
Mozilla Addon Builder

Package Building System

Piotr Zalewa

August 2, 2010, alpha 0.7

Download this document from

http://github.com/mozilla/FlightDeck/raw/master/Docs/Package%20Building%20System.pdf

Some relevant graph slides are available

http://github.com/mozilla/FlightDeck/raw/master/Docs/Addon%20Builder%20-%20Build%20System.pdf

1 Assumptions for the current iteration

1. Name of the Package is not unique anymore.
Packages are identified by it’s unique ID. There may and probably often will be many Packages with
the same name. Add-ons do have ID generated based on the author’s key, Libraries may work on the
”internal” ID number.
/library/123456/, /addon/4wedo230ei@jetpack/

2. Version is a tag.
Version is important. It is used to tag major Revisions. If a package is called without any Version
specified (as above), the latest versioned Revision will be used. Version is build from restricted set of
characters — alphanumeric extended by ”.- ”
/library/123456/version/0.1/

3. Revision Number is used to precisely identify a Revision.
It is completely parallel to the Package Version. That means that a Package Revision Number is unique
per Package.
/library/123456/revision/654/

4. No collaborative editing.
Althought there will be no connection between Packages owned by different Users, design the system
to not complicate future implementation of such functionality.

5. Package remembers which SDK version was used to build it.
This is very complicated also on the front-end side. It will be created during the next iteration.
However, for the future implementations we will save the Jetpack SDK version number which was
installed at the moment the Package was created.

1

2 Data structure

User Package

ID
Version

PackageRevision

Version

Meta

Name

Description

depends on

L
ib

rary

Module Code

Filename

Attachment Filename

Upload Path

Figure 1: Database design.

• Unique filenames for Modules or Attachments are not given by design. Additional code needs to be
written to prevent duplicating filenames.

• Package:version is set automatically with setting the PackageRevision:version

3 Export XPI

Only Addons may be used to create an XPI1. Be aware that it is possible and common to export XPI from
partially unsaved data. This happens when User will use the Try in browser functionality. In this case XPI

can not be send to AMO2.

3.1 Create directory structure

Directory structure should be as close as standard Jetpack SDK as possible. Jetpack SDK should be copied
to a temporary directory as more than one Addon compilation could take action at the same time. Desired
revisions of Libraries and Addons will be exported into packages directory.

Listing 1: Parts of the tree of a copied Jetpack SDK directory.

1 /tmp/jetpack−sdk−{hash}/
2 |−− bin/
3 | |−− activate
4 | |−− cfx
5 | ‘−− [...]
6 |−− packages/

1An XPI installer module is a ZIP file that contains a Package — Manifest with all code needed to run the Addon
2http://addons.mozilla.org/

2

7 | |−− jetpack−core/
8 | ‘−− [...]
9 |−− python−lib/

10 |−− static−files/
11 ‘−− [...]

3.2 Export Packages with Modules

1. Create Package and its Modules directories
/tmp/jetpack-sdk-{hash}/packages/{Package:ID}/
/tmp/jetpack-sdk-{hash}/packages/{Package:ID}/lib/

2. Use collected data to create the Manifest.
/tmp/jetpack-sdk-{hash}/packages/{Package:name}/package.json

3. Create Module files
Iterate over the assigned Modules and create a ”.js” file with its content inside Package’s lib/

directory.

4. Export dependencies
Iterate over Libraries on which a Package depends and repeat this section (Export the Package with
Modules) for every Library.

3.3 Build XPI

1. Set virtual environment to the temporary Jetpack SDK

2. Change directory to /tmp/jetpack-sdk-{hash}/packages/{Package:name}/

3. Call cfx xpi.
The {Package:name}.xpi file will be created in current directory.

4. Send location to the front-end to be used in further actions
In example calling Test in Browser.

3.4 Test in browser

To test the Addon in the Browser it is not necessary to save current code in the PackageRevision. An XPI

will be build from current data displayed inside the Addon Builder3. Addon will be installed temporarily —
it will be automatically removed after certain conditions will happen4. The process takes following steps:

1. Build an XPI from code in editor

2. Send a load Addon request to the FlightDeck Addon5

3. XPI is downloaded and installed by the Addon

4. Addon sends a remove request after the XPI is downloaded

5. Whole Jetpack SDK used to create XPI is removed

3As UI will probably be designed in the way that the Libraries will be open in different Browser Tab than the Addon, only
the latter data will be taken directly from editor

4It is not yet decided what these conditions are. Should it happen after User will ”leave the editing environment” or restart
the browser

5FlightDeck Addon is a Jetpack extension allowing to temporary installation of the XPI. It needs to be called with an URL
of the XPI. It is currently in alpha stage, there is a proposition to replace it with a more generic Addon

3

3.5 Upload to AMO

Sending the XPI’s to AMO is postponed and will be coded after current iteration.
XPI needs to be created from a database object. Then mechanize lib will be used to login to AMO and upload
the file faking it was done directly from the browser.

4 Integration with the Browser

Integration with the Browser is provided by FlightDeck Addon. FlightDeck
Addon is
provided and
developed by
Mozilla

4.1 Current status

Currently there is a proof of concept version of that Addon. It provides the support for instant addons.
These are installed temporarily until the browser will be restarted.

4.2 Try in browser

Provide a temporary instalaltion of the Addon.

Install Addon

Addon will download and install an XPI created by the Package Builder. Afterwards it will send back a
command to remove the SDK. Installation should use the built-in support for instant addons.

Remove Addon

This should happen on request or automatically after a specific action will happen. It is still not decided if
leaving the editing environment should be considered as a remove addon action.

On request means that the User has the information about temporarily installed Addon/s and is able to
send request to uninstall it/them.

On browser quit — all of the Addons Iser is currently testing are gonna be removed after Browser will
quit or restarted. This should happen after User will quit the Browser, terminate it or restart after
crash.

On leaving the editing environment — this happens whith the onunload event fired on the Addon tab
(navigating away or closing the tab)

On uninstall/reinstall the FlightDeck Addon all of the temporarily installed packages should be un-
loaded. At the moment it requires the browser to be reloaded, but it will eventually change if FlightDeck
Addon will become a Jetpack addon itself.

5 Maintaining and building Manifest

Manifest is the Addon’s metadata. It is exported to package.json in the main Addon directory. It is
described on https://jetpack.mozillalabs.com/sdk/0.1/docs/\#guide/package-spec.

4

5.1 Manifest’s attributes representation in the system

fullName from Package:full name

name from Package:name

description from Package:description and PackageRevision:description

author from Package:author

id from Package:ID

version depends on the way the XPI was build. It will always contain according PackageRevision:version name

plus PackageRevision:revision number (if build PackageRevision was not the one containing the
version name) or test in browser (if XPI is build for testing only).

dependencies is a list created on the basis of PackageRevision:dependencies

license from Package:license

url from Package:url

contributors PackageRevision:contributors — needs to be a comma separated list as current version will
not support collaborative editing

5

To be continued. . .

6

