
autotest-latest/.buildinfo
Sphinx build info version 1
This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: c797d8c96d724ca3d31e7a35ae1fd74e
tags: 0957a7f5604f7fa265ade309e7b795c2

autotest-latest/objects.inv

autotest-latest/index.html

 autotest

 latest

 		Autotest Documentation		General Information

		Local (Former Client)

		Remote (Former Server)

		Frontend

		System Administration

		Scheduler

		Developer

		client Package		autotest_local Module

		base_sysinfo Module

		base_utils Module

		bkr_proxy Module

		bkr_xml Module

		client_logging_config Module

		cmdparser Module

		common Module

		config Module

		cpuset Module

		fsdev_disks Module

		fsdev_mgr Module

		fsinfo Module

		harness Module

		harness_autoserv Module

		harness_beaker Module

		harness_simple Module

		harness_standalone Module

		job Module

		kernel Module

		kernel_config Module

		kernel_versions Module

		kernelexpand Module

		kvm_control Module

		local_host Module

		lv_utils Module

		optparser Module

		os_dep Module

		parallel Module

		partition Module

		profiler Module

		setup Module

		setup_job Module

		setup_modules Module

		sysinfo Module

		test Module

		test_config Module

		utils Module

		xen Module

		Subpackages

		frontend Package		Subpackages

 autotest

 		Docs »

		autotest 0.16.3-44-g0d527f documentation

		

 Edit on GitHub

Autotest Documentation¶

Autotest is a framework for fully automated testing. It is designed
primarily to test the Linux kernel, though it is useful for many other
purposes such as qualifying new hardware, virtualization testing and
other general user space program testing under linux platforms. It’s an
open-source project under the GPL and is used and developed by a number
of organizations, including Google, IBM, Red Hat, and many others.

Please check Avocado, a next generation test automation framework being
developed by several of the original Autotest team members:
http://avocado-framework.github.io/

Autotest Documentation¶

General Information¶

Contact information¶

		Autotest mailing list

		Autotest IRC channel: irc.oftc.net #autotest

Who uses autotest?¶

An active community of users is fundamental to sustain an open source project.
Currently, there are quite a few projects that use autotest as their main test
automation platform:

		Fedora’s AutoQA

		Chrome OS

		KVM kernel based virtual machine

		Goobuntu (internal customized version of ubuntu for google)

Besides these projects, other people from several different companies/affiliations
use autotest for their test automation needs.

Autotest structure overview¶

This document intends to be a high level overview of the autotest
project structure. We try to be brief and show the high level diagrams.

Simplified block diagram¶

For the sake of clarity, some things are simplified here, but it gives
you a good idea of the overall layout.

[image: _images/block_structure.png]

Web interface and command line interface¶

The web interface and the command line interface are complementary ways
to interact with autotest and create jobs. Both were designed to have
the same functionality, to add to the user’s convenience. The interfaces
allows you to:

		Manage jobs? - create, monitor, abort, etc.

		Manage client hosts

		Look at results.

The frontends will inject jobs into the server by creating records in a
mysql database.

Server¶

The server consists of three main parts:

		A mysql database that holds information on all jobs, clients (test
machines), users and tests.

		The dispatcher (monitor_db) - chooses the jobs from the database to
run. It’s input is the database, pretty much all it does is start
autoserv processes to service requests.		There is normally one dispatcher process per machine

		Client side jobs are run asyncronously (as client machines become
available)

		Server side jobs are run syncronously (ie we wait for all clients
before commencing)

		Autoserv: the server manages clients via autoserv processes - there
will be one autoserv process per running job?. Each autoserv process:		controls and monitors one or more clients

		verifies clients are working properly, and if it fails
verification, attempts to repair it

		manages the execution of a job?

		updates the autotest software on each client before commencing
work.

The mysql database can live on a different machine than the dispatcher.
There can be multiple dispatchers to spread the workload, though each
can service a few thousand clients, so this is not normally necessary.

Client¶

The client does most of the work of running a job?; this can be invoked:

		manually - from client/autotest-local <control_file_name>

		via the server

A typical job workflow is as follows:

[image: _images/job_flow.png]

Results repository¶

A directory tree of all the results. Each job has a well formatted
directory structure

Results MySQL DB¶

A simple mysql database containing the jobs, test results, and
performance metrics for each test

Overall structure¶

With all the parts of the code briefly commented, it’s easier to
understand the overall structure diagram:

[image: _images/overall_structure.png]

Autotest White Paper¶

Abstract¶

This paper describes the motivation for, and design goals of, the
autotest and test.kernel.org projects. Autotest is a framework for fully
automated testing, that is designed primarily to test the Linux kernel,
though is useful for many other functions too. Test.kernel.org is a
framework for communicating, sharing, and analysing test results.

In a traditional corporate systems software development environment,
there is normally a large test team responsible for assuring the quality
of the final product. Open source projects do not have that luxury, and
we need to find another way to run testing. We feel that the only
realistic way to achieve the goal is to fully automate the test process,
and drastically reduce the need for human staffing. It turns out that
this also solves several other critical problems with testing.

		Consistency - it’s much easier to guarantee the tests are run the
same way as last time.

		Knowledge capture - the knowledge of how to run testing is not held
in one person, but within a system.

		Sharing - you can easily share tests with vendors, partners, and
across a wide community.

		Reproducibility - they say 90% of fixing a bug is to get an easily
reproducible test case.

Testing is not about running tests … testing is about finding and
fixing bugs. We have to:

		Run the tests

		Find a bug

		Classify the bug

		Hand the bugs off to a developer

		Developer investigates bug (cyclical)

		Developer tests some proposed fix (cyclical)

		Fix checked in

		New release issued to test team.

So many test systems I see are oriented only around the first two (or
even one!) steps. This is massively inefficient - so often I see
developers writing a simple testcase to reproduce what happens in a more
complex test, or proprietary application, and then these are thrown
away. If we started with open tests that we could freely and easily
share, much effort and time would be saved. This is not just about the
cost of the people’s time, salaries and machine resources. It’s about
the opportunity cost of stalling a release, which is massively greater -
these problems are often single-threading the critical path.

We want bug identification, investigation, and fixing to be done earlier
in the cycle. This allows multiple debugging efforts to be done in
parallel, without affecting others, as well as many other advantages,
such as the problem still being fresh in the developers mind, and not
interacting with other later changes. This means running tests on
multiple codebases (development trees), with high frequency - how can we
scale to this? Fully automated testing. Machines are cheap, people are
expensive - this is the reality of the modern age. For Linux, the
problem is compounded by the staggering diversity of hardware and kernel
configurations that we support.

Moreover, a test system is not just about simple functional tests; we
should also identify performance regressions and trends, adding
statistical analysis. A broad spectrum of tests are necessary – boot
testing, regression, function, performance, and stress testing; from
disk intensive to compute intensive to network intensive loads. A fully
automated test harness also empowers other techniques that are
impractical when testing manually, in order to make debugging and
problem identification easier, e.g. automated binary chop search amongst
thousands of patches to weed out dysfunctional changes.

It’s critical that when operating in an open community, we can share and
compare test results - that necessitates consistency of results formats.
The easiest way to achieve this is to share one common test harness.

Introduction¶

It is critical for any project to maintain a high level of software
quality, and consistent interfaces to other software that it uses or
uses it. There are several methods for increasing quality, but none of
these works in isolation, we need a combination of:

		skilled developers carefully developing high quality code,

		static code analysis,

		regular and rigorous code review,

		functional tests for new features,

		regression testing,

		performance testing, and

		stress testing.

Whilst testing will never catch all bugs, it will improve the overall
quality of the finished product. Improved code quality results in a
better experience not only for users, but also for developers, allowing
them to focus on their own code. Even simple compile errors hinder
developers.

In this paper we will look at the problem of automated testing, the
current state of it, and our views for its future. Then we will take a
case study of the test.kernel.org automated test system. We will examine
a key test component, the client harness, in more detail, and describe
the Autotest test harness project. Finally we will conclude with our
vision of the future and a summary.

Automated Testing¶

It is obvious that testing is critical, what is perhaps not so obvious
is the utility of regular testing at all stages of development. There
are two main things we’re trying to achieve here, parallelism of work,
and catching the bugs as quickly as possible. These are critical as:

		it prevents replication of the bad code into other code bases,

		fewer users are exposed to the bug,

		the code is still fresh in the authors mind,

		the change is less likely to interact with subsequent changes, and

		the code is easy to remove should that be required.

In a perfect world all contributions would be widely tested before being
applied; however, as most developers do not have access to a large range
of hardware this is impractical. More reasonably we want to ensure that
any code change is tested before being introduced into the mainline
tree, and fixed or removed before most people will ever see it. In the
case of Linux, Andrew Morton’s -mm tree (the de facto development tree)
and other subsystem specific trees are good testing grounds for this
purpose.

Test early, test often!

The open source development model and Linux in particular introduces
some particular challenges. Open-source projects generally suffer from
the lack of a mandate to test submissions and the fact that there is no
easy funding model for regular testing. Linux is particularly hard hit
as it has a constantly high rate of change, compounded with the
staggering diversity of the hardware on which it runs. It is completely
infeasible to do this kind of testing without extensive automation.

There is hope; machine-power is significantly cheaper than man-power in
the general case. Given a large quantity of testers with diverse
hardware it should be possible to cover a useful subset of the possible
combinations. Linux as a project has plenty of people and hardware; what
is needed is a framework to coordinate this effort.

The Testing Problem¶

[image: _images/codeflow.png]

As we can see from the diagram above Linux’s development model forms an
hourglass starting highly distributed, with contributions being
concentrated in maintainer trees before merging into the development
releases (the -mm tree) and then into mainline itself. It is vital to
catch problems here in the neck of the hourglass, before they spread out
to the distros – even once a contribution hits mainline it is has not
yet reached the general user population, most of whom are running distro
kernels which often lag mainline by many months.

In the Linux development model, each actual change is usually small and
attribution for each change is known making it easy to track the author
once a problem is identified. It is clear that the earlier in the
process we can identify there is a problem, the less the impact the
change will have, and the more targeted we can be in reporting and
fixing the problem.

Whilst contributing untested code is discouraged we cannot expect lone
developers to be able to do much more than basic functional testing,
they are unlikely to have access to a wide range of systems. As a
result, there is an opportunity for others to run a variety of tests on
incoming changes before they are widely distributed. Where problems are
identified and flagged, the community has been effective at getting the
change rejected or corrected.

By making it easier to test code, we can encourage developers to run the
tests before ever submitting the patch; currently such early testing is
often not extensive or rigorous, where it is performed at all. Much
developer effort is being wasted on bugs that are found later in the
cycle when it is significantly less efficient to fix them.

The State of the Union¶

It is clear that a significant amount of testing resource is being
applied by a variety of parties, however most of the current testing
effort goes on after the code has forked from mainline. The distribution
vendors test the code that they integrate into their releases, hardware
vendors are testing alpha or beta releases of those distros with their
hardware. Independent Software Vendors (ISVs) are often even later in
the cycle, first testing beta or even after distro release. Whilst
integration testing is always valuable, this is far too late to be doing
primary testing, and makes it extremely difficult and inefficient to fix
problems that are found. Moreover, neither the tests that are run, nor
the results of this testing are easily shared and communicated to the
wider community.

There is currently a large delay between a mainline kernel releasing and
that kernel being accepted and released by the distros, embedded product
companies and other derivatives of Linux. If we can improve the code
quality of the mainline tree by putting more effort into testing
mainline earlier, it seems reasonable to assume that those `customers’
of Linux would update from the mainline tree more often. This will
result in less time being wasted porting changes backwards and forwards
between releases, and a more efficient and tightly integrated Linux
community.

What Should we be Doing?¶

Linux’s constant evolutionary approach to software development fits well
with a wide-ranging, high-frequency regression testing regime. The
`release early, release often’ development philosophy provides us with
a constant stream of test candidates; for example the -git snapshots
which are produced twice daily, and Andrew Morton’s collecting of the
specialized maintainer trees into a bleeding-edge -mm development tree.

In an ideal world we would be regression testing at least daily
snapshots of all development trees, the -mm tree and mainline on all
possible combinations of hardware; feeding the results back to the
owners of the trees and the authors of the changes. This would enable
problems to be identified as early as possible in the concentration
process and get the offending change updated or rejected. The
test.kernel.org testing project provides a preview of what is possible,
providing some limited testing of the mainline and development trees,
and is discussed more fully later.

Just running the tests is not sufficient, all this does is produce large
swaths of data for humans to wade through; we need to analyse the
results to engender meaning, and isolate any problems identified.

Regression tests are relatively easy to analyse, they generate a clean
pass or fail; however, even these can fail intermittently. Performance
tests are harder to analyse, a result of 10 has no particular meaning
without a baseline to compare it against. Moreover, performance tests
are not 100% consistent, so taking a single sample is not sufficient, we
need to capture a number of runs and do simple statistical analysis on
the results in order to determine if any differences are statistically
significant or not. It is also critically important to try to
distinguish failures of the machine or harness from failures of the code
under test.

Case Study: test.kernel.org¶

We have tried to take the first steps towards the automated testing
goals we have outlined above with the testing system that generates the
test.kernel.org website. Whilst it is still far from what we would like
to achieve, it is a good example of what can be produced utilising time
on an existing in house system sharing and testing harness and a shared
results repository.

New kernel releases are picked up automatically within a few minutes of
release, and a predefined set of tests are run across them by a
proprietary IBM® system called ABAT, which includes a client harness
called autobench. The results of these tests are then collated, and
pushed to the TKO server, where they are analysed and the results
published on the TKO website.

Whilst all of the test code is not currently open, the results of the
testing are, which provides a valuable service to the community,
indicating (at least at a gross level) a feel for the viability of that
release across a range of existing machines, and the identification of
some specific problems. Feedback is in the order of hours from release
to results publication.

How it Works¶

[image: _images/tko.png]

The TKO system is architected as show in the figure above. Its is made
up of a number of distinct parts, each described below:

The mirror / trigger engine: test execution is keyed from kernel
releases; by any -mm tree release (2.6.16-rc1-mm1), git release
(2.6.17-rc1-git10), release candidate (2.6.17-rc1), stable release
(2.6.16) or stable patch release (2.6.16.1). A simple rsync local mirror
is leveraged to obtain these images as soon as they are available. At
the completion of the mirroring process any newly downloaded image is
identified and those which represent new kernels trigger testing of that
image.

Server Job Queues: for each new kernel, a predefined set of test jobs
are created in the server job queues. These are interspersed with other
user jobs, and are run when time is available on the test machines.
IBM’s ABAT server software currently fulfils this function, but a simple
queueing system could serve for the needs of this project.

Client Harness: when the test system is available, the control file for
that test is passed to the client harness. This is responsible for
setting up the machine with appropriate kernel version, running the
tests, and pushing the results to a local repository. Currently this
function is served by autobench. It is here that our efforts are
currently focused with the Autotest client replacement project which we
will discuss in detail later.

Results Collation: results from relevant jobs are gathered
asynchronously as the tests complete and they are pushed out to
test.kernel.org. A reasonably sized subset of the result data is pushed,
mostly this involves stripping the kernel binaries and system
information dumps.

Results Analysis: once uploaded the results analysis engine runs over
all existing jobs and extracts the relevant status; this is then
summarised on a per release basis to produce both overall red, amber and
green status for each release/machine combination. Performance data is
also analysed, in order to produce historical performance graphs for a
selection of benchmarks.

Results Publication: results are made available automatically on the TKO
web site. However, this is currently a `polled’ model; no automatic
action is taken in the face of either test failures or if performance
regressions are detected, it relies on developers to monitor the site.
These failures should be actively pushed back to the community via an
appropriate publication mechanism (such as email, with links back to
more detailed data).

Observed problems: When a problem (functional or performance) is
observed by a developer monitoring the analysed and published results,
this is manually communicated back to the development community
(normally via email). This often results in additional patches to test,
which can be manually injected into the job queues via a simple script,
but currently only by an IBM engineer. These then automatically flow
through with the regular releases, right through to publication on the
matrix and performance graphs allowing comparison with those releases.

TKO in Action¶

The regular compile and boot testing frequently shakes out bugs as the
patch that carried them enters the -mm tree. By testing multiple
architectures, physical configurations, and kernel configurations we
often catch untested combinations and are able to report them to the
patch author. Most often these are compile failures, or boot failures,
but several performance regressions have also been identified.

[image: _images/kernbench-moe.png]

As a direct example, recently the performance of highly parallel
workloads dropped off significantly on some types of systems,
specifically with the -mm tree. This was clearly indicated by a drop off
in the kernbench performance figures. In the graph above we can see the
sudden increase in elapsed time to a new plateau with 2.6.14-rc2-mm1.
Note the vertical error bars for each data point – doing multiple test
runs inside the same job allows us to calculate error margins, and
clearly display them.

Once the problem was identified some further analysis narrowed the bug
to a small number of scheduler patches which were then also tested;
these appear as the blue line (`other’ releases) in the graph. Once the
regression was identified the patch owner was then contacted, several
iterations of updated fixes were then produced and tested before a
corrected patch was applied. This can be seen in the figures for
2.6.16-rc1-mm4.

The key thing to note here is that the regression never made it to the
mainline kernel let alone into a released distro kernel; user exposure
was prevented. Early testing ensured that the developer was still
available and retained context on the change.

Summary¶

The current system is providing regular and useful testing feedback on
new releases and providing ongoing trend analysis against historical
releases. It is providing the results of this testing in a public
framework available to all developers with a reasonable turn round time
from release. It is also helping developers by testing on rarer hardware
combinations to which they have no access and cannot test.

However, the system is not without its problems. The underlying tests
are run on a in-house testing framework (ABAT) which is currently not in
the public domain; this prevents easy transport of these tests to other
testers. As a result there is only one contributor to the result set at
this time, IBM. Whilst the whole stack needs to be made open, we explain
in the next section why we have chosen to start first with the client
test harness.

The tests themselves are very limited, covering a subset of the kernel.
They are run on a small number of machines, each with a few, fixed
configurations. There are more tests which should be run but lack of
developer input and lack of hardware resources on which to test prevent
significant expansion.

The results analysis also does not communicate data back as effectively
as it could to the community – problems (especially performance
regressions) are not as clearly isolated as they could be, and
notification is not as prompt and clear as it could be. More data
`folding’ needs to be done as we analyse across a multi-dimensional
space of kernel version, kernel configuration, machine type, toolchain,
and tests.

Client Harnesses¶

As we have seen, any system which will provide the required level of
testing needs to form a highly distributed system, and be able to run
across a large test system base. This will necessitate a highly flexible
client test harness; a key component of such a system. We have used our
experiences with the IBM autobench client, and the TKO analysis system
to define requirements for such a client. This section will discuss
client harnesses in general and lead on to a discussion of the Autotest
project’s new test harness.

We chose to attack the problem of the client harness first as it seems
to be the most pressing issue. With this solved, we can share not only
results, but the tests themselves more easily, and empower a wide range
of individuals and corporations to run tests easily, and share the
results. By defining a consistent results format, we can enable
automated collation and analysis of huge amounts of data.

Requirements / Design Goals¶

A viable client harness must be operable stand-alone or under an
external scheduler infrastructure. Corporations already have significant
resources invested in bespoke testing harnesses which they are not going
to be willing to waste; the client needs to be able to plug into those,
and timeshare resources with them. On the other hand, some testers and
developers will have a single machine and want something simple they can
install and use. This bimodal flexibility is particularly relevant where
we want to be able to pass a failing test back to a patch author, and
have them reproduce the problem.

The client harness must be modular, with a clean internal infrastructure
with simple, well defined APIs. It is critical that there is clear
separation between tests, and between tests and the core, such that
adding a new test cannot break existing tests.

The client must be simple to use for newcomers, and yet provide a
powerful syntax for complex testing if necessary. Tests across multiple
machines, rebooting, loops, and parallelism all need to be supported.

We want distributed scalable maintainership, the core being maintained
by a core team and the tests by the contributors. It must be able to
reuse the effort that has gone into developing existing tests, by
providing a simple way to encapsulate them. Whilst open tests are
obviously superior, we also need to allow the running of proprietary
tests which cannot be contributed to the central repository.

There must be a low knowledge barrier to entry for development, in order
to encourage a wide variety of new developers to start contributing. In
particular, we desire it to be easy to write new tests and profilers,
abstracting the complexity into the core as much as possible.

We require a high level of maintainability. We want a consistent
language throughout, one which is powerful and yet easy to understand
when returning to the code later, not only by the author, but also by
other developers.

The client must be robust, and produce consistent results. Error
handling is critical – tests that do not produce reliable results are
useless. Developers will never add sufficient error checking into
scripts, we must have a system which fails on any error unless you take
affirmative action. Where possible it should isolate hardware or harness
failures from failures of the code under test; if something goes wrong
in initialisation or during a test we need to know and reject that test
result.

Finally, we want a consistent results architecture – it is no use to
run thousands of tests if we cannot understand or parse the results. On
such a scale such analysis must be fully automatable. Any results
structure needs to be consistent across tests and across machines, even
if the tests are being run by a wide diversity of testers.

What Tests are Needed?¶

As we mentioned previously, the current published automated testing is
very limited in its scope. We need very broad testing coverage if we are
going to catch a high proportion of problems before they reach the user
population, and need those tests to be freely sharable to maximise test
coverage.

Most of the current testing is performed in order to verify that the
machine and OS stack is fit for a particular workload. The real workload
is often difficult to set up, may require proprietary software, and is
overly complex and does not give sufficiently consistent reproducible
results, so use is made of a simplified simulation of that workload
encapsulated within a test. This has the advantage of allowing these
simulated workloads to be shared. We need tests in all of the areas
below:

Build tests simply check that the kernel will build. Given the massive
diversity of different architectures to build for, different
configuration options to build for, and different toolchains to build
with, this is an extensive problem. We need to check for warnings, as
well as errors.

Static verification tests run static analysis across the code with tools
like sparse, lint, and the Stanford checker, in the hope of finding bugs
in the code without having to actually execute it.

Inbuilt debugging options (e.g. CONFIG_DEBUG_PAGEALLOC,
CONFIG_DEBUG_SLAB) and fault insertion routines (e.g. fail every 100th
memory allocation, fake a disk error occasionally) offer the opportunity
to allow the kernel to test itself. These need to be a separated set of
test runs from the normal functional and performance tests, though they
may reuse the same tests.

Functional or unit tests are designed to exercise one specific piece of
functionality. They are used to test that piece in isolation to ensure
it meets some specification for its expected operation. Examples of this
kind of test include LTP and Crashme.

Performance tests verify the relative performance of a particular
workload on a specific system. They are used to produce comparisons
between tests to either identify performance changes, or confirm none is
present. Examples of these include: CPU performance with Kernbench and
AIM7/reaim; disk performance with bonnie, tbench and iobench; and
network performance with netperf.

Stress tests are used to identify system behaviour when pushed to the
very limits of its capabilities. For example a kernel compile executed
completely in parallel creates a compile process for each file. Examples
of this kind of test include kernbench (configured appropriately), and
deliberately running under heavy memory pressure such as running with a
small physical memory.

Profiling and debugging is another key area. If we can identify a
performance regression, or some types of functional regression, it is
important for us to be able to gather data about what the system was
doing at the time in order to diagnose it. Profilers range from
statistical tools like readprofile and lockmeter to monitoring tools
like vmstat and sar. Debug tools might range from dumping out small
pieces of information to full blown crashdumps.

Existing Client Harnesses¶

There are a number of pre-existing test harnesses in use by testers in
the community. Each has its features and problems, we touch on a few of
them below.

IBM autobench is a fairly fully featured client harness, it is
completely written in a combination of shell and perl. It has support
for tests containing kernel builds and system boots. However, error
handling is very complex and must be explicitly added in all cases, but
does encapsulate the success or failure state of the test. The use of
multiple different languages may have been very efficient for the
original author, but greatly increases the maintenance overheads. Whilst
it does support running multiple tests in parallel, loops within the job
control file are not supported nor is any complex `programming’.

OSDL STP The Open Systems Development Lab (OSDL) has the Scalable Test
Platform (STP). This is a fully integrated testing environment with both
a server harness and client wrapper. The client wrapper here is very
simple consisting of a number of shell support functions. Support for
reboot is minimal and kernel installation is not part of the client.
There is no inbuilt handling of the meaning of results. Error checking
is down to the test writer; as this is shell it needs to be explicit
else no checking is performed. It can operate in isolation and results
are emailable, reboot is currently being added.

LTP (http://ltp.sourceforge.net/) The
Linux Test Project is a functional / regression test suite. It contains
approximately 2900 small regression tests which are applied to the
system running LTP. There is no support for building kernels or booting
them, performance testing or profiling. Whilst it contains a lot of
useful tests, it is not a general heavy weight testing client.

A number of other testing environments currently exist, most appear to
suffer from the same basic issues, they evolved from the simplest
possible interface (a script) into a test suite; they were not designed
to meet the level of requirements we have identified and specified.

All of those we have reviewed seem to have a number of key failings.
Firstly, most lack most lack bottom up error handling. Where support
exists it must be handled explicitly, testers never will think of
everything. Secondly, most lack consistent machine parsable results.
There is often no consistent way to tell if a test passes, let alone get
any details from it. Lastly, due to their evolved nature they are not
easy to understand nor to maintain. Fortunately it should be reasonably
easy to wrap tests such as LTP, or to port tests from STP and autobench.

Autotest - a Powerful Open Client¶

The Autotest open client is an attempt to address the issues we have
identified. The aim is to produce a client which is open source,
implicitly handles errors, produces consistent results, is easily
installable, simple to maintain and runs either standalone or within any
server harness.

Autotest is an all new client harness implementation. It is completely
written in Python; chosen for a number of reasons, it has a simple,
clean and consistent syntax, it is object oriented from inception, and
it has very powerful error and exception handling. Whist no language is
perfect, it meets the key design goals well, and it is open source and
widely supported.

As we have already indicated, there are a number of existing client
harnesses; some are even open-source and therefore a possible basis for
a new client. Starting from scratch is a bold step, but we believe that
the benefits from a designed approach outweigh the effort required
initially to get to a workable position. Moreover, much of the existing
collection of tests can easily be imported or wrapped.

Another key goal is the portability of the tests and the results; we
want to be able to run tests anywhere and to contribute those test
results back. The use of a common programming language, one with a
strict syntax and semantics should make the harness and its contained
tests very portable. Good design of the harness and results
specifications should help to maintain portable results.

The autotest Test Harness¶

Autotest utilises an executable control file to represent and drives the
users job. This control file is an executable fragment of Python and may
contain any valid Python constructs, allowing the simple representation
of loops and conditionals. Surrounding this control file is the Autotest
harness, which is a set of support functions and classes to simplify
execution of tests and allow control over the job.

The key component is the job object which represents the executing job,
provides access to the test environment, and provides the framework to
the job. It is responsible for the creation of the results directory,
for ensuring the job output is recorded, and for any interactions with
any server harness. Below is a trivial example of a control file:

job.runtest('test1', 'kernbench', 2, 5)

One key benefit of the use of a real programming language is the ability
to use the full range of its control structures in the example below we
use an iterator:

for i in range(0, 5):
 job.runtest('test%d' % i, 'kernbench',
 2, 5)

Obviously as we are interested in testing Linux, support for building,
installing and booting kernels is key. When using this feature, we need
a little added complexity to cope with the interruption to control flow
caused by the system reboot. This is handled using a phase stepper which
maintains flow across execution interruptions, below is an example of
such a job, combining booting with iteration:

def step_init():
 step_test(1)

def step_test(iteration):
 if (iteration < 5):
 job.next_step([step_test,
 iteration + 1])

 print "boot: %d" % iteration

 kernel = job.distro_kernel()
 kernel.boot()

Tests are represented by the test object; each test added to Autotest
will be a subclass of this. This allows all tests to share behaviour,
such as creating a consistent location and layout for the results, and
recording the result of the test in a computer readable form. Below is
the class definition for the kernbench benchmark. As we can see it is a
subclass of test, and as such benefits from its management of the
results directory hierarchy.

import test
from autotest_utils import *

class kernbench(test):

 def setup(self,
 iterations = 1,
 threads = 2 * count_cpus(),
 kernelver = '/usr/local/src/linux-2.6.14.tar.bz2',
 config = os.environ['AUTODIRBIN'] + "/tests/kernbench/config"):

 print "kernbench -j %d -i %d -c %s -k %s" % (threads, iterations, config, kernelver)

 self.iterations = iterations
 self.threads = threads
 self.kernelver = kernelver
 self.config = config

 top_dir = job.tmpdir+'/kernbench'
 kernel = job.kernel(top_dir, kernelver)
 kernel.config([config])

 def execute(self):
 testkernel.build_timed(threads) # warmup run
 for i in range(1, iterations+1):
 testkernel.build_timed(threads, '../log/time.%d' % i)

 os.chdir(top_dir + '/log')
 system("grep elapsed time.* > time")

Summary¶

We feel that Autotest is much more powerful and robust design than the
other client harnesses available, and will produce more consistent
results. Adding tests and profilers is simple, with a low barrier to
entry, and they are easy to understand and maintain.

Much of the power and flexibility of Autotest stems from the decision to
have a user-defined control file, and for that file to be written in a
powerful scripting language. Whilst this was more difficult to
implement, the interface the user sees is still simple. If the user
wishes to repeat tests, run tests in parallel for stress, or even write
a bisection search for a problem inside the control file, that is easy
to do.

The Autotest client can be used either as standalone, or easily linked
into any scheduling backend, from a simple queueing system to a huge
corporate scheduling and allocation engine. This allows us to leverage
the resources of larger players, and yet easily allow individual
developers to reproduce and debug problems that were found in the lab of
a large corporation.

Each test is a self-contained modular package. Users are strongly
encouraged to create open-source tests (or wrap existing tests) and
contribute those to the main test repository on test.kernel.org (see the
Autotest wiki for details). However, private tests and repositories are
also allowed, for maximum flexibility. The modularity of the tests means
that different maintainers can own and maintain each test, separate from
the core harness. We feel this is critical to the flexibility and
scalability of the project.

We currently plan to support the Autotest client across the range of
architectures and across the main distros. There is no plans to support
other operating systems, as it would add unnecessary complexity to the
project. The Autotest project is released under the GNU Public License.

Future¶

We need a broader spectrum of tests added to the Autotest project.
Whilst the initial goal is to replace autobench for the published data
on test.kernel.org, this is only a first step – there are a much wider
range of tests that could and should be run. There is a wide body of
tests already available that could be wrapped and corralled under the
Autotest client.

We need to encourage multiple different entities to contribute and share
testing data for maximum effect. This has been stalled waiting on the
Autotest project, which is now nearing release, so that we can have a
consistent data format to share and analyse. There will be problems to
tackle with quality and consistency of data that comes from a wide range
of sources.

Better analysis of the test results is needed. Whilst the simple
red/yellow/green grid on test.kernel.org and simple gnuplot graphs are
surprisingly effective for so little effort, much more could be done. As
we run more tests, it will become increasingly important to summarise
and fold the data in different ways in order to make it digestible and
useful.

Testing cannot be an island unto itself – not only must we identify
problems, we must communicate those problems effectively and efficiently
back to the development community, provide them with more information
upon request, and be able to help test attempted fixes. We must also
track issues identified to closure.

There is great potential to automate beyond just identifying a problem.
An intelligent automation system should be able to further narrow down
the problem to an individual patch (by bisection search, for example,
which is O(log2) number of patches). It could drill down into a problem
by running more detailed sets of performance tests, or repeating a
failed test several times to see if a failure was intermittent or
consistent. Tests could be selected automatically based on the area of
code the patch touches, correlated with known code coverage data for
particular tests.

Summary¶

We are both kernel developers, who started the both test.kernel.org and
Autotest projects out of a frustration with the current tools available
for testing, and for fully automated testing in particular. We are now
seeing a wider range of individuals and corporations showing interest in
both the test.kernel.org and Autotest projects, and have high hopes for
their future.

In short we need:

		more automated testing, run at frequent intervals,

		those results need to be published consistently and cohesively,

		to analyse the results carefully,

		better tests, and to share them, and

		a powerful, open source, test harness that is easy to add tests to.

There are several important areas where interested people can help
contribute to the project:

		run a diversity of tests across a broad range of hardware,

		contribute those results back to test.kernel.org,

		write new tests and profilers, contribute those back, and

		for the kernel developers … fix the bugs!!!

An intelligent system can not only improve code quality, but also free
developers to do more creative work.

Acknowledgements¶

We would like to thank OSU for the donation of the server and disk space
which supports the test.kernel.org site.

We would like to thank Mel Gorman for his input to and review of drafts
of this paper.

Autotest Development Community Size¶

After re-consideration about the subject, in
April 2012 we have rewritten the entire autotest
tree history. Autotest was a project kept on svn
for about 6 years, and for a long time there was
an unofficial git-svn mirror, that after we adopted
git as the official reference, we just kept that
mirror.

Obviously this does not play well with the
traditional tools to verify stats on git, so
that’s why we decided to rewrite. Now you can see
the individual authors that contributed since the
inception of the project:

$ git shortlog -s | wc -l
202

And all other fun git statistics, such as the number
of organizations that contributed resources to some
extent to the project

$ git shortlog -se | sed -e 's/.*@//g' -e 's/\W*$//g' | sort | uniq | grep -v "<"
alien8.de
amd.com
b1-systems.de
br.ibm.com
canonical.com
chromium.org
cn.fujitsu.com
cn.ibm.com
digium.com
gelato.unsw.edu.au
gmail.com
google.com
hp.com
ifup.org
inf.u-szeged.hu
in.ibm.com
intel.com
intra2net.com
kerlabs.com
linux.vnet.ibm.com
mvista.com
nokia.com
openvz.org
oracle.com
osdl.org
oss.ntt.co.jp
place.org
raisama.net
redhat.com
samba.org
secretlab.ca
shadowen.org
stanford.edu
stec-inc.com
suse.com
suse.cz
suse.de
twitter.com
uk.ibm.com
us.ibm.com
windriver.com
xenotime.net

As not all of them are strictly institutions, and there are different
domains from the same root company, we can estimate about 30 institutions.

Have fun with your git stats, enjoy!

This section has assorted information and some past, informative presentations
and articles about autotest architecture and goals, such as
This article on autotest by John Admanski and
This presentation from OLS 2009.

Local (Former Client)¶

Autotest Client Quick Start¶

The autotest client has few requirements.
Make sure you have python 2.4 or later installed. Also, it is a
good idea to try things in a VM or test machine you don’t care
about, for safety.

Download the client wherever you see fit:

git clone --recursive git://github.com/autotest/autotest.git
cd autotest

Run some simple tests, such our sleeptest, which only sleeps for a given
amount of seconds (our favorite autotest sanity testing). From the autotest directory
(i.e. /usr/local/autotest/client):

client/autotest-local --verbose run sleeptest

To run any individual test:

client/autotest-local run <testname>

You can also run tests by providing the control file

client/autotest-local client/tests/sleeptest/control

Some tests may require that you run them as root. For example, if you try to run the rtc test as normal user, you will get /dev/rtc0: Permission denied error in your test result. So you must run the test as root.

In case you run the client as root, then switch back to a regular
user, some important directories will be owned by root and the next
run will fail. If that happens, you can remove the directories:

sudo rm -rf client/tmp
sudo rm -rf client/results

There are sample control files inside the client/samples directory,
useful for learning from. The kbuild_and_tests/control file in
there will download a kernel, compile it, then reboot the machine
into it.

Execute it as root:

client/autotest-local --verbose client/samples/kbuild_and_tests/control

WARNING - do it on a test machine, or in a VM, so you don’t mess
up your existing system boot configuration

Client Control files¶

The key defining component of a job is its control file; this file
defines all aspects of a jobs life cycle. The control file is a Python
script which directly drives execution of the tests in question.

Simple Jobs¶

You are automatically supplied with a job object which drives the job
and supplies services to the control file. A control file can be as
simple as:

job.run_test('kernbench')

The only mandatory argument is the name of the test. There are lots of
examples; each test has a sample control file under
tests/<testname>/control

If you’re sitting in the top level of the Autotest client, you can run
the control file like this:

$ client/autotest-local <control_file_name>

You can also supply specific arguments to the test

job.run_test('kernbench', iterations=2, threads=5)

		First paramater is the test name.

		The others are arguments to the test. Most tests will run with no
arguments if you want the defaults.

If you would like to specify a tag for the results directory for a
particular test:

job.run_test('kernbench', iterations=2, threads=5, tag='mine')

Will create a results directory “kernbench.mine” instead of the default
“kernbench”. This is particularly important when writing more complex
control files that may run the same test multiple times, in order to
properly separate the results of each of the test runs they will need a
unique tag.

External tests¶

Sometimes when you are developing a test it’s useful to have it packaged
somewhere so your control file can download it, uncompress it and run
it. The convention for packaging test is on
External Tests. Make sure you read that session
before you try to package and run your own external tests.

Flow control¶

One of the benefits of the use of a true programming language for the
control script is the ability to use all of its structural and error
checking features. Here we use a loop to run kernbench with different
threading levels.

for t in [8, 16, 32]:
 job.run_test('kernbench', iterations=2, threads=t, tag='%d' % t)

System information collection¶

After every reboot and after every test, Autotest will collect a variety
of standard pieces of system information made up of specific files
grabbed from the filesystem (e.g. /proc/meminfo) and the output of
various commands (e.g.``uname -a``). You can see this output in the
results directories, under sysinfo/ (for per-reboot data) and
<testname>/sysinfo (for pre-test data).

For a full list of what’s collected by default you can take a look at
client/bin/base_sysinfo.py; however, there also exists a mechanism for
adding extra files and commands to the system info collection inside
your control files. To add a custom file to the log collection you can
call:

job.add_sysinfo_file("/proc/vmstat")

This would collect the contents of /proc/vmstat after every reboot. To
collect it on every test you can use the optional on_every_test
parameter, like so:

job.add_sysinfo_file("/proc/vmstat", on_every_test=True)

There exists a similar method for adding a new command to the sysinfo
collection:

job.add_sysinfo_command("lspci -v", logfile="lspci.txt")

This will run lspci -v through the shell on every reboot, logging the
output in lspci.txt. The logfile parameter is optional; if you do not
specify it, the logfile will default to the command text with all
whitespace replaced with underscores (e.g. in this case it would use
lspci_ -v as the filename). This method also takes an on_every_test
parameter that can be used to run the collection after every test
instead of every reboot.

Using the profilers facility¶

You can enable one or more profilers to run during the test. Simply add
them before the tests, and remove them afterwards, e.g.:

job.profilers.add('oprofile')
job.run_test('sleeptest')
job.profilers.delete('oprofile')

If you run multiple tests like this:

job.profilers.add('oprofile')
job.run_test('kernbench')
job.run_test('dbench')
job.profilers.delete('oprofile')

It will create separate profiling output for each test - generally we do
a separate profiling run inside each test, so as not to perturb the
performance results. Profiling output will appear under
<testname>/profiling in the results directory.

Again, there are examples for all profilers in
profilers/<profiler-name>/control.

Creating filesystems¶

We have support built in for creating filesystems. Suppose you wanted to
run the fsx test against a few different filesystems:

Uncomment this line, and replace the device with something sensible
for you ...
fs = job.filesystem('/dev/hda2', job.tmpdir)

for fstype in ('ext2', 'ext3'):
 fs.mkfs(fstype)
 fs.mount()
 try:
 job.run_test('fsx', job.tmpdir, tag=fstype)
 finally:
 fs.unmount()

or if we want to show off and get really fancy, we could mount EXT3 with
a bunch of different options, and see how the performance compares
across them:

fs = job.filesystem('/dev/sda3', job.tmpdir)

iters=10

for fstype, mountopts, tag in (('ext2', '', 'ext2'),
 ('ext3', '-o data=writeback', 'ext3writeback'),
 ('ext3', '-o data=ordered', 'ext3ordered'),
 ('ext3', '-o data=journal', 'ext3journal')):
 fs.mkfs(fstype)
 fs.mount(args=mountopts)
 try:
 job.run_test('fsx', job.tmpdir, tag=tag)
 job.run_test('iozone', job.tmpdir, iterations=iters, tag=tag)
 job.run_test('dbench', iterations=iters, dir=job.tmpdir, tag=tag)
 job.run_test('tiobench', dir=job.tmpdir, tag=tag)
 finally:
 fs.unmount()

Rebooting during a job¶

Where a job needs to cause a system reboot such as when booting a newly
built kernel, there is necessarily an interuption to the control script
execution. The job harness therefore also provides a phased or step
based interaction model.

def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('2.6.18')
 testkernel.config('http://mbligh.org/config/opteron2')
 testkernel.build()
 testkernel.boot() # does autotest by default

def step_test():
 job.run_test('kernbench', iterations=2, threads=5)
 job.run_test('dbench', iterations=5)

By defining a step_init this control script has indicated it is
using step mode. This triggers automatic management of the step state
across breaks in execution (such as a reboot) maintaining forward flow.

It is important to note that the step engine is not meant to work from
the scope of the tests, that is, inside a test module (job.run_test(), from
the control file perspective). The reboots and step engine are only meant
to be used from the control file level, since a lot of precautions are
taken when running test code, such as shielding autotest from rogue exceptions
thrown during test code, as well as executing test code on a subprocess, where
it is less likely to break autotest and we can kill that subprocess if it
reaches a timeout.

So this code inside a control file is correct:

def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('testkernel.rpm')
 testkernel.install()
 testkernel.boot()

def step_test():
 job.run_test('ltp')

This code, inside a test module, isn’t:

class kerneltest(test.test):
 def execute(self):
 testkernel = job.kernel('testkernel.rpm')
 testkernel.boot()

In broad brush, when using the step engine, the control file is not simply
executed once, but repeatedly executed until it indicates the job is complete.
In a stand-alone context we would expect to re-start execution automatically
on boot when a control file exists, in a managed environment the
managing server would perform the same role.

Obviously looping is more difficult in the face of phase based
execution. The state maintained by the stepping engine is such, that we
can implement a boot based loop using step parameters.

def step_init():
 step_test(1)

def step_test(iteration):
 if (iteration < 5):
 job.next_step([step_test, iteration + 1])

 print "boot: %d" % iteration

 job.run_test('kernbench', tag="%d" % i)
 job.reboot()

Running multiple tests in parallel¶

The job object also provides a parallel method for running multiple
tasks at the same time. The method takes a variable number of arguments,
each representing a different task to be run in parallel. Each argument
should be a list, where the first item on the list is a function to be
called and all the remaining elements are arguments that will be passed
to the function when it is called.

def first_task():
 job.run_test('kernbench')

def second_task():
 job.run_test('dbench')

job.parallel([first_task], [second_task])

This control file will run both kernbench and dbench at the same time.
Alternatively, this could’ve been written as:

job.parallel([job.run_test, 'kernbench'], [job.run_test, 'dbench'])

However, if you want to so something more complex in your tasks than
call a single function then you’ll have to define your own functions to
do it, as in the first example.

The parallel jobs are run through fork, so each task will be running in
its own address space and you don’t need to worry about performing any
process-local synchronization between your separate tasks. However,
these processes will still be running on the same machine and so still
need to make certain that these tasks don’t crash into each other while
accessing shared resources (e.g. the filesystem). This means no
rebooting during parallel tasks, and if you’re running the same test in
different tasks, you must be sure to give each task a unique tag

Control file specification¶

This document will go over what is required to be in a control file for
it to be accepted into git. The goal of this is to have control files
that contain all necessary information for the frontend/the user to
ascertain what the test does and in what ways it can be modified.

Naming your control files¶

Control files should always start with control.XXXXX, where XXXXX is up to you
and the code reviewer, the idea is for it to be short sweet and
descriptive. For example, for 500 iterations of hard reboot test a decent
name would be control.hard500.

Variables¶

An overview of variables that should be considered required in any control file submitted to our repo.

		Name		Description

		* AUTHOR		Contact information for the person or group that wrote the test

		DEPENDENCIES		What the test requires to run. Comma deliminated list e.g. ‘CONSOLE’

		* DOC		Description of the test including what arguments can be passed to it

		EXPERIMENTAL		If this is set to True production servers will ignore the test

		* NAME		The name of the test for the frontend

		RUN_VERIFY		Whether or not the scheduler should run the verify stage, default True

		SYNC_COUNT		Accepts a number >=1 (1 being the default)

		* TIME		How long the test runs SHORT < 15m, MEDIUM < 4 hours, LONG > 4 hour

		TEST_CLASS		This describes the class for your the test belongs in. e.g. Kernel, Hardware

		TEST_CATEGORY		This describes the category for your tests e.g. Stress, Functional

		* TEST_TYPE		What type of test: client, server

* Are required for test to be considered valid

If you’d like to verify that your control file defines these variables
correctly, try the utils/check_control_file_vars.py utility.

AUTHOR (Required)¶

The name of either a group or a person who will be able to answer questions pertaining to the test should the
development team not be able to fix bugs. With email address included

DEPENDENCIES (Optional, default: None)¶

Dependencies are a way to describe what type of hardware you need to find to run a test on. Dependencies are
just a fancy way of saying if this machine has this label on it then it is eligible for this test.

An example usecase for this would be if you need to run a test on a device that has bluetooth you would add
the following to your control file:

DEPENDENCY = "Bluetooth"

Where Bluetooth is the exact label that was created in Autotest and has been added to a machine in
Autotest either via the CLI or the Django admin interface.

DOC (Required)¶

The doc string should be fairly verbose describing what is required for the test to be run successfully and
any modifications that can be done to the test. Any arguments in your def execute() that can change the
behavior of the test need to be listed here with their defaults and a description of what they do.

EXPERIMENTAL (Optional, default: False)¶

If this field is set the test import process for the frontend will ignore these tests for production
Autotest servers. This is useful for gettings tests checked in and tested in development servers
without having to worry about them sneaking into production servers.

NAME (Required)¶

The name that the frontend will display, this is useful when you have multiple control files for the same
test but with slight variations.

RUN_VERIFY (Optional, default: True)¶

It is used to have the scheduler not run verify on a particular job when it is scheduling it.

SYNC_COUNT (Optional, default: 1)¶

It accepts a number >=1 (1 being the default). If it’s 1, then it’s a async test. If it’s >1 it’s sync.

For example, if I have a test that requires exactly two machines SYNC_COUNT = 2. The scheduler will
then find the maximum amount of machines from the job submitted that will run that fit the SYNC_COUNT
evenly.

For example, if I submit a job with 23 machines, 22 machines will run the test in that job and
one will fail to run becase it doesn’t have a pair.

TIME (Required)¶

How long the test generally takes to run. This does not include the autotest setup time but just your
individual test’s time.

		TIME		Description

		SHORT		Test runs for a maximum of 15 minutes

		MEDIUM		Test runs for less four hours

		LONG		Test runs for longer four hours

TEST_CATEGORY (Required)¶

This is used to define the category your tests are a part of.

Examples of categories:

		Functional

		Stress

TEST_CLASS (Required)¶

This****describes the class type of tests. This is useful if you have different different types of tests you
want to filter on. If a test is added with a TEST_CLASS that does not exist the frontend should add that class.

Example tests classes

		Kernel

		Hardware

TEST_TYPE (Required)¶

This will tell the frontend what type of test it is. Valid values are server and client.
Although server_async jobs are also a type of job in correlation with SYNC_COUNT this is taken care of.

Example¶

TIME ='MEDIUM'
AUTHOR = 'Scott Zawalski (scott@xxx.com)'
TEST_CLASS = 'Hardware'
TEST_CATEGORY = 'Functional'
NAME = 'Hard Reboot'
SYNC_COUNT = 1
TEST_TYPE = 'server'
TEST_CLASS = 'Hardware'
DEPENDCIES = 'POWER, CONSOLE'

DOC = """
Tests the reliability of platforms when rebooted. This test allows
you to do a hard reboot or a software reboot.

Args:
type: can be "soft" or "hard", default is "hard"
e.g. job.run_test('reboot', machine, type="soft")
This control file does a HARD reboot
"""

def run(machine):
job.run_test('reboot', machine, type="hard")
parallel_simple(run, machines)

Test modules development¶

Tests should be self-contained modular units, encompassing everything
needed to run the test (apart from calls back into the core harness)

Tests should:

		Run across multiple hardware architectures

		Run on multiple distros

		Have a maintainer

		Provide simple examples for default running

		Not modify anything outside of their own directories, or provided
scratch areas.

Adding tests to autotest¶

Adding a test is probably the easiest development activity to do.

Each test is completely contained in it’s own subdirectory (either in
client/tests for client-side tests or server/tests for server-side
tests) - the normal components are

		An example control file,e.g. tests/mytest/control.

		A test wrapper, e.g. tests/mytest/mytest.py.

		Some source code for the test, if it’s not all done in just the Python script.

Start by taking a look over an existing test, e.g. tests/dbench. First,
note that the name of the subdirectory - tests/dbench, the test wrapper -
dbench.py and the name of the class inside the test wrapper - dbench,
all match. Make sure you do this in your new test too.

The control file is trivial:

job.run_test('dbench')

That just takes the default arguments to run dbench - mostly, we try to
provide sensible default settings to get you up and running easily, then
you can override most things later.

There’s a tarball for the source code - dbench-3.04.tar.gz - this will
get extracted under src/ later. Most of what you’re going to have to do
is in the Python wrapper. Look at dbench.py - you’ll see it inherits
from the main test class, and defines a version (more on that later).
You’ll see four functions:

		initialize() - This is run before everything, every time the test is
run.

		setup() - This is run when you first use the test, and normally is
used to compile the source code.

		run_once() - This is called by job.run_test N times, where N is
controlled by the iterations parameter to run_test (defaulting to
one). It also gets called an additional time with profilers turned
on, if you have any profilers enabled.

		postprocess_iteration() - This processes any results generated by
the test iteration, and writes them out into a keyval. It’s generally
not called for the profiling iteration, as that may have different
performance.

The test will result in a PASS, unless you throw an exception, in which
case it will FAIL (error.TestFail?), WARN (error.TestWarn?) or ERROR
(anything else). Most things that go wrong in Python will throw an
exception for you, so you don’t normally have to worry about this much -
you can check extra things and throw an exception if you need. Now let’s
look at those functions in some more detail.

setup¶

This is the one-off setup function for this test. It won’t run again
unless you change the version number (so be sure to bump that if you
change the source code). In this case it’ll extract dbench-3.04.tar.gz
into src/, and compile it for us. Look at the first few lines:

http://samba.org/ftp/tridge/dbench/dbench-3.04.tar.gz
def setup(self, tarball='dbench-3.04.tar.gz'):
 tarball = utils.unmap_url(self.bindir, tarball, self.tmpdir)

A comment saying where we got the source from. The function header -
defines what the default tarball to use for the source code is (you can
override this with a different dbench version from the control file if
you wanted to, but that’s highly unusual). Lastly there’s some magic
with unmap_url - that’s just incase you overrode it with a url - it’ll
download it for you, and return the local path … just copy that bit.

utils.extract_tarball_to_dir(tarball, self.srcdir)
os.chdir(self.srcdir)
utils.system('./configure')
utils.system('make')

OK, so this just extracts the tarball into self.srcdir (pre-setup for
you to be src/ under the test), cd’s into that src dir, and runs
./configure; make just as you would for most standard compilations.

Note

We use the local system() wrapper, not os.system() - this will

automatically throw an exception if the return code isn’t 0, etc.

Apart from compiling a package from the source,you have an option to
use the client system’s software manager to install a package using
the software_manager module.

Here is how you do it:

from autotest.client.shared import software_manager
backend=software_manager.SoftwareManager()
backend.install('<package_name>')

That’s all!

run_once¶

This actually executes the test. The core of what it’s doing is just:

self.results.append(utils.system_output(cmd))

Which says “run dbench and add the output to self.results”. We need to
record the output so that we can process it after the test runs in
postprocess.

postprocess_iteration¶

For performance benchmarks, we want to produce a keyval file of
key=value pairs, describing how well the benchmark ran. The key is
just a string, and the value is a floating point or integer number.
For dbench, we produce just two performance metrics - “throughput” and
“nprocs”. The function is called once per iteration (except for the
optional profiling iteration), and we end up with a file that looks like
this:

throughput = 217
nprocs = 4

throughput = 220
nprocs = 4

throughput = 215
nprocs = 4

Note that the above was from a run with three iterations - we ran the
benchmark 3 times, and thus print three sets of results. Each set is
separated by a blank line.

Additional test methods¶

These methods aren’t implemented in the dbench test, but they can be
implemented if you need to take advantage of them.

warmup¶

For performance tests that need to conduct any pre-test priming to make
the results valid. This is called by job.run_test before running the
test itself, but after all the setup.

cleanup¶

Used for any post-test cleanup. If test may have left the machine in a
broken state, or your initialize made a large mess (e.g. used up most of
the disk space creating test files) that could cause problems with
subsequent tests then it’s probably a good idea to write a cleanup that
undoes this. It always gets called, regardless of the success or failure
of the test execution.

execute¶

Used for executing the test, by calling warmup, run_once and
postprocess. The base test class provides an implementation that already
supports profilers and multiple test iterations, but if you need to
change this behavior you can override the default implementation with
your own.

Note

If you want to properly support multi-iteration tests and/or profiling

runs, you must provide that support yourself in your custom execute implementation.

Adding your own test¶

Now just create a new subdirectory under tests, and add your own control
file, source code, and wrapper. It’s probably easiest to just copy
dbench.py to mytest.py, and edit it - remember to change the name of the
class at the top though.

If you have any problems, or questions, drop an email to the
Autotest mailing list),
and we’ll help you out.

Using and developing job profilers¶

Adding a profiler is much like adding a test. Each profiler is completely
contained in it’s own subdirectory (under client/profilers or
if you just checked out the client - under profilers/) - the normal
components are:

		An example control file, e.g. profilers/myprofiler/control.

		A profiler wrapper, e.g. profilers/myprofiler.py.

		Some source code for the profiler (if it’s not all done in just the
Python script)

Start by taking a look over an existing profiler. I’ll pick readprofile,
though it’s not the simplest one, as it shows all the things you might
need. Be aware this one will only work if you have readprofile support
compiled into the kernel.

The control file is trivial, just

job.profilers.add('readprofile')
job.run_test('sleeptest', 1)
job.profilers.delete('readprofile')

That just says “please use readprofile for the following tests”. You can
call profilers.add multiple times if you want multiple profilers at
once. Then we generally just use sleeptest to do a touch test of
profilers - it just sleeps for N seconds (1 in this case).

There’s a tarball for the source code - util-linux-2.12r.tar.bz2 - this
will get extracted under src/ later. Most of what you’re going to have
to do is in the python wrapper. Look at readprofile.py - you’ll see it
inherits from the main profiler class, and defines a version (more on
that later). You’ll see several functions:

		setup() - This is run when you first use the profiler, and normally is used to compile the source code.

		intialize() - This is run whenever you import the profiler.

		start() - Starts profiling.

		stop() - Stops profiling.

		report() - Run a report on the profiler data.

Now let’s look at those functions in some more detail.

Setup¶

This is the one-off setup function for this test. It won’t run again unless you change the version number
(so be sure to bump that if you change the source code). In this case it’ll extract
util-linux-2.12r.tar.bz2 into src/, and compile it for us. Look at the first few lines:

http://www.kernel.org/pub/linux/utils/util-linux/util-linux-2.12r.tar.bz2
def setup(self, tarball = 'util-linux-2.12r.tar.bz2'):
 self.tarball = unmap_url(self.bindir, tarball, self.tmpdir)
 extract_tarball_to_dir(self.tarball, self.srcdir)

A comment saying where we got the source from. The function header - defines what the default tarball to
use for the source code is (you can override this with a different version from the control file if you
wanted to, but that’s highly unusual). Lastly there’s some magic with unmap_url - that’s just incase
you overrode it with a URL - it’ll download it for you, and return the local path just copy that bit.

os.chdir(self.srcdir)
system('./configure')
os.chdir('sys-utils')
system('make readprofile')

OK, so this just extracts the tarball into self.srcdir (pre-setup for you to be src/ under the profiler),
cd’s into that src dir, and runs ./configure and then just makes the readprofile component
(util-linux also contains a bunch of other stuff we don’t need) - just as you would for most standard
compilations. Note that we use the local system() wrapper, not os.system() - this will automatically
throw an exception if the return code isn’t 0, etc.

Initialize¶

def initialize(self):
 try:
 system('grep -iq " profile=" /proc/cmdline')
 except:
 raise CmdError, 'readprofile not enabled'

 self.cmd = self.srcdir + '/sys-utils/readprofile'

This runs whenever we import this profiler - it just checks that readprofile is enabled,
else it won’t work properly.

Start¶

def start(self, test):
 system(self.cmd + ' -r')

Start the profiler! Just run readprofile -r.

Stop¶

def stop(self, test):
 # There's no real way to stop readprofile, so we stash the
 # raw data at this point instead. BAD EXAMPLE TO COPY! ;-)
 self.rawprofile = test.profdir + '/profile.raw'
 print "STOP"
 shutil.copyfile('/proc/profile', self.rawprofile)

Normally you’d just run readprofile --stop, except this profiler doesn’t seem to have that.
We want to do the lightest-weight thing possible, in case there are multiple profilers running,
and we don’t want them to interfere with each other.

Report¶

def report(self, test):
 args = ' -n'
 args += ' -m ' + get_systemmap()
 args += ' -p ' + self.rawprofile
 cmd = self.cmd + ' ' + args
 txtprofile = test.profdir + '/profile.text'
 system(cmd + ' | sort -nr > ' + txtprofile)
 system('bzip2 ' + self.rawprofile)

This just converts it into text. We need to find this kernel’s System.map etc (for which there’s a helper),
and then produce the results in a useful form (in this case, a text file).
Note that we’re passed the test object, so we can store the results under the profiling/
subdirectory of the test’s output by using the test.profdir which has been set up automatically for you.

Adding your own profiler¶

Now just create a new subdirectory under profilers, and add your own control file, source code, and wrapper.
It’s probably easiest to just copy readprofile.py to mytest.py, and edit it - remember to change the
name of the class at the top though.

If you have any problems, or questions, drop an email to the
Autotest mailing list, and we’ll help you out.

Linux distribution detection¶

Autotest has a facility that lets tests determine quite precisely the distribution they’re running on.

This is done through the implementation and registration of probe classes.

Those probe classes can check for given characteristics of the running operating system, such as the existence of a release file,
its contents or even the existence of a binary that is exclusive to a distribution (such as package managers).

Quickly detecting the Linux distribution¶

The autotest.client.shared.distro module provides many APIs, but the simplest one to use is the detect().

Its usage is quite straighforward:

from autotest.client.shared import distro
detected_distro = distro.detect()

The returned distro can be the result of a probe validating the distribution detection, or the not so useful
UNKNOWN_DISTRO.

To access the relevant data on a LinuxDistro, simply use the attributes:

		name

		version

		release

		arch

Example:

>>> detected_distro = distro.detect()
>>> print detected_distro.name
redhat

The unknown Linux distribution¶

When the detection mechanism can’t precily detect the Linux distribution, it will still return a LinuxDistro instance,
but a special one that contains special values for its name, version, etc.

		
autotest.client.shared.distro.UNKNOWN_DISTRO = <LinuxDistro: name=unknown, version=0, release=0, arch=unknown>¶

		The distribution that is used when the exact one could not be found

Writing a Linux distribution probe¶

The easiest way to write a probe for your target Linux distribution is to make use of the features of the Probe class.

Even if you do plan to use the features documented here, keep in mind that all probes should inherit from Probe
and provide a basic interface.

Checking the distrution name only¶

The most trivial probe is one that checks the existence of a file and returns the distribution name:

class RedHatProbe(Probe):
 CHECK_FILE = '/etc/redhat-release'
 CHECK_FILE_DISTRO_NAME = 'redhat'

To make use of a probe, it’s necessary to register it:

from autotest.client.shared import distro
distro.register_probe(RedHatProbe)

And that’s it. This is a valid example, but will give you nothing but the distro name.

You should usually aim for more information, such as the version numbers.

Checking the distribution name and version numbers¶

If you want to also detect the distro version numbers (and you should), then it’s possible to use the
Probe.CHECK_VERSION_REGEX feature of the Probe class.

		
Probe.CHECK_VERSION_REGEX = None¶

		A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

If your regex has two or more groups, that is, it will look for and save references to two or more string, it will consider
the second group to be the LinuxDistro.release number.

Probe Scores¶

To increase the accuracy of the probe results, it’s possible to register a score for a probe. If a probe wants to, it can
register a score for itself.

Probes that return a score will be given priority over probes that don’t.

The score should be based on the number of checks that ran during the probe to account for its accuracy.

Probes should not be given a higher score because their checks look more precise than everyone else’s.

Registering your own probes¶

Not only the probes that ship with Autotest can be used, but your custom probe classes can be added to the detection system.

To do that simply call the function register_probe():

		
autotest.client.shared.distro.register_probe(probe_class)[source]¶

		Register a probe to be run during autodetection

Now, remember that for things to happen smootlhy your registered probe must be a subclass of Probe.

API Reference¶

LinuxDistro¶

		
class autotest.client.shared.distro.LinuxDistro(name, version, release, arch)[source]¶

		Simple collection of information for a Linux Distribution

Probe¶

		
class autotest.client.shared.distro.Probe[source]¶

		Probes the machine and does it best to confirm it’s the right distro

		
CHECK_FILE = None¶

		Points to a file that can determine if this machine is running a given
Linux Distribution. This servers a first check that enables the extra
checks to carry on.

		
CHECK_FILE_CONTAINS = None¶

		Sets the content that should be checked on the file pointed to by
CHECK_FILE_EXISTS. Leave it set to None (its default)
to check only if the file exists, and not check its contents

		
CHECK_FILE_DISTRO_NAME = None¶

		The name of the Linux Distribution to be returned if the file defined
by CHECK_FILE_EXISTS exist.

		
CHECK_VERSION_REGEX = None

		A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

		
check_name_for_file()[source]¶

		Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE) and the name of the
distro to be returned (CHECK_FILE_DISTRO_NAME)

		
check_name_for_file_contains()[source]¶

		Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE), the text to look for
inside the distro file (CHECK_FILE_CONTAINS) and the name
of the distro to be returned (CHECK_FILE_DISTRO_NAME)

		
check_release()[source]¶

		Checks if this has the conditions met to look for the release number

		
check_version()[source]¶

		Checks if this class will look for a regex in file and return a distro

		
get_distro()[source]¶

		Returns the LinuxDistro this probe detected

		
name_for_file()[source]¶

		Get the distro name if the CHECK_FILE is set and exists

		
name_for_file_contains()[source]¶

		Get the distro if the CHECK_FILE is set and has content

		
release()[source]¶

		Returns the release of the distro

		
version()[source]¶

		Returns the version of the distro

register_probe()¶

		
autotest.client.shared.distro.register_probe(probe_class)[source]

		Register a probe to be run during autodetection

detect()¶

		
autotest.client.shared.distro.detect()[source]¶

		Attempts to detect the Linux Distribution running on this machine

		Returns:		the detected LinuxDistro or UNKNOWN_DISTRO

		Return type:		LinuxDistro

External downloadable tests¶

As well as executing built-in tests it is possible to execute external tests. This allows non-standard tests to be constructed
and executed without any requirement to modify the installed Autotest client.

Executing Tests¶

A downloadable test is triggered and run in the standard way via the run_test method, but specifying a URL to a tarball of
the test:

job.run_test('http://www.example.com/~someone/somewhere/test.tar.bz2')

This will download, install, and execute the test as if it were built-in.

Constructing external downloadable tests¶

External downloadable tests consist of a bzip’ed tarball of the contents of a test directory. Things that need to match:

		The name of the tarball, i.g. my_test.tar.bz2

		The name of the primary Python file, i.g. my_test.py

		The name of the test class itself, i.e. class my_test(test.test):

Example:

$ cat example_test/my_test.py
from autotest_lib.client.bin import test

class my_test(test.test):
 version = 1

 def initialize(self):
 print "INIT"

 def run_once(self):
 print "RUN"

$ tar -C example_test -jcvf my_test.tar.bz2 .
./
./my_test.py

Note

You should not pack “example_test” directory but the contents of it. Files must be at the root of the archive.

Keyval files in Autotest¶

There are several “keyval” files in the results directory. These take the simple form

key1=value1
key2=value2

Below we describe what information is in which file.

Job level keyval¶

This file contains high level information about the job such as when it was queued, started, finished, the username
of the submitter, and what machines are involved.

Synchronous multi-machine jobs¶

When running a multi-machine job synchronously, you will end up with multiple “job level” keyval files; at the very
least, one upper-level keyval file in the root results directory, and one in each machine subdirectory. In the results
database each machine will be interpreted as a separate set of results, with the total job keyval data being
composed of data from the “uppermost” of the keyval files (i.e. the single job level keyval in the root dir). The single
exception to this is the hostname field - this is taken from the machine directory.

Test level keyval¶

This file contains the version of the test, and some per-test system information (parsed from the sysinfo dir) so that
we can load it up into the database easily.

Results level keyval¶

This file contains performance information for a test. Maybe something like

throughput=100
latency=12

If we ran multiple iterations of a test, there will be repeteaed keyvals in there, separated by a blank line:

throughput=101
latency=12.9

throughput=100
latency=11.2

throughput=96
latency=13.1

Diagnosing failures in your results¶

This document will describe how to go about triaging your Autotest results and finding out what went wrong.

Basics¶

A lot of times when tests fail there are a number of things that could have come into play. Below are a few
things that should be considered.

		Baseline

		What changed between tests

		Look at the raw results

Having a baseline is an absolute must:

		Have you run these tests on this particular system before?

		Did it pass without any issues?

These are questions you should be asking yourself. If you do not have a baseline that is the first thing to establish.
It really is as simple as running a job and making note of the results.

A lot of the time that people have tests fail they do not consider what changed in between tests. Any change what so
ever is important to make note of. From something big like, did I change the kernel? To something small like did I
move my system to a different area which may have impacted the cooling of the system?

Lastly if nothing has changed and you have established a baseline for
your machines it is time to delve into the results.

Looking at raw results¶

There are a few key areas worth looking at when evaluating what could have went wrong with your job. From the
View Job tab click on raw results log. Here you will be presented with a directory structure that represents
your job flat files. If you created a job with multiple machines there will be individual directories for each machine.
Navigate to the machine you want to investigate.

The debug directory¶

All tests run including the main Autotest job will have a debug directory. Here you will find the majority of the
information you need to diagnose issues with tests.

The following files in debug directory will give you insight into what Autotest was doing at the time:

debug/
├── build_log.gz
├── client.DEBUG
├── client.ERROR
├── client.INFO
└── client.WARNING

If you have console support (via conmux) you should also take a look at conmux.log.

If at any point Autotest produced a stacktrace, *.ERROR will most likely contain this information. That is a
good place to start if the test run failed and you want to see if Autotest itself as at fault for the problem.

If both of these files are clean next we go to the <hostname>/test/ directory.

Example investigation¶

This example was created on host without time utility, I tried to launch kernbench (output reduced):

client/autotest-local --verbose run kernbench
10:01:59 INFO | Writing results to /usr/local/autotest/client/results/default
...
10:03:19 DEBUG| Running 'gzip -9 '/usr/local/autotest/client/results/default/kernbench/debug/build_log''
10:03:19 ERROR| Exception escaping from test:
Traceback (most recent call last):
 File "/usr/local/autotest/client/shared/test.py", line 398, in _exec
 *args, **dargs)
 File "/usr/local/autotest/client/shared/test.py", line 823, in _call_test_function
 return func(*args, **dargs)
 File "/usr/local/autotest/client/shared/test.py", line 738, in _cherry_pick_call
 return func(*p_args, **p_dargs)
 File "/usr/local/autotest/client/tests/kernbench/kernbench.py", line 53, in warmup
 self.kernel.build_timed(self.threads, output=logfile) # warmup run
 File "/usr/local/autotest/client/kernel.py", line 377, in build_timed
 utils.system(build_string)
 File "/usr/local/autotest/client/shared/utils.py", line 1232, in system
 verbose=verbose).exit_status
 File "/usr/local/autotest/client/shared/utils.py", line 918, in run
 "Command returned non-zero exit status")
CmdError: Command </usr/bin/time -o /dev/null make -j 4 vmlinux > /usr/local/autotest/client/results/default/kernbench/debug/build_log 2>&1> failed, rc=127, Command returned non-zero exit status
* Command:
/usr/bin/time -o /dev/null make -j 4 vmlinux >
/usr/local/autotest/client/results/default/kernbench/debug/build_log 2>&1
Exit status: 127
Duration: 0.00197100639343

Here we are investigating why kernbench failed. The first place we want to look at is the debug directory.
There we see the following files:

tree -s debug/
debug/
├── [79] build_log.gz
├── [1345] client.DEBUG
├── [0] client.ERROR
├── [511] client.INFO
└── [0] client.WARNING

As it failed during build phase I am going to look at build_log:

$ cat build_log
/bin/bash: /usr/bin/time: No such file or directory

Well, that is true as:

[user@a5 debug]# which time
/usr/bin/which: no time in (/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin)
[user@a5 debug]# ls /usr/bin/time
ls: cannot access /usr/bin/time: No such file or directory

In general test diagnoses should be that straight forward. Obvious this can not cover all cases.

The sysinfo directory¶

The sysinfo directory is exactly what it sounds like. A directory that contains as much information as possible that
can be gathered from the machine:

tree sysinfo/
sysinfo/
├── df
├── dmesg.gz
├── messages.gz
└── reboot_current -> ../../sysinfo

In general this directory is your second bet for finding issues. Most files are self explanatory, you should always examine
dmesg to make sure your boot was clean. Then depending on what test you were running that failed examine files that
will give you insight to that particular piece of hardware.

Manually running a job on a machine that is causing problems¶

A lot of times you will run into the case that all of your machines but two or three pass. While you may be able to figure
out why most of them failed by looking at files it is sometimes advantageous to run the Autotest process individually on
the problem machines.

Log-in to the machine and change to /home/autotest, there you will find the installation that the server put on this
particular system.

The last control file of the job that was run is also available to you - control.autoserv.

To start the job over again run the following:

[root@udc autotest]# bin/autotest control.autoserv

This is exactly how the autotest server starts jobs on client machines.

If you have a large control file that runs multiple tests and you are only interested in one or two of them you can safely
edit this file and remove any tests that you know work for sure. A lot of the time failures can be diagnosed by babysitting
a machine and seeing what else is going on with general diagnostic on a machine.

Remote (Former Server)¶

Autotest Remote (Autoserv)¶

Autoserv is a framework for “automating machine control”

Autoserv’s purpose is to control machines, it can:

		power cycle

		install kernels

		modify bootloader entries

		run arbitrary commands

		run Autotest Local (client) tests

		transfer files

A machine can be:

		local

		remote (through ssh and conmux)

		virtual (through kvm)

Control Files¶

In a way similar to Autotest, Autoserv uses control files. Those control
files use different commands than the Autotest ones but like the
Autotest ones they are processed by the python interpreter so they
contain functions provided by Autoserv and can contain python
statements.

Here is an example control file that installs a .deb packaged kernel on
a remote host controlled through ssh. If this file is placed in the
server/ directory and named “example.control”, it can be
executed as ./autotest-remote example.control from within the server/
directory:

remote_host= hosts.SSHHost("192.168.1.1")

print remote_host.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.22.deb")

print kernel.get_version()
print kernel.get_image_name()
print kernel.get_initrd_name()

kernel.install(remote_host)

remote_host.reboot()

print remote_host.run("uname -a").stdout

Hosts¶

“Host” objects are the work horses of Autoserv control files. There are
Host objects for machines controlled through ssh, through conmux or
virtual machines. The structure of the code was planned so that support
for other types of hosts can be added if necessary. If you add support
for another type of host, make sure to add that host to the
server/hosts/__init__.py file.

Main Host Methods¶

Here are the most commonly used Host methods. Every type of host should
implement these and support at least the options listed. Specific hosts
may support more commands or more options. For information on these, see
the associated source file for the host type in the server/hosts/
subdirectory of Autotest. This listing is not a substitute for the
source code function headers of those files, it’s only a short summary.
In particular, have a look at the server/hosts/ssh_host.py file.

		run(command)

		reboot()

		get_file(source, dest)

		send_file(source, dest)

		get_tmp_dir()

		is_up()

		wait_up(timeout)

		wait_down(timeout)

		get_num_cpu()

CmdResult Objects¶
The return value from a run() call is a CmdResult object. This object
contains information about the command and its execution. It is defined
and its documentation is in the file server/hosts/base_classes.py.
CmdResult objects can be printed and they will output all their
information. Each field can also be accessed separately. The list of
fields is:

		command: String containing the command line itself

		exit_status: Integer exit code of the process

		stdout: String containing stdout of the process

		stderr: String containing stderr of the process

		duration: Elapsed wall clock time running the process

		aborted: Signal that caused the command to terminate (0 if none)

Main types of Host¶

SSHHost¶
SSHHost is probably the most common and most useful type of host. It
represents a remote machine controlled through an ssh session. It
supports all the base methods for
hosts and features a run() function
that supports timeouts. SSHHost uses ssh to run commands and scp to
transfer files.

In order to use an SSHHost the remote machine must be configured for
password-less login, for example through public key authentication. An
SSHHost object is built by specifying a host name and, optionally, a
user name and port number.

ConmuxSSHHost¶
ConmuxSSHHost is an extension of SSHHost. It is for machines that use
Conmux (HOWTO). These support hard reset through
the hardreset() method.

SiteHost¶
Site host is an empty class that is there to add site-specific methods
or attributes to all types of hosts. It is defined in the file
server/hosts/site_host.py but this file may be left empty, as it is,
or removed altogether. Things that come to mind for this class are
functions for flashing a BIOS, determining hardware versions or other
operations that are too specific to be of general use. Naturally,
control files that use these functions cannot really be distributed but
at least they can use the generic host types like SSHHost without
directly modifying those.

KVMGuest¶
KVMGuest represents a KVM virtual machine on which you can run programs.
It must be bound to another host, the machine that actually runs the
hypervisor. A KVMGuest is very similar to an SSHHost but it also
supports “hard reset” through the hardreset() method (implemented in
Guest) which commands the hypervisor to reset the guest. Please see the
KVM section for more information on KVM
and KVM guests.

LocalHost¶
Early versions of Autoserv represented the local machine (the one
Autoserv runs on) as part of the Host hierarchy. This is no longer the
case however because it was felt that some of the Host operations did
not make sense on the local machine (wait_down() for example).

Bootloader¶

Boottool is a Perl script to query and modify boot loader entries.
Autoserv provides the Bootloader class, a wrapper around boottool.
Autoserv copies the boottool script automatically to a temporary
directory the first time it is needed. Please see the
server/hosts/bootloader.py file for information on all supported
methods. The most important one is add_kernel().

When adding a kernel, boottool’s default behavior is to reuse the
command line of the first kernel entry already present in the bootloader
configuration and use it to deduce the options to specify for the new
entry.

InstallableObject¶

An InstallableObject represents a software package that can be
installed on a host. It is characterized by two methods:

		get(location)

		install(host)

get() is responsible for fetching the source material for the software
package. It can take many types of arguments as the location:

		a local file or directory

		a URL (http or ftp)

		a python file-like object

		if the argument doesn’t look like any of the above, get() will assume
that it is a string that represents the content itself

get() will store the content in a temporary folder on the host. This
way, it can be fetched once and installed on many hosts. install() will
install the software package on a host, typically in a temporary
directory.

Autotest Support¶

Autoserv includes specific support for Autotest. It can install Autotest
on a Host, run an Autotest control file and fetch the results back to
the server. This is done through the Autotest and Run classes in
server/autotest.py. The Autotest object is an InstallableObject. To
use it, you have to:

		specify the source material via get()
The Autotest object is special in this regard. If you do not specify
any source, it will use the Autotest svn repository to fetch the
software. This will be done on the target Host.

		install() it on a host
When installing itself, Autotest will look for a
/etc/autotest.conf file on the target host with a format similar
to the following:

autodir=/usr/local/autotest/

		run() a control file
The run() syntax is the following: run(control_file, results_dir,
host) The control_file argument supports the same types of value as
the get() method of InstallableObject (they use the same function
behind the scenes)

Here is an example Autoserv control file to run an Autotest job, the
results will be transfered to the “job_results” directory on the server
(the machine Autoserv is running on).

remote_host= hosts.SSHHost("192.168.1.1")

at= autotest.Autotest()
at.get("/var/local/autotest/client")
at.install(remote_host)

control_file= """
job.profilers.add("oprofile", events= ["CPU_CLK_UNHALTED:8000"])
job.run_test("linus_stress")
"""

results_dir= "job_results"

at.run(control_file, results_dir, remote_host)

Kernel Objects¶

Kernel objects are another type of InstallableObjects. Support is
planned for kernels compiled from source and binary kernels packaged as
.rpm and .deb. At the moment (Autotest revision 626), only .deb kernels
are implemented. Some support for kernels from source is already in
Autotest. Kernels support the following methods:

				get(location)

		customary InstallableObject method

		install(host, extra arguments to boottool)
When a kernel is installed on a host, it will use boottool to make
itself the default kernel to boot. If you want to specify additional
arguments, you can do so and they will be passed to the add_kernel()
method of the boot loader.

		get_version()

		get_image_name()

		get_initrd_name()

As always, see the source file function headers for complete details,
for example see the file server/deb_kernel.py

DEBKernels have an additional method, extract(host). This method will
extract the content the package to a temporary directory on the
specified Host. This is not a step of the install process, it is if you
want to access the content of the package without installing it. A
possible usage of that function is with kvm
and qemu’s -kernel option.

Here is an example Autoserv control file to install a kernel:

rh= hosts.SSHHost("192.168.1.1")

print rh.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.22.deb")

kernel.install(rh)

rh.reboot()

print rh.run("uname -a").stdout

A similar example using an RPM kernel and allowing the hosts to be
specified from the autoserv commandline
(autoserv -m host1,host2 install-rpm, for example):

if not machines:
 raise "Specify the machines to run on via the -m flag"

hosts = [hosts.SSHHost(h) for h in machines]

kernel = rpm_kernel.RPMKernel()
kernel.get('/stuff/kernels/kernel-smp-2.6.18.x86_64.rpm')

for host in hosts:
 print host.run("uname -a").stdout
 kernel.install(host, default=True)
 host.reboot()
 print host.run("uname -a").stdout

print "Done."

KVM Support¶

As stated previously, Autoserv supports controlling virtual machines.
The object model has been designed so that various types of “virtual
machine monitors”/hypervisors can be supported. At the moment (Autotest
revision 626), only KVM support is
included. In order to use KVM you must do the following:

		create a Host, this will be machine that runs the hypervisor

		create the KVM object, specify the source material for it via get(),
and install it on that host
The KVM InstallableObject is special in the sense that once it is
installed on a Host, it is bound to that Host. This is because some
status is maintained in the KVM object about the virtual machines
that are running.

		create KVMGuest objects, you have to specify, among other things, the
KVM object created above

		use the KVMGuest object like any other type of Host to run commands,
change kernel, run Autotest, …

Please see the files server/kvm.py and server/hosts/kvm_guest.py
for more information on the parameters required, in particular, have a
look at the function headers of KVM.install() and the KVMGuest
constructor.

Here is an example Autoserv control file to do the above. Line 5
includes a list comprehension to create the required address
list, remember that the control
files are python.

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-33.tar.gz")
addresses= [{"mac": "02:00:00:00:00:%02x" % (num,), "ip" : "192.168.2.%d" % (num,)} for num in range(1, 32)]
kvm_on_remote_host.install(addresses)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g.wait_up()

print g.run('uname -a').stdout.strip()

Compiling Options¶

You have to specify the source package for kvm, this should be an
archive from
http://sourceforge.net/project/showfiles.phpgroup_id=180599.
When the KVM object is installed you have the control over two options:
build (default True) and insert_modules (default True).

If build is True, Autoserv will execute configure and make
to build the KVM client and kernel modules from the source material.
make install will never be performed, to avoid disturbing an already
present install of kvm on the system. In order for the build to succeed,
the kernel source has to be present (/lib/modules/$(uname -r)/build
points to the appropriate directory). If build is False,
configure and make should have been executed already and the
binaries should be present in the source directory that was specified to
get() (in step 2). You can also
re-archive (tar) the source directories after building kvm if you wish
and specify an archive to get().

If insert_modules is True, Autoserv will first remove the kvm
modules if they are present and insert the ones from the source material
(that might have just been compiled or might have been already compiled,
depending on the build option) when doing the install(). When the
KVM object is deleted, it will also remove the modules from the kernel.
At the moment, Autoserv will check for the appropriate type of kernel
modules to insert, kvm-amd or kvm-intel. It will not check if qemu
or qemu-system-x86_64 should be used however, it always uses the
latter. If insert_modules is False, the running kernel is assumed to
already have kvm support and nothing will be done concerning the
modules.

In short:

		If your kernel already includes appropriate kvm support, run
install(addresses, build=True, insert_modules=False) or
install(addresses, build=False, insert_modules=False) depending on
wether you have the source for the running kernel. If kvm kernel
support is compiled as modules, make sure that they are loaded before
instantiating a KVMGuest, possibly using a command like this
remote_host.run("modprobe kvm-intel") in your control file.

		If the kernel source will be present on the host, run
install(addresses, build=True, insert_modules=True)

		Otherwise, compile the kvm sources on the server or another machine
before running Autoserv and run install(addresses, build=False,
insert_modules=True)

Kernel Considerations¶

Here are some kernel configuration options that might be relevant when
you build your kernels.

Host Kernel¶
CONFIG_HPET_EMULATE_RTC, from the kvm
faq:
I get “rtc interrupts lost” messages, and the guest is very slow

KVM, KVM_AMD, KVM_INTEL, if your kernel is recent enough and you
want to have kvm support from the kernel

Guest Kernel¶
There are no specific needs for the guest kernel, so long as it can run
under qemu, it is OK. Qemu emulates an IDE hard disk. Many distribution
kernels use ide and ide_generic drivers so sticking with those instead
of the newer libata potentially avoids device name changes from /dev/hda
to /dev/sda. These can be compiled as modules, in which case an initrd
will be needed. There is no real need for that however, compiling in the
IDE drivers avoids the need for an initrd, this will ease the use of the
qemu -kernel option.

Disk Image Considerations¶

The disk image must be specified as a qemu option, as in the example
above:

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g= hosts.KVMGuest(kvm_on_remote_host, qemu_options)

Here /var/local/vdisk.img is the disk image and -snapshot
instructs qemu not to modify the disk image, changes are discarded after
the virtual machine terminates. Please refer to the QEMU
Documentation for
more information on the options you can pass to qemu.

