control table.

update control set deposit_no
icommit;
1

T1, the transaction inserting the last receipt for the
old batch, hasn't committed yet even though the
batch has been closed. If T1 commits before
anyone looks at the contents of the closed batch,
everything is OK. So far we don't have a problem;
the receipt appears to have added before the batch
was closed. We have behavior which is consistent
with some one-at-a-time execution of the

12/05/2015 09:05 PM

SSI - PostgreSQL wiki

{ERROR: could not serialize access

' due to read/write dependencies
1 among transactions

DETAIL: Cancelled on identification

! as a pivot, during commit attempt.

:HINT: The transaction might succeed if retried.
1

OK, let's retry.
T LT
irollback;

ibegin; - Tl retry

iinsert into receipt
1

17 of 20

https://wiki.postgresql.org/index.php?title=SSI&printable=yes

transactions:; T1 -> T2.

For purposes of demonstration, we'll have the
deposit report start before that last receipt commits.

(T TTTTTTTTTmm T 0
lbegin; - T3 1
iselect * from receipt where deposit no = 1; ,
R 2
T T TS T ST s ST T e eSS e EE T EEEEEEEEEEEEEmm i
| receipt_no | deposit no | payee | amount

: ------------ R Fommm e ma R
1 1| 1 | Crosby | $100.00
1 2 |

1

' 3 1 | Nash | $300.00
1

1

1
1
1
1
1
1
1| Stills | $200.00 :
1
1
1
1
1

Now we have a problem. T3 was started with the
knowledge that T2 committed successfully, so T3
must be considered to have run after T2. (This
could also be true if the T3 had run independently
and selected from the control table, seeing the
updated deposit_no.) But T3 cannot see the work
of T1, so T1 appears to have run after T3. So we
have a cycle T1 -> T2 -> T3 -> T1. And this would
be a problem in practical terms; the batch is
supposed to be closed and immutable, but a change
will pop up late -- perhaps after the trip to the
bank.

Under the REPEATABLE READ isolation level
this would silently proceed without the anomaly
being noticed. Under the SERIALIZABLE
isolation level one of the transactions will be rolled
back to protect the integrity of the system. Since a
rollback and retry of T3 would hit the same error if
T1 was still active, PostgreSQL will cancel T1, so
that an immediate retry will succeed.

12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

(deposit no, payee, amount)
values
(

1
1
:
(select deposit no from control), :
'Young', '100' '

:

1

L e I I I T T T -
1
: receipt no | deposit _no | payee | amount :
1 1
R R R R L '
' 1| 1 | Crosby | $100.00 .
1 2 | 1 | Stills | $200.00 1
, 3 | 1 | Nash | $300.00 ,
! 5 | 2 | Young | $100.00 !
1 1
(4 rows) f
o e e e e m e a

The receipt now falls into the next batch, making
the deposit report in T3 correct!

No problem now.

el ittt A
1 . 1
icommit; 1
1 1
bk m e e e e -—-——-——EE e EEE === == -

This would have been OK anytime after T3's
SELEeT.

Rollover

While the read only transaction itself is rarely rolled back to prevent serialization failures, it will happen
if the other transactions have already committed.

The example can be set up with these statements:

icreate table rollover (id int primary key, n int not null);
iinsert into rollover values (1,100), (2,10);
1

Rollover Example
session 1 session 2

One transaction looks at row 2 and updates row 1.

:begin; --T1
update rollover
' set n=n+ (select n from rollover where id = 2)

18 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

At about the same time, another connection
commits a change to row 2.

begin; -- T2 :
update rollover set n = n + 1 where id = 2; .
icommit; :
1

1

There is no problem so far; T1 appears to have
executed first, since it saw row 2 without the
change committed by T2.

Now another transaction starts and needs to
acquire a snapshot.

begin transaction read only; -- T3

1
1
iselect count(*) from pg_class; :
! 1

L i e I T I e -

T3 is running with a snapshot which can see the
work of T2 but not T1, even though we've
already established that T1 appears to have
executed before T2. There is no problem, though,
as long as T3 doesn't look at data modified by

TI.
T1 can commit without error.
1
1 A 1
icommit; 1
1 1
| o o o o o o o i -

Now if the read only transaction attempts to read
data modified by T1 there will be a cycle in the
apparent order of execution, so the attempt must
be rolled back.

ERROR: could not serialize access :

' due to read/write dependencies .

1 among transactions ,

DETAIL: Reason code: Canceled on conflict out

' to pivot 1117, during read. .

ﬁINT: The transaction might succeed if retried.
1

:rollback;
1

19 of 20 12/05/2015 09:05 PM

SSI - PostgreSQL wiki https://wiki.postgresql.org/index.php?title=SSI&printable=yes

begin transaction read only; -- T3 retry !
select count(*) from pg_class; \
:select n from rollover where id in (1,2); X
commit; :

1
1
111
1
1
1

Now we see a view of the data consistent with T1
having run before T2.

Retrieved from "https://wiki.postgresql.org/index.php?title=SS1&oldid=21672"
eategory: Documentation

» This page was last modified on 7 January 2014, at 19:23.

20 of 20 12/05/2015 09:05 PM