IP Address Configuration¶
A few things have to be considered for the guest disk image. The most
important one is specified in the kvm.py:intall() documentation: “The
virtual machine os must therefore be configured to configure its network
with the ip corresponding to the mac”. Autoserv can only control the mac
address of the virtual machine through qemu but it will attempt to
contact it by its ip. You specify the mac-ip mapping in the install()
function but you also have to make sure that when the virtual machine
boots it acquires/uses the right ip. If you only want to spawn one
virtual machine at a time you can set the ip statically on the guest
disk image. If on the other hand you want to spawn many guests from the
same disk image, you can assign ip’s from a properly configured dhcp
server or you can have the os of the virtual machine choose an ip based
on its mac. One way to do this with Debian compatible GNU/Linux
distributions is through the /etc/network/interfaces file with a
content similar to the following:

auto eth0
mapping eth0
 script /usr/local/bin/get-mac-address.sh
 map 02:00:00:00:00:01 vhost1
 map 02:00:00:00:00:02 vhost2

iface vhost1 inet static
 address 10.0.2.1
 netmask 255.0.0.0
 gateway 10.0.0.1
iface vhost2 inet static
 address 10.0.2.2
 netmask 255.0.0.0
 gateway 10.0.0.1

The file /usr/local/bin/get-mac-address.sh is the following:

#!/bin/sh

set -e

export LANG=C

iface="$1"
mac=$(/sbin/ifconfig "$iface" | sed -n -e '/^.*HWaddr \([:[:xdigit:]]*\).*/{s//\1/;y/ABCDEF/abcdef/;p;q;}')
which=""

while read testmac scheme; do
 if ["$which"]; then continue; fi
 if ["$mac" = "$(echo "$testmac" | sed -e 'y/ABCDEF/abcdef/')"]; then which="$scheme"; fi
done

if ["$which"]; then echo $which; exit 0; fi
exit 1

The /etc/network/interfaces file is repetitive and tedious to write,
instead it can be generated with the following python script. Make sure
to adjust the values for map_entry, host_entry, first_value
and last_value:

#!/usr/bin/python

header= """# This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
mapping eth0
 script /usr/local/bin/get-mac-address.sh"""

map_entry= " map 00:1a:11:00:00:%02x vhost%d"

host_entry= """iface vhost%d inet static
 address 10.0.2.%d
 netmask 255.0.0.0
 gateway 10.0.0.1"""

print header

first_value= 1
last_value= 16

for i in range(first_value, last_value + 1):
 print map_entry % (i, i,)

print ""

for i in range(first_value, last_value + 1):
 print host_entry % (i, i,)

SSH Authentication¶
Since a guest is accessed a lot like a SSHHost, it must also be
configured for password-less login, for example through public key
authentication.

Serial Console¶
Altough this is not necessary for Autoserv itself, it is almost
essential to be able to start the guest image with qemu manually, for
example to do the initial setup. Qemu can emulate the display from a
video card but it can also emulate a serial port. In order for this to
be useful, the guest image must be setup appropriately:

		in the grub config (/boot/grub/menu.lst), if you use grub, to
display the boot menu

serial --unit=0 --speed=9600 --word=8 --parity=no --stop=1
terminal --timeout=3 serial console

		in the kernel boot options, for boot and syslog output to the console

console=tty0 console=ttyS0,9600

		have a getty bound to the console for login, in /etc/inittab

T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100

Running Autotest In a Guest¶

Here is an example Autoserv control file to run an Autotest job inside a
guest (virtual machine). This control file is special because it also
runs OProfile on the host to collect some profiling information about
the host system while the guest is running. This uses the system
installation of oprofile, it must therefore be properly installed and
configured on the host. The output of opreport is saved in the
results directory of the job that is run on the guest.

Here, a single address mapping is specified to kvm, since only one guest
will be spawned. We tried running oprofile inside a kvm guest, without
success, therefore it is not enabled. Finally, the options to
opcontrol --setup should be adjusted if you know that vmlinux is
present on the host system.

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)

kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

at= autotest.Autotest()
at.get("/home/foo/autotest/client")
at.install(g1)

control_file= """
#~ job.profilers.add("oprofile", events= ["CPU_CLK_UNHALTED:8000"])
job.run_test("linus_stress")
"""

results_dir= "g1_results"

-- start oprofile
remote_host.run("opcontrol --shutdown")
remote_host.run("opcontrol --reset")
remote_host.run("opcontrol --setup "
 # "--vmlinux /lib/modules/$(uname -r)/build/vmlinux "
 "--no-vmlinux "
 "--event CPU_CLK_UNHALTED:8000")
remote_host.run("opcontrol --start")
--

at.run(control_file, results_dir, g1)

-- stop oprofile
remote_host.run("opcontrol --stop")
tmpdir= remote_host.get_tmp_dir()
remote_host.run('opreport -l &> "%s"' % (sh_escape(os.path.join(tmpdir, "report")),))
remote_host.get_file(os.path.join(tmpdir, "report"), os.path.join(results_dir, "host_oprofile"))
--

Changing the Guest Kernel¶

“Usual” Way¶
The kvm virtual machine uses a bootloader, it can be rebooted and kvm
will keep running, therefore, you can install a different kernel on a
guest just like on a regular host:

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

print g1.run("uname -a").stdout

kernel= deb_kernel.DEBKernel()
kernel.get("/home/foo/linux-2.6.21.3-6_2.6.21.3-6_amd64.deb")

kernel.install(g1)
g1.reboot()

print g1.run("uname -a").stdout

“QEMU” Way¶
It is also possible to use the qemu -kernel, -append and
-initrd options. These options allow you to specify the guest kernel
as a kernel image on the host’s hard disk.

This is a situation where DEBKernel’s extract() method is useful because
it can extract the kernel image from the archive on the host, without
installing it uselessly. However, .deb kernel images do not contain an
initrd. The initrd, if needed, is generated after installing the package
with a tool like update-initramfs. The tools update-initramfs,
mkinitramfs or mkinitrd are all designed to work with an
installed kernel, it is therefore very inconvenient to generate an
initrd image for a .deb packaged kernel without installing it. The best
alternative is to configure the guest kernel so that it doesn’t need an
initrd, this is easy to achieve for a qemu virtual machine, it is
discussed in the section Guest Kernel. On
the other hand, if you already have a kernel and its initrd, you can
also transfer them to the host with send_file() and then use those.

An important thing to note is that even though the kernel image (and
possibly the initrd) are loaded from the host’s hard disk, the modules
must still be present on the guest’s hard disk image. Practically, if
your kernel needs modules, you can install them by manually starting
qemu (without the -snapshot option) with the desired disk image and
installing a kernel (via a .deb if you want) for the same version and a
similar configuration as the one you intend to use with -kernel. You
can also keep the -snapshot option and use the commit command in
the qemu monitor.

Here’s an example control file that uses the qemu -kernel option. It
gets the kernel image from a .deb, it is a kernel configured not to need
an initrd:

remote_host= hosts.SSHHost("192.168.1.1")

kvm_on_remote_host= kvm.KVM(remote_host)
kvm_on_remote_host.get("/var/local/src/kvm-compiled.tar.gz")
addresses= [{"mac": "02:00:00:00:00:01" , "ip" : "10.0.0.1"}]
kvm_on_remote_host.install(addresses, build=False, insert_modules=False)

kernel= deb_kernel.DEBKernel()
kernel.get("/home/foo/linux-2.6.21.3-6_2.6.21.3-6_amd64-noNeedForInitrd.deb")
kernel_dir= kernel.extract(remote_host)

qemu_options= '-m 256 -hda /var/local/vdisk.img -snapshot -kernel "%s" -append "%s"' % (sh_escape(os.path.join(kernel_dir, kernel.get_image_name()[1:])), sh_escape("root=/dev/hda1 ro console=tty0 console=ttyS0,9600"),)

g1= hosts.KVMGuest(kvm_on_remote_host, qemu_options)
g1.wait_up()

print g1.run("uname -a").stdout

Parallel commands¶

Autoserv control files can run commands in parallel via the
parallel() and parallel_simple() functions from
subcommand.py. This is useful to control many machines at the same
time and run client-server tests. Here is an example that runs the
Autoserv netperf2 test, which is a network benchmark. This example runs
the benchmark between a kvm guest running on one host and another
(physical) host. This control file also has some code to check that a
specific kernel version is installed on these hosts and install it
otherwise. This is not necessary to the netperf2 test or to parallel
commands but it is done here to have a known configuration for the
benchmarks.

def check_kernel(host, version, package):
 if host.run("uname -r").stdout.strip() != version:
 package.install(host)
 host.reboot()

def install_kvm(kvm_on_host_var_name, host, source, addresses):
 exec ("global %(var_name)s\n"
 "%(var_name)s= kvm.KVM(host)\n"
 "%(var_name)s.get(source)\n"
 "%(var_name)s.install(addresses)\n" % {"var_name": kvm_on_host_var_name})

remote_host1= hosts.SSHHost("192.168.1.1")
remote_host2= hosts.SSHHost("192.168.1.2")

kernel= deb_kernel.DEBKernel()
kernel.get("/var/local/linux-2.6.21.3-3_2.6.21.3-3_amd64.deb")

host1_command= subcommand(check_kernel, [remote_host1, "2.6.21.3-3", kernel])
host2_command= subcommand(check_kernel, [remote_host2, "2.6.21.3-3", kernel])

parallel([host1_command, host2_command])

install_kvm("kvm_on_remote_host1", remote_host1, "/var/local/src/kvm-33.tar.gz", [{"mac": "02:00:00:00:00:01", "ip" : "10.0.0.1"}])

qemu_options= "-m 256 -hda /var/local/vdisk.img -snapshot"
gserver= hosts.KVMGuest(kvm_on_remote_host1, qemu_options)
gserver.wait_up()

at= autotest.Autotest()
at.get("/home/foo/autotest/client")
at.install(gserver)
at.install(remote_host2)

server_results_dir= "results-netperf-guest-to-host-far-server"
client_results_dir= "results-netperf-guest-to-host-far-client"

server_control_file= 'job.run_test("netperf2", "%s", "%s", "server", tag="server")' % (sh_escape(gserver.hostname), sh_escape(remote_host2.hostname),)
client_control_file= 'job.run_test("netperf2", "%s", "%s", "client", tag="client")' % (sh_escape(gserver.hostname), sh_escape(remote_host2.hostname),)

server_command= subcommand(at.run, [server_control_file, server_results_dir, gserver])
client_command= subcommand(at.run, [client_control_file, client_results_dir, remote_host2])

parallel([server_command, client_command])

Autotest Server Quick Start¶

You can use the autoserv program located in the server directory of the
Autotest tree to run tests on one or more remote machines. The machines
must be configured so that you can ssh to them without being prompted for a
password.

A simple example is running the sleeptest on a remote machine. Say you
have two machines: On one you have installed the Autotest code (which
will be referred to as the server), and the other is a machine named
mack (which will be referred to as the client).

Then you can run sleeptest on the client. Go to the top of the autotest
tree:

server/autotest-remote -m mack -c client/tests/sleeptest/control

This will result in quite a bit of activity on the screen. Perhaps we
log too much, but you will definitely know that something is happening.
After some time the output should stop and if all went well you will see
that the results directory is now full of files and directories. Before
explaining that, first lets dissect the command above. The “-m” option is
followed by a comma delimited list of machine names (clients) on which
you wish to run your test. The “-c” option tells autoserv that this
is a client side test you are running. And the last argument is the
control file you wish to execute (in this case the sleeptest control
file).

The results directory will generally contain a copy of the control file
that is run (named control.srv). There will also be a keyval file and a
status.log file. In addition there will be a debug/ directory, and a
sysinfo/ directory along with a directory for each client machine (in
this case a mack/ directory). The results of the test are located in the
directories named for each client.

A server side control file allows the possibility of running a test that
involves two or more machines interacting. An example of a server side
multi-machine control file is server/tests/netperf2/control.srv. This
control file requires 2 or more client machines to run. An example of
how to use autoserv follows

server/autotest-remote -m mack,nack -s server/tests/netperf2/control.srv

In this example we are again running the command from the results/
directory. Here we see the “-s” option which specifies this as a
server side control file. We have specified two machines using the “-m”
option (mack and nack). The command should produce a flurry of activity.
Afterwards you can explore the contents of the results directory to see
the results. Of special note will be the contents of the
mack/netperf2/results/keyval and nack/netperf2/results/keyval files. One
of these files will list various performance metrics acquired by the
netperf test.

Autoserv Client Install¶

When you install an Autotest client from a server side control file,
either manually using Autotest.install or automatically when running
a client control file using autoserv, autoserv has to determine a
location on the remote host to install the client.

If you need the client installed in a specific location then the most
direct solution is to pass in an autodir parameter to
Autotest.install since this will disable any automatic determination
and just use the provided path. However in the case that this is not
possible or practical then the following sources are checked for a path
and the first one found is used:

		The result of calling Host.get_autodir if it returns a value

		The dirname of the target of the /etc/autotest.conf symlink on
the remote machine

		/usr/local/autotest if it exists on the remote machine

		/home/autotest if it exists on the remote machine

		/usr/local/autotest even if it doesn’t exist

Note that an Autotest client install will itself call
Host.set_autodir to set it to the install location it ended up
using.

Autotest server interaction with clients¶

Tests can be run on standalone machines, or in a server-client mode.

The server interaction is simple:

		Copy the control file across

		Execute the control file repeatedly until it completes

		Client notifies server of any reboot for monitoring

		Upon completion of control script, server pulls results back (not
client push)

All interaction with the server harness will be via the harness
object. This object provides for a per harness interface. A null
interface will be provided for standalone use.

Writing server-side control files¶

Start with the client-side files. It’s amazing how much stuff you can do
with them (including reboots, etc). The client-side harness will
communicate back with the server, and monitor status, etc.

However, if you want to do more powerful things, like control a complex
test across a cluster, you’ll probably want to use server-side control
files. Read Autotest Structure on how the
server works first, this will help explain things …

Server-side control files have the same philosophy as the client-side
files, but run on the server, so it’s still a Python script, with all
the flexibility that gives you. You should generally name server-side
control files ending in ‘.srv’ - that makes it a lot easier to recognize
server-side control files at a glance.

You run a server-side control file by doing

server/autoserv -m <machine,machine,...> mycontrolfile.srv

We strip out the -m paramater, break up the comma-separated list, and
put that into your namespace as a list called “machines”. Any extra
arguments besides the control file name will appear as a list called
“args”.

A basic control file¶

A simple one might do something like this:

host = hosts.create_host(machines[0])

print host.run("uname -a").stdout
host.reboot()
print host.run("uname -a").stdout

Firstly we create a “host” object from the machine name. That has lots
of magic helpers for you, and is how you get most stuff done on the
client.

After, the control file runs “uname -a” on the remote host, printing the
output of the command. It then reboots the machine, and re-runs the
“uname -a” command. So you will see what kernel was running on the
machine when the test started, and then you will see whatever the
default kernel is once the machine is rebooting, ending up with output
like:

KERNEL VERSION AT START OF TEST
DEFAULT KERNEL VERSION

Running some server-side tests¶

Okay, so now we want to run some actual tests. The easiest kind of test
to run from the server is a server-side test (i.e. something in
server/tests or server/site_tests). You run it just like you would run
a client-side test from a client-side control file - with job.run_test.
So you can run a simple sleeptest with:

job.run_test("sleeptest")

This will run sleeptest. However, it’s important to remember that when
you run a server-side test then it runs on the server, not on the lis of
machines you pass in on the autoserv command line. For something like a
simple sleep test this doesn’t really matter, but in general your test
will need to manually do the setup required to run command remotely;
either by creating it’s own host object with create_host, or by
accepting a host object as a parameter.

Running some client-side tests¶

OK, so when it comes to running server-side tests we mentioned that you
have make sure your test runs all of its commands through a host object.
But if all your test needs to do is run a bunch of local commands, that
can make things a lot uglier; it would be easier to just run the test
directly on the test machine, like you do with a client-side test.

Fortunately, just using a server-side control file it doesn’t mean that
you have use server-side tests; you can write client-side tests like you
normally would and still use a control file from the server-side to do
whatever setup you need to do, then launch the tests on the remote
machine using the Autotest client.

So, supposing we want to run some client-side tests on a remote machine.
What you then need to do is:

		create a host object with hosts.create_host

		create an Autotest object with autotest.Autotest, on the remote host

		run a client-side control file on the remote host with run (or use
the run_test helper for the simple case of running a single test)

You can do this like so:

host = hosts.create_host(machines[0])
at = autotest_remote.Autotest()(host)
at.run_test('kernbench', iterations=2)

This will create a host object, create an Autotest object against that
host, and then run the client-side kernbench test on the remote host,
using Autotest. If Autotest is not installed on the remote machine,
using at.run_test (or at.run) would automatically install it first.
Alternatively, if you need to explicitly control when the installation
of Autotest happens you can call at.install.

For an example of how to use run instead of run_test, see:

host = hosts.create_host(machines[0])
at = autotest_remote.Autotest(host)
control = """\
job.run_test('kernbench', iterations=5)
job.run_test('dbench', iterations=5)
job.run_test('tbench', iterations=5)
job.run_test('bonnie', iterations=5)
job.run_test('iozone', iterations=5)
job.run_test('fsx')
"""
at.run(control)

This will produce the same effect as if you installed an Autotest client
on the remote machine, created a control file like the one stored in the
‘control’ variable, and then ran it directly with the bin/autotest
script.

Running other existing server control files¶

So, sometimes instead of just running a specific test you actually have
a pre-existing suite of tests you want to run. For example, suppose you
have a control file for running a standard suite of fast-running
performance tests that you want to incorporate into a new control file
you’re building. You could just look at what tests the existing suite
runs and run them yourself from your new control file, but not only is
that a tedious bunch of cut-and-paste work, it also means that if the
“standard” suite changes you now have to go and update your new script
as well.

Instead of doing that, we can just make use of the job.run_control
method. This allows you to just run a control file directly from another
control file by passing in a file name. So for example, if on your
server installation you have a test_suites/std_quick_tests control
file, you can execute it from a new one quite simply as:

job.run_control('test_suites/std_quick_tests')

The path you pass is is relative to the Autotest directory (i.e.
job.autodir). Similarly, if you wanted to run the standard sleep test
control file you could do it with:

job.run_control('server/tests/sleeptest/control')

Note that variables from your current execution environment will not
leak into the environment of the executed control file, and vice versa.
So you cannot pass “parameters” into a control file by just setting a
global variable that the executed control file then reads, and you
cannot pass back results to assigning a global in the executed control
file. However, this doesn’t mean that the two execution environments are
completely isolated; in particular, the job instance used by the
executing file is the same one used by the executed file. However, as a
general rule control files should avoid developing interdependencies by
modifying the job object to pass information back and forth.

Using more than one machine at once¶

So far all the examples that have run on the remote machine have done so
using hosts.create_host(machines[0]) to create a Host object. However,
while this is okay for just trying things out it’s not a good way to
write a “real” control file; if you run autoserv with a list of
machines, you’ll only ever run tests on the first one!

Now, the most obvious thing to do would be to just wrap your machines[0]
in a for loop, but this isn’t going to work very well if you run
something against a hundred machines – it’s going to do the runs
sequentially, with 99 of the machines sitting around doing nothing at
any particular point in time. Instead what you want to do is run things
in parallel, like so:

def run(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run_test('kernbench', iterations=5)

commands = [subcommand(run, args=[machine], subdir=machine) for machine in machines]
parallel(commands)

What this does is actually simpler than it looks; first, it defines a
runs kernbench on one machine. Then, it defines a list of subcommands,
one for each machine. Finally, it uses parallel to run all these
commands (in parallel, via fork).

If you’re familiar with job.parallel on the client, this is somewhat
similar, but more powerful. The job.parallel method represents
subcommands as a list, with the first item being a function run and the
remainder being arguments to pass to it. The subcommand object is
similar, taking a function and a list of args to pass to it.

In addition, subcommand also takes a very useful subdir argument to
allow us to avoid mashing together all the results from each machine in
the same results directory. If you specify subdir to a subcommand, the
forked subcommand will run inside of subdir (creating it if it exists).
So you will end up with three separate kernbench results in three
separate machine subdirectories.

It’s important to keep in mind that the final test results parser really
only works well with results directories that are associated directly
with a single machine, so when using parallel to do separate runs on
individual machines you pretty much always want to specify a
subdir=machine argument to your subcommands.

In fact, for this very specific case (running the exact same function on
N machines) we have a special helper method, job.parallel_simple,
doesn’t require as much setup. You could replace the above code with the
simpler:

def run(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run_test('kernbench', iterations=5)

job.parallel_simple(run, machines)

Synchronous vs Asynchronous jobs¶

If you run control files through the frontend, it needs to know how you
want them to be run.

Let’s say there’s 6 clients we’re controlling. We could either run
asynchronously, with a separate autoserv instance controlling each
machine. If you do this, it will kick off separate autoserv instances as
each machine becomes available. We ask for this by specifying
SYNC_COUNT=1

autoserv control_file -m machine1
autoserv control_file -m machine2
autoserv control_file -m machine3
autoserv control_file -m machine4
autoserv control_file -m machine5
autoserv control_file -m machine6

Or we can run synchronously. If you do that, we’ll wait for *all* the
machines you asked for before starting the job, and do something like
this:

autoserv control_file -m machine1,machine2,machine3,machine4,machine5,machine6

Often we only need to pair up machines (say 1 client and 1 server to run
a network test). But we don’t want to wait for all 6 machines to be
available; as soon as we have 2 ready, we might as will kick those off.
We can use SYNC_COUNT to specify how many we need at a time, in this
case SYNC_COUNT=2. We’ll end up doing something like this:

autoserv control_file -m machine1,machine2
autoserv control_file -m machine3,machine4
autoserv control_file -m machine5,machine6

Installing kernels from a server-side control file¶

So, if you’ve written a client-side control file for installing a
kernel, you’re probably familiar with code that looks something like:

testkernel = job.kernel('/usr/local/mykernel.rpm')
testkernel.install()
testkernel.boot()

This will install a client on the local machine. Well, we’ve also seen
that in a server-side control file, unless you use a Host object to run
commands then your operations run on the server, not your test
machine(s). So just trying to use the same code won’t work.

However, we’ve already seen that you can use an Autotest object to run
arbitrary client-side control files on a remote machine. So you can
instead use some code like this:

kernel_install_control = """
def step_init():
 job.next_step([step_test])
 testkernel = job.kernel('/usr/local/mykernel.rpm')

 testkernel.install()
 testkernel.boot()

def step_test():
 pass
"""

def install_kernel(machine):
 host = hosts.create_host(machine)
 at = autotest_remote.Autotest(host)
 at.run(kernel_install_control, host=host)
job.parallel_simple(install_kernel, machines)

This will install /usr/local/mykernel.rpm on all the machines you’re
running your test on, all in parallel. You can then follow up this code
in your control file with the code to run your actual tests.

The Host classes¶

There are six main classes in the Host hierarchy, with two concrete
classes that can be instantiated; one that uses the OpenSSH binary for
executing commands on a remote machine, and one that uses the Paramiko
module to do the same. The specific classes are:

		Host - the top-level abstract base class, contains definitions
for most of the standard Host methods, as well as implementations for
some of the high-level helper methods.

		RemoteHost - a subclass of Host that also adds some options
specific to “remote” machines, such as having a hostname, as well as
providing generic reboot and crashinfo implementations.

		SiteHost - a subclass of RemoteHost that allows you to hook
site-specific implementation behavior into your Host classes.
This may not even be defined (in which case we automatically default
to providing a empty definition) but can be used to insert hooks into
any methods you need. And example of such a use would be adding a
machine_install implementation that takes advantage of your local
installer infrastructure and so isn’t suitable for inclusion into the
core classes.

		AbstractSSHHost - a subclass of SiteHost, this provides most
of the remaining implementation needed for using ssh-based
interaction with a remote machine such as the ability to copy files
to and from the remote machine as well as an implementation of the
various wait_* methods

		SSHHost - one of the concrete subclasses of AbstractSSHHost,
this class can be directly instantiated. It provides an
implementation of Host.run based around using an external ssh binary
(generally assumed to be OpenSSH). This is also currently the default
implementation used if you’re using the factory to create the method
rather than creating Host instance directly.

		ParamikoHost - the other concrete subclass of
AbstractSSHHost. This class provides a lower-overhead,
better-integrated alternative to the SSHHost implementation, with
some caveats. In order to use this class directly you’ll need to
explicitly create an instance of the class, or use custom hooks into
the host factory. Note that using this class also requires that you
have the paramiko library installed, as this module is not included
in the Python standard library.

Creating instances of Host classes¶

The concrete host subclasses (SSHHost, ParamikoHost) can both be
instantiated directly, by just creating an instance. Both classes accept
hostname, user (defaults to root), port (defaults to 22) and password
(nothing by default, and ignored if connecting using ssh keys). So the
simplest way to create a host is just with a piece of code such as:

from autotest_lib.server.hosts import paramiko_host

host = paramiko_host.ParamikoHost("remotemachine")

However, there are several disadvantages to this method. First, it ties
you to a specific SSH implementation (which you may or may not care
about). Second, it loses out on support for the extra mixin Host classes
that Autotest provides. So the preferred method for creating a host
object is:

from autotest_lib.server import hosts

host = hosts.create_host("remotemachine")

The create_host function passes on any extra arguments to the core host
classes, so you can still pass in user, port and password options. It
also accepts additional boolean parameters, auto_monitor and
netconsole.

If you use create_host to build up your instances, it also mixes in
some extra monitoring classes provided by Autotest. Specifically, it
mixes in SerialHost and/or LogfileMonitorMixin, depending on
what services are available on the remote machine. Both of these classes
provide automatic capturing and monitoring of the machine (via
SerialHost if the machine has a serial console available via conmux,
via monitoring of /var/log/kern.log and /var/log/messages otherwise). If
netconsole=True (it defaults to False) then we will also enable and
monitor the network console; this is disabled by default because network
console can interact badly with some network drivers and hang machines
on shutdown.

If for some reason you want this monitoring disabled (e.g. it’s too
heavyweight, or you already have some monitoring of the host via
alternate machines) then it can still be disabled by setting
auto_monitor=False. This allows you to still use create_host to
automatically select the appropriate host class; by default this still
just uses SSHHost, but in the future it may change. Or, your server
may be using custom site hooks into create_host which already change
this behavior anyway.

Custom hooks in create_host¶

You can optionally define a site_factory.py module with a
postprocess_classes function. This takes as its first parameter a list
of classes that will be mixed together to create the host instance, and
then a complete copy of the args passed to create_host. This function
can then modify the list of classes (in place) to customize what is
actually mixed together. For example if you wanted to default to
ParamikoHost instead of SSHHost at your site you could define a
site function:

from autotest_lib.server.hosts import ssh_host, paramiko_host

def postprocess_classes(classes, **args):
 if ssh_host.SSHHost in classes:
 classes[classes.index(ssh_host.SSHHost)] = paramiko_host.ParamikoHost

This will change the factory to use ParamikoHost by default instead.
Or you could do other changes, for example disabling SerialHost
completely by removing it from the list of classes. Or you could do
something even more complex, like using ParamikoHost if a host
supports it and falling back to SSHHost otherwise. Adding additional
args to postprocess_classes is also an option, to add more
user-controllable host creation, but keep in mind that such extensions
can then only be used in site-specific files and tests.

Paramiko vs OpenSSH¶

Why do we provide two methods of connecting via ssh at all? Well, there
are a few advantages and disadvantages to both.

Why openssh?¶

If we use openssh then we generally have more portability and better
integration with the users configuration (via ssh_config). This is also
more configurable in general, from an external point of view, since a
user can customize ssh behavior somewhat just by tweaking ~/.ssh/config

So why paramiko?¶

However, there are also limitations that come up with openssh. It mostly
operates as a black box; all we can do to detect network- or ssh-level
issues is to watch for a 255 exit code from ssh, and to attempt to break
things down into authentication issues versus various connection issues
we have to try and parse the output of the program itself, output which
may be mixed in with the output of the remote command.

There can also be performance issues when openssh is in use, due to the
large number of processes that can end up being spawned to run ssh
commands; even if most of this memory is cached and shared the memory
costs start to pile up. Additionally the cost of creating new
connections for every single ssh command can start to pile up.

Paramiko alleviates these problems by moving the ssh handler in-process
as a python library, and taking advantage of the multi-session support
in SSH protocol 2 to run multiple commands over a single persistent
connection. However, it has the cost of requiring that you use a
protocol 2 sshd on the remote machine, and requires installing the
paramiko library. It also has much weaker support for ssh_config, with
some support for finding keyfiles (via IdentityFile?) and nothing else.

Setting up ParamikoHost¶

There are two main issues you need to resolve to use ParamikoHost,
1) installing paramiko and 2) making sure you have support for protocol
2 connections.

Point one is fairly straightforward, just refer to one of the bullet
points in autotest server install
that explains how to install paramiko.

Point two is a bit more complex. There’s a fairly good chance your
infrastructure already supports protocol 2, since it’s been around for
quite a long time now and is generally considered to be the standard. To
test it, just try connecting to a machine via ssh using the
-o Protocol=2 option; if it succeeds then ParamikoHost should
just work once the point one is taken care of. If it fails with an error
message about protocol major version numbers differing, then you’re in
trouble; you’ll need to reconfigure sshd on your remote machines to
support protocol 2, and if you’re using key-based authentication you’ll
need to add support for protocol 2 keys as well. If these configuration
changes are not practical (either for technical or organizational
reasons) then you’ll simply have to forgo the use of ParamikoHost.

Standard Methods¶

The Host classes provide a collection of standard methods for running
commands on remote machines, copying files to and from them, and
rebooting them (for remote machines).

Host.run¶

This method can be used to run commands on a host via an interface like
that of the run function in the utils module. It returns a CmdResult?
object just like utils.run, and supports the ignore_status, timeout and
std*_tee methods with the same semantics.

Host.send_file, Host.get_file¶

These methods allow you to copy file(s) and/or directory(s) to a remote
machine. You can provide a single path (or a list of paths) as a source
and a destination path to copy to, with send_file for destinations on
the host and get_file for sources on the host. The pathname semantics
are intended to mirror those of rsync so that you can specify “the
contents of a directory” by terminating the path with a /.

Host.reboot, Host.reboot_setup, Host.reboot_followup, Host.wait_up, Host.wait_down¶

The reboot method allows you to reboot a machine with a few different
options for customizing the boot:

		timeout - allows you to specify a custom timeout in seconds. Used
when you want reboot to automatically wait for the machine to restart
(the default). If the reboot takes longer than timeout seconds to
come back after shutting down then an exception will be thrown.

		label - the kernel label, used to specify what kernel to boot into.
Defaults to host.LAST_BOOT_TAG which will reboot into whatever
kernel the host was last booted into by Autotest (or the default
kernel if Autotest has not yet booted the machine in the job).

		kernel_args - a string of extra kernel args to add to the kernel
being booted, defaults to none (which means no extra args will be
added)

		wait - a boolean indicating if reboot should wait for the machine to
restart after starting the boot, defaults to true. If you set this to
False then if you try to run commands against the Host it’ll just
time out and fail, and the reboot_followup method won’t be called.

		fastsync - if True (default is False) don’t try to sync and wait for
the machine to shut down cleanly, just shut down. This is useful if a
faster shutdown is more important than data integrity.

		reboot_cmd - an optional string that lets you specify your own
custom command to reboot the machine. This is useful if you want to
specifically crank up (or turn down) the harshness of the shutdown
command.

In addition to reboot, there are two hooks (reboot_start and
reboot_followup) that are called before and after the reboot is run.
This allows you to define mixins (like SerialHost and some other
classes we’ll mention later) that can hook into the reboot process
without having to implement their own reboot.

Finally, there are wait_down and wait_up methods, specifically for
waiting for a rebooting machine to shut down or come up. If you use the
reboot method these should generally be only used internally, but you
can use them yourself directly if you need more custom control of the
powering up and/or down of the machine.

Synchronize clients in multi machine (server) tests¶

Synchronization is useful when is started server part test which starts client
part test on multiple hosts, then is sometimes needed to synchronize state or
data between client part tests. By this reason was created class Barrier and
class Syncdata. Both classes are placed in autotest/client/shared.

class Barrier¶

Barrier allows only state synchronization. Both clients start:

job.barrier(host_name, tag, timeout)

Where:

		host_name:		Host identifier (host_ip | host_name[#optional_tag]).

		tag:		Identifier of barrier.

		timeout:		Timeout for barrier.

Usage:

b = job.barrier(ME, 'server-up', 120) # Create barrier object
b.rendezvous(CLIENT, SERVER) # Block test(thread) until barrier is reached
 # by all sides or barrier timeouted.

Where ME depends where is this code started. It could be CLIENT or SERVER.
The same code is started all hosts which waits for barrier.

Communication:

MASTER CLIENT1 CLIENT2
<-------------TAG C1-------------
--------------wait-------------->
 [...]
<-------------TAG C2-----------------------------
--------------wait------------------------------>
 [...]
--------------ping-------------->
<-------------pong---------------
--------------ping------------------------------>
<-------------pong-------------------------------
 ----- BARRIER conditions MET -----
--------------rlse-------------->
--------------rlse------------------------------>

Master side creates socket server. Client side connects to this server and
communicate through them. During waiting, the barrier checks if all sides
which wait for barrier are alive. For the checking barrier uses ping-pong messages.

class SyncData¶

SyncData class allows synchronization of state and data but it not check liveness of synchronized nodes.
When one node dies after sending his data, others nodes know nothing about death of node. Information about
death is logged to log. SyncData class could be use instead class Barrier.

SyncData(master_id, hostid, hosts, session_id, sync_server)

Where:

		master_id:		master host identifier. This host has or create sync_server and others connect to them.

		hostid:		host identifier.

		hosts:		list of all host which should exchange data.

		session_id:		session_id identifies data synchronization. Session_id must be unique.

		sync_server:		If sync_server is None then master create new sync_server for synchronization.

Usage:

from autotest.client.shared.syncdata import SyncData

master_id = MASTER
sync = SyncData(master_id, hostid, hosts,
 session_id), tag))

data = sync.sync(data, timeout, session_id) # sync could be run in different threads
 # with different session_id simultaneously.
 # session_id there override session_id defined in
 # class definition. session_id could be None.

data_hostid2 = data[hostid2] # data = {hostid1: data1, hostid2: data2}

sync return dictionary with data from all clients.

Communication:

MASTER CLIENT1 CLIENT2
if not listen_server -> create

<-------session_id/hosts/timeout-------------
<-----------------data1----------------------
 [...]
<-----------------session_id/hosts/timeout----------------------
<----------------------------data2------------------------------
-------{hostid1: data1, hostid2: data2}------>
<---------------------BYE---------------------
-----------------{hostid1: data1, hostid2: data2}-------------->
<-------------------------------BYE-----------------------------

Server waits for data from all clients and then sends data to all clients.

Autoserv message logging specification¶

		All output for the job, and any tests in it should go in debug/

		All output within a parallel_simple() subcommand should also go in
$hostname/debug (for parallel_simple() over hostnames)

		All output during any test should also go in $testname/debug/

		We should not buffer beyond one message

		All lines in the output should be tagged with the logging prefix (for
multi-line messages, that means one tag per line, so grep works)		the prefix is “[m/d H:M:S level module]”, i.e. “[06/08 16:39:17
DEBUG utils]”

		All output from subcommands is logged, by default at DEBUG level for
stdout and ERROR level for stderr

		All print statements to stdout/stderr get logged with levels DEBUG
and ERROR respectively. Ideally we’d like to convert all print
statements into logging calls but that probably won’t happen any time
soon.

		In each debug/ directory, there are two log files kept:		All debug level messages and above in autoserv.stdout

		All error level messages and above in autoserv.stderr

Conmux - Console Multiplexor¶

Conmux is a console multiplexor. It can:

		Connect to a serial console or network console

		Allow multiple users to connect to the console session at once, and
share that session

		Control power strips etc (via expect scripts) - these are abstracted
through commands like “~$hardreset”

Manual usage:

console <machinename>

Conmux HOWTO - A walkthrough for setting up a
conmux server and creating console configurations

Original Documentation

Installing a Conmux Server¶

This document will explain how to install a conmux server starting from
the Autotest codebase. A rudimentary configuration for an example
console will also be provided

Installing the conmux server¶

This assumes that you already have a freshly sync’d version of Autotest
as defined in: Downloading The Source or
that you are using one of the release tarballs. A lot of this is covered
in the
autotest/conmux/INSTALL
file.

Required perl modules:

		IO::Multiplex;		Debian/Ubuntu? Packages: libio-multiplex-perl

		Fedora Packages: perl-IO-Multiplex

Installing IO::Multiplex via CPAN:

perl -MCPAN -e 'install IO::Multiplex'

Building¶

This section describes how to get the conmux system in to the place you
want it installed on your system. The default location is
/usr/local/conmux

To make and install this package to the default location

make install

To an alternative location:

make PREFIX=/usr/alt/conmux install

To build for a specified prefix, but installed into a temporary tree:

make PREFIX=/usr/alt/conmux BUILD=build/location install

Console configuration¶

This will walk through some configurations for consoles in conmux. Each
configuration has a listener, payload and optionally one or more panel
commands. Configuration is provided via a per console configuration
file.

		All configurations are stored in BASE_INSTALL/etc with a .cf
extension (e.g. dudicus.cf)

listener:

listener server/name defines the name of this console port as it
appears in the registry.

payload:

socket name title host:port defines a console payload connected
to a tcp socket on the network. name defines this payload within the
multiplexor, title is announced to the connecting clients.

application name title cmd defines a console payload which is
accessed by running a specific command. name defines this payload
within the multiplexor, title is announced to the connecting
clients.

command panel:

command panel message cmd defines a panel command for the
preceeding payload, triggered when panel is typed at the command
prompt. message is announced to the user community. cmd will be
actually executed.

Example Config¶

A conmux configuration using a socket to connect to the console

listener localhost/dudicus
socket console 'dudicus' '192.168.0.3:23'

Example with an application:

A very basic example of starting an application (which could be any
application including ones that connect to a proprietary protocol). This
is more just to show how this feature would be used.

listener localhost/cat
application console 'cat' '/bin/cat'

Not that in the above examples the listener is set to localhost. That
states that the localhost is where the consoles are started and where
the conmux_registry exists. If you are running lots of consoles you may
want to have one central registry and a number of different machines
providing access to them if that were the case you would want to set
localhost to the hostname where the conmux registry is running.

Conmux configuration with hardreset¶

Adding a hardreset command, if you aren’t familiar with the Autotest
Hardreset please refer to that for terminology. There are a number of
different expect scripts/python pexect scripts available in
conmux/lib/drivers (on the installed server) each one of these connects
to an RPM in their own way. A unified solution is being worked on but it
is low priority. Basically the customer needs to give you the
information required as outlined in the hardreset documentation and then
you identify which script to use by connecting to the RPM and looking
for brandings like SENTRY or CITRIX etc.

listener localhost/dudicus
socket console 'dudicus' '192.168.0.3:23'
command 'hardreset' 'initiated a hard reset' 'reboot-cyclades 192.168.0.12 48 user password 5'

Conmux doesn’t really care what it is calling here it is just a program
with parameters, to understand how to use the reboot-cyclades driver you
need to actaully open up the file and read it.

Generic command Below is an example of a generic command. Commands
are issued using the ~$ escape sequence and then the command name. An
example of a useful command would be one to show the configuration of
the console you are connected to:

Add the following to your config.cf file:

"command 'config' 'Show conmux configuration' 'cat /home/conmux/etc/dudicus.cf'

Example output:

[/usr/local/conmux/bin]$./console netcat
Connected to netcat [channel transition] (~$quit to exit)

Command(netcat)> config
(user:me) Show conmux configuration
listener localhost/netcat
socket console 'netcat' 'localhost:13467'
command 'config' 'Show conmux configuration' 'cat /usr/local/conmux/etc/netcat.cf'

Starting the Conmux Server¶

Conmux comes with a bash script that will do the following

		Start the conmux registry

		Start all configurations in BASE_INSTALL/etc that end with .cf
prefixes

		Restart consoles that died since the last start command

		Restart consoles whose configuration has changed since the last start
command

		Log console output in BASE_INSTALL/log

To start the conmux registry and all the consoles issue the following
command

BASE_INSTALL/sbin/start

Example output:

/usr/local/conmux/sbin/start
starting registry ...
starting CONSOLE1 ...
starting CONSOLE2 ...

Mock Console Setup using nc¶

After following all of the above this section provides a concrete
example for users who do not currently have access to any console
hardware. In this section a configuration will be setup for a console on
localhost. Netcat will be used on the machine to listen to the port for
a connection so that an actual console connection can be created.

The configuration:

etc/netcat.cf

listener localhost/netcat
socket console 'netcat' 'localhost:13467'
command 'config' 'Show conmux configuration' 'cat /usr/local/conmux/etc/netcat.cf'

Start netcat in a different terminal listening on port 13467

nc -l -p 13467

Start your conmux server

BASE_INSTALL/sbin/start

Now connect to the console:

BASE_INSTALL/bin/console netcat

Output should be similar to:

/usr/local/conmux/bin]$./console netcat
Connected to netcat [channel connected] (~$quit to exit)

If you start typing in here you will notice in the terminal where netcat
is running what you typed and vice versa.

You can also issue the config command by using ~$ and inputting
config

Conmux - Original Documentation¶

conmux, the console multiplexor is a system designed to abstract the
concept of a console. That is to provide a virtualised machine
interface, including access to the console and the ‘switches’ on the
front panel; the /dev/console stream and the reset button. It creates
the concept of a virtual console server for multiple consoles and
provides access to and sharing of consoles connected to it.

There are two main motivations for wanting to do this. Firstly, we have
many different machine types with vastly differing access methodologies
for their consoles and for control functions (VCS, HMC, Annex) and we
neither want to know what they are nor how they function. Secondly, most
console sources are single access only and we would like to be able to
share the console data between many consumers including users. Basic
Usage

The main interface to the consoles is via the console program. This
connects us to the console server for the machine and allows us to
interact with it, including issuing out-of-band commands to control the
machine.

$ console <host>/<console>

In the example below we indicate that the console we require is located
on the virtual console server consoles.here.com and the specific console
is elm3b70.

$ console consoles.here.com/elm3b70
Connected to elm3b70 console (~$quit to exit) Debian GNU/Linux 3.1 elm3b70 ttyS0
elm3b70 login:

Once connected we can interact normally with the console stream. To
perform front pannel operation such as peforming an hard reset we switch
to command mode. This is achieved using the escape sequence ~$. Note the
prompt Command>

elm3b70 login: ~$
Command> quit
Connection closed $

Command Summary¶

The following commands are generally available:

		Command		Description

		quit		quit this console session, note that this disconnects us from the session it does not affect the integity of the session itself.

		hardreset		force a hard reset on the machine, this may be a simple reset or a power off/on sequence whatever is required by this system.

Architecture¶

The conmux provides a virtual console multiplexor system reminicent of
an Annex terminal server. You refer to the conmux server and lines,
unlike an Annex lines are referred to by mnemonic names. Above we
referred to the console for elm3b70 ‘connected to’ the server
consoles.here.com. A virtual console server consists of a number of
server processes. One conmux-registry server, several conmux servers and
optionally several helper processes.

conmux-registry: a server is defined by the server registry. This
maintains the mnemonic name to current server location relation. When a
client wishes to attach to a console on a server, the registry is first
queried to locate the server currently handling that console.

conmux: for each connected console there is a corresponding console
multiplexor. This process is responsible for maintaining the connection
to the console and for redistributing the output to the various
connected clients. It is also responsible for handling “panel” commands
from the client channels.

autoboot-helper: an example helper which aids systems which are not
capable of an automatic reboot. It connects to a console and watches for
tell-tale reboot activity, preforming a “panel” hardreset when required.
This provides the impression of seamless reboot for systems which this
does not work. Configuration conmux-registry

Configuration of this service is very simple. Supplying the default
registry port (normally 63000) and the location for the persistant
registry database. conmux

Configuration of each conmux is complex. Each has a listener, payload
and optionally one or more panel commands. Configuration is provided via
a per console configuration file. This file consists of lines defining
each element:

listener <server>/<name>: defines the name of this console port as it appears in the registry.

socket <name> <title> <host>:<port>: defines a console payload connected to a tcp socket on the network. name defines this payload within the multiplexor, title is announced to the connecting clients.

application <name> <title> <cmd>: defines a console payload which is accessed by running a specific command. name defines this payload within the multiplexor, title is announced to the connecting clients.

command <panel> <message> <cmd>: defines a panel command for the preceeding payload, triggerd when panel is typed at the command prompt. message is announced to the user community. cmd will be actually executed.

For example here is the configuration for a NUMA-Q system which is
rebooted using a remote VCS console and for which the real console
channel is on an Annex terminal server:

listener localhost/elm3b130
socket console 'elm3b130 console' console.server.here.com:2040
command 'hardreset' 'initated a hard reset' \ './reboot-numaq vcs 1.2.3.4 elm3b130 12346 Administrator password'

ACL Behavior Reference¶

The following is a reference for the actions that ACLs restrict.

Hosts¶

		Users must be in some ACL with a host to modify or delete the host
and to add the host to an ACL group.

Jobs¶

		For jobs scheduled against individual hosts, the user must be in some
ACL with the host.

		The owner of a job may abort the job. Any other user with ACL access
to a host can abort that host for any job, unless the host is in
the ‘Everyone’ ACL.

ACL Groups¶

		To add or remove users/hosts in an ACL, the user must be a member of
that ACL.

		The ‘Everyone’ ACL cannot be modified or deleted.

		When a host is added to an ACL other than ‘Everyone’, it is
automatically removed from ‘Everyone’. As long as it is a member of
some other ACL it will always be automatically removed from
‘Everyone’.

		When a host is removed from all ACL, it is automatically added to
‘Everyone’.

Superusers¶

Superusers can bypass most of these restrictions. The only thing a
superuser cannot do is delete the ‘Everyone’ group. To create a
superuser, run the script at
<autotest_root>/frontend/make_superuser.py, with the username as a
command-line parameter.

Frontend¶

Autotest Command Line Interface¶

Autotest provides a set of commands that can be used to manage the
autotest database, as well as schedule and manage jobs.

The commands are in the ./cli directory.

The main command is called ‘autotest-rpc-client’. The general syntax is:

autotest-rpc-client <topic> <action> <items> [options]

Where:

		topic is one of: acl, host, job, label or user

		action is one of: create, delete, list, stat, mod, add, rm. Not all
the actions are available for all topics.

Topic References¶

The references for the different topics are available for acl?, label?,
host?, user?, test? and job? management

Common options¶

The options common to all commands are:

		help: displays the options specific to the topic and/or action.
It can be used as:		autotest-rpc-client help

		autotest-rpc-client <topic> help

		autotest-rpc-client <topic> <action> help

		-w|--web: specifies the autotest server to use (see below).

		--parse: formats the output in colon separated key=values pairs.

		--kill-on-failure: stops processing the arguments at the first
failure. Default is to continue and displays the failures at the end.

		-v|--verbose: Displays more information.

Server Access¶

By default, the commands access the server at: http://autotest. This
can be overwritten by setting the AUTOTEST_WEB environment variable
or using the -w|--web option using only the hostname. The order of
priority is:

		the command line option,

		the AUTOTEST_WEB environment variable

		the default ‘autotest’ server.

Wildcard¶

The list action accepts the * wildcard at the end of a filter to
match all items starting with a pattern. It may be necessary to escape
it to avoid the * to be interpreted by the shell.

autotest-rpc-client host list host1*
Host Status Locked Platform Labels
host1 Ready False
host12 Ready False
host13 Ready False
host14 Ready False
host15 Ready False

File List Format¶

Several options can take a file as an argument. The file can contain
space- or comma-separated list of items e.g.,

cat file_list
host0
host1
host2,host3
host4 host5

Note the host1, host2 (comma and space) is not a valid syntax

Access Control List Management - autotest-rpc-client acl¶

The following actions are available to manage the ACLs:

autotest-rpc-client acl help
usage: autotest-rpc-client acl [create|delete|list|add|rm] [options] <acls>

Creating an ACL¶

autotest-rpc-client acl create help
usage: autotest-rpc-client acl create [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -d DESC, --desc=DESC Creates the ACL with the DESCRIPTION

Only one ACL can be create at a time. You must specify the ACL name and
its description:

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev
Created ACL:
 my_acl

Deleting an ACL¶

autotest-rpc-client acl delete help
usage: autotest-rpc-client acl delete [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs

You can delete multiple ACLs at a time. They can be specified on the
command line or in a file, using the -a|--alist option.

autotest-rpc-client acl delete my_acl,my_acl_2
Deleted ACLs:
 my_acl, my_acl_2

Listing ACLs¶

autotest-rpc-client acl list help
usage: autotest-rpc-client acl list [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER List ACLs containing USER
 -m MACHINE, --machine=MACHINE
 List ACLs containing MACHINE

You can list all the ACLs, or filter on specific ACLs, users or machines
(exclusively). The --verbose option provides the list of users and
hosts belonging to the ACLs.

autotest-rpc-client acl list -w autotest-dev
Name Description
Everyone
reserved-qual Qualification machines
benchmarking_group Benchmark machines
my_acl For testing

autotest-rpc-client acl list -v -w autotest-dev
Name Description
Everyone
Hosts:
 qual0, qual1, qual2, qual3, qual4, host0, host1, host2, host3, host4
 bench0, bench1, bench2, bench3, bench4, test0
Users:
 user0, user1, user2, user3, user4

reserved-qual Qualification machines
Hosts:
 qual0, qual1, qual2, qual3, qual4
Users:
 user0

benchmarking_group Benchmark machines
Hosts:
 bench0, bench1, bench2, bench3, bench4
Users:
 user1, user2

my_acl For testing

autotest-rpc-client acl list -w autotest-dev -u user0
Name Description
Everyone
reserved-qual Qualification machines

autotest-rpc-client acl list -w autotest-dev -m bench0 -v
Name Description
Everyone
benchmarking_group Benchmark machines
Hosts:
 bench0, bench1, bench2, bench3, bench4
Users:
 user1, user2

Adding Hosts or Users to an ACL¶

autotest-rpc-client acl add help
usage: autotest-rpc-client acl add [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER Add USER(s) to the ACL
 --ulist=USER File containing users to add to the ACL
 -m MACHINE, --machine=MACHINE
 Add MACHINE(s) to the ACL
 --mlist=MACHINE File containing machines to add to the ACL

You must specify at least one ACL and one machine or user.

autotest-rpc-client acl add my_acl -u user0,user1 -v -w autotest-dev
Added to ACL my_acl user:
 user0, user1

cat machine_list
host0 host1
host2
host3,host4

autotest-rpc-client acl add my_acl --mlist machine_list -w autotest-dev
Added to ACL my_acl hosts:
 host0, host1, host2, host3, host4

autotest-rpc-client acl list -w autotest-dev -v my*
Name Description
my_acl For testing
Hosts:
 host0, host1, host2, host3, host4
Users:
 user0, user1

Note the usage of wildcard to specify the ACL in the last example:
my*

Removing Hosts or Users from an ACL¶

autotest-rpc-client acl rm help
usage: autotest-rpc-client acl rm [options] <acls>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a ACL_FLIST, --alist=ACL_FLIST
 File listing the ACLs
 -u USER, --user=USER Remove USER(s) from the ACL
 --ulist=USER File containing users to remove from the ACL
 -m MACHINE, --machine=MACHINE
 Remove MACHINE(s) from the ACL
 --mlist=MACHINE File containing machines to remove from the ACL

The options are the same than for adding hosts or users. You must
specify at least one ACL and one machine or user.

autotest-rpc-client acl rm my_acl -m host3 -w autotest-dev
Removed from ACL my_acl host:
 host3

autotest-rpc-client acl rm my_acl -u user0 -v -w autotest-dev
Removed from ACL my_acl user:
 user0

autotest-rpc-client acl list -w autotest-dev -v my_*
Name Description
my_acl For testing
Hosts:
 host0, host1, host2, host4
Users:
 user1

autotest-rpc-client acl delete my_acl -w autotest-dev
Deleted ACL:
 my_acl

Possible errors and troubleshooting¶

In case of error, add the -v option to gather more information.

Duplicate ACL:

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev
Operation add_acl_group failed for: my_acl

autotest-rpc-client acl create my_acl -d "For testing" -w autotest-dev -v
Operation add_acl_group failed for: my_acl
 ValidationError: {'name': 'This value must be unique (my_acl)'}

Adding an unknown user or host:

autotest-rpc-client acl add my_acl -u foo
Operation acl_group_add_users failed for: my_acl (foo)

autotest-rpc-client acl add my_acl -u foo -v
Operation acl_group_add_users failed for: my_acl (foo)
 DoesNotExist: User matching query does not exist.

Removing an ACL requires that you are part of this ACL:

autotest-rpc-client acl delete my_acl -w autotest-dev
Operation delete_acl_group failed for: my_acl

autotest-rpc-client acl delete my_acl -w autotest-dev -v
Operation delete_acl_group failed for: my_acl
 AclAccessViolation: You do not have access to my_acl

Adding yourself to the ACL:
autotest-rpc-client acl add -u mylogin my_acl -w autotest-dev
Added to ACL my_acl user:
 mylogin

autotest-rpc-client acl delete my_acl -w autotest-dev
Deleted ACL:
 my_acl

Host Management - autotest-rpc-client host¶

NOTE: THIS IS ONLY PARTIALLY DONE.

The following actions are available to manage hosts:

autotest-rpc-client host help
Usage: autotest-rpc-client host [create|delete|list|stat|mod|jobs] [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines

Creating a Host¶

autotest-rpc-client host create help
usage: autotest-rpc-client host create [options] <hosts>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 --mlist=MACHINE_FLIST
 File listing the machines
 -l, --lock Create the hosts as locked
 -u, --unlock Create the hosts as unlocked (default)
 -t PLATFORM, --platform=PLATFORM
 Sets the platform label
 -b LABELS, --labels=LABELS
 Comma separated list of labels
 --blist=LABEL_FLIST File listing the labels
 -a ACLS, --acls=ACLS Comma separated list of ACLs
 --alist=ACL_FLIST File listing the acls

Multiple hosts can be created with one command. The hostname(s) can be
specified on the command line or in a file using the --mlist option.

You can specify the platform type, labels and ACLs for all the newly
added hosts. If you want the hosts to be locked, specify --locked
flag. The scheduler will not assign jobs to a locked host.

cat /tmp/my_machines
host0
host1

Create 2 hosts, locked and add them to the my_acl ACL.
autotest-rpc-client host create --mlist /tmp/my_machines -a my_acl -l
Added hosts:
 host0, host1

Deleting a Host¶

autotest-rpc-client host delete help
usage: autotest-rpc-client host delete [options] <hosts>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 --mlist=MACHINE_FLIST
 File listing the machines

Multiple hosts can be deleted with one CLI. The hostname(s) can be
specified on the command line or in a file using the --mlist option.

The list can be comma or space separated.
autotest-rpc-client host delete host1,host0 host2
Deleted hosts:
 host0, host1, host2

Listing Hosts¶

autotest-rpc-client host list help
Usage: autotest-rpc-client host list [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines
 -b LABEL, --label=LABEL
 Only list hosts with this label
 -s STATUS, --status=STATUS
 Only list hosts with this status
 -a ACL, --acl=ACL Only list hosts within this ACL
 -u USER, --user=USER Only list hosts available to this user

You can which host(s) you want to display using a combination of options
and wildcards.

List all the hosts
autotest-rpc-client host list
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0
mach0 Ready True
mach1 Ready True

Only hosts starting with ho
autotest-rpc-client host list ho*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Only hosts having the label0 label
autotest-rpc-client host list -b label0
Host Status Locked Platform Labels
host0 Ready True label0

Only hosts having a label starting with lab
autotest-rpc-client host list -b lab*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Only hosts starting with ho and having a label starting with la
autotest-rpc-client host list -b la* ho*
Host Status Locked Platform Labels
host1 Ready True label1
host0 Ready True label0

Getting Hosts Status¶

autotest-rpc-client host stat help
Usage: autotest-rpc-client host stat [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST

To display host information:

autotest-rpc-client host stat host0

Host: host0
Platform: x386
Status: Repair Failed
Locked: False
Locked by: None
Locked time: None
Protection: Repair filesystem only

ACLs:
Id Name
110 acl0
136 acl1

Labels:
Id Name
392 standard_config
428 my_machines

Modifying Hosts Status¶

autotest-rpc-client host mod help
Usage: autotest-rpc-client host mod [options] <hosts>

Options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing the machines
 -y, --ready Mark this host ready
 -d, --dead Mark this host dead
 -l, --lock Lock hosts
 -u, --unlock Unlock hosts
 -p PROTECTION, --protection=PROTECTION
 Set the protection level on a host. Must be one of:
 "Repair filesystem only", "No protection", or "Do not
 repair"

You can change the various states of the machines:

Lock all ho* hosts:
autotest-rpc-client host mod -l ho*
Locked hosts:
 host0, host1

Hosts have been repaired, put them back in the pool:
autotest-rpc-client host mod --ready host0
Set status to Ready for host:
 host0

Job Management - autotest-rpc-client job¶

The following actions are used to manage jobs:

autotest-rpc-client job help
usage: autotest-rpc-client job [create|list|stat|abort] [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to

Creating a Job¶

autotest-rpc-client job create help
usage: autotest-rpc-client job create [options] job_name

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -p PRIORITY, --priority=PRIORITY
 Job priority (low, medium, high, urgent),
 default=medium
 -y, --synchronous Make the job synchronous
 -c, --container Run this client job in a container
 -f FILE, --control-file=FILE
 use this control file
 -s, --server This is server-side job
 -t TESTS, --tests=TESTS
 Run a job with these tests
 -k KERNEL, --kernel=KERNEL
 Install kernel from this URL before beginning job
 -m MACHINE, --machine=MACHINE
 List of machines to run on (hostnames or n*label)
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File listing machines to use

You can only create one job at a time. The job will be assigned the name
job_name and will be run on the machine(s) specified using the
-m|--machine|-M|--mlist options.

The machines can be specified using their hostnames or if you are just
interested in a specific group of machines, you can use any arbitrary label
you have defined, both platform and non-platform.

The syntax for those is: n*label to run on n
machines of type label e.g., 2*Xeon,3*lab1,hostprovisioning.
You can omit n if n equals 1.

The options are:

		-p|--priority sets the job scheduling priority to Low, Medium
(default), High or Urgent.

		-s|--server specifies if the job is a server job, or a client job
(default). A server job must specify a control file using the
--control-file option.

		-y|--synchronous specifies if the job is synchronous or
asynchronous (default).

		-k|--kernel=<file> specifies the URL of a kernel to install
before running the test(s).

		-c|--container runs the test(s) in a container. This is only
valid for client-side jobs.

The tests can be specified in 2 mutually exclusive ways:

		-f|--control-file=FILE will run the job described in the control
file FILE,

		-t|--tests=a,b,c will create a control file to run the tests a,
b, and c.

One of these 2 options must be present.

The control file must be specified if your job is:

		synchronous, or

		a server-side job.

The --control-file option cannot be used with:

		the --kernel option.

		the --container option.

If you want to do any of those, code it in the control file itself.

You can find the list of existing tests using autotest-rpc-client test list.

Create a job my_test using known tests on host0:
autotest-rpc-client job create --test dbench,kernbench -m host0 my_test
Created job:
 my_test (id 6749)

Create a server job using a custom control file on host0:
cat ./control
job.run_test('sleeptest')

autotest-rpc-client job create --server -f ./control -m host0 my_test_ctrl_file
Created job:
 my_test_ctrl_file (id 6751)

Create a job on 2 Xeon machines, 3 Athlon and 1 x286:
Find the platform labels:
autotest-rpc-client label list -t
Name Valid
Xeon True
Athlon True
x286 True

autotest-rpc-client job create --test kernbench -m 2*Xeon,3*Athlon,*x286, test_on_meta_hosts
Created job:
 test_on_meta_hosts (id 6761)

Listing Jobs¶

autotest-rpc-client job list help
usage: autotest-rpc-client job list [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -a, --all List jobs for all users.
 -r, --running List only running jobs
 -u USER, --user=USER List jobs for given user

You can list all the jobs, or filter on specific users, IDs or job
names. You can use the * wildcard for the job_name filter.

List all my jobs
autotest-rpc-client job list
Id Owner Name Status Counts
3590 user0 Thourough test Aborted:31, Completed:128, Failed:74
6626 user0 Job Completed:1
6634 user0 Job name with spaces Aborted:1
6749 user0 my_test Queued:1
6751 user0 my_test_ctrl_file Queued:1

List all jobs starting with 'my'
autotest-rpc-client job list my*
Id Owner Name Status Counts
1646 user1 myjob Completed:2
2702 user2 mytestburnin3 Aborted:1
6749 user0 my_test Queued:1
6751 user0 my_test_ctrl_file Queued:1

Getting Jobs Status¶

autotest-rpc-client job stat help
usage: autotest-rpc-client job stat [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -f, --control-file Display the control file

At least one job ID or name must be specified. The * wildcard can be
used for the job name but not for the job ID.

Get status of the previously queued jobs. Note the hostname in this output:
autotest-rpc-client job stat my_test*
Id Name Priority Status Counts Host Status
6749 my_test Medium Queued:1 Queued:host0
6751 my_test_ctrl_file Medium Queued:1 Queued:host0

The stats on a meta host job will show the hostname once the scheduler mapped the platform label to available hosts:

autotest-rpc-client job stat 6761
Id Name Priority Status Counts Host Status
6761 test_on_meta_hosts Medium Queued:4, Running:1 Running:host42

Aborting Jobs¶

autotest-rpc-client job abort help
usage: autotest-rpc-client job abort [options] <job_ids>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to

You must specify at least one job ID. You cannot use the job name.

autotest-rpc-client job abort 6749,6751 6761
Aborted jobs:
 6749, 6751, 6761

Label Management - autotest-rpc-client label¶

The following actions are available to manage the labels:

autotest-rpc-client label help
usage: autotest-rpc-client label [create|delete|list|add|remove] [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels

Creating a label¶

autotest-rpc-client label create help
usage: autotest-rpc-client label create [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -t, --platform To create this label as a platform

You can create multiple labels at a time. They can be specified on the
command line or in a file, using the -B|--blist option.

autotest-rpc-client label create my_label
Created label:
 my_label
autotest-rpc-client label create label0 label1
Created label:
 label0, label1

Deleting a label¶

autotest-rpc-client label delete help
usage: autotest-rpc-client label delete [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels

You can delete multiple labels at a time. They can be specified on the
command line or in a file, using the -b|--blist option.

autotest-rpc-client label delete label0,label1
Deleted labels:
 label0, label1

Listing labels¶

autotest-rpc-client label list help
usage: autotest-rpc-client label list [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -t, --platform-only Display only platform labels
 -d, --valid-only Display only valid labels
 -a, --all Display both normal & platform labels
 -m MACHINE, --machine=MACHINE
 List LABELs of MACHINE

You can list all the labels, or filter on specific labels or machines
(exclusively).

Show all labels
autotest-rpc-client label list
Name Valid
label0 True
label1 True

Display labels that host host0 is tagged with
autotest-rpc-client label list label0 -m host0
Name Valid
label0 True

Adding Hosts to a Label¶

autotest-rpc-client label add help
usage: autotest-rpc-client label add [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -m MACHINE, --machine=MACHINE
 Add MACHINE(s) to the LABEL
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File containing machines to add to the LABEL

You must specify at least one label and one machine.

Add hosts host0 and host1 to 'my_label'
autotest-rpc-client label add my_label -m host0,host1
Added to label my_label hosts:
 host0, host1

Removing Hosts from a Label¶

autotest-rpc-client label remove help
usage: autotest-rpc-client label remove [options] <labels>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -B LABEL_FLIST, --blist=LABEL_FLIST
 File listing the labels
 -m MACHINE, --machine=MACHINE
 Remove MACHINE(s) from the LABEL
 -M MACHINE_FLIST, --mlist=MACHINE_FLIST
 File containing machines to remove from the LABEL

The options are the same than for adding hosts. You must specify at
least one label and one machine.

cat my_machines
host0
host1,host2
autotest-rpc-client label rm my_label --mlist my_machines
Removed from label my_label hosts:
 host0, host1, host2

Completely delete the LABEL.
autotest-rpc-client label delete my_label
Deleted label:
 my_label

Possible errors and troubleshooting¶

Duplicate label: {{{# autotest-rpc-client label create my_label Operation add_label
failed:

ValidationError?: {'name': 'This value must be unique (my_label)'}

}}}

Adding an unknown host:

autotest-rpc-client label add my_label -m host20,host21
Operation label_add_hosts failed:
 DoesNotExist: Host matching query does not exist. (my_label (host20,host21))}}}

Test Management - autotest-rpc-client test¶

The following actions are available to manage the tests:

autotest-rpc-client test help
usage: autotest-rpc-client test list [options] [tests]

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -T TEST_FLIST, --tlist=TEST_FLIST
 File listing the tests

Listing Tests¶

autotest-rpc-client test list help
usage: autotest-rpc-client test list [options] [tests]

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -T TEST_FLIST, --tlist=TEST_FLIST
 File listing the tests
 -d, --description Display the test descriptions

You can list all the tests, or specify a few you’d like information on.

autotest-rpc-client test list
Name Test Type Test Class
sleeptest Client Canned Test Sets
dbench Client Canned Test Sets
Kernbench Client Canned Test Sets

Specifying some test names, with descriptions:
autotest-rpc-client test list Kernbench,dbench -d
Name Test Type Test Class Description
Kernbench Client Canned Test Sets unknown
dbench Client Canned Test Sets dbench is one of our standard kernel stress tests. It produces filesystem
load like netbench originally did, but involves no network system calls.
Its results include throughput rates, which can be used for performance
analysis.

More information on dbench can be found here:
http://samba.org/ftp/tridge/dbench/README

User Management - autotest-rpc-client user¶

The following actions are available to manage users:

autotest-rpc-client user help
usage: autotest-rpc-client user list [options] <users>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -u USER_FLIST, --ulist=USER_FLIST
 File listing the users

Listing users¶

autotest-rpc-client user list help
usage: autotest-rpc-client user list [options] <users>

options:
 -h, --help show this help message and exit
 -g, --debug Print debugging information
 --kill-on-failure Stop at the first failure
 --parse Print the output using colon separated key=value
 fields
 -v, --verbose
 -w WEB_SERVER, --web=WEB_SERVER
 Specify the autotest server to talk to
 -u USER_FLIST, --ulist=USER_FLIST
 File listing the users
 -a ACL, --acl=ACL Only list users within this ACL
 -l ACCESS_LEVEL, --access_level=ACCESS_LEVEL
 Only list users at this access level

You can list all the users or filter on specific users, ACLs or access
levels. You can use wildcards for those options. The verbose option
displays the access level.

Show all users
autotest-rpc-client user list
Login
user0
user1
me_too
you_as_well

Show all users starting with u
autotest-rpc-client user list u* -v
Id Login Access Level
3 user0 0
7 user1 1

Show all users starting with u and access level 0.
autotest-rpc-client user list u* -v -l 0
Id Login Access Level
3 user0 0

Show all users belonging to the ACL acl0
autotest-rpc-client user list -a acl0
Login
user1
metoo

Frontend Database (autotest_web)¶

The AFE frontend and the scheduler both work from the “autotest_web”
database.

[image: _images/frontend.png]

		Test: a test than can be run as part of a job. Each row corresponds
to a control file, most often found at (client|server)/tests/<test
name>/control, but not always.

		User: a user of the system.

		Host: a machine on which tests can be run.

		AclGroup: access control groups. Each group is in a many-to-many
relationship with users and hosts and gives users in that group
permission to run jobs on hosts in the same group.

		Label: a label describing a type of host, such as “intel” or
“regression_testing_machines”. These help users schedule jobs on
particular groups of machines.

		Job: a logical job consists of a set of hosts and a control file to
run on those hosts. It can be tracked throughout the system by its
ID. A row in this table contains the control file for the job and
information about how it should be run.

		HostQueueEntry: this table provides a many-to-many relationship
between jobs and hosts. It is used to keep track of the hosts on
which a job is scheduled to run, and by the scheduler to keep track
of the progress of those runs. It can also represent a “metahost” for
a job, which indicates that a job is scheduled to run on any machine
from a particular label.

		IneligibleHostQueue: this table also provides a many-to-many
relationship between jobs and hosts. It is used to indicate which
hosts a job has already been scheduled against and is used by the
scheduler in assigning metahosts.

Understanding the TKO Results Database¶

This page will (hopefully) help you understand how results are
structured in the Autotest results database, and how you can best
structure results for your test.

Structure of test results¶

The core results entity produced when you run a tests is a Test
Result. (The DB model name is simply “Test”, but “Test Result” is more
clear, so I’m going to use that term here.) Each Test Result has a
number of fields, most importantly the name of that test that ran and
the status of the test outcome. Test Results also include timestamps and
links to a few related objects, including the kernel and machine on
which the test ran, and the job that ran the test. Each of these objects
includes other fields - see TKO database for the full list.

Each Test Result can also have any number of Test Attributes, each
of which is a key-value pair of strings. Note that some Test Attributes
are included with each test automatically, including information on test
parameters and machine sysinfo.

Furthermore, each Test Result can have any number of Iterations,
indexed from zero. These are primarily for use by performance tests.

		Each Iteration can have any number of Iteration Attributes, each
of which is a key-value pair of strings.

		Each Iteration can also have any number of Iteration Results,
each of which is a key-value pair with floating-point values (and
string keys, as usual). This is the only way to record numerical data
for a test. It is used for all performance tests.

Note that, despite the names, both of these kinds of iteration keyvals
are intended to describe results-oriented information. The only
difference is that one holds string-valued results while the other holds
numerical results. Neither type of iteration keyval is intended to hold
information about how the test ran (such as test parameters). By design,
all iterations within a test should run the exact same way. The only
intended purpose of iterations is to gather more samples for statistical
purposes. If you want to run a test multiple times varying parameters,
you should create multiple Test Results (see below).

To summarize:

		Job		Test Results		Test Attributes (string key -> string value)

		Iterations (indexed from 0)		Iteration Attributes (string key -> string value)

		Iteration Results (string key -> float value)

How are test results created?¶

Each call to job.run_test() implicitly creates one Test Result. The
status of the Test Result is determined by what, if any, exception was
raised (and escaped) during test execution. Any calls to record keyvals
within the test will be associated with the Test Result for that call to
run_test().

If you want to create many Test Result objects, you must have code to
call job.run_test() many times. This code must reside in the control
file, or in a library called by the control file, but not within the
test class itself (since everything in the test class executes within a
call to run_test()).

A new issue arises when running the same test multiple times within a
job. This will generate many Test Results with the same test name, but
there must be a unique identifier for each Test Result (other than the
database ID). This brings another Test Result field into play –
subdir, the subdirectory containing the result files for that Test
Result. subdir is normally equal to the test name, but this field
must be unique among all Test Results for a job. When running a test
multiple times, unique subdir``s are usually achieved by passing a
unique ``tag with each call to job.run_test() for a particular
test. The subdir then becomes $test_name.$tag.

Further reading¶

		AutotestApi
explains how each of these keyvals can be recorded by test code using
Test APIs.

		TkoDatabase illustrates the database schema.
Note that it does not map directly onto these concepts. In
particular, there’s no table for iterations themselves, only the
iteration keyvals. The existence of iterations themselves is
implicit.

		Keyval <../local/Keyval> explains the placement and format of keyval
files within the results directories. These are written by Autoserv
and read by the Parser to fill in the database.

TKO results database¶

The TKO results database holds results of test runs. The parser puts
data into it and the TKO web interface allows users to view data from
it.

[image: _images/new_tko.png]

		The tests table is the core of the DB and contains a row for each
test run.

		A job in the jobs table corresponds to a single execution
instance of autoserv. Each job can have many tests.

		The test_attributes, iteration_attributes, and
iteration_result hold keyval information about tests.

		The status table is simply an enumeration of tests status values,
i.e. completed, failed, aborted, etc.

		The kernels and patches tables hold kernel information for
kernels against which tests are run.

		The machines tables holds information on machines on which tests
are run.

MySQL replication¶

Introduction¶

If you’re a heavy user of Autotest and its reporting/graphing
functionality its possible that you’ve experienced slow downs that
database slave(s) could mitigate. There are lots of guides on the
internet for doing MySQL replication. This presents just one possible
way to set it up.

Notes on replication:

		Only read-only operations can go through the slave. At the moment,
only the new TKO interface supports splitting read-only and
read-write traffic up between servers.

		MySQL replicates by replaying SQL statements. This means that it is
possible to construct SQL statements that will execute
non-deterministically on replicas. None of the commands Autotest runs
should have this problem, but you need to know it’s possible. This
also means that you might want to verify the consistency of the slave
database once in a while.

		MySQL replication happens in one thread. In highly parallelizable,
write heavy workloads, the slave will probably fall behind. In
practice this is pretty much never an issue.

		…there’s lots of other caveats. If you’re still reading, you might
want to check out
http://oreilly.com/catalog/9780596101718/

Preparing the Master¶

First of all, you’re going to need to set up the binary log. All queries
which might affect the database (i.e. not SELECTs) will be written to
this log. Replication threads will then read the file and send updates
to the database slaves. Because it’s in a file, this also means that if
a slave goes off line for a while (under the limit we’ll set in a
moment), it can easily re-sync later.

Open the /etc/mysql/my.cnf file with root permissions (so probably with
sudo).

Uncomment out (or add) the following lines in the [mysqld] section of
the file.

server-id = SOMETHING_UNIQUE
log_bin = /var/log/mysql/mysql-bin.log
expire_logs_days = 10
max_binlog_size = 100M

The server-id needs to be an unique 32 bit int but otherwise doesn’t
matter. The log_bin says to use binary logging and specifies the
prefix used for log files. The log files are rotated when they become
max_binlog_size and are kept for expire_logs_days days.

Restart the mysql server and log into the prompt with the mysql
command. Now create a user for replication:

GRANT REPLICATION SLAVE ON *.* TO 'slave_user'@'%' IDENTIFIED BY 'some_password';
FLUSH PRIVILEGES;

Creating a Snapshot¶

MySQL has a built in command to sync a slave to a master without any
existing data, but this isn’t useful in a production environment because
it locks all the tables on the master for an extended period of time.
The following is a good compromise of downtime (it’ll lock things for a
couple minutes) and ease of use. If you can’t have any down time,
consult other resources and good luck. :-)

The following command will dump all databases to a file called
/tmp/backup.sql. It uses extended inserts which cuts down on the file
size, but makes the file (a bit) less portable. The –master-data tells
it to write what the current bin-log location is to the beginning of the
file and causes the database to be read-only locked during the duration.

mysqldump -uroot -p --all-databases --master-data --extended-insert > /tmp/backup.sql

Setting up the Slave¶

On the database slave, simply copy over the SQL dump you created in the
last step and (assuming the dump is in /tmp/backup.sql):

mysql -uroot -p < /tmp/backup.sql

Now edit your /etc/mysql/my.cnf. Add the following lines under the
[mysqld] section:

server-id = SOMETHING_UNIQUE
log_bin = /var/log/mysql/mysql-bin.log
expire_logs_days = 10
max_binlog_size = 100M
read_only = 1

The read_only parameter makes it so that only DB slave processes and
those with SUPER access can modify the database. The log_bin turns on
the binary logging so that other servers can be chained off of this
replica.

If you’re using a debian based distro, you’ll need to copy over the
login data from the /etc/mysql/debian.cnf of the master to the slave.

Stop and start mysql.

sudo /etc/init.d/mysql stop
sudo /etc/init.d/mysql start

Out of the SQL dump we loaded earlier, get the master position via

grep 'CHANGE MASTER' /tmp/backup.sql | head -n1

Open up a mysql root prompt and run the following command (modified for
your local setup). After that, start the slave thread and show the
current status.

CHANGE MASTER TO MASTER_HOST='some.host.com', MASTER_USER='slave_user', MASTER_PASSWORD='some_password', MASTER_LOG_FILE='from the output above', MASTER_LOG_POS=ditto;
START SLAVE;
SHOW SLAVE STATUS\G;

On your database master, you can run SHOW MASTER STATUS;’ and verify
that the slave is up to date (or is currently catching up).

RPC Server¶

The Autotest RPC Server, also known as the frontend, is a Django based
application that provides:

		The Database Objects (defined by Django Models)

		A remoting interface using the JSON-RPC protocol

		The Administration Web Interface that Django
gives us for free

We’ll start by taking a look at the Database the Models and the database
structure that they generate.

Models¶

The Database Models play a major role in the RPC server. The most important
things they do:

		Define and create the database structure on the Autotest Relational Database

		Provide a object like uniform API for the Database entries

Note

For historical reasons, the RPC server is composed of two different
applications, AFE and TKO. Because of that, the models are also defined in
two different modules.

These may soon be united into a single application, specially their model
definition. For now, keep in mind that the model you are looking for may
be in one of two different places.

Model Logic¶

Autotest extends the base Django Database models with some custom logic.

ModelWithInvalid¶

AFE Models¶

AFE stands for Autotest Front End. It’s an application that provides access
to the core of Autotest definitions, such as Hosts, Tests, Jobs, etc.

For the classes that inherit from django.db.models.Model some of the
attributes documented here are instances from one of the many
django.db.models.fields classes and will be mapped into a field on the
relational database.

AtomicGroup¶

Job¶

Label¶

Drone¶

DroneSet¶

User¶

Host¶

HostAttribute¶

Test¶

TestParameter¶

Profiler¶

AclGroup¶

Kernel¶

ParameterizedJob¶

ParameterizedJobProfiler¶

ParameterizedJobProfilerParameter¶

ParameterizedJobParameter¶

Job¶

AFE Exceptions¶

Besides persistence, Models also provide some logic. And as such, some custom
error conditions exist.

TKO Models¶

TKO is the autotest application dedicated to storing and querying test results.

Machine¶

Kernel¶

Patch¶

Status¶

Job¶

JobKeyval¶

Test¶

RPC Interface¶

Functions exposed over the RPC interface.

Note

For historical reasons, the RPC server is composed of two different
applications, AFE and TKO.

AFE RPC Interface¶

Custom RPC Scripts¶

This is a brief outline of how to use the TKO RPC interface to write
custom results analysis scripts in Python. Using the AFE RPC interface
is very similar.

Basically:

		make your script any place in the client with a common.py

		to import the rpc stuff you need do:

import common # pylint: disable=W0611
from autotest_lib.cli import rpc

		to create the object you need for making the rpc calls use “comm =
rpc.tko_comm()”; you can pass in a host name if you want to point at
something other than what’s in the global_config.ini file in your
client.

		you can get the test detail with code like:

test_views = comm.run("get_detailed_test_views", ...filters go here...)

The filters are basically django filters. I won’t go into much detail
here, the obvious ones you’d want to use are:

		job_tag__startswith - set it to something like “1234-” to get
data on job 1234

		hostname - if you want data for a specific hostname, set this

		test_name - if you want data for a specific test name, set this

So you could do something like:

test_views = comm.run("get_detailed_test_views", job_tag__startswith="1234-", hostname="myhost")

The test_views returned by that call is a list of dictionaries, one
dictionary for each test returned by the call. The main keys you’re
concerned with will be “attributes” and “iterations”.

attributes is a dictionary of all the test level keyvals - you can see
stuff like “sysinfo-uname” here.

iterations is a list of dictionaries, one for each iteration. Each
dictionary has two entries; an “attr” one, which is a dictionary of all
the key{attr}=value attributes in the test, and a “perf” one, which is a
dictionary of all the key{perf}=value attributes.

And…that’s basically how you access all that info. You make that call
and get a big list of dictionaries. Oh, and avoid calling it without
filters; trying to pull down data for every single test can be a bad
idea (depending on the size of your database).

Policy for changing the frontend(AFE) and TKO RPC protocols¶

Try to make any RPC protocol change so that it’s backwards compatible.
If there are good reasons not to make it backwards compatible then the
following procedure has to be followed:

		initial code changes have to be backwards compatible (so we end up
supporting both old and the new RPC API); existent RPC users in the
autotest code base have be already changed to use the new API

		to give enough time for external RPC users, an announcement about
this RPC change should go on the public mailing list

		after at least a month since the RPC API change announcement the
support for the old RPC API can be removed from the code

Web Frontend HOWTO¶

The Autotest web frontend can be used for

		browsing existing jobs

		viewing job details and getting to job results and log files

		submitting new jobs

		tracking hosts’ statuses

		managing (browsing, creating, modifying, and deleting) hosts, labels,
profilers, and ACL groups

When you first bring up the frontend, you’ll see something like this:

[image: _images/joblist.png]

Job List¶

The interface initially shows the Job List tab, which allows you to
browse existing jobs. The four links at the top filter jobs by status -
you can view only queued, running, or finished (which includes completed
and aborted) jobs, or view them all (the default). You can also filter
by job owner and job name. The initial view shows all jobs owned by you.
Most recently submitted jobs are displayed first.

The Hosts column shows how many hosts in each job are currently in each
state (see JobAndHostStatuses). You can use
the Refresh button at the top to refresh the list (it won’t refresh
itself). Clicking on a job in the list brings up the View Job tab for
the selected job.

You can select multiple jobs with the checkboxes on the left, or using
the links at the top of the table. You can then using the “Actions” menu
to operate on many jobs at once. Currently, this only allows you to
abort jobs.

View Job¶

The View Job tab shows details about a single job along with results and
a link to log files.

[image: _images/jobview.png]

The box at the top allows you to manually fetch a job by ID. The page
displays basic info about the job, an “Abort Job” button if the job has
not completed, and a “Clone Job” button to create a new job modeled
after the current job. Clone job will present three options:

		Reuse any similar hosts - if the original job use “run on any” hosts,
the new job will do the same, so that it could get assigned different
hosts.

		Reuse same specific hosts - the exact same set of hosts will be used,
even if the original job specific “run on any” hosts.

		Use failed and aborted hosts - uses the hosts have have been aborted,
or have failed the job in some way

Below this, the full contents of the job’s control file are displayed,
follow by job results. This consists of an embedded TKO spreadsheet for
the job with three links above:

		open in new window - to open the old TKO interface for the job.

		new results interface - to open the new TKO interface for the job.

		raw results logs - to bring up a listing of the job results
directory. This is often useful for debugging when things go wrong.

Finally, the table at the bottom shows all hosts on which the job was
scheduled and the current status of the job on each host (see
JobAndHostStatuses). Links are provided to
jump directly to the status log and debug logs for each host. In
addition, you can select individual hosts and abort them with the
Actions menu. You can clone the job on the selected hosts from the
Actions menu as well. Selecting no hosts and choosing “Clone job on
selected hosts” will clone the job without adding any hosts.

Create Job¶

This tab allows you to create and submit a new job.

[image: _images/createjob.png]

Create job parameters¶

		Job name can be any string.

		Priority affects how your job will be placed in the queue; higher
priority jobs with preempt lower priority ones that have not yet
started when the jobs are scheduled on the same machine.

		The kernel field allows you to specify a kernel to install on the
test machine before testing; leaving this field blank will leave out
the kernel install step. You can specify a URL pointing to a kernel
source tarball or a .rpm or .deb package. Site-specific extensions
are also possible.

		Timeout specifies the hours after job creation until the
scheduler will automatically abort the job if it hasn’t yet
completed.

		Max runtime specifies the hours after the job starts running
(Autoserv is executed) until the scheduler will automatically abort
the job if it hasn’t yet completed.

		Email List can contain a comma- or space-separated list of email
addresses which will be notified upon job completion.

		If Skip verify is checked, hosts won’t be verified before the job
is run. This is useful for machine reinstalls among other things.

		Reboot before determines whether hosts will be rebooted before
the job runs. If dirty means the host will be rebooted if it hasn’t
been rebooted since being added, being locked, or having the last job
run.

		Reboot after determines whether hosts will be rebooted after the
job runs. If all tests passed means the host won’t be rebooted if
any test within the job failed.

		If Include failed repair results is checked, when a machine fails
repair, “repair” and “verify” test entries will show up in TKO for
that machine, along with a SERVER_JOB entry. If unchecked, nothing
at all will show up in TKO for the failed machine.

		The Tests section contains a table allowing you to select a set
of client- or server-side tests to run. You can click on any test to
view its description. Your test selections, along with the kernel
field, are used to build the job’s control file.

		Profilers shows available profilers than can be enabled for your
job.

		Clicking View control file will display a box that shows the
control file being constructed from your choices. You may edit the
control file by hand by clicking Edit control file. This will
make the control file field editable, but disables the kernel input
and all test selector. If you want to go back and change your
selections in these inputs, you’ll need to revert your kernel
changes. When editing a control file, you have two additional
options. You shouldn’t have to edit these unless you know what you’re
doing.		Client or Server - whether the control file should run on the
client-side or the server-side.

		Synchronous - if checked, the job will wait for all machines
to be ready and then run all machines in a single autoserv
instance. This is usually only necessary for multi-machine tests.

		The Available hosts and Selected hosts tables allow you to
select hosts on which to run the job. Individual hosts can be
selected and deselected by clicking on them. The filters at the top
of the Available hosts table can be used to narrow your selection,
just like in the Hosts tab. “Select visible” adds all hosts currently
visible in the Available hosts table. “Select all” adds all hosts
currently matching the filters.		The Run on any box allows you to request that the job be run
on any machines from a given platform or label. The machines will
be automatically selected from the set of available machines when
the job is run.

		The One-time host(s) box allows you to enter a hostname (or
space-separated list of hostnames) that will be added to the
database just for the job, without leaving the machine available
for other jobs.

		Finally, the Submit Job button will attempt to submit your job,
and any errors will show up in red.

Host List¶

This tab allows you to browse all hosts in the system.

[image: _images/hostlist.png]

The table can be searched and filtered using the boxes at the top.
Clicking on a host brings you to the “View Host” tab for that host.

Additionally, you can force hosts to go into Verify by selecting them
and choosing “Reverify hosts” from the Actions menu.

View Host¶

[image: _images/hostview.png]

This tab shows detailed information for a particular host including a
list of all jobs queued, running and previously run on that host. It
additionally provides a link to the scheduler’s verify/repair logs for
the host.

User preferences¶

The user preferences tab allows you to set defaults for creating jobs.
See
WebFrontendHowTo#Createjobparameters.

		Reboot before and Reboot after control default values for the
corresponding options on the Create Job page.

		Show experimental tests will make the Create Job page show tests
that are marked as “experimental” in the control file.

Admin interface¶

Clicking the “Admin” link in the upper right corner takes you to the
admin interface for managing hosts, labels, profilers and ACL groups.
Tests may be managed through the admin interface as well, but the
preferred server setup is to use utils/test_importer.py to
automatically populate the DB with information from the test control
files themselves (see ControlRequirements
and utils/test_importer.py --help).

[image: _images/admin.png]

This is the built-in Django admin system. Here you can browse, create,
modify, and delete objects. The link in the upper right corner takes you
back to the frontend. The different objects types appear on the Admin
index page. Clicking on any object type takes you to a list of that
object type.

[image: _images/adminhostlist.png]

The list can be sorted, searched, and filtered. The link at the top
right allows you to create a new object, and clicking on any object
takes you to the edit page for that object.

[image: _images/hostedit.png]

From this page you can fill in the information in the fields and click
“Save” at the lower right corner to add or edit the object. You can also
delete the object using the link at the lower left corner.

For help on the meanings of different fields, see the database documentation.

Web Frontend Roadmap¶

There are currently two completely separate projects with Autotest that
might be called web frontends:

		the Autotest Frontend or AFE project is a GUI for managing jobs and
hosts, including creation of new jobs and tracking queued and running
jobs. It lives under the “frontend” directory. This is frequently
referred to as simply “the web frontend”.

		the TKO project is a GUI for results reporting. It allows the user to
view summarized test results across many jobs, filtered and grouped
by various categories. It lives under the “new_tko” directory.

AFE¶

There are a few medium-sized features we’d like to complete:

		Implement complete ACL support – partially done ACL support is
barely implemented right now – ACL-inaccessible hosts are hidden
from the user in the GUI host list, and meta-hosts are blocked from
being scheduled on inaccessible hosts. We need to add proper support
for blocking the scheduling of inaccessible hosts, including support
for superusers. We need ACL protection for aborting jobs and for
modifying hosts.

		Creating jobs using previous jobs as templates – done When the
“Requeue job” is clicked, instead of immediately creating a new job,
the user will be taken to the “Create Job” tab. All the info from the
old job will be filled in. The user will then have the option of
making changes before submitting the new job.

		Easier management of many items (jobs + host) – done Currently,
to abort many jobs, the user must click each job individually to go
to its job detail page and then click the “Abort job” button. We’d
like to allow the user to select many jobs in the job list page and
then abort them all at once. Similar functionality could be used on
the host list page to, for instance, send many hosts into repair.

		Better linking directly to raw logs (job + host logs) – done
Jobs are often triaged by looking at the raw results logs. The only
link to these from the frontend is the one “raw results logs” link on
the job detail page, which takes the user to the root results
directory for the job. The host queue entries table on the job detail
tab should contain links to the debug logs for each host, and the
host detail page should link to the host log for each host.

		Parsing and using information from control files - done The
frontend should be able to parse information such as test types and
descriptions from control files and put this information into the
database. The frontend should display or use this information as
appropriate. Most of it is already used or displayed, but some of
this could be improved, such as the display of test descriptions
(currently done with tooltips).

Larger features we’d like to have include:

		Host management features We’d like the Autotest frontend to have more
powerful features for managing a large pool of hosts, including
tracking of machine health and better support for machine repairs.

		Port admin interface to GWT Addition, modification and deletion of
hosts, labels and tests is currently done through the Django admin
interface. We’d like to port this functionality to GWT so that we can
better customize it and integrate it with the rest of the frontend.

TKO¶

See TkoWebRequirements for reference.

Stage 1¶

done Basic spreadsheet view including all features of old TKO
interface (or equivalent newer versions)

		SQL filtering conditions

		Row and column field selection

		Left-click default drilldown (single test cells go straight to logs
instead of test detail view)

		Floating headers

Stage 2¶

done Enhanced spreadsheet features

		Right-click menu with drilldown options (and table-wide actions menu
at top)

		Multiple cell selection

		Test labels

Stage 3¶

done Table view

		Column selection + ordering

		Grouping feature

		Left- and right-click actions

		Sorting

		Job triage options from spreadsheet view

Stage 4¶

never got implemented User-friendly filtering

		Filter widgets mode

		Filtering widgets for all fields

		Conversion to SQL with custom editing allowed

Longer term¶

Plotting functionality and test detail view both done

Configuring hosts on the Autotest server¶

How to configure your hosts in the Autotest service.

Hosts¶

Hosts must be added to the Autotest system before they can be used to
run tests. Hosts can be added through the one-time hosts interface,
but for repeated tests it’s better to add them to the system properly.
Hosts can be added through the admin interface
(WebFrontendHowTo) or the CLI
(CLIHowTo). Host options include:

		hostname – this is how the host will be identified in the
frontend and CLI and how Autotest will attempt to connect to the
host.

		locked – when a host is locked, no jobs will be scheduled on the
host. Existing jobs will continue to completion.

		protection – see HostProtections.

Labels¶

Labels can be applied to machines to indicates arbitrary features of
machines. The most common usage of labels is to indicate a machine’s
platform, but they can also be used to indicate machine capabilities or
anything else the user likes. Labels are displayed in the frontend but
also play an important role in
AdvancedJobScheduling.

		name – this is how the label will be identified in the frontend
and CLI

		kernel_config – deprecated this field is generally unused
and should be removed

		platform – true if this label indicates a platform type. This
option affects web frontend display only and has no effect on
scheduling.

		only_if_needed – see
AdvancedJobScheduling#Onlyifneededlabels.

ACLs¶

Access Control Lists restrict which users can perform certain actions on
machines. They are primarily used to prevent other users from running
jobs on a particular user’s machines. See
ACLBehavior for details on what ACLs control and
how they work.

Each ACL is associated with some group of users and some group of
machines. A user has ACL access to a machine if she is in any ACL group
with that machine. By default, all users and and machines are in the
“Everyone” ACL, which essentially makes a machine publicly shared in the
system.

Any user can create a new ACL using web frontend
(WebFrontendHowTo) or CLI
(CLIHowTo).

Atomic Groups¶

See
AdvancedJobScheduling#AtomicGroups

Setting a Graphing Filter¶

[image: _images/graphing_filter.png]

These filters manipulate the data displayed and analyzed in your plots
on the graphing interface. The [X] link next to each filter removes the
associated filter from the list (or clears it, if there is only one),
while the [Add Filter] link adds a new filter to the end of the list.

Interface Options¶

		all of / any of: Specify whether you want the data to satisfy all
or any of the filters you listed.

		database column (drop-down): Select the database column you are
going to be filtering on. See
Graphing Fields <../frontend/Web/GraphingFilters> for more
details.

		condition (textbox): Specify the condition you want to use for
the database column you specified. You may enter any condition that
is valid in a SQL WHERE clause. Examples:		= 12345

		LIKE ‘kernbench%’

		REGEXP ‘bad-dimm0[^0-9]*’

Filter String Viewer¶

In addition to the controls above, there is a viewer area in which you
can see the SQL WHERE clause that the frontend is building. Click View
Filter String to expand the textarea to show the clause. You may also
click “Edit Filter String” to edit the WHERE clause yourself. You may
use any of the fields specified in
GraphingDatabaseFields <../frontend/Web/GraphingFilters>.

Preconfigured Graphing Queries¶

It is possible to build a preconfigured query and keep it on the server.
These preconfigs will appear on the graphing interface under the
Preconfigured control. Preconfig files are key:value pairs separated
by lines that build the query on the frontend. See
[[MetricsPlot]] and [[MachineQualHistograms]].

The two frontends have different preconfig formats:

		[[MetricsPreconfigs]]

		[[QualPreconfigs]]

Using the Metrics Plot Frontend¶

The Metrics plot frontend is able to generate a line or bar chart of
most TKO database fields against aggregated values of most other TKO
database fields. This is usually used to create plots of performance
data versus some machine property, such as kernel version or BIOS
revision.

[image: _images/metrics_interface.png]

Using the Interface¶

Interface Options¶

		Graph Type: Set to “Metrics Plot” to show this interface.

		Preconfigured: Select a preconfigured graphing query. Use this to
automatically populate the fields in the interface to a preconfigured
example. You may then submit the query for plotting as is, or edit
the fields to modify the query. See
Graphing Pre Configs to more information
about preconfigured queries.

		Plot: Select whether you want a line plot or a bar chart.

		X-axis values: Select the values to place across the x-axis of
the plot. For example, selecting “Kernel” create a plot against
different kernel versions across the x-axis. See
GraphingDatabaseFields for details
about the different options. In addition to the options listed there,
X-axis values also accepts “(Single Point)” as an input, which
will plot all values on a single point on the x-axis; this is more
applicable for bar charts than for line plots.

		Global filters: Set the filters to apply across all series of the
plot. See GraphingFilters for more
information on setting a filter.

		Series: Set each series that you would like to display. Clicking
the [Add Series] link adds a series to the list. Each series has its
own Delete Series link, which will remove the series from the list.
If there is only one series and it is deleted, it will instead be
reset.		Name: The name you want to give the series. It will be
displayed as the title of its respective subplot if you requested
multiple subplots, or as a label in the legend otherwise.

		Values: The values you want to aggregate to plot on the
y-axis. Typically, this is “Performance Keyval (Value)” to
aggregate performance data.

		Aggregation: The type of aggregation you want to do on the
data returned for each x-axis point. For example, specifying “AVG”
will plot the average of the value you selected above for each
point on the x axis.

		error bars: If the Aggregation is “AVG”, you may check
this box to show the standard deviations of each point as error
bars.

		Filters: Set the filters you want to apply to this particular
series. See GraphingFilters for more
information on setting a filter.

		Invert y-axis: Check this box if you want higher numbers
towards the bottom of the y-axis for this series.

		Normalize to: Set the normalization you want to use on this plot.		No normalization (multiple subplots): Do not normalize the
data, and display each series on a separate subplot. Note that
this option is only available for Line plots.

		No normalization (single plot): Do not normalize the data, and
display all series on a single plot. This is the default option.

		Specified series: Graph all series as percent changes from a
particular series. That is, for each point on each series, plot
the percent different of the y-value from the y-value of the
specified series at their corresponding x-value. The series that
you normalize against will not be plotted (since all values will
be 0). If the series you normalize against does not have data for
some x-values, those values will not be plotted.

		First data point: Graph all series, renormalized to the first
valid data point in each series.

		Specified X-axis value: Graph all series, renormalized to the
data point at the specified x-axis value for each series. This is
similar to the above option, but rescales the y-axis for a point
other than the first data point. You must enter the exact name of
the x-axis value.

Interacting with the Graph¶

The four main actions you can do on the graph are:

		Hover: Hovering the cursor over a point or bar shows a tooltip
displaying the series that the point or bar is from, and the x- and
y-values for that data.

		Click: Clicking on a point or bar opens a drill-down dialog. The
dialog shows a sorted list of all the y-values that were aggregated
to form the point or bar. Clicking on any particular line in that
list jumps to the Test detail view describing the test that
generated that line of data.

		Embed: Clicking the [Link to this Graph] link at the bottom-right
of the generated plot displays an HTML snippet you can paste into a
webpage to embed the graph. The embedded graph updates with live data
at a specified refresh rate (as the max_age URL parameter, which is
in minutes), and show an indication of the last time it was updated.
Clicking on the embedded graph links to the Metrics plot
frontend, automatically populated with the query that will generate
the graph. See AutotestReportingApi
for a more powerful way to embed graphs in your pages.

		Save: The graph is delivered as a PNG image, so you can simply
right-click it and save it if you want a snapshot of the graph at a
certain point in time.

Metrics Preconfigs¶

Metrics preconfigs should be put in
<autotest_dir>/new_tko/tko/preconfigs/metrics/

The parameters are:

		plot: Line or Bar

		xAxis: Database column name for the X-axis values control.
See GraphingDatabaseFields.

		globalFilter[i][db]: Database column name for the ithglobal filter (start at 0). See
GraphingDatabaseFields.

		globalFilter[i][condition]: Condition field for the
ith global filter (start at 0).

		globalFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the global filters.
Set to true for “all of”, and false for “any of”.

		name[j]: The name of the jth series.

		values[j]: The database column name that should be plotted on the
y-axis for the jth series. See
GraphingDatabaseFields.

		aggregation[j]: The aggregation to be applied to the data of the
jth series. Available aggregations are:		AVG

		COUNT (DISTINCT)

		MIN

		MAX

		errorBars[j]: Sets if the error bars should be shown for the
jth series, if the aggregation is AVG. Set to true to
show error bars, false to keep them hidden.

		seriesFilters[j][k][db]: Database column name for the
kth filter of the jth series. See
GraphingDatabaseFields.

		seriesFilters[j][k][condition]: Condition field for the
kth filter of the jth series.

		seriesFilters[j]_all: This controls if you have “all of” or “any
of” selected as the filter combination operation for the filters on
the jth series. Set to true for “all of”, and
false for “any of”.

Example:

plot: Line
xAxis: kernel
globalFilter[0][db]: hostname
globalFilter[0][condition]: = 'my_test_host'
globalFilter_all: true
name[0]: dbench (throughput)
values[0]: iteration_value
aggregation[0]: AVG
errorBars[0]: true
seriesFilters[0][0][db]: iteration_key
seriesFilters[0][0][condition]: = 'throughput'
seriesFilters[0][1][db]: test_name
seriesFilters[0][1][condition]: = 'dbench'
seriesFilters[0]_all: true
name[1]: unixbench (score)
values[1]: iteration_value
aggregation[1]: AVG
errorBars[1]: true
seriesFilters[1][0][db]: iteration_key
seriesFilters[1][0][condition]: = 'score'
seriesFilters[1][1][db]: test_name
seriesFilters[1][1][condition]: = 'unixbench'
seriesFilters[1]_all: true

Machine Qualification Preconfigs¶

Machine qualification preconfigs should be put in
<autotest_dir>/new_tko/tko/preconfigs/qual/

The parameters are:

		globalFilter[i][db]: Database column name for the ithglobal filter (start at 0). See
GraphingDatabaseFields.

		globalFilter[i][condition]: Condition field for the
ith global filter (start at 0).

		globalFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the global filters.
Set to true for “all of”, and false for “any of”.

		testFilter[j][db]: Database column name for the jthtest set filter (start at 0). See
GraphingDatabaseFields.

		testFilter[j][condition]: Condition field for the jthtest set filter (start at 0).

		testFilter_all: This controls if you have “all of” or “any of”
selected as the filter combination operation for the test set
filters. Set to true for “all of”, and false for “any of”.

		interval: Sizes of the bins in the histogram.

Example:

globalFilter[0][db]: hostname
globalFilter[0][condition]: LIKE 'my_host_names%'
globalFilter[1][db]: hostname
globalFilter[1][condition]: LIKE 'my_other_host_names%'
globalFilter_all: false
testFilter[0][db]: test_name
testFilter[0][condition]: = 'my_test_name'
testFilter_all: true
interval: 10

TKO Web Interface Requirements¶

The TKO web interface is a system to generate customizable reports
summarizing test results across many jobs. Whereas AFE focuses on
displaying execution status of indivudual jobs, TKO focuses on
displaying pass/fail results for individual tests. It has options for
filtering out various subsets of test results, grouping test results
along various dimensions, and displaying the results in different ways.

The new TKO UI will be a dynamic web application broadly resembling AFE.
Like AFE, the interface will be divided into tabs.

Overview¶

		There will be four main tabs: spreadsheet view, table view,
plotting view, and test details.

		To the right of these tabs will be a refresh button, followed by a
“Saved queries” drop-down box. This box will allow the user to
save a particular view, including which tab is being viewed, the
filtering conditions, and any parameters configuring the display. The
box will display a list of saved queries for the user as well as an
option to save a new query. Queries will have history support (see
below), so they can be shared via URLs (i.e. something like
http://myautotestserver/tko/#saved_query_1234).

		To the right of the saved queries will be a “Download CSV” link.

		The interface will have full history support. This will including
changing the browser title when changing certain view parameters.
This provides two benefits:		users can share reports by copy-pasting URLs.

		browser history will serve as a useful way to navigate among
recent queries.

Filtering conditions¶

		All TKO activities involving filtering down to some subset of all
recorded test data. All views will share a common interface for
specifying these conditions. There will be two ways to specify these
conditions: via filtering widgets for each field, or via a single
custom SQL text area. The custom SQL text area is the analogue of
the condition text box in the old TKO interface.

		The UI will default to filtering widgets, with a button to go to
custom SQL mode. When switching to custom SQL, the current widget
selections will be converted to SQL. The widgets will be replaced
with a single text area, in which the user can then edit the SQL
condition. She may also click the button to start with and write a
SQL condition from scratch. Edited SQL can not be converted back to
widgets – changes will have to be reverted. This is analogous to the
“Edit control file” button in AFE.

		Filtering widgets mode will initially display a drop-down box of
fields on which to filter. This list includes hostname, host
keyval, host labels, job name, job tag, failure reason, test keyval,
test labels, test name, test status, time queued, time started, time
completed, user.

		Selecting a field from the drop-down will display a selection widget
for that field. The widget varies with the field. For most fields,
there will be a pair of list boxes displaying the available and
selected values for the field. For some fields, there will be an
alternative option to enter a regex to match. Some fields may be
completely different (i.e. time fields will allow the user to define
ranges via start and end times, with calendar- and clock-like helper
widgets available).

		To the right of each filter widget will be “+” and “-” buttons,
allowing the user to add another filter and delete the given
filter, respectively.

Spreadsheet view¶

		This view is the future version of what the existing TKO interface
does. It allows the user to group by two fields, one for row headers
and one for column headers. It then displays counts of passed test
runs and all test runs within each grouping.

		Incomplete (queued and running) tests are included in the
spreadsheet, unless filtered out.

		At the top, below the filtering area, will be a drop-down box to
select the row and column grouping fields. This is just like
the old TKO interface. Below each box will be a “Customize
rows/columns…”’ link, which will expand to allowing the user to
do two things:		select multiple fields for row or column headers to create
composite headers (and customize the field ordering)

		customize ordering of row and column values.

		Just above the spreadsheet will be a drop-down box with table-wide
actions. It will resemble the right-click context menus (see
below).

		The displayed spreadsheet will look similar to how it does today, but
will have floating row and column headers, much like Excel or
Google Spreadsheets.

		Left-clicking on a cell will perform a default drilldown operation
as it does in the old interface.

		Right-clicking on a cell will bring up a context menu.		Cells with multiple test runs will have a number of drill down
options first, showing different combinations of row-column
fields to drilldown to.

		Cells with a single test run will have a single option at the top
to view test details (this is the default drilldown option).
This will bring the user to the test details tab.

		All cells will have an option to switch to table view, to
triage failures (see below), and to apply or remove a
label. Apply/remove label will bring up a small dialog allowing
the user to select which label to use.

		Row and column headers will act like cells with multiple test
runs.

		Ctrl-left-clicking on a cell will select (or deselect) the cell.
Multiple cells can be selected and then right-clicking can be used to
act on all selected cells.

Table view¶

		This view will display individual test runs as rows within a table.
The columns and sorting can be customized. It also has the capability
to group and show counts.

		Below the filtering area at the top will be a selection widget
allowing the user to select and order the columns displayed.

		Below the column selection will be a check box to “Group by these
columns and show counts”. When this is selected, results will be
grouped by all selected columns and each row will show the count of
test runs within that group.

		Clicking on a column header will sort the table on that column.

		Left-clicking on a row will bring the user to the test details tab.
Right-clicking on a row will bring up a menu allowing the user to go
to test details or to apply/remove labels.

		Left-clicking on a grouped row will drilldown to an ungrouped table
view. Right-clicking will bring up a menu allowing drilldown or
apply/remove labels.

		Job triage view is a particular table view. It is a grouped table
view, with columns for job tag, test name, and failure reason. It is
sorted by these columns in this order, and finally by counts
descending. This view is particularly useful for triaging failures
among many test runs and is therefore accessible via shortcuts from
spreadsheet view.

Plotting view¶

		Detailed requirements for the plotting view have yet to be
determined.

Test details¶

		This view will display detailed information for a single test run.
All of the fields for a test will be displayed, including all hosts
on which a test ran and their attributes and all test and iteration
keyvals. Key log files will also be readily accessible in
expandable boxes, including status.log, autoserv.stdout,
autoserv.stderr, and client.log.*.

New UI user requirements¶

Use cases¶

		Job tracking - viewing a spreadsheet of tests vs machines for a
given job, with cells showing status of each test on each machine
(queued, running, passed, failed, etc.). Tests can be sorted in the
order in which they ran. Results logs are easily accessible. This is
mostly available in the old interface. The addition of queued/running
tests will be the biggest addition. Sorting tests in running order is
not as simple as it seems (control files aren’t guaranteed to be
deterministic, for example). We have ideas about how to solve that
but we’ve deferred it for now.

		Job triage - viewing a summary of failure reasons for a job. The
view should display a list of unique failure reasons for each test
(including job failures) with information on the frequency of each
failure reason. It should be easy to view the list of machines that
failed for each reason with links to detailed log files. See “job
triage” feature.

		Kernel test status - viewing a spreadsheet of kernel versions vs
tests for a set of “official kernel test” jobs, with cells showing
success rates. User can select which kernel versions to include. It
should be easy to:		group headers for kernel versions, so that the user can compare
multiple release candidates within multiple kernel versions

		drill down to see machine architecture vs tests for a particular
kernel version, to assist in triaging architecture-specific
failures

		drill down to see failure reasons for failures of a particular
test on a particular kernel. As with job triage, this should make
it easy to drill down to machine lists for each failure reason.
Test labels solve the “official kernel tests” problem. Filter
widgets will ease selection of included kernels. Grouping headers
by kernel version will***not***be supported for now (this is not
to be confused with composite headers, which combines two
different fields). Different drill downs are supported via context
menus.

		Test series - user has a pool of machines and runs a test on all
machines. Machines that fail are triaged and the tests is rerun on
them, and so on until all machines pass. User should be able to view
status of last run test within the series for each machine. Triage of
failed machines should be easy, as in Job triage. Additionally,
user can see state of non-passed machines - failed awaiting triage,
triaged awaiting re-test, re-test queued/running, etc. Test labels
should support this workflow. It will still require a fair bit of
work on the part of the user, but we felt this was a necessary
tradeoff in order to avoid putting too much specialized complexity in
the frontend. Multiple selection should allow fairly powerful label
usage, which, in combination with saved queries and filter widgets,
should ease the pain greatly.

		Machine utilization - viewing a chronological history of all
tests (and verifies/repairs?) run on a particular machine.
Test/verify/repair outcome information is displayed, making it easy
to track down when a certain test started failing or when machine
verification first failed. Detailed logs are easily accessible.
Table view should provide this basic feature. The main lacking
aspect is inclusion of verify and repair info. This is certainly
doable but requires further discussion.

		Performance graphs - plotting performance data vs. kernel version
for many iterations of a particular test on a particular machine.
This, along with the other plotting use cases below, are not being
addressed now.

		Machine qualification graphs - plotting a histogram of percentage
of tests passed on each machine, with bars clickable to view list of
machines in each bucket.

		Utilization graphs - plotting machine utilization as a percentage
of time vs. machine, over a given span of time.

		Generic keyval graphs - user selects a set of kernels, a set of
machines, and a set of tests. In a single graph, all keyvals are
plotted together (normalized) vs. kernel version. The ordering of
kernels is completely user-definable. Data points link back to
results logs.

		Kernel benchmark comparisons - plotting a set of benchmark values
for a pair of kernels together, to compare the two versions.

		Job set comparisons - plotting a set of benchmark values for two
sets of jobs together.

Specific feature requests¶

		Clicking on a kernel brings up a tests vs. status spreadsheet
filtered for that particular kernel (possible with drilldown
options) This is a easy shortcut for bringing up a particular
report.

		Reason values displayed in table or one click away (job triage
view) When triaging a job or jobs with many failures, there needs
to be a easy way to view a summary of the reasons for failures (from
the DB “reason” field). Similar reasons should be grouped together
and it should be easy to see which hosts failed with which reasons.

		Include tests that are queued or running in TKO display (included)
Right now TKO only shows tests that have completed. It should also
display queued and running tests so the user can get a full picture
of a job from a single report.

		Preserve and display query history (included as browser history)
The UI should present a list of the last few (or many) spreadsheet
queries executed, including drilldown history. The user should be
able to click to go back to a previous query.

		Filtering on a list of kernels/jobs to match (filter widgets) The
user should be able to easily specify a list of kernels and filter
down to tests run on any of those kernels. Likewise for filtering to
a list of jobs.

		Kernels must sort in chronological order (not addressed; this is a
very particular request which we may address with specialized code)
Most fields simply sort alphanumerically, but kernels must sort
specially so that they come out in chronological order.

		Clicking on a kernel brings up a list of failed machines (context
menus) This is another easy shortcut for bringing up a particular
report.

		Ability to have more than one grouping field for rows or columns (aka
“composite headers” or “multiple headers”) (included) For example,
the user might specify two fields for row grouping and the resulting
spreadsheet would have a row for each combination of values from the
two fields.

		Grouping on custom expressions (not included; potential future
addition) Instead of simply specifying a field to group on, the
user could specify a custom SQL-like expression.

		More powerful filtering by machine labels (should be possible with
appropriate usage of machine labels) The user should be able to
filter on machine types both very specifically (i.e. Intel Pentium D
1GB RAM) and very generally (i.e. all Intel).

		Easy way to keep track of where the user is in a large table (when
row and column headers are no longer visible) (floating headers)
When browsing a large table, after scrolling to the right and down,
the row and column headers are no longer visible and the user may
have no way to know what values a particular cell corresponds to.

		Machine-centric view showing utilization of a particular machine over
time (see use case; graphical timeline not included) This view
would show a list of things that have been run on the machine in
chronological order, so the user could get some idea of how the
machine’s been utilized. The ability to view percentage of time in
use would be good. A graphical timeline sort of view would also be
good.

		CSV data export (included) The user should always be able to
download the currently displayed data in CSV format.

		Invalidation of jobs (solved with machine labels) The user should
be able to mark jobs (perhaps even individual tests) as invalid and
have them excluded from TKO reporting.

		Powerful and flexible filtering (included) Selections can be
specified by choosing from a list, by regexp matching or by entering
raw SQL expressions

		Automatic bug filing (not included) When triaging failures, the
user can click a button to create a new bug in a bugtracking system
and have job and failure information automatically bundled up and
attached to the bug.

		Filtering on keyvals (included) Users should be able to filter on
any keyval when filtering results

Autotest Reporting API¶

The Autotest Reporting API allows you to embed TKO spreadsheets, tables
and graphs into your own HTML pages. This can be used to create
powerful, customizable dashboards based on Autotest results.

Currently, only graphs are supported. Spreadsheets and tables are
coming soon.

Setup¶

In order to use the Autotest Reporting API, your HTML page needs to load
the Autotest Reporting API Javascript library and then call it to create
widgets. Here’s a simple skeleton:

<!DOCTYPE html>
<head>
 <script type="text/javascript" src="http://your-autotest-server/embedded-tko/autotest.EmbeddedTkoClient.nocache.js">
 <script type="text/javascript">
 function initialize() {
 Autotest.initialize("http://your-autotest-server");

 // code to setup widgets goes here. for example:
 var plot = Autotest.createMetricsPlot(document.getElementById("plot_canvas"));
 plot.refresh(...); // see below
 }
 </script>
</head>

<body onload="initialize()">
 <!-- document outline goes here. for example: -->
 <div id="plot_canvas"></div>
</body>

The first script tag loads the Autotest Reporting API library. The
initialize() function then calls Autotest.initialize(), which
tells the library where to find the Autotest server running the TKO web
interface. Finally, it can proceed to call Autotest.create* methods
to create widgets. All Autotest.create* methods accept a DOM Element
to which they will attach themselves.

Graphing¶

You can create a MetricsPlot widget using
Autotest.createMetricsPlot(parentElement). Metrics plot widgets have
one method, refresh(parameters). This interface will be changing
soon so it won’t be documented in detail; please see the example in
frontend/client/src/autotest/public/EmbeddedTkoClientTest or
ask showard if you would like to use it and have questions.

Autotest Web Frontend Implementation details¶

Here we outline the building blocks and implementation details of the autotest
web interface.

Overview¶

Here’s a broad overview of how the system fits together:

[[FrontendImplementationDetails/frontend_overview.png]]

		The Django RPC server is an RPC server, written using the Django
framework. It functions as a web server, accepting RPCs as HTTP POST
requests, querying the MySQL database as necessary, and returning
results. In a production environment, it runs within Apache using
mod_python		The AFE server code lives under frontend/afe and uses the
autotest_web database.

		The TKO server code lives under new_tko/tko and uses the
tko database.

		In both servers, the RPC entry points are defined in
rpc_interface.py.

		All RPC POST requests go to a single URL,
(afe|new_tko)/server/rpc/. They get dispatched to RPC methods
by the code in rpc_handler.py. See Django
documentation for an
explanation of how HTTP requests get mapped to Python code using
URLconfs.

		Database models live in models.py. See Django
documentation for an
explanation of models.

		RPC calls and responses are encoded according to the JSON-RPC
protocol.		JSON is a simple data representation format based on Javascript.
See http://json.org.

		JSON-RPC is a very simple standard for representing RPC calls and
responses in JSON. See
http://jsonrpc.org.

		RPCs are made by sending a POST request to the server with the
POST data containing the JSON-encoded request. The response text
is a JSON-encoded response.		On the server, the code for serializing JSON lives at
frontend/afe/simplejson. The code for forming and
dispatching JSON-RPC requests lives at
frontend/afe/json_rpc.

		The CLI uses the same code for serializing JSON-RPC.

		The GWT client uses GWT’s builtin JSON library for serializing
JSON. The code for handling JSON-RPC requests is in
autotest.common.JsonRpcProxy and friends.

		The GWT client is a browser-based client for AFE and TKO
(technically, there are two separate clients). It’s written using
Google Web Toolkit (GWT), a framework for writing browser apps in
Java and having them compiled to Javascript. See
http://code.google.com/webtoolkit.		More details…

		The CLI is a command-line Python application that makes calls to
the RPC server. It lives under the cli directory. cli/autotest-rpc-client
is the main entry point.

Host Protection Levels¶

Host protection levels are used to protect particular hosts from actions
that occur during the verify and repair phases. These can be set using
the CLI or the frontend admin interface. They are defined in
client/common_lib/host_protections.py and contained in the
protection field of the hosts table in the autotest_web
database.

		No protection – anything can be done to this host.

		Repair software only – any software problem can be fixed,
including a full machine reinstall.

		Repair filesystem only – the filesystem can be cleaned out, but
not system reconfiguration or reinstall can occur.

		Do not repair – do not attempt any repair on the machine.

		Do not verify – do not verify or repair the machine (the machine
will be assumed to be in working order).

Specifying kernels in the Job Creation Interface¶

Autotest has a system to expand Linux kernel versions to actually
downloadable source trees, or even installable distro packages, that
can be used in job creation interfaces, such as CLI and web interfaces.
At the moment, we support the following release schemas:

		Upstream versions. You can specify an upstream version, that will
expand to an URL pointing to a tarball inside the kernel.org mirror
you have specified. The script/library client/kernelexpand.py
has this functionality implement, and lets you test it which versions
can be actually expanded:

$ client/kernelexpand.py 3.2.1
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.2.1.tar.bz2

We still don’t allow you to specify an arbitrary distro package version
for autotest to download, for example:

$ client/kernelexpand.py 3.3.4-5.fc17.x86_64
Kernel '3.3.4-5.fc17.x86_64' not found. Please verify if your version number is correct.

		Direct URLs pointing to rpm and deb packages containing the kernel. Example:

http://example.com/kernel-3.3.1.rpm
http://example.com/kernel-3.5-rc2.deb

You can specify multiple versions separating them with a comma or space.

Obviously, we’d like to cleanly support other ways of specifying kernels in the
job creation interface, so this makes the complicated logic transparent to
users, but we’re not there yet. Please open an issue requesting for a given
method and we’ll consider it carefully.

Using the Machine Qualification Histogram Frontend¶

The Machine qualification histogram frontend is able to generate a
histogram of test pass rates for a specified set of tests and machines.
The histogram shows bins of configurable size for pass rates between 0
and 100, exclusive, as well as special bins for 0% and 100% pass rates.
There is also an “N/A” bin, which shows the machines that did not run
any of the tests that you specified to analyze.

[[MachineQualHistograms/machine_qual_interface.png]]

Using the Interface¶

Interface Options¶

		Graph Type: Set to “Machine Qualification Histogram” to show this
interface.

		Preconfigured: Select a preconfigured graphing query. Use this to
automatically populate the fields in the interface to a preconfigured
example. You may then submit the query for plotting as is, or edit
the fields to modify the query. See
Graphing Pre Configs to more information
about preconfigured queries.

		Global filters: Set the filters on the machines you would like to
see. Any machine that satisfies the filter will be plotted in the
histogram in some way. See GraphingFilters
for more information on setting a filter.

		Test set filters: Set the filters on the tests that you want to
analyze. The pass rates for what you enter in this filter will be
plotted on the histogram. If a machine satisfies the Global
filters above but has not run any tests that satisfy the Test set
filters, it will appear in the “N/A” bin. See
GraphingFilters for more information on
setting a filter.

		Interval: Configure the size of each bin. For example, an
interval of 5 means that the bins should be 0%-5%, 5%-10%, etc.

Interacting with the Graph¶

The four main actions you can do on the graph are:

		Hover: Hovering the cursor over a bar shows a tooltip displaying
the boundaries of the bin and the number of machines in that bin.

		Click: Clicking on a bar jumps to the Table view,
automatically configured to show the specific machines and pass rates
in that bin.

		Embed: Clicking the [Link to this Graph] link at the bottom-right
of the generated plot displays an HTML snippet you can paste into a
webpage to embed the graph. The embedded graph updates with live data
at a specified refresh rate (as the max_age URL parameter, which is
in minutes), and show an indication of the last time it was updated.
Clicking on the embedded graph links to the Machine qualification
histogram frontend, automatically populated with the query that
will generate the graph.

		Save: The graph is delivered as a PNG image, so you can simply
right-click it and save it if you want a snapshot of the graph at a
certain point in time.

Existing Graphing Scripts Frontend¶

The Existing graphing scripts frontend is a graphical frontend to
some existing graphing CGI scripts in TKO.

[image: _images/existing_scripts_interface.png]

Interface Options¶

		Normalize Performance: This checkbox allows you to normalize the
performance numbers to percent differences instead of absolute
numbers. Checking this option also allows you to select more than one
benchmark at a time in the Benchmark control.

		Hostname: Name of the machine you want to analyze. As you begin
typing, this textbox will show suggested completions based on all the
hosts present in your TKO database.

		Benchmark: This control will either be a drop-down box or a
multiple-select box, depending on if Normalize Performance is
checked or not. Select the benchmarks you want to analyze here. Only
kernbench, dbench, tbench, unixbench, and iozone are
supported.

		Kernel: Specify the kernels that you want to have appear on the
x-axis, or all for all versions with data matching the hostname
and benchmark specifications above.

System Administration¶

Installing an Autotest server (Ubuntu/Debian version)¶

Install script¶

We have developed a script to automate the steps described below on a
Ubuntu 12.04/12.10 server. So if you want to save yourself some time,
please check the
Installing Server/Scheduler/WebUI notes.

If you want to do it all yourself, we opted by keeping the documentation
herem and we’ll do the best to update it. However, we’re always working on
streamlining this process, so it might be possible that this can get out of
sync.

If you find any step that might be outdated, please let us know, and we’ll
fix it.

Server/Scheduler/Web UI Installation Steps¶

Install required packages¶

Autotest is a complex project and requires a number of dependencies to
be installed.

Note

Currently autotest is compatible with Django 1.5, so if your
distribution has anything lower or higher than this version, you
will have problems and are advised to use a compatible version.

We have automated this step on recent Ubuntu (12.04/12.10), although
it should work on Debian too:

sudo /usr/local/autotest/installation_support/autotest-install-packages-deps

If you want to install it manually here it goes. Keep in mind this can be
outdated, if so we kindly ask your help with keeping it up to date.

Install utility packages:

apt-get install -y unzip wget gnuplot makepasswd

Install webserver related packages (and Django):

apt-get install -y apache2-mpm-prefork libapache2-mod-wsgi python-django

Install database related packages:

apt-get install -y mysql-server python-mysqldb

Install java in order to compile the web interface, and git for cloning the
autotest source code repository:

apt-get install git openjdk-7-jre-headless

Also, you’ll need to install a bunch of auxiliary external packages

apt-get install python-imaging python-crypto python-paramiko python-httplib2 python-numpy python-matplotlib python-setuptools python-simplejson

Important notes¶

Important: For this entire documentation, we will assume that you’ll
install autotest under /usr/local/autotest. If you use a different path,
please change /usr/local/autotest accordingly. Please that you may have
some issues with apache configuration if you don’t choose
/usr/local/autotest.

Important: We will also assume that you have created an autotest
user on your box, that you’ll use to perform most of the instructions
after the point you have created it. Most of the instructions will use
autotest unless otherwise noted.

Creating the autotest user¶

As root:

useradd autotest
passwd autotest [type in new password]

Cloning autotest¶

You can then clone the autotest repo (as root):

cd /usr/local
git clone --recursive git://github.com/autotest/autotest.git
chown -R autotest:autotest autotest

Log out, re-log as autotest, and then proceed.

Setup MySQL¶

Please check the shared
Configuring Autotest Server Database notes

Install extra packages¶

Run the build script to install necessary external packages. If you ran the
package install script, you should have all you could get from your system
packages and it would download only GWT. As autotest:

/usr/local/autotest/utils/build_externals.py

Always re-run this after a git pull if you notice it has changed, new
dependencies may have been added. This is safe to rerun as many times as you
want. It will only fetch and build what it doesn’t already have. It’s
important to note that the autotest scheduler will also try to run
build_externals.py whenever it’s executed in order to make sure every piece
of software has the right versions.

NOTE: Set the HTTP_PROXY environment variable to
http://proxy:3128/ before running the above
if your site requires a proxy to fetch urls.

Update Apache config¶

If the only thing you want to do with Apache is run Autotest, you can use the
premade Apache conf:

Ubuntu 12.04

sudo rm /etc/apache2/sites-enabled/000-default
sudo ln -s /etc/apache2/mods-available/version.load /etc/apache2/mods-enabled/
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d
sudo ln -s /usr/local/autotest/apache/apache-conf /etc/apache2/sites-enabled/001-autotest
sudo ln -s /usr/local/autotest/apache/apache-web-conf /etc/apache2/sites-enabled/002-autotest

Ubuntu 12.10 - The version plugin now is compiled into apache, so it can’t
be enabled, otherwise you will have trouble.

sudo rm /etc/apache2/sites-enabled/000-default
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d
sudo ln -s /usr/local/autotest/apache/apache-conf /etc/apache2/sites-enabled/001-autotest
sudo ln -s /usr/local/autotest/apache/apache-web-conf /etc/apache2/sites-enabled/002-autotest

You will have to comment the line

WSGISocketPrefix run/wsgi

In /usr/local/autotest/apache/conf/django-directives, as we found out that
WSGI configuration varies among distros, and the version shipped with Ubuntu
12.04 is not compatible with this directive.

Also, you’ll need to enable rewrite mod rules, which you can do by

a2enmod rewrite

Then, update your apache2 service

update-rc.d apache2 defaults

If you want to do other things on the Apache server as well, you’ll
need to insert the following line into your Apache conf, under the
appropriate VirtualHost section:

Include "/usr/local/autotest/apache/apache-conf"
Include "/usr/local/autotest/apache/apache-web-conf"

And make sure the rewrite mod is enabled, as well as the autotest config file
directory is properly linked:

sudo ln -s /etc/apache2/mods-available/version.load /etc/apache2/mods-enabled/
sudo ln -s /usr/local/autotest/apache/conf /etc/apache2/autotest.d

Note: You will have to enable mod_env on SuSE based distro’s for the
all-directives to load properly when apache is started.

Update Autotest config files¶

Important: Edit the following files to match the database passwords
you set earlier during session #Set_up_MySQL, as autotest, more specifically,
MYSQL_AUTOTEST_PASS.

/usr/local/autotest/global_config.ini
/usr/local/autotest/shadow_config.ini

Important: Please, do not change this field

[AUTOTEST_WEB]
Machine that hosts the database
host: localhost

As we are doing the setup on the same machine where mysql is running, so
please, pretty please don’t change it otherwise you will have trouble
moving forward.

Things that you usually want to change on global_config.ini:

Section AUTOTEST_WEB

DB password. You must set a different password than the default
password: please_set_this_password

Section SCHEDULER

Where to send emails with scheduler failures to
(usually an administrator of the autotest setup)
notify_email:
Where the emails seem to come from (usually a noreply bogus address)
notify_email_from:

Section SERVER

Use custom SMTP server
If none provided, will try to use MTA installed on the box
smtp_server:
Use custom SMTP server
If none provided, will use the default SMTP port
smtp_port:
Use custom SMTP user
If none provided, no authentication will be used
smtp_user:
Use SMTP password
It only makes sense if SMTP user is set
smtp_password:

Run DB migrations to set up DB schemas and initial data¶

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

During the time span of the project, the autotest database went through
design changes. In order to make it able for people running older
versions to upgrade their databases, we have the concept of migration.
Migration is nothing but starting from the initial database design until
the latest one used by this specific version of the application. As autotest:

/usr/local/autotest/database/migrate.py --database=AUTOTEST_WEB sync

Run Django’s syncdb¶

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

You have to run syncdb twice, due to peculiarities of the way syncdb works on
Django. As autotest:

/usr/local/autotest/frontend/manage.py syncdb
/usr/local/autotest/frontend/manage.py syncdb

Compile the GWT web frontends¶

Compile the Autotest web application and TKO frontend. As autotest:

/usr/local/autotest/utils/compile_gwt_clients.py -a

You will need to re-compile after any changes/syncs of the
frontend/client pages.

Fix permissions¶

Make everything in the /usr/local/autotest directory
world-readable, for Apache’s sake:

chmod -R o+r /usr/local/autotest
find /usr/local/autotest/ -type d | xargs chmod o+x

Restart apache¶

sudo apache2ctl restart

Test the server frontend¶

You should be able to access the web frontend at
http://localhost/afe/, or
http://your.server.fully.qualified.name.or.ip/afe/

Start the scheduler¶

Executing using SysV init scripts¶

To start the scheduler on reboot, you can setup init.d.

sudo cp /usr/local/autotest/utils/autotest.init /etc/init.d/autotestd
sudo update-rc.d /etc/init.d/autotestd defaults

Then, you can reboot and you will see autotest-scheduler-watcher and autotest-scheduler processess running.

Executing using systemd (Debian Unstable)¶

If you’re using systemd, we ship a systemd service file. Copy the service file
to systemd service directory. As root or using sudo:

sudo cp /usr/local/autotest/utils/autotestd.service /etc/systemd/system/

Make systemd aware of it:

sudo systemctl daemon-reload

Start the service:

sudo systemctl start autotestd.service

Check its status:

autotestd.service - Autotest scheduler
 Loaded: loaded (/etc/systemd/system/autotestd.service)
 Active: active (running) since Wed, 25 May 2011 16:13:31 -0300; 57s ago
 Main PID: 1962 (autotest-schedu)
 CGroup: name=systemd:/system/autotestd.service
 ├ 1962 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler-watcher
 └ 1963 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler /usr/local/autotest/results

Executing manually using screen (not recommended)¶

You can execute the babysitter scripter through, let’s say, nohup or
screen. It is important to remember that by design, it’s better to
create an ‘autotest’ user that can run the scheduler and communicate
with the machines through ssh. As root:

yum install screen

As autotest:

screen
/usr/local/autotest/scheduler/autotest-scheduler-watcher

You can even close the terminal window with screen running, it will keep
the babysitter process alive. In order to troubleshoot problems, you can
pick up the log file that autotest-scheduler-watcher prints and follow it
with tail. This way you might know what happened with a particular
scheduler instance.

Client Installation Steps¶

Clients are managed in the tab hosts of the web frontend. It is important
that you can log onto your clients from your server using ssh without
requiring a password.

[[remote-connection.png]]

Setup password-less ssh connection from the server to this host (client)¶

As autotest, on the server, create a RSA key in the following way:

ssh-keygen -t rsa

Then, still on the server, and as autotest, copy it to the host:

ssh-copy-id root@your.host.name

Import tests data into the database¶

You can import all the available tests inside the autotest client dir by
running the test importer script as autotest:

/usr/local/autotest/utils/test_importer.py -A

If you did clone the autotest repo with –recursive, the virt test will be
among the imported tests.

Troubleshooting your server¶

You can refer to the
Autotest Troubleshooting Documentation
documentation for some commonly reported problems and their root causes.

Virt Test specific configuration¶

Please refer to the shared Autotest Virt Documentation

See also¶

		The Parser is used to import results into TKO

		The Web Frontend Docs talks about
using the frontend

		The Web Frontend Development
talks about setting up for frontend development work - you do not want to
develop through Apache!

Installing an Autotest server (Red Hat version)¶

Install script¶

We have developed a script to automate the steps described below on a
(Fedora 16/17/RHEL6.2) server. So if you want to save yourself some time,
please check the
Installing Server/Scheduler/WebUI notes.

If you want to do it all yourself, we opted by keeping the documentation
herem and we’ll do the best to update it. However, we’re always working on
streamlining this process, so it might be possible that this can get out of
sync.

If you find any step that might be outdated, please let us know, and we’ll
fix it.

Server/Scheduler/Web UI Installation Steps¶

Install required packages¶

We have automated this step on recent Fedora (17, 18) and RHEL 6, although
it should work on Debian too:

sudo /usr/local/autotest/installation_support/autotest-install-packages-deps

If you want to install it manually here it goes. Keep in mind this can be
outdated, if so we kindly ask your help with keeping it up to date.

Note

Currently autotest is compatible with Django 1.5, so if your
distribution has anything lower or higher than this version, you
will have problems and are advised to use a compatible version.

If the distro you are running has Django 1.5 packaged,
you can install the django that your distro ships:

yum install Django

Otherwise, it’s best to leave to build_externals.py the task of installing
it. Other needed packages:

yum install git make wget python-devel unzip
yum install httpd mod_wsgi mysql-server MySQL-python gnuplot python-crypto python-paramiko java-1.6.0-openjdk-devel python-httplib2
yum install numpy python-matplotlib libpng-devel freetype-devel python-imaging

And our aexpect package, that can be installed from our COPR repo. Instructions
to add the repo can be found on:

https://copr.fedoraproject.org/coprs/lmr/Autotest/

With the repo enabled, you can go on to install:

yum install aexpect

Alternatively, you can simply install it from pip:

pip install aexpect

Important notes¶

Important: For this entire documentation, we will assume that you’ll
install autotest under /usr/local/autotest. If you use a different path,
please change /usr/local/autotest accordingly. Please that you may have
some issues with apache configuration if you don’t choose
/usr/local/autotest.

Important: We will also assume that you have created an autotest
user on your box, that you’ll use to perform most of the instructions
after the point you have created it. Most of the instructions will use
autotest unless otherwise noted.

Creating the autotest user¶

As root:

useradd autotest
passwd autotest [type in new password]

Cloning autotest¶

You can then clone the autotest repo (as root):

cd /usr/local
git clone --recursive git://github.com/autotest/autotest.git
chown -R autotest:autotest autotest

Log out, re-log as autotest, and then proceed.

Setup MySQL¶

Please check the shared
Configuring Autotest Server Database notes

Install extra packages¶

Run the build script to install necessary external packages. If you ran the
package install script, you should have all you could get from your system
packages and it would download only GWT. As autotest:

/usr/local/autotest/utils/build_externals.py

Always re-run this after a git pull if you notice it has changed, new
dependencies may have been added. This is safe to rerun as many times as you
want. It will only fetch and build what it doesn’t already have. It’s
important to note that the autotest scheduler will also try to run
build_externals.py whenever it’s executed in order to make sure every piece
of software has the right versions.

Important: Set the HTTP_PROXY environment variable to
http://proxy:3128/ before running the above if
your site requires a proxy to fetch urls.

Update Apache config¶

As root:

ln -s /usr/local/autotest/apache/conf /etc/httpd/autotest.d
ln -s /usr/local/autotest/apache/apache-conf /etc/httpd/conf.d/z_autotest.conf
ln -s /usr/local/autotest/apache/apache-web-conf /etc/httpd/conf.d/z_autotest-web.conf

Test your configuration (now with all autotest directives) by running (as root):

service httpd configtest

Now make sure apache will be started on the next boot. If you are running on
a pre-systemd OS, such as RHEL6, you can enable do it this way:

chkconfig --level 2345 httpd on

On a systemd OS (Fedora >= 16), you could do it this way:

systemctl enable httpd.service

Update Autotest config files¶

Important: Edit the following files to match the database passwords
you set earlier during session #Set_up_MySQL, as autotest, more specifically,
MYSQL_AUTOTEST_PASS.

/usr/local/autotest/global_config.ini
/usr/local/autotest/shadow_config.ini

Important: Please, do not change this field

[AUTOTEST_WEB]
Machine that hosts the database
host: localhost

As we are doing the setup on the same machine where mysql is running, so
please, pretty please don’t change it otherwise you will have trouble
moving forward.

Things that you usually want to change on global_config.ini:

Section AUTOTEST_WEB

DB password. You must set a different password than the default
password: please_set_this_password

Section SCHEDULER

Where to send emails with scheduler failures to
(usually an administrator of the autotest setup)
notify_email:
Where the emails seem to come from (usually a noreply bogus address)
notify_email_from:

Section SERVER

Use custom SMTP server
If none provided, will try to use MTA installed on the box
smtp_server:
Use custom SMTP server
If none provided, will use the default SMTP port
smtp_port:
Use custom SMTP user
If none provided, no authentication will be used
smtp_user:
Use SMTP password
It only makes sense if SMTP user is set
smtp_password:

Run DB migrations to set up DB schemas and initial data¶

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

During the time span of the project, the autotest database went through
design changes. In order to make it able for people running older
versions to upgrade their databases, we have the concept of migration.
Migration is nothing but starting from the initial database design until
the latest one used by this specific version of the application. As autotest:

/usr/local/autotest/database/migrate.py --database=AUTOTEST_WEB sync

Run Django’s syncdb¶

Important: If you set up your database using autotest-database-turnkey,
this step can be safely skipped.

You have to run syncdb twice, due to peculiarities of the way syncdb works on
Django. As autotest:

/usr/local/autotest/frontend/manage.py syncdb
/usr/local/autotest/frontend/manage.py syncdb

Compile the GWT web frontends¶

Compile the Autotest web application and TKO frontend. As autotest:

/usr/local/autotest/utils/compile_gwt_clients.py -a

You will need to re-compile after any changes/syncs of the
frontend/client pages.

SELinux Issues¶

You may encounter issues with SELinux not allowing a section of the web
UI to work when running in Enforcing Mode. In order to fix this, you can
run the following commands to allow execution of the cgi scripts on your
server.

As root:

semanage fcontext -a -t httpd_sys_script_exec_t '/usr/local/autotest/tko(/.*cgi)?'
restorecon -Rvv /usr/local/autotest

Note: If you are having weird problems with installing autotest, you
might want to turn off SElinux to see if the problem is related to it,
and then think of a sensible solution to resolve it.

Restart Apache¶

As root:

/sbin/service httpd restart

Test the server frontend¶

You should be able to access the web frontend at
http://localhost/afe/, or
http://your.server.fully.qualified.name.or.ip/afe/

Start the scheduler¶

Executing using old SysV init scripts (RHEL6 and Fedora <= 14)¶

As root:

cp /usr/local/autotest/utils/autotest-rh.init /etc/init.d/autotestd
chkconfig --add /etc/init.d/autotestd
service autotestd start

Executing using systemd (Fedora >= 15)¶

Copy the service file to systemd service directory. As root or using sudo:

sudo cp /usr/local/autotest/utils/autotestd.service /etc/systemd/system/

Make systemd aware of it:

sudo systemctl daemon-reload

Start the service:

sudo systemctl start autotestd.service

Check its status:

autotestd.service - Autotest scheduler
 Loaded: loaded (/etc/systemd/system/autotestd.service)
 Active: active (running) since Wed, 25 May 2011 16:13:31 -0300; 57s ago
 Main PID: 1962 (autotest-schedu)
 CGroup: name=systemd:/system/autotestd.service
 ├ 1962 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler-watcher
 └ 1963 /usr/bin/python -u /usr/local/autotest/scheduler/autotest-scheduler /usr/local/autotest/results

Executing manually using screen (not recommended)¶

You can execute the babysitter scripter through, let’s say, nohup or
screen. It is important to remember that by design, it’s better to
create an ‘autotest’ user that can run the scheduler and communicate
with the machines through ssh. As root:

yum install screen

As autotest:

screen
/usr/local/autotest/scheduler/autotest-scheduler-watcher

You can even close the terminal window with screen running, it will keep
the babysitter process alive. In order to troubleshoot problems, you can
pick up the log file that autotest-scheduler-watcher prints and follow it
with tail. This way you might know what happened with a particular
scheduler instance.

Client Installation Steps¶

Clients are managed in the tab hosts of the web frontend. It is important
that you can log onto your clients from your server using ssh without
requiring a password.

Setup password-less ssh connection from the server to this host (client)¶

As autotest, on the server, create a RSA key in the following way:

ssh-keygen -t rsa

Then, still on the server, and as autotest, copy it to the host:

ssh-copy-id root@your.host.name

Import tests data into the database¶

You can import all the available tests inside the autotest client dir by
running the test importer script as autotest:

/usr/local/autotest/utils/test_importer.py -A

If you did clone the autotest repo with –recursive, the virt test will be
among the imported tests.

Troubleshooting your server¶

You can refer to the
Autotest Troubleshooting Documentation <../sysadmin/AutotestServerTroubleshooting>
documentation for some commonly reported problems and their root causes.

Virt Test specific configuration¶

Please refer to the shared Autotest Virt Documentation <../sysadmin/AutotestServerVirt>

See also¶

		The Parser <../scheduler/Parse> is used to import results into TKO

		The Web Frontend Docs <../sysadmin/WebFrontendHowTo> talks about using the
frontend

		The Web Frontend Development Docs <../developer/WebFrontendDevelopment>
talks about setting up for frontend development work - you do not want to
develop through Apache!

Autotest Server Install - Set up MySQL¶

Let’s say you have mysql installed and unconfigured, and that you have chosen
a password, that we’ll call MYSQL_ROOT_PASS and a password for the autotest
user, that we’ll call MYSQL_AUTOTEST_PASS. The autotest-server-install.sh script
will set them to the same value, but if you are doing things manually, you are
free to choose.

Make sure that mysql daemon is up and starts on each boot. As root:

/sbin/service mysqld restart
chkconfig mysqld on

The next step is automated through the script autotest-database-turnkey, so
if you want to use it, the process should be as simple as:

/usr/local/autotest/installation_support/autotest-database-turnkey --check-credentials --root-password MYSQL_ROOT_PASS -p MYSQL_AUTOTEST_PASS

If you want to do it manually, provide mysql server with password by running
the following command (as autotest or root, you choose):

mysqladmin -u root password MYSQL_ROOT_PASS

Now, to get a mysql query prompt, type

mysql -u root -p

The following commands will set up mysql with a read-only user called nobody
and a user with full permissions called autotest with a
password MYSQL_AUTOTEST_PASS, and must be typed on mysql’s query prompt:

create database autotest_web;
grant all privileges on autotest_web.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';
grant SELECT on autotest_web.* TO 'nobody'@'%';
grant SELECT on autotest_web.* TO 'nobody'@'localhost';
create database tko;
grant all privileges on tko.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';
grant SELECT on tko.* TO 'nobody'@'%';
grant SELECT on tko.* TO 'nobody'@'localhost';

If you use safesync for migrating the databases you will want to
grant access to the test database. Note that this is entirely optional.

GRANT ALL ON test_autotest_web.* TO 'autotest'@'localhost' identified by 'MYSQL_AUTOTEST_PASS';

If you want mysql available to hosts other than the localhost, you’ll
then want to comment out the bind-address = 127.0.0.1 line in the
/etc/mysql/my.cnf.

In addition, you may want to increase the
set-variable = max_connections to something like 6000, if you’re
running on a substantial server. If you experience scalability issues, you
may want to log slow queries for debugging purposes. This is done with the
following lines:

log_slow_queries = /var/log/mysql/mysql-slow.log # Log location
long_query_time = 30 # Time in seconds before we consider it slow

Advanced setups may wish to use
MySQL Replication

Autotest Server/Scheduler/WebUI Install script¶

We have developed a script to automate the install steps for the autotest
server, scheduler and web UI on a (Fedora 16/17/RHEL6/Ubuntu) server.
Debian should also work, but it was not tested.

The recommended installation procedure is:

		Make sure you have a freshly installed system that we support (a VM, for example).

		Pick this script straight from github

curl -OL https://raw.github.com/autotest/autotest/master/contrib/install-autotest-server.sh

Debian/Ubuntu: don’t forget to first install curl with apt-get install curl.

Then make it executable and execute it:

chmod +x install-autotest-server.sh
./install-autotest-server.sh

The command above will show you the script options. Usually you’ll
want to provide the options -u for the autotest user password, and
-d for the autotest database password. The script is going to set
all passwords, permissions and dependency installing, and it should
log every step of the way, reporting a log file that you can look
at.

./install-autotest-server.sh -u password -d password
15:59:21 INFO | Installing the Autotest server
15:59:21 INFO | A log of operation is kept in /tmp/install-autotest-server-07-23-2013-15-59-21.log
15:59:21 INFO | Install started at: Tue Jul 23 15:59:21 BRT 2013
15:59:21 INFO | /usr/local free 37G
15:59:21 INFO | /var free 37G
15:59:21 INFO | Installing git packages
...

Hopefully at the end the script will report a URL that you can use to access
your newly installed server. The script should also take care of importing
existing control files, so they appear right away in the server.

Autotest Server Troubleshooting¶

Here we have some common problems in the server/scheduler/web UI and solutions
for thems. Also, we have info on log files you can look after.

Checking scheduler logs¶

You can find them in the autotest logs directory. As autotest or root:

tail -f /usr/local/autotest/logs/scheduler-[timestamp].log

Status is queing¶

The scheduler is not running. You are strongly advised to use the init
scripts mentioned in the AutotestServerInstall or AutotestServerInstallRedHat
documentation. If you are using them, restarting the scheduler should be simple:

service autotestd start

Status is pending¶

Usually it is a result of scheduler crash due to lack of disk space on
Autotest server, so you might want to check that.

Setting up an Autotest Drone (Results Server)¶

After completing this document you should have at the very minimum two
servers setup. The Autotest system you had setup initially and another
system for storing the results of job runs. This document assumes that
you have a working Autotest server as described in: Autotest Server
Install.

Benefits of setting up a results server

		Offload all jobs to one central location that is only used for
storing the results.

		Offload the main autotest server from having to also store results
copied back to it.

		Off site copy of results.

The benefits of setting up a results server are most apparent when you
have Autotest running jobs on multiple drones.

Global Configuration Variables¶

In the global_config.ini SCHEDULER section there
are some variables you can use to tell Autotest where to archive
results:

[SCHEDULER]
results_host: localhost
results_host_installation_directory:

		results_host defines the host where results should be offloaded.
This is typically localhost and basically tells Autotest not to copy
files anywhere else after a job completes.

		results_host_installation_directory is used to specify a custom
directory if it is required. By default it uses whatever the Autotest
server uses on the scheduler commandline. Most people will want to
leave this at default.

Our drone system in general allows for more flexibility using “special
variables” that do not exist in the default global_config.ini but can
be used to change the behavior of the system. Below will be an example
of using the HOSTNAME_username directive to make all results
collection be done as a user I specify.

Updated [SCHEDULER] configuration¶

[SCHEDULER]
 max_processes_per_drone: 1000
 max_jobs_started_per_cycle: 100
 max_parse_processes: 5
 max_transfer_processes: 50
 drones: localhost
 drone_installation_directory: /usr/local/autotest
 results_host: dumpster
 results_host_installation_directory:
 dumpster_username: offloader**
 secs_to_wait_for_atomic_group_hosts: 600
 reverify_period_minutes: 0

With the above settings, all jobs from all drones (including a regular
localhost drone) will be copied to hostname dumpster using username
offloader. The username setting is using the aforementioned special
variable. If I did not use dumpster_username the results server would
have data copied to it as the user the autoserv process is run under
(Which in most cases would be autotest).

		Make sure you keep the global_config.ini files in sync

throughout your whole Autotest system otherwise you may experience very
strange issues.

Software Required on the Results Server¶

A results server requires all the same software a Drone requires or a
local Autotest server without MySQL. You will need a full Autotest
installation on the system. If you are not doing anything special to
synchronize all of your Autotest Server Systems then you can simply
rsync your current server Autotest directory to your Results server.

Example Rsync command:

rsync -av /usr/local/autotest dudicus:/usr/local/autotest

How the two installations are kept in sync is the job of the system
administrator we do not attempt to solve this problem.

Start/Restart the Scheduler¶

Once you have the following steps complete restart the scheduler and you
will be running with a results server

		Your global configuration has been updated

		You’ve installed all required software on the results server

		An updated global_config.ini as described above is on all of your
Autotest System Servers.

Restart your scheduler and run a few jobs to make sure files are showing
up.

Results will show up in your autotest directory under results. For
example /usr/local/autotest/results/

Tips and Tricks¶

		Often times corporate accounts are weighed down with other
authentication methods like LDAP that can make transfers very slow.
Try setting up a local account that uses your autotest users ssh key.

		SSH connections are dropped when a large job completes: Modify the
following variable in your /etc/sshd_config: MaxStartUps XXXX.
This will allow half complete connections to wait around until your
system is available to process all of the connections.

System Administration Tips and Tricks¶

This page is for random system administration tips that don’t fit
elsewhere. Over time as these gather we can organize them better.

Message of the Day¶

If you create a file motd.txt in the root Autotest directory, its
contents will be displayed at the top-right corner of AFE and TKO. You
can include HTML. AFE and TKO will refresh the MOTD automatically every
so often.

Virt Test specific configuration¶

Important server configuration for virt-test¶

The way the virt control file is organized right now requires the user to
change one value on global_config.ini file, that should be at the top
of the autotest tree.

As autotest, please change the following configuration value
from what’s default to make it look like this:

[PACKAGES]
serve_packages_from_autoserv: False

By default, the above value is True. To make a long story short,
changing this value will make autoserv to copy all tests to the server
before trying to execute the control file, and this is necessary for the
kvm control file to run. Also, we need the other tests present to run
autotest tests inside guests.

Update virt test config files¶

Run /usr/local/autotest/client/tests/virt/qemu/get_started.py as autotest
to be guided through the process of setting up the autotest config files.
Edit the files to suit your testing needs.

The server is now ready to use. Please check out the following sections
to learn how to configure remote hosts and execute the KVM test suite.

Analyze virt job execution results¶

The results interface provided by autotest allowing SQL query based filtering,
usable display of logs and test attributes and graphing capabilities.

However, any autotest job also produces a detailed, formatted html report
(job_report.html) per remote host tested in addition to standard autotest
logs, where kvm-autotest results data is nicely organized. The html reports are
stored in the job main results directory (accessible via raw results logs link).

Setting up a distributed Autotest production environment¶

This document aims to discuss how to setup a distributed autotest
environment.

The problem¶

The standard Autotest production environment uses a single server to do
many things:

		Run MySQL for the frontend and results databases

		Run Apache for the AFE and TKO web interfaces

		Run a scheduler to coordinate job executions

		Run many Autoserv processes to execute tests on remote machines

		Store all results in a single results repository directory

As the size of an Autotest server grows, and in particular as the number
of concurrent machines under test grows, this single-server setup can
run into scalability limitations quickly. In order to allow continued
growth of an Autotest production environment, the Autotest system
supports breaking out these roles onto different machines. Once properly
configured, the difference should be nearly invisible to users.

MySQL and Apache¶

Autotest has always been capable of using a remote database server -the
global_config.ini file contains parameters for database hostname. The
web interfaces are almost exclusively dependent on the database, so they
too are fairly simple to break out.

Scheduler, Autoserv and the Results Repository¶

The main complexity in a distributed setup arises in the scheduler. The
scheduler is responsible for reading the database, executing Autoserv
processes, and gathering the results into a central location. So the
scheduler must be capable of executing Autoserv processes on remote
machines and transferring the results files to a separate results
repository machine. This behavior is achieved through the following
global_config parameters:

				`` drones ``: a “drone” is a machine that will be used to execute

		Autoserv processes. This parameter should be a comma-separated list
of hostnames for machines to be used as drones.

				`` results_host ``: the hostname of the machine to use as the results

		repository.

Any machine used as a drone or results repository must be set up for
passwordless SSH from the scheduler, just as for machines under test. In
addition, these hosts must have the results directory created with
read/write permissions for the SSH user (the results directory is passed
to the scheduler on the command line). They must also have Autotest
installed at the location given in the
`` drone_installation_directory `` global_config option. This may be
the same as the results directory. Finally, since the parser will run on
the drones, they must have TKO database parameters properly configured
in global_config.ini.

Note that `` localhost `` is a valid hostname for either option, and
when using localhost, SSH is not required to be set up. For a
single-server setup, both options would simply be set to
`` localhost ``.

See GlobalConfig for more options that can be
used.

Viewing results files from the web¶

With the above setup, your jobs will execute successfully, but viewing
results through the web remains a challenge because the logs may not
reside on the same machine as Apache. For this reason, both AFE and TKO
perform all log retrieval through the `` tko/retrieve_logs.cgi ``
script. This script reads the global_config options above, as well as a
third:

				`` archive_host `` (optional): an additional hostname to check for

		results files when they cannot be found elsewhere. System
administrators may manually move results off of the main results
repository to this machine.

`` retrieve_logs.cgi `` attempts to fetch the requested log file from
the results repository, then from each drone, and finally from the
archive host, until it succeeds. If it succeeds, it redirects the user
to the appropriate host. For this to work properly, all drones, the
results repository host, and the optional archive host must all be
running Apache with the results directory mapped to `` /results ``.

Recommendations¶

So now you know how to configure a distributed Autotest environment. But
how do you figure out what distribution of components is necessary? Here
are a few general tips:

		The most important thing to do is to run the Autoserv processes on a
different machine than MySQL. These components are usually the two
biggest resource hogs. Each Autoserv process should not be too
resource-intensive, but since there will be at least one process per
host under test, there can be a huge number of Autoserv processes
running concurrently.

		Since the web interfaces and the scheduler depend heavily on the
database, it can be beneficial to run Apache and the Scheduler on the
same machine as MySQL. Since Apache and the Scheduler are not very
resource intensive, this is generally not a performance problem.

		The drones will often end up being the bottleneck in a large system,
and the Autoserv processes will most likely be IO-bound. Therefore,
configuring drones with performance-enhancing RAID setups can provide
a dramatic increase in system capacity.

		For system reliability, it is often beneficial to isolate drones for
running Autoserv processes only. Large numbers of Autoserv processes
are the most likely components to crash the system. With dedicated
drones, an machine crash due to Autoserv will not affect the web
interfaces, and if multiple drones are being used, jobs can continue
to run uninterrupted on other drones.

Using the autotest package management with autoserv¶

This document will go over how to setup your Global
Configuration to use your Autotest server as a
packaging repository. After that there will be a section going over how
to add another seperate machine as a remote repository for packages.

By setting up packaging in Autotest you can reduce the amount of files
transferred to clients running jobs which generally descreases the
amount of setup time Autotest has to do for clients.

Setting up your Autotest server as a packaging repository¶

This section assumes you already have AFE and TKO running properly as
outlined in the Autotest Server Install
documentation, if this isn’t the case it is left up to the reader to
ensure Apache is running and able to serve files out of the directory
they reference in the fetch_locations below.

In order for packaging to work we need to add the following section to
our global config.

[PACKAGES]
fetch_location: http://your_autotest_server/packages/builtin, http://your_autotest_server/packages/custom
upload_location: /usr/local/autotest/packages/builtin
custom_upload_location: /usr/local/autotest/packages/custom/
custom_download_location: /usr/local/autotest/custom_packages

Explanation:

fetch_location: is what the client uses when downloading tests. The
order that these are listed are the order they are used by the Autotest
client. We have an entry for both custom and builtin tests since
Autotest doesn’t directly discern between custom packages and builtin
packages. We keep them separate so we have to list both locations. It is
up to you to keep these separate but we prefer to do this for clarity.

upload_location: /usr/local/autotest/utils/packager.py uses this
location to determine where it needs to upload files. For example when
you run packager.py upload –all all tests profilers and dependencies in
your tree will be archived and copied either via scp or cp (depending on
if it is local or remote)

custom_upload_location: This is for custom tests and kernels
uploaded through the frontened or via the command line.

custom_download_location: This is the location where Autotest puts
packages users upload through the frontend before it is uploaded to your
http repository.

Adding a SSH/HTTP Repository¶

For a remote repository we use SSH and HTTP. SSH For transferring files
to the machine and http to serve the tests to the clients running jobs.
We chose HTTP for lower overhead transfers (for files that are extremely
large).

This step assumes the user is familiar with setting up Apache (At the
very least barebones to serve files) and keyless SSH.

Requirements:

		Passwordless SSH for the user defined http repo below

		Apache setup to serve files out of the directory specified below (In
this case /var/www/packages/builtin)

Using the above PACKAGES section we add in three new pieces of
information

		fetch_location:
http://your_http_repo_hostname/packages/builtin,
http://your_http_repo_hostname/packages/custom

		upload_location:
ssh://root@your_http_repo_hostname/var/www/packages/builtin

		custom_upload_location:
ssh://root@your_http_repo_hostname/var/www/packages/custom

[PACKAGES]
fetch_location: http://your_http_repo_hostname/packages/builtin, http://your_http_repo_hostname/packages/custom, http://your_autotest_server/packages/builtin, http://your_autotest_server/packages/custom
upload_location: /usr/local/autotest/packages/builtin, ssh://root@your_http_repo_hostname/var/www/packages/builtin
custom_upload_location: /usr/local/autotest/packages/custom/, ssh://root@your_http_repo_hostname/var/www/packages/custom
custom_download_location: /usr/local/autotest/custom_packages

Scheduler¶

Scheduler specification¶

Basic flow¶

[image: _images/scheduler_flow.png]

Results files¶

		The scheduler always creates a “job directory”, results/<job tag>

		For asynchronous jobs, the scheduler creates a results/<job
tag>/<hostname> directory for each host and runs one instance of
autoserv for each host with these per-host directories as results
directories.

		For synchronous jobs, the scheduler creates a results/<job
tag>/groupN directory for each group of hosts formed, as defined by
the job’s sync_count. N is a numeric index starting at zero. The
scheduler runs an instance of autoserv for each group of machines
with these per-group directories as results directories.

Metahosts always get queue.log.<id> files created in the job directory
(results/<job tag>). These logs contain a single line for each time a
metahost is assigned a new host or cleared of its host. Each line
includes a timestamp.

Verify/repair/cleanup information is handled like so:

		During execution of verify/repair/cleanup, Autoserv output is
directed to a temporary file under the results/drone_tmp directory.

		When Autoserv completes, this file is copied to the host logs
directory under results/hosts/<hostname>.

		If the task fails and causes job failure, the log is also copied to
the execution results directory (results/<job tag>/<hostname or
groupN>). This happens if:

		The task was a pre-job cleanup or verify

		The task failed

		The correspond queue entry was scheduled for a particular host,
not a metahost (for metahosts, the queue entry would simply choose
a new host, so it wouldn’t make sense to include the verify
failure as part of the job).

If the subsequent repair succeeds, the log file is removed and the
job is restarted.

The scheduler only creates a .machines file for asynchronous
multi-machine jobs. It creates this file on the fly by appending each
hostname to this file immediately before running the main autoserv
process on that host. For synchronous jobs, autoserv creates the
.machines file itself.

Distributed implementation¶

In order to support distributed setups (see
DistributedServerSetup), the scheduler
performs much of its work through the drone_manager module. A “drone”
is a machine on which Autoserv is executed, which is not necessarily the
machine on which the server is running. Here is a guide to this
implementation:

		Overview		All OS-dependent calls in the scheduler have been extracted into
an interface on the drone_manager.DroneManager? class. This
includes filesystem access and process execution, killing and
monitoring.

		DroneManager? methods queue up actions to perform on drones.

		The scheduler calls DroneManager?.refresh() at the beginning of
each tick, which connects to each drone and gathers information on
running processes.

		The scheduler calls DroneManager?.execute_actions() at the end of
each tick, which connects to each drone and executes all queued
actions.

		DroneUtility?		The drone_utility.DroneUtility? class contains implementations of
all the OS-dependent actions.

		The drone_utility.MethodCall? class abstracts a call to a method
on DroneUtility?.

		DroneUtility?.execute_calls() accepts a list of MethodCall?
objects and returns a list of results, along with any warnings
that were generated.

		The drone_utility module is executable as a script. It accepts a
filename on the command line and reads a list of MethodCall?
objects from that file in pickled format. This implements a simple
batched RPC mechanism for DroneUtility?.

		Drone objects		The drones module provides implementations of the
drones._AbstractDrone interface. AbstractDrone? allows the client
to queue up method calls to a DroneUtility? instance and execute
them on the drone machine. There are two implementations:		a _LocalDrone class which simply imports drone_utility and
calls methods directly, and

		a _RemoteDrone class which executes drone_utility on a remote
host using the server.hosts.ssh_host.SSHHost class. It pickles
the call list into a file, sends the file to the remote host,
and executes drone_utility remotely on that file.

		The drones.get_drone(hostname) factory method is used to retrieve
a drone object.

		DroneManager?		DroneManager? maintains a list of drone objects, one for each
drone as well as one for the results repository host. Methods on
DroneManager? are implemented by queuing up method calls on the
appropriate drone objects. DroneManager?.execute_actions() then
executes all queued calls for each drone in turn.

		DroneManager? also contains limited handling for dead drones.

See Also¶

		SchedulerAutoservInteractions

Job and Host Statuses¶

Job Statuses¶

		Queued – the job is waiting for machines to become ready and/or
accessible, or the scheduler has simply not picked up the job yet. A
job can go back to this state from Verifying when a machine fails
verify and goes to repair.

		Verifying – the job is going through pre-job cleanup and/or
verification. See host statuses Cleaning and Verifying. This
is controlled by the job options reboot before and skip verify
and well as by Host Protections
(namely Do not verify).

		Pending – the job is ready to run on this host but is waiting
for other hosts because it’s a synchronous job.

		Starting – the job is about to start. Jobs should only stay in
this state when the system is at its capacity limit.

		Running – the job is running (Autoserv is actively running on
the server).

		Gathering – after Autoserv is aborted (or otherwise unexpectedly
killed), a job will enter this state to gather uncollected logs and
crash information from the machine under test. This stage will also
wait several hours for the machine to come back if it went down.

		Parsing – the parser is running a final reparse of job results.
This stage should be very brief unless the system is under heavy
load, in which case parses are throttled by the results database.

		Completed – the job is over and Autoserv completed successfully
(note that functional tests may have failed, but the job ran all
tests without error).

		Failed – the job is over and Autoserv exited with some failure.

		Aborted – the job is over and was aborted.

Host Statuses¶

		Ready – the host is idle and ready to run.

		Cleaning – the host is running pre-job, post-job, or post-abort
cleanup (see job options reboot before and reboot after). The
cleanup phase includes rebooting the host and, optionally,
site-specific cleanup tasks.

		Verifying – the host is running pre-job or post-abort verify
(see job option skip verify). The verify phase checks for basic
connectivity, disk space requirements, and, optionally, site-specific
conditions.

		Repairing – the host is undergoing attempted repair; this
includes rebooting, waiting for the host to come up, clearing off
disks, and, optionally, site-specific extensions. This is controlled
by Host Protections.

		Pending – see the job state Pending.

		Running – the host is being held for a running job. This
includes time that Autoserv is actually running (job state
Running) as well as the job Gathering phase.

		Repair Failed – the host failed repair and it currently assumed
to be in an unusable state. Scheduling a new job against this host
will reset it to the Ready state.

See also¶

		The flowchart at
SchedulerSpecification illustrates
how hosts and jobs move through these states.

		Web Frontend Howto
documents the above-mentioned job options.

Advanced Job Scheduling¶

This page documents some of the more advanced things that the scheduler
is capable of.

Metahost entries (“Run on any…”)¶

Jobs can be scheduled to run against any host with a particular label.
This is used through the frontend with the “Run on any…” box (for
example, “run on any x86”). Such entries are called metahost entries.
Metahost entries will be assigned to eligible and ready hosts
dynamically by the scheduler.

“Only if needed” labels¶

If a label is marked only if needed, any host with that label is not
eligible for assignment to metahost entries unless

		the job’s dependency labels includes that label, or

		the metahost is against that particular label.

Note that such hosts can still be used by any job if selected explicitly
(i.e. not through a metahost).

Atomic Groups¶

An atomic group is a group of machines that must be scheduled together
for a job. Regular jobs cannot be scheduled against hosts within these
groups; they must be used together.

Atomic groups are created in the admin interface to specify classes of
atomic groups of machines (for example, “x86-64 rack” might be an atomic
group). Labels can then be marked as instances of a particular atomic
group; in this case, a label would include all machines for a particular
group (for instance, “x86-64 rack #1”). Finally,
machines can be added to these labels to form the actual groups.

Example¶

As an example, assume you have twenty hosts, ten x86-64 and ten i386.
You wish to run a test that requires a rack of five machines. You might
do the following:

		Create two atomic groups, “x86-64 rack” and “i386 rack”.

		Create four labels: “x86-64 rack #1” and “x86-64 rack #2” are both
labels with atomic group type “x86-64 rack”, and likewise for i386.

		Assign five x86-64 hosts to the “x86-64 rack #1” label, and the
remaining five to the “x86-64 rack #2” label. Likewise for i386.

Now, you could run a job with synch count = 5, and specify that you want
to run against one atomic group of type “x86-64 rack” and one of type
“i386 rack”. The scheduler will dynamically pick a rack of each type
that is ready to run the job. Users trying to schedule regular jobs
against hosts within these groups will be unable to do so; they will
remain reserved for jobs intended for the entire group.

Variable host counts¶

Some tests can run against a variable number of machines, and you may
with to run such a test against all the ready machines within an atomic
group, within some bounds. The scheduler can do this for you – at job
run time, it will verify all machines in the group and use all the ones
that are ready. The following constraints are available:

		The “max number of machines” attribute on the Atomic Group specifies
the maximum number of machines to use at once.

		The job’s “synch count” attribute specifies the minimum number of
machines to use from the group. If fewer than this number are ready,
the job will be unable to run. Note that this behavior is unique to
jobs run against atomic groups – normally, synch count specifies the
exact number of machines to use, but with an atomic group, the
scheduler will use as many machines as are ready (up to the maximum).

Autotest Scheduler Roadmap¶

For the most part, the scheduler is now stable and its feature set is
satisfactory. There are a few features we’ll be adding soon:

		Maximum running job count - done

		Job timeouts done

		User-friendly status messages done

		Better automated repairs

		Multiple scheduler support (distributed execution) done

General Overview¶

The purpose of the parser is to take one or more directories of test
results and convert them into summary test results in the TKO database
to be available for more generic queries. The parser is primarily only
concerned with the status log for a test, since this is where the
summary of job and test passes (or failures) is stored, however it also
makes use of other result data (e.g. keyval entries) to help annotate
the test results with relevant information such as the kernel version
used for each test.

The parser is usable as a standalone script so that it can be run by
hand on complete results, however it is also importable and usable as an
in-process python library to allow for continuous parsing of partial
results without having to continually launch new processes and perform a
full re-parse every time new data is generated.

Versioning¶

We need to always be able to parse existing log data, while at the same
time providing for the capability in the future to change the logging
format to provide new capabilities and data. These types of changes will
generally require parser changes, and although in the ideal case we
could extend the parser in such a way that it can still parse both new
and old data, this may not always be possible (or may significantly
increase the difficulty of making the required changes). The
implementation of this specification is an example of this.

The version of the status log format should be written out by autoserv
(or whatever application is being used to generate job results) into the
job keyval files as the variable status_version. If the keyval is
unspecified then this implies version 0, the pre-specification version
of the parser, while the parser specified by this document is version 1.
Once the version is determined the results data should then be fed into
the appropriate parser library and pushed into the database.

In the long term, it may also be desirable to specify some from of
intermediate output that the parsers will produce to help isolate them
from changes in the backing database; the current approach of writing
out data manually will still make it difficult to change the schema as
every parser version would have to be changed, not just the “current”
version. However, at this time the only two versions in existence will
be writing data out to the same schema so putting in the development
time to build an intermediate output format would provide no immediate
benefits.

Work Required to Implement this Specification¶

This specification represents a description of how the parser ideally
SHOULD work, rather than a description of how it currently does work.
However, this specification can be implemented incrementally, requiring
the following work:

		Change Autotest to properly write out full kernel information during
the reboot.verify. The current code does output a kernel version, but
this does not handle cases where you are building kernels with custom
patches.

		Change Autotest to write the status_version entry out to the results
keyval files.

		Build a parser class that uses the library approach described in this
specification (a stateful parser object, separate out the reading of
files from the parser itself, allow it to be used in standalone and
in-process manner) but based on the existing parsing algorithm rather
than the new one proposed by this specification.

		Change autoserv to perform continuous parsing using the library
version of the parser.

		Implement a new parser class that uses the algorithm described in
this specification.

		Change the parser to auto-select either the new parser or the legacy
parser based on the value of status_version (0=legacy, 1=new) in the
results.

Once these steps are complete, a next possible step might be to move the
actual parsing of data (or at least the writing of parser data into the
database) back out of autoserv and into a separate process; however,
this separate process would be a single daemon shared between all
instances of autoserv on a machine, instead of the current model where a
parser process is launched every time the results are parsed. This would
avoid the current problem where a large number of database connections
are consumed by the parsing tasks.

Library Design¶

The base of the parser will be a stateful object designed for parsing
the results of a single job (i.e. a single-machine job, or one machine
of a multi-machine asynchronous job). It will in no way be responsible
for accessing the results directory; this will be the job of the calling
code. This should make it easier to embed the parser into autoserv
itself. It should also isolate the parser from the details of how
watching for new data is being performed.

Given the results directory of a completed test, the parser can find all
of the information it needs in the following places:

		status.log - the actual status logs come from here, this is the core
of what the parser needs

		keyval - most of the job data comes from here, specifically:		username - the user who ran the job

		label - the label of the job

		machine - the hostname that this specific job was run on

		job_queued, job_started, job_finished - timestamps from when
the job was queued, started and finished

		owner - the owner of the test machine

		<subdir>/keyval - some additional test meta-data comes from here,
namely:		version - the version number of the test

		<subdir>/results/keyval - optional test data regarding iterations
comes from here

When being used as a standalone process the parser will need to be able
to access this data and so provides functions for retrieving it. It also
provides a main() function that allows you to run the parser:

		on a single machine results directory (i.e. a single-machine job, or
a single machine of a multi-machine job)

		on a multi-machine results directory

		on a top-level results directory, parsing all the results of an
entire results repository

Parser Algorithm¶

The general algorithm of the parser is most easily summarized by the
following diagram:

[image: _images/parser_algorithm.png]

For tracking the “current” status, the parser has to use a stack of
statuses. Manipulations of this stack are included in some of the
transitions in the diagram, with the following operations:

		push(status) pushes status onto the stack

		pop() pops the top status off of the stack

		update(status) replaces the top of the stack with status if and only
if status is “worse” than whatever is already on top

The update operation uses the concept of some statuses being “worse”
than others. The idea behind this is that if a bunch of tests are being
run as part of a single, cohesive group (or a single test produces
multiple status lines of output) then the results should be combined in
such a way that negative results poison the results of the entire set.
So if some results in the group are GOOD and some are FAIL, then the
entire group should be considered a FAIL. The expected set of statuses
is, from “best” to “worst”:

		GOOD - the operation was successful

		WARN - something suspicious has happened, but not a clear failure

		FAIL - the test has failed

		ABORT - something catastrophic has happened, and the entire job is
terminating

Conceptually, the parser operates on a stream of lines. In a standalone
parser process where it just performs a full re-parse and then exits the
parser will simply operate on the results of file.readlines in a single
shot. However, it should be just as easily usable in an in-process,
continuous parsing fashion where it is fed status lines as they are
generated and maintains its state until the application (e.g. autoserv)
indicates that the job is finished and there are no more results.

Database Handling¶

There already exists code in tko/db.py for performing database lookups,
inserts and deletes on the relevant objects as well as for looking up
the appropriate authentication information in the Autotest
configuration, so the parser will simply make use of this. The insertion
of parsed results will not be performed in a transactional fashion
in order to facilitate continuous parsing. The expected data flow is
simply:

		Delete any existing results job & test data.

		Insert job entry.

		Insert test entries as tests complete in the status log.

If a transaction mechanism needs to be implemented on top of this then
that should be straightforward to do manually.

TKO parse documentation¶

usage: parse [options]

options:
 -h, --help show this help message and exit
 -m Send mail for FAILED tests
 -r Reparse the results of a job
 -o one: parse a single results directory
 -l LEVEL levels of subdirectories to include in job name

Typical usages:

To populate the database with ALL results.

tko/parse $AUTODIR/results

To recreate the database (from some corruption, etc). First drop all the
tables, and recreate them. Then run:

tko/parse -r $AUTODIR/results

To reparse a single job’s results

tko/parse -r -o $AUTODIR/results/666-me

To reparse a single machine’s results within a job:

tko/parse -r -l 2 -o $AUTODIR/results/666-me/machine1

The -l2 here makes it create the job as “666-me/machine1” instead of
“machine1”, which is normally what we want. it just says “take the last
2 elements of the path, not the last one”.

Developer¶

Downloading the Source¶

The main source is maintained on git and may be cloned as below:

git clone git://github.com/autotest/autotest.git

If you want to learn how to use git as an effective contribution tool, consider
reading GitWorkflow.

Autotest’s Directory Structure¶

		client: The autotest client. When using the autotest server, the
entire client dir is deployed to the machine under test.		shared: All the files common to both autotest server and
the client are in this directory. It needs to be here, rather than
in the top level, because only /client is copied to machines under
tests. If you add new modules to the shared library. Your library
will then be importable as autotest.client.shared.mylibname.

		bin: The autotest core python files are all here. Also, any
libraries not shared with the server are here.

		tools: All executables besides autotest itself are here. This
includes helpers like boottool.

		tests: All the tests go here. Each test should be in a
directory, which we’ll call test_name. There should also be a
test_name.py file in that directory, which is the actual test.
In addition, a file named control should also be in that
directory to run the test with default paramaters. All other files
the test depends on (and optionally other control files) should be
in this directory as well.

		site_tests: Same as above but for Internal client side tests.

		profilers: Profilers are here. Profilers run during tests and
are not tied to any one test.

		conmux: This has conmux, which is a console multiplexer. This
allows multiple people to share serial concentrators and power
strips. Several different types of concentrators and strips are
supported, and new ones can be added by writing simple expect
scripts.

		Documenation: This wiki is generally more up to date, but there
are some old diagrams here.

		mirror: This is used for mirroring kernels from kernel.org.

		queue: This is an empty directory used for the file-system based
queueing system.

		results: This is an empty directory where results can sit.

		scheduler: The scheduler lives here. The scheduler spawns
autoserv instances to test new kernels.

		server: The autotest server (sometimes called autoserv).
Unlike the client, all the python files are just in the root dir.
(Should we move them?)		doc: Some documentation files. Unfortunately, these are
largely out of date. The wiki’s your best bet for documenation.

		hosts: This contains all the host classes. SSHHost is what
most users will be using.

		tests and site_tests: These are the same as in the
client.

		tko: This is the web-based reporting backend for test.kernel.org

		ui: A script for generating control files.

Where should I put the files I’m adding?¶

Is this a generic module that will be useful on on both the client and
the server? Then put it in client/shared. Or, if this module is
providing site-specific functions for use on your local server, add the
name to the libraries variable in client/shared/site_libraries.

Are you adding code to the client? Then put it in client.
Remember that this code will only be accessible from other client code
(and client-side tests), not from server code. Even though the server
has a copy of the client, it generally avoids reaching into the client
to import code (except for a few special cases). If you want to use your
client code from the server as well then put it in the shared library,
not on the client.

Are you adding code on the server? If it’s a new kind of host, add
it in server/hosts. Be sure to add an import for you new kind of host to
server/hosts/__init.py__, since the server code will import host classes by
pulling in the whole host package, rather than importing classes from
specific submodules.

Are you adding tests? Public client side tests should be added in
client/tests/<name>. Private client side tests go in
client/site_tests/<name>. Server-side tests should go into
server/tests/<name> and again for private server side tests
server/site_tests/<name>.

Autotest Code Submission Check List¶

This document describes to contributors what we are looking for when we
go through submitted patches. Please try to follow this as much as
possible to save both the person reviewing your code as well as yourself
some extra time.

Github Pull Requests¶

In order to keep code review in one place, making the work of our maintainers
easier, we decided to make pull requests the primary means to contributing to
all projects inside the autotest umbrella.

That means it is highly preferrable to send pull requests, rather than patches
to the mailing list. If you feel strongly against using pull requests, we’ll
take your patches, but please consider using the recommended method, as it is
considered nicer with the maintainers.

This documentation on github pull requests
is complete and up to date, it’ll work you through all details necessary. The
bottom line is that you’ll fork virt-test or autotest_remote_unittest, create
a working branch, push changes to this branch and then go to the web interface
to create the request.

Subscribe to the mailing list¶

That’s important. See the link in the contact info documentation.
Even though we don’t use the mailing list for patch review, we still discuss
RFCs and send announcements to it.

Running Unit tests¶

Regardless of what you change it is recommended that you not only add
unittests but also run the unittest suite of each project to
be sure any changes you made did not break anything. In order to install
all the deps required for unittests, please check
the unittest suite docs.

Example (autotest):

[foo@bar autotest]$ utils/unittest_suite.py --full
Number of test modules found: 65
[... lots of output ...]
All passed!

Example (virt-test):

[foo@bar virt-test]$ tools/run_unittests.py --full
Number of test modules found: 22
[... lots of output ...]
All passed!

Running pylint¶

Another tool we use to insure the correctness of our code is pylint. Due
to the way imports have been implemented in the autotest code base a
special wrapper is required to run pylint.

The file is located in utils/run_pylint.py. The virt-test version is in
tools/run_pylint.py.

Simply run the command from your code directory and the rest is taken
care of.

Example of running on a source file with warnings:

[lmr@freedom autotest]$ utils/run_pylint.py -q client/job.py

Good. Same process, now with an error I introduced:

[lmr@freedom autotest]$ utils/run_pylint.py -q client/job.py
************* Module client.job
E0602:175,14:base_client_job._pre_record_init: Undefined variable 'bar'

Here is the error, an undefined variable:

[lmr@freedom autotest]$ git diff
diff --git a/client/job.py b/client/job.py
index c5e362b..8d335b4 100644
--- a/client/job.py
+++ b/client/job.py
@@ -172,6 +172,7 @@ class base_client_job(base_job.base_job):
 As of now self.record() needs self.resultdir, self._group_level,
 self.harness and of course self._logger.
 """
+ foo = bar
 if not options.cont:
 self._cleanup_debugdir_files()
 self._cleanup_results_dir()

So, pylint is a valuable ally here, use it!

Running reindent.py¶

Yet another tool that we use to fix indentation inconsistencies
(important thing to notice when you’re doing python code) is
utils/reindent.py (autotest) or tools/reindent.py (virt-test).
You can use the script giving your files as an argument, so it will prune
trailing whitespaces from lines and fix incorrect indentation.

Breaking up changes¶

		Submit a separate patch for each logical change (if your description
includes “add this, fix that, remove three other unrelated things”;
probably bad).

		Put a summary line at the very top of the commit message, explaining
briefly what has changed and where.

		Put cleanups in separate patches than functional changes.

		Please set up your git environment properly, and always sign your
patches using commit -s.

Patch Descriptions¶

Patch descriptions need to be as verbose as possible. Some of
these points are obvious but still worth mentioning. Describe:

		The motivation for the change - what problem are you trying to fix?

		High level description / design approach of how your change works
(for non-trivial changes)

		Implementation details

		Testing results

Follow control file specification¶

All tests must follow the control file specification Refer to the
Control Requirements section. In virt-test, you don’t
usually need to write control files, so feel free to skip this if you’re developing
virt-test.

Follow Coding Style¶

Autotest and virt-test (mostly) follow PEP8, but it’s always good to take a
look at the coding style documentation.

Git Setup¶

Please make sure you have git properly setup. We have a fairly brief and descriptive
document explaining how to get the basics setup here. In
particular, tend to stick to one version of your written name, so all your
contributions appear under a same name on git shortlog. For example:

John Doe Silverman

or

John D. Silverman

Please do choose between one of them when sending patches, for consistency.

Example Patch¶

This is a good example of a patch with a descriptive commit message.

commit 37fe66bb2f6d0b489d70426ed4a78953083c7e46
Author: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Date: Thu Apr 26 03:38:44 2012 +0000

 conmux/ivm: use immediate reboot rather than delayed

 Delayed reboots use EPOW, which does not always result in a shutdown of
 the LPAR. Use the more sever immediate shutdown, to ensure the LPAR goes
 down. This matches the HMC code.

 Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>

How to use git to contribute patches to autotest¶

Git is a powerful revision control system designed to make contributing
to open source projects simple. Here’s how you can contribute to
autotest easily using git:

1) Make sure you have configured git to automatically create your
signature on the commits you make inside your local tree. The following
is an example script to do it, just edit replacing your name, email and
choosing all aliases you want. Needless to say that once you run it, the
configs are persistent (written to the git config files), so you only
need to do this once.

#!/bin/bash
personalize these with your own name and email address
git config --global user.name "John Doe"
git config --global user.email "john.doe@foo.com"

colorize output (Git 1.5.5 or later)
git config --global color.ui auto

colorize output (prior to Git 1.5.5)
git config --global color.status auto
git config --global color.diff auto
git config --global color.branch auto

and from 1.5.4 onwards, this will work:
git config --global color.interactive auto

user-friendly paging of some commands which don't use the pager by default
(other commands like "git log" already does)
to override pass --no-pager or GIT_PAGER=cat
git config --global pager.status true
git config --global pager.show-branch true

shortcut aliases
git config --global alias.st status
git config --global alias.ci commit
git config --global alias.co checkout

this so I can submit patches using git send-email
git config --global sendemail.smtpserver [your-smtp-server]
git config --global sendemail.aliasesfile ~/.gitaliases
git config --global sendemail.aliasfiletype mailrc

shortcut aliases for submitting patches for Git itself
refer to the "See also" section below for additional information
echo "alias autotest autotest-kernel@redhat.com" >> ~/.gitaliases

another feature that will be available in 1.5.4 onwards
this is useful when you use topic branches for grouping together logically related changes
git config --global format.numbered auto

turn on new 1.5 features which break backwards compatibility
git config --global core.legacyheaders false
git config --global repack.usedeltabaseoffset true

		git clone the autotest git mirror repo:

git clone git://github.com/autotest/autotest.git
cd autotest

		create a branch for the change you’re going to make

git branch [branch-name]
git checkout [branch-name]

4) Make your changes in the code. For every change, you can make a git
commit. For folks used to other paradigms of version control, don’t
worry too much, just have in mind that git trees usually are
independent, and you can commit changes on your local tree. Those
commits can then be generated in the form of patches, that can be
conveniently sent to the maintainers of the upstream project. To commit
you use:

git commit -as

If you have executed the git configuration, you’ll see that there is
already a Signed-off-by: with your name and e-mail, sweet, isn’t it?
Save and there you have your commit.

5) A alternative configuration is helpful for some guys who are using
thunderbird, Zimbra or something like that to filter mail subject
contains “[Autotest]” patches:

git config format.subjectprefix Autotest][PATCH

And then if you run ‘git format-patch’ later, you will get a patch
with “[Autotest][PATCH]” mail’s subject prefix.

		When you want to generate the patches, it’s as easy as doing a:

git format-patch master

It will generate all the differences between your branch and the master
branch. You can also generate a certain number of patches arbitrarily
from any branch. Let’s say you want to pick the last 2 commits you made
and create patch files out of it:

git format-patch -2 --cover-letter

This will generate 2 patches that also happen to be in a unix mailbox
format that can be sent to the mailing list using git send-email ;)

7) Edit your cover letter (patch number 0 generated) with the info you’d
like to include in the patchset.

		Then you can send the patches with git send-email:

git send-email patch1.patch patch2.patch... patchN.patch --to address@foo.org --cc address@bar.org

Note that the aliases you defined on your configuration will allow you
do do stuff like this:

git send-email patch1.patch --to autotest

So that autotest is expanded to the actual mailing list address.

Life cycle of an idea in autotest¶

If you are wondering how to propose
an idea and work through its completion
(feature making its way to a stable release),
here is a small schema of how ideas transition
to working code in the autotest developer community:

		RFC email to the mailing list

		Allow 2-3 days for feedback. RFC’s often have a lower priority than bugs and usage problems.

		Open github issues according to results of discussion

		Create patchsets that implement solutions to the github issues

		Review, fix comments, resend, until the patches are deemed good by the maintainers

		Patchsets go to the next branch

		Next branch gets tested/scrutinized by automated scripts

		If needed, more bugfix iterations to fix the problems

		next gets merged to master

		master at some point is tagged as a stable autotest release

Although it seems convoluted, no one is stopping you from starting to design and implement your feature, and sending it straight away to github/mailing list (start on step 4). The maintainers will have to analyze and make judgement calls of whether the feature fits the current state of project, reason why it is more advisable to check on the feasibility before starting to spend too much energy implementing things.

You can see what to verify before sending patches in
the submission checklist page,
and if you are new to git, you can read
the git workflow page.

Workflow Details¶

[image: _images/GitTrackingIssueWorkflow.png]

		Tracking issues do not take the place of high-level mailing-list
discussoins and/or the RFC process.
They are only intended to help coordinate simultanious development on a
specific topic.

		Tracking issues provide an automatically updated centralized
location tracking a collection of related topic issues and pull
requests.

		Anybody with access to open normal github issues and pull requests
is able to link them to one or more tracking issues.

		No discussion should be posted to tracking issues directly. All discussion
should happen within the topic-issues and pull requests.

Topic Issues¶

		For each proposed feature or enhancement, an issue is opened (Topic Issue)

		Topic issues summarize the proposed test/enhancement and provide a place
for discussion.

		Topic issues are labelled with “future” and topic-specific label(s)
such as “virt-libvirt”, “client”, etc.

		The topic issue is then linked to the tracking issue by mentioning it’s number.
For example: “Linking to tracking issue #9959”

		Code cannot be posted to a topic issue directly. (see Pull Requests and
Mail List Publishing below)

Topic Issue States¶

[image: _images/GitTrackingIssueStates.png]

		Open and unassigned: Anybody may take ownership and begin working on
this topic, and/or contribute to the discussion.

		Open and assigned: Someone is actively working on code for this topic.
To avoid conflicts, other contributors will need to coordinate with the
assigned person/team.

		closed: Code is finished and has been committed to the project. The
issue may be re-opened under some circumstances. For example, if
a major bug is discovered, and the code is removed from upstream.

		closed stale: Open or Open/Assigned issues with no code posted
within several months.

Pull Requests¶

		Pull requests are a github-based tool where a developer makes a request
that one of their topic-branches be merged with the upstream branch. Pull
Requests may not be opened unless there are code changes available to push.

		All Pull Requests are also github issues. Comments can be posted, including
comments in-line with the code.

		Sending the full patch-set to the Mailing list is not necessary. However
a note to the list containing a link and summary are appreciated.

		Pull Requests are linked to tracking issues in exactly the same way as
topic-issues. Simply mention it’s number. For example:
“Linking to tracking issue #9959”

		If multiple pull requests are required for a single topic, then
an intermediate topic issue should be opened and linked to the tracking-
issue. The pull requests may then all be linked to the intermediate
topic issue.

Pull Request Updates¶

		Updates made by the author to a topic-branch (then pushed up to github)
will automatically update the Pull Request.

		If other developers want to contribute to a pull request, the process
is identical, except when submitting. In this case, the target branch
should be the original author’s forked branch instead of upstream.

		The original author may then review the changes, and if accepted
they will automatically be merged in with the main pull request.

		Utilizing this method is critical, since it preserves the state
of the issue and keeps the tracking issue from becoming cluttered.

Mail List Publishing¶

		Utilizing git send-email, patches may be sent to the mailing list.
However, revisions require re-sending the entire patch-set. This
works well for small, simple patches.

		In order to track proposed and under-development mailing list
patch work, please also open a github Topic Issues. The
patches should be referenced in the topic issue by pasting a
http-link from the mailing list archive).

		Mailing list patches for anything reasonably complicated
must be split up logically and use of a cover-letter is
highly encouraged (see git setup/usage).

		Discussion regarding mailings list patches should occur
on the mailing list. The github topic issue is simply
used for tracking purposes.

Autotest Test API¶

This is a review of the available autotest test API.

Control files¶

A control file is just python code, and therefore should follow the
Autotest python style. The control file ultimately defines the test. In
fact the entire test can be coded in the control file. However if this
leads to a very complicated control file, it is generally recommended
that most of the test code logic be placed in a python module that the
control file runs (via the job object).

A control file should define at the very top a set of variables. These
are:

		AUTHOR

		TIME

		NAME

		TEST_CATEGORY

		TEST_CLASS

		TEST_TYPE

		SYNC_COUNT

		DOC

All except SYNC_COUNT are set to a string. SYNC_COUNT is a number
which has relevance for the scheduling of multi-machine server side
jobs. In addition you can define the variable EXPERIMENTAL (either True
or False). By default it is False, but when set to True, will control
whether the job shows up in the web frontend by default.

Unlike python test code, it is not imported, but rather is executed
directly with the exec() method in the context of certain global and
local symbols. One of the symbols that your control file can assume
exists is job. The job object has a number of methods that you will
most probably use in your control file. The most common are

		job.run_test(test_object, tag, iterations, constraints,
dargs)****

		job.parallel_simple(run_method, machine_list)

		job.record(status_code, subdir, operation, status)

In addition, the control file has access to machines which is a list
of the machines that were passed to the autoserv executable.

Client side tests¶

A client side test runs entirely on the client (or host machine).
Essentially the entire client subdirectory of Autotest is installed on
the host machine at the beginning of the test. And so the client control
file through the job.run_test() method can execute code contained in a
test class. A test class is code that is generally located in either a
subdirectory of client/tests/ or client/site_tests/. A test class
always is a subclass of autotest_lib.client.bin.test.test. You then
must provide an override for the run_once() method in your class. You
must also define the class variable version. The run_once method
can accept any arguments you desire. These are passed in as the
*dargs*****in the *job.run_test()* method in the control file.

In addition to run_once() you may optionally override the following
methods

		initialize()

		setup()

		warmup()

		run_once()

		postprocess()

The initialize is called first every time the test is run. The setup
method is called once if the test version changed. Then the warmup is
called once. After this run_once is called iterations times. Finally
postprocess is called. The arguments that each method take are
arbitrary. The *dargs*****from *run_test()* are simply passed
through. The exception being *postprocess* which takes no arguments
(other than self of course).

The autotest_lib.client.bin.test.test class also defines various
useful variables. These are

		job: the job object from the control file

		autodir: the autotest directory

		outputdir: the output directory

		resultsdir: the results directory

		profdir: the profiling directory

		debugdir: the debugging directory

		bindir: The bin directory

		srcdir: the src directory

		tmpdir: the tmp directory

In addition the test object has a handful of very useful methods

		write_test_keyval(attr_dict)

		write_perf_keyval(perf_dict)

		write_attr_keyval(attr_dict)

		write_iteration_keyval(attr_dict, perf_dict)

The test keyvals are key/attribute pairs that are associated with the
test. You supply a dictionary, and these will be recorded in a test
level keyvals file as well as in the results (tko) database. The
iteration keyvals can be either performance metrics (a number) or an
attribute (a string). They can be recorded for each iteration, and you
can either record one, the other, or both with the latter three methods
above.

In addition the test class at the end of each iteration will evaluate
any constraints that have been passed into the test via the
job.run_test() command. The constraints variable is a list of strings,
where each string makes an assertion regarding an iteration keyval.
These are evaluated, and failures are recorded. An example constraints
might be: constraints = [‘throughput > 6500’, ‘test_version == 2’]

Generally a typical client side test will make use of code contained in
the standard python libraries, as well as the various utilities located
in autotest_lib.client.bin.utils.

Server side tests¶

In a typical server side test, the autotest client is not installed on
the host machines. Rather the server keeps host objects that represent
an ssh connection to the host machine, and through which the server can
execute code on the clients. A host object is generally created in the
following way

host = hosts.create_host(machine)

The hosts module is one of those symbols that you can safely assume is
present in your server control file. The machine is a machine name, and
is generally one of the list machines which is also assumed to be
accessible from your control file.

A typical server control file might look like

def run(machine):
 host = hosts.create_host(machine)
 ...

job.parallel_simple(run, machines)

In the above code, the job.parallel_simple() takes the list of
machines and a method, and executes that method for each member of
machines. The first line of the run method creates a host object
that the server can use to execute commands (via ssh) on the client. A
host object has various member variables:

		hostname

		autodir

		ip

		user

		port

		password

		env

		serverdir

Running code on a client can be done via the host object. Typical
methods of a host object are:

		run(cmd)

		run_output(cmd, *args, **dargs)******

		reboot()

		sysrq_reboot()

		get_file(src, dest, delete_dest=False)

		send_file(src, dest, delete_dest=False)

		get_tmp_dir()

		is_up()

		is_shutting_down()

		wait_up(timeout=None)

		wait_down(timeout=None)

		ssh_ping(timeout=60)

A large number of other methods are available and are scattered
throughout the code in server/hosts/. The host object that is created by
the hosts.create_host() method is a mix-in of various host behaviours
that are defined in the server/hosts directory. However the most common
are defined above.

In addition to methods on host, we can run client code via our server
control file using an Autotest object. In order to use the autotest
module you must import if from autotest_lib.server. A typical usage
is

from autotest_lib.server import autotest

control_file = """job.run_test('sleeptest')"""

def run(machine):
 host = hosts.create_host(machine)
 at = autotest.Autotest(host)
 at.run(control_file, machine)

job.parallel_simple(run, machines)

The autotest object will (as part of its instantiation) install the
autotest client on the host. Then we can use the run method to run
code on the client. The first argument is a string. We could have just
as easily written

at.run(open("some control file").read(), machine))

as well.

Multi-machine server side tests¶

The power of server side tests, is their ability to run different code
on multiple machines simultaneously, and to control their interactions.
The easiest way to describe a multi-machine test is to look at a real
example of one. The following control file is located in
server/tests/netperf2/control.srv

AUTHOR = "mbligh@google.com (Martin Bligh) and bboe@google.com (Bryce Boe)"
TIME = "SHORT"
NAME = "Netperf Multi-machine"
TEST_CATEGORY = "Stress"
TEST_CLASS = 'Hardware'
TEST_TYPE = "Server"
SYNC_COUNT = 2
DOC = """
...
"""

from autotest_lib.server import utils, autotest

def run(pair):
 server = hosts.create_host(pair[0])
 client = hosts.create_host(pair[1])

 server_at = autotest.Autotest(server)
 client_at = autotest.Autotest(client)

 template = ''.join(["job.run_test('netperf2', server_ip='%s', client_ip=",
 "'%s', role='%s', test='TCP_STREAM', test_time=10,",
 "stream_list=[1,10])"])

 server_control_file = template % (server.ip, client.ip, 'server')
 client_control_file = template % (server.ip, client.ip, 'client')

 server_command = subcommand(server_at.run,
 [server_control_file, server.hostname])
 client_command = subcommand(client_at.run,
 [client_control_file, client.hostname])

 parallel([server_command, client_command])

grab the pairs (and failures)
(pairs, failures) = utils.form_ntuples_from_machines(machines, 2)

for failure in failures:
 job.record("FAIL", failure[0], "netperf2", failure[1])

now run through each pair and run
job.parallel_simple(run, pairs, log=False)

The top of the file contains the usual control variables. The most
important one is SYNC_COUNT. This test is a 2 machine test. The first
code that runs, is the line

(pairs, failures) = utils.form_ntuples_from_machines(machines, 2)

This code uses a method from autotest_lib.server.utils which given
the full collection of machines, forms a list of pairs of machines,
and a list of ‘failures’. These failures will ,in this case, be at most
a single machine (odd man out). The next line merely uses the job
object to record a failure for each of the failures. After this, we call
job.parallel_simple() passing in the run function and the list of
pairs.

The run function defined above takes a pair (recall the function
referenced in job.parallel_simple() takes a single element from the
list that is passed in. In this case it is a single pair). We then
create a host object for each of the machines in the pair. Then we
create an autotest object for each host. A control file string is then
constructed for each of the machines. In this test one host acts as a
client, while the other acts as a server in a network test between the
two hosts. So in this test server does not refer to the autotest server,
but rather to one of the autotest clients running this two machine test.

The next three lines are new. The subcommand class, and the parallel
method are defined in autotest_lib.server and are assumed to be part
of the control files namespace. The constructor to subcommand requires a
method, and list of args to pass to that method

server_command = subcommand(server_at.run, [server_control_file, server.hostname])

Here the method is the run method of one of the autotest objects
created earlier, and we are passing that method the
server_control_file, and the hostname. We form the two subcommands
(one for the netperf test server and the other for the netperf test
client). We pass these both to the parallel() method as a list. This
method executes both subcommands simultaneously.

The server netperf2 test whose control file is described above, makes
use of the client side netperf2.py test file. This is located in
client/tests/netperf2/netperf2.py. This code is resident on the host
machines by virtue of the creation of the autotest objects. If you take
a look at the run_once method of the netperf2 class, you will see how
it is that we synchronize the running of the client and server sides of
the netperf2 test. The relevant code is

...
server_tag = server_ip + '#netperf-server'
client_tag = client_ip + '#netperf-client'
all = [server_tag, client_tag]
...
if role == 'server':
 ...
 self.job.barrier(server_tag, 'start_%d' % num_streams, 600).rendevous(*all)
 ...
else if role == 'client':
 ...
 self.job.barrier(client_tag, 'start_%d' % num_streams, 600).rendevous(*all)
 ...

The above demonstrates how we can synchronize clients. In the above we
register two tags (one for each of two roles). Recall that one of the
hosts is running as the client, while the other is running as the
server. We then form a list of the two tags. The next code segment is
important. If we are the server, we employ the job object that every
test has a reference to, and use it to construct a barrier object using
the server_tag. This says we are registering at the barrier using the
server_tag as our tag, and additionally we pass in 600 seconds as our
timeout. The second argument is a logging string. We then call the
rendevous method of the barrier object (yes it is mis-spelled in the
code) and pass in *all. This says that we will wait until all the
tags in the all list register. The client side of the code does the
complementary thing. The rendevous method blocks until both the
server_tag and the client_tag register. Using these barriers, we
can sync the client and server.

Submission common problems¶

These are quick notes to help you fix common problems autotest/virt-test code
submissions usually have. Please read this and keep it in mind when writing
code for these projects:

Gratuitous use of shell script inside a python program¶

While we understand that sometimes the contributions in question are adaptations
of existing shell scripts, we ask you to avoid needlessly use shell script
constructs that can be easily replaced by standard python API. Common cases:

		Use of rm, when you can use os.remove(), and rm -rf when you can use
shutil.rmtree.

Please don’t

os.system('rm /tmp/foo')

Do

os.remove('/tmp/foo')

Please don’t

os.system('rm -rf /tmp/foo')

Do

shutil.rmtree('/tmp/foo')

		Use of cat when you want to write contents to a file

Please, really, don’t

 cmd = """cat << EOF > %s
Hey, this is a multiline text
to %
EOF""" % (some_file, some_string)
commands.getstatusoutput(cmd)

Do

 content = """
Hey, this is a multiline text
to %s
""" % some_string
 some_file_obj = open(some_file, 'w')
 some_file_obj.write(content)
 some_file_obj.close()

Use of the commands API, or os.system¶

Autotest already provides utility methods that are preferrable over os.system
or commands.getstatus() and the likes. The APIs are called utils.system, utils.run,
utils.system_output. They raise exceptions in case of a return code !=0, so
keep this in mind (either you pass ignore_status=True or trap an exception
in case you want something different other than letting this exception coalesce
and fail your test).

from autotest.client.shared import error
from autotest.client import utils

Raises exception, use with error.context
error.context('Disabling firewall')
utils.system('iptables -F')

If you just want the output
output = utils.system_output('dmidecode')

Gives a cmdresult object, that has .stdout, .stderr attributes
cmdresult = utils.run('lspci')
if not "MYDEVICE" in cmdresult.stdout():
 raise error.TestError("Special device not found")

Use of backslashes¶

In general the use of backslashes is really ugly, and it can be avoided pretty
much every time. Please don’t use

long_cmd = "foo & bar | foo & bar | foo & bar | foo & bar | foo & bar \
 foo & bar"

instead, use

long_cmd = ("foo & bar | foo & bar | foo & bar | foo & bar | foo & bar "
 "foo & bar")

So, parentheses can avoid the use of backslashes in long lines and commands.

Use of constructs that appeared in versions of python > 2.4¶

Autotest projects use strictly python 2.4, so you can’t use constructs that
appeared in newer versions of python, some examples:

try:
 foo()
except BarError as details: # except ExceptionClass as variable was introduced after 2.4
 baz

try:
 foo()
except BarError, details: # correct, 2.4 compliant syntax
 baz()
finally: # This is the problem, try/except/finally blocks were introduced after 2.4
 gnu()

So, when in doubt, consult the python documentation before sending the patch.

Unconditional import of external python libraries¶

Sometimes, for a tiny feature inside the test suite, people import an external,
lesser known python library, on a very central and proeminent part of the framework.

Please, don’t do it. You are breaking other people’s workflow and that is bad.

The correct way of doing this is conditionally importing the library, setting
a top level variable that indicates whether the feature is active in the system
(that is, the library can be imported), and when calling the specific feature,
check the top level variable to see if the feature could be found. If it couldn’t,
you fail the test, most probably by throwing an autotest.client.shared.error.TestNAError.

So, instead of doing:

import platinumlib
...
platinumlib.destroy_all()

You will do:

PLATINUMLIB_ENABLED = True
try:
 import platinumlib
except ImportError:
 PLATINUMLIB_ENABLED = False
...
if not PLATINUMLIB_ENABLED:
 raise error.TestNAError('Platinum lib is not installed. '
 'You need to install the package '
 'python-platinumlib for this test '
 'to work.')
platinumlib.destroy_all()

Any patch that carelessly sticks external library imports in central libraries of
virt-test for optional features will be downright rejected.

Autotest requirements¶

Make it simple to use

		Make the system as user-friendly as possible, whilst still allowing
power users (defaults with overrides!)

		Provide web front-ends where possible.

		Capture the “magic” knowledge of how to complex or fiddly operations
within the harness, not in a person.

		Low barrier to entry for use and development

Gather as much information as possible

		Collect stdout and stderr. Break them out per test.

		Collect dmesg, and serial console where available. Fall back to
netconsole where not.

		Gather profiling data from oprofile, vmstat etc.

		On a hang, gather alt+sysrq+t, etc.

		Monitor the machine via ssh and ICMP ping for it going down

Allow the developers to DEBUG the test failures

		Allow them to rerun the exact same test by hand easily.

		Keep the tests as simple as possible.

		Provide tracebacks on a failure

		Provide a flexible control file format that allows developers to do
custom modifications easily.

Support all types of testing

		Allow tests to run in parallel

		Provide reproducible performance benchmarks

		Allow multiple iterations to be done cleanly for performance testing.

		Support filesystem tests (mkfs, mount, umount, fsck, etc)

		Provide test grouping into single units (build, filesystem, etc).

		Support multi-machine testing and provide syncronization barriers

		Support virtualized machines (Containers, KVM, Xen)

An OPEN harness

		Allow us to interact with vendors by sharing tests and problem
scenarios easily

		Allow us to interact with the open source community by sharing tests
and problem scenarios easily

		Encourage others to contribute to development.

		Also cleanly support proprietary tests where necessary, and code
extensions.

Robust operation

		Allow reinstall of machines from scratch

		Support power cycle on failure

Scheduling and automation

		Provide one job queue per machine, or machine group

		Collect results to a central repository

		Automatically watch for new software releases, and kick off any job
based on that.

Provide back-end analysis

		Suck all the results into a simple, well formatted database.

		Give a clear PASS/FAIL indication from the client test

		Allow arbitrary key-value pairs per test iteration

		Provide clear display of which tests passed on which machines.

		Graph performance results over time, indicating errors, etc.

		Compare two releases for statistically significant performance
differences.

Autotest Design Goals¶

		Open source - share tests and problem reproductions

		Make it simple to write control files, and yet a powerful language

		Make it simple to write tests and profilers - encourage people to
contribute

		Client is standalone, or will plug into any server/scheduler harness		Some people just have single machine, want simple set up.

		Corporations each have their own scheduling harness, difficult to
change

		Very little interaction is needed, simple API

		Simple handoff from full automated mesh to individual developer

		Maintainable		Written in one language, that is powerful, and yet easy to
maintain

		Infrastructure that is easily understandable, and allows wide
variety of people to contribute

		Modular - the basic infrastructure is cleanly separated with well
defined APIs.		Easy writing of new tests, profilers, bootloaders, etc

		New non-core changes (eg new test) doesn’t break other things.

		Lower barrier to entry for new developers.

		Distributed/scalable maintainership - code controlled by different
people.

		Core is small, with few developers		This isn’t a super-hard problem.

		Most of the intelligence is in sub-modules (eg the tests).

		Error handling.		Tests that don’t produce reliable results are useless in an
automated world.

		Developers don’t write error checking easily - need
‘encouragement’.

Modules¶

		Core - ties everything together

		Tests - execute each tests. many, many separate tests modules.

eg kernbench, aim7, dbench, bonnie, etc.

		Profilers - gather information on a test whilst it’s running, or
before/after.

eg readprofile, oprofile, schedstats, gcov, /proc info

		Results Analysis - Compare equivalent sets of test results. Per test
/ profiler.

		Kernel build - build kernels, with different patches, configs, etc.

Will need different variations to cope with mainline, distro
kernels, etc.

		Bootloader handling - Install new kernels, and reboot to them, pass
parameters, etc

eg. Grub, Lilo, yaboot, zlilo, etc

Key differences¶

Here are some of the key changes from previous systems I have seen /
used / written:

		The job control file is a script. This allows flexibility and power.

		The client is standalone, so we can easily reproduce problems without
the server.

		Code and tests are modular - you can allow loser control over tests
than the core.

		Code is GPL.

Autotest Maintenance Docs¶

This document was written to increase the Bus Factor
of the autotest project. Jokes aside, distributing tasks makes the project more
maintainable, given that the load is spread across individuals.

So, these are the activities of a project maintainer, according to the current
project conventions:

		Patch review / Update of development branch

		Sync of the development / master branches

		Policy definition and enforcement

Let’s talk about each one of them.

Quick primer to pull request maintenance¶

We will talk about all that on the following topics, but we have a little video, part of our autotest weekly
hangout, where I speak about maintenance. It might be useful to watch it, then read the rest of the document.

https://www.youtube.com/watch?v=EzB4fYX5i4s

The actual maintenance talk is between 37:00 - 49:40.

Patch reviewing and devel branch update¶

We strive to keep a model similar to the one described
in this link
which boils down to:

		Have a master branch, which is always supposed to be stable

		Have a next branch, which is the integration branch

		When the master branch is updated, by definition, this is a stable release

In the case of the autotest project (the framework project) the only exception
is that we define what is a release in terms of desired functionality, so
there might be many syncs next-master before a stable release can be called upon.

On sub projects, such as virt tests, we adopt the model as is, every next-master
sync means a stable release, that we tag with a timestamp in ISO 8601 format. So,
given that this document is the reference document for all projects under the
autotest umbrella, please keep in mind those little differences.

Very well. Autotest currently uses github as the project
infrastructure provider. In the past, we used our own hosted solutions, which were
useful at one point, but then became too burdensome to maintain them. Github has
a functionality called Pull requests
that pretty much presents a patch set in a graphical, rich way, and allows people
that have github accounts to comment on the patches.

If you’re not familiar with the process, please read the docs pointed out above.
Now, the caveat here is that we don’t use the pull request functionality of
automatically merge the code to the branch against the code is being developed
against. This is because we have checker scripts used to verify the code being
submitted for:

		Syntax errors

		Code that breaks existing unittests

		Permission problems (like an executable script without executable permissions)

		Trailing whitespace/inconsistent indentation problems

Like it or not, keeping the code clean with regards to these problems is project
policy, and tends to make our life better in the long term. So here are the
tools that we hope will make your life easier:

Autotest¶

Pre-Reqs¶

These tools assume you have a number of dependency packages installed to your
box to run all these effectly, such as pylint, for static checking, Django
libs to run autotest DB unittests, so on and so forth. So you may go to
this link for instructions on how to install them.

Tools¶

utils/check_patch.py - This tool is supposed to help you to verify whether a
code from a pull request has no obvious, small problems. It’ll:

		Create a new branch from next (our reference devel branch)

		Apply the code in the form of a patch

		Verify if all changed/created files have no syntax problem (run_pylint.py with -q flag)

		Verify if any changed/created files have no indentation/trailing whitespace problems

		Verify if any changed/created files have a unittest, in which case it’ll execute the unittest and report results

If any problems are found, it will return exit code != 0 and ask you to fix the
problems. In this case, you can point out the code submitter of the problems and
ask him/her to fix them. In order to check a given pull request, say:

https://github.com/autotest/autotest/pull/619

You’ll just execute:

utils/check_patch.py -g 619

And that’d be it. This script has also another important function - It is a full
tree checker, useful to check your own code. Just execute:

utils/check_patch.py --full --yes

And it’ll scan through all files and point you all problems found.

utils/unittest_suite.py - Runs all unittests. Ideally the output of it should
be like:

utils/unittest_suite.py --full
Number of test modules found: 81
autotest.client.kernel_versions_unittest: PASS
autotest.tko.utils_unittest: PASS
autotest.mirror.database_unittest: PASS
autotest.scheduler.gc_stats_unittest: PASS
autotest.client.shared.settings_unittest: PASS
autotest.client.shared.control_data_unittest: PASS
autotest.database_legacy.db_utils_unittest: PASS
...
All passed!

If it is not, please check out the errors.

Virt-Test¶

tools/check_patch.py - Exactly the same as utils/check_patch.py from autotest,
the difference is the path, really.

tools/run_unittests.py - Exactly the same as the autotest version, only the path
is different.

Applying the code that was reviewed and looks ready for inclusion¶

You’ll:

		Apply the code using the check_patch script. The execution should come clean.

		git checkout next

		git merge github-[pull request number] that was created by the script

		git push

That’s it. Alternatively, you can use GitHub tools to perform branch merging,
such as hitting the green button, or pulling from the branch manually. As long
as you’ve done your due dilligence, it’s all fine.

Policy enforcement¶

There are a number of common mistakes made by people submitting patches to
autotest and offspring projects, more frequent when the contributions are test
modules. So when you find such mistakes, please politely help them localize their
mistakes and refer them to
this link on test coding style.

Other than that, trying to give the best of your attention on a patch review is
always important.

Non fast forward updates¶

Sometimes we need to update the development branch in a non fast forward way.
This is fine, considering the dev branch is not supposed to be fast forward,
however, in order to ease the work of your fellow maintainers, some care has
to be taken (we should keep those updates to a minimum). The main use case
for non fast forward update is when there’s a patch that introduced a regression,
and we have to either fix the patch or drop it from next.

In case you have to do it, please make an annoucement on the mailing list about
it, explaining the reasons underlying the move.

Sync of the development branches¶

The development branch should pass through regular QA in order to capture
regressions in the code that is getting added to the projects. The current tests
comprise:

		Job runs on a sever that is updated every day with the latest contents of the development branch

		Unittests on a recent dev platform (F18, Ubuntu 12.04)

		Static checking on an older system with python 2.4 (such as RHEL5)

So, there are 2 possibilities:

		The development branch passes all tests, then it is considered apt to release. The merge could’ve happen right away.

		The tests fail. The bad commit should be either fixed straight away, or yanked from the branch.

More details about this step should be written at a later point.

Becoming a Maintainer¶

Besides the ability to commit code directly to the next branch, and being an authority over some aspect of the tree, there is little other difference with working as a public contributor. That is to say, a maintainer has exactly the same expectations as a contributors, but with the addition of a few more responsibilities. With that in mind, whether you are nominated or request maintainer access, here is a guideline for the minimum requirements:

		X Code submissions per month.

		Y Community-code submission reviews per month.

		Z days elapsed since first code submission.

In general becoming a maintainer follows the following workflow:

		Candidate is nominated, or pledges to a current maintainer.

		Data from above is presented to Maintainer council for relevant project aspect (i.e. autotest, virt-test/libvirt, qemu, etc.).

		Maintainer council reviews data and discusses candidate.

		Feedback is provided to candidate on decision and/or areas needing improvement.

If the Maintainer Council approves the request:

		Access is granted.

		Community announcement delivered.

		MAINTAINERS document(s) updated.

		Requirements and expectations (re-)communicated.

Global Configuration¶

The global configuration is responsible for configuring many different
aspects of the autotest programs. The client, server, scheduler, some
portions of the frontend as well as other stand alone scripts require
this file to get specific information about your setup. Below is a list
of sections and in each section the options available in the
configuration are described.

If you are making a stand alone checkout of the autotest client, it will
warn you that you might want to create a default config file. If you
want to do so, create a global_config.ini file inside the client
directory with the documented keys on this page, it will look something
like this:

[CLIENT]
drop_caches: True
drop_caches_between_iterations: True

For the other autotest programs, it’s necessary that you have
global_config.ini set on a proper location.

CLIENT¶

This section describes the global config [CLIENT] section.

		Key		Description

		drop_caches		If the autotest client will drop the memory cache for the client machine between test executions

		drop_caches_between_iterations		If the autotest client will drop the memory cache for the client machine between test iterations executions

		output_dir		Specify an alternate location to store the test results.

COMMON¶

This section describes the global config [COMMON] section.

		Key		Description

		autotest_top_path		The path for the toplevel autotest directory, defaults to /usr/local/autotest, might vary among distributors.

AUTOTEST_WEB¶

Parameters for configuring the frontend and scheduler database
connections

		Key		Description

		host		The host name where the database is located

		database		The name of the database

		db_type		The type of database running (mysql, sqlite)

		user		Username to connect to the database

		password		Username to connect to the database

		job_timeout_default		Default timeout (in hours) for new jobs. If the job gets schedule but it doesn’t get to run, it’ll be aborted without it running at all if this timeout is reached.

		job_max_runtime_hrs_default		Default timeout (in hours) for running jobs. If job gets to run, but it doesn’t finish during this timeout, it’ll be aborted.

		base_url		URL to your Autotest server’s AFE interface. You only need this option if the URL is something other than http://$hostname/afe/, where $hostname is the “hostname” value from the SERVER section.

		template_debug_mode		Whether to enable django template debug mode. If this is set to True, all django errors will be wrapped in a nice debug page with detailed environment and stack trace info. Turned off by default.

		sql_debug_mode		Whether to enable django SQL debug mode. If this is set to True, all queries performed by the Object Relational Mapper subsystem will be printed, which means the scheduler logs will contains all the queries executed. This is too much verbosity for ‘production’ systems, hence turned off by default.

Retry configuration¶

The db.py API for connecting to the TKO database includes support for
automatically reconnecting and retrying queries when they fail due to
OperationalErrors (assuming this is possible, i.e. when autocommit is in
use).

		Key		Description

		query_timeout		Maximum number of seconds to wait before no giving up and no longer retrying

		min_retry_delay		The minimum number of seconds to wait after an OperationalError before reconnecting and retrying

		max_retry_delay		The maximum number of seconds to wait after an OperationalError before reconnecting and retrying

Graph configuration¶

Configuration parameters for the TKO graphing interface

		Key		Description

		graph_cache_creation_timeout_minutes		How frequently cached images for embedded graphing queries will be updated

AUTOSERV¶

		Key		Description

		client_autodir_paths		A comma-delimited list of paths where autoserv will attempt to install clients onto test machines

		ssh_engine		Autotest has 2 implementations of SSH based hosts, the default (raw_ssh), and another one based on the python SSH library paramiko (paramiko). You can change the default ‘raw_ssh’ to ‘paramiko’ if you want to.

		enable_master_ssh		Enable OpenSSH connection sharing. Only useful if ssh_engine is ‘raw_ssh’

		require_atfork_module		Fix problems originated from logging + threading inside autotest. Specially useful when ssh_engine is ‘paramiko’

		use_sshagent_with_paramiko		Set to False to disable ssh-agent usage with paramiko

SERVER¶

		Key		Description

		hostname		The hostname of the server running the Autotest web interface.

INSTALL_SERVER¶

Code to interact with a provisioning system, to make it install clients.

		Key		Description

		type		Type of install server we talk to. Default: cobbler

		xmlrpc_url		RPC server URL for your install server. Example: http://foo.com/cobbler_api

		xmlrpc_user		XMLRPC user, in case the server requires authentication

		xmlrpc_password		XMLRPC password, in case the server requires authentication

SCHEDULER¶

This section describes the [SCHEDULER] section of the global
configuration.

		Key		Description

		notify_email		Email address to receive warning and error messages from the scheduler

		notify_email_from		Email address from which to send scheduler messages; defaults to the user running the scheduler

		notify_email_statuses		When a host in a job reaches one of these statuses, send email to the email_list field of that job. If empty, email will only be sent when the whole job completes.

		max_processes_per_drone		Maximum number of running Autoserv processes at once on a single server

		max_jobs_started_per_cycle		Maximum number of Autoserv processes started within one scheduler cycle

		max_parse_processes		Maximum number of parser processes running at once

		tick_pause_sec		The pause (in seconds) between the end of a tick and the beginning of the next tick

		clean_interval_minutes		Time (in minutes) between database sweeps to abort timed-out jobs

		synch_job_start_timeout_minutes		Time (in minutes) after which a synchronous job that has not yet started running will be aborted)

		results_host		A host to offload results to via rsync/scp Default: localhost

		results_host_installation_directory		If you installed your results_host in a different location than the standard /usr/local/autotest, this often will be blank

Distributed execution parameters¶

The following parameters only need to be changed in a Distributed Server Setup.

		drones		List of hostnames to act as drones (machines that run Autoserv)

		drone_installation_directory		Directory in which Autotest is installed on drones, from which Autoserv will be run

		results_host		Hostname to copy results to after job completion

		max_transfer_processes		Maximum number of rsync/scp transfers to the results repository at once.

The following are optional parameters that can be used in a Distributed Server Setup.

		archive_host		An additional hostname to check for results files when they cannot be found elsewhere after a user requests logs through the web interface

		$hostname_disabled		If set to 1, the drone $hostname will be disabled – no new jobs will run, but existed jobs will be seen to completion

		$hostname_max_processes		Overrides max_processes_per_drone for a particular drone

HOSTS¶

This section describes the [HOSTS] section of the global configuration.

		Key		Description

		wait_up_processes		A comma-delimited list of processes that Host.wait_up expects to find one of before it considers the host “up”

		default_protection		Default level of protection to put on new hosts. See HostProtections

PACKAGES¶

This section describes the [PACKAGES] section of the global
configuration.

		Key		Description

		fetch_location		http://myserver.blah.com

		upload_location		/usr/local/autotest/packages

		serve_packages_from_autoserv		If set to True, autoserv will act as a last-resort package repository, allowing you to use the packaging system without setting up HTTP repositories. This defaults to True, but in large-scale production setups where you expect to run a large number of simultaneous autoserv processes you may want to disable this as autoserv builds up the package tarballs on-demand and so this is significantly more expensive than serving static packages over HTTP.

Adding site-specific extensions¶

If you need to extend the Autotest code in a way that isn’t usable by
the main project, then you’ll probably want to do so in a way that
doesn’t unduly complicate merging your local, extended code with the
official project code. In general this means that you want to pull any
site-specific code into separate files, and have the main code call into
the extension in an optional way.

For site-specific tests this is not a problem. Each test should be
self-contained in its own directory and so you should be able to add new
tests without any other changes to Autotest at all. There may
occasionally be a conflict if a new test is added to the project that
conflicts with a private name you’re already using, but this will should
not be overly common and is easily fixed by renaming.

For adding site-specific common libraries, this is also not a big
problem. Add your module to the client/common_lib directory but add the
name of your module to client/common_lib/site_libraries.py instead of
directly to client/common_lib/__init__.py. This will
create a small conflict as your local
client/common_lib/site_libraries.py will differ from the official one,
however since the official one should never really be changing, merging
should never be a problem. However, remember that any code that imports
these site-specific libraries has itself become site-specific.

In any other cases where you have to modify the core Autotest code,
you’ll have to make an effort to separate out your extensions from the
main body of code. Assuming your extension is being done in a file x.py,
the easiest way to extend it is to add a new module site_x.py that
contains your site specific-code, and then add code to x.py that imports
site_x and makes the appropriate calls.

Now, you’ll want to be able to push out these calls to site_x into the
official code so that you don’t have to constantly merge around them.
That means you’ll still have to be careful about how you use site_x. In
particular:

		the import of site_x has to be done in such a way the code still
works properly when site_x doesn’t exist

		the coupling between x and site_x should be as minimal as possible
(to reduce the chances that other people’s changes to x inadvertently
break site_x)

As an example, look at the use of site_kernel in client/bin/kernel.py.
It supports point 1 by pulling in a function from site_kernel, and if
the import of site_kernel fails, it provides a default implementation
of the function it is trying to import. It supports point 2 by only
inserting a single call into auto_kernel stage, one with very clear and
simple semantics (i.e. perform some optional, site-specific munging of
path names before using them).

Adding site-specific extensions to the CLI¶

If you need to change the default behavior of some autotest-rpc-client commands, you
can create a cli/site_<topic>.py file to subclass some of the classes
from cli/<topic>.py.

The following example would prevent the creation of platform labels:

import inspect, new, sys

from autotest_lib.cli import topic_common, label

class site_label(label.label):
 pass

class site_label_create(label.label_create):
 """Disable the platform option
 autotest-rpc-client label create <labels>|--blist <file>"""
 def __init__(self):
 super(site_label_create, self).__init__()
 self.parser.remove_option("--platform")

 def parse(self):
 (options, leftover) = super(site_label_create, self).parse()
 self.is_platform = False
 return (options, leftover)

The following boiler plate code should be added at the end to create
all the other site_<topic>_<action> classes that do not modify their
<topic>_<action> super class.

Any classes we don't override in label should be copied automatically
for cls in [getattr(label, n) for n in dir(label) if not n.startswith("_")]:
 if not inspect.isclass(cls):
 continue
 cls_name = cls.__name__
 site_cls_name = 'site_' + cls_name
 if hasattr(sys.modules[__name__], site_cls_name):
 continue
 bases = (site_label, cls)
 members = {'__doc__': cls.__doc__}
 site_cls = new.classobj(site_cls_name, bases, members)
 setattr(sys.modules[__name__], site_cls_name, site_cls)

Autotest status file specification¶

General Structure¶

The status file is a variably indented human readable text file format
storing the results or various steps done while running an Autotest job
(ex. reboot start/end, autotest client install, test run/end, etc). The
file is organized by lines and columns, where columns are separated by
TABs. Each line has at least 3 columns:

<command><TAB><subdir><TAB><testname><TAB>....optional content

Note: there must be a trailing <TAB> after the last column on any line

Before the <command> there can be a number of <TAB> characters (also
known as the indentation level).

Formal syntax and semantics specification¶

The formal definition of the file can be written like this (assuming the
job was not aborted and thus the result file is complete):

<line>
<line>
...
EOF

Where:

<line> := [<status-line>|<info-line>|<group>] # inside a group we can
have status lines, info lines or other groups

<status-line> :=
[<abort-line>|<alert-line>|<error-line>|<fail-line>|<good-line>|<warn-line>]

<abort-line> := “ABORT<TAB><subdir-testname><optional-fields>\n”

<alert-line> := “ALERT<TAB><subdir-testname><optional-fields>\n”

<error-line> := “ERROR<TAB><subdir-testname><optional-fields>\n”

<fail-line> := “FAIL<TAB><subdir-testname><optional-fields>\n”

<good-line> := “GOOD<TAB><subdir-testname><optional-fields>\n”

<warn-line> := “WARN<TAB><subdir-testname><optional-fields>\n”

<info-line> := “INFO<TAB><subdir-testname><optional-fields>\n”

<subdir-testname> := [<none-subdir-testname>|<valid-subdir-testname>]

<none-subdir-testname> := “—-<TAB>—-<TAB>”

<valid-subdir-testname> := “<subdir><TAB><valid-testname><TAB>”

<subdir> := | arbitrary string of characters that does not contain
<TAB>?

<testname> := arbitrary string of characters that does not contain <TAB>
and is not equal to “—-“

<optional-fields> := [“”|”<optional-fields-elements><reason><TAB>”] #
optional fields can either be empty or if not must have a reason at the
end which is not key=value syntax

<reason> := string description of a success/failure reason, does not
contain <TAB>

<optional-fields-elements> := [“”|<optional-field-element>] # we may
have a reason but no other optional field

<optional-field-element> :=
“<optional-field-name>=<optional-field-value><TAB><optional-fields-elements>”
the optional fields to the left of the reason field must be of
key=value syntax

<optional-field-name> := string of characters that do not contain “=” or
<TAB>

<optional-field-value> := string of characters that do not contain <TAB>

<group> := “<start-line><group-contents><end-line>”

<start-line> := “START<TAB><subdir-testname><optional-fields>\n”

<end-line> := “<end-command><TAB><subdir-testname><optional-fields>\n”

<end-command> := [“END ABORT”|”END FAIL”|”END GOOD”]

<group-contents> := [“”|<group-line>] # a group can be empty

<group-line> := “<TAB><line>”

Definitions:

		a job group is a group with testname “SERVER_JOB” or “CLIENT_JOB”

		a test group it’s a group with testname != “—-” that is not a job
group

		a base test group is a test group that may be included in a job group
but is not included in any test group

The formal syntax definition cannot express semantical constraints on
the contents of the file. These are:

		inside a base test group all valid (that is all values except the
“—-” ones) <testname> columns of any line must be equal to the base
test group <testname> (that is, there are no sub-tests, once a base
test group has started everything inside is relevant for that test)

		a job group is present only once in a result file (ie you can’t have
multiple job groups with the same <testname>)

		it’s invalid to have 2 or more test groups with the same <testname>
unless one of them includes all the others

		the next same indentation level END line after a START line shall
have the same <testname> as its corresponding START line or have
“—-” <testname>

		it’s invalid to have a status-line with “—-” subdir and testname
while not being inside a base test group

		it’s invalid for a <status-line> inside a job group but not inside a
base test group to have the same <testname> as an active job group
<testname> unless it’s the inner most job group

Parsing Behaviour¶

A violation of the syntactical and semantical constraints shall result
in behaviour as if the next lines in the input buffer after the faulty
line are just a sequence of END ABORT lines ending all the active
(started but not ended) groups having subdir/testname corresponding to
the group they end.

<status-line> parsing:

		if the line has a valid subdir and we are inside a base test group
then we update the base test group’s subdir

		if there is no current base test group and if the status line
<testname> does not refer to an active job group it wil behave as if
the input buffer has a test group START/END lines with the status
line testname, subdir, reason, finished time (from the timestamp
optional field)

		if there is no current base test group and the status line <testname>
is equal to an active job group <testname> it will update the status
of that job group if the <status-line> status is worse in which case
if there is a reason field it will be used to update the current
reasons of the referred job group

		if the status line is inside a base test group it will update that
group’s current status if the new status is worse the the old one and
finished time (based on the optional timestamp field); if it has
updated the status and if it has a reason field it will be used to
update the current reasons of the base test group

A <info-line> parsing can be used to update the current kernel version
if there is such an optional field. The current kernel version is a
parser wide state variable that crosses group boundaries. Can’t there be
multiple clients registering INFO for various kernels they boot in the
server server side results file??

When parsing a <end-line> besides ending the current group:

		the status of the END line (determined by the word after the “END ”
part) will be used to update the current group status

		if the previous group is a test group with an invalid (ie “—-“)
subdir update the subdir of the previous group with the current group
subdir

		the finished time of the current group is updated with the timestamp
of the END line

		if the end line is for a reboot operation then current kernel version
is updated with the version from this line

		if this is the end of a base test group it will be recorded in the db
with the state, subdir, testname, reasons, finished_timestamp,
current kernel version

Autotest job results specification¶

On the client machine, results are stored under
$AUTODIR/results/$JOBNAME/…, where $JOBNAME is default unless
you specify otherwise.

Single machine job output format¶

The results to each job should conform to:

$AUTODIR/results/default/$JOBNAME/…

		debug/

		build<.***tag***>/		src/

		build/

		patches/

		config/

		debug/

		summary

		testname<.***tag***>/		results/

		profiling/

		debug/

		tmp/

		summary

		sysinfo/

		control (the control script)

		summary

Format of status file¶

There are two copies of the status file, one written by the server as we
go called “status.log”), and another copied back from the client (if it
doesn’t crash) called “status”. Both have the same format specification.
You can read more about the status file format at
StatusFileSpecification.

Multi-machine tests¶

When collating the results together for a multi-machine test, the
results should be formatted with one subdirectory for each machine in
the test, which should contain the job layout above.

There should be a .machines file in the top level that indicates to the
parser that this a multi-machine job, and lists the correct directories
to parse.

There are two ways a multi-machine job can be run:

		For synchronous jobs, the scheduler kicks off one copy of autoserv,
with multiple machines passed with “-m” option. In this case, it’s
autoserv’s responsibility to create the .machines file. This should
be appended to, one machine at a time, as the main part of the job is
kicked off.

		For asynchronous jobs, the scheduler kicks off one copy of autoserv
per machine. In this case it is the scheduler’s responsibility to
create the .machines fine - we can’t do it from autoserv, as we
didn’t know there were multiple machines.

Scheduler behavior¶

Results directories and autoserv execution:

		The scheduler always created a job directory, results/<job tag>

		For synchronous jobs, the scheduler runs a single instance of
autoserv with all machines and with the job directory as the results
directory.

		For asynchronous single-machine jobs, the scheduler runs a single
instance of autoserv with that machine and with the job directory as
the results directory.

		For asynchronous multi-machine jobs, the scheduler creates a
results/<job tag>/<hostname> directory for each host and runs one
instance of autoserv for each host with those directories as results
directories.

Metahosts always get queue.log.<id> files created in the job directory
(results/<job tag>). These logs contain a single line for each time a
meta-host is assigned a new host or cleared of its host.

Verify information is handled like so:

		Verify logs from autoserv are always directed to a temporary
directory using the -r option to autoserv.

		Verify stdout is also directed to a host log at
results/hosts/<hostname>.

		On verify success, the contents of the temporary directory are moved
to results/<job tag>/<hostname>, UNLESS it was an asynchronous
single-machine job, in which case the contents are moved to
results/<job tag>.

		On verify failure for a non-metahost, the contents are copied as for
success.

		On verify failure for a metahost, the contents of the temporary
directory are deleted. They are never placed in the job directory.
The only place to find them is in the host log.

The scheduler only creates a .machines file for asynchronous
multi-machine jobs. It creates this file on the fly by appending each
hostname to this file right before running the main autoserv process on
that host.

Documentation¶

There are two different ways to view the test API documentation.

The more complete (for now) way is to use Pydoc. The less complete
(but new) way is to generate the HTML documentation.

Pydoc¶

Set your Python path to one directory before your autotest path,
then start the pydoc web server on a port of your choosing.

For example, if your autotest installation is in /usr/local/autotest,
then:

$ export PYTHONPATH=/usr/local
$ pydoc -p 8888

Now use a browser to visit http://localhost:8888.

This will show all of the Python modules on your system. Click
on the autotest entry. Explore from there.

Generate the HTML API documentation¶

The new approach (still in progress), is to generate the API docs
as html. The HTML docs are nicer looking than the Pydoc webserver
ones, but are not yet as complete.

Here [is an example](http://justinclift.fedorapeople.org/autotest_docs/), generated on 6th Aug 2013.

Instructions to generate your own, known to work on Fedora 19:

$ sudo yum -y install MySQL-python python-django python-sphinx
$ cd /usr/local/autotest
$ python setup.py build_doc
running build_doc
Running Sphinx v1.1.3
loading pickled environment... done
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 4 changed, 0 removed
Traceback (most recent call last):istro_detection
 File "/usr/lib/python2.7/site-packages/sphinx/ext/autodoc.py", line 321, in import_object
 __import__(self.modname)
ImportError: No module named Probe
reading sources... [100%] frontend/tko_models
/usr/local/autotest/documentation/source/client/distro_detection.rst:91: WARNING: autodoc can't import/find data 'Probe.CHECK_VERSION_REGEX', it reported error: "No module named Probe", please check your spelling and sys.path
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
writing additional files... (4 module code pages) _modules/index
 genindex py-modindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded, 1 warning.

The generated docs should now be in /usr/local/autotest/build/sphinx/html/.

Autotest Unittest suite¶

The unittest suite module is the main entry point used to run all the
autotest unit tests. It is important to keep this module running on the
autotest code base to ensure we are not breaking the test coverage we
already got.

Setting up dependencies¶

This documentation was written for a F18 development box, if you are
running other OS to develop autotest, feel free to add the relevant bits
for your distro.

First, install all dependencies:

sudo installation_support/autotest-install-packages-deps

Now, grab gwt for the dependencies (gwt isn’t packaged right now):

utils/build_externals.py

To run the ‘short’ version of the unittests, just do a:

utils/unittest_suite.py

If you want to run the entire set of unittests, you have to pass the flag –full:

utils/unittest_suite.py --full

Web Frontend Development¶

When we run a production Autotest server, we run the Django server
through Apache and serve a compiled version of the GWT client. For
development, however, this is far too painful, and we go through a
completely different setup.

Basic setup¶

Steps below assume that you have basic software setup. Make sure you run
beforehand: installation_support/autotest-install-package-deps and installation_support/autotest-database-turnkey. On a new environment good validation step is to run unit tests before proceeding.

Django server development¶

You can read more about Django development at their documentation
site, but here’s
the short version.

Without Eclipse¶

		Running manage.py runserver will start a development server on
http://localhost:8000. This server
automatically reloads files when you change them. You can also view
stdout/stderr from your Django code right in the console. There’s not
a whole lot you can do from your browser with this server by itself,
since the only interface to it is through RPCs.

		manage.py test will run the server test suite (implemented in
frontend/afe/test.py). This includes running pylint on all
files in frontend/afe/ (checking for errors only), running
doctests found in the code, and running the extended doctests in
frontend/afe/doctests. This suite is pretty good at catching
errors, and you should definitely make sure it passes before
submitting patches (and please add to it if you add new features).
Note you may need to install pylint (Ubuntu package
python2.4-pylint).

		On that note, frontend/afe/doctests/rpc_test.txt is also the best
documentation of the RPC interface to the server, so it’s a pretty
good place to start in understanding what’s going on. It’s purposely
written to be readable as documentation, so it doesn’t contain tests
for all corner cases (such as error cases). Such tests should be
written eventually, but they don’t exist now, and if you write some,
please place them in a separate file so as to keep rpc_test.txt
readable.

		You can test the RPC interface out by hand from a Python interpreter:

>>> import common # pylint: disable=W0611
>>> from frontend.afe import rpc_client_lib
>>> proxy = rpc_client_lib.get_proxy('http://localhost:8000/afe/server/rpc/', headers={})
>>> proxy.get_tests(name='sleeptest')
[{u'description': u'Just a sleep test.', u'test_type': u'Client', u'test_class': u'Kernel', u'path': u'client/tests/sleeptest/control', u'id': 1, u'name': u'sleeptest'}]

With Eclipse¶

		First make sure that you have Eclpise working with PyDev (http://pydev.org/index.html)

		In Eclipse create django project wrapping frontend;

		File>New>Other…>PyDev>PyDev Django Project; click Next

		Project Contents, uncheck Use default and specify directory autotest/frontend, Next
few times to set all properties

		Now you can use Debug As>PyDev: Django that will start your server in debug mode;
You can use standard Eclipse facilities: breakpoints, watches, etc

Note that in both cases when django app is running you can use the admin interface locally
by navigating to http://localhost:8000/afe/server/admin/; This allows to easily add some test
data, examine existing records etc. Note that static files are not served properly so it
is a big ugly but usable.

GWT client development¶

Again, the full scoop can be found in the GWT Developer
Guide, but here’s
the short version:

Without Eclipse¶

		frontend/client/AfeClient-shell runs a GWT development shell.
This runs the client in a JRE in a modified browser widget. It will
connect to the Django server and operate just like the production
setup, but it’s all running as a normal Java program and it compiles
on-demand, so you’ll never need to compile, you can use your favorite
Java debugger, etc.

		Exception tracebacks are viewable in the console window, and you can
print information to this console using GWT.log().

		Hitting reload in the browser window will pull in and recompile any
changes to the Java code.

With Eclipse¶

		First download and install GWT and Eclipse plug in and make sure
all is working by running sample GWT app
(https://developers.google.com/web-toolkit/usingeclipse)

		Change the settings in autotest global_config.ini file by turning on
sql_debug_mode: True (section [AUTOTEST_WEB]); This will run
frontend application in debug mode and forward calls to GWT running
in debug mode (in addition to prining sql statements as name implies).

		Start the django app as described above by running manage.py runserver
in frontend directory on default port 8000

		The frontend/client/ directory contains .project and
.classpath files for Eclipse, so you should be able to import the
project using File->Import…->Existing Project into Workspace.

		Double check the project properties:

		Google->Web Application ‘This project has a WAR directory’ should
be unchecked

		Google->Web Toolkit ‘Use Google Web Toolkit’ should be checked and
project connected to appropriate GWT

		Java Build Path->Libraries tab: remove existing (probably bogus)
gwt jar files references and click Add Library-> choose Google Web Toolkit

		Create a run configuration

		Choose ‘Debug Configurations…’ from the menu

		Click New under (Google) Web Application, give it a name, e.g. AfeFrontEnd

		Main tab: Project AfeClient; Main class: com.google.gwt.dev.GWTShell (default)

		GWT tab: URL: autotest.AfeClient/AfeClient.html

		Common tab: optionally set Display in favorites menu

		Start debugging AfeFrontEnd configuration

		Open in a browser url: 127.0.0.1:8000/afe/server/autotest.AfeClient/AfeClient.html?gwt.codesvr=127.0.0.1:9997 Note is is important to use 8000
(django port) and not 8888 GWT port

		At this point you can use normal debugging facilities of Eclipe:
set breakpoints, watches, etc

		Note that frontend/client/AfeClient.launch is not working at the
moment and needs to be updated

See Also¶

		AutotestServerInstall <../sysadmin/AutotestServerInstall>

Using the Autotest Mock Library for unit testing¶

To aid with unit testing, we’ve implemented a very useful mocking and
stubbing library under client/shared/test_utils/mock.py. This
library can help you with

		safety stubbing out attributes of modules, classes, or instances, and
restoring them when the test completes

		creating mock functions and objects to substitute for real function
and class instances

		verifying that code under test interacts with external functions and
objects in a certain way, without actually depending on external
objects

Setting up to use the code¶

from autotest.client.shared.test_utils import mock

You’ll often need a mock_god instance as we’ll see later. This is
best done in your setUp method:

class MyTest(unittest.TestCase):
 def setUp(self):
 self.god = mock.mock_god()

As we’ll also see later, you’ll often want to call
mock_god.unstub_all() in your tearDown method, so I’ll include that
here too:

def tearDown(self):
 self.god.unstub_all()

Stubbing out attributes¶

Say we want to make os.path.exists() always return True for a test.
First, we can create a mock function:

mock_exists = mock.mock_function('os.path.exists', default_return_val=True)

This returns a function (actually it’s a callable object, but no matter)
that will accept any arguments and always returns True. The function
name passed in (‘os.path.exists’) is used only for error messages and
can be anything you find helpful. Next, we want to stub out
os.path.exists with our new function:

self.god.stub_with(os.path, 'exists', mock_exists)

Now you can call the code under test, and when it calls os.path.exists
it’ll actually be calling your mock function. Note that stub_with
can accept any object to use as a stub – it doesn’t have to be a
mock_function. You could define your own function to do actual work,
but that’s rarely necessary.

Calling self.god.unstub_all() will restore os.path.exists to
it’s original value. You must remember to always do this at the end of
your test. Even if your test never needs it to be unstubbed, your test
may be combined with others in a single test run, and you could mess up
those other tests if you don’t clean up your stubs. The best way to do
this is to always call ``unstub_all()`` in your ``tearDown`` method
if you’re using stubbing.

Stubbing methods on classes¶

The above approach won’t work for stubbing out methods on classes (not
instances, but the classes themselves). You’ll need to use the trick of
wrapping the mock function in staticmethod():

self.god.stub_with(MyClass, 'my_method', staticmethod(mock_method))

Verifying external interactions of code under test¶

The above trick is nice, but what if you need to ensure the code under
tests calls your mock functions in a certain way? For that, you can use
mock_god.create_mock_function.

mock_exists = self.god.create_mock_function('os.path.exists')
self.god.stub_with(os.path, 'exists', mock_exists)
note that stub_function() would be more convenient here - see below

How is this different from the above? Mock functions created using
mock_god.create_mock_function follow the expect/verify model. The
basic outline of this is as follows:

		Create your mock functions.

		Set up the expected call sequence on those functions.

		Run the code under test.

		Verify that the mock functions were called as expected.

Let’s look at an example, following from the snippet above:

return True the first time it's called
os.path.expect_call('/my/directory').and_return(True)
return False the next time it's called
os.path.expect_call('/another/directory').and_return(False)
run the code under test
function_under_test()
ensure the code under test made the calls we expected
self.god.check_playback()

This tells the mock god to expect a call to os.path.exists with the
argument '/my/directory' and then with '/another/directory'. If
the code under tests makes these calls in this order, it will get the
specified return values and check_playback() will return without
error. check_playback() will raise an exception if any of the
following occurred:

		a mock function was called with the wrong arguments

		a mock function was called when it wasn’t supposed to be

		a mock function was not called when it was expected to be

Note that order must be consistent across all mock functions (remember
god knows all)

Constructing mock class instances¶

Frequently our code under test will expect an object to be passed in,
and we’ll want to mock out every method on that object. In that case we
can use mock_god.create_mock_class:

mock_data_source = self.god.create_mock_class(DataSource, 'mock_data_source')
mock_data_source.get_data.expect_call().and_return('some data') # method taking no parameters
mock_data_source.put_data.expect_call(1) # void method
function_under_test(mock_data_source)
self.god.check_playback()

This code creates a mock instance of DataSource. On the mock
instance, all public methods of DataSource will be replaced with
mock functions on which you can use the expect/verify model, just like
functions created with create_mock_function. The second argument to
create_mock_class can be any name; it’s just used in the debug
output.

Isolating a method from other methods on the same instance¶

You may find yourself needing to test a method of a class instance and
wanting to mock out every other method of that instance.
mock_god.mock_up() provides a convenient way to do this:

construct a real DataSource
data_source = DataSource()
replace every method with a mock function
self.god.mock_up(data_source, "data_source")
data_source.get_data.expect_call().and_return('data')
data_source.put_data.expect_call('more data')
run a real method on the instance
data_source.do_data_manipulation.run_original_function()
do_data_manipulation() calls get_data() and put_data()
self.god.check_playback()

Unlike create_mock_class, mock_up takes an existing instance and
replaces all methods (that don’t start with ‘__’) with mock functions,
while retaining the ability to run the original functions through
run_original_function(). Unlike create_mock_class it will mock up
functions for “protected” (starting with ‘_’) methods.

Verifying class creation within code under test¶

What if your code under test instantiates and uses a class, and you want
to mock out that class but never have access to it? In this case you can
stub out the class itself using mock_god.create_mock_class_obj. I’ll
use subprocess.Popen as an example:

MockPopen = self.god.create_mock_class_obj(subprocess.Popen)
self.god.stub_with(subprocess, 'Popen', MockPopen)
expect creation of a Popen object
proc = subprocess.Popen.expect_new('some command', shell=True)
expect a call on the created Popen object
proc.poll.expect_call().and_return(0)
code under test creates a subprocess.Popen object and uses it
function_under_test()
self.god.check_playback()

Convenient shortcuts for stubbing¶

stub_function automatically stubs out a function with a mock
function created using mock_god.create_mock_function, so that you
can use the expect/verify model on it.

self.god.stub_function(os.path, 'exists')
this is equivalent to:
mock_exists = self.god.create_mock_function('exists')
self.god.stub_with(os.path, 'exists', mock_exists)

stub_class_method does the same thing, but wraps the mock function
in staticmethod() and thus is suitable for class methods.

self.god.stub_class_method(MyClass, 'my_method')
this is equivalent to:
mock_method = self.god.create_mock_function('my_method')
self.god.stub_with(MyClass, 'my_method', staticmethod(mock_method))

Stubbing out builtins¶

Often we’ll want to stub out a builtin function like open(). We’ve
found that the best way to do this is to set an attribute on the module
under test, rather than try to mess with __builtins__ or anything,
as that can mess up other code (such as test infrastructure code).

self.god.stub_function(module_under_test, 'open')
note we're using StringIO to fake a file object
module_under_test.open.expect_call('/some/path', 'r').and_return(StringIO.StringIO('file text'))

module_under_test.function_under_test() # tries to call builtin open
self.god.check_playback()

client Package¶

autotest_local Module¶

		
class autotest.client.autotest_local.AutotestLocalApp[source]¶

		Autotest local app runs tests locally

Point it to a control file and let it rock

		
main()[source]¶

		

		
parse_cmdline()[source]¶

		

		
usage()[source]¶

		

base_sysinfo Module¶

		
class autotest.client.base_sysinfo.base_sysinfo(job_resultsdir)[source]¶

		Bases: object

		
deserialize(serialized)[source]¶

		

		
log_after_each_iteration(**dargs)¶

		

		
log_after_each_test(**dargs)¶

		

		
log_before_each_iteration(**dargs)¶

		

		
log_before_each_test(**dargs)¶

		

		
log_per_reboot_data(**dargs)¶

		

		
log_test_keyvals(test_sysinfodir)[source]¶

		Logging hook called by log_after_each_test to collect keyval
entries to be written in the test keyval.

		
serialize()[source]¶

		

		
class autotest.client.base_sysinfo.command(cmd, logf=None, log_in_keyval=False, compress_log=False)[source]¶

		Bases: autotest.client.base_sysinfo.loggable

		
run(logdir)[source]¶

		

		
class autotest.client.base_sysinfo.logfile(path, logf=None, log_in_keyval=False)[source]¶

		Bases: autotest.client.base_sysinfo.loggable

		
run(logdir)[source]¶

		

		
class autotest.client.base_sysinfo.loggable(logf, log_in_keyval)[source]¶

		Bases: object

Abstract class for representing all things “loggable” by sysinfo.

		
readline(logdir)[source]¶

		

base_utils Module¶

DO NOT import this file directly - import client/bin/utils.py,
which will mix this in

Convenience functions for use by tests or whomever.

Note that this file is mixed in by utils.py - note very carefully the
precedence order defined there

		
autotest.client.base_utils.append_path(oldpath, newpath)[source]¶

		append newpath to oldpath

		
autotest.client.base_utils.avgtime_print(dir)[source]¶

		Calculate some benchmarking statistics.
Input is a directory containing a file called ‘time’.
File contains one-per-line results of /usr/bin/time.
Output is average Elapsed, User, and System time in seconds,
and average CPU percentage.

		
autotest.client.base_utils.cat_file_to_cmd(file, command, ignore_status=0, return_output=False)[source]¶

		equivalent to ‘cat file | command’ but knows to use
zcat or bzcat if appropriate

		
autotest.client.base_utils.check_for_kernel_feature(feature)[source]¶

		

		
autotest.client.base_utils.check_glibc_ver(ver)[source]¶

		

		
autotest.client.base_utils.check_kernel_ver(ver)[source]¶

		

		
autotest.client.base_utils.count_cpus()[source]¶

		Total number of online CPUs in the local machine

		
autotest.client.base_utils.count_total_cpus()[source]¶

		Total number of (online+offline) CPUs in the local machine

		
autotest.client.base_utils.cpu_has_flags(flags)[source]¶

		Check if a list of flags are available on current CPU info

		Parameters:		flags (list) – A list of cpu flags that must exists on the current CPU.

		Returns:		bool True if all the flags were found or False if not

		Return type:		list

		
autotest.client.base_utils.cpu_online_map()[source]¶

		Check out the available cpu online map

		
autotest.client.base_utils.difflist(list1, list2)[source]¶

		returns items in list2 that are not in list1

		
autotest.client.base_utils.disk_block_size(path)[source]¶

		Return the disk block size, in bytes

		
autotest.client.base_utils.dump_object(object)[source]¶

		Dump an object’s attributes and methods

kind of like dir()

		
autotest.client.base_utils.environ(env_key)[source]¶

		return the requested environment variable, or ‘’ if unset

		
autotest.client.base_utils.extract_all_time_results(results_string)[source]¶

		Extract user, system, and elapsed times into a list of tuples

		
autotest.client.base_utils.extract_tarball(tarball)[source]¶

		Returns the directory extracted by the tarball.

		
autotest.client.base_utils.extract_tarball_to_dir(tarball, dir)[source]¶

		Extract a tarball to a specified directory name instead of whatever
the top level of a tarball is - useful for versioned directory names, etc

		
autotest.client.base_utils.file_contains_pattern(file, pattern)[source]¶

		Return true if file contains the specified egrep pattern

		
autotest.client.base_utils.force_copy(src, dest)[source]¶

		Replace dest with a new copy of src, even if it exists

		
autotest.client.base_utils.force_link(src, dest)[source]¶

		Link src to dest, overwriting it if it exists

		
autotest.client.base_utils.freespace(path)[source]¶

		Return the disk free space, in bytes

		
autotest.client.base_utils.get_cc()[source]¶

		

		
autotest.client.base_utils.get_cpu_arch()[source]¶

		Work out which CPU architecture we’re running on

		
autotest.client.base_utils.get_cpu_family()[source]¶

		

		
autotest.client.base_utils.get_cpu_info()[source]¶

		Reads /proc/cpuinfo and returns a list of file lines

		Returns:		list of lines from /proc/cpuinfo file

		Return type:		list

		
autotest.client.base_utils.get_cpu_stat(key)[source]¶

		Get load per cpu from /proc/stat
:return: list of values of CPU times

		
autotest.client.base_utils.get_cpu_vendor()[source]¶

		

		
autotest.client.base_utils.get_cpu_vendor_name()[source]¶

		Get the current cpu vendor name

		Returns:		string ‘intel’ or ‘amd’ or ‘power7’ depending on the current CPU architecture.

		Return type:		string

		
autotest.client.base_utils.get_current_kernel_arch()[source]¶

		Get the machine architecture

		
autotest.client.base_utils.get_disks()[source]¶

		

		
autotest.client.base_utils.get_file_arch(filename)[source]¶

		

		
autotest.client.base_utils.get_hwclock_seconds(utc=True)[source]¶

		Return the hardware clock in seconds as a floating point value.
Use Coordinated Universal Time if utc is True, local time otherwise.
Raise a ValueError if unable to read the hardware clock.

		
autotest.client.base_utils.get_loaded_modules()[source]¶

		

		
autotest.client.base_utils.get_modules_dir()[source]¶

		Return the modules dir for the running kernel version

		
autotest.client.base_utils.get_os_vendor()[source]¶

		Try to guess what’s the os vendor.

		
autotest.client.base_utils.get_submodules(module_name)[source]¶

		Get all submodules of the module.

		Parameters:		module_name (str) – Name of module to search for

		Returns:		List of the submodules

		Return type:		list

		
autotest.client.base_utils.get_systemmap()[source]¶

		Return the full path to System.map

Ahem. This is crap. Pray harder. Bad Martin.

		
autotest.client.base_utils.get_uptime()[source]¶

				Returns:		return the uptime of system in secs in float in error case return ‘None’

		
autotest.client.base_utils.get_vmlinux()[source]¶

		Return the full path to vmlinux

Ahem. This is crap. Pray harder. Bad Martin.

		
autotest.client.base_utils.grep(pattern, file)[source]¶

		This is mainly to fix the return code inversion from grep
Also handles compressed files.

returns 1 if the pattern is present in the file, 0 if not.

		
autotest.client.base_utils.hash_file(filename, size=None, method='md5')[source]¶

		Calculate the hash of filename.
If size is not None, limit to first size bytes.
Throw exception if something is wrong with filename.
Can be also implemented with bash one-liner (assuming size%1024==0):
dd if=filename bs=1024 count=size/1024 | sha1sum -

		Parameters:				filename – Path of the file that will have its hash calculated.

		method – Method used to calculate the hash. Supported methods:
* md5
* sha1

		Returns:		Hash of the file, if something goes wrong, return None.

		
autotest.client.base_utils.human_format(number)[source]¶

		

		
autotest.client.base_utils.list_grep(list, pattern)[source]¶

		True if any item in list matches the specified pattern.

		
autotest.client.base_utils.load_module(module_name)[source]¶

		

		
autotest.client.base_utils.loaded_module_info(module_name)[source]¶

		Get loaded module details: Size and Submodules.

		Parameters:		module_name (str) – Name of module to search for

		Returns:		Dictionary of module info, name, size, submodules if present

		Return type:		dict

		
autotest.client.base_utils.locate(pattern, root='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/latest/documentation/source')[source]¶

		

		
autotest.client.base_utils.module_is_loaded(module_name)[source]¶

		Is module loaded

		Parameters:		module_name (str) – Name of module to search for

		Returns:		True is module is loaded

		Return type:		bool

		
autotest.client.base_utils.parse_lsmod_for_module(l_raw, module_name, escape=True)[source]¶

		Use a regexp to parse raw lsmod output and get module information
:param l_raw: raw output of lsmod
:type l_raw: str
:param module_name: Name of module to search for
:type module_name: str
:param escape: Escape regexp tokens in module_name, default True
:type escape: bool
:return: Dictionary of module info, name, size, submodules if present
:rtype: dict

		
autotest.client.base_utils.pickle_load(filename)[source]¶

		

		
autotest.client.base_utils.ping_default_gateway()[source]¶

		Ping the default gateway.

		
autotest.client.base_utils.prepend_path(newpath, oldpath)[source]¶

		prepend newpath to oldpath

		
autotest.client.base_utils.print_to_tty(string)[source]¶

		Output string straight to the tty

		
autotest.client.base_utils.process_is_alive(name_pattern)[source]¶

		‘pgrep name’ misses all python processes and also long process names.
‘pgrep -f name’ gets all shell commands with name in args.
So look only for command whose initial pathname ends with name.
Name itself is an egrep pattern, so it can use | etc for variations.

		
autotest.client.base_utils.running_config()[source]¶

		Return path of config file of the currently running kernel

		
autotest.client.base_utils.running_os_full_version()[source]¶

		

		
autotest.client.base_utils.running_os_ident()[source]¶

		

		
autotest.client.base_utils.running_os_release()[source]¶

		

		
autotest.client.base_utils.set_power_state(state)[source]¶

		Set the system power state to ‘state’.

		
autotest.client.base_utils.set_wake_alarm(alarm_time)[source]¶

		Set the hardware RTC-based wake alarm to ‘alarm_time’.

		
autotest.client.base_utils.standby()[source]¶

		Power-on suspend (S1)

		
autotest.client.base_utils.suspend_to_disk()[source]¶

		Suspend the system to disk (S4)

		
autotest.client.base_utils.suspend_to_ram()[source]¶

		Suspend the system to RAM (S3)

		
autotest.client.base_utils.sysctl(key, value=None)[source]¶

		Generic implementation of sysctl, to read and write.

		Parameters:				key – A location under /proc/sys

		value – If not None, a value to write into the sysctl.

		Returns:		The single-line sysctl value as a string.

		
autotest.client.base_utils.sysctl_kernel(key, value=None)[source]¶

		(Very) partial implementation of sysctl, for kernel params

		
autotest.client.base_utils.to_seconds(time_string)[source]¶

		Converts a string in M+:SS.SS format to S+.SS

		
autotest.client.base_utils.unload_module(module_name)[source]¶

		Removes a module. Handles dependencies. If even then it’s not possible
to remove one of the modules, it will throw an error.CmdError exception.

		Parameters:		module_name (str) – Name of the module we want to remove.

		
autotest.client.base_utils.unmap_url_cache(cachedir, url, expected_hash, method='md5')[source]¶

		Downloads a file from a URL to a cache directory. If the file is already
at the expected position and has the expected hash, let’s not download it
again.

		Parameters:				cachedir – Directory that might hold a copy of the file we want to
download.

		url – URL for the file we want to download.

		expected_hash – Hash string that we expect the file downloaded to
have.

		method – Method used to calculate the hash string (md5, sha1).

		
autotest.client.base_utils.where_art_thy_filehandles()[source]¶

		Dump the current list of filehandles

bkr_proxy Module¶

bkr_proxy - class used to talk to beaker

		
class autotest.client.bkr_proxy.BkrProxy(recipe_id, labc_url=None)[source]¶

		Bases: object

		
get_recipe()[source]¶

		

		
recipe_abort()[source]¶

		

		
recipe_stop()[source]¶

		

		
recipe_upload_file(localfile, remotepath='')[source]¶

		

		
result_upload_file(task_id, result_id, localfile, remotepath='')[source]¶

		

		
task_abort(task_id)[source]¶

		

		
task_result(task_id, result_type, result_path, result_score, result_summary)[source]¶

		

		
task_start(task_id, kill_time=0)[source]¶

		

		
task_stop(task_id)[source]¶

		

		
task_upload_file(task_id, localfile, remotepath='')[source]¶

		

		
update_watchdog(task_id, kill_time)[source]¶

		

		
exception autotest.client.bkr_proxy.BkrProxyException(text)[source]¶

		Bases: exceptions.Exception

		
autotest.client.bkr_proxy.copy_data(data, dest, header=None, use_put=None)[source]¶

		Copy data to a destination

To aid in debugging, copy a file locally to verify the contents.
Attempts to write the same data that would otherwise be sent
remotely.

		Parameters:				data – data string to copy

		dest – destination path

		header – header info item to return

		use_put – dictionary of items for PUT method

		Returns:		nothing or header info if requested

		
autotest.client.bkr_proxy.copy_local(data, dest, use_put=None)[source]¶

		Copy data locally to a file

To aid in debugging, copy a file locally to verify the contents.
Attempts to write the same data that would otherwise be sent
remotely.

		Parameters:				data – encoded data string to copy locally

		dest – local file path

		use_put – chooses to write in binary or text

		Returns:		nothing

		
autotest.client.bkr_proxy.copy_remote(data, dest, use_put=None)[source]¶

		Copy data to a remote server using http calls POST or PUT

Using http POST and PUT methods, copy data over http. To use
PUT method, provide a dictionary of values to be populated in
the Content-Range and Content-Length headers. Otherwise default
is to use POST method.

Traps on HTTPError 500 and 400

		Parameters:				data – encoded data string to copy remotely

		dest – remote server URL

		use_put – dictionary of items if using PUT method

		Returns:		html header info for post processing

		
autotest.client.bkr_proxy.make_path_bkrcache(r)[source]¶

		Converts a recipe id into an internal path for cache’ing recipe

		Parameters:		r – recipe id

		Returns:		a path to the internal recipe cache file

		
autotest.client.bkr_proxy.make_path_cmdlog(r)[source]¶

		Converts a recipe id into an internal path for logging purposes

		Parameters:		r – recipe id

		Returns:		a path to the internal command log

		
autotest.client.bkr_proxy.make_path_log(r, t=None, i=None)[source]¶

		Converts id into a beaker path to log file

Given a recipe id, a task id, and/or result id, translate
them into the proper beaker path to the log file. Depending
on which log file is needed, provide the appropriate params.
Note the dependency, a result id needs a task id and recipe id,
while a task id needs a recipe id.

		Parameters:				r – recipe id

		t – task id

		i – result id

		Returns:		a beaker path of the task’s result file

		
autotest.client.bkr_proxy.make_path_recipe(r)[source]¶

		Converts a recipe id into a beaker path

		Parameters:		r – recipe id

		Returns:		a beaker path to the recipe id

		
autotest.client.bkr_proxy.make_path_result(r, t)[source]¶

		Converts task id into a beaker path to result file

Given a recipe id and a task id, translate them into
the proper beaker path to the result file.

		Parameters:				r – recipe id

		t – task id

		Returns:		a beaker path of the task’s result file

		
autotest.client.bkr_proxy.make_path_status(r, t=None)[source]¶

		Converts id into a beaker path to status file

Given a recipe id and/or a task id, translate them into
the proper beaker path to the status file. Recipe only, returns
the path to the recipe’s status, whereas including a task returns
the path to the task’s status.

		Parameters:				r – recipe id

		t – task id

		Returns:		a beaker path of the recipe’s/task’s status file

		
autotest.client.bkr_proxy.make_path_watchdog(r)[source]¶

		Converts a recipe id into a beaker path for the watchdog

		Parameters:		r – recipe id

		Returns:		a beaker path of the recipe’s watchdog file

bkr_xml Module¶

module to parse beaker xml recipe

		
class autotest.client.bkr_xml.BeakerXMLParser[source]¶

		Bases: object

Handles parsing of beaker job xml

		
handle_recipe(recipe_node)[source]¶

		

		
handle_recipes(recipe_nodes)[source]¶

		

		
handle_task(recipe, task_node)[source]¶

		

		
handle_task_param(task, param_node)[source]¶

		

		
handle_task_params(task, param_nodes)[source]¶

		

		
handle_tasks(recipe, task_nodes)[source]¶

		

		
parse_from_file(file_name)[source]¶

		

		
parse_xml(xml)[source]¶

		Returns dict, mapping hostname to recipe

		
class autotest.client.bkr_xml.Recipe[source]¶

		Bases: object

		
class autotest.client.bkr_xml.Task[source]¶

		Bases: object

Simple record to store task properties

		
get_param(key, default=None)[source]¶

		

		
autotest.client.bkr_xml.xml_attr(node, key, default=None)[source]¶

		

		
autotest.client.bkr_xml.xml_get_nodes(node, tag)[source]¶

		

client_logging_config Module¶

		
class autotest.client.client_logging_config.ClientLoggingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

		
add_debug_file_handlers(log_dir, log_name=None)[source]¶

		

		
configure_logging(results_dir=None, verbose=False)[source]¶

		

cmdparser Module¶

Autotest command parser

		copyright:		Don Zickus <dzickus@redhat.com> 2011

		
class autotest.client.cmdparser.CmdParserLoggingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing convenient logging setup
for the KVM test auxiliary programs.

		
configure_logging(results_dir=None, verbose=False)[source]¶

		

		
class autotest.client.cmdparser.CommandParser[source]¶

		Bases: object

A client-side command wrapper for the autotest client.

		
COMMAND_LIST = ['help', 'list', 'run', 'fetch', 'bootstrap']¶

		

		
bootstrap(args, options)[source]¶

		Bootstrap autotest by fetching the control file first and pass it back

Currently this relies on a harness to retrieve the file

		
fetch(args, options)[source]¶

		fetch a remote control file or packages

		
classmethod help()[source]¶

		List the commands and their usage strings.

:param args is not used here.

		
classmethod list_tests()[source]¶

		List the available tests for users to choose from

		
parse_args(args, options)[source]¶

		Process a client side command.

		Parameters:		args – Command line args.

		
run(args, options)[source]¶

		Wrap args with a path and send it back to autotest.

common Module¶

config Module¶

The Job Configuration

The job configuration, holding configuration variable supplied to the job.

The config should be viewed as a hierarchical namespace. The elements
of the hierarchy are separated by periods (.) and where multiple words
are required at a level they should be separated by underscores (_).
Please no StudlyCaps.

		For example:

		boot.default_args

		
class autotest.client.config.config(job)[source]¶

		Bases: object

The BASIC job configuration

		Properties:

				job

		The job object for this job

		config

		The job configuration dictionary

		
get(name)[source]¶

		

		
set(name, value)[source]¶

		

cpuset Module¶

		
autotest.client.cpuset.abbrev_list(vals)[source]¶

		Condense unsigned (0,4,5,6,7,10) to ‘0,4-7,10’.

		
autotest.client.cpuset.all_drive_names()[source]¶

		

		
autotest.client.cpuset.avail_mbytes(parent='')[source]¶

		

		
autotest.client.cpuset.available_exclusive_mem_nodes(parent_container)[source]¶

		

		
autotest.client.cpuset.container_bytes(name)[source]¶

		

		
autotest.client.cpuset.container_exists(name)[source]¶

		

		
autotest.client.cpuset.container_mbytes(name)[source]¶

		

		
autotest.client.cpuset.cpus_path(container_name)[source]¶

		

		
autotest.client.cpuset.cpuset_attr(container_name, attr)[source]¶

		

		
autotest.client.cpuset.create_container_directly(name, mbytes, cpus)[source]¶

		

		
autotest.client.cpuset.create_container_via_memcg(name, parent, bytes, cpus)[source]¶

		

		
autotest.client.cpuset.create_container_with_mbytes_and_specific_cpus(name, mbytes, cpus=None, root='', io={}, move_in=True, timeout=0)[source]¶

		Create a cpuset container and move job’s current pid into it
Allocate the list “cpus” of cpus to that container

		Parameters:				name – arbitrary string tag

		mbytes – reqested memory for job in megabytes

		(None) (cpus) – list of cpu indices to associate with the cpuset defaults to all cpus avail with given root

		root – the parent cpuset to nest this new set within, ‘’ unnested top-level container

		io – arguments for proportional IO containers

		(True) (move_in) – Move current process into the new container now.

		(must be 0) (timeout) – persist until explicitly deleted.

		
autotest.client.cpuset.create_container_with_specific_mems_cpus(name, mems, cpus)[source]¶

		

		
autotest.client.cpuset.delete_leftover_test_containers()[source]¶

		

		
autotest.client.cpuset.discover_container_style()[source]¶

		

		
autotest.client.cpuset.full_path(container_name)[source]¶

		

		
autotest.client.cpuset.get_boot_numa()[source]¶

		

		
autotest.client.cpuset.get_cpus(container_name)[source]¶

		

		
autotest.client.cpuset.get_mem_nodes(container_name)[source]¶

		

		
autotest.client.cpuset.get_tasks(container_name)[source]¶

		

		
autotest.client.cpuset.inner_containers_of(parent)[source]¶

		

		
autotest.client.cpuset.io_attr(container_name, attr)[source]¶

		

		
autotest.client.cpuset.mbytes_per_mem_node()[source]¶

		

		
autotest.client.cpuset.memory_path(container_name)[source]¶

		

		
autotest.client.cpuset.mems_path(container_name)[source]¶

		

		
autotest.client.cpuset.move_self_into_container(name)[source]¶

		

		
autotest.client.cpuset.move_tasks_into_container(name, tasks)[source]¶

		

		
autotest.client.cpuset.my_available_exclusive_mem_nodes()[source]¶

		

		
autotest.client.cpuset.my_container_name()[source]¶

		

		
autotest.client.cpuset.my_lock(lockname)[source]¶

		

		
autotest.client.cpuset.my_mem_nodes()[source]¶

		

		
autotest.client.cpuset.my_unlock(lockfile)[source]¶

		

		
autotest.client.cpuset.need_fake_numa()[source]¶

		

		
autotest.client.cpuset.need_mem_containers()[source]¶

		

		
autotest.client.cpuset.node_avail_kbytes(node)[source]¶

		

		
autotest.client.cpuset.nodes_avail_mbytes(nodes)[source]¶

		

		
autotest.client.cpuset.rangelist_to_set(rangelist)[source]¶

		

		
autotest.client.cpuset.release_container(container_name=None)[source]¶

		

		
autotest.client.cpuset.remove_empty_prio_classes(prios)[source]¶

		

		
autotest.client.cpuset.set_io_controls(container_name, disks=[], ioprio_classes=[2], io_shares=[95], io_limits=[0])[source]¶

		

		
autotest.client.cpuset.tasks_path(container_name)[source]¶

		

		
autotest.client.cpuset.unpath(container_path)[source]¶

		

fsdev_disks Module¶

		
autotest.client.fsdev_disks.finish_fsdev(force_cleanup=False)[source]¶

		This method can be called from the test file to optionally restore
all the drives used by the test to a standard ext2 format. Note that
if use_fsdev_lib() was invoked with ‘reinit_disks’ not set to True,
this method does nothing. Note also that only fsdev “server-side”
dynamic control files should ever set force_cleanup to True.

		
class autotest.client.fsdev_disks.fsdev_disks(job)[source]¶

		Disk drive handling class used for file system development

		
config_sched_tunables(desc_file)[source]¶

		

		
get_fsdev_mgr()[source]¶

		

		
load_sched_tunable_values(val_file)[source]¶

		

		
set_sched_tunables(disks)[source]¶

		Given a list of disks in the format returned by get_disk_list() above,
set the I/O scheduler values on all the disks to the values loaded
earlier by load_sched_tunables().

		
set_tunable(disk, name, path, val)[source]¶

		Given a disk name, a path to a tunable value under _TUNE_PATH and the
new value for the parameter, set the value and verify that the value
has been successfully set.

		
autotest.client.fsdev_disks.get_disk_list(std_mounts_only=True, get_all_disks=False)[source]¶

		Get a list of dictionaries with information about disks on this system.

		Parameters:				std_mounts_only – Whether the function should return only disks that
have a mount point defined (True) or even devices that doesn’t
(False).

		get_all_disks – Whether the function should return only partitioned
disks (False) or return every disk, regardless of being partitioned
or not (True).

		Returns:		List of dictionaries with disk information (see more below).

The ‘disk_list’ array returned by get_disk_list() has an entry for each
disk drive we find on the box. Each of these entries is a map with the
following 3 string values:

‘device’ disk device name (i.e. the part after /dev/)
‘mountpt’ disk mount path
‘tunable’ disk name for setting scheduler tunables (/sys/block/sd??)

The last value is an integer that indicates the current mount status
of the drive:

		‘mounted’ 0 = not currently mounted

		
1 = mounted r/w on the expected path

-1 = mounted readonly or at an unexpected path

When the ‘std_mounts_only’ argument is True we don’t include drives
mounted on ‘unusual’ mount points in the result. If a given device is
partitioned, it will return all partitions that exist on it. If it’s not,
it will return the device itself (ie, if there are /dev/sdb1 and /dev/sdb2,
those will be returned but not /dev/sdb. if there is only a /dev/sdc, that
one will be returned).

		
autotest.client.fsdev_disks.match_fs(disk, dev_path, fs_type, fs_makeopt)[source]¶

		Matches the user provided fs_type and fs_makeopt with the current disk.

		
autotest.client.fsdev_disks.mkfs_all_disks(job, disk_list, fs_type, fs_makeopt, fs_mnt_opt)[source]¶

		Prepare all the drives in ‘disk_list’ for testing. For each disk this means
unmounting any mount points that use the disk, running mkfs with ‘fs_type’
as the file system type and ‘fs_makeopt’ as the ‘mkfs’ options, and finally
remounting the freshly formatted drive using the flags in ‘fs_mnt_opt’.

		
autotest.client.fsdev_disks.prepare_disks(job, fs_desc, disk1_only=False, disk_list=None)[source]¶

		Prepare drive(s) to contain the file system type / options given in the
description line ‘fs_desc’. When ‘disk_list’ is not None, we prepare all
the drives in that list; otherwise we pick the first available data drive
(which is usually hdc3) and prepare just that one drive.

		Args:

				fs_desc: A partition.FsOptions instance describing the test -OR- a

				legacy string describing the same in ‘/’ separated format:

		‘fstype / mkfs opts / mount opts / short name’.

		disk1_only: Boolean, defaults to False. If True, only test the first

		disk.

		disk_list: A list of disks to prepare. If None is given we default to

		asking get_disk_list().

		Returns:

		(mount path of the first disk, short name of the test, list of disks)
OR (None, ‘’, None) if no fs_desc was given.

		
autotest.client.fsdev_disks.prepare_fsdev(job)[source]¶

		Called from the test file to get the necessary drive(s) ready; return
a pair of values: the absolute path to the first drive’s mount point
plus the complete disk list (which is useful for tests that need to
use more than one drive).

		
autotest.client.fsdev_disks.restore_disks(job, restore=False, disk_list=None)[source]¶

		Restore ext2 on the drives in ‘disk_list’ if ‘restore’ is True; when
disk_list is None, we do nothing.

		
autotest.client.fsdev_disks.use_fsdev_lib(fs_desc, disk1_only, reinit_disks)[source]¶

		Called from the control file to indicate that fsdev is to be used.

		
autotest.client.fsdev_disks.wipe_disks(job, disk_list)[source]¶

		Wipe all of the drives in ‘disk_list’ using the ‘wipe’ functionality
in the filesystem class.

fsdev_mgr Module¶

This module defines the BaseFsdevManager Class which provides an
implementation of the ‘fsdev’ helper API; site specific extensions
to any of these methods should inherit this class.

		
class autotest.client.fsdev_mgr.BaseFsdevManager[source]¶

		Bases: object

		
check_mount_point(part_name, mount_point)[source]¶

				Parameters:				part_name – A partition name such as ‘sda3’ or similar.

		mount_point – A mount point such as ‘/usr/local’ or an empty
string if no mount point is known.

		Returns:		The expected mount point for part_name or a false value
(None or ‘’) if the client should not mount this partition.

		
include_partition(part_name)[source]¶

		

		
map_drive_name(part_name)[source]¶

		

		
use_partition(part_name)[source]¶

				Parameters:		part_name – A partition name such as ‘sda3’ or similar.

		Returns:		bool, should we use this partition for testing?

		
class autotest.client.fsdev_mgr.FsdevManager[source]¶

		Bases: autotest.client.fsdev_mgr.BaseFsdevManager

		
autotest.client.fsdev_mgr.SiteFsdevManager¶

		alias of autotest.client.fsdev_mgr.BaseFsdevManager

fsinfo Module¶

This module gives the mkfs creation options for an existing filesystem.

tune2fs or xfs_growfs is called according to the filesystem. The results,
filesystem tunables, are parsed and mapped to corresponding mkfs options.

		
autotest.client.fsinfo.compare_features(needed_feature, current_feature)[source]¶

		Compare two ext* feature lists.

		
autotest.client.fsinfo.convert_conf_opt(default_opt)[source]¶

		

		
autotest.client.fsinfo.ext_mkfs_options(tune2fs_dict, mkfs_option)[source]¶

		Map the tune2fs options to mkfs options.

		
autotest.client.fsinfo.ext_tunables(dev)[source]¶

		Call tune2fs -l and parse the result.

		
autotest.client.fsinfo.match_ext_options(fs_type, dev, needed_options)[source]¶

		Compare the current ext* filesystem tunables with needed ones.

		
autotest.client.fsinfo.match_mkfs_option(fs_type, dev, needed_options)[source]¶

		Compare the current filesystem tunables with needed ones.

		
autotest.client.fsinfo.match_xfs_options(dev, needed_options)[source]¶

		Compare the current ext* filesystem tunables with needed ones.

		
autotest.client.fsinfo.merge_ext_features(conf_feature, user_feature)[source]¶

		

		
autotest.client.fsinfo.opt_string2dict(opt_string)[source]¶

		Breaks the mkfs.ext* option string into dictionary.

		
autotest.client.fsinfo.parse_mke2fs_conf(fs_type, conf_file='/etc/mke2fs.conf')[source]¶

		Parses mke2fs config file for default settings.

		
autotest.client.fsinfo.xfs_mkfs_options(tune2fs_dict, mkfs_option)[source]¶

		Maps filesystem tunables to their corresponding mkfs options.

		
autotest.client.fsinfo.xfs_tunables(dev)[source]¶

		Call xfs_grow -n to get filesystem tunables.

harness Module¶

The harness interface

The interface between the client and the server when hosted.

		
class autotest.client.harness.harness(job)[source]¶

		Bases: object

The NULL server harness

		Properties:

				job

		The job object for this job

		
run_abort()[source]¶

		A run within this job is aborting. It all went wrong

		
run_complete()[source]¶

		A run within this job is completing (all done)

		
run_pause()[source]¶

		A run within this job is completing (expect continue)

		
run_reboot()[source]¶

		A run within this job is performing a reboot
(expect continue following reboot)

		
run_start()[source]¶

		A run within this job is starting

		
run_test_complete()[source]¶

		A test run by this job is complete. Note that if multiple
tests are run in parallel, this will only be called when all
of the parallel runs complete.

		
setup(job)[source]¶

				job

		The job object for this job

		
test_status(status, tag)[source]¶

		A test within this job is completing

		
test_status_detail(code, subdir, operation, status, tag, optional_fields)[source]¶

		A test within this job is completing (detail)

		
autotest.client.harness.select(which, job, harness_args)[source]¶

		

harness_autoserv Module¶

		
class autotest.client.harness_autoserv.AutoservFetcher(package_manager, job_harness)[source]¶

		Bases: autotest.client.shared.base_packages.RepositoryFetcher

		
fetch_pkg_file(filename, dest_path)[source]¶

		Fetch a package file from a package repository.

		Parameters:				filename (string) – The filename of the package file to fetch.

		dest_path (string) – Destination path to download the file to.

		Raises:		PackageFetchError – if the fetch failed

		
class autotest.client.harness_autoserv.harness_autoserv(job, harness_args)[source]¶

		Bases: autotest.client.harness.harness

The server harness for running from autoserv

		Properties:

				job

		The job object for this job

		
fetch_package(pkg_name, dest_path)[source]¶

		Request a package from the remote autoserv.

		Parameters:				pkg_name – The name of the package, as generally used by the
client.shared.packages infrastructure.

		dest_path – The path the package should be copied to.

		
run_start()[source]¶

		A run within this job is starting

		
run_test_complete()[source]¶

		A test run by this job is complete, signal it to autoserv and
wait for it to signal to continue

		
test_status(status, tag)[source]¶

		A test within this job is completing

harness_beaker Module¶

The harness interface
The interface between the client and beaker lab controller.

		
exception autotest.client.harness_beaker.HarnessException(text)[source]¶

		Bases: exceptions.Exception

		
autotest.client.harness_beaker.get_beaker_code(at_code)[source]¶

		

		
class autotest.client.harness_beaker.harness_beaker(job, harness_args)[source]¶

		Bases: autotest.client.harness.harness

		
bootstrap(fetchdir)[source]¶

		How to kickstart autotest when you have no control file?
You download the beaker XML, convert it to a control file
and pass it back to autotest. Much like bootstrapping.. :-)

		
convert_task_to_control(fetchdir, control, task)[source]¶

		Tasks are really just:
yum install $TEST
cd /mnt/tests/$TEST
make run

Convert that into a test module with a control file

		
find_recipe(recipes_dict)[source]¶

		

		
get_processed_tests()[source]¶

		

		
get_recipe_from_LC()[source]¶

		

		
get_test_name(task)[source]¶

		

		
init_recipe_from_beaker()[source]¶

		

		
init_task_params(task)[source]¶

		

		
kill_watchdog()[source]¶

		

		
parse_args(args, is_bootstrap)[source]¶

		

		
parse_quickcmd(args)[source]¶

		

		
run_abort()[source]¶

		A run within this job is aborting. It all went wrong

		
run_complete()[source]¶

		A run within this job is completing (all done)

		
run_pause()[source]¶

		A run within this job is completing (expect continue)

		
run_reboot()[source]¶

		A run within this job is performing a reboot
(expect continue following reboot)

		
run_start()[source]¶

		A run within this job is starting

		
run_test_complete()[source]¶

		A test run by this job is complete. Note that if multiple
tests are run in parallel, this will only be called when all
of the parallel runs complete.

		
setupInitSymlink()[source]¶

		

		
start_watchdog(heartbeat)[source]¶

		

		
tear_down()[source]¶

		called from complete and abort. clean up and shutdown

		
test_status(status, tag)[source]¶

		A test within this job is completing

		
test_status_detail(code, subdir, operation, status, tag, optional_fields)[source]¶

		A test within this job is completing (detail)

		
upload_recipe_files()[source]¶

		

		
upload_result_files(task_id, resultid, subdir)[source]¶

		

		
upload_task_files(task_id, subdir)[source]¶

		

		
watchdog_loop(heartbeat)[source]¶

		

		
write_processed_tests(subdir, t_id='0')[source]¶

		

harness_simple Module¶

The simple harness interface

		
class autotest.client.harness_simple.harness_simple(job, harness_args)[source]¶

		Bases: autotest.client.harness.harness

The simple server harness

		Properties:

				job

		The job object for this job

		
test_status(status, tag)[source]¶

		A test within this job is completing

harness_standalone Module¶

The standalone harness interface

The default interface as required for the standalone reboot helper.

		
class autotest.client.harness_standalone.harness_standalone(job, harness_args)[source]¶

		Bases: autotest.client.harness.harness

The standalone server harness

		Properties:

				job

		The job object for this job

job Module¶

The main job wrapper

This is the core infrastructure.

Copyright Andy Whitcroft, Martin J. Bligh 2006

		
exception autotest.client.job.NotAvailableError[source]¶

		Bases: autotest.client.shared.error.AutotestError

		
exception autotest.client.job.StepError[source]¶

		Bases: autotest.client.shared.error.AutotestError

		
class autotest.client.job.base_client_job(control, options, drop_caches=True, extra_copy_cmdline=None)[source]¶

		Bases: autotest.client.shared.base_job.base_job

The client-side concrete implementation of base_job.

Optional properties provided by this implementation:
- control
- bootloader
- harness

		
add_repository(repo_urls)[source]¶

		Adds the repository locations to the job so that packages
can be fetched from them when needed. The repository list
needs to be a string list
Ex: job.add_repository([‘http://blah1’,’http://blah2’])

		
add_sysinfo_command(command, logfile=None, on_every_test=False)[source]¶

		

		
add_sysinfo_logfile(file, on_every_test=False)[source]¶

		

		
barrier(*args, **kwds)[source]¶

		Create a barrier object

		
complete(status)[source]¶

		Write pending TAP reports, clean up, and exit

		
config_get(name)[source]¶

		

		
config_set(name, value)[source]¶

		

		
control_get()[source]¶

		

		
control_set(control)[source]¶

		

		
cpu_count()[source]¶

		

		
disable_external_logging()[source]¶

		

		
disable_warnings(warning_type)[source]¶

		

		
enable_external_logging()[source]¶

		

		
enable_warnings(warning_type)[source]¶

		

		
end_reboot(subdir, kernel, patches, running_id=None)[source]¶

		

		
end_reboot_and_verify(expected_when, expected_id, subdir, type='src', patches=[])[source]¶

		Check the passed kernel identifier against the command line
and the running kernel, abort the job on missmatch.

		
filesystem(**dargs)¶

		Same as partition

		Deprecated:		Use partition method instead

		
handle_persistent_option(options, option_name)[source]¶

		Select option from command line or persistent state.
Store selected option to allow standalone client to continue
after reboot with previously selected options.
Priority:
1. explicitly specified via command line
2. stored in state file (if continuing job ‘-c’)
3. default is None

		
harness_select(which, harness_args)[source]¶

		

		
install_pkg(name, pkg_type, install_dir)[source]¶

		This method is a simple wrapper around the actual package
installation method in the Packager class. This is used
internally by the profilers, deps and tests code.

		Parameters:				name – name of the package (ex: sleeptest, dbench etc.)

		pkg_type – Type of the package (ex: test, dep etc.)

		install_dir – The directory in which the source is actually

untarred into. (ex: client/profilers/<name> for profilers)

		
kernel(base_tree, results_dir='', tmp_dir='', leave=False)[source]¶

		Summon a kernel object

		
monitor_disk_usage(max_rate)[source]¶

		Signal that the job should monitor disk space usage on /
and generate a warning if a test uses up disk space at a
rate exceeding ‘max_rate’.

		Parameters:

				max_rate - the maximium allowed rate of disk consumption

		during a test, in MB/hour, or 0 to indicate
no limit.

		
next_step(fn, *args, **dargs)[source]¶

		Create a new step and place it after any steps added
while running the current step but before any steps added in
previous steps

		
next_step_append(fn, *args, **dargs)[source]¶

		Define the next step and place it at the end

		
next_step_prepend(fn, *args, **dargs)[source]¶

		Insert a new step, executing first

		
noop(text)[source]¶

		

		
parallel(*args, **dargs)[source]¶

		Run tasks in parallel

		
partition(device, loop_size=0, mountpoint=None)[source]¶

		Work with a machine partition

		param device:		e.g. /dev/sda2, /dev/sdb1 etc…

		param mountpoint:

		 		Specify a directory to mount to. If not specified
autotest tmp directory will be used.

		param loop_size:

		 		Size of loopback device (in MB). Defaults to 0.

		return:		A L{client.partition.partition} object

		
quit()[source]¶

		

		
reboot(tag=<object object>)[source]¶

		

		
reboot_setup()[source]¶

		

		
relative_path(path)[source]¶

		Return a patch relative to the job results directory

		
require_gcc()[source]¶

		Test whether gcc is installed on the machine.

		
run_group(function, tag=None, **dargs)[source]¶

		Run a function nested within a group level.

		Parameters:				function – Callable to run.

		tag – An optional tag name for the group. If None (default)

function.__name__ will be used.
:param dargs: Named arguments for the function.

		
run_test(*args, **dargs)[source]¶

		Summon a test object and run it.

:param url A url that identifies the test to run.
:param tag An optional keyword argument that will be added to the
test and subdir name.
:param subdir_tag An optional keyword argument that will be added
to the subdir name.

		Returns:		True if the test passes, False otherwise.

		
run_test_detail(*args, **dargs)[source]¶

		Summon a test object and run it, returning test status.

:param url A url that identifies the test to run.
:param tag An optional keyword argument that will be added to the
test and subdir name.
:param subdir_tag An optional keyword argument that will be added
to the subdir name.

		Returns:		Test status

		See:		client/shared/error.py, exit_status

		
setup_dep(deps)[source]¶

		Set up the dependencies for this test.
deps is a list of libraries required for this test.

		
setup_dirs(results_dir, tmp_dir)[source]¶

		

		
start_reboot()[source]¶

		

		
step_engine()[source]¶

		The multi-run engine used when the control file defines step_init.

Does the next step.

		
xen(base_tree, results_dir='', tmp_dir='', leave=False, kjob=None)[source]¶

		Summon a xen object

		
class autotest.client.job.disk_usage_monitor(logging_func, device, max_mb_per_hour)[source]¶

				
start()[source]¶

		

		
stop()[source]¶

		

		
classmethod watch(*monitor_args, **monitor_dargs)[source]¶

		Generic decorator to wrap a function call with the
standard create-monitor -> start -> call -> stop idiom.

		
class autotest.client.job.job(control, options, drop_caches=True, extra_copy_cmdline=None)[source]¶

		Bases: autotest.client.job.base_client_job

		
autotest.client.job.runjob(control, drop_caches, options)[source]¶

		Run a job using the given control file.

This is the main interface to this module.

		See:		base_job.__init__ for parameter info.

		
autotest.client.job.site_job¶

		alias of autotest.client.job.base_client_job

		
class autotest.client.job.status_indenter(job)[source]¶

		Bases: autotest.client.shared.base_job.status_indenter

Provide a status indenter that is backed by job._record_prefix.

		
decrement()[source]¶

		Decrease indentation by one level.

		
increment()[source]¶

		Increase indentation by one level.

		
indent¶

		

kernel Module¶

		
class autotest.client.kernel.BootableKernel(job)[source]¶

		Bases: object

		
add_to_bootloader(args='')[source]¶

		

		
autotest.client.kernel.auto_kernel(job, path, subdir, tmp_dir, build_dir, leave=False)[source]¶

		Create a kernel object, dynamically selecting the appropriate class to use
based on the path provided.

		
class autotest.client.kernel.kernel(job, base_tree, subdir, tmp_dir, build_dir, leave=False)[source]¶

		Bases: autotest.client.kernel.BootableKernel

Class for compiling kernels.

Data for the object includes the src files
used to create the kernel, patches applied, config (base + changes),
the build directory itself, and logged output

		Properties:

				job

		Backpointer to the job object we’re part of

		autodir

		Path to the top level autotest dir (see global_config.ini,
session COMMON/autotest_top_path)

		src_dir

		<tmp_dir>/src/

		build_dir

		<tmp_dir>/linux/

		config_dir

		<results_dir>/config/

		log_dir

		<results_dir>/debug/

		results_dir

		<results_dir>/results/

		
apply_patches(local_patches)[source]¶

		apply the list of patches, in order

		
autodir = ''¶

		

		
boot(args='', ident=True)[source]¶

		install and boot this kernel, do not care how
just make it happen.

		
build(*args, **dargs)¶

		

		
build_timed(threads, timefile='/dev/null', make_opts='', output='/dev/null')[source]¶

		time the bulding of the kernel

		
clean(*args, **dargs)¶

		

		
config(*args, **dargs)¶

		

		
extract(*args, **dargs)¶

		

		
extraversion(tag, append=True)[source]¶

		

		
get_kernel_build_arch(arch=None)[source]¶

		Work out the current kernel architecture (as a kernel arch)

		
get_kernel_build_ident()[source]¶

		

		
get_kernel_build_release()[source]¶

		

		
get_kernel_build_ver()[source]¶

		Check Makefile and .config to return kernel version

		
get_kernel_tree(base_tree)[source]¶

		Extract/link base_tree to self.build_dir

		
get_patches(patches)[source]¶

		fetch the patches to the local src_dir

		
install(*args, **dargs)¶

		

		
kernelexpand(kernel)[source]¶

		

		
mkinitrd(*args, **dargs)¶

		

		
patch(*args, **dargs)¶

		

		
pickle_dump(filename)[source]¶

		dump a pickle of ourself out to the specified filename

we can’t pickle the backreference to job (it contains fd’s),
nor would we want to. Same for logfile (fd’s).

		
set_build_image(image)[source]¶

		

		
set_build_target(build_target)[source]¶

		

		
set_cross_cc(target_arch=None, cross_compile=None, build_target='bzImage')[source]¶

		Set up to cross-compile.
This is broken. We need to work out what the default
compile produces, and if not, THEN set the cross
compiler.

		
autotest.client.kernel.preprocess_path(path)¶

		

		
class autotest.client.kernel.rpm_kernel(job, rpm_package, subdir)[source]¶

		Bases: autotest.client.kernel.BootableKernel

Class for installing a binary rpm kernel package

		
boot(args='', ident=True)[source]¶

		install and boot this kernel

		
build(*args, **dargs)[source]¶

		Dummy function, binary kernel so nothing to build.

		
install(*args, **dargs)¶

		

		
kernel_string = '/boot/vmlinuz'¶

		

		
class autotest.client.kernel.rpm_kernel_suse(job, rpm_package, subdir)[source]¶

		Bases: autotest.client.kernel.rpm_kernel

Class for installing openSUSE/SLE rpm kernel package

		
add_to_bootloader(args='')[source]¶

		Set parameters of this kernel in bootloader

		
install()[source]¶

		

		
kernel_string = '/boot/vmlinux'¶

		

		
autotest.client.kernel.rpm_kernel_vendor(job, rpm_package, subdir)[source]¶

		

		
class autotest.client.kernel.srpm_kernel(job, rpm_package, subdir)[source]¶

		Bases: autotest.client.kernel.kernel

		
apply_patches(local_patches)[source]¶

		apply the list of patches, in order

		
binrpm_pattern = <_sre.SRE_Pattern object>¶

		

		
boot(args='')[source]¶

		install and boot this kernel, do not care how
just make it happen.

		
build(tag='autotest')[source]¶

		

		
config(*args, **kwargs)[source]¶

		

		
consume_one_config(config_option)[source]¶

		

		
finish_init()[source]¶

		

		
install(tag='autotest')[source]¶

		

		
prefix = '/root/rpmbuild'¶

		

		
prep(tag='autotest')[source]¶

		

		
setup_source()[source]¶

		

		
update_spec(tag)[source]¶

		

		
update_spec_line(line, outspec, tag)[source]¶

		

		
class autotest.client.kernel.srpm_kernel_suse(job, rpm_package, subdir)[source]¶

		Bases: autotest.client.kernel.srpm_kernel

		
finish_init()[source]¶

		

		
prefix = '/usr/src/packages'¶

		

		
setup_source()[source]¶

		

		
update_spec_line(line, outspec, tag)[source]¶

		

		
autotest.client.kernel.srpm_kernel_vendor(job, rpm_package, subdir)[source]¶

		

		
autotest.client.kernel.tee_output_logdir_mark(fn)[source]¶

		

kernel_config Module¶

		
autotest.client.kernel_config.apply_overrides(orig_file, changes_file, output_file)[source]¶

		

		
autotest.client.kernel_config.config_by_name(name, s)[source]¶

		

		
autotest.client.kernel_config.diff_configs(old, new)[source]¶

		

		
autotest.client.kernel_config.feature_enabled(feature, config)[source]¶

		Verify whether a given kernel option is enabled.

		Parameters:				feature – Kernel feature, such as “CONFIG_DEFAULT_UIMAGE”.

		config – Config file path, such as /tmp/config.

		
class autotest.client.kernel_config.kernel_config(job, build_dir, config_dir, orig_file, overrides, defconfig=False, name=None, make=None)[source]¶

		Bases: object

Build directory must be ready before init’ing config.

		Stages:

				Get original config file

		Apply overrides

				Do ‘make oldconfig’ to update it to current source code

		(gets done implicitly during the process)

You may specifiy the defconfig within the tree to build,
or a custom config file you want, or None, to get machine’s
default config file from the repo.

		
config_record(name)[source]¶

		Copy the current .config file to the config.<name>[.<n>]

		
update_config(old_config, new_config=None)[source]¶

		

		
autotest.client.kernel_config.modules_needed(config)[source]¶

		

kernel_versions Module¶

		
autotest.client.kernel_versions.is_release_candidate(version)[source]¶

		

		
autotest.client.kernel_versions.is_released_kernel(version)[source]¶

		

		
autotest.client.kernel_versions.version_choose_config(version, candidates)[source]¶

		

		
autotest.client.kernel_versions.version_encode(version)[source]¶

		

		
autotest.client.kernel_versions.version_len(version)[source]¶

		

		
autotest.client.kernel_versions.version_limit(version, n)[source]¶

		

kernelexpand Module¶

Program and API used to expand kernel versions, trying to match
them with the URL of the correspondent package on kernel.org or
a mirror. Example:

$./kernelexpand.py 3.1
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.1.tar.bz2

		author:		Andy Whitcroft (apw@shadowen.org)

		copyright:		IBM 2008

		license:		GPL v2

		see:		Inspired by kernelexpand by Martin J. Bligh, 2003

		
autotest.client.kernelexpand.decompose_kernel(kernel)[source]¶

		

		
autotest.client.kernelexpand.decompose_kernel_2x_once(kernel)[source]¶

		Generate the parameters for the patches (2.X version):

full => full kernel name
base => all but the matches suffix
minor => 2.n.m
major => 2.n
minor-prev => 2.n.m-1

		Parameters:		kernel – String representing a kernel version to be expanded.

		
autotest.client.kernelexpand.decompose_kernel_post_2x_once(kernel)[source]¶

		Generate the parameters for the patches (post 2.X version):

full => full kernel name
base => all but the matches suffix
minor => o.n.m
major => o.n
minor-prev => o.n.m-1

		Parameters:		kernel – String representing a kernel version to be expanded.

		
autotest.client.kernelexpand.expand_classic(kernel, mirrors)[source]¶

		

		
autotest.client.kernelexpand.get_mappings_2x()[source]¶

		

		
autotest.client.kernelexpand.get_mappings_post_2x()[source]¶

		

		
autotest.client.kernelexpand.mirror_kernel_components(mirrors, components)[source]¶

		

		
autotest.client.kernelexpand.select_kernel_components(components)[source]¶

		

		
autotest.client.kernelexpand.url_accessible(url)[source]¶

		

kvm_control Module¶

Utilities useful to client control files that test KVM.

		
autotest.client.kvm_control.get_kvm_arch()[source]¶

		Get the kvm kernel module to be loaded based on the CPU architecture

		Raises:		error.TestError if no vendor name or cpu flags are found

		Returns:		‘kvm_amd’ or ‘kvm_intel’ or ‘kvm_power7’

		Return type:		string

		
autotest.client.kvm_control.load_kvm()[source]¶

		Loads the appropriate KVM kernel modules depending on the current CPU
architecture

		Returns:		0 on success or 1 on failure

		Return type:		int

		
autotest.client.kvm_control.unload_kvm()[source]¶

		Unloads the current KVM kernel modules (if loaded)

		Returns:		0 on success or 1 on failure

		Return type:		int

local_host Module¶

This file contains the implementation of a host object for the local machine.

		
class autotest.client.local_host.LocalHost(*args, **dargs)[source]¶

		Bases: autotest.client.shared.hosts.base_classes.Host

		
list_files_glob(path_glob)[source]¶

		Get a list of files on a remote host given a glob pattern path.

		
run(command, timeout=3600, ignore_status=False, stdout_tee=<object object>, stderr_tee=<object object>, stdin=None, args=())[source]¶

				See:		shared.hosts.Host.run()

		
symlink_closure(paths)[source]¶

		Given a sequence of path strings, return the set of all paths that
can be reached from the initial set by following symlinks.

		Parameters:		paths – sequence of path strings.

		Returns:		a sequence of path strings that are all the unique paths that
can be reached from the given ones after following symlinks.

		
wait_up(timeout=None)[source]¶

		

lv_utils Module¶

Utility for taking shapshots from existing logical volumes
or creates such.

		author:		Plamen Dimitrov

		copyright:		Intra2net AG 2012

		license:		GPL v2

		param vg_name:		Name of the volume group.

		param lv_name:		Name of the logical volume.

		param lv_size:		Size of the logical volume as string in the form “#G”
(for example 30G).

		param lv_snapshot_name:

		 		Name of the snapshot with origin the logical
volume.

		param lv_snapshot_size:

		 		Size of the snapshot with origin the logical
volume also as “#G”.

		param ramdisk_vg_size:

		 		Size of the ramdisk virtual group.

		param ramdisk_basedir:

		 		Base directory for the ramdisk sparse file.

		param ramdisk_sparse_filename:

		 		Name of the ramdisk sparse file.

Sample ramdisk params:
- ramdisk_vg_size = “40000”
- ramdisk_basedir = “/tmp”
- ramdisk_sparse_filename = “virtual_hdd”

Sample general params:
- vg_name=’autotest_vg’,
- lv_name=’autotest_lv’,
- lv_size=‘1G’,
- lv_snapshot_name=’autotest_sn’,
- lv_snapshot_size=‘1G’
The ramdisk volume group size is in MB.

		
autotest.client.lv_utils.lv_check(vg_name, lv_name)[source]¶

		Check whether provided logical volume exists.

		
autotest.client.lv_utils.lv_list(vg_name)[source]¶

		

		
autotest.client.lv_utils.lv_list_all()[source]¶

		List available group volumes.

		
autotest.client.lv_utils.thin_lv_create(vg_name, thinpool_name='lvthinpool', thinpool_size='1.5G', thinlv_name='lvthin', thinlv_size='1G')[source]¶

		Create a thin volume from given volume group.

		Parameters:				vg_name – An exist volume group

		thinpool_name – The name of thin pool

		thinpool_size – The size of thin pool to be created

		thinlv_name – The name of thin volume

		thinlv_size – The size of thin volume

		
autotest.client.lv_utils.vg_check(vg_name)[source]¶

		Check whether provided volume group exists.

		
autotest.client.lv_utils.vg_list()[source]¶

		List available volume groups.

		
autotest.client.lv_utils.vg_ramdisk_cleanup(ramdisk_filename=None, vg_ramdisk_dir=None, vg_name=None, loop_device=None, use_tmpfs=True)[source]¶

		Inline cleanup function in case of test error.

optparser Module¶

Autotest client/local option parser

		
class autotest.client.optparser.AutotestLocalOptionParser[source]¶

		Bases: optparse.OptionParser

Default autotest option parser

os_dep Module¶

		
class autotest.client.os_dep.Ldconfig[source]¶

		Bases: object

		
class DirEntry(path, flag, ino, dev)[source]¶

		Bases: object

		
LD_SO_CONF = '/etc/ld.so.conf'¶

		

		
MAX_RECURSION_DEPTH = 20¶

		

		
ldconfig(ld_so_conf_filename='/etc/ld.so.conf', extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'))[source]¶

		Read and parse /etc/ld.so.conf to generate a list of directories that ldconfig would search.
Pre-seed the search directory list with (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’)

		Parameters:				ld_so_conf_filename (str) – path to /etc/ld.so.conf

		extra_dirs (iterable) –

		Returns:		iterator over the directories found

		Return type:		iterable

		
parse_conf(filename='/etc/ld.so.conf', recursion=0)[source]¶

		

		
autotest.client.os_dep.command(target, *args, **kwargs)¶

		Find a program by searching in the environment path and in common binary paths.

check both if it is a file and executable
which always returns the abspath
return ‘’ if failure because ‘’ is well-defined NULL path, so it is
better than None or ValueError

		Parameters:				program (str) – command name or path to command

		extra_dirs (iterable) – iterable of extra paths to search

		Returns:		abspath of command if found

		Return type:		str

		Raises:		ValueError – when program not found

		
autotest.client.os_dep.commands(*cmds)[source]¶

		

		
autotest.client.os_dep.exception_when_false_wrapper(func, exception_class, value_error_message_template)[source]¶

		Wrap a function to raise an exception when the return value is not True.

		Parameters:				func (function) – function to wrap

		exception_class (Exception) – exception class to raise

		value_error_message_template (str) – string to pass to exception

		Returns:		wrapped function

		Return type:		function

		Raises:		exception_class – when func returns not true

		
autotest.client.os_dep.generate_bin_search_paths(program, extra_dirs)[source]¶

		Generate full paths of potential locations of a given binary file based on
COMMON_BIN_PATHS.

Use the enviroment variable $PATH seed the list of search directories.

		Parameters:				program (str) – library filename to join with all search directories

		extra_dirs (str) – extra directories to append to the directory search list

		Returns:		iterator over all generated paths

		Return type:		iter

		
autotest.client.os_dep.generate_include_search_paths(hdr, extra_dirs)[source]¶

		Generate full paths of potential locations of a given header file based on
COMMON_HEADER_PATHS.

		Parameters:				hdr (str) – header filename to join with all search directories

		extra_dirs (iterable) – extra directories to append to the directory search list

		Returns:		iterator over all generated paths

		Return type:		iterable

		
autotest.client.os_dep.generate_library_search_paths(lib, extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'), ld_so_conf_filename='/etc/ld.so.conf')[source]¶

		Generate full paths of potential locations of a given library file based on
COMMON_LIB_PATHS.

		Parameters:				lib (str) – library filename to join with all search directories

		extra_dirs (iterable) – extra directories to append to the directory search list

		ld_so_conf_filename (str) – location of /etc/ld.so.conf to parse to find all system library locations

		Returns:		iterator over all generated paths

		Return type:		iterable

		
autotest.client.os_dep.header(target, *args, **kwargs)¶

		Find a header file by searching in the common include search paths, (‘/usr/include’, ‘/usr/local/include’)

Check both if the header is a file and readable.

		Parameters:				hdr (str) – header file or path to header file, e.g. stdio.h

		extra_dirs (iterable) – iterable of extra paths to search

		Returns:		abspath of header if found

		Return type:		str

		Raises:		ValueError – when header is not found

		
autotest.client.os_dep.headers(*hdrs)[source]¶

		

		
autotest.client.os_dep.is_file_and_readable(pth)[source]¶

				Parameters:		pth – path to check

		Returns:		true if the path is a file and R_OK

		Return type:		bool

		
autotest.client.os_dep.is_file_and_rx(pth)[source]¶

				Parameters:		pth – path to check

		Returns:		true if the path is a file and R_OK & X_OK

		Return type:		bool

		
autotest.client.os_dep.libraries(*libs)[source]¶

		

		
autotest.client.os_dep.library(target, *args, **kwargs)¶

		Find a library file by parsing /etc/ld.so.conf and also searcing in the common library search paths, (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’, ‘/lib/tls’, ‘/usr/lib/tls’, ‘/lib64/tls’, ‘/usr/lib64/tls’)

Check both if the library is a file and readable.

		Parameters:				lib (str) – library file or path to library file, e.g. libc.so.6

		extra_dirs (iterable) – iterable of extra paths to search

		Returns:		abspath of library if found

		Return type:		str

		Raises:		ValueError – when library is not found

		
autotest.client.os_dep.make_path_searcher(path_generator, target_predicate, target_normalizer, extra_paths, **kwargs)[source]¶

		Universal search function generator using lazy evaluation.

Generate a function that will iterate over all the paths from path_generator using
target_predicate to filter matching paths. Each matching path is then noramlized by target_predicate.
Only the first match is returned.

		Parameters:				path_generator (iterator) – all paths to test with target_predicate

		target_predicate (function) – boolean function that tests a given path

		target_normalizer (function) – function that transforms a matching path to some noramlized form

		extra_paths (iterator) – extra paths to pass to the path_generator

		Returns:		the path searching function

		Return type:		function

		
autotest.client.os_dep.path_joiner(target, search_paths)[source]¶

		Create a generator that joins target to each search path

		Parameters:				target (str) – filename to join to each search path

		search_paths (iterator) – iterator over all the search paths

		Returns:		iterator over all the joined paths

		Return type:		iterator

		
autotest.client.os_dep.unique_not_false_list(arg_paths)[source]¶

		

		
autotest.client.os_dep.which(target, extra_dirs=('/usr/libexec', '/usr/local/sbin', '/usr/local/bin', '/usr/sbin', '/usr/bin', '/sbin', '/bin'))¶

		Find a program by searching in the environment path and in common binary paths.

check both if it is a file and executable
which always returns the abspath
return ‘’ if failure because ‘’ is well-defined NULL path, so it is
better than None or ValueError

		Parameters:				program (str) – command name or path to command

		extra_dirs (iterble) – iterable of extra paths to search

		Returns:		abspath of command if found, else ‘’

		Return type:		str

		
autotest.client.os_dep.which_header(target, extra_dirs=frozenset([]))¶

		Find a header file by searching in the common include search paths, (‘/usr/include’, ‘/usr/local/include’)

Check both if the header is a file and readable.

		Parameters:				hdr (str) – header file or path to header file, e.g. stdio.h

		extra_dirs (iterable) – iterable of extra paths to search

		Returns:		abspath of header if found, else ‘’

		Return type:		str

		
autotest.client.os_dep.which_library(target, extra_dirs=('/lib', '/usr/lib', '/lib64', '/usr/lib64', '/lib/tls', '/usr/lib/tls', '/lib64/tls', '/usr/lib64/tls'))¶

		Find a library file by parsing /etc/ld.so.conf and also searcing in the common library search paths, (‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’, ‘/lib/tls’, ‘/usr/lib/tls’, ‘/lib64/tls’, ‘/usr/lib64/tls’)

Check both if the library is a file and readable.

		Parameters:				lib (str) – library file or path to library file, e.g. libc.so.6

		extra_dirs (iterable) – iterable of extra paths to search

		Returns:		abspath of library if found, else ‘’

		Return type:		str

parallel Module¶

Parallel execution management

		
autotest.client.parallel.fork_nuke_subprocess(tmp, pid)[source]¶

		

		
autotest.client.parallel.fork_start(tmp, l)[source]¶

		

		
autotest.client.parallel.fork_waitfor(tmp, pid)[source]¶

		

		
autotest.client.parallel.fork_waitfor_timed(tmp, pid, timeout)[source]¶

		Waits for pid until it terminates or timeout expires.
If timeout expires, test subprocess is killed.

partition Module¶

APIs to write tests and control files that handle partition creation, deletion
and formatting.

		copyright:		Google 2006-2008

		author:		Martin Bligh (mbligh@google.com)

		
class autotest.client.partition.FsOptions(fstype, fs_tag, mkfs_flags=None, mount_options=None)[source]¶

		Bases: object

A class encapsulating a filesystem test’s parameters.

		
fs_tag¶

		

		
fstype¶

		

		
mkfs_flags¶

		

		
mount_options¶

		

		
autotest.client.partition.filesystems()[source]¶

		Return a list of all available filesystems

		
autotest.client.partition.filter_partition_list(partitions, devnames)[source]¶

		Pick and choose which partition to keep.

filter_partition_list accepts a list of partition objects and a list
of strings. If a partition has the device name of the strings it
is returned in a list.

		Parameters:				partitions – A list of L{partition} objects

		devnames – A list of devnames of the form ‘/dev/hdc3’ that
specifies which partitions to include in the returned list.

		Returns:		A list of L{partition} objects specified by devnames, in the
order devnames specified

		
autotest.client.partition.get_iosched_path(device_name, component)[source]¶

		

		
autotest.client.partition.get_mount_info(partition_list)[source]¶

		Picks up mount point information about the machine mounts. By default, we
try to associate mount points with UUIDs, because in newer distros the
partitions are uniquely identified using them.

		
autotest.client.partition.get_partition_list(job, min_blocks=0, filter_func=None, exclude_swap=True, open_func=<built-in function open>)[source]¶

		Get a list of partition objects for all disk partitions on the system.

Loopback devices and unnumbered (whole disk) devices are always excluded.

		Parameters:				job – The job instance to pass to the partition object
constructor.

		min_blocks – The minimum number of blocks for a partition to
be considered.

		filter_func – A callable that returns True if a partition is
desired. It will be passed one parameter:
The partition name (hdc3, etc.).
Some useful filter functions are already defined in this module.

		exclude_swap – If True any partition actively in use as a swap
device will be excluded.

		__open – Reserved for unit testing.

		Returns:		A list of L{partition} objects.

		
autotest.client.partition.get_unmounted_partition_list(root_part, job=None, min_blocks=0, filter_func=None, exclude_swap=True, open_func=<built-in function open>)[source]¶

		Return a list of partition objects that are not mounted.

		Parameters:				root_part – The root device name (without the ‘/dev/’ prefix, example
‘hda2’) that will be filtered from the partition list.

Reasoning: in Linux /proc/mounts will never directly mention the
root partition as being mounted on / instead it will say that
/dev/root is mounted on /. Thus require this argument to filter out
the root_part from the ones checked to be mounted.

		min_blocks, filter_func, exclude_swap, open_func (job,) – Forwarded
to get_partition_list().

		Returns:		List of L{partition} objects that are not mounted.

		
autotest.client.partition.is_linux_fs_type(device)[source]¶

		Checks if specified partition is type 83

		Parameters:		device – the device, e.g. /dev/sda3

		Returns:		False if the supplied partition name is not type 83 linux, True
otherwise

		
autotest.client.partition.is_valid_disk(device)[source]¶

		Checks if a disk is valid

		Parameters:		device – e.g. /dev/sda, /dev/hda

		
autotest.client.partition.is_valid_partition(device)[source]¶

		Checks if a partition is valid

		Parameters:		device – e.g. /dev/sda1, /dev/hda1

		
autotest.client.partition.list_mount_devices()[source]¶

		

		
autotest.client.partition.list_mount_points()[source]¶

		

		
autotest.client.partition.parallel(partitions, method_name, *args, **dargs)[source]¶

		Run a partition method (with appropriate arguments) in parallel,
across a list of partition objects

		
class autotest.client.partition.partition(job, device, loop_size=0, mountpoint=None)[source]¶

		Bases: object

Class for handling partitions and filesystems

		
fsck(args='-fy', record=True)[source]¶

		Run filesystem check

		Parameters:		args – arguments to filesystem check tool. Default is “-n”
which works on most tools.

		
get_fsck_exec()[source]¶

		Return the proper mkfs executable based on self.fstype

		
get_io_scheduler(device_name)[source]¶

		

		
get_io_scheduler_list(device_name)[source]¶

		

		
get_mountpoint(open_func=<built-in function open>, filename=None)[source]¶

		Find the mount point of this partition object.

		Parameters:				open_func – the function to use for opening the file containing
the mounted partitions information

		filename – where to look for the mounted partitions information
(default None which means it will search /proc/mounts and/or
/etc/mtab)

		Returns:		a string with the mount point of the partition or None if not
mounted

		
mkfs(fstype=None, args='', record=True)[source]¶

		Format a partition to filesystem type

		Parameters:				fstype – the filesystem type, e.g.. “ext3”, “ext2”

		args – arguments to be passed to mkfs command.

		record – if set, output result of mkfs operation to autotest
output

		
mkfs_exec(fstype)[source]¶

		Return the proper mkfs executable based on fs

		
mount(mountpoint=None, fstype=None, args='', record=True)[source]¶

		Mount this partition to a mount point

		Parameters:				mountpoint – If you have not provided a mountpoint to partition
object or want to use a different one, you may specify it here.

		fstype – Filesystem type. If not provided partition object value
will be used.

		args – Arguments to be passed to “mount” command.

		record – If True, output result of mount operation to autotest
output.

		
run_test(test, **dargs)[source]¶

		

		
run_test_on_partition(test, mountpoint_func, **dargs)[source]¶

		Executes a test fs-style (umount,mkfs,mount,test)

Here we unmarshal the args to set up tags before running the test.
Tests are also run by first umounting, mkfsing and then mounting
before executing the test.

		Parameters:				test – name of test to run

		mountpoint_func – function to return mount point string

		
set_fs_options(fs_options)[source]¶

		Set filesystem options

		param fs_options:

		 		A L{FsOptions} object

		
set_io_scheduler(device_name, name)[source]¶

		

		
setup_before_test(mountpoint_func)[source]¶

		Prepare a partition for running a test. Unmounts any
filesystem that’s currently mounted on the partition, makes a
new filesystem (according to this partition’s filesystem
options) and mounts it where directed by mountpoint_func.

		Parameters:		mountpoint_func – A callable that returns a path as a string,
given a partition instance.

		
unmount(ignore_status=False, record=True)[source]¶

		Umount this partition.

It’s easier said than done to umount a partition.
We need to lock the mtab file to make sure we don’t have any
locking problems if we are umounting in paralllel.

If there turns out to be a problem with the simple umount we
end up calling umount_force to get more aggressive.

		Parameters:				ignore_status – should we notice the umount status

		record – if True, output result of umount operation to
autotest output

		
unmount_force()[source]¶

		Kill all other jobs accessing this partition. Use fuser and ps to find
all mounts on this mountpoint and unmount them.

		Returns:		true for success or false for any errors

		
wipe()[source]¶

		Delete all files of a given partition filesystem.

		
autotest.client.partition.partname_to_device(part)[source]¶

		Converts a partition name to its associated device

		
autotest.client.partition.run_test_on_partitions(job, test, partitions, mountpoint_func, tag, fs_opt, do_fsck=True, **dargs)[source]¶

		Run a test that requires multiple partitions. Filesystems will be
made on the partitions and mounted, then the test will run, then the
filesystems will be unmounted and optionally fsck’d.

		Parameters:				job – A job instance to run the test

		test – A string containing the name of the test

		partitions – A list of partition objects, these are passed to the
test as partitions=

		mountpoint_func – A callable that returns a mountpoint given a
partition instance

		tag – A string tag to make this test unique (Required for control
files that make multiple calls to this routine with the same value
of ‘test’.)

		fs_opt – An FsOptions instance that describes what filesystem to make

		do_fsck – include fsck in post-test partition cleanup.

		dargs – Dictionary of arguments to be passed to job.run_test() and
eventually the test

		
autotest.client.partition.unmount_partition(device)[source]¶

		Unmount a mounted partition

		Parameters:		device – e.g. /dev/sda1, /dev/hda1

		
class autotest.client.partition.virtual_partition(file_img, file_size)[source]¶

		Handles block device emulation using file images of disks.
It’s important to note that this API can be used only if
we have the following programs present on the client machine:

		sfdisk

		losetup

		kpartx

		
destroy()[source]¶

		Removes the virtual partition from /dev/mapper, detaches the image file
from the loopback device and removes the image file.

		
autotest.client.partition.wipe_filesystem(job, mountpoint)[source]¶

		

profiler Module¶

		
class autotest.client.profiler.profiler(job)[source]¶

				
initialize(*args, **dargs)[source]¶

		

		
preserve_srcdir = False¶

		

		
report(test)[source]¶

		

		
setup(*args, **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
supports_reboot = False¶

		

setup Module¶

		
autotest.client.setup.get_filelist()[source]¶

		

		
autotest.client.setup.get_package_data()[source]¶

		

		
autotest.client.setup.get_package_dir()[source]¶

		

		
autotest.client.setup.get_packages()[source]¶

		

		
autotest.client.setup.get_scripts()[source]¶

		

		
autotest.client.setup.run()[source]¶

		

setup_job Module¶

		
autotest.client.setup_job.init_test(options, testdir)[source]¶

		Instantiate a client test object from a given test directory.

		:param options Command line options passed in to instantiate a setup_job

		which associates with this test.

:param testdir The test directory.
:return: A test object or None if failed to instantiate.

		
autotest.client.setup_job.load_all_client_tests(options)[source]¶

		Load and instantiate all client tests.

This function is inspired from runtest() on client/shared/test.py.

		Parameters:		options – an object passed in from command line OptionParser.
See all options defined on client/autotest.

		Returns:		a tuple containing the list of all instantiated tests and
a list of tests that failed to instantiate.

		
class autotest.client.setup_job.setup_job(options)[source]¶

		Bases: autotest.client.job.job

setup_job is a job which runs client test setup() method at server side.

This job is used to pre-setup client tests when development toolchain is not
available at client.

		
autotest.client.setup_job.setup_test(client_test)[source]¶

		Direct invoke test.setup() method.

		Returns:		A boolean to represent success or not.

		
autotest.client.setup_job.setup_tests(options)[source]¶

		Load and instantiate all client tests.

This function is inspired from runtest() on client/shared/test.py.

		Parameters:		options – an object passed in from command line OptionParser.
See all options defined on client/autotest.

setup_modules Module¶

Module used to create the autotest namespace for single dir use case.

Autotest programs can be used and developed without requiring it to be
installed system-wide. In order for the code to see the library namespace:

from autotest.client.shared import error
from autotest.server import hosts
…

Without system wide install, we need some hacks, that are performed here.

		author:		John Admanski (jadmanski@google.com)

		
autotest.client.setup_modules.import_module(module, from_where)[source]¶

		Equivalent to ‘from from_where import module’.

		Parameters:				module – Module name.

		from_where – Package from where the module is being imported.

		Returns:		The corresponding module.

		
autotest.client.setup_modules.setup(base_path, root_module_name='autotest')[source]¶

		Setup a library namespace, with the appropriate top root module name.

Perform all the necessary setup so that all the packages at
‘base_path’ can be imported via “import root_module_name.package”.

		Parameters:				base_path – Base path for the module.

		root_module_name – Top level name for the module.

sysinfo Module¶

test Module¶

		
autotest.client.test.runtest(job, url, tag, args, dargs)[source]¶

		

		
class autotest.client.test.test(job, bindir, outputdir)[source]¶

		Bases: autotest.client.shared.test.base_test

		
configure_crash_handler()[source]¶

				Configure the crash handler by:

				Setting up core size to unlimited

		Putting an appropriate crash handler on /proc/sys/kernel/core_pattern

		Create files that the crash handler will use to figure which tests
are active at a given moment

The crash handler will pick up the core file and write it to
self.debugdir, and perform analysis on it to generate a report. The
program also outputs some results to syslog.

If multiple tests are running, an attempt to verify if we still have
the old PID on the system process table to determine whether it is a
parent of the current test execution. If we can’t determine it, the
core file and the report file will be copied to all test debug dirs.

		
crash_handler_report()[source]¶

		If core dumps are found on the debugdir after the execution of the
test, let the user know.

test_config Module¶

Wrapper around ConfigParser to manage testcases configuration.

		author:		rsalveti@linux.vnet.ibm.com (Ricardo Salveti de Araujo)

		
class autotest.client.test_config.config_loader(cfg, tmpdir='/tmp', raise_errors=False)[source]¶

		Base class of the configuration parser

		
check(section)[source]¶

		Check if the config file has valid values

		
check_parameter(param_type, parameter)[source]¶

		Check if a option has a valid value

		
get(section, option, default=None)[source]¶

		Get the value of a option.

Section of the config file and the option name.
You can pass a default value if the option doesn’t exist.

		Parameters:				section – Configuration file section.

		option – Option we’re looking after.

		Default:		In case the option is not available and raise_errors is set
to False, return the default.

		
remove(section, option)[source]¶

		Remove an option.

		
save()[source]¶

		Save the configuration file with all modifications

		
set(section, option, value)[source]¶

		Set an option.

This change is not persistent unless saved with ‘save()’.

utils Module¶

Convenience functions for use by tests or whomever.

NOTE: this is a mixin library that pulls in functions from several places
Note carefully what the precendece order is

There’s no really good way to do this, as this isn’t a class we can do
inheritance with, just a collection of static methods.

xen Module¶

		
class autotest.client.xen.xen(job, base_tree, results_dir, tmp_dir, build_dir, leave=False, kjob=None)[source]¶

		Bases: autotest.client.kernel.kernel

		
add_to_bootloader(tag='autotest', args='')[source]¶

		add this kernel to bootloader, taking an
optional parameter of space separated parameters
e.g.: kernel.add_to_bootloader(‘mykernel’, ‘ro acpi=off’)

		
build(make_opts='', logfile='', extraversion='autotest')[source]¶

		build xen

		make_opts

		additional options to make, if any

		
build_timed(*args, **kwds)[source]¶

		time the bulding of the kernel

		
config(config_file, config_list=None)[source]¶

		

		
fix_up_xen_kernel_makefile(kernel_dir)[source]¶

		Fix up broken EXTRAVERSION in xen-ified Linux kernel Makefile

		
get_xen_build_ver()[source]¶

		Check Makefile and .config to return kernel version

		
get_xen_kernel_build_ver()[source]¶

		Check xen buildconfig for current kernel version

		
install(tag='', prefix='/', extraversion='autotest')[source]¶

		make install in the kernel tree

		
log(msg)[source]¶

		

Subpackages¶

net Package¶

basic_machine Module¶

common Module¶

net_tc Module¶

Convenience methods for use to manipulate traffic control settings.

see http://linux.die.net/man/8/tc for details about traffic controls in linux.

		Example

				try:

		import autotest.common as common # pylint: disable=W0611

		except ImportError:

		
import common # pylint: disable=W0611

from autotest.client.net.net_tc import *
from autotest.client.net.net_utils import *

class mock_netif(object):

		def __init__(self, name):

		self._name = name

		def get_name(self):

		return self._name

netem_qdisc = netem()
netem_qdisc.add_param(‘loss 100%’)

ack_filter = u32filter()
ack_filter.add_rule(‘match ip protocol 6 0xff’)
ack_filter.add_rule(‘match u8 0x10 0x10 at nexthdr+13’)
ack_filter.set_dest_qdisc(netem_qdisc)

root_qdisc = prio()
root_qdisc.get_class(2).set_leaf_qdisc(netem_qdisc)
root_qdisc.add_filter(ack_filter)

lo_if = mock_netif(‘lo’)

root_qdisc.setup(lo_if)

run test here …
root_qdisc.restore(lo_if)

		
class autotest.client.net.net_tc.classful_qdisc(handle)[source]¶

		Bases: autotest.client.net.net_tc.qdisc

		
add_class(child_class)[source]¶

		

		
add_filter(filter)[source]¶

		

		
classful = True¶

		

		
restore(netif)[source]¶

		

		
setup(netif)[source]¶

		

		
class autotest.client.net.net_tc.classless_qdisc(handle)[source]¶

		Bases: autotest.client.net.net_tc.qdisc

		
classful = False¶

		

		
class autotest.client.net.net_tc.netem(handle=300)[source]¶

		Bases: autotest.client.net.net_tc.classless_qdisc

		
add_param(param)[source]¶

		

		
name = 'netem'¶

		

		
setup(netif)[source]¶

		

		
autotest.client.net.net_tc.new_handle()[source]¶

		

		
class autotest.client.net.net_tc.pfifo(handle=200)[source]¶

		Bases: autotest.client.net.net_tc.classless_qdisc

		
name = 'pfifo'¶

		

		
setup(netif)[source]¶

		

		
class autotest.client.net.net_tc.prio(handle=100, bands=3)[source]¶

		Bases: autotest.client.net.net_tc.classful_qdisc

		
get_class(band)[source]¶

		

		
name = 'prio'¶

		

		
setup(netif)[source]¶

		

		
class autotest.client.net.net_tc.qdisc(handle)[source]¶

		Bases: object

		
get_handle()[source]¶

		

		
get_parent_class()[source]¶

		

		
id()[source]¶

		

		
restore(netif)[source]¶

		

		
set_parent_class(parent_class)[source]¶

		

		
setup(netif)[source]¶

		

		
tc_cmd(tc_conf)[source]¶

		

		
class autotest.client.net.net_tc.tcclass(handle, minor, leaf_qdisc=None)[source]¶

		Bases: object

		
add_child(child_class)[source]¶

		

		
get_leaf_qdisc()[source]¶

		

		
get_minor()[source]¶

		

		
get_parent_class()[source]¶

		

		
id()[source]¶

		

		
restore(netif)[source]¶

		

		
set_leaf_qdisc(leaf_qdisc)[source]¶

		

		
set_parent_class(parent_class)[source]¶

		

		
setup(netif)[source]¶

		

		
class autotest.client.net.net_tc.tcfilter[source]¶

		Bases: object

		
conf_command = 'cmd'¶

		

		
conf_device = 'dev'¶

		

		
conf_flowid = 'flowid'¶

		

		
conf_name = 'name'¶

		

		
conf_params = 'params'¶

		

		
conf_parent = 'parent'¶

		

		
conf_priority = 'priority'¶

		

		
conf_protocol = 'protocol'¶

		

		
conf_qdiscid = 'qdiscid'¶

		

		
conf_rules = 'cmd'¶

		

		
conf_type = 'filtertype'¶

		

		
get_dest_qdisc()[source]¶

		

		
get_handle()[source]¶

		

		
get_parent_qdisc()[source]¶

		

		
get_priority()[source]¶

		

		
get_protocol()[source]¶

		

		
restore(netif)[source]¶

		

		
set_dest_qdisc(dest_qdisc)[source]¶

		

		
set_handle(handle)[source]¶

		

		
set_parent_qdisc(parent_qdisc)[source]¶

		

		
set_priority(priority)[source]¶

		

		
set_protocol(protocol)[source]¶

		

		
setup(netif)[source]¶

		

		
tc_cmd(tc_conf)[source]¶

		

		
class autotest.client.net.net_tc.u32filter[source]¶

		Bases: autotest.client.net.net_tc.tcfilter

		
add_rule(rule)[source]¶

		

		
filtertype = 'u32'¶

		

		
restore(netif)[source]¶

		

		
setup(netif)[source]¶

		

net_utils Module¶

Convenience functions for use by network tests or whomever.

This library is to release in the public repository.

		
autotest.client.net.net_utils.bond()[source]¶

		

		
class autotest.client.net.net_utils.bonding[source]¶

		Bases: object

This class implements bonding interface abstraction.

		
AB_MODE = 1¶

		

		
AD_MODE = 2¶

		

		
NO_MODE = 0¶

		

		
disable()[source]¶

		

		
enable()[source]¶

		

		
get_active_interfaces()[source]¶

		

		
get_mii_status()[source]¶

		

		
get_mode()[source]¶

		

		
get_slave_interfaces()[source]¶

		

		
is_bondable()[source]¶

		

		
is_enabled()[source]¶

		

		
wait_for_state_change()[source]¶

		Wait for bonding state change.

Wait up to 90 seconds to successfully ping the gateway.
This is to know when LACP state change has converged.
(0 seconds is 3x lacp timeout, use by protocol)

		
class autotest.client.net.net_utils.ethernet[source]¶

		Bases: object

Provide ethernet packet manipulation methods.

		
CHECKSUM_LEN = 4¶

		

		
ETH_LLDP_DST_MAC = '01:80:C2:00:00:0E'¶

		

		
ETH_PACKET_MAX_SIZE = 1518¶

		

		
ETH_PACKET_MIN_SIZE = 64¶

		

		
ETH_TYPE_8021Q = 33024¶

		

		
ETH_TYPE_ARP = 2054¶

		

		
ETH_TYPE_CDP = 8192¶

		

		
ETH_TYPE_IP = 2048¶

		

		
ETH_TYPE_IP6 = 34525¶

		

		
ETH_TYPE_LLDP = 35020¶

		

		
ETH_TYPE_LOOPBACK = 36864¶

		

		
FRAME_KEY_DST_MAC = 'dst'¶

		

		
FRAME_KEY_PAYLOAD = 'payload'¶

		

		
FRAME_KEY_PROTO = 'proto'¶

		

		
FRAME_KEY_SRC_MAC = 'src'¶

		

		
HDR_LEN = 14¶

		

		
static mac_binary_to_string(hwaddr)[source]¶

		Converts a MAC address byte string to text string.

Converts a MAC byte string ‘xxxxxxxxxxxx’ to a text string
‘aa:aa:aa:aa:aa:aa’

		Args:

		hwaddr: a byte string containing the MAC address to convert.

		Returns:

		A text string.

		
static mac_string_to_binary(hwaddr)[source]¶

		Converts a MAC address text string to byte string.

Converts a MAC text string from a text string ‘aa:aa:aa:aa:aa:aa’
to a byte string ‘xxxxxxxxxxxx’

		Args:

		hwaddr: a text string containing the MAC address to convert.

		Returns:

		A byte string.

		
static pack(dst, src, protocol, payload)[source]¶

		Pack a frame in a byte string.

		Args:

		dst: destination mac in byte string format
src: src mac address in byte string format
protocol: short in network byte order
payload: byte string payload data

		Returns:

		An ethernet frame with header and payload in a byte string.

		
static unpack(raw_frame)[source]¶

		Unpack a raw ethernet frame.

		Returns:

				None on error

				{ ‘dst’ : byte string,

		‘src’ : byte string,
‘proto’ : short in host byte order,
‘payload’ : byte string

}

		
autotest.client.net.net_utils.ethernet_packet()[source]¶

		

		
autotest.client.net.net_utils.netif(name)[source]¶

		

		
autotest.client.net.net_utils.network()[source]¶

		

		
class autotest.client.net.net_utils.network_interface(name)[source]¶

		Bases: object

		
DISABLE = False¶

		

		
ENABLE = True¶

		

		
add_maddr(maddr)[source]¶

		

		
del_maddr(maddr)[source]¶

		

		
disable_loopback()[source]¶

		

		
disable_promisc()[source]¶

		

		
down()[source]¶

		

		
enable_loopback()[source]¶

		

		
enable_promisc()[source]¶

		

		
exists()[source]¶

		

		
flush()[source]¶

		

		
get_advertised_link_modes()[source]¶

		

		
get_carrier()[source]¶

		

		
get_driver()[source]¶

		

		
get_hwaddr()[source]¶

		

		
get_ipaddr()[source]¶

		

		
get_name()[source]¶

		

		
get_speed()[source]¶

		

		
get_stats()[source]¶

		

		
get_stats_diff(orig_stats)[source]¶

		

		
get_supported_link_modes()[source]¶

		

		
get_wakeon()[source]¶

		

		
is_autoneg_advertised()[source]¶

		

		
is_autoneg_on()[source]¶

		

		
is_down()[source]¶

		

		
is_full_duplex()[source]¶

		

		
is_loopback_enabled()[source]¶

		

		
is_pause_autoneg_on()[source]¶

		

		
is_rx_pause_on()[source]¶

		

		
is_rx_summing_on()[source]¶

		

		
is_scatter_gather_on()[source]¶

		

		
is_tso_on()[source]¶

		

		
is_tx_pause_on()[source]¶

		

		
is_tx_summing_on()[source]¶

		

		
parse_ethtool(field, match, option='', next_field='')[source]¶

		

		
recv(len)[source]¶

		

		
restore()[source]¶

		

		
send(buf)[source]¶

		

		
set_hwaddr(hwaddr)[source]¶

		

		
set_ipaddr(ipaddr)[source]¶

		

		
up()[source]¶

		

		
wait_for_carrier(timeout=60)[source]¶

		

		
class autotest.client.net.net_utils.network_utils[source]¶

		Bases: object

		
disable_ip_local_loopback(ignore_status=False)[source]¶

		

		
enable_ip_local_loopback(ignore_status=False)[source]¶

		

		
get_ip_local(query_ip, netmask='24')[source]¶

		Get ip address in local system which can communicate with query_ip.

		Parameters:		query_ip – IP of client which wants to communicate with
autotest machine.

		Returns:		IP address which can communicate with query_ip

		
list()[source]¶

		

		
process_mpstat(mpstat_out, sample_count, loud=True)[source]¶

		Parses mpstat output of the following two forms:
02:10:17 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 1012.87
02:10:13 PM 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 1019.00

		
reset(ignore_status=False)[source]¶

		

		
start(ignore_status=False)[source]¶

		

		
stop(ignore_status=False)[source]¶

		

		
class autotest.client.net.net_utils.raw_socket(iface_name)[source]¶

		Bases: object

This class implements an raw socket abstraction.

		
ETH_P_ALL = 3¶

		

		
SOCKET_TIMEOUT = 1¶

		

		
close()[source]¶

		Close the raw socket

		
open(protocol=None)[source]¶

		Opens the raw socket to send and receive.

		Args:

		protocol : short in host byte order. None if ALL

		
recv(timeout)[source]¶

		Synchroneous receive.

Receives one packet from the interface and returns its content
in a string. Wait up to timeout for the packet if timeout is
not 0. This function filters out all the packets that are
less than the minimum ethernet packet size (60+crc).

		Args:

				timeout: max time in seconds to wait for the read to complete.

		‘0’, wait for ever until a valid packet is received

		Returns:

				packet: None no packet was received

		a binary string containing the received packet.

time_left: amount of time left in timeout

		
recv_from(dst_mac, src_mac, protocol)[source]¶

		Receive an ethernet frame that matches the dst, src and proto.

Filters all received packet to find a matching one, then unpack
it and present it to the caller as a frame.

Waits up to self._socket_timeout for a matching frame before
returning.

		Args:

		dst_mac: ‘byte string’. None do not use in filter.
src_mac: ‘byte string’. None do not use in filter.
protocol: short in host byte order. None do not use in filter.

		Returns:

				ethernet frame: { ‘dst’ : byte string,

		
‘src’ : byte string,
‘proto’ : short in host byte order,
‘payload’ : byte string

}

		
send(packet)[source]¶

		Send an ethernet packet.

		
send_to(dst_mac, src_mac, protocol, payload)[source]¶

		Send an ethernet frame.

Send an ethernet frame, formating the header.

		Args:

		dst_mac: ‘byte string’
src_mac: ‘byte string’
protocol: short in host byte order
payload: ‘byte string’

		
set_socket_timeout(timeout)[source]¶

		Set the timeout use by recv_from.

		Args:

		timeout: time in seconds

		
socket()[source]¶

		

		
socket_timeout()[source]¶

		Get the timeout use by recv_from

net_utils_mock Module¶

Set of Mocks and stubs for network utilities unit tests.

Implement a set of mocks and stubs use to implement unit tests
for the network libraries.

		
class autotest.client.net.net_utils_mock.netif_stub(iface, cls, name, *args, **kwargs)[source]¶

		Bases: autotest.client.shared.test_utils.mock.mock_class

		
wait_for_carrier(timeout)[source]¶

		

		
autotest.client.net.net_utils_mock.netutils_netif(iface)[source]¶

		

		
class autotest.client.net.net_utils_mock.network_interface_mock(iface='some_name', test_init=False)[source]¶

		Bases: autotest.client.net.net_utils.network_interface

		
get_driver()[source]¶

		

		
get_ipaddr()[source]¶

		

		
is_down()[source]¶

		

		
is_loopback_enabled()[source]¶

		

		
wait_for_carrier(timeout=1)[source]¶

		

		
autotest.client.net.net_utils_mock.os_open(*args, **kwarg)[source]¶

		

		
class autotest.client.net.net_utils_mock.os_stub(symbol, **kwargs)[source]¶

		Bases: autotest.client.shared.test_utils.mock.mock_function

		
open(*args, **kwargs)[source]¶

		

		
read(*args, **kwargs)[source]¶

		

		
readval = ''¶

		

		
class autotest.client.net.net_utils_mock.socket_stub(iface, cls, name, *args, **kwargs)[source]¶

		Bases: autotest.client.shared.test_utils.mock.mock_class

Class use to mock sockets.

		
bind(arg)[source]¶

		

		
close()[source]¶

		

		
recv(size)[source]¶

		

		
send(buf)[source]¶

		

		
settimeout(timeout)[source]¶

		

		
socket(family, type)[source]¶

		

profilers Package¶

profilers Package¶

		
class autotest.client.profilers.profilers(job)[source]¶

		Bases: autotest.client.shared.profiler_manager.profiler_manager

		
load_profiler(profiler, args, dargs)[source]¶

		Given a name and args, loads a profiler, initializes it
with the required arguments, and returns an instance of it. Raises
a ProfilerNotPresentError if the module isn’t found.

Subpackages¶

blktrace Package¶

blktrace Module¶
Autotest profiler for blktrace
blktrace - generate traces of the i/o traffic on block devices

		
class autotest.client.profilers.blktrace.blktrace.blktrace(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
get_device(test)[source]¶

		

		
initialize(**dargs)[source]¶

		

		
report(test)[source]¶

		

		
setup(tarball='blktrace.tar.bz2', **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 2¶

		

catprofile Package¶

catprofile Module¶
Sets up a subprocses to cat a file on a specified interval

Defaults options:
job.profilers.add(‘catprofile’, [‘/proc/meminfo’,’/proc/uptime’],

outfile=monitor, interval=1)

		
class autotest.client.profilers.catprofile.catprofile.catprofile(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(filenames=['/proc/meminfo', '/proc/slabinfo'], outfile='monitor', interval=1, **dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

cmdprofile Package¶

cmdprofile Module¶
Sets up a subprocess to run any generic command in the background every
few seconds (by default the interval is 60 secs)

		
class autotest.client.profilers.cmdprofile.cmdprofile.cmdprofile(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(cmds=['ps'], interval=60, outputfile='cmdprofile', outputfiles=None, **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
supports_reboot = True¶

		

		
version = 2¶

		

cpistat Package¶

cpistat Module¶
Uses perf_events to count cycles and instructions

Defaults options:
job.profilers.add(‘cpistat’, interval=1)

		
class autotest.client.profilers.cpistat.cpistat.cpistat(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(interval=1, **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

ftrace Package¶

ftrace Module¶
Function tracer profiler for autotest.

		author:		David Sharp (dhsharp@google.com)

		
class autotest.client.profilers.ftrace.ftrace.ftrace(job)[source]¶

		Bases: autotest.client.profiler.profiler

ftrace profiler for autotest. It builds ftrace from souce and runs
trace-cmd with configurable parameters.

@see: git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git

		
initialize(tracepoints, buffer_size_kb=1408, **kwargs)[source]¶

		Initialize ftrace profiler.

		Parameters:				tracepoints – List containing a mix of tracpoint names and
(tracepoint name, filter) tuples. Tracepoint names are as
accepted by trace-cmd -e, eg “syscalls”, or
“syscalls:sys_enter_read”. Filters are as accepted by
trace-cmd -f, eg “((sig >= 10 && sig < 15) || sig == 17)”

		buffer_size_kb – Set the size of the ring buffer (per cpu).

		
static join_command()[source]¶

		Shell escape the command for BgJob. grmbl.

		Parameters:		cmd – Command list.

		
mountpoint = '/sys/kernel/debug'¶

		

		
setup(tarball='trace-cmd.tar.bz2', **kwargs)[source]¶

		Build and install trace-cmd from source.

The tarball was obtained by checking the git repo at 09-14-2010,
removing the Documentation and the .git folders, and compressing
it.

		Parameters:				tarball – Path to trace-cmd tarball.

		**kwargs – Dictionary with additional parameters.

		
start(test)[source]¶

		Start ftrace profiler

		Parameters:		test – Autotest test in which the profiler will operate on.

		
stop(test)[source]¶

		Stop ftrace profiler.

		Parameters:		test – Autotest test in which the profiler will operate on.

		
tracing_dir = '/sys/kernel/debug/tracing'¶

		

		
version = 1¶

		

inotify Package¶

inotify Module¶
inotify logs filesystem activity that may be directly or indirectly caused
by the test that is running. It requires the inotify-tools package, more
specifically, the inotifywait tool.

Heavily inspired / shamelessly copied from the kvm_stat profiler.

		copyright:		Red Hat 2013

		author:		Cleber Rosa <cleber@redhat.com>

		
class autotest.client.profilers.inotify.inotify.inotify(job)[source]¶

		Bases: autotest.client.profiler.profiler

Profiler based on inotifywait from inotify-tools

		
initialize(paths=[])[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

iostat Package¶

iostat Module¶
Run iostat with a default interval of 1 second.

		
class autotest.client.profilers.iostat.iostat.iostat(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(interval=1, options='', **dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 2¶

		

kvm_stat Package¶

kvm_stat Module¶
kvm_stat prints statistics generated by the kvm module.
It depends on debugfs. If no debugfs is mounted, the profiler
will try to mount it so it’s possible to proceed.

		copyright:		Red Hat 2010

		author:		Lucas Meneghel Rodrigues (lmr@redhat.com)

		
class autotest.client.profilers.kvm_stat.kvm_stat.kvm_stat(job)[source]¶

		Bases: autotest.client.profiler.profiler

kvm_stat based profiler. Consists on executing kvm_stat -l during a given
test execution, redirecting its output to a file on the profile dir.

		
initialize(**dargs)[source]¶

		Gets path of kvm_stat and verifies if debugfs needs to be mounted.

		
report(test)[source]¶

		Report function. Does nothing as there’s no postprocesing needed.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
start(test)[source]¶

		Starts kvm_stat subprocess.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
stop(test)[source]¶

		Stops profiler execution by sending a SIGTERM to kvm_stat process.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
version = 1¶

		

lockmeter Package¶

lockmeter Module¶
Lockstat is the basic tool used to control the kernel’s Lockmeter
functionality: e.g., turning the kernel’s data gathering on or off, and
retrieving that data from the kernel so that Lockstat can massage it and
produce printed reports. See http://oss.sgi.com/projects/lockmeter for
details.

NOTE: if you get compile errors from config.h, referring you to a FAQ,
you might need to do ‘cat < /dev/null > /usr/include/linux/config.h’.
But read the FAQ first.

		
class autotest.client.profilers.lockmeter.lockmeter.lockmeter(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(**dargs)[source]¶

		

		
report(test)[source]¶

		

		
setup(tarball='lockstat-1.4.11.tar.bz2')[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

lttng Package¶

lttng Module¶
Trace kernel events with Linux Tracing Toolkit (lttng).
You need to install the lttng patched kernel in order to use the profiler.

Examples:

job.profilers.add('lttng', tracepoints = None): enable all trace points.
job.profilers.add('lttng', tracepoints = []): disable all trace points.
job.profilers.add('lttng', tracepoints = ['kernel_arch_syscall_entry',
 'kernel_arch_syscall_exit'])

will only trace syscall events.
Take a look at /proc/ltt for the list of the tracing events currently
supported by lttng and their output formats.

To view the collected traces, copy results/your-test/profiler/lttng
to a machine that has Linux Tracing Toolkit Viewer (lttv) installed:

test$ scp -r results/your-test/profiler/lttng user@localmachine:/home/tmp/

Then you can examine the traces either in text mode or in GUI:

localmachine$ lttv -m textDump -t /home/tmp/lttng

or

localmachine$ lttv-gui -t /home/tmp/lttng &

		
class autotest.client.profilers.lttng.lttng.lttng(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(outputsize=1048576, tracepoints=None, **dargs)[source]¶

		

		
setup(tarball='ltt-control-0.51-12082008.tar.gz', **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

mpstat Package¶

mpstat Module¶
Sets up a subprocess to run mpstat on a specified interval, default 1 second

		
class autotest.client.profilers.mpstat.mpstat.mpstat(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(interval=1, **dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

oprofile Package¶

oprofile Module¶
OProfile is a system-wide profiler for Linux systems,
capable of profiling all running code at low overhead.
OProfile is released under the GNU GPL.

It consists of a kernel driver and a daemon for collecting sample data,
and several post-profiling tools for turning data into information.

More Info: http://oprofile.sourceforge.net/
Will need some libaries to compile. Do ‘apt-get build-dep oprofile’

		
class autotest.client.profilers.oprofile.oprofile.oprofile(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(vmlinux=None, events=[], others=None, local=None, **dargs)[source]¶

		

		
report(test)[source]¶

		

		
setup(tarball='oprofile-0.9.4.tar.bz2', local=None, *args, **dargs)[source]¶

		

		
setup_done = False¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 7¶

		

perf Package¶

perf Module¶
perf is a tool included in the linux kernel tree that
supports functionality similar to oprofile and more.

@see: http://lwn.net/Articles/310260/

		
class autotest.client.profilers.perf.perf.perf(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(events=['cycles', 'instructions'], trace=False, **dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

powertop Package¶

powertop Module¶
What’s eating the battery life of my laptop? Why isn’t it many more
hours? Which software component causes the most power to be burned?
These are important questions without a good answer… until now.

		
class autotest.client.profilers.powertop.powertop.powertop(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
preserve_srcdir = True¶

		

		
report(test)[source]¶

		

		
setup(*args, **dargs)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

readprofile Package¶

readprofile Module¶
readprofile - a tool to read kernel profiling information

The readprofile command uses the /proc/profile information to print ascii data
on standard output. The output is organized in three columns: the first is the
number of clock ticks, the second is the name of the C function in the kernel
where those many ticks occurred, and the third is the normalized `load’ of the
procedure, calculated as a ratio between the number of ticks and the length of
the procedure. The output is filled with blanks to ease readability.

		
class autotest.client.profilers.readprofile.readprofile.readprofile(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(**dargs)[source]¶

		

		
report(test)[source]¶

		

		
setup(tarball='util-linux-2.12r.tar.bz2')[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

sar Package¶

sar Module¶
Sets up a subprocess to run sar from the sysstat suite

Default options:
sar -A -f

		
class autotest.client.profilers.sar.sar.sar(job)[source]¶

		Bases: autotest.client.profiler.profiler

The sar command writes to standard output the contents of selected
cumulative activity counters in the operating system. This profiler
executes sar and redirects its output in a file located in the profiler
results dir.

		
initialize(interval=1, **dargs)[source]¶

		Set sar interval and verify what flags the installed sar supports.

		Parameters:		interval – Interval used by sar to produce system data.

		
report(test)[source]¶

		Report function. Convert the binary sar data to text.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
start(test)[source]¶

		Starts sar subprocess.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
stop(test)[source]¶

		Stops profiler execution by sending a SIGTERM to sar process.

		Parameters:		test – Autotest test on which this profiler will operate on.

		
version = 1¶

		

systemtap Package¶

systemtap Module¶
Autotest systemtap profiler.

		
class autotest.client.profilers.systemtap.systemtap.systemtap(job)[source]¶

		Bases: autotest.client.profiler.profiler

Tracing test process using systemtap tools.

		
initialize(**dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

vmstat Package¶

vmstat Module¶
Runs vmstat X where X is the interval in seconds

Defaults options:
job.profilers.add(‘vmstat’, interval=1)

		
class autotest.client.profilers.vmstat.vmstat.vmstat(job)[source]¶

		Bases: autotest.client.profiler.profiler

		
initialize(interval=1, **dargs)[source]¶

		

		
report(test)[source]¶

		

		
start(test)[source]¶

		

		
stop(test)[source]¶

		

		
version = 1¶

		

shared Package¶

autotemp Module¶

Autotest tempfile wrapper for mkstemp (known as tempfile here) and
mkdtemp (known as tempdir).

This wrapper provides a mechanism to clean up temporary files/dirs once they
are no longer need.

Files/Dirs will have a unique_id prepended to the suffix and a
autotmp tag appended to the prefix.

It is required that the unique_id param is supplied when a temp dir/file is
created.

		
class autotest.client.shared.autotemp.tempdir(suffix='', unique_id=None, prefix='', dir=None)[source]¶

		Bases: object

A wrapper for tempfile.mkdtemp

@var name: The name of the temporary dir.
:return: A tempdir object
example usage:

b = autotemp.tempdir(unique_id=’exemdir’)
b.name # your directory
b.clean() # clean up after yourself

		
clean()[source]¶

		Remove the temporary dir that was created.
This is also called by the destructor.

		
class autotest.client.shared.autotemp.tempfile(unique_id, suffix='', prefix='', dir=None, text=False)[source]¶

		Bases: object

A wrapper for tempfile.mkstemp

		Parameters:		unique_id – required, a unique string to help identify what
part of code created the tempfile.

@var name: The name of the temporary file.
@var fd: the file descriptor of the temporary file that was created.
:return: a tempfile object
example usage:

t = autotemp.tempfile(unique_id=’fig’)
t.name # name of file
t.fd # file descriptor
t.fo # file object
t.clean() # clean up after yourself

		
clean()[source]¶

		Remove the temporary file that was created.
This is also called by the destructor.

barrier Module¶

base_barrier Module¶

		
exception autotest.client.shared.base_barrier.BarrierAbortError[source]¶

		Bases: autotest.client.shared.error.BarrierError

Special BarrierError raised when an explicit abort is requested.

		
class autotest.client.shared.base_barrier.barrier(hostid, tag, timeout=None, port=None, listen_server=None)[source]¶

		Bases: object

Multi-machine barrier support.

Provides multi-machine barrier mechanism.
Execution stops until all members arrive at the barrier.

Implementation Details:

When a barrier is forming the master node (first in sort order) in the
set accepts connections from each member of the set. As they arrive
they indicate the barrier they are joining and their identifier (their
hostname or IP address and optional tag). They are then asked to wait.
When all members are present the master node then checks that each
member is still responding via a ping/pong exchange. If this is
successful then everyone has checked in at the barrier. We then tell
everyone they may continue via a rlse message.

Where the master is not the first to reach the barrier the client
connects will fail. Client will retry until they either succeed in
connecting to master or the overall timeout is exceeded.

As an example here is the exchange for a three node barrier called
‘TAG’

		MASTER CLIENT1 CLIENT2

		<————-TAG C1————-
————–wait————–>

[…]

<————-TAG C2—————————–
————–wait——————————>

[…]

————–ping————–>
<————-pong—————
————–ping——————————>
<————-pong——————————-

—– BARRIER conditions MET —–

————–rlse————–>
————–rlse——————————>

Note that once the last client has responded to pong the barrier is
implicitly deemed satisifed, they have all acknowledged their presence.
If we fail to send any of the rlse messages the barrier is still a
success, the failed host has effectively broken ‘right at the beginning’
of the post barrier execution window.

In addition, there is another rendezvous, that makes each slave a server
and the master a client. The connection process and usage is still the
same but allows barriers from machines that only have a one-way
connection initiation. This is called rendezvous_servers.

		For example:

				if ME == SERVER:

		server start

b = job.barrier(ME, ‘server-up’, 120)
b.rendezvous(CLIENT, SERVER)

		if ME == CLIENT:

		client run

b = job.barrier(ME, ‘test-complete’, 3600)
b.rendezvous(CLIENT, SERVER)

		if ME == SERVER:

		server stop

Any client can also request an abort of the job by setting
abort=True in the rendezvous arguments.

		
rendezvous(*hosts, **dargs)[source]¶

		

		
rendezvous_servers(masterid, *hosts, **dargs)[source]¶

		

		
autotest.client.shared.base_barrier.get_host_from_id(hostid)[source]¶

		

		
class autotest.client.shared.base_barrier.listen_server(address='', port=11922)[source]¶

		Bases: object

Manages a listening socket for barrier.

Can be used to run multiple barrier instances with the same listening
socket (if they were going to listen on the same port).

Attributes:

		Attr address:		Address to bind to (string).

		Attr port:		Port to bind to.

		Attr socket:		Listening socket object.

		
close()[source]¶

		Close the listening socket.

base_check_version Module¶

		
class autotest.client.shared.base_check_version.base_check_python_version[source]¶

				
PYTHON_BIN_GLOB_STRINGS = ['/usr/bin/python2*', '/usr/local/bin/python2*']¶

		

		
extract_version(path)[source]¶

		

		
find_desired_python()[source]¶

		Returns the path of the desired python interpreter.

		
restart()[source]¶

		

base_job Module¶

		
class autotest.client.shared.base_job.TAPReport(enable, resultdir=None, global_filename='status')[source]¶

		Bases: object

Deal with TAP reporting for the Autotest client.

		
job_statuses = {'ABORT': False, 'ALERT': False, 'END GOOD': True, 'ERROR': False, 'FAIL': False, 'GOOD': True, 'NOSTATUS': False, 'RUNNING': False, 'START': True, 'TEST_NA': False, 'WARN': False}¶

		

		
record(log_entry, indent, log_files)[source]¶

		Append a job-level status event to self._reports_container. All
events will be written to TAP log files at the end of the test run.
Otherwise, it’s impossilble to determine the TAP plan.

		Parameters:				log_entry – A string status code describing the type of status
entry being recorded. It must pass log.is_valid_status to be
considered valid.

		indent – Level of the log_entry to determine the operation if
log_entry.operation is not given.

		log_files – List of full path of files the TAP report will be
written to at the end of the test.

		
record_keyval(path, dictionary, type_tag=None)[source]¶

		Append a key-value pairs of dictionary to self._keyval_container in
TAP format. Once finished write out the keyval.tap file to the file
system.

If type_tag is None, then the key must be composed of alphanumeric
characters (or dashes + underscores). However, if type-tag is not
null then the keys must also have “{type_tag}” as a suffix. At
the moment the only valid values of type_tag are “attr” and “perf”.

		Parameters:				path – The full path of the keyval.tap file to be created

		dictionary – The keys and values.

		type_tag – The type of the values

		
classmethod tap_ok(success, counter, message)[source]¶

		return a TAP message string.

		Parameters:				success – True for positive message string.

		counter – number of TAP line in plan.

		message – additional message to report in TAP line.

		
write()[source]¶

		Write the TAP reports to files.

		
class autotest.client.shared.base_job.base_job(*args, **dargs)[source]¶

		Bases: object

An abstract base class for the various autotest job classes.

		Property autodir:

		 		The top level autotest directory.

		Property clientdir:

		 		The autotest client directory.

		Property serverdir:

		 		The autotest server directory. [OPTIONAL]

		Property resultdir:

		 		The directory where results should be written out.
[WRITABLE]

		Property pkgdir:

		 		The job packages directory. [WRITABLE]

		Property tmpdir:

		 		The job temporary directory. [WRITABLE]

		Property testdir:

		 		The job test directory. [WRITABLE]

		Property customtestdir:

		 		The custom test directory. [WRITABLE]

		Property site_testdir:

		 		The job site test directory. [WRITABLE]

		Property bindir:

		 		The client bin/ directory.

		Property configdir:

		 		The client config/ directory.

		Property profdir:

		 		The client profilers/ directory.

		Property toolsdir:

		 		The client tools/ directory.

		Property conmuxdir:

		 		The conmux directory. [OPTIONAL]

		Property control:

		 		A path to the control file to be executed. [OPTIONAL]

		Property hosts:		A set of all live Host objects currently in use by the
job. Code running in the context of a local client can
safely assume that this set contains only a single entry.

		Property machines:

		 		A list of the machine names associated with the job.

		Property user:		The user executing the job.

		Property tag:		A tag identifying the job. Often used by the scheduler to
give a name of the form NUMBER-USERNAME/HOSTNAME.

		Property args:		A list of additional miscellaneous command-line arguments
provided when starting the job.

		Property last_boot_tag:

		 		The label of the kernel from the last reboot.
[OPTIONAL,PERSISTENT]

		Property automatic_test_tag:

		 		A string which, if set, will be automatically
added to the test name when running tests.

		Property default_profile_only:

		 		A boolean indicating the default value of
profile_only used by test.execute.
[PERSISTENT]

		Property drop_caches:

		 		A boolean indicating if caches should be dropped
before each test is executed.

		Property drop_caches_between_iterations:

		 		A boolean indicating if caches
should be dropped before each
test iteration is executed.

		Property run_test_cleanup:

		 		A boolean indicating if test.cleanup should be
run by default after a test completes, if the
run_cleanup argument is not specified.
[PERSISTENT]

		Property num_tests_run:

		 		The number of tests run during the job. [OPTIONAL]

		Property num_tests_failed:

		 		The number of tests failed during the job.
[OPTIONAL]

		Property bootloader:

		 		An instance of the boottool class. May not be
available on job instances where access to the
bootloader is not available (e.g. on the server
running a server job). [OPTIONAL]

		Property harness:

		 		An instance of the client test harness. Only available
in contexts where client test execution happens.
[OPTIONAL]

		Property logging:

		 		An instance of the logging manager associated with the
job.

		Property profilers:

		 		An instance of the profiler manager associated with
the job.

		Property sysinfo:

		 		An instance of the sysinfo object. Only available in
contexts where it’s possible to collect sysinfo.

		Property warning_manager:

		 		A class for managing which types of WARN
messages should be logged and which should be
suppressed. [OPTIONAL]

		Property warning_loggers:

		 		A set of readable streams that will be monitored
for WARN messages to be logged. [OPTIONAL]

		Abstract methods:

				_find_base_directories [CLASSMETHOD]

		Returns the location of autodir, clientdir and serverdir

		_find_resultdir

		Returns the location of resultdir. Gets a copy of any parameters
passed into base_job.__init__. Can return None to indicate that
no resultdir is to be used.

		_get_status_logger

		Returns a status_logger instance for recording job status logs.

		
autodir¶

		

		
automatic_test_tag¶

		

		
bindir¶

		

		
clientdir¶

		

		
configdir¶

		

		
conmuxdir¶

		

		
customtestdir¶

		

		
default_profile_only¶

		

		
get_state(name, default=<object object>)[source]¶

		Returns the value associated with a particular name.

		Parameters:				name – The name the value was saved with.

		default – A default value to return if no state is currently
associated with var.

		Returns:		A deep copy of the value associated with name. Note that this
explicitly returns a deep copy to avoid problems with mutable
values; mutations are not persisted or shared.

		Raises:		KeyError when no state is associated with var and a
default value is not provided.

		
last_boot_tag¶

		

		
pkgdir¶

		

		
pop_execution_context()[source]¶

		Reverse the effects of the previous push_execution_context call.

		Raises:		IndexError when the stack of contexts is empty.

		
profdir¶

		

		
push_execution_context(resultdir)[source]¶

		Save off the current context of the job and change to the given one.

In practice method just changes the resultdir, but it may become more
extensive in the future. The expected use case is for when a child
job needs to be executed in some sort of nested context (for example
the way parallel_simple does). The original context can be restored
with a pop_execution_context call.

		Parameters:		resultdir – The new resultdir, relative to the current one.

		
record(status_code, subdir, operation, status='', optional_fields=None)[source]¶

		Record a job-level status event.

Logs an event noteworthy to the Autotest job as a whole. Messages will
be written into a global status log file, as well as a subdir-local
status log file (if subdir is specified).

		Parameters:				status_code – A string status code describing the type of status
entry being recorded. It must pass
log.is_valid_status to be considered valid.

		subdir – A specific results subdirectory this also applies to, or
None. If not None the subdirectory must exist.

		operation – A string describing the operation that was run.

		status – An optional human-readable message describing the status
entry, for example an error message or “completed
successfully”.

		optional_fields – An optional dictionary of additional named
fields to be included with the status message.
Every time timestamp and localtime entries are
generated with the current time and added to
this dictionary.

		
record_entry(entry, log_in_subdir=True)[source]¶

		Record a job-level status event, using a status_log_entry.

This is the same as self.record but using an existing status log
entry object rather than constructing one for you.

		Parameters:				entry – A status_log_entry object

		log_in_subdir – A boolean that indicates (when true) that subdir
logs should be written into the subdirectory
status log file.

		
resultdir¶

		

		
run_test_cleanup¶

		

		
serverdir¶

		

		
set_state(name, value)[source]¶

		Saves the value given with the provided name.

		Parameters:				name – The name the value should be saved with.

		value – The value to save.

		
site_testdir¶

		

		
tag¶

		

		
testdir¶

		

		
tmpdir¶

		

		
toolsdir¶

		

		
use_sequence_number¶

		

		
class autotest.client.shared.base_job.job_directory(path, is_writable=False)[source]¶

		Bases: object

Represents a job.*dir directory.

		
exception JobDirectoryException[source]¶

		Bases: autotest.client.shared.error.AutotestError

Generic job_directory exception superclass.

		
exception MissingDirectoryException(path)[source]¶

		Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a directory required by the job does not exist.

		
exception UncreatableDirectoryException(path, error)[source]¶

		Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a directory required by the job is missing and cannot
be created.

		
exception UnwritableDirectoryException(path)[source]¶

		Bases: autotest.client.shared.base_job.JobDirectoryException

Raised when a writable directory required by the job exists
but is not writable.

		
static property_factory(attribute)[source]¶

		Create a job.*dir -> job._*dir.path property accessor.

		Parameters:		attribute – A string with the name of the attribute this is
exposed as. ‘_’+attribute must then be attribute
that holds either None or a job_directory-like object

		Returns:		A read-only property object that exposes a job_directory path

		
class autotest.client.shared.base_job.job_state[source]¶

		Bases: object

A class for managing explicit job and user state, optionally persistent.

The class allows you to save state by name (like a dictionary). Any state
stored in this class should be picklable and deep copyable. While this is
not enforced it is recommended that only valid python identifiers be used
as names. Additionally, the namespace ‘stateful_property’ is used for
storing the valued associated with properties constructed using the
property_factory method.

		
NO_DEFAULT = <object object>¶

		

		
PICKLE_PROTOCOL = 2¶

		

		
discard(*args, **dargs)[source]¶

		If namespace.name is a defined value, deletes it.

		Parameters:				namespace (string) – The namespace that the property should be stored in.

		name (string) – The name the value was saved with.

		
discard_namespace(*args, **dargs)[source]¶

		Delete all defined namespace.* names.

		Parameters:		namespace (string) – The namespace to be cleared.

		
get(*args, **dargs)[source]¶

		Returns the value associated with a particular name.

		Parameters:				namespace (string) – The namespace that the property should be stored in.

		name (string) – The name the value was saved with.

		default (object) – A default value to return if no state is currently
associated with var.

		Returns:		A deep copy of the value associated with name. Note that this
explicitly returns a deep copy to avoid problems with mutable
values; mutations are not persisted or shared.

		Raises:		KeyError raised when no state is associated with var
and a default value is not provided.

		
has(*args, **dargs)[source]¶

		Return a boolean indicating if namespace.name is defined.

		Parameters:				namespace (string) – The namespace that the property should be stored in.

		name (string) – The name the value was saved with.

		Returns:		True if the given name is defined in the given namespace and
False otherwise.

		Return type:		bool

		
static property_factory(state_attribute, property_attribute, default, namespace='global_properties')[source]¶

		Create a property object for an attribute using self.get and self.set.

		Parameters:				state_attribute – A string with the name of the attribute on
job that contains the job_state instance.

		property_attribute – A string with the name of the attribute
this property is exposed as.

		default – A default value that should be used for this property
if it is not set.

		namespace – The namespace to store the attribute value in.

		Returns:		A read-write property object that performs self.get calls
to read the value and self.set calls to set it.

		
read_from_file(file_path, merge=True)[source]¶

		Read in any state from the file at file_path.

When merge=True, any state specified only in-memory will be
preserved. Any state specified on-disk will be set in-memory, even if an
in-memory setting already exists.

		Parameters:				file_path (string) – The path where the state should be read from. It must
exist but it can be empty.

		merge (bool) – If true, merge the on-disk state with the in-memory
state. If false, replace the in-memory state with the
on-disk state.

Warning: This method is intentionally concurrency-unsafe. It makes no
attempt to control concurrent access to the file at file_path.

		
set(*args, **dargs)[source]¶

		Saves the value given with the provided name.

		Parameters:				namespace (string) – The namespace that the property should be stored in.

		name (string) – The name the value was saved with.

		value – The value to save.

		
set_backing_file(file_path)[source]¶

		Change the path used as the backing file for the persistent state.

When a new backing file is specified if a file already exists then
its contents will be added into the current state, with conflicts
between the file and memory being resolved in favor of the file
contents. The file will then be kept in sync with the (combined)
in-memory state. The syncing can be disabled by setting this to None.

		Parameters:		file_path (string) – A path on the filesystem that can be read from and
written to, or None to turn off the backing store.

		
write_to_file(file_path)[source]¶

		Write out the current state to the given path.

Warning: This method is intentionally concurrency-unsafe. It makes no
attempt to control concurrent access to the file at file_path.

		Parameters:		file_path (string) – The path where the state should be written out to.
Must be writable.

		
class autotest.client.shared.base_job.status_indenter[source]¶

		Bases: object

Abstract interface that a status log indenter should use.

		
decrement()[source]¶

		Decrease indentation by one level.

		
increment()[source]¶

		Increase indentation by one level.

		
indent¶

		

		
class autotest.client.shared.base_job.status_log_entry(status_code, subdir, operation, message, fields, timestamp=None)[source]¶

		Bases: object

Represents a single status log entry.

		
BAD_CHAR_REGEX = <_sre.SRE_Pattern object>¶

		

		
LOCALTIME_FIELD = 'localtime'¶

		

		
RENDERED_NONE_VALUE = '----'¶

		

		
TIMESTAMP_FIELD = 'timestamp'¶

		

		
is_end()[source]¶

		Indicates if this status log is the end of a nested block.

		Returns:		A boolean indicating if this entry ends a nested block.

		
is_start()[source]¶

		Indicates if this status log is the start of a new nested block.

		Returns:		A boolean indicating if this entry starts a new nested block.

		
classmethod parse(line)[source]¶

		Parse a status log entry from a text string.

This method is the inverse of render; it should always be true that
parse(entry.render()) produces a new status_log_entry equivalent to
entry.

		Returns:		A new status_log_entry instance with fields extracted from
the given status line. If the line is an extra message line
then None is returned.

		
render()[source]¶

		Render the status log entry into a text string.

		Returns:		A text string suitable for writing into a status log file.

		
class autotest.client.shared.base_job.status_logger(job, indenter, global_filename='status', subdir_filename='status', record_hook=None, tap_writer=None)[source]¶

		Bases: object

Represents a status log file. Responsible for translating messages
into on-disk status log lines.

		Property global_filename:

		 		The filename to write top-level logs to.

		Property subdir_filename:

		 		The filename to write subdir-level logs to.

		
record_entry(log_entry, log_in_subdir=True)[source]¶

		Record a status_log_entry into the appropriate status log files.

		Parameters:				log_entry – A status_log_entry instance to be recorded into the
status logs.

		log_in_subdir – A boolean that indicates (when true) that subdir
logs should be written into the subdirectory status
log file.

		
render_entry(log_entry)[source]¶

		Render a status_log_entry as it would be written to a log file.

		Parameters:		log_entry – A status_log_entry instance to be rendered.

		Returns:		The status log entry, rendered as it would be written to the
logs (including indentation).

		
autotest.client.shared.base_job.with_backing_file(method)[source]¶

		A decorator to perform a lock-read-*-write-unlock cycle.

When applied to a method, this decorator will automatically wrap
calls to the method in a lock-and-read before the call followed by a
write-and-unlock. Any operation that is reading or writing state
should be decorated with this method to ensure that backing file
state is consistently maintained.

		
autotest.client.shared.base_job.with_backing_lock(method)[source]¶

		A decorator to perform a lock-*-unlock cycle.

When applied to a method, this decorator will automatically wrap
calls to the method in a backing file lock and before the call
followed by a backing file unlock.

base_packages Module¶

This module defines the BasePackageManager Class which provides an
implementation of the packaging system API providing methods to fetch,
upload and remove packages. Site specific extensions to any of these methods
should inherit this class.

		
class autotest.client.shared.base_packages.BasePackageManager(pkgmgr_dir, hostname=None, repo_urls=None, upload_paths=None, do_locking=True, run_function=<function run>, run_function_args=[], run_function_dargs={})[source]¶

		Bases: object

		
add_repository(repo)[source]¶

		

		
compare_checksum(pkg_path, repo_url)[source]¶

		Calculate the checksum of the file specified in pkg_path and
compare it with the checksum in the checksum file
Return True if both match else return False.
:param pkg_path: The full path to the package file for which the
checksum is being compared
:param repo_url: The URL to fetch the checksum from

		
compute_checksum(pkg_path)[source]¶

		Compute the MD5 checksum for the package file and return it.
pkg_path : The complete path for the package file

		
fetch_pkg(pkg_name, dest_path, repo_url=None, use_checksum=False, install=False)[source]¶

		Fetch the package into dest_dir from repo_url. By default repo_url
is None and the package is looked in all the repositories specified.
Otherwise it fetches it from the specific repo_url.
pkg_name : name of the package (ex: test-sleeptest.tar.bz2,

dep-gcc.tar.bz2, kernel.1-1.rpm)

repo_url : the URL of the repository where the package is located.
dest_path : complete path of where the package will be fetched to.
use_checksum : This is set to False to fetch the packages.checksum file

so that the checksum comparison is bypassed for the
checksum file itself. This is used internally by the
packaging system. It should be ignored by externals
callers of this method who use it fetch custom packages.

		install : install path has unique name and destination requirements

		that vary based on the fetcher that is used. So call them
here as opposed to install_pkg.

		
get_fetcher(url)[source]¶

		

		
get_mirror_list(repo_urls)[source]¶

		Stub function for site specific mirrors.

		Returns:

		Priority ordered list

		
get_package_name(url, pkg_type)[source]¶

		Extract the group and test name for the url. This method is currently
used only for tests.

		
static get_tarball_name(name, pkg_type)[source]¶

		Converts a package name and type into a tarball name.

		Parameters:				name – The name of the package

		pkg_type – The type of the package

		Returns:		A tarball filename for that specific type of package

		
install_pkg(name, pkg_type, fetch_dir, install_dir, preserve_install_dir=False, repo_url=None)[source]¶

		Remove install_dir if it already exists and then recreate it unless
preserve_install_dir is specified as True.
Fetch the package into the pkg_dir. Untar the package into install_dir
The assumption is that packages are of the form :
<pkg_type>.<pkg_name>.tar.bz2
name : name of the package
type : type of the package
fetch_dir : The directory into which the package tarball will be

fetched to.

install_dir : the directory where the package files will be untarred to
repo_url : the url of the repository to fetch the package from.

		
static parse_tarball_name(tarball_name)[source]¶

		Coverts a package tarball name into a package name and type.

		Parameters:		tarball_name – The filename of the tarball

		Returns:		(name, pkg_type) where name is the package name and pkg_type
is the package type.

		
remove_checksum(pkg_name)[source]¶

		Remove the checksum of the package from the packages checksum file.
This method is called whenever a package is removed from the
repositories in order clean its corresponding checksum.
pkg_name : The name of the package to be removed

		
remove_pkg(pkg_name, remove_path=None, remove_checksum=False)[source]¶

		Remove the package from the specified remove_path
pkg_name : name of the package (ex: test-sleeptest.tar.bz2,

dep-gcc.tar.bz2)

remove_path : the location to remove the package from.

		
remove_pkg_file(filename, pkg_dir)[source]¶

		Remove the file named filename from pkg_dir

		
repo_check(repo)[source]¶

		Check to make sure the repo is in a sane state:
ensure we have at least XX amount of free space
Make sure we can write to the repo

		
tar_package(pkg_name, src_dir, dest_dir, include_string=None, exclude_string=None)[source]¶

		Create a tar.bz2 file with the name ‘pkg_name’ say test-blah.tar.bz2.

Includes the files specified in include_string, and excludes the files
specified on the exclude string, while tarring the source. Returns the
destination tarball path.

		Parameters:				pkg_name – Package name.

		src_dir – Directory that contains the data to be packaged.

		dest_dir – Directory that will hold the destination tarball.

		include_string – Pattern that represents the files that will be
added to the tar package.

		exclude_string – Pattern that represents the files that should be
excluded from the tar package. It could be either a string or
a list.

		
untar_pkg(tarball_path, dest_dir)[source]¶

		Untar the package present in the tarball_path and put a
“.checksum” file in the dest_dir containing the checksum
of the tarball. This method
assumes that the package to be untarred is of the form
<name>.tar.bz2

		
untar_required(tarball_path, dest_dir)[source]¶

		Compare the checksum of the tarball_path with the .checksum file
in the dest_dir and return False if it matches. The untar
of the package happens only if the checksums do not match.

		
update_checksum(pkg_path)[source]¶

		Update the checksum of the package in the packages’ checksum
file. This method is called whenever a package is fetched just
to be sure that the checksums in the local file are the latest.
pkg_path : The complete path to the package file.

		
upkeep(custom_repos=None)[source]¶

		Clean up custom upload/download areas

		
upload_pkg(pkg_path, upload_path=None, update_checksum=False, timeout=300)[source]¶

		

		
upload_pkg_dir(dir_path, upload_path)[source]¶

		Upload a full directory. Depending on the upload path, the appropriate
method for that protocol is called. Currently this copies the whole
tmp package directory to the target directory.
This assumes that the web server is running on the same machine where
the method is being called from. The upload_path’s files are
basically served by that web server.

		
upload_pkg_file(file_path, upload_path)[source]¶

		Upload a single file. Depending on the upload path, the appropriate
method for that protocol is called. Currently this simply copies the
file to the target directory (but can be extended for other protocols)
This assumes that the web server is running on the same machine where
the method is being called from. The upload_path’s files are
basically served by that web server.

		
upload_pkg_parallel(pkg_path, upload_path, update_checksum=False)[source]¶

		Uploads to a specified upload_path or to all the repos.
Also uploads the checksum file to all the repos.
pkg_path : The complete path to the package file
upload_path : the absolute path where the files are copied to.

if set to ‘None’ assumes ‘all’ repos

		update_checksum : If set to False, the checksum file is not

		going to be updated which happens by default.
This is necessary for custom
packages (like custom kernels and custom tests)
that get uploaded which do not need to be part of
the checksum file and bloat it.

		
class autotest.client.shared.base_packages.GitFetcher(package_manager, repository_url)[source]¶

		Bases: autotest.client.shared.base_packages.RepositoryFetcher

A git based repository fetcher

		
fetch_pkg_file(filename, dest_path)[source]¶

		Fetch a package file and save it to the given destination path

git is an SCM, you can download the test directly. No need to fetch
a bz2’d tarball file. However ‘filename’ is <type>-<name>.tar.bz2
break this up and only fetch <name>.

		Parameters:				filename (string) – The filename of the package file to fetch.

		dest_path (string) – Destination path to download the file to.

		
git_archive_cmd_pattern = 'git archive --remote=%s -o %s %s'¶

		

		
install_pkg_post(filename, fetch_dir, install_dir, preserve_install_dir=False)[source]¶

		Fetcher specific post install

		Parameters:				filename (string) – The filename of the package to install

		fetch_dir (string) – The fetched path of the package

		install_dir (string) – The path to install the package to

@preserve_install_dir: Preserve the install directory

		
class autotest.client.shared.base_packages.HttpFetcher(package_manager, repository_url)[source]¶

		Bases: autotest.client.shared.base_packages.RepositoryFetcher

Repository Fetcher using HTTP

		
fetch_pkg_file(filename, dest_path)[source]¶

		Fetch a package file from a package repository.

		Parameters:				filename (string) – The filename of the package file to fetch.

		dest_path (string) – Destination path to download the file to.

		Raises:		PackageFetchError – if the fetch failed

		
wget_cmd_pattern = 'wget --connect-timeout=15 -nv %s -O %s'¶

		

		
class autotest.client.shared.base_packages.LocalFilesystemFetcher(package_manager, repository_url)[source]¶

		Bases: autotest.client.shared.base_packages.RepositoryFetcher

		
fetch_pkg_file(filename, dest_path)[source]¶

		Fetch a package file from a package repository.

		Parameters:				filename (string) – The filename of the package file to fetch.

		dest_path (string) – Destination path to download the file to.

		Raises:		PackageFetchError – if the fetch failed

		
class autotest.client.shared.base_packages.RepositoryFetcher(package_manager, repository_url)[source]¶

		Bases: object

Base class with common functionality for repository fetchers

		
fetch_pkg_file(filename, dest_path)[source]¶

		Fetch a package file from a package repository.

		Parameters:				filename (string) – The filename of the package file to fetch.

		dest_path (string) – Destination path to download the file to.

		Raises:		PackageFetchError – if the fetch failed

		
install_pkg_post(filename, fetch_dir, install_dir, preserve_install_dir=False)[source]¶

		Fetcher specific post install

		Parameters:				filename (string) – The filename of the package to install

		fetch_dir (string) – The fetched path of the package

		install_dir (string) – The path to install the package to

@preserve_install_dir: Preserve the install directory

		
install_pkg_setup(name, fetch_dir, install)[source]¶

		Install setup for a package based on fetcher type.

		Parameters:				name (string) – The filename to be munged

		fetch_dir (string) – The destination path to be munged

		install (boolean) – Whether this is be called from the install path or not

		Returns:		tuple with (name, fetch_dir)

		
url = None¶

		

		
autotest.client.shared.base_packages.check_diskspace(repo, min_free=None)[source]¶

		Check if the remote directory over at the pkg repo has available diskspace

If the amount of free space is not supplied, it is taken from the global
configuration file, section [PACKAGES], key ‘mininum_free_space’. The unit
used are in SI, that is, 1 GB = 10**9 bytes.

		Parameters:		repo (string) – a remote package repo URL

		Param:		min_free mininum amount of free space, in GB (10**9 bytes)

		Raises:				error.RepoUnknownError – general repository error condition

		error.RepoDiskFullError – repository does not have at least the
requested amount of free disk space.

		
autotest.client.shared.base_packages.check_write(repo)[source]¶

		Checks that the remote repository directory is writable

		Parameters:		repo (string) – a remote package repo URL

		Raises:		error.RepoWriteError – repository write error

		
autotest.client.shared.base_packages.create_directory(repo)[source]¶

		Create a directory over at the remote repository

		Parameters:		repo (string) – the repo URL containing the remote directory path

		Returns:		a CmdResult object or None

		
autotest.client.shared.base_packages.has_pbzip2()[source]¶

		Check if parallel bzip2 is available on this system.

		Returns:		True if pbzip2 is available, False otherwise

		
autotest.client.shared.base_packages.parse_ssh_path(repo)[source]¶

		Parse an SSH url

		Parameters:		repo (string) – a repo uri like ssh://xx@xx/path/to/

		Returns:		tuple with (host, remote_path)

		
autotest.client.shared.base_packages.repo_run_command(repo, cmd, ignore_status=False, cd=True)[source]¶

		Run a command relative to the repo path

This is basically a utils.run() wrapper that sets itself in a repo
directory if it is appropriate, so parameters such as cmd and ignore_status
are passed along to it.

		Parameters:				repo (string) – a repository url

		cmd (string) – the command to be executed. This is passed along to utils.run()

		ignore_status (boolean) – do not raise an exception, no matter what the exit
code of the command is.

		cd (boolean) – wether to change the working directory to the repo directory
before running the specified command.

		Returns:		a CmdResult object or None

		Raises:		CmdError – the exit code of the command execution was not 0

		
autotest.client.shared.base_packages.trim_custom_directories(repo, older_than_days=None)[source]¶

		Remove old files from the remote repo directory

The age of the files, if not provided by the older_than_days parameter is
taken from the global configuration file, at section [PACKAGES],
configuration item ‘custom_max_age’.

		Parameters:		repo (string) – a remote package repo URL

base_syncdata Module¶

		
class autotest.client.shared.base_syncdata.SessionData(hosts, timeout)[source]¶

		Bases: object

		
close()[source]¶

		

		
is_finished()[source]¶

		

		
set_finish()[source]¶

		

		
timeout()[source]¶

		

		
class autotest.client.shared.base_syncdata.SyncData(masterid, hostid, hosts, session_id=None, listen_server=None, port=13234, tmpdir=None)[source]¶

		Bases: object

Provides data synchronization between hosts.

Transferred data is pickled and sent to all destination points.
If there is no listen server it will create a new one. If multiple hosts
wants to communicate with each other, then communications are identified
by session_id.

		
close()[source]¶

		

		
single_sync(data=None, timeout=60, session_id=None)[source]¶

		

		
sync(data=None, timeout=60, session_id=None)[source]¶

		Synchronize data between hosts.

		
timeout()[source]¶

		

		
class autotest.client.shared.base_syncdata.SyncListenServer(address='', port=13234, tmpdir=None)[source]¶

		Bases: object

		
close()[source]¶

		Close SyncListenServer thread.

Close all open connection with clients and listen server.

		
class autotest.client.shared.base_syncdata.TempDir(tmpdir=None)[source]¶

		Bases: autotest.client.shared.autotemp.tempdir

TempDir class is tempdir for predefined tmpdir.

		
clean()[source]¶

		Should not delete predefined tmpdir.

		
autotest.client.shared.base_syncdata.net_recv_object(sock, timeout=60)[source]¶

		Receive python object over network.

		Parameters:				ip_addr – ipaddres of waiter for data.

		obj – object to send

		Returns:		object from network

		
autotest.client.shared.base_syncdata.net_send_object(sock, obj)[source]¶

		Send python object over network.

		Parameters:				ip_addr – ipaddres of waiter for data.

		obj – object to send

boottool Module¶

boottool client-side module.

This module provides an API for client side tests that need to manipulate
boot entries. It’s based on the rewrite of boottool, now python and grubby
based. It aims to be keep API compatibility with the older version, except
from XEN support which has been removed. We’ll gladly accept patches that
provide full coverage for this mode/feature.

Copyright 2009 Google Inc.
Copyright 2012 Red Hat, Inc.

Released under the GPL v2

		
class autotest.client.shared.boottool.boottool(path=None)[source]¶

		Bases: autotest.client.tools.boottool.Grubby

Client site side boottool wrapper.

Inherits all functionality from boottool(.py) CLI app (lazily).

check_version Module¶

		
class autotest.client.shared.check_version.check_python_version[source]¶

		Bases: autotest.client.shared.check_version.site_check_python_version, autotest.client.shared.base_check_version.base_check_python_version

		
class autotest.client.shared.check_version.site_check_python_version[source]¶

		

common Module¶

control_data Module¶

		
class autotest.client.shared.control_data.ControlData(vars, path, raise_warnings=False)[source]¶

		Bases: object

		
set_attr(attr, val, raise_warnings=False)[source]¶

		

		
set_author(val)[source]¶

		

		
set_dependencies(val)[source]¶

		

		
set_doc(val)[source]¶

		

		
set_experimental(val)[source]¶

		

		
set_name(val)[source]¶

		

		
set_run_verify(val)[source]¶

		

		
set_sync_count(val)[source]¶

		

		
set_test_category(val)[source]¶

		

		
set_test_class(val)[source]¶

		

		
set_test_parameters(val)[source]¶

		

		
set_test_type(val)[source]¶

		

		
set_time(val)[source]¶

		

		
exception autotest.client.shared.control_data.ControlVariableException[source]¶

		Bases: exceptions.Exception

		
autotest.client.shared.control_data.parse_control(path, raise_warnings=False)[source]¶

		

distro Module¶

This module provides the client facilities to detect the Linux Distribution
it’s running under.

This is a replacement for the get_os_vendor() function from the utils module.

		
class autotest.client.shared.distro.LinuxDistro(name, version, release, arch)[source]¶

		Bases: object

Simple collection of information for a Linux Distribution

		
class autotest.client.shared.distro.Probe[source]¶

		Bases: object

Probes the machine and does it best to confirm it’s the right distro

		
CHECK_FILE = None¶

		Points to a file that can determine if this machine is running a given
Linux Distribution. This servers a first check that enables the extra
checks to carry on.

		
CHECK_FILE_CONTAINS = None¶

		Sets the content that should be checked on the file pointed to by
CHECK_FILE_EXISTS. Leave it set to None (its default)
to check only if the file exists, and not check its contents

		
CHECK_FILE_DISTRO_NAME = None¶

		The name of the Linux Distribution to be returned if the file defined
by CHECK_FILE_EXISTS exist.

		
CHECK_VERSION_REGEX = None¶

		A regular expresion that will be run on the file pointed to by
CHECK_FILE_EXISTS

		
check_name_for_file()[source]¶

		Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE) and the name of the
distro to be returned (CHECK_FILE_DISTRO_NAME)

		
check_name_for_file_contains()[source]¶

		Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the
distro file being set (CHECK_FILE), the text to look for
inside the distro file (CHECK_FILE_CONTAINS) and the name
of the distro to be returned (CHECK_FILE_DISTRO_NAME)

		
check_release()[source]¶

		Checks if this has the conditions met to look for the release number

		
check_version()[source]¶

		Checks if this class will look for a regex in file and return a distro

		
get_distro()[source]¶

		Returns the LinuxDistro this probe detected

		
name_for_file()[source]¶

		Get the distro name if the CHECK_FILE is set and exists

		
name_for_file_contains()[source]¶

		Get the distro if the CHECK_FILE is set and has content

		
release()[source]¶

		Returns the release of the distro

		
version()[source]¶

		Returns the version of the distro

		
autotest.client.shared.distro.register_probe(probe_class)[source]¶

		Register a probe to be run during autodetection

		
autotest.client.shared.distro.detect()[source]¶

		Attempts to detect the Linux Distribution running on this machine

		Returns:		the detected LinuxDistro or UNKNOWN_DISTRO

		Return type:		LinuxDistro

distro_def Module¶

This module defines a structure and portable format for relevant information
on Linux Distributions in such a way that information about known distros
can be packed and distributed.

Please note that this module deals with Linux Distributions not necessarily
installed on the running system.

		
autotest.client.shared.distro_def.save(linux_distro, path)[source]¶

		Saves the linux_distro to an external file format

		Parameters:				linux_distro (DistroDef) – an DistroDef instance

		path (str) – the location for the output file

		Returns:		None

		
autotest.client.shared.distro_def.load(path)[source]¶

		Loads the distro from an external file

		Parameters:		path (str) – the location for the input file

		Returns:		an DistroDef instance

		Return type:		DistroDef

		
autotest.client.shared.distro_def.load_from_tree(name, version, release, arch, package_type, path)[source]¶

		Loads a DistroDef from an installable tree

		Parameters:				name (str) – a short name that precisely distinguishes this Linux
Distribution among all others.

		version (str) – the major version of the distribution. Usually this
is a single number that denotes a large development
cycle and support file.

		release (str) – the release or minor version of the distribution.
Usually this is also a single number, that is often
omitted or starts with a 0 when the major version
is initially release. It’s ofter associated with a
shorter development cycle that contains incremental
a collection of improvements and fixes.

		arch (str) – the main target for this Linux Distribution. It’s common
for some architectures to ship with packages for
previous and still compatible architectures, such as it’s
the case with Intel/AMD 64 bit architecture that support
32 bit code. In cases like this, this should be set to
the 64 bit architecture name.

		package_type (str) – one of the available package info loader types

		path (str) – top level directory of the distro installation tree files

		
class autotest.client.shared.distro_def.SoftwarePackage(name, version, release, checksum, arch)[source]¶

		Bases: object

Definition of relevant information on a software package

		
class autotest.client.shared.distro_def.DistroDef(name, version, release, arch)[source]¶

		Bases: autotest.client.shared.distro.LinuxDistro

More complete information on a given Linux Distribution

		
software_packages = None¶

		All the software packages that ship with this Linux distro

		
software_packages_type = None¶

		A simple text that denotes the software type that makes this distro

		
autotest.client.shared.distro_def.DISTRO_PKG_INFO_LOADERS = {'deb': <class 'autotest.client.shared.distro_def.DistroPkgInfoLoaderDeb'>, 'rpm': <class 'autotest.client.shared.distro_def.DistroPkgInfoLoaderRpm'>}¶

		the type of distro that will determine what loader will be used

enum Module¶

Generic enumeration support.

		
class autotest.client.shared.enum.Enum(*names, **kwargs)[source]¶

		Bases: object

Utility class to implement Enum-like functionality.

>>> e = Enum('String one', 'String two')
>>> e.STRING_ONE
0
>>> e.STRING_TWO
1
>>> e.choices()
[(0, 'String one'), (1, 'String two')]
>>> e.get_value('String one')
0
>>> e.get_string(0)
'String one'

>>> e = Enum('Hello', 'Goodbye', string_values=True)
>>> e.HELLO, e.GOODBYE
('Hello', 'Goodbye')

>>> e = Enum('One', 'Two', start_value=1)
>>> e.ONE
1
>>> e.TWO
2

		
choices()[source]¶

		Return choice list suitable for Django model choices.

		
static get_attr_name(string)[source]¶

		

		
get_string(value)[source]¶

		Given a value, get the string name for it.

		
get_value(name)[source]¶

		Convert a string name to it’s corresponding value. If a value
is passed in, it is returned.

error Module¶

Internal global error types

		
autotest.client.shared.error.format_error()[source]¶

		

		
autotest.client.shared.error.context_aware(fn)[source]¶

		A decorator that must be applied to functions that call context().

		
autotest.client.shared.error.context(s='', log=None)[source]¶

		Set the context for the currently executing function and optionally log it.

		Parameters:				s – A string. If not provided, the context for the current function
will be cleared.

		log – A logging function to pass the context message to. If None, no
function will be called.

		
autotest.client.shared.error.get_context()[source]¶

		Return the current context (or None if none is defined).

		
autotest.client.shared.error.exception_context(e)[source]¶

		Return the context of a given exception (or None if none is defined).

		
exception autotest.client.shared.error.AutoservHostIsShuttingDownError[source]¶

		Bases: autotest.client.shared.error.AutoservHostError

Host is shutting down

		
exception autotest.client.shared.error.TestBug[source]¶

		Bases: autotest.client.shared.error.TestBaseException

Indicates that the test failed, but the fail was expected.

		
exit_status = 'BUG'¶

		

		
exception autotest.client.shared.error.AutoservHardwareRepairRequiredError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Exception class raised during repairs to indicate that a hardware repair
is going to be necessary.

		
exception autotest.client.shared.error.RepoWriteError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when packager cannot write to a repo’s desitnation

		
exception autotest.client.shared.error.AutoservUnsupportedError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Error raised when you try to use an unsupported optional feature

		
exception autotest.client.shared.error.CmdError(command, result_obj, additional_text=None)[source]¶

		Bases: autotest.client.shared.error.TestError

Indicates that a command failed, is fatal to the test unless caught.

		
exception autotest.client.shared.error.AutotestError[source]¶

		Bases: exceptions.Exception

The parent of all errors deliberately thrown within the client code.

		
exception autotest.client.shared.error.RepoDiskFullError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when the destination for packages is full

		
exception autotest.client.shared.error.AutoservRebootError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Error occurred while rebooting a machine

		
exception autotest.client.shared.error.TestWarn[source]¶

		Bases: autotest.client.shared.error.TestBaseException

Indicates that bad things (may) have happened, but not an explicit
failure.

		
exit_status = 'WARN'¶

		

		
exception autotest.client.shared.error.PackageInstallError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when there is an error installing the package

		
exception autotest.client.shared.error.HostInstallProfileError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates the machine failed to have a profile assigned.

		
exception autotest.client.shared.error.PackageError[source]¶

		Bases: autotest.client.shared.error.TestError

Indicates an error trying to perform a package operation.

		
exception autotest.client.shared.error.AutotestHostRunError(description, result_obj)[source]¶

		Bases: autotest.client.shared.error.HostRunErrorMixIn, autotest.client.shared.error.AutotestError

		
exception autotest.client.shared.error.UnhandledTestFail(unhandled_exception)[source]¶

		Bases: autotest.client.shared.error.TestFail

Indicates an unhandled fail in a test.

		
exception autotest.client.shared.error.BarrierAbortError[source]¶

		Bases: autotest.client.shared.error.BarrierError

Indicate that the barrier was explicitly aborted by a member.

		
exception autotest.client.shared.error.AutoservSubcommandError(func, exit_code)[source]¶

		Bases: autotest.client.shared.error.AutoservError

Indicates an error while executing a (forked) subcommand

		
exception autotest.client.shared.error.NetCommunicationError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicate that network communication was broken.

		
exception autotest.client.shared.error.AutoservShutdownError[source]¶

		Bases: autotest.client.shared.error.AutoservRebootError

Error occurred during shutdown of machine

		
exception autotest.client.shared.error.PackageRemoveError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when there is an error removing the package

		
exception autotest.client.shared.error.UnhandledTestError(unhandled_exception)[source]¶

		Bases: autotest.client.shared.error.TestError

Indicates an unhandled error in a test.

		
exception autotest.client.shared.error.DataSyncError[source]¶

		Bases: autotest.client.shared.error.NetCommunicationError

Indicates problem during synchronization data over network.

		
exception autotest.client.shared.error.AutoservHostError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Error reaching a host

		
exception autotest.client.shared.error.TestBaseException[source]¶

		Bases: autotest.client.shared.error.AutotestError

The parent of all test exceptions.

		
exit_status = 'NEVER_RAISE_THIS'¶

		

		
exception autotest.client.shared.error.TestNAError[source]¶

		Bases: autotest.client.shared.error.TestBaseException

Indictates that the test is Not Applicable. Should be thrown
when various conditions are such that the test is inappropriate.

		
exit_status = 'TEST_NA'¶

		

		
exception autotest.client.shared.error.AutoservHardwareHostError[source]¶

		Bases: autotest.client.shared.error.AutoservHostError

Found hardware problems with the host

		
exception autotest.client.shared.error.AutoservError[source]¶

		Bases: exceptions.Exception

		
exception autotest.client.shared.error.AutoservSSHTimeout[source]¶

		Bases: autotest.client.shared.error.AutoservError

SSH experienced a connection timeout

		
exception autotest.client.shared.error.InstallError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates an installation error which Terminates and fails the job.

		
exception autotest.client.shared.error.AutoservDiskFullHostError(path, want_gb, free_space_gb)[source]¶

		Bases: autotest.client.shared.error.AutoservHostError

Not enough free disk space on host

		
exception autotest.client.shared.error.AutoservInstallError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Error occurred while installing autotest on a host

		
exception autotest.client.shared.error.TestError[source]¶

		Bases: autotest.client.shared.error.TestBaseException

Indicates that something went wrong with the test harness itself.

		
exit_status = 'ERROR'¶

		

		
exception autotest.client.shared.error.AutoservVirtError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Vitualization related error

		
exception autotest.client.shared.error.BarrierError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates an error happened during a barrier operation.

		
exception autotest.client.shared.error.AutotestRunError[source]¶

		Bases: autotest.client.shared.error.AutotestError

Indicates a problem running server side control files.

		
exception autotest.client.shared.error.RepoError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when a repo isn’t working in some way

		
exception autotest.client.shared.error.PackagingError[source]¶

		Bases: autotest.client.shared.error.AutotestError

Abstract error class for all packaging related errors.

		
exception autotest.client.shared.error.RepoUnknownError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when packager cannot write to a repo’s desitnation

		
exception autotest.client.shared.error.UnhandledJobError(unhandled_exception)[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates an unhandled error in a job.

		
exception autotest.client.shared.error.TestFail[source]¶

		Bases: autotest.client.shared.error.TestBaseException

Indicates that the test failed, but the job will not continue.

		
exit_status = 'FAIL'¶

		

		
exception autotest.client.shared.error.JobError[source]¶

		Bases: autotest.client.shared.error.AutotestError

Indicates an error which terminates and fails the whole job (ABORT).

		
exception autotest.client.shared.error.AutoservRunError(description, result_obj)[source]¶

		Bases: autotest.client.shared.error.HostRunErrorMixIn, autotest.client.shared.error.AutoservError

		
exception autotest.client.shared.error.PackageFetchError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when there is an error fetching the package

		
exception autotest.client.shared.error.PackageUploadError[source]¶

		Bases: autotest.client.shared.error.PackagingError

Raised when there is an error uploading the package

		
exception autotest.client.shared.error.AutoservHardwareRepairRequestedError[source]¶

		Bases: autotest.client.shared.error.AutoservError

Exception class raised from Host.repair_full() (or overrides) when software
repair fails but it successfully managed to request a hardware repair (by
notifying the staff, sending mail, etc)

		
exception autotest.client.shared.error.HostRunErrorMixIn(description, result_obj)[source]¶

		Bases: exceptions.Exception

Indicates a problem in the host run() function raised from client code.
Should always be constructed with a tuple of two args (error description
(str), run result object). This is a common class mixed in to create the
client and server side versions of it.

		
exception autotest.client.shared.error.HarnessError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates problem with the harness.

		
exception autotest.client.shared.error.AutoservNotMountedHostError[source]¶

		Bases: autotest.client.shared.error.AutoservHostError

Found unmounted partitions that should be mounted

		
exception autotest.client.shared.error.AutoservSshPermissionDeniedError(description, result_obj)[source]¶

		Bases: autotest.client.shared.error.AutoservRunError

Indicates that a SSH permission denied error was encountered.

		
exception autotest.client.shared.error.HostInstallTimeoutError[source]¶

		Bases: autotest.client.shared.error.JobError

Indicates the machine failed to be installed after the predetermined
timeout.

		
exception autotest.client.shared.error.AutoservSshPingHostError[source]¶

		Bases: autotest.client.shared.error.AutoservHostError

SSH ping failed

		
exception autotest.client.shared.error.AutotestTimeoutError[source]¶

		Bases: autotest.client.shared.error.AutotestError

This exception is raised when an autotest test exceeds the timeout
parameter passed to run_timed_test and is killed.

git Module¶

Code that helps to deal with content from git repositories

		
class autotest.client.shared.git.GitRepoHelper(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)[source]¶

		Bases: object

Helps to deal with git repos, mostly fetching content from a repo

		
checkout(branch=None, commit=None)[source]¶

		Performs a git checkout for a given branch and start point (commit)

		Parameters:				branch – Remote branch name.

		commit – Specific commit hash.

		
execute()[source]¶

		Performs all steps necessary to initialize and download a git repo.

This includes the init, fetch and checkout steps in one single
utility method.

		
fetch(uri)[source]¶

		Performs a git fetch from the remote repo

		
get_top_commit()[source]¶

		Returns the topmost commit id for the current branch.

		Returns:		Commit id.

		
get_top_tag()[source]¶

		Returns the topmost tag for the current branch.

		Returns:		Tag.

		
git_cmd(cmd, ignore_status=False)[source]¶

		Wraps git commands.

		Parameters:				cmd – Command to be executed.

		ignore_status – Whether we should suppress error.CmdError
exceptions if the command did return exit code !=0 (True), or
not suppress them (False).

		
init()[source]¶

		Initializes a directory for receiving a verbatim copy of git repo

This creates a directory if necessary, and either resets or inits
the repo

		
autotest.client.shared.git.get_repo(uri, branch='master', lbranch=None, commit=None, destination_dir=None, base_uri=None)[source]¶

		Utility function that retrieves a given git code repository.

		Parameters:				uri (string) – git repository url

		branch (string) – git remote branch

		destination_dir (string) – path of a dir where to save downloaded code

		commit (string) – specific commit to download

		lbranch (string) – git local branch name, if different from remote

		uri – a closer, usually local, git repository url from where to
fetch content first from

host_protections Module¶

host_queue_entry_states Module¶

This module contains the status enums for use by HostQueueEntrys in the
database. It is a stand alone module as these status strings are needed
from various disconnected pieces of code that should not depend on everything
that autotest.frontend.afe.models depends on such as RPC clients.

iscsi Module¶

Basic iscsi support for Linux host with the help of commands
iscsiadm and tgtadm.

This include the basic operates such as login and get device name by
target name. And it can support the real iscsi access and emulated
iscsi in localhost then access it.

		
class autotest.client.shared.iscsi.Iscsi(params, root_dir='/tmp')[source]¶

		Bases: object

Basic iscsi support class. Will handle the emulated iscsi export and
access to both real iscsi and emulated iscsi device.

		
cleanup()[source]¶

		Clean up env after iscsi used.

		
delete_target()[source]¶

		Delete target from host.

		
export_target()[source]¶

		Export target in localhost for emulated iscsi

		
get_device_name()[source]¶

		Get device name from the target name.

		
get_target_id()[source]¶

		Get target id from image name. Only works for emulated iscsi device

		
logged_in()[source]¶

		Check if the session is login or not.

		
login()[source]¶

		Login session for both real iscsi device and emulated iscsi. Include
env check and setup.

		
logout()[source]¶

		Logout from target.

		
portal_visible()[source]¶

		Check if the portal can be found or not.

		
autotest.client.shared.iscsi.iscsi_discover(portal_ip)[source]¶

		Query from iscsi server for available targets

		Parameters:		portal_ip – Ip for iscsi server

		
autotest.client.shared.iscsi.iscsi_get_nodes()[source]¶

		Get the iscsi nodes

		
autotest.client.shared.iscsi.iscsi_get_sessions()[source]¶

		Get the iscsi sessions activated

		
autotest.client.shared.iscsi.iscsi_login(target_name)[source]¶

		Login to a target with the target name

		Parameters:		target_name – Name of the target

		
autotest.client.shared.iscsi.iscsi_logout(target_name=None)[source]¶

		Logout from a target. If the target name is not set then logout all
targets.

		Params target_name:

		 		Name of the target.

iso9660 Module¶

Basic ISO9660 file-system support.

This code does not attempt (so far) to implement code that knows about
ISO9660 internal structure. Instead, it uses commonly available support
either in userspace tools or on the Linux kernel itself (via mount).

		
autotest.client.shared.iso9660.iso9660(path)[source]¶

		Checks the avaiable tools on a system and chooses class accordingly

This is a convinience function, that will pick the first avaialable
iso9660 capable tool.

		Parameters:		path (str) – path to an iso9660 image file

		Returns:		an instance of any iso9660 capable tool

		Return type:		Iso9660IsoInfo, Iso9660IsoRead, Iso9660Mount or None

		
class autotest.client.shared.iso9660.Iso9660IsoInfo(path)[source]¶

		Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the cdrkit’s isoinfo tool

		
read(path)[source]¶

		Abstract method to read data from path

		Parameters:		path – path to the file

		Returns:		data content from the file

		Return type:		str

		
class autotest.client.shared.iso9660.Iso9660IsoRead(path)[source]¶

		Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the libcdio’s iso-read tool

		
close()[source]¶

		Cleanup and free any resources being used

		Return type:		None

		
copy(src, dst)[source]¶

		Simplistic version of copy that relies on read()

		Parameters:				src (str) – source path

		dst (str) – destination path

		Return type:		None

		
read(path)[source]¶

		Abstract method to read data from path

		Parameters:		path – path to the file

		Returns:		data content from the file

		Return type:		str

		
class autotest.client.shared.iso9660.Iso9660Mount(path)[source]¶

		Bases: autotest.client.shared.iso9660.BaseIso9660

Represents a mounted ISO9660 filesystem.

		
close()[source]¶

		Perform umount operation on the temporary dir

		Return type:		None

		
copy(src, dst)[source]¶

				Parameters:				src (str) – source

		dst (str) – destination

		Return type:		None

		
read(path)[source]¶

		Read data from path

		Parameters:		path (str) – path to read data

		Returns:		data content

		Return type:		str

jsontemplate Module¶

Python implementation of json-template.

JSON Template is a minimal and powerful templating language for transforming a
JSON dictionary to arbitrary text.

To use this module, you will typically use the Template constructor, and catch
various exceptions thrown. You may also want to use the FromFile/FromString
methods, which allow Template constructor options to be embedded in the template
string itself.

Other functions are exposed for tools which may want to process templates.

		
exception autotest.client.shared.jsontemplate.Error[source]¶

		Bases: exceptions.Exception

Base class for all exceptions in this module.

Thus you can “except jsontemplate.Error: to catch all exceptions thrown by
this module.

		
exception autotest.client.shared.jsontemplate.CompilationError[source]¶

		Bases: autotest.client.shared.jsontemplate.Error

Base class for errors that happen during the compilation stage.

		
exception autotest.client.shared.jsontemplate.EvaluationError(msg, original_exception=None)[source]¶

		Bases: autotest.client.shared.jsontemplate.Error

Base class for errors that happen when expanding the template.

This class of errors generally involve the data dictionary or the execution of
the formatters.

		
exception autotest.client.shared.jsontemplate.BadFormatter[source]¶

		Bases: autotest.client.shared.jsontemplate.CompilationError

A bad formatter was specified, e.g. {variable|BAD}

		
exception autotest.client.shared.jsontemplate.BadPredicate[source]¶

		Bases: autotest.client.shared.jsontemplate.CompilationError

A bad predicate was specified, e.g. {.BAD?}

		
exception autotest.client.shared.jsontemplate.MissingFormatter[source]¶

		Bases: autotest.client.shared.jsontemplate.CompilationError

Raised when formatters are required, and a variable is missing a formatter.

		
exception autotest.client.shared.jsontemplate.ConfigurationError[source]¶

		Bases: autotest.client.shared.jsontemplate.CompilationError

Raised when the Template options are invalid and it can’t even be compiled.

		
exception autotest.client.shared.jsontemplate.TemplateSyntaxError[source]¶

		Bases: autotest.client.shared.jsontemplate.CompilationError

Syntax error in the template text.

		
exception autotest.client.shared.jsontemplate.UndefinedVariable(msg, original_exception=None)[source]¶

		Bases: autotest.client.shared.jsontemplate.EvaluationError

The template contains a variable not defined by the data dictionary.

		
autotest.client.shared.jsontemplate.CompileTemplate(template_str, builder=None, meta='{}', format_char='|', more_formatters=<function <lambda>>, more_predicates=<function <lambda>>, default_formatter='str')[source]¶

		Compile the template string, calling methods on the ‘program builder’.

		Args:

				template_str: The template string. It should not have any compilation

		options in the header – those are parsed by FromString/FromFile

		builder: The interface of _ProgramBuilder isn’t fixed. Use at your own

		risk.

meta: The metacharacters to use, e.g. ‘{}’, ‘[]’.

		more_formatters:

				Something that can map format strings to formatter functions. One of:

				A plain dictionary of names -> functions e.g. {‘html’: cgi.escape}

		A higher-order function which takes format strings and returns
formatter functions. Useful for when formatters have parsed
arguments.

		A FunctionRegistry instance for the most control. This allows
formatters which takes contexts as well.

		more_predicates:

		Like more_formatters, but for predicates.

		default_formatter: The formatter to use for substitutions that are missing a

		formatter. The ‘str’ formatter the “default default” – it just tries
to convert the context value to a string in some unspecified manner.

		Returns:

		The compiled program (obtained from the builder)

		Raises:

		The various subclasses of CompilationError. For example, if
default_formatter=None, and a variable is missing a formatter, then
MissingFormatter is raised.

This function is public so it can be used by other tools, e.g. a syntax
checking tool run before submitting a template to source control.

		
autotest.client.shared.jsontemplate.FromString(s, more_formatters=<function <lambda>>, _constructor=None)[source]¶

		Like FromFile, but takes a string.

		
autotest.client.shared.jsontemplate.FromFile(f, more_formatters=<function <lambda>>, _constructor=None)[source]¶

		Parse a template from a file, using a simple file format.

This is useful when you want to include template options in a data file,
rather than in the source code.

The format is similar to HTTP or E-mail headers. The first lines of the file
can specify template options, such as the metacharacters to use. One blank
line must separate the options from the template body.

Example:

default-formatter: none
meta: {{}}
format-char: :
<blank line required>
Template goes here: {{variable:html}}

		Args:

		f: A file handle to read from. Caller is responsible for opening and
closing it.

		
class autotest.client.shared.jsontemplate.Template(template_str, builder=None, undefined_str=None, **compile_options)[source]¶

		Bases: object

Represents a compiled template.

Like many template systems, the template string is compiled into a program,
and then it can be expanded any number of times. For example, in a web app,
you can compile the templates once at server startup, and use the expand()
method at request handling time. expand() uses the compiled representation.

There are various options for controlling parsing – see CompileTemplate.
Don’t go crazy with metacharacters. {}, [], {{}} or <> should cover nearly
any circumstance, e.g. generating HTML, CSS XML, JavaScript, C programs, text
files, etc.

		
expand(*args, **kwargs)[source]¶

		Expands the template with the given data dictionary, returning a string.

This is a small wrapper around render(), and is the most convenient
interface.

		Args:

		The JSON data dictionary. Like the builtin dict() constructor, it can
take a single dictionary as a positional argument, or arbitrary keyword
arguments.

		Returns:

		The return value could be a str() or unicode() instance, depending on the
the type of the template string passed in, and what the types the strings
in the dictionary are.

		
render(data_dict, callback)[source]¶

		Low level method to expands the template piece by piece.

		Args:

		data_dict: The JSON data dictionary.
callback: A callback which should be called with each expanded token.

Example: You can pass ‘f.write’ as the callback to write directly to a file
handle.

		
tokenstream(data_dict)[source]¶

		Yields a list of tokens resulting from expansion.

This may be useful for WSGI apps. NOTE: In the current implementation, the
entire expanded template must be stored memory.

NOTE: This is a generator, but JavaScript doesn’t have generators.

		
autotest.client.shared.jsontemplate.expand(template_str, dictionary, **kwargs)[source]¶

		Free function to expands a template string with a data dictionary.

This is useful for cases where you don’t care about saving the result of
compilation (similar to re.match(‘.*’, s) vs DOT_STAR.match(s))

kernel_versions Module¶

		
autotest.client.shared.kernel_versions.is_release_candidate(version)[source]¶

		

		
autotest.client.shared.kernel_versions.is_released_kernel(version)[source]¶

		

		
autotest.client.shared.kernel_versions.version_choose_config(version, candidates)[source]¶

		

		
autotest.client.shared.kernel_versions.version_encode(version)[source]¶

		

		
autotest.client.shared.kernel_versions.version_len(version)[source]¶

		

		
autotest.client.shared.kernel_versions.version_limit(version, n)[source]¶

		

log Module¶

		
autotest.client.shared.log.is_failure(status)[source]¶

		

		
autotest.client.shared.log.is_valid_status(status)[source]¶

		

		
autotest.client.shared.log.log_and_ignore_errors(msg)[source]¶

		A decorator for wrapping functions in a ‘log exception and ignore’
try-except block.

		
autotest.client.shared.log.record(fn)[source]¶

		Generic method decorator for logging calls under the
assumption that return=GOOD, exception=FAIL. The method
determines parameters as:

subdir = self.subdir if it exists, or None
operation = “class name”.”method name”
status = None on GOOD, str(exception) on FAIL

The object using this method must have a job attribute
for the logging to actually occur, otherwise the logging
will silently fail.

Logging can explicitly be disabled for a call by passing
a logged=False parameter

logging_config Module¶

		
class autotest.client.shared.logging_config.AllowBelowSeverity(level)[source]¶

		Bases: logging.Filter

Allows only records less severe than a given level (the opposite of what
the normal logging level filtering does.

		
filter(record)[source]¶

		Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.

		
class autotest.client.shared.logging_config.LoggingConfig(use_console=True)[source]¶

		Bases: object

		
add_console_handlers()[source]¶

		

		
add_debug_file_handlers(log_dir, log_name=None)[source]¶

		

		
add_file_handler(file_path, level=10, log_dir=None)[source]¶

		

		
add_stream_handler(stream, level=10)[source]¶

		

		
configure_logging(use_console=True, verbose=False)[source]¶

		

		
console_formatter = <logging.Formatter object>¶

		

		
file_formatter = <logging.Formatter object>¶

		

		
classmethod get_autotest_root()[source]¶

		

		
classmethod get_server_log_dir()[source]¶

		

		
classmethod get_timestamped_log_name(base_name)[source]¶

		

		
global_level = 10¶

		

		
stderr_level = 40¶

		

		
stdout_level = 20¶

		

		
class autotest.client.shared.logging_config.TestingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

		
add_file_handler(*args, **kwargs)[source]¶

		

		
add_stream_handler(*args, **kwargs)[source]¶

		

		
configure_logging(**kwargs)[source]¶

		

logging_manager Module¶

		
class autotest.client.shared.logging_manager.FdRedirectionLoggingManager[source]¶

		Bases: autotest.client.shared.logging_manager.LoggingManager

A simple extension of LoggingManager to use FdRedirectionStreamManagers,
so that managed streams have their underlying FDs redirected.

		
STREAM_MANAGER_CLASS¶

		alias of _FdRedirectionStreamManager

		
start_logging()[source]¶

		Begin capturing output to the logging module.

		
undo_redirect()[source]¶

		Undo the last redirection (that hasn’t yet been undone).

If any subprocesses have been launched since the redirection was
performed, they must have ended by the time this is called. Otherwise,
this will hang waiting for the logging subprocess to end.

		
class autotest.client.shared.logging_manager.LoggingFile(prefix='', level=10, logger=<logging.RootLogger object>)[source]¶

		Bases: object

File-like object that will receive messages pass them to the logging
infrastructure in an appropriate way.

		
flush()[source]¶

		

		
isatty()[source]¶

		

		
write(data)[source]¶

		”
Writes data only if it constitutes a whole line. If it’s not the case,
store it in a buffer and wait until we have a complete line.
:param data - Raw data (a string) that will be processed.

		
writelines(lines)[source]¶

		”
Writes itertable of lines

		Parameters:		lines – An iterable of strings that will be processed.

		
class autotest.client.shared.logging_manager.LoggingManager[source]¶

		Bases: object

Manages a stack of logging configurations, allowing clients to conveniently
add and remove logging destinations. Also keeps a list of StreamManagers
to easily direct streams into the logging module.

		
STREAM_MANAGER_CLASS¶

		alias of _StreamManager

		
logging_config_object = None¶

		

		
manage_stderr()[source]¶

		

		
manage_stdout()[source]¶

		

		
manage_stream(stream, level, stream_setter)[source]¶

		Tells this manager to manage the given stream. All data written to the
stream will be directed to the logging module instead. Must be called
before start_logging().

		Parameters:				stream – stream to manage

		level – level to log data written to this stream

		stream_setter – function to set the stream to a new object

		
redirect(filename)[source]¶

		Redirect output to the specified file

		
redirect_to_stream(stream)[source]¶

		Redirect output to the given stream

		
restore()[source]¶

		Same as undo_redirect(). For backwards compatibility with
fd_stack.

		
start_logging()[source]¶

		Begin capturing output to the logging module.

		
stop_logging()[source]¶

		Restore output to its original state.

		
tee_redirect(filename, level=None)[source]¶

		Tee output to the specified file

		
tee_redirect_debug_dir(debug_dir, log_name=None, tag=None)[source]¶

		Tee output to a full new set of debug logs in the given directory.

		
tee_redirect_to_stream(stream)[source]¶

		Tee output to the given stream

		
undo_redirect()[source]¶

		Undo the last redirection (that hasn’t yet been undone).

If any subprocesses have been launched since the redirection was
performed, they must have ended by the time this is called. Otherwise,
this will hang waiting for the logging subprocess to end.

		
class autotest.client.shared.logging_manager.SortingLoggingFile(prefix='', level_list=[('ERROR', 40), ('WARN', 30), ('INFO', 20), ('DEBUG', 10)], logger=<logging.RootLogger object>)[source]¶

		Bases: autotest.client.shared.logging_manager.LoggingFile

File-like object that will receive messages and pass them to the logging
infrastructure. It decides where to pass each line by applying a regex
to it and seeing which level it matched.

		
autotest.client.shared.logging_manager.configure_logging(logging_config, **kwargs)[source]¶

		Configure the logging module using the specific configuration object, which
should be an instance of logging_config.LoggingConfig (usually of a
subclass). Any keyword args will be passed to the object’s
configure_logging() method.

Every entry point should call this method at application startup.

		
autotest.client.shared.logging_manager.do_not_report_as_logging_caller(func)[source]¶

		Decorator to annotate functions we will tell logging not to log.

		
autotest.client.shared.logging_manager.get_logging_manager(manage_stdout_and_stderr=False, redirect_fds=False)[source]¶

		Create a LoggingManager that’s managing sys.stdout and sys.stderr.

Every entry point that wants to capture stdout/stderr and/or use
LoggingManager to manage a stack of destinations should call this method
at application startup.

magic Module¶

Library used to determine a file MIME type by its magic number, it doesn’t have
any external dependencies. Based on work of Jason Petrone (jp_py@jsnp.net),
adapted to autotest.

		Command Line Usage: Running as ‘python magic.py file_path’ will print a

		mime string (or just a description) of the file present on file_path.

		API Usage:

		magic.guess_type(file_path) - Returns a description of what the file on
path ‘file’ contains. This function name was chosen due to a similar
function on python standard library ‘mimetypes’.

@license: GPL v2
:copyright: Jason Petrone (jp_py@jsnp.net) 2000
:copyright: Lucas Meneghel Rodrigues (lmr@redhat.com) 2010
@see: http://www.jsnp.net/code/magic.py

		
class autotest.client.shared.magic.MagicLoggingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

		
configure_logging(results_dir=None, verbose=False)[source]¶

		

		
class autotest.client.shared.magic.MagicTest(offset, t, op, value, msg, mask=None)[source]¶

		Bases: object

Compile a magic database entry so it can be compared with data read from
files.

		
compare(data)[source]¶

		Compare data read from the file with the expected data for this
particular mime type register.

		Parameters:		data – Data read from the file.

		
test(data)[source]¶

		Compare data read from file with self.value if operator is ‘=’.

		Parameters:		data – Data read from the file.

		Returns:		None if no match between data and expected value string. Else,
print matching mime type information.

		
autotest.client.shared.magic.guess_type(filename)[source]¶

		Guess the mimetype of a file based on its filename.

		Parameters:		filename – File name.

		Returns:		Mimetype string or description, when appropriate mime not
available.

mail Module¶

Notification email library.

Aims to replace a bunch of different email module wrappers previously used.

		
class autotest.client.shared.mail.EmailNotificationManager(module='scheduler')[source]¶

		Bases: object

Email notification facility, for use in things like the autotest scheduler.

This facility can use values defined in the autotest settings
(global_config.ini) to conveniently send notification emails to the admin
of an autotest module.

		
enqueue_admin(subject, message)[source]¶

		Enqueue an email to the test grid admin.

		
enqueue_exception_admin(reason)[source]¶

		Enqueue an email containing an exception to the test grid admin.

		
send(to_string, subject, body)[source]¶

		Send emails to the addresses listed in to_string.

		to_string is split into a list which can be delimited by any of:

		‘;’, ‘,’, ‘:’ or any whitespace

		
send_admin(subject, body)[source]¶

		Send an email to this grid admin.

		
send_queued_admin()[source]¶

		Send all queued emails to the test grid admin.

		
set_module(module)[source]¶

		Change the name of the module we’re notifying for.

		
autotest.client.shared.mail.send(from_address, to_addresses, cc_addresses, subject, body, smtp_info, html=None)[source]¶

		Send out an email.

		Args:

		from_address: The email address to put in the “From:” field.
to_addresses: Either a single string or an iterable of

strings to put in the “To:” field of the email.

		cc_addresses: Either a single string of an iterable of

		strings to put in the “Cc:” field of the email.

subject: The email subject.
body: The body of the email. there’s no special

handling of encoding here, so it’s safest to
stick to 7-bit ASCII text.

smtp_info: Dictionary with SMTP info.
html: Optional HTML content of the message.

mock Module¶

		
class autotest.client.shared.mock.Mock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)[source]¶

		Bases: autotest.client.shared.mock.CallableMixin, autotest.client.shared.mock.NonCallableMock

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

		spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

		spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

		side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

		return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

		wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

		name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

		
class autotest.client.shared.mock.MagicMock(*args, **kw)[source]¶

		Bases: autotest.client.shared.mock.MagicMixin, autotest.client.shared.mock.Mock

MagicMock is a subclass of Mock with default implementations
of most of the magic methods. You can use MagicMock without having to
configure the magic methods yourself.

If you use the spec or spec_set arguments then only magic
methods that exist in the spec will be created.

Attributes and the return value of a MagicMock will also be MagicMocks.

		
mock_add_spec(spec, spec_set=False)[source]¶

		Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

		
autotest.client.shared.mock.patch(target, new=sentinel.DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)[source]¶

		patch acts as a function decorator, class decorator or a context
manager. Inside the body of the function or with statement, the target
is patched with a new object. When the function/with statement exits
the patch is undone.

If new is omitted, then the target is replaced with a
MagicMock. If patch is used as a decorator and new is
omitted, the created mock is passed in as an extra argument to the
decorated function. If patch is used as a context manager the created
mock is returned by the context manager.

target should be a string in the form ‘package.module.ClassName’. The
target is imported and the specified object replaced with the new
object, so the target must be importable from the environment you are
calling patch from. The target is imported when the decorated function
is executed, not at decoration time.

The spec and spec_set keyword arguments are passed to the MagicMock
if patch is creating one for you.

In addition you can pass spec=True or spec_set=True, which causes
patch to pass in the object being mocked as the spec/spec_set object.

new_callable allows you to specify a different class, or callable object,
that will be called to create the new object. By default MagicMock is
used.

A more powerful form of spec is autospec. If you set autospec=True
then the mock with be created with a spec from the object being replaced.
All attributes of the mock will also have the spec of the corresponding
attribute of the object being replaced. Methods and functions being
mocked will have their arguments checked and will raise a TypeError if
they are called with the wrong signature. For mocks replacing a class,
their return value (the ‘instance’) will have the same spec as the class.

Instead of autospec=True you can pass autospec=some_object to use an
arbitrary object as the spec instead of the one being replaced.

By default patch will fail to replace attributes that don’t exist. If
you pass in create=True, and the attribute doesn’t exist, patch will
create the attribute for you when the patched function is called, and
delete it again afterwards. This is useful for writing tests against
attributes that your production code creates at runtime. It is off by by
default because it can be dangerous. With it switched on you can write
passing tests against APIs that don’t actually exist!

Patch can be used as a TestCase class decorator. It works by
decorating each test method in the class. This reduces the boilerplate
code when your test methods share a common patchings set. patch finds
tests by looking for method names that start with patch.TEST_PREFIX.
By default this is test, which matches the way unittest finds tests.
You can specify an alternative prefix by setting patch.TEST_PREFIX.

Patch can be used as a context manager, with the with statement. Here the
patching applies to the indented block after the with statement. If you
use “as” then the patched object will be bound to the name after the
“as”; very useful if patch is creating a mock object for you.

patch takes arbitrary keyword arguments. These will be passed to
the Mock (or new_callable) on construction.

patch.dict(…), patch.multiple(…) and patch.object(…) are
available for alternate use-cases.

		
autotest.client.shared.mock.call¶

		A tuple for holding the results of a call to a mock, either in the form
(args, kwargs) or (name, args, kwargs).

If args or kwargs are empty then a call tuple will compare equal to
a tuple without those values. This makes comparisons less verbose:

_Call(('name', (), {})) == ('name',)
_Call(('name', (1,), {})) == ('name', (1,))
_Call(((), {'a': 'b'})) == ({'a': 'b'},)

The _Call object provides a useful shortcut for comparing with call:

_Call(((1, 2), {'a': 3})) == call(1, 2, a=3)
_Call(('foo', (1, 2), {'a': 3})) == call.foo(1, 2, a=3)

If the _Call has no name then it will match any name.

		
autotest.client.shared.mock.create_autospec(spec, spec_set=False, instance=False, _parent=None, _name=None, **kwargs)[source]¶

		Create a mock object using another object as a spec. Attributes on the
mock will use the corresponding attribute on the spec object as their
spec.

Functions or methods being mocked will have their arguments checked
to check that they are called with the correct signature.

If spec_set is True then attempting to set attributes that don’t exist
on the spec object will raise an AttributeError.

If a class is used as a spec then the return value of the mock (the
instance of the class) will have the same spec. You can use a class as the
spec for an instance object by passing instance=True. The returned mock
will only be callable if instances of the mock are callable.

create_autospec also takes arbitrary keyword arguments that are passed to
the constructor of the created mock.

		
class autotest.client.shared.mock.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)[source]¶

		Bases: autotest.client.shared.mock.Base

A non-callable version of Mock

		
assert_any_call(*args, **kwargs)[source]¶

		assert the mock has been called with the specified arguments.

The assert passes if the mock has ever been called, unlike
assert_called_with and assert_called_once_with that only pass if
the call is the most recent one.

		
assert_called_once_with(*args, **kwargs)[source]¶

		assert that the mock was called exactly once and with the specified
arguments.

		
assert_called_with(*args, **kwargs)[source]¶

		assert that the mock was called with the specified arguments.

Raises an AssertionError if the args and keyword args passed in are
different to the last call to the mock.

		
assert_has_calls(calls, any_order=False)[source]¶

		assert the mock has been called with the specified calls.
The mock_calls list is checked for the calls.

If any_order is False (the default) then the calls must be
sequential. There can be extra calls before or after the
specified calls.

If any_order is True then the calls can be in any order, but
they must all appear in mock_calls.

		
attach_mock(mock, attribute)[source]¶

		Attach a mock as an attribute of this one, replacing its name and
parent. Calls to the attached mock will be recorded in the
method_calls and mock_calls attributes of this one.

		
call_args¶

		

		
call_args_list¶

		

		
call_count¶

		

		
called¶

		

		
configure_mock(**kwargs)[source]¶

		Set attributes on the mock through keyword arguments.

Attributes plus return values and side effects can be set on child
mocks using standard dot notation and unpacking a dictionary in the
method call:

>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock.configure_mock(**attrs)

		
mock_add_spec(spec, spec_set=False)[source]¶

		Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

		
mock_calls¶

		

		
reset_mock()[source]¶

		Restore the mock object to its initial state.

		
return_value¶

		

		
side_effect¶

		

		
class autotest.client.shared.mock.NonCallableMagicMock(*args, **kw)[source]¶

		Bases: autotest.client.shared.mock.MagicMixin, autotest.client.shared.mock.NonCallableMock

A version of MagicMock that isn’t callable.

		
mock_add_spec(spec, spec_set=False)[source]¶

		Add a spec to a mock. spec can either be an object or a
list of strings. Only attributes on the spec can be fetched as
attributes from the mock.

If spec_set is True then only attributes on the spec can be set.

		
autotest.client.shared.mock.mock_open(mock=None, read_data='')[source]¶

		A helper function to create a mock to replace the use of open. It works
for open called directly or used as a context manager.

The mock argument is the mock object to configure. If None (the
default) then a MagicMock will be created for you, with the API limited
to methods or attributes available on standard file handles.

read_data is a string for the read method of the file handle to return.
This is an empty string by default.

		
class autotest.client.shared.mock.PropertyMock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)[source]¶

		Bases: autotest.client.shared.mock.Mock

A mock intended to be used as a property, or other descriptor, on a class.
PropertyMock provides __get__ and __set__ methods so you can specify
a return value when it is fetched.

Fetching a PropertyMock instance from an object calls the mock, with
no args. Setting it calls the mock with the value being set.

openvswitch Module¶

		
class autotest.client.shared.openvswitch.OpenVSwitch(tmpdir, db_path=None, db_socket=None, db_pidfile=None, ovs_pidfile=None, dbschema=None, install_prefix=None)[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchSystem

OpenVSwtich class.

		
clean()[source]¶

		Empty cleanup function

		
init_db()[source]¶

		

		
init_new()[source]¶

		Create new dbfile without any configuration.

		
start_ovs_vswitchd()[source]¶

		

		
class autotest.client.shared.openvswitch.OpenVSwitchControl[source]¶

		Bases: object

Class select the best matches control class for installed version
of OpenVSwitch.

OpenVSwtich parameters are described in man ovs-vswitchd.conf.db

		
add_br(br_name)[source]¶

		

		
add_port(br_name, port_name)[source]¶

		

		
add_port_tag(port_name, tag)[source]¶

		

		
add_port_trunk(port_name, trunk)[source]¶

		

		
br_exist(br_name)[source]¶

		

		
check_port_in_br(br_name, port_name)[source]¶

		

		
static convert_version_to_int(version)[source]¶

				Parameters:		version – (int) Converted from version string 1.4.0 => int 140

		
del_br(br_name)[source]¶

		

		
del_port(br_name, port_name)[source]¶

		

		
classmethod get_version()[source]¶

		Get version of installed OpenVSwtich.

		Returns:		Version of OpenVSwtich.

		
list_br()[source]¶

		

		
set_vlanmode(port_name, vlan_mode)[source]¶

		

		
status()[source]¶

		

		
class autotest.client.shared.openvswitch.OpenVSwitchControlCli[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchControl, autotest.client.shared.utils.VersionableClass

Class select the best matches control class for installed version
of OpenVSwitch.

		
class autotest.client.shared.openvswitch.OpenVSwitchControlCli_140[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchControlCli, autotest.client.shared.utils.VersionableClass

Don’t use this class directly. This class is automatically selected by
OpenVSwitchControl.

		
add_br(br_name)[source]¶

		

		
add_fake_br(br_name, parent, vlan)[source]¶

		

		
add_port(br_name, port_name)[source]¶

		

		
add_port_tag(port_name, tag)[source]¶

		

		
add_port_trunk(port_name, trunk)[source]¶

				Parameters:		trunk – list of vlans id.

		
br_exist(br_name)[source]¶

		

		
del_br(br_name)[source]¶

		

		
del_port(br_name, port_name)[source]¶

		

		
classmethod is_right_version(version)[source]¶

		Check condition for select control class.

		Parameters:		version – version of OpenVSwtich

		
list_br()[source]¶

		

		
list_ports(br_name)[source]¶

		

		
ovs_vsctl(parmas, ignore_status=False)[source]¶

		

		
port_to_br(port_name)[source]¶

		Return bridge which contain port.

		Parameters:		port_name – Name of port.

		Returns:		Bridge name or None if there is no bridge which contain port.

		
set_vlanmode(port_name, vlan_mode)[source]¶

		

		
status()[source]¶

		

		
class autotest.client.shared.openvswitch.OpenVSwitchControlDB[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchControl, autotest.client.shared.utils.VersionableClass

Class select the best matches control class for installed version
of OpenVSwitch.

		
class autotest.client.shared.openvswitch.OpenVSwitchControlDB_140[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchControlDB, autotest.client.shared.utils.VersionableClass

Don’t use this class directly. This class is automatically selected by
OpenVSwitchControl.

		
classmethod is_right_version(version)[source]¶

		Check condition for select control class.

		Parameters:		version – version of OpenVSwtich

		
class autotest.client.shared.openvswitch.OpenVSwitchSystem(db_path=None, db_socket=None, db_pidfile=None, ovs_pidfile=None, dbschema=None, install_prefix=None)[source]¶

		Bases: autotest.client.shared.openvswitch.OpenVSwitchControlCli, autotest.client.shared.openvswitch.OpenVSwitchControlDB

OpenVSwtich class.

		
check()[source]¶

		

		
check_db_daemon()[source]¶

		Check if OVS daemon is started correctly.

		
check_db_file()[source]¶

		Check if db_file exists.

		
check_db_socket()[source]¶

		Check if db socket exists.

		
check_switch_daemon()[source]¶

		Check if OVS daemon is started correctly.

		
clean()[source]¶

		Empty cleanup function

		
init_system()[source]¶

		Create new dbfile without any configuration.

		
is_installed()[source]¶

		Check if OpenVSwitch is already installed in system on default places.

		Returns:		Version of OpenVSwtich.

		
class autotest.client.shared.openvswitch.ServiceManager[source]¶

		Bases: autotest.client.shared.openvswitch.ServiceManagerInterface

		
class autotest.client.shared.openvswitch.ServiceManagerInterface[source]¶

		Bases: autotest.client.shared.utils.VersionableClass

		
classmethod get_version()[source]¶

		Get version of ServiceManager.
:return: Version of ServiceManager.

		
restart(service_name)[source]¶

		

		
start(service_name)[source]¶

		

		
status(service_name)[source]¶

		

		
stop(service_name)[source]¶

		

		
class autotest.client.shared.openvswitch.ServiceManagerSystemD[source]¶

		Bases: autotest.client.shared.openvswitch.ServiceManagerInterface, autotest.client.shared.utils.VersionableClass

		
classmethod is_right_version(version)[source]¶

		Check condition for select control class.
Function must be re-implemented in new OpenVSwitchControl class.
Must be re-implemented for in child class.

		Parameters:		version – version of OpenVSwtich

		
restart(service_name)[source]¶

		

		
start(service_name)[source]¶

		

		
status(service_name)[source]¶

		

		
stop(service_name)[source]¶

		

		
class autotest.client.shared.openvswitch.ServiceManagerSysvinit[source]¶

		Bases: autotest.client.shared.openvswitch.ServiceManagerInterface, autotest.client.shared.utils.VersionableClass

		
classmethod is_right_version(version)[source]¶

		Check condition for select control class.
Function must be re-implemented in new OpenVSwitchControl class.
Must be re-implemented for in child class.

		Parameters:		version – version of OpenVSwtich

		
restart(service_name)[source]¶

		

		
start(service_name)[source]¶

		

		
stop(service_name)[source]¶

		

packages Module¶

		
class autotest.client.shared.packages.PackageManager(pkgmgr_dir, hostname=None, repo_urls=None, upload_paths=None, do_locking=True, run_function=<function run>, run_function_args=[], run_function_dargs={})[source]¶

		Bases: autotest.client.shared.base_packages.BasePackageManager

pidfile Module¶

		
class autotest.client.shared.pidfile.PidFileManager(label, results_dir)[source]¶

		Bases: object

		
close_file(exit_code, signal_code=0)[source]¶

		

		
open_file()[source]¶

		

profiler_manager Module¶

		
exception autotest.client.shared.profiler_manager.ProfilerNotPresentError(name, *args, **dargs)[source]¶

		Bases: autotest.client.shared.error.JobError

		
class autotest.client.shared.profiler_manager.profiler_manager(job)[source]¶

		Bases: object

		
active()[source]¶

		Returns True if profilers are present and started, False
otherwise

		
add(profiler, *args, **dargs)[source]¶

		Add a profiler

		
before_start(test)[source]¶

		Override to do any setup needed before actually starting the profilers
(this function is called before calling test.before_run_once() and
profilers.start() in a profiled run).

		
current_profilers()[source]¶

		Returns a set of the currently enabled profilers

		
delete(profiler)[source]¶

		Remove a profiler

		
load_profiler(profiler, args, dargs)[source]¶

		Given a name and args, loads a profiler, initializes it
with the required arguments, and returns an instance of it. Raises
a ProfilerNotPresentError if the module isn’t found.

		
only()[source]¶

		Returns True if job is supposed to be run only with profiling
turned on, False otherwise

		
present()[source]¶

		Indicates if any profilers are enabled

		
report(test)[source]¶

		Report on all enabled profilers

		
set_only(value)[source]¶

		Changes the flag which determines whether or not the job is to be
run without profilers at all

		
start(test)[source]¶

		Start all enabled profilers

		
stop(test)[source]¶

		Stop all enabled profilers

progressbar Module¶

Basic text progress bar without fancy curses features

		
class autotest.client.shared.progressbar.ProgressBar(minimum=0, maximum=100, width=77, title='')[source]¶

		Displays interactively the progress of a given task

Inspired/adapted from code.activestate.com recipe #168639

		
DEFAULT_WIDTH = 77¶

		

		
get_screen_text()[source]¶

		Builds the actual progress bar text

		
increment(increment, update_screen=True)[source]¶

		Increments the current amount value

		
update(amount, update_screen=True)[source]¶

		Performs sanity checks and update the current amount

		
update_screen()[source]¶

		Prints the updated text to the screen

report Module¶

Module used to parse the autotest job status file and generate a JSON file.

Optionally, we can also generate reports (HTML)

		
exception autotest.client.shared.report.InvalidAutotestResultDirError(directory)[source]¶

		Bases: exceptions.Exception

		
exception autotest.client.shared.report.InvalidOutputDirError(directory)[source]¶

		Bases: exceptions.Exception

		
class autotest.client.shared.report.ReportLoggingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing convenient logging setup
for this program.

		
configure_logging(results_dir=None, verbose=False)[source]¶

		

		
class autotest.client.shared.report.ReportOptionParser[source]¶

		Bases: optparse.OptionParser

		
autotest.client.shared.report.generate_html_report(results_dir, relative_links=True)[source]¶

		Render a job report HTML.

All CSS and javascript are inlined, for more convenience.

		Parameters:		results_dir – Path to the results directory.

		
autotest.client.shared.report.generate_json_file(results_dir, relative_links=True)[source]¶

		Generate a JSON file with autotest job summary on a given results directory

		Parameters:		results_dir – Path to the results directory.

		
autotest.client.shared.report.get_info_file(filename)[source]¶

		Gets the contents of an autotest info file.

It also and highlights the file contents with possible problems.

		Parameters:		filename – Info file path.

		
autotest.client.shared.report.parse_results_dir(results_dir, relative_links=True)[source]¶

		Parse a top level status file and produce a dictionary with job data.

		Parameters:		dirname – Autotest results directory path

		Returns:		Dictionary with job data.

		
autotest.client.shared.report.write_html_report(results_dir, report_path=None, encoding='utf8')[source]¶

		Write an HTML file at report_path, with job data summary.

If no report_path specified, generate one at results_dir/job_report.html.

		Parameters:				results_dir – Directory with test results.

		report_path – Path to a report file (optional).

		encoding – Encoding for output (optional).

service Module¶

		
autotest.client.shared.service.ServiceManager(run=<function run>)[source]¶

		Detect which init program is being used, init or systemd and return a
class has methods to start/stop services.

Get the system service manager
service_manager = ServiceManager()

Stating service/unit “sshd”
service_manager.start(“sshd”)

Getting a list of available units
units = service_manager.list()

Disabling and stopping a list of services
services_to_disable = [‘ntpd’, ‘httpd’]
for s in services_to_disable:

service_manager.disable(s)
service_manager.stop(s)

		Returns:		SysVInitServiceManager or SystemdServiceManager

		Return type:		_GenericServiceManager

		
autotest.client.shared.service.SpecificServiceManager(service_name, run=<function run>)[source]¶

		# Get the specific service manager for sshd
sshd = SpecificServiceManager(“sshd”)
sshd.start()
sshd.stop()
sshd.reload()
sshd.restart()
sshd.condrestart()
sshd.status()
sshd.enable()
sshd.disable()
sshd.is_enabled()

		Parameters:		service_name (str) – systemd unit or init.d service to manager

		Returns:		SpecificServiceManager that has start/stop methods

		Return type:		_SpecificServiceManager

		
autotest.client.shared.service.convert_systemd_target_to_runlevel(target)[source]¶

		Convert systemd target to runlevel.

		Parameters:		target (str) – systemd target

		Returns:		sys_v runlevel

		Return type:		str

		Raises:		ValueError – when systemd target is unknown

		
autotest.client.shared.service.convert_sysv_runlevel(level)[source]¶

		Convert runlevel to systemd target.

		Parameters:		level (str or int) – sys_v runlevel

		Returns:		systemd target

		Return type:		str

		Raises:		ValueError – when runlevel is unknown

		
autotest.client.shared.service.get_name_of_init(run=<function run>)[source]¶

		Determine what executable is PID 1, aka init by checking /proc/1/exe
This init detection will only run once and cache the return value.

		Returns:		executable name for PID 1, aka init

		Return type:		str

		
autotest.client.shared.service.sys_v_init_command_generator(command)[source]¶

		Generate lists of command arguments for sys_v style inits.

		Parameters:		command (str) – start,stop,restart, etc.

		Returns:		list of commands to pass to utils.run or similar function

		Return type:		list

		
autotest.client.shared.service.sys_v_init_result_parser(command)[source]¶

		Parse results from sys_v style commands.

		Parameters:		command (str.) – command.

		Returns:		different from the command.

command is status: return true if service is running.
command is is_enabled: return true if service is enalbled.
command is list: return a dict from service name to status.
command is others: return true if operate success.

		
autotest.client.shared.service.systemd_command_generator(command)[source]¶

		Generate list of command line argument strings for systemctl.
One argument per string for compatibility Popen

WARNING: If systemctl detects that it is running on a tty it will use color,
pipe to $PAGER, change column sizes and not truncate unit names.
Use –no-pager to suppress pager output, or set PAGER=cat in the environment.
You may need to take other steps to suppress color output.
See https://bugzilla.redhat.com/show_bug.cgi?id=713567

		Parameters:		command (str) – start,stop,restart, etc.

		Returns:		list of command and arguments to pass to utils.run or similar functions

		Return type:		list

		
autotest.client.shared.service.systemd_result_parser(command)[source]¶

		Parse results from systemd style commands.

		Parameters:		command (str.) – command.

		Returns:		different from the command.

command is status: return true if service is running.
command is is_enabled: return true if service is enalbled.
command is list: return a dict from service name to status.
command is others: return true if operate success.

settings Module¶

A singleton class for accessing global config values.

provides access to global configuration file.

		
class autotest.client.shared.settings.Settings[source]¶

		Bases: object

		
check_stand_alone_client_run()[source]¶

		

		
config = None¶

		

		
config_file = '/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/latest/global_config.ini'¶

		

		
get_section_values(sections)[source]¶

		Return a config parser object containing a single section of the
global configuration, that can be later written to a file object.

		Parameters:		section – Tuple with sections we want to turn into a config parser
object.

		Returns:		ConfigParser() object containing all the contents of sections.

		
get_value(section, key, type=<type 'str'>, default=<object object>, allow_blank=False)[source]¶

		

		
merge_configs(shadow_config)[source]¶

		

		
override_value(section, key, new_value)[source]¶

		Override a value from the config file with a new value.

		
parse_config_file()[source]¶

		

		
reset_values()[source]¶

		Reset all values to those found in the config files (undoes all
overrides).

		
running_stand_alone_client = False¶

		

		
set_config_files(config_file='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/latest/global_config.ini', shadow_file='/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/latest/shadow_config.ini')[source]¶

		

		
shadow_file = '/home/docs/checkouts/readthedocs.org/user_builds/autotest/checkouts/latest/shadow_config.ini'¶

		

		
exception autotest.client.shared.settings.SettingsError[source]¶

		Bases: autotest.client.shared.error.AutotestError

		
exception autotest.client.shared.settings.SettingsValueError[source]¶

		Bases: autotest.client.shared.settings.SettingsError

software_manager Module¶

Software package management library.

This is an abstraction layer on top of the existing distributions high level
package managers. It supports package operations useful for testing purposes,
and multiple high level package managers (here called backends). If you want
to make this lib to support your particular package manager/distro, please
implement the given backend class.

		author:		Higor Vieira Alves (halves@br.ibm.com)

		author:		Lucas Meneghel Rodrigues (lmr@redhat.com)

		author:		Ramon de Carvalho Valle (rcvalle@br.ibm.com)

		copyright:		IBM 2008-2009

		copyright:		Red Hat 2009-2010

		
class autotest.client.shared.software_manager.AptBackend[source]¶

		Bases: autotest.client.shared.software_manager.DpkgBackend

Implements the apt backend for software manager.

Set of operations for the apt package manager, commonly found on Debian and
Debian based distributions, such as Ubuntu Linux.

		
add_repo(repo)[source]¶

		Add an apt repository.

		Parameters:		repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

		
install(name)[source]¶

		Installs package [name].

		Parameters:		name – Package name.

		
provides(path)[source]¶

		Return a list of packages that provide [path].

		Parameters:		path – File path.

		
remove(name)[source]¶

		Remove package [name].

		Parameters:		name – Package name.

		
remove_repo(repo)[source]¶

		Remove an apt repository.

		Parameters:		repo – Repository string. Example:
‘deb http://archive.ubuntu.com/ubuntu/ maverick universe’

		
upgrade(name=None)[source]¶

		Upgrade all packages of the system with eventual new versions.

Optionally, upgrade individual packages.

		Parameters:		name (str) – optional parameter wildcard spec to upgrade

		
class autotest.client.shared.software_manager.BaseBackend[source]¶

		Bases: object

This class implements all common methods among backends.

		
install_what_provides(path)[source]¶

		Installs package that provides [path].

		Parameters:		path – Path to file.

		
class autotest.client.shared.software_manager.DpkgBackend[source]¶

		Bases: autotest.client.shared.software_manager.BaseBackend

This class implements operations executed with the dpkg package manager.

dpkg is a lower level package manager, used by higher level managers such
as apt and aptitude.

		
INSTALLED_OUTPUT = 'install ok installed'¶

		

		
PACKAGE_TYPE = 'deb'¶

		

		
check_installed(name)[source]¶

		

		
list_all()[source]¶

		List all packages available in the system.

		
list_files(package)[source]¶

		List files installed by package [package].

		Parameters:		package – Package name.

		Returns:		List of paths installed by package.

		
class autotest.client.shared.software_manager.RpmBackend[source]¶

		Bases: autotest.client.shared.software_manager.BaseBackend

This class implements operations executed with the rpm package manager.

rpm is a lower level package manager, used by higher level managers such
as yum and zypper.

		
PACKAGE_TYPE = 'rpm'¶

		

		
SOFTWARE_COMPONENT_QRY = 'rpm %{NAME} %{VERSION} %{RELEASE} %{SIGMD5} %{ARCH}'¶

		

		
check_installed(name, version=None, arch=None)[source]¶

		Check if package [name] is installed.

		Parameters:				name – Package name.

		version – Package version.

		arch – Package architecture.

		
list_all(software_components=True)[source]¶

		List all installed packages.

		Parameters:		software_components – log in a format suitable for the
SoftwareComponent schema

		
list_files(name)[source]¶

		List files installed on the system by package [name].

		Parameters:		name – Package name.

		
class autotest.client.shared.software_manager.SoftwareManager[source]¶

		Bases: object

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it
uses the concept of a backend, a helper class that implements the set of
operations of a given package management tool.

		
class autotest.client.shared.software_manager.SoftwareManagerLoggingConfig(use_console=True)[source]¶

		Bases: autotest.client.shared.logging_config.LoggingConfig

Used with the sole purpose of providing logging setup for this program.

		
configure_logging(results_dir=None, verbose=False)[source]¶

		

		
class autotest.client.shared.software_manager.SystemInspector[source]¶

		Bases: object

System inspector class.

This may grow up to include more complete reports of operating system and
machine properties.

		
get_package_management()[source]¶

		Determine the supported package management systems present on the
system. If more than one package management system installed, try
to find the best supported system.

		
class autotest.client.shared.software_manager.YumBackend[source]¶

		Bases: autotest.client.shared.software_manager.RpmBackend

Implements the yum backend for software manager.

Set of operations for the yum package manager, commonly found on Yellow Dog
Linux and Red Hat based distributions, such as Fedora and Red Hat
Enterprise Linux.

		
add_repo(url)[source]¶

		Adds package repository located on [url].

		Parameters:		url – Universal Resource Locator of the repository.

		
install(name)[source]¶

		Installs package [name]. Handles local installs.

		
provides(name)[source]¶

		Returns a list of packages that provides a given capability.

		Parameters:		name – Capability name (eg, ‘foo’).

		
remove(name)[source]¶

		Removes package [name].

		Parameters:		name – Package name (eg. ‘ipython’).

		
remove_repo(url)[source]¶

		Removes package repository located on [url].

		Parameters:		url – Universal Resource Locator of the repository.

		
upgrade(name=None)[source]¶

		Upgrade all available packages.

Optionally, upgrade individual packages.

		Parameters:		name (str) – optional parameter wildcard spec to upgrade

		
class autotest.client.shared.software_manager.ZypperBackend[source]¶

		Bases: autotest.client.shared.software_manager.RpmBackend

Implements the zypper backend for software manager.

Set of operations for the zypper package manager, found on SUSE Linux.

		
add_repo(url)[source]¶

		Adds repository [url].

		Parameters:		url – URL for the package repository.

		
install(name)[source]¶

		Installs package [name]. Handles local installs.

		Parameters:		name – Package Name.

		
provides(name)[source]¶

		Searches for what provides a given file.

		Parameters:		name – File path.

		
remove(name)[source]¶

		Removes package [name].

		
remove_repo(url)[source]¶

		Removes repository [url].

		Parameters:		url – URL for the package repository.

		
upgrade(name=None)[source]¶

		Upgrades all packages of the system.

Optionally, upgrade individual packages.

		Parameters:		name (str) – Optional parameter wildcard spec to upgrade

		
autotest.client.shared.software_manager.install_distro_packages(distro_pkg_map, interactive=False)[source]¶

		Installs packages for the currently running distribution

This utility function checks if the currently running distro is a
key in the distro_pkg_map dictionary, and if there is a list of packages
set as its value.

If these conditions match, the packages will be installed using the
software manager interface, thus the native packaging system if the
currenlty running distro.

		Parameters:		distro_pkg_map (dict) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

		Returns:		True if any packages were actually installed, False otherwise

ssh_key Module¶

syncdata Module¶

test Module¶

		
class autotest.client.shared.test.Subtest[source]¶

		Bases: object

Collect result of subtest of main test.

		
clean()[source]¶

		Check if cleanup is defined.

For makes test fatal add before implementation of test method
decorator @subtest_nocleanup

		
decored()[source]¶

		

		
failed = 0¶

		

		
classmethod get_full_text_result(format_func=None)[source]¶

				Returns:		string with text form of result

		
classmethod get_result()[source]¶

				Returns:		Result of subtests.
Format:
tuple(pass/fail,function_name,call_arguments)

		
classmethod get_text_result(format_func=None)[source]¶

				Returns:		string with text form of result

		
classmethod has_failed()[source]¶

				Returns:		If any of subtest not pass return True.

		
classmethod log_append(msg)[source]¶

		Add log_append to result output.

		Parameters:		msg – Test of log_append

		
passed = 0¶

		

		
result = []¶

		

		
static result_to_string(result)[source]¶

		Format of result dict.

		result = {

		
‘result’ : “PASS” / “FAIL”,
‘name’ : class name,
‘args’ : test’s args,
‘kargs’ : test’s kargs,
‘output’ : return of test function,

}

		Parameters:		result – Result of test.

		
static result_to_string_debug(result)[source]¶

				Parameters:		result – Result of test.

		
runsubtest(url, *args, **dargs)[source]¶

		Execute another autotest test from inside the current test’s scope.

		Parameters:				test – Parent test.

		url – Url of new test.

		tag – Tag added to test name.

		args – Args for subtest.

		dargs – Dictionary with args for subtest.

@iterations: Number of subtest iterations.
@profile_only: If true execute one profiled run.

		
test()[source]¶

		Check if test is defined.

For makes test fatal add before implementation of test method
decorator @subtest_fatal

		
class autotest.client.shared.test.base_test(job, bindir, outputdir)[source]¶

		Bases: object

		
after_run_once()[source]¶

		Called after every run_once (including from a profiled run when it’s
called after stopping the profilers).

		
analyze_perf_constraints(constraints)[source]¶

		

		
assert_(expr, msg='Assertion failed.')[source]¶

		

		
before_run_once()[source]¶

		Override in tests that need it, will be called before any run_once()
call including the profiling run (when it’s called before starting
the profilers).

		
cleanup()[source]¶

		

		
configure_crash_handler()[source]¶

		

		
crash_handler_report()[source]¶

		

		
drop_caches_between_iterations()[source]¶

		

		
execute(iterations=None, test_length=None, profile_only=None, _get_time=<built-in function time>, postprocess_profiled_run=None, constraints=(), *args, **dargs)[source]¶

		This is the basic execute method for the tests inherited from base_test.
If you want to implement a benchmark test, it’s better to implement
the run_once function, to cope with the profiling infrastructure. For
other tests, you can just override the default implementation.

		Parameters:				test_length – The minimum test length in seconds. We’ll run the
run_once function for a number of times large enough to cover the
minimum test length.

		iterations – A number of iterations that we’ll run the run_once
function. This parameter is incompatible with test_length and will
be silently ignored if you specify both.

		profile_only – If true run X iterations with profilers enabled.
If false run X iterations and one with profiling if profiles are
enabled. If None, default to the value of job.default_profile_only.

		_get_time – [time.time] Used for unit test time injection.

		postprocess_profiled_run – Run the postprocessing for the
profiled run.

		
initialize()[source]¶

		

		
network_destabilizing = False¶

		

		
postprocess()[source]¶

		

		
postprocess_iteration()[source]¶

		

		
preserve_srcdir = False¶

		

		
process_failed_constraints()[source]¶

		

		
register_after_iteration_hook(iteration_hook)[source]¶

		This is how we expect test writers to register an after_iteration_hook.
This adds the method to the list of hooks which are executed
after each iteration.

		Parameters:		iteration_hook – Method to run after each iteration. A valid
hook accepts a single argument which is the
test object.

		
register_before_iteration_hook(iteration_hook)[source]¶

		This is how we expect test writers to register a before_iteration_hook.
This adds the method to the list of hooks which are executed
before each iteration.

		Parameters:		iteration_hook – Method to run before each iteration. A valid
hook accepts a single argument which is the
test object.

		
run_once_profiling(postprocess_profiled_run, *args, **dargs)[source]¶

		

		
setup()[source]¶

		

		
warmup(*args, **dargs)[source]¶

		

		
write_attr_keyval(attr_dict)[source]¶

		

		
write_iteration_keyval(attr_dict, perf_dict, tap_report=None)[source]¶

		

		
write_perf_keyval(perf_dict)[source]¶

		

		
write_test_keyval(attr_dict)[source]¶

		

		
autotest.client.shared.test.runtest(job, url, tag, args, dargs, local_namespace={}, global_namespace={}, before_test_hook=None, after_test_hook=None, before_iteration_hook=None, after_iteration_hook=None)[source]¶

		

		
autotest.client.shared.test.subtest_fatal(function)[source]¶

		Decorator which mark test critical.
If subtest fails the whole test ends.

		
autotest.client.shared.test.subtest_nocleanup(function)[source]¶

		Decorator used to disable cleanup function.

utils Module¶

Convenience functions for use by tests or whomever.

NOTE: this is a mixin library that pulls in functions from several places
Note carefully what the precendece order is

There’s no really good way to do this, as this isn’t a class we can do
inheritance with, just a collection of static methods.

		
class autotest.client.shared.utils.AsyncJob(command, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_level=40, kill_func=None, close_fds=False)[source]¶

		Bases: autotest.client.shared.utils.BgJob

		
cleanup()[source]¶

		

		
get_stderr()[source]¶

		

		
get_stdout()[source]¶

		

		
output_prepare(stdout_file=None, stderr_file=None)[source]¶

		

		
process_output(stdout=True, final_read=False)[source]¶

		output_prepare must be called prior to calling this

		
wait_for(timeout=None)[source]¶

		Wait for the process to finish. When timeout is provided, process is
safely destroyed after timeout.
:param timeout: Acceptable timeout
:return: results of this command

		
class autotest.client.shared.utils.BgJob(command, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_level=40, close_fds=False)[source]¶

		Bases: object

		
cleanup()[source]¶

		

		
output_prepare(stdout_file=None, stderr_file=None)[source]¶

		

		
process_output(stdout=True, final_read=False)[source]¶

		output_prepare must be called prior to calling this

		
class autotest.client.shared.utils.CmdResult(command='', stdout='', stderr='', exit_status=None, duration=0)[source]¶

		Bases: object

Command execution result.

command: String containing the command line itself
exit_status: Integer exit code of the process
stdout: String containing stdout of the process
stderr: String containing stderr of the process
duration: Elapsed wall clock time running the process

		
class autotest.client.shared.utils.FileFieldMonitor(status_file, data_to_read, mode_diff, continuously=False, contlogging=False, separator=' +', time_step=0.1)[source]¶

		Bases: object

Monitors the information from the file and reports it’s values.

It gather the information at start and stop of the measurement or
continuously during the measurement.

		
class Monitor(master)[source]¶

		Bases: threading.Thread

Internal monitor class to ensure continuous monitor of monitored file.

		
run()[source]¶

		Start monitor in thread mode

		
get_status()[source]¶

				Returns:		Status of monitored process average value,
time of test and array of monitored values and time step of
continuous run.

		
start()[source]¶

		Start value monitor.

		
stop()[source]¶

		Stop value monitor.

		
class autotest.client.shared.utils.ForAll[source]¶

		Bases: list

		
class autotest.client.shared.utils.ForAllP[source]¶

		Bases: list

Parallel version of ForAll

		
class autotest.client.shared.utils.ForAllPSE[source]¶

		Bases: list

Parallel version of and suppress exception.

		
class autotest.client.shared.utils.InterruptedThread(target, args=(), kwargs={})[source]¶

		Bases: threading.Thread

Run a function in a background thread.

		
join(timeout=None, suppress_exception=False)[source]¶

		Join the thread. If target raised an exception, re-raise it.
Otherwise, return the value returned by target.

		Parameters:				timeout – Timeout value to pass to threading.Thread.join().

		suppress_exception – If True, don’t re-raise the exception.

		
run()[source]¶

		Run target (passed to the constructor). No point in calling this
function directly. Call start() to make this function run in a new
thread.

		
class autotest.client.shared.utils.Statistic[source]¶

		Bases: object

Class to display and collect average,
max and min values of a given data set.

		
get_average()[source]¶

		

		
get_max()[source]¶

		

		
get_min()[source]¶

		

		
record(value)[source]¶

		Record new value to statistic.

		
class autotest.client.shared.utils.SystemLoad(pids, advanced=False, time_step=0.1, cpu_cont=False, use_log=False)[source]¶

		Bases: object

Get system and/or process values and return average value of load.

		
dump(pids=[])[source]¶

		Get the status of monitoring.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

		return:				tuple([cpu load], [memory load]):

				([(PID1, (PID1_cpu_meas)), (PID2, (PID2_cpu_meas)), …],

		[(PID1, (PID1_mem_meas)), (PID2, (PID2_mem_meas)), …])

		PID1_cpu_meas:

		average_values[], test_time, cont_meas_values[[]], time_step

		PID1_mem_meas:

		average_values[], test_time, cont_meas_values[[]], time_step

where average_values[] are the measured values (mem_free,swap,…)
which are described in SystemLoad.__init__()-FileFieldMonitor.
cont_meas_values[[]] is a list of average_values in the sampling
times.

		
get_cpu_status_string(pids=[])[source]¶

		Convert status to string array.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

		Returns:		String format to table.

		
get_mem_status_string(pids=[])[source]¶

		Convert status to string array.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

		Returns:		String format to table.

		
start(pids=[])[source]¶

		Start monitoring of the process system usage.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

		
stop(pids=[])[source]¶

		Stop monitoring of the process system usage.
:param pids: List of PIDs you intend to control. Use pids=[] to control

all defined PIDs.

		
class autotest.client.shared.utils.VersionableClass[source]¶

		Bases: object

VersionableClass provides class hierarchy which automatically select right
version of class. Class manipulation is used for this reason.
By this reason is:
Advantage) Only one version is working in one process. Class is changed in
whole process.
Disadvantage) Only one version is working in one process.

Example of usage (in utils_unittest):

class FooC(object):
 pass

#Not implemented get_version -> not used for versioning.
class VCP(FooC, VersionableClass):
 def __new__(cls, *args, **kargs):
 VCP.master_class = VCP
 return super(VCP, cls).__new__(cls, *args, **kargs)

 def foo(self):
 pass

class VC2(VCP, VersionableClass):
 @staticmethod
 def get_version():
 return "get_version_from_system"

 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version is satisfied":
 return True
 return False

 def func1(self):
 print "func1"

 def func2(self):
 print "func2"

get_version could be inherited.
class VC3(VC2, VersionableClass):
 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version+1 is satisfied":
 return True
 return False

 def func2(self):
 print "func2_2"

class M(VCP):
 pass

m = M() # <- When class is constructed the right version is
 # automatically selected. In this case VC3 is selected.
m.func2() # call VC3.func2(m)
m.func1() # call VC2.func1(m)
m.foo() # call VC1.foo(m)

When controlled "program" version is changed then is necessary call
 check_repair_versions or recreate object.

m.check_repair_versions()

priority of class. (change place where is method searched first in group
of verisonable class.)

class PP(VersionableClass):
 def __new__(cls, *args, **kargs):
 PP.master_class = PP
 return super(PP, cls).__new__(cls, *args, **kargs)

class PP2(PP, VersionableClass):
 @staticmethod
 def get_version():
 return "get_version_from_system"

 @classmethod
 def is_right_version(cls, version):
 if version is not None:
 if "version is satisfied":
 return True
 return False

 def func1(self):
 print "PP func1"

class N(VCP, PP):
 pass

n = N()

n.func1() # -> "func2"

n.set_priority_class(PP, [VCP, PP])

n.func1() # -> "PP func1"

Necessary for using:
1) Subclass of versionable class must have implemented class methods
get_version and is_right_version. These two methods are necessary
for correct version section. Class without this method will be never
chosen like suitable class.

2) Every class derived from master_class have to add to class definition
inheritance from VersionableClass. Direct inheritance from Versionable
Class is use like a mark for manipulation with VersionableClass.

3) Master of VersionableClass have to defined class variable
cls.master_class.

		
classmethod check_repair_versions(master_classes=None)[source]¶

		Check version of versionable class and if version not
match repair version to correct version.

		Parameters:		master_classes (list.) – Check and repair only master_class.

		
classmethod get_version()[source]¶

		Get version of installed OpenVSwtich.
Must be re-implemented for in child class.

		Returns:		Version or None when get_version is unsuccessful.

		
classmethod is_right_version(version)[source]¶

		Check condition for select control class.
Function must be re-implemented in new OpenVSwitchControl class.
Must be re-implemented for in child class.

		Parameters:		version – version of OpenVSwtich

		
classmethod set_priority_class(prioritized_class, group_classes)[source]¶

		Set class priority. Limited only for change bases class priority inside
one subclass.__bases__ after that continue to another class.

		
autotest.client.shared.utils.archive_as_tarball(source_dir, dest_dir, tarball_name=None, compression='bz2', verbose=True)[source]¶

		Saves the given source directory to the given destination as a tarball

If the name of the archive is omitted, it will be taken from the
source_dir. If it is an absolute path, dest_dir will be ignored. But,
if both the destination directory and tarball anem is given, and the
latter is not an absolute path, they will be combined.

For archiving directory ‘/tmp’ in ‘/net/server/backup’ as file
‘tmp.tar.bz2’, simply use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup')

To save the file it with a different name, say ‘host1-tmp.tar.bz2’
and save it under ‘/net/server/backup’, use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup',
 'host1-tmp')

To save with gzip compression instead (resulting in the file
‘/net/server/backup/host1-tmp.tar.gz’), use:

>>> utils.archive_as_tarball('/tmp', '/net/server/backup',
 'host1-tmp', 'gz')

		
autotest.client.shared.utils.args_to_dict(args)[source]¶

		Convert autoserv extra arguments in the form of key=val or key:val to a
dictionary. Each argument key is converted to lowercase dictionary key.

		Args:

		args - list of autoserv extra arguments.

		Returns:

		dictionary

		
autotest.client.shared.utils.ask(question, auto=False)[source]¶

		Raw input with a prompt that emulates logging.

		Parameters:				question – Question to be asked

		auto – Whether to return “y” instead of asking the question

		
autotest.client.shared.utils.aton(sr)[source]¶

		Transform a string to a number(include float and int). If the string is
not in the form of number, just return false.

		Parameters:		sr – string to transfrom

		Returns:		float, int or False for failed transform

		
autotest.client.shared.utils.bitlist_to_string(data)[source]¶

		Transform from bit list to ASCII string.

		Parameters:		data – Bit list to be transformed

		
autotest.client.shared.utils.close_log_file(filename)[source]¶

		

		
autotest.client.shared.utils.compare_versions(ver1, ver2)[source]¶

		Version number comparison between ver1 and ver2 strings.

>>> compare_tuple("1", "2")
-1
>>> compare_tuple("foo-1.1", "foo-1.2")
-1
>>> compare_tuple("1.2", "1.2a")
-1
>>> compare_tuple("1.2b", "1.2a")
1
>>> compare_tuple("1.3.5.3a", "1.3.5.3b")
-1

		Args:

		ver1: version string
ver2: version string

		Returns:

				int: 1 if ver1 > ver2

		
0 if ver1 == ver2

-1 if ver1 < ver2

		
autotest.client.shared.utils.configure(extra=None, configure='./configure')[source]¶

		Run configure passing in the correct host, build, and target options.

		Parameters:				extra – extra command line arguments to pass to configure

		configure – which configure script to use

		
autotest.client.shared.utils.convert_data_size(size, default_sufix='B')[source]¶

		Convert data size from human readable units to an int of arbitrary size.

		Parameters:				size – Human readable data size representation (string).

		default_sufix – Default sufix used to represent data.

		Returns:		Int with data size in the appropriate order of magnitude.

		
autotest.client.shared.utils.convert_ipv4_to_ipv6(ipv4)[source]¶

		Translates a passed in string of an ipv4 address to an ipv6 address.

		Parameters:		ipv4 – a string of an ipv4 address

		
autotest.client.shared.utils.cpu_affinity_by_task(pid, vcpu_pid)[source]¶

		This function returns the allowed cpus from the proc entry
for each vcpu’s through its task id for a pid(of a VM)

		
autotest.client.shared.utils.create_subnet_mask(bits)[source]¶

		

		
autotest.client.shared.utils.create_x509_dir(path, cacert_subj, server_subj, passphrase, secure=False, bits=1024, days=1095)[source]¶

		Creates directory with freshly generated:
ca-cart.pem, ca-key.pem, server-cert.pem, server-key.pem,

		Parameters:				path – defines path to directory which will be created

		cacert_subj – ca-cert.pem subject

:param server_key.csr subject
:param passphrase - passphrase to ca-key.pem
:param secure = False - defines if the server-key.pem will use a passphrase
:param bits = 1024: bit length of keys
:param days = 1095: cert expiration

		Raises:				ValueError – openssl not found or rc != 0

		OSError – if os.makedirs() fails

		
autotest.client.shared.utils.delete_pid_file_if_exists(program_name, pid_files_dir=None)[source]¶

		Tries to remove <program_name>.pid from the main autotest directory.

		
autotest.client.shared.utils.deprecated(func)[source]¶

		This is a decorator which can be used to mark functions as deprecated.
It will result in a warning being emitted when the function is used.

		
autotest.client.shared.utils.display_data_size(size)[source]¶

		Display data size in human readable units.

		Parameters:		size (int) – Data size, in Bytes.

		Returns:		Human readable string with data size.

		
autotest.client.shared.utils.etraceback(prep, exc_info)[source]¶

		
Enhanced Traceback formats traceback into lines “prep: line

		name: line”

				param prep:		desired line preposition

		param exc_info:		sys.exc_info of the exception

		return:		string which contains beautifully formatted exception

		
autotest.client.shared.utils.find_command(cmd)[source]¶

		Try to find a command in the PATH, paranoid version.

		Parameters:		cmd – Command to be found.

		Raise:		ValueError in case the command was not found.

		
autotest.client.shared.utils.find_free_port(start_port, end_port, address='localhost')[source]¶

		Return a host free port in the range [start_port, end_port].

		Parameters:				start_port – First port that will be checked.

		end_port – Port immediately after the last one that will be checked.

		
autotest.client.shared.utils.find_free_ports(start_port, end_port, count, address='localhost')[source]¶

		Return count of host free ports in the range [start_port, end_port].

@count: Initial number of ports known to be free in the range.
:param start_port: First port that will be checked.
:param end_port: Port immediately after the last one that will be checked.

		
autotest.client.shared.utils.find_substring(string, pattern1, pattern2=None)[source]¶

		Return the match of pattern1 in string. Or return the match of pattern2
if pattern is not matched.

@string: string
@pattern1: first pattern want to match in string, must set.
@pattern2: second pattern, it will be used if pattern1 not match, optional.

Return: Match substing or None

		
autotest.client.shared.utils.format_ip_with_mask(ip, mask_bits)[source]¶

		

		
autotest.client.shared.utils.format_str_for_message(msg_str)[source]¶

		Format msg_str so that it can be appended to a message.
If msg_str consists of one line, prefix it with a space.
If msg_str consists of multiple lines, prefix it with a newline.

		Parameters:		msg_str – string that will be formatted.

		
autotest.client.shared.utils.generate_random_id()[source]¶

		Return a random string suitable for use as a qemu id.

		
autotest.client.shared.utils.generate_random_string(length, ignore_str='!"#$%&\'()*+, -./:;<=>?@[\\]^_`{|}~', convert_str='')[source]¶

		Return a random string using alphanumeric characters.

		Parameters:				length – Length of the string that will be generated.

		ignore_str – Characters that will not include in generated string.

		convert_str – Characters that need to be escaped (prepend “”).

		Returns:		The generated random string.

		
autotest.client.shared.utils.generate_tmp_file_name(file_name, ext=None, directory='/tmp/')[source]¶

		Returns a temporary file name. The file is not created.

		
autotest.client.shared.utils.get_arch(run_function=<function run>)[source]¶

		Get the hardware architecture of the machine.
run_function is used to execute the commands. It defaults to
utils.run() but a custom method (if provided) should be of the
same schema as utils.run. It should return a CmdResult object and
throw a CmdError exception.

		
autotest.client.shared.utils.get_archive_tarball_name(source_dir, tarball_name, compression)[source]¶

		Get the name for a tarball file, based on source, name and compression

		
autotest.client.shared.utils.get_children_pids(ppid)[source]¶

		Get all PIDs of children/threads of parent ppid
param ppid: parent PID
return: list of PIDs of all children/threads of ppid

		
autotest.client.shared.utils.get_cpu_percentage(function, *args, **dargs)[source]¶

		Returns a tuple containing the CPU% and return value from function call.

This function calculates the usage time by taking the difference of
the user and system times both before and after the function call.

		
autotest.client.shared.utils.get_field(data, param, linestart='', sep=' ')[source]¶

		Parse data from string.
:param data: Data to parse.

		example:

				data:

		cpu 324 345 34 5 345
cpu0 34 11 34 34 33
^^^^
start of line
params 0 1 2 3 4

		Parameters:				param – Position of parameter after linestart marker.

		linestart – String to which start line with parameters.

		sep – Separator between parameters regular expression.

		
autotest.client.shared.utils.get_file(src, dest, permissions=None)[source]¶

		Get a file from src, which can be local or a remote URL

		
autotest.client.shared.utils.get_full_pci_id(pci_id)[source]¶

		Get full PCI ID of pci_id.

		Parameters:		pci_id – PCI ID of a device.

		
autotest.client.shared.utils.get_hash_from_file(hash_path, dvd_basename)[source]¶

		Get the a hash from a given DVD image from a hash file
(Hash files are usually named MD5SUM or SHA1SUM and are located inside the
download directories of the DVDs)

		Parameters:				hash_path – Local path to a hash file.

		cd_image – Basename of a CD image

		
autotest.client.shared.utils.get_ip_local_port_range()[source]¶

		

		
autotest.client.shared.utils.get_num_logical_cpus_per_socket(run_function=<function run>)[source]¶

		Get the number of cores (including hyperthreading) per cpu.
run_function is used to execute the commands. It defaults to
utils.run() but a custom method (if provided) should be of the
same schema as utils.run. It should return a CmdResult object and
throw a CmdError exception.

		
autotest.client.shared.utils.get_path(base_path, user_path)[source]¶

		Translate a user specified path to a real path.
If user_path is relative, append it to base_path.
If user_path is absolute, return it as is.

		Parameters:				base_path – The base path of relative user specified paths.

		user_path – The user specified path.

		
autotest.client.shared.utils.get_pid_cpu(pid)[source]¶

		Get the process used cpus.

		Parameters:		pid – process id

		Returns:		A list include all cpus the process used

		Return type:		list

		
autotest.client.shared.utils.get_pid_from_file(program_name, pid_files_dir=None)[source]¶

		Reads the pid from <program_name>.pid in the autotest directory.

:param program_name the name of the program
:return: the pid if the file exists, None otherwise.

		
autotest.client.shared.utils.get_pid_path(program_name, pid_files_dir=None)[source]¶

		

		
autotest.client.shared.utils.get_process_name(pid)[source]¶

		Get process name from PID.
:param pid: PID of process.

		
autotest.client.shared.utils.get_relative_path(path, reference)[source]¶

		Given 2 absolute paths “path” and “reference”, compute the path of
“path” as relative to the directory “reference”.

:param path the absolute path to convert to a relative path
:param reference an absolute directory path to which the relative

path will be computed

		
autotest.client.shared.utils.get_stderr_level(stderr_is_expected)[source]¶

		

		
autotest.client.shared.utils.get_stream_tee_file(stream, level, prefix='')[source]¶

		

		
autotest.client.shared.utils.get_thread_cpu(thread)[source]¶

		Get the light weight process(thread) used cpus.

		Parameters:		thread (string) – thread checked

		Returns:		A list include all cpus the thread used

		Return type:		list

		
autotest.client.shared.utils.get_unique_name(check, prefix='', suffix='', length=None, skip=None)[source]¶

		Get unique name according to check function, use only 1000 iterations.
:param cmp: Function called to discover name uniqueness
:param prefix: Name prefix
:param suffix: Name suffix
:param length: Length of random string, when None use numbers (0,1,2)
:param skip: skip n numbers (only when length=None

		Raises:		StopIteration – In case no unique name obtained in 1000 iterations

		Returns:		Unique name according to check function

		
autotest.client.shared.utils.get_unused_port()[source]¶

		Finds a semi-random available port. A race condition is still
possible after the port number is returned, if another process
happens to bind it.

		Returns:

		A port number that is unused on both TCP and UDP.

		
autotest.client.shared.utils.get_vendor_from_pci_id(pci_id)[source]¶

		Check out the device vendor ID according to pci_id.

		Parameters:		pci_id – PCI ID of a device.

		
autotest.client.shared.utils.hash(type, input=None)[source]¶

		Returns an hash object of type md5 or sha1. This function is implemented in
order to encapsulate hash objects in a way that is compatible with python
2.4 and python 2.6 without warnings.

Note that even though python 2.6 hashlib supports hash types other than
md5 and sha1, we are artificially limiting the input values in order to
make the function to behave exactly the same among both python
implementations.

		Parameters:		input – Optional input string that will be used to update the hash.

		
autotest.client.shared.utils.import_site_class(path, module, classname, baseclass, modulefile=None)[source]¶

		Try to import site specific class from site specific file if it exists

		Args:

		path: full filename of the source file calling this (ie __file__)
module: full module name
classname: class name to be loaded from site file
baseclass: base class object to return when no site file present or

to mixin when site class exists but is not inherited from baseclass

modulefile: module filename

		Returns: baseclass if site specific class does not exist, the site specific

		class if it exists and is inherited from baseclass or a mixin of the
site specific class and baseclass when the site specific class exists
and is not inherited from baseclass

Raises: ImportError if the site file exists but imports fails

		
autotest.client.shared.utils.import_site_function(path, module, funcname, dummy, modulefile=None)[source]¶

		Try to import site specific function from site specific file if it exists

		Args:

		path: full filename of the source file calling this (ie __file__)
module: full module name
funcname: function name to be imported from site file
dummy: dummy function to return in case there is no function to import
modulefile: module filename

Returns: site specific function object or dummy

Raises: ImportError if the site file exists but imports fails

		
autotest.client.shared.utils.import_site_module(path, module, dummy=None, modulefile=None)[source]¶

		Try to import the site specific module if it exists.

:param path full filename of the source file calling this (ie __file__)
:param module full module name
:param dummy dummy value to return in case there is no symbol to import
:param modulefile module filename

		Returns:		site specific module or dummy

:raise ImportError if the site file exists but imports fails

		
autotest.client.shared.utils.import_site_symbol(path, module, name, dummy=None, modulefile=None)[source]¶

		Try to import site specific symbol from site specific file if it exists

:param path full filename of the source file calling this (ie __file__)
:param module full module name
:param name symbol name to be imported from the site file
:param dummy dummy value to return in case there is no symbol to import
:param modulefile module filename

		Returns:		site specific symbol or dummy

:raise ImportError if the site file exists but imports fails

		
autotest.client.shared.utils.interactive_download(url, output_file, title='', chunk_size=102400)[source]¶

		Interactively downloads a given file url to a given output file

		Parameters:				url (string) – URL for the file to be download

		output_file (string) – file name or absolute path on which to save the file to

		title (string) – optional title to go along the progress bar

		chunk_size (integer) – amount of data to read at a time

		
autotest.client.shared.utils.ip_to_long(ip)[source]¶

		

		
autotest.client.shared.utils.is_mounted(src, mount_point, fstype, perm=None, verbose=True, fstype_mtab=None)[source]¶

		Check mount status from /etc/mtab

		Parameters:				src (string) – mount source

		mount_point (string) – mount point

		fstype (string) – file system type

		perm (string) – mount permission

		fstype_mtab (str) – file system type in mtab could be different

		Returns:		if the src is mounted as expect

		Return type:		Boolean

		
autotest.client.shared.utils.is_port_free(port, address)[source]¶

		Return True if the given port is available for use.

		Parameters:		port – Port number

		
autotest.client.shared.utils.is_url(path)[source]¶

		Return true if path looks like a URL

		
autotest.client.shared.utils.join_bg_jobs(bg_jobs, timeout=None)[source]¶

		Joins the bg_jobs with the current thread.

Returns the same list of bg_jobs objects that was passed in.

		
autotest.client.shared.utils.kill_process_tree(pid, sig=9)[source]¶

		Signal a process and all of its children.

If the process does not exist – return.

		Parameters:				pid – The pid of the process to signal.

		sig – The signal to send to the processes.

		
autotest.client.shared.utils.lock_file(filename, mode=2)[source]¶

		

		
autotest.client.shared.utils.log_last_traceback(msg=None, log=<function error>)[source]¶

		Writes last traceback into specified log.
:param msg: Override the default message. [“Original traceback”]
:param log: Where to log the traceback [logging.error]

		
autotest.client.shared.utils.log_line(filename, line)[source]¶

		
Write a line to a file. ‘

‘ is appended to the line.

		param filename:		Path of file to write to, either absolute or relative to
the dir set by set_log_file_dir().

		param line:		Line to write.

		
autotest.client.shared.utils.long_to_ip(number)[source]¶

		

		
autotest.client.shared.utils.make(extra='', make='make', timeout=None, ignore_status=False)[source]¶

		Run make, adding MAKEOPTS to the list of options.

		Parameters:		extra – extra command line arguments to pass to make.

		
autotest.client.shared.utils.matrix_to_string(matrix, header=None)[source]¶

		Return a pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as
database results. It works by scanning the lengths of each element
in each column, and determining the format string dynamically.

		Parameters:				matrix – Matrix representation (list with n rows of m elements).

		header – Optional tuple or list with header elements to be displayed.

		
autotest.client.shared.utils.merge_trees(src, dest)[source]¶

		Merges a source directory tree at ‘src’ into a destination tree at
‘dest’. If a path is a file in both trees than the file in the source
tree is APPENDED to the one in the destination tree. If a path is
a directory in both trees then the directories are recursively merged
with this function. In any other case, the function will skip the
paths that cannot be merged (instead of failing).

		
autotest.client.shared.utils.mount(src, mount_point, fstype, perm=None, verbose=True, fstype_mtab=None)[source]¶

		Mount the src into mount_point of the host.

		Src:		mount source

		Mount_point:		mount point

		Fstype:		file system type

		Perm:		mount permission

		Parameters:		fstype_mtab (str) – file system type in mtab could be different

		
autotest.client.shared.utils.normalize_hostname(alias)[source]¶

		

		
autotest.client.shared.utils.nuke_pid(pid, signal_queue=(15, 9))[source]¶

		

		
autotest.client.shared.utils.nuke_subprocess(subproc)[source]¶

		

		
autotest.client.shared.utils.open_write_close(filename, data)[source]¶

		

		
autotest.client.shared.utils.parallel(targets)[source]¶

		Run multiple functions in parallel.

		Parameters:		targets – A sequence of tuples or functions. If it’s a sequence of
tuples, each tuple will be interpreted as (target, args, kwargs) or
(target, args) or (target,) depending on its length. If it’s a
sequence of functions, the functions will be called without
arguments.

		Returns:		A list of the values returned by the functions called.

		
autotest.client.shared.utils.pid_exists(pid)[source]¶

		Return True if a given PID exists.

		Parameters:		pid – Process ID number.

		
autotest.client.shared.utils.pid_is_alive(pid)[source]¶

		True if process pid exists and is not yet stuck in Zombie state.
Zombies are impossible to move between cgroups, etc.
pid can be integer, or text of integer.

		
autotest.client.shared.utils.process_or_children_is_defunct(ppid)[source]¶

		Verify if any processes from PPID is defunct.

Attempt to verify if parent process and any children from PPID is defunct
(zombie) or not.
:param ppid: The parent PID of the process to verify.

		
autotest.client.shared.utils.program_is_alive(program_name, pid_files_dir=None)[source]¶

		Checks if the process is alive and not in Zombie state.

:param program_name the name of the program
:return: True if still alive, False otherwise

		
autotest.client.shared.utils.read_file(filename)[source]¶

		

		
autotest.client.shared.utils.read_keyval(path)[source]¶

		Read a key-value pair format file into a dictionary, and return it.
Takes either a filename or directory name as input. If it’s a
directory name, we assume you want the file to be called keyval.

		
autotest.client.shared.utils.read_one_line(filename)[source]¶

		

		
autotest.client.shared.utils.run(command, timeout=None, ignore_status=False, stdout_tee=None, stderr_tee=None, verbose=True, stdin=None, stderr_is_expected=None, args=())[source]¶

		Run a command on the host.

		Parameters:				command – the command line string.

		timeout – time limit in seconds before attempting to kill the
running process. The run() function will take a few seconds
longer than ‘timeout’ to complete if it has to kill the process.

		ignore_status – do not raise an exception, no matter what the exit
code of the command is.

		stdout_tee – optional file-like object to which stdout data
will be written as it is generated (data will still be stored
in result.stdout).

		stderr_tee – likewise for stderr.

		verbose – if True, log the command being run.

		stdin – stdin to pass to the executed process (can be a file
descriptor, a file object of a real file or a string).

		args – sequence of strings of arguments to be given to the command
inside ” quotes after they have been escaped for that; each
element in the sequence will be given as a separate command
argument

		Returns:		a CmdResult object

		Raises:		CmdError – the exit code of the command execution was not 0

		
autotest.client.shared.utils.run_bg(*args, **dargs)[source]¶

		Function deprecated. Please use BgJob class instead.

		
autotest.client.shared.utils.run_parallel(commands, timeout=None, ignore_status=False, stdout_tee=None, stderr_tee=None)[source]¶

		Behaves the same as run() with the following exceptions:

		commands is a list of commands to run in parallel.

		ignore_status toggles whether or not an exception should be raised
on any error.

		Returns:		a list of CmdResult objects

		
class autotest.client.shared.utils.run_randomly(run_sequentially=False)[source]¶

				
add(*args, **dargs)[source]¶

		

		
run(fn)[source]¶

		

		
autotest.client.shared.utils.safe_kill(pid, signal)[source]¶

		Attempt to send a signal to a given process that may or may not exist.

		Parameters:		signal – Signal number.

		
autotest.client.shared.utils.safe_rmdir(path, timeout=10)[source]¶

		Try to remove a directory safely, even on NFS filesystems.

Sometimes, when running an autotest client test on an NFS filesystem, when
not all filedescriptors are closed, NFS will create some temporary files,
that will make shutil.rmtree to fail with error 39 (directory not empty).
So let’s keep trying for a reasonable amount of time before giving up.

		Parameters:				path (string) – Path to a directory to be removed.

		timeout (int) – Time that the function will try to remove the dir before
giving up (seconds)

		Raises:		OSError, with errno 39 in case after the timeout
shutil.rmtree could not successfuly complete. If any attempt
to rmtree fails with errno different than 39, that exception
will be just raised.

		
autotest.client.shared.utils.selinux_enforcing()[source]¶

		Returns True if SELinux is in enforcing mode, False if permissive/disabled

		
autotest.client.shared.utils.set_ip_local_port_range(lower, upper)[source]¶

		

		
autotest.client.shared.utils.set_log_file_dir(directory)[source]¶

		Set the base directory for log files created by log_line().

		Parameters:		dir – Directory for log files.

		
autotest.client.shared.utils.sh_escape(command)[source]¶

		Escape special characters from a command so that it can be passed
as a double quoted (” “) string in a (ba)sh command.

		Args:

		command: the command string to escape.

		Returns:

		The escaped command string. The required englobing double
quotes are NOT added and so should be added at some point by
the caller.

See also: http://www.tldp.org/LDP/abs/html/escapingsection.html

		
autotest.client.shared.utils.signal_pid(pid, sig)[source]¶

		Sends a signal to a process id. Returns True if the process terminated
successfully, False otherwise.

		
autotest.client.shared.utils.signal_program(program_name, sig=15, pid_files_dir=None)[source]¶

		Sends a signal to the process listed in <program_name>.pid

:param program_name the name of the program
:param sig signal to send

		
autotest.client.shared.utils.string_to_bitlist(data)[source]¶

		Transform from ASCII string to bit list.

		Parameters:		data – String to be transformed

		
autotest.client.shared.utils.strip_console_codes(output)[source]¶

		Remove the Linux console escape and control sequences from the console
output. Make the output readable and can be used for result check. Now
only remove some basic console codes using during boot up.

		Parameters:		output (string) – The output from Linux console

		Returns:		the string wihout any special codes

		Return type:		string

		
autotest.client.shared.utils.strip_unicode(input)[source]¶

		

		
autotest.client.shared.utils.system(command, timeout=None, ignore_status=False, verbose=True)[source]¶

		Run a command

		Parameters:				timeout – timeout in seconds

		ignore_status – if ignore_status=False, throw an exception if the
command’s exit code is non-zero
if ignore_status=True, return the exit code.

		verbose – if True, log the command being run.

		Returns:		exit status of command
(note, this will always be zero unless ignore_status=True)

		
autotest.client.shared.utils.system_output(command, timeout=None, ignore_status=False, retain_output=False, args=(), verbose=True)[source]¶

		Run a command and return the stdout output.

		Parameters:				command – command string to execute.

		timeout – time limit in seconds before attempting to kill the
running process. The function will take a few seconds longer
than ‘timeout’ to complete if it has to kill the process.

		ignore_status – do not raise an exception, no matter what the exit
code of the command is.

		retain_output – set to True to make stdout/stderr of the command
output to be also sent to the logging system

		args – sequence of strings of arguments to be given to the command
inside ” quotes after they have been escaped for that; each
element in the sequence will be given as a separate command
argument

		verbose – if True, log the command being run.

		Returns:		a string with the stdout output of the command.

		
autotest.client.shared.utils.system_output_parallel(commands, timeout=None, ignore_status=False, retain_output=False)[source]¶

		

		
autotest.client.shared.utils.system_parallel(commands, timeout=None, ignore_status=False)[source]¶

		This function returns a list of exit statuses for the respective
list of commands.

		
autotest.client.shared.utils.umount(src, mount_point, fstype, verbose=True, fstype_mtab=None)[source]¶

		Umount the src mounted in mount_point.

		Src:		mount source

		Mount_point:		mount point

		Type:		file system type

		Parameters:		fstype_mtab (str) – file system type in mtab could be different

		
autotest.client.shared.utils.unique(llist)[source]¶

		Return a list of the elements in list, but without duplicates.

		Parameters:		list – List with values.

		Returns:		List with non duplicate elements.

		
autotest.client.shared.utils.unlock_file(lockfile)[source]¶

		

		
autotest.client.shared.utils.unmap_url(srcdir, src, destdir='.')[source]¶

		Receives either a path to a local file or a URL.
returns either the path to the local file, or the fetched URL

		unmap_url(‘/usr/src’, ‘foo.tar’, ‘/tmp’)

		= ‘/usr/src/foo.tar’

		unmap_url(‘/usr/src’, ‘http://site/file’, ‘/tmp’)

		= ‘/tmp/file’
(after retrieving it)

		
autotest.client.shared.utils.update_version(srcdir, preserve_srcdir, new_version, install, *args, **dargs)[source]¶

		Make sure srcdir is version new_version

If not, delete it and install() the new version.

In the preserve_srcdir case, we just check it’s up to date,
and if not, we rerun install, without removing srcdir

		
autotest.client.shared.utils.urlopen(url, data=None, timeout=5)[source]¶

		Wrapper to urllib2.urlopen with timeout addition.

		
autotest.client.shared.utils.urlretrieve(url, filename, data=None, timeout=300)[source]¶

		Retrieve a file from given url.

		
autotest.client.shared.utils.verify_running_as_root()[source]¶

		Verifies whether we’re running under UID 0 (root).

		Raise:		error.TestNAError

		
autotest.client.shared.utils.wait_for(func, timeout, first=0.0, step=1.0, text=None)[source]¶

		If func() evaluates to True before timeout expires, return the
value of func(). Otherwise return None.

@brief: Wait until func() evaluates to True.

		Parameters:				timeout – Timeout in seconds

		first – Time to sleep before first attempt

		steps – Time to sleep between attempts in seconds

		text – Text to print while waiting, for debug purposes

		
autotest.client.shared.utils.write_keyval(path, dictionary, type_tag=None, tap_report=None)[source]¶

		Write a key-value pair format file out to a file. This uses append
mode to open the file, so existing text will not be overwritten or
reparsed.

If type_tag is None, then the key must be composed of alphanumeric
characters (or dashes+underscores). However, if type-tag is not
null then the keys must also have “{type_tag}” as a suffix. At
the moment the only valid values of type_tag are “attr” and “perf”.

		Parameters:				path – full path of the file to be written

		dictionary – the items to write

		type_tag – see text above

		
autotest.client.shared.utils.write_one_line(filename, line)[source]¶

		

		
autotest.client.shared.utils.write_pid(program_name, pid_files_dir=None)[source]¶

		Try to drop <program_name>.pid in the main autotest directory.

		Args:

		program_name: prefix for file name

utils_cgroup Module¶

Helpers for cgroup testing.

		copyright:		2011 Red Hat Inc.

		author:		Lukas Doktor <ldoktor@redhat.com>

		
class autotest.client.shared.utils_cgroup.Cgroup(module, _client)[source]¶

		Bases: object

Cgroup handling class.

		
cgclassify_cgroup(pid, cgroup)[source]¶

		Classify pid into cgroup

		Parameters:				pid – pid of the process

		cgroup – cgroup name

		
cgdelete_all_cgroups()[source]¶

		Delete all cgroups in the module

		
cgdelete_cgroup(cgroup, recursive=False)[source]¶

		Delete desired cgroup.

		Params cgroup:		desired cgroup

:params force:If true, sub cgroup can be deleted with parent cgroup

		
cgexec(cgroup, cmd, args='')[source]¶

		Execute command in desired cgroup

		Param:		cgroup: Desired cgroup

		Param:		cmd: Executed command

		Param:		args: Executed command’s parameters

		
cgset_property(prop, value, pwd=None, check=True, checkprop=None)[source]¶

		Sets the property value by cgset command

		Param:		prop: property name (file)

		Param:		value: desired value

		Parameters:				pwd – cgroup directory

		check – check the value after setup / override checking value

		checkprop – override prop when checking the value

		
get_cgroup_index(cgroup)[source]¶

		Get cgroup’s index in cgroups

		Param:		cgroup: cgroup name

		Returns:		index of cgroup

		
get_cgroup_name(pwd=None)[source]¶

		Get cgroup’s name

		Param:		pwd: cgroup name

		Returns:		cgroup’s name

		
get_pids(pwd=None)[source]¶

		Get all pids in cgroup

		Params:		pwd: cgroup directory

		Returns:		all pids(list)

		
get_property(prop, pwd=None)[source]¶

		Gets the property value
:param prop: property name (file)
:param pwd: cgroup directory
:return: [] values or None when FAILED

		
initialize(modules)[source]¶

		Initializes object for use.

		Parameters:		modules – Array of all available cgroup modules.

		
is_cgroup(pid, pwd)[source]¶

		Checks if the ‘pid’ process is in ‘pwd’ cgroup
:param pid: pid of the process
:param pwd: cgroup directory
:return: 0 when is ‘pwd’ member

		
is_root_cgroup(pid)[source]¶

		Checks if the ‘pid’ process is in root cgroup (WO cgroup)
:param pid: pid of the process
:return: 0 when is ‘root’ member

		
mk_cgroup(pwd=None, cgroup=None)[source]¶

		Creates new temporary cgroup
:param pwd: where to create this cgroup (default: self.root)
:param cgroup: desired cgroup name
:return: last cgroup index

		
mk_cgroup_cgcreate(pwd=None, cgroup=None)[source]¶

		Make a cgroup by cgcreate command

		Params:		cgroup: Maked cgroup name

		Returns:		last cgroup index

		
refresh_cgroups()[source]¶

		Refresh all cgroups path.

		
rm_cgroup(pwd)[source]¶

		Removes cgroup.

		Parameters:		pwd – cgroup directory.

		
set_cgroup(pid, pwd=None)[source]¶

		Sets cgroup membership
:param pid: pid of the process
:param pwd: cgroup directory

		
set_property(prop, value, pwd=None, check=True, checkprop=None)[source]¶

		Sets the property value
:param prop: property name (file)
:param value: desired value
:param pwd: cgroup directory
:param check: check the value after setup / override checking value
:param checkprop: override prop when checking the value

		
set_property_h(prop, value, pwd=None, check=True, checkprop=None)[source]¶

		Sets the one-line property value concerning the K,M,G postfix
:param prop: property name (file)
:param value: desired value
:param pwd: cgroup directory
:param check: check the value after setup / override checking value
:param checkprop: override prop when checking the value

		
set_root_cgroup(pid)[source]¶

		Resets the cgroup membership (sets to root)
:param pid: pid of the process
:return: 0 when PASSED

		
smoke_test()[source]¶

		Smoke test
Module independent basic tests

		
test(cmd)[source]¶

		Executes cgroup_client.py with cmd parameter.

		Parameters:		cmd – command to be executed

		Returns:		subprocess.Popen() process

		
class autotest.client.shared.utils_cgroup.CgroupModules(mountdir=None)[source]¶

		Bases: object

Handles the list of different cgroup filesystems.

		
get_pwd(module)[source]¶

		Returns the mount directory of ‘module’
:param module: desired module (memory, …)
:return: mount directory of ‘module’ or None

		
init(_modules)[source]¶

				Checks the mounted modules and if necessary mounts them into tmp

		mountdir.

		Parameters:		_modules – Desired modules.’memory’,’cpu,cpuset’…

		Returns:		Number of initialized modules.

		
autotest.client.shared.utils_cgroup.all_cgroup_delete()[source]¶

		Clear all cgroups in system

		
autotest.client.shared.utils_cgroup.cgconfig_condrestart()[source]¶

		Condrestart cgconfig service

		
autotest.client.shared.utils_cgroup.cgconfig_exists()[source]¶

		Check if cgconfig is available on the host or perhaps systemd is used

		
autotest.client.shared.utils_cgroup.cgconfig_is_running()[source]¶

		Check cgconfig service status

		
autotest.client.shared.utils_cgroup.cgconfig_restart()[source]¶

		Restart cgconfig service

		
autotest.client.shared.utils_cgroup.cgconfig_start()[source]¶

		Stop cgconfig service

		
autotest.client.shared.utils_cgroup.cgconfig_stop()[source]¶

		Start cgconfig service

		
autotest.client.shared.utils_cgroup.get_all_controllers()[source]¶

		Get all controllers used in system

		Returns:		all used controllers(controller_list)

		
autotest.client.shared.utils_cgroup.get_cgroup_mountpoint(controller)[source]¶

		Get desired controller’s mountpoint

@controller: Desired controller
:return: controller’s mountpoint

		
autotest.client.shared.utils_cgroup.get_load_per_cpu(_stats=None)[source]¶

		Gather load per cpu from /proc/stat
:param _stats: previous values
:return: list of diff/absolute values of CPU times [SUM, CPU1, CPU2, …]

		
autotest.client.shared.utils_cgroup.resolve_task_cgroup_path(pid, controller)[source]¶

		Resolving cgroup mount path of a particular task

		Params:		pid : process id of a task for which the cgroup path required

		Params:		controller: takes one of the controller names in controller list

		Returns:		resolved path for cgroup controllers of a given pid

		
autotest.client.shared.utils_cgroup.service_cgconfig_control(action)[source]¶

		Cgconfig control by action.

If cmd executes successfully, return True, otherwise return False.
If the action is status, return True when it’s running, otherwise return
False. To check if the cgconfig stuff is available, use action “exists”.

@ param action: start|stop|status|restart|condrestart

utils_koji Module¶

		
class autotest.client.shared.utils_koji.KojiClient(cmd=None)[source]¶

		Bases: object

Stablishes a connection with the build system, either koji or brew.

This class provides convenience methods to retrieve information on packages
and the packages themselves hosted on the build system. Packages should be
specified in the KojiPgkSpec syntax.

		
CMD_LOOKUP_ORDER = ['/usr/bin/brew', '/usr/bin/koji']¶

		

		
CONFIG_MAP = {'/usr/bin/brew': '/etc/brewkoji.conf', '/usr/bin/koji': '/etc/koji.conf'}¶

		

		
get_default_command()[source]¶

		Looks up for koji or brew “binaries” on the system

Systems with plain koji usually don’t have a brew cmd, while systems
with koji, have both koji and brew utilities. So we look for brew
first, and if found, we consider that the system is configured for
brew. If not, we consider this is a system with plain koji.

		Returns:		either koji or brew command line executable path, or None

		
get_pkg_base_url()[source]¶

		Gets the base url for packages in Koji

		
get_pkg_info(pkg)[source]¶

		Returns information from Koji on the package

		Parameters:		pkg (KojiPkgSpec) – information about the package, as a KojiPkgSpec instance

		Returns:		information from Koji about the specified package

		
get_pkg_rpm_file_names(pkg, arch=None)[source]¶

		Gets the file names for the RPM packages specified in pkg

		Parameters:				pkg (KojiPkgSpec) – a package specification

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_pkg_rpm_info(pkg, arch=None)[source]¶

		Returns a list of information on the RPM packages found on koji

		Parameters:				pkg (KojiPkgSpec) – a package specification

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_pkg_rpm_names(pkg, arch=None)[source]¶

		Gets the names for the RPM packages specified in pkg

		Parameters:				pkg (KojiPkgSpec) – a package specification

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_pkg_urls(pkg, arch=None)[source]¶

		Gets the urls for the packages specified in pkg

		Parameters:				pkg (KojiPkgSpec) – a package specification

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_pkgs(pkg, dst_dir, arch=None)[source]¶

		Download the packages

		Parameters:				pkg (KojiPkgSpec) – a package specification

		dst_dir (string) – the destination directory, where the downloaded
packages will be saved on

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_scratch_base_url()[source]¶

		Gets the base url for scratch builds in Koji

		
get_scratch_pkg_urls(pkg, arch=None)[source]¶

		Gets the urls for the scratch packages specified in pkg

		Parameters:				pkg (KojiScratchPkgSpec) – a scratch package specification

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_scratch_pkgs(pkg, dst_dir, arch=None)[source]¶

		Download the packages from a scratch build

		Parameters:				pkg (KojiScratchPkgSpec) – a scratch package specification

		dst_dir (string) – the destination directory, where the downloaded
packages will be saved on

		arch (string) – packages built for this architecture, but also including
architecture independent (noarch) packages

		
get_session_options()[source]¶

		Filter only options necessary for setting up a cobbler client session

		Returns:		only the options used for session setup

		
is_command_valid()[source]¶

		Checks if the currently set koji command is valid

		Returns:		True or False

		
is_config_valid()[source]¶

		Checks if the currently set koji configuration is valid

		Returns:		True or False

		
is_pkg_spec_build_valid(pkg)[source]¶

		Checks if build is valid on Koji

		Parameters:		pkg – a Pkg instance

		
is_pkg_spec_tag_valid(pkg)[source]¶

		Checks if tag is valid on Koji

		Parameters:		pkg (KojiPkgSpec) – a package specification

		
is_pkg_valid(pkg)[source]¶

		Checks if this package is altogether valid on Koji

This verifies if the build or tag specified in the package
specification actually exist on the Koji server

		Returns:		True or False

		
read_config(check_is_valid=True)[source]¶

		Reads options from the Koji configuration file

By default it checks if the koji configuration is valid

		Parameters:		check_valid (boolean) – whether to include a check on the configuration

		Raise:		ValueError

		Returns:		None

		
class autotest.client.shared.utils_koji.KojiDirIndexParser[source]¶

		Bases: HTMLParser.HTMLParser

Parser for HTML directory index pages, specialized to look for RPM links

		
handle_starttag(tag, attrs)[source]¶

		Handle tags during the parsing

This just looks for links (‘a’ tags) for files ending in .rpm

		
class autotest.client.shared.utils_koji.KojiPkgSpec(text='', tag=None, build=None, package=None, subpackages=[])[source]¶

		Bases: object

A package specification syntax parser for Koji

This holds information on either tag or build, and packages to be fetched
from koji and possibly installed (features external do this class).

New objects can be created either by providing information in the textual
format or by using the actual parameters for tag, build, package and sub-
packages. The textual format is useful for command line interfaces and
configuration files, while using parameters is better for using this in
a programatic fashion.

The following sets of examples are interchangeable. Specifying all packages
part of build number 1000:

>>> from kvm_utils import KojiPkgSpec
>>> pkg = KojiPkgSpec('1000')

>>> pkg = KojiPkgSpec(build=1000)

Specifying only a subset of packages of build number 1000:

>>> pkg = KojiPkgSpec('1000:kernel,kernel-devel')

>>> pkg = KojiPkgSpec(build=1000,
 subpackages=['kernel', 'kernel-devel'])

Specifying the latest build for the ‘kernel’ package tagged with ‘dist-f14’:

>>> pkg = KojiPkgSpec('dist-f14:kernel')

>>> pkg = KojiPkgSpec(tag='dist-f14', package='kernel')

Specifying the ‘kernel’ package using the default tag:

>>> kvm_utils.set_default_koji_tag('dist-f14')
>>> pkg = KojiPkgSpec('kernel')

>>> pkg = KojiPkgSpec(package='kernel')

Specifying the ‘kernel’ package using the default tag:

>>> kvm_utils.set_default_koji_tag('dist-f14')
>>> pkg = KojiPkgSpec('kernel')

>>> pkg = KojiPkgSpec(package='kernel')

If you do not specify a default tag, and give a package name without an
explicit tag, your package specification is considered invalid:

>>> print kvm_utils.get_default_koji_tag()
None
>>> print kvm_utils.KojiPkgSpec('kernel').is_valid()
False

>>> print kvm_utils.KojiPkgSpec(package='kernel').is_valid()
False

		
SEP = ':'¶

		

		
describe()[source]¶

		Describe this package specification, in a human friendly way

		Returns:		package specification description

		
describe_invalid()[source]¶

		Describes why this is not valid, in a human friendly way

		
is_valid()[source]¶

		Checks if this package specification is valid.

Being valid means that it has enough and not conflicting information.
It does not validate that the packages specified actually existe on
the Koji server.

		Returns:		True or False

		
parse(text)[source]¶

		Parses a textual representation of a package specification

		Parameters:		text (string) – textual representation of a package in koji

		
to_text()[source]¶

		Return the textual representation of this package spec

The output should be consumable by parse() and produce the same
package specification.

We find that it’s acceptable to put the currently set default tag
as the package explicit tag in the textual definition for completeness.

		Returns:		package specification in a textual representation

		
class autotest.client.shared.utils_koji.KojiScratchPkgSpec(text='', user=None, task=None, subpackages=[])[source]¶

		Bases: object

A package specification syntax parser for Koji scratch builds

This holds information on user, task and subpackages to be fetched
from koji and possibly installed (features external do this class).

New objects can be created either by providing information in the textual
format or by using the actual parameters for user, task and subpackages.
The textual format is useful for command line interfaces and configuration
files, while using parameters is better for using this in a programatic
fashion.

This package definition has a special behaviour: if no subpackages are
specified, all packages of the chosen architecture (plus noarch packages)
will match.

The following sets of examples are interchangeable. Specifying all packages
from a scratch build (whose task id is 1000) sent by user jdoe:

>>> from kvm_utils import KojiScratchPkgSpec
>>> pkg = KojiScratchPkgSpec('jdoe:1000')

>>> pkg = KojiScratchPkgSpec(user=jdoe, task=1000)

Specifying some packages from a scratch build whose task id is 1000, sent
by user jdoe:

>>> pkg = KojiScratchPkgSpec('jdoe:1000:kernel,kernel-devel')

>>> pkg = KojiScratchPkgSpec(user=jdoe, task=1000,
 subpackages=['kernel', 'kernel-devel'])

		
SEP = ':'¶

		

		
parse(text)[source]¶

		Parses a textual representation of a package specification

		Parameters:		text (string) – textual representation of a package in koji

		
class autotest.client.shared.utils_koji.RPMFileNameInfo(filename)[source]¶

		Simple parser for RPM based on information present on the filename itself

		
get_arch()[source]¶

		Returns just the architecture as present on the RPM filename

		
get_filename_without_arch()[source]¶

		Returns the filename without the architecture

This also excludes the RPM suffix, that is, removes the leading arch
and RPM suffix.

		
get_filename_without_suffix()[source]¶

		Returns the filename without the default RPM suffix

		
get_nvr_info()[source]¶

		Returns a dictionary with the name, version and release components

If koji is not installed, this returns None

		
autotest.client.shared.utils_koji.get_default_koji_tag()[source]¶

		

		
autotest.client.shared.utils_koji.set_default_koji_tag(tag)[source]¶

		Sets the default tag that will be used

utils_memory Module¶

		
autotest.client.shared.utils_memory.drop_caches()[source]¶

		Writes back all dirty pages to disk and clears all the caches.

		
autotest.client.shared.utils_memory.freememtotal()[source]¶

		

		
autotest.client.shared.utils_memory.get_buddy_info(chunk_sizes, nodes='all', zones='all')[source]¶

		Get the fragement status of the host. It use the same method
to get the page size in buddyinfo.
2^chunk_size * page_size
The chunk_sizes can be string make up by all orders that you want to check
splited with blank or a mathematical expression with ‘>’, ‘<’ or ‘=’.
For example:
The input of chunk_size could be: “0 2 4”
And the return will be: {‘0’: 3, ‘2’: 286, ‘4’: 687}
if you are using expression: “>=9”
the return will be: {‘9’: 63, ‘10’: 225}

		Parameters:				chunk_size (string) – The order number shows in buddyinfo. This is not
the real page size.

		nodes (string) – The numa node that you want to check. Default value is all

		zones (string) – The memory zone that you want to check. Default value is all

		Returns:		A dict using the chunk_size as the keys

		Return type:		dict

		
autotest.client.shared.utils_memory.get_huge_page_size()[source]¶

		

		
autotest.client.shared.utils_memory.get_num_huge_pages()[source]¶

		

		
autotest.client.shared.utils_memory.memtotal()[source]¶

		

		
autotest.client.shared.utils_memory.node_size()[source]¶

		

		
autotest.client.shared.utils_memory.numa_nodes()[source]¶

		

		
autotest.client.shared.utils_memory.read_from_meminfo(key)[source]¶

		

		
autotest.client.shared.utils_memory.read_from_numa_maps(pid, key)[source]¶

		Get the process numa related info from numa_maps. This function
only use to get the numbers like anon=1.

		Parameters:				pid (String) – Process id

		key (String) – The item you want to check from numa_maps

		Returns:		A dict using the address as the keys

		Return type:		dict

		
autotest.client.shared.utils_memory.read_from_smaps(pid, key)[source]¶

		Get specific item value from the smaps of a process include all sections.

		Parameters:				pid (String) – Process id

		key (String) – The item you want to check from smaps

		Returns:		The value of the item in kb

		Return type:		int

		
autotest.client.shared.utils_memory.read_from_vmstat(key)[source]¶

		Get specific item value from vmstat

		Parameters:		key (String) – The item you want to check from vmstat

		Returns:		The value of the item

		Return type:		int

		
autotest.client.shared.utils_memory.rounded_memtotal()[source]¶

		

		
autotest.client.shared.utils_memory.set_num_huge_pages(num)[source]¶

		

version Module¶

Based on work from Douglas Creager <dcreager@dcreager.net>

Gets the current version number. If possible, this is the
output of “git describe”, modified to conform to the versioning
scheme that setuptools uses. If “git describe” returns an error
(most likely because we’re in an unpacked copy of a release tarball,
rather than in a git working copy), then we fall back on reading the
contents of the RELEASE-VERSION file.

To use this script, simply import it your setup.py file, and use the
results of get_version() as your package version:

from autotest.client.shared import version

		setup(

		version=get_version(),
.
.
.

)

This will automatically update the RELEASE-VERSION file, if
necessary. Note that the RELEASE-VERSION file should not be
checked into git; please add it to your top-level .gitignore file.

You’ll probably want to distribute the RELEASE-VERSION file in your
sdist tarballs; to do this, just create a MANIFEST.in file that
contains the following line:

include RELEASE-VERSION

		
autotest.client.shared.version.get_version(abbrev=4)[source]¶

		

Subpackages¶

backports Package¶

backports Package¶
This module contains backported functions that are not present on Python 2.4
but are standard in more recent versions.

		
autotest.client.shared.backports.all(iterable)[source]¶

		From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods
:codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker
licensed under cc-wiki with attribution required

		
autotest.client.shared.backports.any(iterable)[source]¶

		From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods
:codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker
licensed under cc-wiki with attribution required

		
autotest.client.shared.backports.bin(number)[source]¶

		Adapted from http://code.activestate.com/recipes/576847/
:codeauthor: Vishal Sapre
:license: MIT

A foolishly simple look-up method of getting binary string from an integer
This happens to be faster than all other ways!!!

		
autotest.client.shared.backports.next(*args)[source]¶

		Retrieve the next item from the iterator by calling its next() method.
If default is given, it is returned if the iterator is exhausted,
otherwise StopIteration is raised.
New in version 2.6.

		Parameters:				iterator (iterator) – the iterator

		default (object) – the value to return if the iterator raises StopIteration

		Returns:		The object returned by iterator.next()

		Return type:		object

Subpackages¶

collections Package¶

collections Package¶

OrderedDict Module¶
Backport of OrderedDict() class that runs on Python 2.4, 2.5, 2.6, 2.7 and
pypy. Passes Python2.7’s test suite and incorporates all the latest updates.

Obtained from:
http://code.activestate.com/recipes/576693-ordered-dictionary-for-py24/

		
class autotest.client.shared.backports.collections.OrderedDict.OrderedDict(*args, **kwds)[source]¶

		Bases: dict

Dictionary that remembers insertion order

http://code.activestate.com/recipes/576693-ordered-dictionary-for-py24/
:codeauthor: Raymond Hettinger
:license: MIT

		
clear() → None. Remove all items from od.[source]¶

		

		
copy() → a shallow copy of od[source]¶

		

		
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S[source]¶

		and values equal to v (which defaults to None).

		
items() → list of (key, value) pairs in od[source]¶

		

		
iteritems()[source]¶

		od.iteritems -> an iterator over the (key, value) items in od

		
iterkeys() → an iterator over the keys in od[source]¶

		

		
itervalues()[source]¶

		od.itervalues -> an iterator over the values in od

		
keys() → list of keys in od[source]¶

		

		
pop(k[, d]) → v, remove specified key and return the corresponding[source]¶

		value.

If key is not found, d is returned if given, otherwise KeyError is
raised.

		
popitem() → (k, v), return and remove a (key, value) pair.[source]¶

		Pairs are returned in LIFO order if last is true or FIFO order if false.

		
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od[source]¶

		

		
update(E, **F) → None. Update od from dict/iterable E and F.[source]¶

		If E is a dict instance, does: for k in E: od[k] = E[k]
If E has a .keys() method, does: for k in E.keys(): od[k] = E[k]
Or if E is an iterable of items, does: for k, v in E: od[k] = v
In either case, this is followed by: for k, v in F.items(): od[k] = v

		
values() → list of values in od[source]¶

		

		
viewitems() → a set-like object providing a view on od's items[source]¶

		

		
viewkeys() → a set-like object providing a view on od's keys[source]¶

		

		
viewvalues() → an object providing a view on od's values[source]¶

		

defaultdict Module¶
Backport of the defaultdict module, obtained from:
http://code.activestate.com/recipes/523034-emulate-collectionsdefaultdict/

		
class autotest.client.shared.backports.collections.defaultdict.defaultdict(default_factory=None, *a, **kw)[source]¶

		Bases: dict

collections.defaultdict is a handy shortcut added in Python 2.5 which can
be emulated in older versions of Python. This recipe tries to backport
defaultdict exactly and aims to be safe to subclass and extend without
worrying if the base class is in C or is being emulated.

http://code.activestate.com/recipes/523034-emulate-collectionsdefaultdict/
:codeauthor: Jason Kirtland
:license: PSF

Changes:
* replaced self.items() with self.iteritems() to fix Pickle bug as
recommended by Aaron Lav
* reformated with autopep8

		
copy() → a shallow copy of D[source]¶

		

namedtuple Module¶
This module contains a backport for collections.namedtuple obtained from
http://code.activestate.com/recipes/500261-named-tuples/

		
autotest.client.shared.backports.collections.namedtuple.namedtuple(typename, field_names, verbose=False, rename=False)[source]¶

		Returns a new subclass of tuple with named fields.

>>> Point = namedtuple('Point', 'x y')
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)

http://code.activestate.com/recipes/500261-named-tuples/
:codeauthor: Raymond Hettinger
:license: PSF

Changes:
* autopep8 reformatting

simplejson Package¶

simplejson Package¶

decoder Module¶

encoder Module¶

ordered_dict Module¶

scanner Module¶

tool Module¶

hosts Package¶

hosts Package¶
This is a convenience module to import all available types of hosts.

Implementation details:
You should ‘import hosts’ instead of importing every available host module.

base_classes Module¶
This module defines the base classes for the Host hierarchy.

Implementation details:
You should import the “hosts” package instead of importing each type of host.

Host: a machine on which you can run programs

		
class autotest.client.shared.hosts.base_classes.Host(*args, **dargs)[source]¶

		Bases: object

This class represents a machine on which you can run programs.

It may be a local machine, the one autoserv is running on, a remote
machine or a virtual machine.

Implementation details:
This is an abstract class, leaf subclasses must implement the methods
listed here. You must not instantiate this class but should
instantiate one of those leaf subclasses.

When overriding methods that raise NotImplementedError, the leaf class
is fully responsible for the implementation and should not chain calls
to super. When overriding methods that are a NOP in Host, the subclass
should chain calls to super(). The criteria for fitting a new method into
one category or the other should be:

		If two separate generic implementations could reasonably be
concatenated, then the abstract implementation should pass and
subclasses should chain calls to super.

		If only one class could reasonably perform the stated function
(e.g. two separate run() implementations cannot both be executed)
then the method should raise NotImplementedError in Host, and
the implementor should NOT chain calls to super, to ensure that
only one implementation ever gets executed.

		
DEFAULT_REBOOT_TIMEOUT = 1800¶

		

		
HARDWARE_REPAIR_REQUEST_THRESHOLD = 4¶

		

		
HOURS_TO_WAIT_FOR_RECOVERY = 2.5¶

		

		
WAIT_DOWN_REBOOT_TIMEOUT = 840¶

		

		
WAIT_DOWN_REBOOT_WARNING = 540¶

		

		
check_diskspace(path, gb)[source]¶

		Raises an error if path does not have at least gb GB free.

:param path The path to check for free disk space.
:param gb A floating point number to compare with a granularity

of 1 MB.

1000 based SI units are used.

:raise AutoservDiskFullHostError if path has less than gb GB free.

		
check_partitions(root_part, filter_func=None)[source]¶

		Compare the contents of /proc/partitions with those of
/proc/mounts and raise exception in case unmounted partitions are found

root_part: in Linux /proc/mounts will never directly mention the root
partition as being mounted on / instead it will say that /dev/root is
mounted on /. Thus require this argument to filter out the root_part
from the ones checked to be mounted

filter_func: unnary predicate for additional filtering out of
partitions required to be mounted

Raise: error.AutoservHostError if unfiltered unmounted partition found

		
cleanup()[source]¶

		

		
cleanup_kernels(boot_dir='/boot')[source]¶

		Remove any kernel image and associated files (vmlinux, system.map,
modules) for any image found in the boot directory that is not
referenced by entries in the bootloader configuration.

		Parameters:		boot_dir – boot directory path string, default ‘/boot’

		
close()[source]¶

		

		
disable_ipfilters()[source]¶

		Allow all network packets in and out of the host.

		
enable_ipfilters()[source]¶

		Re-enable the IP filters disabled from disable_ipfilters()

		
erase_dir_contents(path, ignore_status=True, timeout=3600)[source]¶

		Empty a given directory path contents.

		
get_arch()[source]¶

		Get the hardware architecture of the remote machine.

		
get_autodir()[source]¶

		

		
get_boot_id(timeout=60)[source]¶

		Get a unique ID associated with the current boot.

Should return a string with the semantics such that two separate
calls to Host.get_boot_id() return the same string if the host did
not reboot between the two calls, and two different strings if it
has rebooted at least once between the two calls.

:param timeout The number of seconds to wait before timing out.

		Returns:		A string unique to this boot or None if not available.

		
get_cmdline()[source]¶

		Get the kernel command line of the remote machine.

		
get_file(source, dest, delete_dest=False)[source]¶

		

		
get_kernel_ver()[source]¶

		Get the kernel version of the remote machine.

		
get_meminfo()[source]¶

		Get the kernel memory info (/proc/meminfo) of the remote machine
and return a dictionary mapping the various statistics.

		
get_num_cpu()[source]¶

		Get the number of CPUs in the host according to /proc/cpuinfo.

		
get_open_func(use_cache=True)[source]¶

		Defines and returns a function that may be used instead of built-in
open() to open and read files. The returned function is implemented
by using self.run(‘cat <file>’) and may cache the results for the same
filename.

		:param use_cache Cache results of self.run(‘cat <filename>’) for the

		same filename

		Returns:		a function that can be used instead of built-in open()

		
get_tmp_dir()[source]¶

		

		
get_wait_up_processes()[source]¶

		Gets the list of local processes to wait for in wait_up.

		
install(installableObject)[source]¶

		

		
is_shutting_down()[source]¶

		Indicates is a machine is currently shutting down.

		
is_up()[source]¶

		

		
job = None¶

		

		
list_files_glob(glob)[source]¶

		Get a list of files on a remote host given a glob pattern path.

		
log_kernel()[source]¶

		Helper method for logging kernel information into the status logs.
Intended for cases where the “current” kernel is not really defined
and we want to explicitly log it. Does nothing if this host isn’t
actually associated with a job.

		
log_reboot(reboot_func)[source]¶

		Decorator for wrapping a reboot in a group for status
logging purposes. The reboot_func parameter should be an actual
function that carries out the reboot.

		
machine_install()[source]¶

		

		
path_exists(path)[source]¶

		Determine if path exists on the remote machine.

		
reboot()[source]¶

		

		
reboot_followup(*args, **dargs)[source]¶

		

		
reboot_setup(*args, **dargs)[source]¶

		

		
record(*args, **dargs)[source]¶

		Helper method for recording status logs against Host.job that
silently becomes a NOP if Host.job is not available. The args and
dargs are passed on to Host.job.record unchanged.

		
repair_filesystem_only()[source]¶

		perform file system repairs only

		
repair_full()[source]¶

		

		
repair_full_disk(mountpoint)[source]¶

		

		
repair_software_only()[source]¶

		perform software repairs only

		
repair_with_protection(protection_level)[source]¶

		Perform the maximal amount of repair within the specified
protection level.

		Parameters:		protection_level – the protection level to use for limiting
repairs, a host_protections.Protection

		
request_hardware_repair()[source]¶

		Should somehow request (send a mail?) for hardware repairs on
this machine. The implementation can either return by raising the
special error.AutoservHardwareRepairRequestedError exception or can
try to wait until the machine is repaired and then return normally.

		
run(command, timeout=3600, ignore_status=False, stdout_tee=<object object>, stderr_tee=<object object>, stdin=None, args=())[source]¶

		Run a command on this host.

		Parameters:				command – the command line string

		timeout – time limit in seconds before attempting to
kill the running process. The run() function
will take a few seconds longer than ‘timeout’
to complete if it has to kill the process.

		ignore_status – do not raise an exception, no matter
what the exit code of the command is.

		stdout_tee/stderr_tee – where to tee the stdout/stderr

		stdin – stdin to pass (a string) to the executed command

		args – sequence of strings to pass as arguments to command by
quoting them in ” and escaping their contents if necessary

		Returns:		a utils.CmdResult object

		Raises:		AutotestHostRunError – the exit code of the command execution
was not 0 and ignore_status was not enabled

		
run_output(command, *args, **dargs)[source]¶

		

		
send_file(source, dest, delete_dest=False)[source]¶

		

		
set_autodir()[source]¶

		

		
setup()[source]¶

		

		
start_loggers()[source]¶

		Called to start continuous host logging.

		
stop_loggers()[source]¶

		Called to stop continuous host logging.

		
symlink_closure(paths)[source]¶

		Given a sequence of path strings, return the set of all paths that
can be reached from the initial set by following symlinks.

		Parameters:		paths – sequence of path strings.

		Returns:		a sequence of path strings that are all the unique paths that
can be reached from the given ones after following symlinks.

		
sysrq_reboot()[source]¶

		

		
verify()[source]¶

		

		
verify_connectivity()[source]¶

		

		
verify_hardware()[source]¶

		

		
verify_software()[source]¶

		

		
wait_down(timeout=None, warning_timer=None, old_boot_id=None)[source]¶

		

		
wait_for_restart(timeout=1800, down_timeout=840, down_warning=540, log_failure=True, old_boot_id=None, **dargs)[source]¶

		Wait for the host to come back from a reboot. This is a generic
implementation based entirely on wait_up and wait_down.

		
wait_up(timeout=None)[source]¶

		

common Module¶

test_utils Package¶

config_change_validation Module¶
Module for testing config file changes.

		author:		Kristof Katus and Plamen Dimitrov

		copyright:		Intra2net AG 2012

@license: GPL v2

		
autotest.client.shared.test_utils.config_change_validation.assert_config_change(actual_result, expected_result)[source]¶

		Wrapper of the upper method returning boolean true if no config changes
were detected.

		
autotest.client.shared.test_utils.config_change_validation.assert_config_change_dict(actual_result, expected_result)[source]¶

		Calculates unexpected line changes.

The arguments actual_result and expected_results are of
the same data structure type: Dict[file_path] –> (adds, removes),
where adds = [added_line, …] and removes = [removed_line, …].

The return value has the following structure:
Dict[file_path] –> (unexpected_adds,

not_present_adds,
unexpected_removes,
not_present_removes)

		
autotest.client.shared.test_utils.config_change_validation.del_temp_file_copies(file_paths)[source]¶

		Deletes all the provided files

		
autotest.client.shared.test_utils.config_change_validation.extract_config_changes(file_paths, compared_file_paths=[])[source]¶

		Extracts diff information based on the new and
temporarily saved old config files

Returns a dictionary of file path and corresponding
diff information key-value pairs.

		
autotest.client.shared.test_utils.config_change_validation.get_temp_file_path(file_path)[source]¶

		Generates a temporary filename

		
autotest.client.shared.test_utils.config_change_validation.make_temp_file_copies(file_paths)[source]¶

		Creates temporary copies of the provided files

		
autotest.client.shared.test_utils.config_change_validation.parse_unified_diff_output(lines)[source]¶

		Parses the unified diff output of two files

Returns a pair of adds and removes, where each is a list of trimmed lines

		
autotest.client.shared.test_utils.config_change_validation.print_change_diffs(change_diffs)[source]¶

		Pretty prints the output of the evaluate_config_changes function

functools_24 Module¶
		
autotest.client.shared.test_utils.functools_24.compose(*args)[source]¶

		

		
autotest.client.shared.test_utils.functools_24.fastcut(*sargs, **skw)[source]¶

		

mock Module¶
		
exception autotest.client.shared.test_utils.mock.CheckPlaybackError[source]¶

		Bases: exceptions.Exception

Raised when mock playback does not match recorded calls.

		
class autotest.client.shared.test_utils.mock.SaveDataAfterCloseStringIO(buf='')[source]¶

		Bases: StringIO.StringIO

Saves the contents in a final_data property when close() is called.

Useful as a mock output file object to test both that the file was
closed and what was written.

		Properties:

				final_data: Set to the StringIO’s getvalue() data when close() is

		called. None if close() has not been called.

		
close()[source]¶

		

		
final_data = None¶

		

		
exception autotest.client.shared.test_utils.mock.StubNotFoundError[source]¶

		Bases: exceptions.Exception

Raised when god is asked to unstub an attribute that was not stubbed

		
class autotest.client.shared.test_utils.mock.anything_comparator[source]¶

		Bases: autotest.client.shared.test_utils.mock.argument_comparator

		
is_satisfied_by(parameter)[source]¶

		

		
class autotest.client.shared.test_utils.mock.argument_comparator[source]¶

		Bases: object

		
is_satisfied_by(parameter)[source]¶

		

		
class autotest.client.shared.test_utils.mock.base_mapping(symbol, return_obj, *args, **dargs)[source]¶

		Bases: object

		
match(*args, **dargs)[source]¶

		

		
class autotest.client.shared.test_utils.mock.equality_comparator(value)[source]¶

		Bases: autotest.client.shared.test_utils.mock.argument_comparator

		
is_satisfied_by(parameter)[source]¶

		

		
class autotest.client.shared.test_utils.mock.function_any_args_mapping(symbol, return_val, *args, **dargs)[source]¶

		Bases: autotest.client.shared.test_utils.mock.function_mapping

A mock function mapping that doesn’t verify its arguments.

		
match(*args, **dargs)[source]¶

		

		
class autotest.client.shared.test_utils.mock.function_mapping(symbol, return_val, *args, **dargs)[source]¶

		Bases: autotest.client.shared.test_utils.mock.base_mapping

		
and_raises(error)[source]¶

		

		
and_return(return_obj)[source]¶

		

		
class autotest.client.shared.test_utils.mock.is_instance_comparator(cls)[source]¶

		Bases: autotest.client.shared.test_utils.mock.argument_comparator

		
is_satisfied_by(parameter)[source]¶

		

		
class autotest.client.shared.test_utils.mock.is_string_comparator[source]¶

		Bases: autotest.client.shared.test_utils.mock.argument_comparator

		
is_satisfied_by(parameter)[source]¶

		

		
class autotest.client.shared.test_utils.mock.mask_function(symbol, original_function, default_return_val=None, record=None, playback=None)[source]¶

		Bases: autotest.client.shared.test_utils.mock.mock_function

		
run_original_function(*args, **dargs)[source]¶

		

		
class autotest.client.shared.test_utils.mock.mock_class(cls, name, default_ret_val=None, record=None, playback=None)[source]¶

		Bases: object

		
class autotest.client.shared.test_utils.mock.mock_function(symbol, default_return_val=None, record=None, playback=None)[source]¶

		Bases: object

		
expect_any_call()[source]¶

		Like expect_call but don’t give a hoot what arguments are passed.

		
expect_call(*args, **dargs)[source]¶

		

		
class autotest.client.shared.test_utils.mock.mock_god(debug=False, fail_fast=True, ut=None)[source]¶

		Bases: object

		
NONEXISTENT_ATTRIBUTE = <object object>¶

		

		
check_playback()[source]¶

		Report any errors that were encounterd during calls
to __method_playback().

		
create_mock_class(cls, name, default_ret_val=None)[source]¶

		Given something that defines a namespace cls (class, object,
module), and a (hopefully unique) name, will create a
mock_class object with that name and that possesses all
the public attributes of cls. default_ret_val sets the
default_ret_val on all methods of the cls mock.

		
create_mock_class_obj(cls, name, default_ret_val=None)[source]¶

		

		
create_mock_function(symbol, default_return_val=None)[source]¶

		create a mock_function with name symbol and default return
value of default_ret_val.

		
mock_io()[source]¶

		Mocks and saves the stdout & stderr output

		
mock_up(obj, name, default_ret_val=None)[source]¶

		Given an object (class instance or module) and a registration
name, then replace all its methods with mock function objects
(passing the orignal functions to the mock functions).

		
set_fail_fast(fail_fast)[source]¶

		

		
stub_class(namespace, symbol)[source]¶

		

		
stub_class_method(cls, symbol)[source]¶

		

		
stub_function(namespace, symbol)[source]¶

		

		
stub_function_to_return(namespace, symbol, object_to_return)[source]¶

		Stub out a function with one that always returns a fixed value.

:param namespace The namespace containing the function to stub out.
:param symbol The attribute within the namespace to stub out.
:param object_to_return The value that the stub should return whenever

it is called.

		
stub_with(namespace, symbol, new_attribute)[source]¶

		

		
unmock_io()[source]¶

		Restores the stdout & stderr, and returns both
output strings

		
unstub(namespace, symbol)[source]¶

		

		
unstub_all()[source]¶

		

		
class autotest.client.shared.test_utils.mock.regex_comparator(pattern, flags=0)[source]¶

		Bases: autotest.client.shared.test_utils.mock.argument_comparator

		
is_satisfied_by(parameter)[source]¶

		

unittest Module¶
Python unit testing framework, based on Erich Gamma’s JUnit and Kent Beck’s
Smalltalk testing framework.

This module contains the core framework classes that form the basis of
specific test cases and suites (TestCase, TestSuite etc.), and also a
text-based utility class for running the tests and reporting the results

(TextTestRunner).

Simple usage:

import unittest

		class IntegerArithmenticTestCase(unittest.TestCase):

				def testAdd(self): ## test method names begin ‘test*’

		self.assertEqual((1 + 2), 3)
self.assertEqual(0 + 1, 1)

		def testMultiply(self):

		self.assertEqual((0 * 10), 0)
self.assertEqual((5 * 8), 40)

		if __name__ == ‘__main__’:

		unittest.main()

Further information is available in the bundled documentation, and from

http://docs.python.org/library/unittest.html

Copyright (c) 1999-2003 Steve Purcell
Copyright (c) 2003-2009 Python Software Foundation
Copyright (c) 2009 Garrett Cooper
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Garrett: This module was backported using source from r71263 with fixes noted
in Issue 5771.

		
class autotest.client.shared.test_utils.unittest.TestResult[source]¶

		Bases: object

Holder for test result information.

Test results are automatically managed by the TestCase and TestSuite
classes, and do not need to be explicitly manipulated by writers of tests.

Each instance holds the total number of tests run, and collections of
failures and errors that occurred among those test runs. The collections
contain tuples of (testcase, exceptioninfo), where exceptioninfo is the
formatted traceback of the error that occurred.

		
addError(test, err)[source]¶

		Called when an error has occurred. ‘err’ is a tuple of values as
returned by sys.exc_info().

		
addExpectedFailure(test, err)[source]¶

		Called when an expected failure/error occurred.

		
addFailure(test, err)[source]¶

		Called when an error has occurred. ‘err’ is a tuple of values as
returned by sys.exc_info().

		
addSkip(test, reason)[source]¶

		Called when a test is skipped.

		
addSuccess(test)[source]¶

		Called when a test has completed successfully

		
addUnexpectedSuccess(test)[source]¶

		Called when a test was expected to fail, but succeed.

		
startTest(test)[source]¶

		Called when the given test is about to be run

		
stop()[source]¶

		Indicates that the tests should be aborted

		
stopTest(test)[source]¶

		Called when the given test has been run

		
wasSuccessful()[source]¶

		Tells whether or not this result was a success

		
class autotest.client.shared.test_utils.unittest.TestCase(methodName='runTest')[source]¶

		Bases: object

A class whose instances are single test cases.

By default, the test code itself should be placed in a method named
‘runTest’.

If the fixture may be used for many test cases, create as
many test methods as are needed. When instantiating such a TestCase
subclass, specify in the constructor arguments the name of the test method
that the instance is to execute.

Test authors should subclass TestCase for their own tests. Construction
and deconstruction of the test’s environment (‘fixture’) can be
implemented by overriding the ‘setUp’ and ‘tearDown’ methods respectively.

If it is necessary to override the __init__ method, the base class
__init__ method must always be called. It is important that subclasses
should not change the signature of their __init__ method, since instances
of the classes are instantiated automatically by parts of the framework
in order to be run.

		
addTypeEqualityFunc(typeobj, function)[source]¶

		Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register
their own type equality functions to provide nicer error messages.

		Args:

				typeobj: The data type to call this function on when both values

		are of the same type in assertEqual().

		function: The callable taking two arguments and an optional

		msg= argument that raises self.failureException with a
useful error message when the two arguments are not equal.

		
assertAlmostEqual(first, second, places=7, msg=None)[source]¶

		Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

		
assertAlmostEquals(first, second, places=7, msg=None)¶

		Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

		
assertDictContainsSubset(expected, actual, msg=None)[source]¶

		Checks whether actual is a superset of expected.

		
assertDictEqual(d1, d2, msg=None)[source]¶

		

		
assertEqual(first, second, msg=None)[source]¶

		Fail if the two objects are unequal as determined by the ‘==’
operator.

		
assertEquals(first, second, msg=None)¶

		Fail if the two objects are unequal as determined by the ‘==’
operator.

		
assertFalse(expr, msg=None)[source]¶

		Fail the test if the expression is true.

		
assertGreater(a, b, msg=None)[source]¶

		Just like self.assertTrue(a > b), but with a nicer default message.

		
assertGreaterEqual(a, b, msg=None)[source]¶

		Just like self.assertTrue(a >= b), but with a nicer default message.

		
assertIn(member, container, msg=None)[source]¶

		Just like self.assertTrue(a in b), but with a nicer default message.

		
assertIs(expr1, expr2, msg=None)[source]¶

		Just like self.assertTrue(a is b), but with a nicer default message.

		
assertIsNone(obj, msg=None)[source]¶

		Same as self.assertTrue(obj is None), with a nicer default message.

		
assertIsNot(expr1, expr2, msg=None)[source]¶

		Just like self.assertTrue(a is not b), but with a nicer default message.

		
assertIsNotNone(obj, msg=None)[source]¶

		Included for symmetry with assertIsNone.

		
assertLess(a, b, msg=None)[source]¶

		Just like self.assertTrue(a < b), but with a nicer default message.

		
assertLessEqual(a, b, msg=None)[source]¶

		Just like self.assertTrue(a <= b), but with a nicer default message.

		
assertListEqual(list1, list2, msg=None)[source]¶

		A list-specific equality assertion.

		Args:

		list1: The first list to compare.
list2: The second list to compare.
msg: Optional message to use on failure instead of a list of

differences.

		
assertMultiLineEqual(first, second, msg=None)[source]¶

		Assert that two multi-line strings are equal.

		
assertNotAlmostEqual(first, second, places=7, msg=None)[source]¶

		Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

		
assertNotAlmostEquals(first, second, places=7, msg=None)¶

		Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most significant digit).

		
assertNotEqual(first, second, msg=None)[source]¶

		Fail if the two objects are equal as determined by the ‘==’
operator.

		
assertNotEquals(first, second, msg=None)¶

		Fail if the two objects are equal as determined by the ‘==’
operator.

		
assertNotIn(member, container, msg=None)[source]¶

		Just like self.assertTrue(a not in b), but with a nicer default message.

		
assertRaises(excClass, callableObj=None, *args, **kwargs)[source]¶

		Fail unless an exception of class excClass is thrown
by callableObj when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
thrown, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.

If called with callableObj omitted or None, will return a
context object used like this:

with self.assertRaises(some_error_class):
 do_something()

		
assertRaisesRegexp(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs)[source]¶

		Asserts that the message in a raised exception matches a regexp.

		Args:

		expected_exception: Exception class expected to be raised.
expected_regexp: Regexp (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called.
args: Extra args.
kwargs: Extra kwargs.

		
assertRegexpMatches(text, expected_regex, msg=None)[source]¶

		

		
assertSameElements(expected_seq, actual_seq, msg=None)[source]¶

		An unordered sequence specific comparison.

Raises with an error message listing which elements of expected_seq
are missing from actual_seq and vice versa if any.

		
assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)[source]¶

		An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid orderd sequence type is one
which can be indexed, has a length, and has an equality operator.

		Args:

		seq1: The first sequence to compare.
seq2: The second sequence to compare.
seq_type: The expected datatype of the sequences, or None if no

datatype should be enforced.

		msg: Optional message to use on failure instead of a list of

		differences.

		
assertSetEqual(set1, set2, msg=None)[source]¶

		A set-specific equality assertion.

		Args:

		set1: The first set to compare.
set2: The second set to compare.
msg: Optional message to use on failure instead of a list of

differences.

For more general containership equality, assertSameElements will work
with things other than sets. This uses ducktyping to support
different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

		
assertTrue(expr, msg=None)[source]¶

		Fail the test unless the expression is true.

		
assertTupleEqual(tuple1, tuple2, msg=None)[source]¶

		A tuple-specific equality assertion.

		Args:

		tuple1: The first tuple to compare.
tuple2: The second tuple to compare.
msg: Optional message to use on failure instead of a list of

differences.

		
assert_(expr, msg=None)¶

		Fail the test unless the expression is true.

		
countTestCases()[source]¶

		

		
debug()[source]¶

		Run the test without collecting errors in a TestResult

		
defaultTestResult()[source]¶

		

		
fail(msg=None)[source]¶

		Fail immediately, with the given message.

		
failIf(**kwargs)¶

		

		
failIfAlmostEqual(**kwargs)¶

		

		
failIfEqual(**kwargs)¶

		

		
failUnless(**kwargs)¶

		

		
failUnlessAlmostEqual(**kwargs)¶

		

		
failUnlessEqual(**kwargs)¶

		

		
failUnlessRaises(**kwargs)¶

		

		
failureException¶

		alias of exceptions.AssertionError

		
id()[source]¶

		

		
longMessage = False¶

		

		
run(result=None)[source]¶

		

		
setUp()[source]¶

		Hook method for setting up the test fixture before exercising it.

		
shortDescription()[source]¶

		Returns both the test method name and first line of its docstring.

If no docstring is given, only returns the method name.

This method overrides unittest.TestCase.shortDescription(), which
only returns the first line of the docstring, obscuring the name
of the test upon failure.

		
skipTest(reason)[source]¶

		Skip this test.

		
tearDown()[source]¶

		Hook method for deconstructing the test fixture after testing it.

		
class autotest.client.shared.test_utils.unittest.TestSuite(tests=())[source]¶

		Bases: object

A test suite is a composite test consisting of a number of TestCases.

For use, create an instance of TestSuite, then add test case instances.
When all tests have been added, the suite can be passed to a test
runner, such as TextTestRunner. It will run the individual test cases
in the order in which they were added, aggregating the results. When
subclassing, do not forget to call the base class constructor.

		
addTest(test)[source]¶

		

		
addTests(tests)[source]¶

		

		
countTestCases()[source]¶

		

		
debug()[source]¶

		Run the tests without collecting errors in a TestResult

		
run(result)[source]¶

		

		
class autotest.client.shared.test_utils.unittest.ClassTestSuite(tests, class_collected_from)[source]¶

		Bases: autotest.client.shared.test_utils.unittest.TestSuite

Suite of tests derived from a single TestCase class.

		
id()[source]¶

		

		
run(result)[source]¶

		

		
shortDescription()¶

		

		
class autotest.client.shared.test_utils.unittest.TextTestRunner(stream=<open file '<stderr>', mode 'w'>, descriptions=1, verbosity=1)[source]¶

		Bases: object

A test runner class that displays results in textual form.

It prints out the names of tests as they are run, errors as they
occur, and a summary of the results at the end of the test run.

		
run(test)[source]¶

		Run the given test case or test suite.

		
class autotest.client.shared.test_utils.unittest.TestLoader[source]¶

		Bases: object

This class is responsible for loading tests according to various criteria
and returning them wrapped in a TestSuite

		
classSuiteClass¶

		alias of ClassTestSuite

		
getTestCaseNames(testCaseClass)[source]¶

		Return a sorted sequence of method names found within testCaseClass

		
loadTestsFromModule(module)[source]¶

		Return a suite of all tests cases contained in the given module

		
loadTestsFromName(name, module=None)[source]¶

		Return a suite of all tests cases given a string specifier.

The name may resolve either to a module, a test case class, a
test method within a test case class, or a callable object which
returns a TestCase or TestSuite instance.

The method optionally resolves the names relative to a given module.

		
loadTestsFromNames(names, module=None)[source]¶

		Return a suite of all tests cases found using the given sequence
of string specifiers. See ‘loadTestsFromName()’.

		
loadTestsFromTestCase(testCaseClass)[source]¶

		Return a suite of all tests cases contained in testCaseClass

		
sortTestMethodsUsing()¶

		cmp(x, y) -> integer

Return negative if x<y, zero if x==y, positive if x>y.

		
suiteClass¶

		alias of TestSuite

		
testMethodPrefix = 'test'¶

		

		
class autotest.client.shared.test_utils.unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)[source]¶

		Bases: autotest.client.shared.test_utils.unittest.TestCase

A test case that wraps a test function.

This is useful for slipping pre-existing test functions into the
unittest framework. Optionally, set-up and tidy-up functions can be
supplied. As with TestCase, the tidy-up (‘tearDown’) function will
always be called if the set-up (‘setUp’) function ran successfully.

		
id()[source]¶

		

		
runTest()[source]¶

		

		
setUp()[source]¶

		Hook method for setting up the test fixture before exercising it.

		
shortDescription()[source]¶

		Returns both the test method name and first line of its docstring.

If no docstring is given, only returns the method name.

This method overrides unittest.TestCase.shortDescription(), which
only returns the first line of the docstring, obscuring the name
of the test upon failure.

		
tearDown()[source]¶

		Hook method for deconstructing the test fixture after testing it.

		
autotest.client.shared.test_utils.unittest.main¶

		alias of autotest.client.shared.test_utils.unittest.TestProgram

		
exception autotest.client.shared.test_utils.unittest.SkipTest[source]¶

		Bases: exceptions.Exception

Raise this exception in a test to skip it.

Usually you can use TestResult.skip() or one of the skipping decorators
instead of raising this directly.

		
autotest.client.shared.test_utils.unittest.skip(reason)[source]¶

		Unconditionally skip a test.

		
autotest.client.shared.test_utils.unittest.skipIf(condition, reason)[source]¶

		Skip a test if the condition is true.

		
autotest.client.shared.test_utils.unittest.skipUnless(condition, reason)[source]¶

		Skip a test unless the condition is true.

		
autotest.client.shared.test_utils.unittest.expectedFailure(func)[source]¶

		

		
autotest.client.shared.test_utils.unittest.getTestCaseNames(testCaseClass, prefix, sortUsing=<built-in function cmp>)[source]¶

		

		
autotest.client.shared.test_utils.unittest.makeSuite(testCaseClass, prefix='test', sortUsing=<built-in function cmp>, suiteClass=<class 'autotest.client.shared.test_utils.unittest.TestSuite'>)[source]¶

		

		
autotest.client.shared.test_utils.unittest.findTestCases(module, prefix='test', sortUsing=<built-in function cmp>, suiteClass=<class 'autotest.client.shared.test_utils.unittest.TestSuite'>)[source]¶

		

tools Package¶

JUnit_api Module¶

		
class autotest.client.tools.JUnit_api.errorType(message=None, type_=None, valueOf_=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

The error message. e.g., if a java exception is thrown, the return
value of getMessage()The type of error that occurred. e.g., if a
java execption is thrown the full class name of the exception.

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='errorType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='errorType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='errorType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='errorType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_message()[source]¶

		

		
get_type()[source]¶

		

		
get_valueOf_()[source]¶

		

		
hasContent_()[source]¶

		

		
set_message(message)[source]¶

		

		
set_type(type_)[source]¶

		

		
set_valueOf_(valueOf_)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.failureType(message=None, type_=None, valueOf_=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

The message specified in the assertThe type of the assert.

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='failureType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='failureType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='failureType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='failureType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_message()[source]¶

		

		
get_type()[source]¶

		

		
get_valueOf_()[source]¶

		

		
hasContent_()[source]¶

		

		
set_message(message)[source]¶

		

		
set_type(type_)[source]¶

		

		
set_valueOf_(valueOf_)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.propertiesType(property=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

		
add_property(value)[source]¶

		

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='propertiesType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='propertiesType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='propertiesType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='propertiesType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_property()[source]¶

		

		
hasContent_()[source]¶

		

		
insert_property(index, value)[source]¶

		

		
set_property(property)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.propertyType(name=None, value=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='propertyType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='propertyType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='propertyType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='propertyType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_name()[source]¶

		

		
get_value()[source]¶

		

		
hasContent_()[source]¶

		

		
set_name(name)[source]¶

		

		
set_value(value)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.system_err[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Data that was written to standard error while the test was executed

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='system-err', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='system-err')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='system-err', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='system-err')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
hasContent_()[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.system_out[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Data that was written to standard out while the test was executed

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='system-out', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='system-out')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='system-out', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='system-out')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
hasContent_()[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.testcaseType(classname=None, name=None, time=None, error=None, failure=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Name of the test methodFull class name for the class the test method
is in.Time taken (in seconds) to execute the test

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='testcaseType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='testcaseType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='testcaseType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='testcaseType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_classname()[source]¶

		

		
get_error()[source]¶

		

		
get_failure()[source]¶

		

		
get_name()[source]¶

		

		
get_time()[source]¶

		

		
hasContent_()[source]¶

		

		
set_classname(classname)[source]¶

		

		
set_error(error)[source]¶

		

		
set_failure(failure)[source]¶

		

		
set_name(name)[source]¶

		

		
set_time(time)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
class autotest.client.tools.JUnit_api.testsuite(tests=None, errors=None, name=None, timestamp=None, hostname=None, time=None, failures=None, properties=None, testcase=None, system_out=None, system_err=None, extensiontype_=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Contains the results of exexuting a testsuiteFull class name of the
test for non-aggregated testsuite documents. Class name without
the package for aggregated testsuites documentswhen the test was
executed. Timezone may not be specified.Host on which the tests
were executed. ‘localhost’ should be used if the hostname cannot
be determined.The total number of tests in the suiteThe total
number of tests in the suite that failed. A failure is a test
which the code has explicitly failed by using the mechanisms for
that purpose. e.g., via an assertEqualsThe total number of tests
in the suite that errorrd. An errored test is one that had an
unanticipated problem. e.g., an unchecked throwable; or a
problem with the implementation of the test.Time taken (in
seconds) to execute the tests in the suite

		
add_testcase(value)[source]¶

		

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='testsuite', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuite')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='testsuite', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='testsuite')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_errors()[source]¶

		

		
get_extensiontype_()[source]¶

		

		
get_failures()[source]¶

		

		
get_hostname()[source]¶

		

		
get_name()[source]¶

		

		
get_properties()[source]¶

		

		
get_system_err()[source]¶

		

		
get_system_out()[source]¶

		

		
get_testcase()[source]¶

		

		
get_tests()[source]¶

		

		
get_time()[source]¶

		

		
get_timestamp()[source]¶

		

		
hasContent_()[source]¶

		

		
insert_testcase(index, value)[source]¶

		

		
set_errors(errors)[source]¶

		

		
set_extensiontype_(extensiontype_)[source]¶

		

		
set_failures(failures)[source]¶

		

		
set_hostname(hostname)[source]¶

		

		
set_name(name)[source]¶

		

		
set_properties(properties)[source]¶

		

		
set_system_err(system_err)[source]¶

		

		
set_system_out(system_out)[source]¶

		

		
set_testcase(testcase)[source]¶

		

		
set_tests(tests)[source]¶

		

		
set_time(time)[source]¶

		

		
set_timestamp(timestamp)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

		
validate_ISO8601_DATETIME_PATTERN(value)[source]¶

		

		
class autotest.client.tools.JUnit_api.testsuiteType(tests=None, errors=None, name=None, timestamp=None, hostname=None, time=None, failures=None, properties=None, testcase=None, system_out=None, system_err=None, id=None, package=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.testsuite

Derived from testsuite/@name in the non-aggregated documentsStarts
at ‘0’ for the first testsuite and is incremented by 1 for each
following testsuite

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='testsuiteType', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuiteType')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='testsuiteType', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='testsuiteType')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_id()[source]¶

		

		
get_package()[source]¶

		

		
hasContent_()[source]¶

		

		
set_id(id)[source]¶

		

		
set_package(package)[source]¶

		

		
subclass = None¶

		

		
superclass¶

		alias of testsuite

		
class autotest.client.tools.JUnit_api.testsuites(testsuite=None)[source]¶

		Bases: autotest.client.tools.JUnit_api.GeneratedsSuper

Contains an aggregation of testsuite results

		
add_testsuite(value)[source]¶

		

		
build(node)[source]¶

		

		
buildAttributes(node, attrs, already_processed)[source]¶

		

		
buildChildren(child_, node, nodeName_, fromsubclass_=False)[source]¶

		

		
export(outfile, level, namespace_='', name_='testsuites', namespacedef_='')[source]¶

		

		
exportAttributes(outfile, level, already_processed, namespace_='', name_='testsuites')[source]¶

		

		
exportChildren(outfile, level, namespace_='', name_='testsuites', fromsubclass_=False)[source]¶

		

		
exportLiteral(outfile, level, name_='testsuites')[source]¶

		

		
exportLiteralAttributes(outfile, level, already_processed, name_)[source]¶

		

		
exportLiteralChildren(outfile, level, name_)[source]¶

		

		
static factory(*args_, **kwargs_)[source]¶

		

		
get_testsuite()[source]¶

		

		
hasContent_()[source]¶

		

		
insert_testsuite(index, value)[source]¶

		

		
set_testsuite(testsuite)[source]¶

		

		
subclass = None¶

		

		
superclass = None¶

		

boottool Module¶

A boottool clone, but written in python and relying mostly on grubby[1].

[1] - http://git.fedorahosted.org/git/?p=grubby.git

		
class autotest.client.tools.boottool.Grubby(path=None, opts=None)[source]¶

		Bases: object

Grubby wrapper

This class calls the grubby binary for most commands, but also
adds some functionality that is not really suited to be included
in int, such as boot-once.

		
SUPPORTED_BOOTLOADERS = ('lilo', 'grub2', 'grub', 'extlinux', 'yaboot', 'elilo')¶

		

		
add_args(kernel, args)[source]¶

		Add cmdline arguments for the specified kernel.

		Parameters:				kernel – can be a position number (index) or title

		args – argument to be added to the current list of args

		
add_kernel(path, title='autoserv', root=None, args=None, initrd=None, default=False, position='end')[source]¶

		Add a kernel entry to the bootloader (or replace if one exists
already with the same title).

		Parameters:				path – string path to the kernel image file

		title – title of this entry in the bootloader config

		root – string of the root device

		args – string with cmdline args

		initrd – string path to the initrd file

		default – set to True to make this entry the default one
(default False)

		position – where to insert the new entry in the bootloader
config file (default ‘end’, other valid input ‘start’, or
of the title)

		xen_hypervisor – xen hypervisor image file (valid only when
xen mode is enabled)

		
arch_probe()¶

		Get the system architecture

This is much simpler version then the original boottool version, that
does not attempt to filter the result of the command / system call
that returns the archicture.

		Returns:		string with system archicteture, such as x86_64, ppc64, etc

		
boot_once(title=None)[source]¶

		Configures the bootloader to boot an entry only once

This is not implemented by grubby, but directly implemented here, via
the ‘boot_once_<bootloader>’ method.

		
boot_once_elilo(entry_index)[source]¶

		Implements boot once for machines with kernel >= 2.6

This manipulates EFI variables via the interface available at
/sys/firmware/efi/vars

		
boot_once_grub(entry_index)[source]¶

		Implements the boot once feature for the grub bootloader

		
boot_once_grub2(entry_index)[source]¶

		Implements the boot once feature for the grub2 bootloader

Caveat: this assumes the default set is of type “saved”, and not a
numeric value.

		
boot_once_yaboot(entry_title)[source]¶

		Implements the boot once feature for the yaboot bootloader

		
bootloader_probe()¶

		Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

		Returns:		name of detected bootloader

		
default()¶

		Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

		Returns:		an integer with the the default entry.

		
get_architecture()[source]¶

		Get the system architecture

This is much simpler version then the original boottool version, that
does not attempt to filter the result of the command / system call
that returns the archicture.

		Returns:		string with system archicteture, such as x86_64, ppc64, etc

		
get_bootloader()[source]¶

		Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

		Returns:		name of detected bootloader

		
get_default()¶

		Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

		Returns:		an integer with the the default entry.

		
get_default_index()[source]¶

		Get the default entry index.

This module performs the same action as client side boottool.py
get_default() method, but with a better name IMHO.

		Returns:		an integer with the the default entry.

		
get_default_title()[source]¶

		Get the default entry title.

Conforms to the client side boottool.py API, but rely directly on
grubby functionality.

		Returns:		a string of the default entry title.

		
get_entries()[source]¶

		Get all entries information.

		Returns:		a dictionary of index -> entry where entry is a dictionary
of entry information as described for get_entry().

		
get_entry(search_info)[source]¶

		Get a single bootloader entry information.

NOTE: if entry is “fallback” and bootloader is grub
use index instead of kernel title (“fallback”) as fallback is
a special option in grub

		Parameters:		search_info – can be ‘default’, position number or title

		Returns:		a dictionary of key->value where key is the type of entry
information (ex. ‘title’, ‘args’, ‘kernel’, etc) and value
is the value for that piece of information.

		
get_grubby_version()[source]¶

		Get the version of grubby that is installed on this machine

		Returns:		tuple with (major, minor) grubby version

		
get_grubby_version_raw()[source]¶

		Get the version of grubby that is installed on this machine as is

		Returns:		string with raw output from grubby –version

		
get_info(entry='ALL')[source]¶

		Returns information on a given entry, or all of them if not specified

The information is returned as a set of lines, that match the output
of ‘grubby –info=<entry>’

		Parameters:		entry (string) – entry description, usually an index starting from 0

		Returns:		set of lines

		
get_info_lines(entry='ALL')[source]¶

		Returns information on a given entry, or all of them if not specified

The information is returned as a set of lines, that match the output
of ‘grubby –info=<entry>’

		Parameters:		entry (string) – entry description, usually an index starting from 0

		Returns:		set of lines

		
get_title_for_kernel(path)[source]¶

		Returns a title for a particular kernel.

		Parameters:		path – path of the kernel image configured in the boot config

		Returns:		if the given kernel path is found it will return a string
with the title for the found entry, otherwise returns None

		
get_titles()[source]¶

		Get the title of all boot entries.

		Returns:		list with titles of boot entries

		
get_type()¶

		Get the bootloader name that is detected on this machine

This module performs the same action as client side boottool.py
get_type() method, but with a better name IMHO.

		Returns:		name of detected bootloader

		
grubby_build(topdir, tarball)[source]¶

		Attempts to build grubby from the source tarball

		
grubby_install(path=None)[source]¶

		Attempts to install a recent enough version of grubby

		So far tested on:

				Fedora 16 x86_64

		Debian 6 x86_64

		SuSE 12.1 x86_64

		RHEL 4 on ia64 (with updated python 2.4)

		RHEL 5 on ia64

		RHEL 6 on ppc64

		
grubby_install_backup(path)[source]¶

		Backs up the current grubby binary to make room the one we’ll build

		Parameters:		path (string) – path to the binary that should be backed up

		
grubby_install_fetch_tarball(topdir)[source]¶

		Fetches and verifies the grubby source tarball

		
grubby_install_patch_makefile()[source]¶

		Patch makefile, making CFLAGS more forgivable to older toolchains

		
remove_args(kernel, args)[source]¶

		Removes specified cmdline arguments.

		Parameters:				kernel – can be a position number (index) or title

		args – argument to be removed of the current list of args

		
remove_kernel(kernel)[source]¶

		Removes a specific entry from the bootloader configuration.

		Parameters:		kernel – entry position or entry title.

FIXME: param kernel should also take ‘start’ or ‘end’.

		
set_default(index)¶

		Sets the given entry number to be the default on every next boot

To set a default only for the next boot, use boot_once() instead.

This module performs the same action as client side boottool.py
set_default() method, but with a better name IMHO.

Note: both –set-default=<kernel> and –set-default-index=<index>
on grubby returns no error when it doesn’t find the kernel or
index. So this method will, until grubby gets fixed, always return
success.

		Parameters:		index – entry index number to set as the default.

		
set_default_by_index(index)[source]¶

		Sets the given entry number to be the default on every next boot

To set a default only for the next boot, use boot_once() instead.

This module performs the same action as client side boottool.py
set_default() method, but with a better name IMHO.

Note: both –set-default=<kernel> and –set-default-index=<index>
on grubby returns no error when it doesn’t find the kernel or
index. So this method will, until grubby gets fixed, always return
success.

		Parameters:		index – entry index number to set as the default.

		
class autotest.client.tools.boottool.OptionParser(**kwargs)[source]¶

		Bases: optparse.OptionParser

Command line option parser

Aims to maintain compatibility at the command line level with boottool

		
check_values(opts, args)[source]¶

		Validate the option the user has supplied

		
option_parser_usage = '%prog [options]'¶

		

		
opts_get_action(opts)[source]¶

		Gets the selected action from the parsed opts

		
opts_has_action(opts)[source]¶

		Checks if (parsed) opts has a first class action

		
class autotest.client.tools.boottool.EfiVar(name, data, guid=None, attributes=None)[source]¶

		Bases: object

Helper class to manipulate EFI firmware variables

This class has no notion of the EFI firmware variables interface, that is,
where it should read from or write to in order to create or delete EFI
variables.

On systems with kernel >= 2.6, that interface is a directory structure
under /sys/firmware/efi/vars.

On systems with kernel <= 2.4, that interface is going to be a directory
structure under /proc/efi/vars. But be advised: this has not been tested
yet on kernels <= 2.4.

		
ATTR_BOOTSERVICE_ACCESS = 2¶

		

		
ATTR_NON_VOLATILE = 1¶

		

		
ATTR_RUNTIME_ACCESS = 4¶

		

		
DEFAULT_ATTRIBUTES = 7¶

		

		
FMT = '512H16B1L512H1L1I'¶

		

		
GUID_CONTENT = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)¶

		

		
GUID_FMT = '16B'¶

		

		
get_data()[source]¶

		Returns the variable data in a list ready for struct.pack()

		
get_name()[source]¶

		Returns the variable name in a list ready for struct.pack()

		
get_packed()[source]¶

		Returns the EFI variable raw data packed by struct.pack()

This data should be written to the appropriate interface to create
an EFI variable

		
class autotest.client.tools.boottool.EfiToolSys[source]¶

		Bases: object

Interfaces with /sys/firmware/efi/vars provided by the kernel

This interface is present on kernels >= 2.6 with CONFIG_EFI and
CONFIG_EFI_VARS options set.

		
BASE_PATH = '/sys/firmware/efi/vars'¶

		

		
DEL_VAR = '/sys/firmware/efi/vars/del_var'¶

		

		
NEW_VAR = '/sys/firmware/efi/vars/new_var'¶

		

		
check_basic_structure()[source]¶

		Checks the basic directory structure for the /sys/…/vars interface

		
create_variable(name, data, guid=None, attributes=None)[source]¶

		Creates a new EFI variable

		Parameters:				name (string) – the name of the variable that will be created

		data (string) – user data that will populate the variable

		guid (tuple) – content for the guid value that composes the full variable
name

		attributes – integer

		attributes – bitwise AND of the EFI attributes this variable will
have set

		
delete_variable(name, data, guid=None, attributes=None)[source]¶

		Delets an existing EFI variable

		Parameters:				name (string) – the name of the variable that will be deleted

		data (string) – user data that will populate the variable

		guid (tuple) – content for the guid value that composes the full variable
name

		attributes – integer

		attributes – bitwise AND of the EFI attributes this variable will
have set

		
class autotest.client.tools.boottool.EliloConf(path='/etc/elilo.conf')[source]¶

		Bases: object

A simple parser for elilo configuration file

Has simple features to add and remove global options only, as this is all
we need. grubby takes care of manipulating the boot entries themselves.

		
add_global_option(key, val=None)[source]¶

		Adds a global option to the updated elilo configuration file

		Parameters:				key (string) – option name

		key – option value or None for options with no values

		Returns:		None

		
get_updated_content()[source]¶

		Returns the config file content with options to add and remove applied

		
keyval_to_line(keyval)[source]¶

		Transforms a tuple into a text line suitable for the config file

		Parameters:		keyval (tuple) – a tuple containing key and value

		Returns:		a text line suitable for the config file

		
line_to_keyval(line)[source]¶

		Transforms a text line from the configuration file into a tuple

		Parameters:		line (string) – line of text from the configuration file

		Returns:		a tuple with key and value

		
matches_global_option_to_add(line)[source]¶

		Utility method to check if option is to be added

		Parameters:		line (string) – line of text from the configuration file

		Returns:		True or False

		
matches_global_option_to_remove(line)[source]¶

		Utility method to check if option is to be removed

		Parameters:		line (string) – line of text from the configuration file

		Returns:		True or False

		
remove_global_option(key, val=None)[source]¶

		Removes a global option to the updated elilo configuration file

		Parameters:				key (string) – option name

		key – option value or None for options with no values

		Returns:		None

		
update()[source]¶

		Writes the updated content to the configuration file

		
autotest.client.tools.boottool.find_executable(executable, favorite_path=None)[source]¶

		Returns whether the system has a given executable

		Parameters:		executable (string) – the name of a file that can be read and executed

		
autotest.client.tools.boottool.parse_entry(entry_str, separator='=')[source]¶

		Parse entry as returned by boottool.

		Parameters:		entry_str – one entry information as returned by boottool

		Returns:		dictionary of key -> value where key is the string before
the first “:” in an entry line and value is the string after
it

common Module¶

crash_handler Module¶

Simple crash handling application for autotest

		copyright:		Red Hat Inc 2009

		author:		Lucas Meneghel Rodrigues <lmr@redhat.com>

		
autotest.client.tools.crash_handler.gdb_report(path)[source]¶

		Use GDB to produce a report with information about a given core.

		Parameters:		path – Path to core file.

		
autotest.client.tools.crash_handler.generate_random_string(length)[source]¶

		Return a random string using alphanumeric characters.

@length: length of the string that will be generated.

		
autotest.client.tools.crash_handler.get_info_from_core(path)[source]¶

		Reads a core file and extracts a dictionary with useful core information.

Right now, the only information extracted is the full executable name.

		Parameters:		path – Path to core file.

		
autotest.client.tools.crash_handler.get_parent_pid(pid)[source]¶

		Returns the parent PID for a given PID, converted to an integer.

		Parameters:		pid – Process ID.

		
autotest.client.tools.crash_handler.get_results_dir_list(pid, core_dir_basename)[source]¶

		Get all valid output directories for the core file and the report. It works
by inspecting files created by each test on /tmp and verifying if the
PID of the process that crashed is a child or grandchild of the autotest
test process. If it can’t find any relationship (maybe a daemon that died
during a test execution), it will write the core file to the debug dirs
of all tests currently being executed. If there are no active autotest
tests at a particular moment, it will return a list with [‘/tmp’].

		Parameters:				pid – PID for the process that generated the core

		core_dir_basename – Basename for the directory that will hold both
the core dump and the crash report.

		
autotest.client.tools.crash_handler.write_cores(core_data, dir_list)[source]¶

		Write core files to all directories, optionally providing reports.

		Parameters:				core_data – Contents of the core file.

		dir_list – List of directories the cores have to be written.

		report – Whether reports are to be generated for those core files.

		
autotest.client.tools.crash_handler.write_to_file(filename, data, report=False)[source]¶

		Write contents to a given file path specified. If not specified, the file
will be created.

		Parameters:				file_path – Path to a given file.

		data – File contents.

		report – Whether we’ll use GDB to get a backtrace report of the
file.

process_metrics Module¶

Program that parses autotest metrics results and prints them to stdout,
so that the jenkins measurement-plots plugin can parse them.

		Authors:

		Steve Conklin <sconklin@canonical.com>
Brad Figg <brad.figg@canonical.com>

Copyright (C) 2012 Canonical Ltd.

This script is distributed under the terms and conditions of the GNU General
Public License, Version 2 or later. See http://www.gnu.org/copyleft/gpl.html
for details.

		
autotest.client.tools.process_metrics.main(path)[source]¶

		

		
autotest.client.tools.process_metrics.usage()[source]¶

		

regression Module¶

Program that parses standard format results,
compute and check regression bug.

		copyright:		Red Hat 2011-2012

		author:		Amos Kong <akong@redhat.com>

		
class autotest.client.tools.regression.Sample(type, arg)[source]¶

		Bases: object

Collect test results in same environment to a sample

		
getAvg(avg_update=None)[source]¶

		

		
getAvgPercent(avgs_dict)[source]¶

		

		
getSD()[source]¶

		

		
getSDRate(sds_dict)[source]¶

		

		
getTtestPvalue(fs_dict1, fs_dict2, paired=None)[source]¶

		scipy lib is used to compute p-value of Ttest
scipy: http://www.scipy.org/
t-test: http://en.wikipedia.org/wiki/Student’s_t-test

		
autotest.client.tools.regression.analyze(test, type, arg1, arg2, configfile)[source]¶

		Compute averages/p-vales of two samples, print results nicely

		
autotest.client.tools.regression.display(lists, rates, allpvalues, f, ignore_col, sum='Augment Rate', prefix0=None, prefix1=None, prefix2=None, prefix3=None)[source]¶

		Display lists data to standard format

param lists: row data lists
param rates: augment rates lists
param f: result output file
param ignore_col: do not display some columns
param sum: compare result summary
param prefix0: output prefix in head lines
param prefix1: output prefix in Avg/SD lines
param prefix2: output prefix in Diff Avg/P-value lines
param prefix3: output prefix in total Sign line

		
autotest.client.tools.regression.exec_sql(cmd, conf='../../global_config.ini')[source]¶

		

		
autotest.client.tools.regression.get_test_keyval(jobid, keyname, default='')[source]¶

		

		
autotest.client.tools.regression.is_int(n)[source]¶

		

		
autotest.client.tools.regression.tee(content, file)[source]¶

		Write content to standard output and file

results2junit Module¶

Program that parses the autotest results and generates JUnit test results in XML format.

		
autotest.client.tools.results2junit.dbg(ostr)[source]¶

		

		
autotest.client.tools.results2junit.dump(obj)[source]¶

		

		
autotest.client.tools.results2junit.file_load(file_name)[source]¶

		Load the indicated file into a string and return the string.

		
autotest.client.tools.results2junit.main(basedir, resfiles)[source]¶

		

		
autotest.client.tools.results2junit.parse_results(text)[source]¶

		Parse text containing Autotest results.

		Returns:		A list of result 4-tuples.

		
autotest.client.tools.results2junit.text_clean(text)[source]¶

		This always seems like such a hack, however, there are some characters that we can’t
deal with properly so this function just removes them from the text passed in.

scan_results Module¶

Program that parses the autotest results and return a nicely printed final test
result.

		copyright:		Red Hat 2008-2009

		
autotest.client.tools.scan_results.main(resfiles)[source]¶

		

		
autotest.client.tools.scan_results.parse_results(text)[source]¶

		Parse text containing Autotest results.

		Returns:		A list of result 4-tuples.

		
autotest.client.tools.scan_results.print_result(result, name_width)[source]¶

		Nicely print a single Autotest result.

		Parameters:				result – a 4-tuple

		name_width – test name maximum width

frontend Package¶

Subpackages¶

afe Package¶

rpc_interface Module¶

Indices and tables¶

		Index

		Module Index

		Search Page

 © Copyright 2013, Autotest Team.

 Revision 0d527f4a.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: latest

 		Versions

		latest

		stable

		0.16.0

 		Downloads

		pdf

		htmlzip

		epub

 		On Read the Docs

		
 Project Home

		
 Builds

 Free document hosting provided by Read the Docs.

autotest-latest/_static/up.png

autotest-latest/_static/down-pressed.png

autotest-latest/_static/ajax-loader.gif

autotest-latest/_static/down.png

autotest-latest/_static/doctools.js
/*
 * doctools.js
 * ~~~~~~~~~~~
 *
 * Sphinx JavaScript utilities for all documentation.
 *
 * :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

/**
 * select a different prefix for underscore
 */
$u = _.noConflict();

/**
 * make the code below compatible with browsers without
 * an installed firebug like debugger
if (!window.console || !console.firebug) {
 var names = ["log", "debug", "info", "warn", "error", "assert", "dir",
 "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace",
 "profile", "profileEnd"];
 window.console = {};
 for (var i = 0; i < names.length; ++i)
 window.console[names[i]] = function() {};
}
 */

/**
 * small helper function to urldecode strings
 */
jQuery.urldecode = function(x) {
 return decodeURIComponent(x).replace(/\+/g, ' ');
};

/**
 * small helper function to urlencode strings
 */
jQuery.urlencode = encodeURIComponent;

/**
 * This function returns the parsed url parameters of the
 * current request. Multiple values per key are supported,
 * it will always return arrays of strings for the value parts.
 */
jQuery.getQueryParameters = function(s) {
 if (typeof s === 'undefined')
 s = document.location.search;
 var parts = s.substr(s.indexOf('?') + 1).split('&');
 var result = {};
 for (var i = 0; i < parts.length; i++) {
 var tmp = parts[i].split('=', 2);
 var key = jQuery.urldecode(tmp[0]);
 var value = jQuery.urldecode(tmp[1]);
 if (key in result)
 result[key].push(value);
 else
 result[key] = [value];
 }
 return result;
};

/**
 * highlight a given string on a jquery object by wrapping it in
 * span elements with the given class name.
 */
jQuery.fn.highlightText = function(text, className) {
 function highlight(node, addItems) {
 if (node.nodeType === 3) {
 var val = node.nodeValue;
 var pos = val.toLowerCase().indexOf(text);
 if (pos >= 0 &&
 !jQuery(node.parentNode).hasClass(className) &&
 !jQuery(node.parentNode).hasClass("nohighlight")) {
 var span;
 var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
 if (isInSVG) {
 span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
 } else {
 span = document.createElement("span");
 span.className = className;
 }
 span.appendChild(document.createTextNode(val.substr(pos, text.length)));
 node.parentNode.insertBefore(span, node.parentNode.insertBefore(
 document.createTextNode(val.substr(pos + text.length)),
 node.nextSibling));
 node.nodeValue = val.substr(0, pos);
 if (isInSVG) {
 var bbox = span.getBBox();
 var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
 	 rect.x.baseVal.value = bbox.x;
 rect.y.baseVal.value = bbox.y;
 rect.width.baseVal.value = bbox.width;
 rect.height.baseVal.value = bbox.height;
 rect.setAttribute('class', className);
 var parentOfText = node.parentNode.parentNode;
 addItems.push({
 "parent": node.parentNode,
 "target": rect});
 }
 }
 }
 else if (!jQuery(node).is("button, select, textarea")) {
 jQuery.each(node.childNodes, function() {
 highlight(this, addItems);
 });
 }
 }
 var addItems = [];
 var result = this.each(function() {
 highlight(this, addItems);
 });
 for (var i = 0; i < addItems.length; ++i) {
 jQuery(addItems[i].parent).before(addItems[i].target);
 }
 return result;
};

/*
 * backward compatibility for jQuery.browser
 * This will be supported until firefox bug is fixed.
 */
if (!jQuery.browser) {
 jQuery.uaMatch = function(ua) {
 ua = ua.toLowerCase();

 var match = /(chrome)[\/]([\w.]+)/.exec(ua) ||
 /(webkit)[\/]([\w.]+)/.exec(ua) ||
 /(opera)(?:.*version|)[\/]([\w.]+)/.exec(ua) ||
 /(msie) ([\w.]+)/.exec(ua) ||
 ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
 [];

 return {
 browser: match[1] || "",
 version: match[2] || "0"
 };
 };
 jQuery.browser = {};
 jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
}

/**
 * Small JavaScript module for the documentation.
 */
var Documentation = {

 init : function() {
 this.fixFirefoxAnchorBug();
 this.highlightSearchWords();
 this.initIndexTable();

 },

 /**
 * i18n support
 */
 TRANSLATIONS : {},
 PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; },
 LOCALE : 'unknown',

 // gettext and ngettext don't access this so that the functions
 // can safely bound to a different name (_ = Documentation.gettext)
 gettext : function(string) {
 var translated = Documentation.TRANSLATIONS[string];
 if (typeof translated === 'undefined')
 return string;
 return (typeof translated === 'string') ? translated : translated[0];
 },

 ngettext : function(singular, plural, n) {
 var translated = Documentation.TRANSLATIONS[singular];
 if (typeof translated === 'undefined')
 return (n == 1) ? singular : plural;
 return translated[Documentation.PLURALEXPR(n)];
 },

 addTranslations : function(catalog) {
 for (var key in catalog.messages)
 this.TRANSLATIONS[key] = catalog.messages[key];
 this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')');
 this.LOCALE = catalog.locale;
 },

 /**
 * add context elements like header anchor links
 */
 addContextElements : function() {
 $('div[id] > :header:first').each(function() {
 $('\u00B6').
 attr('href', '#' + this.id).
 attr('title', _('Permalink to this headline')).
 appendTo(this);
 });
 $('dt[id]').each(function() {
 $('\u00B6').
 attr('href', '#' + this.id).
 attr('title', _('Permalink to this definition')).
 appendTo(this);
 });
 },

 /**
 * workaround a firefox stupidity
 * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075
 */
 fixFirefoxAnchorBug : function() {
 if (document.location.hash && $.browser.mozilla)
 window.setTimeout(function() {
 document.location.href += '';
 }, 10);
 },

 /**
 * highlight the search words provided in the url in the text
 */
 highlightSearchWords : function() {
 var params = $.getQueryParameters();
 var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : [];
 if (terms.length) {
 var body = $('div.body');
 if (!body.length) {
 body = $('body');
 }
 window.setTimeout(function() {
 $.each(terms, function() {
 body.highlightText(this.toLowerCase(), 'highlighted');
 });
 }, 10);
 $('<p class="highlight-link"><a href="javascript:Documentation.' +
 'hideSearchWords()">' + _('Hide Search Matches') + '</p>')
 .appendTo($('#searchbox'));
 }
 },

 /**
 * init the domain index toggle buttons
 */
 initIndexTable : function() {
 var togglers = $('img.toggler').click(function() {
 var src = $(this).attr('src');
 var idnum = $(this).attr('id').substr(7);
 $('tr.cg-' + idnum).toggle();
 if (src.substr(-9) === 'minus.png')
 $(this).attr('src', src.substr(0, src.length-9) + 'plus.png');
 else
 $(this).attr('src', src.substr(0, src.length-8) + 'minus.png');
 }).css('display', '');
 if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) {
 togglers.click();
 }
 },

 /**
 * helper function to hide the search marks again
 */
 hideSearchWords : function() {
 $('#searchbox .highlight-link').fadeOut(300);
 $('span.highlighted').removeClass('highlighted');
 },

 /**
 * make the url absolute
 */
 makeURL : function(relativeURL) {
 return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL;
 },

 /**
 * get the current relative url
 */
 getCurrentURL : function() {
 var path = document.location.pathname;
 var parts = path.split(/\//);
 $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() {
 if (this === '..')
 parts.pop();
 });
 var url = parts.join('/');
 return path.substring(url.lastIndexOf('/') + 1, path.length - 1);
 },

 initOnKeyListeners: function() {
 $(document).keyup(function(event) {
 var activeElementType = document.activeElement.tagName;
 // don't navigate when in search box or textarea
 if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') {
 switch (event.keyCode) {
 case 37: // left
 var prevHref = $('link[rel="prev"]').prop('href');
 if (prevHref) {
 window.location.href = prevHref;
 return false;
 }
 case 39: // right
 var nextHref = $('link[rel="next"]').prop('href');
 if (nextHref) {
 window.location.href = nextHref;
 return false;
 }
 }
 }
 });
 }
};

// quick alias for translations
_ = Documentation.gettext;

$(document).ready(function() {
 Documentation.init();
});

autotest-latest/_static/websupport.js
/*
 * websupport.js
 * ~~~~~~~~~~~~~
 *
 * sphinx.websupport utilities for all documentation.
 *
 * :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

(function($) {
 $.fn.autogrow = function() {
 return this.each(function() {
 var textarea = this;

 $.fn.autogrow.resize(textarea);

 $(textarea)
 .focus(function() {
 textarea.interval = setInterval(function() {
 $.fn.autogrow.resize(textarea);
 }, 500);
 })
 .blur(function() {
 clearInterval(textarea.interval);
 });
 });
 };

 $.fn.autogrow.resize = function(textarea) {
 var lineHeight = parseInt($(textarea).css('line-height'), 10);
 var lines = textarea.value.split('\n');
 var columns = textarea.cols;
 var lineCount = 0;
 $.each(lines, function() {
 lineCount += Math.ceil(this.length / columns) || 1;
 });
 var height = lineHeight * (lineCount + 1);
 $(textarea).css('height', height);
 };
})(jQuery);

(function($) {
 var comp, by;

 function init() {
 initEvents();
 initComparator();
 }

 function initEvents() {
 $(document).on("click", 'a.comment-close', function(event) {
 event.preventDefault();
 hide($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.vote', function(event) {
 event.preventDefault();
 handleVote($(this));
 });
 $(document).on("click", 'a.reply', function(event) {
 event.preventDefault();
 openReply($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.close-reply', function(event) {
 event.preventDefault();
 closeReply($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.sort-option', function(event) {
 event.preventDefault();
 handleReSort($(this));
 });
 $(document).on("click", 'a.show-proposal', function(event) {
 event.preventDefault();
 showProposal($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.hide-proposal', function(event) {
 event.preventDefault();
 hideProposal($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.show-propose-change', function(event) {
 event.preventDefault();
 showProposeChange($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.hide-propose-change', function(event) {
 event.preventDefault();
 hideProposeChange($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.accept-comment', function(event) {
 event.preventDefault();
 acceptComment($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.delete-comment', function(event) {
 event.preventDefault();
 deleteComment($(this).attr('id').substring(2));
 });
 $(document).on("click", 'a.comment-markup', function(event) {
 event.preventDefault();
 toggleCommentMarkupBox($(this).attr('id').substring(2));
 });
 }

 /**
 * Set comp, which is a comparator function used for sorting and
 * inserting comments into the list.
 */
 function setComparator() {
 // If the first three letters are "asc", sort in ascending order
 // and remove the prefix.
 if (by.substring(0,3) == 'asc') {
 var i = by.substring(3);
 comp = function(a, b) { return a[i] - b[i]; };
 } else {
 // Otherwise sort in descending order.
 comp = function(a, b) { return b[by] - a[by]; };
 }

 // Reset link styles and format the selected sort option.
 $('a.sel').attr('href', '#').removeClass('sel');
 $('a.by' + by).removeAttr('href').addClass('sel');
 }

 /**
 * Create a comp function. If the user has preferences stored in
 * the sortBy cookie, use those, otherwise use the default.
 */
 function initComparator() {
 by = 'rating'; // Default to sort by rating.
 // If the sortBy cookie is set, use that instead.
 if (document.cookie.length > 0) {
 var start = document.cookie.indexOf('sortBy=');
 if (start != -1) {
 start = start + 7;
 var end = document.cookie.indexOf(";", start);
 if (end == -1) {
 end = document.cookie.length;
 by = unescape(document.cookie.substring(start, end));
 }
 }
 }
 setComparator();
 }

 /**
 * Show a comment div.
 */
 function show(id) {
 $('#ao' + id).hide();
 $('#ah' + id).show();
 var context = $.extend({id: id}, opts);
 var popup = $(renderTemplate(popupTemplate, context)).hide();
 popup.find('textarea[name="proposal"]').hide();
 popup.find('a.by' + by).addClass('sel');
 var form = popup.find('#cf' + id);
 form.submit(function(event) {
 event.preventDefault();
 addComment(form);
 });
 $('#s' + id).after(popup);
 popup.slideDown('fast', function() {
 getComments(id);
 });
 }

 /**
 * Hide a comment div.
 */
 function hide(id) {
 $('#ah' + id).hide();
 $('#ao' + id).show();
 var div = $('#sc' + id);
 div.slideUp('fast', function() {
 div.remove();
 });
 }

 /**
 * Perform an ajax request to get comments for a node
 * and insert the comments into the comments tree.
 */
 function getComments(id) {
 $.ajax({
 type: 'GET',
 url: opts.getCommentsURL,
 data: {node: id},
 success: function(data, textStatus, request) {
 var ul = $('#cl' + id);
 var speed = 100;
 $('#cf' + id)
 .find('textarea[name="proposal"]')
 .data('source', data.source);

 if (data.comments.length === 0) {
 ul.html('No comments yet.');
 ul.data('empty', true);
 } else {
 // If there are comments, sort them and put them in the list.
 var comments = sortComments(data.comments);
 speed = data.comments.length * 100;
 appendComments(comments, ul);
 ul.data('empty', false);
 }
 $('#cn' + id).slideUp(speed + 200);
 ul.slideDown(speed);
 },
 error: function(request, textStatus, error) {
 showError('Oops, there was a problem retrieving the comments.');
 },
 dataType: 'json'
 });
 }

 /**
 * Add a comment via ajax and insert the comment into the comment tree.
 */
 function addComment(form) {
 var node_id = form.find('input[name="node"]').val();
 var parent_id = form.find('input[name="parent"]').val();
 var text = form.find('textarea[name="comment"]').val();
 var proposal = form.find('textarea[name="proposal"]').val();

 if (text == '') {
 showError('Please enter a comment.');
 return;
 }

 // Disable the form that is being submitted.
 form.find('textarea,input').attr('disabled', 'disabled');

 // Send the comment to the server.
 $.ajax({
 type: "POST",
 url: opts.addCommentURL,
 dataType: 'json',
 data: {
 node: node_id,
 parent: parent_id,
 text: text,
 proposal: proposal
 },
 success: function(data, textStatus, error) {
 // Reset the form.
 if (node_id) {
 hideProposeChange(node_id);
 }
 form.find('textarea')
 .val('')
 .add(form.find('input'))
 .removeAttr('disabled');
	var ul = $('#cl' + (node_id || parent_id));
 if (ul.data('empty')) {
 $(ul).empty();
 ul.data('empty', false);
 }
 insertComment(data.comment);
 var ao = $('#ao' + node_id);
 ao.find('img').attr({'src': opts.commentBrightImage});
 if (node_id) {
 // if this was a "root" comment, remove the commenting box
 // (the user can get it back by reopening the comment popup)
 $('#ca' + node_id).slideUp();
 }
 },
 error: function(request, textStatus, error) {
 form.find('textarea,input').removeAttr('disabled');
 showError('Oops, there was a problem adding the comment.');
 }
 });
 }

 /**
 * Recursively append comments to the main comment list and children
 * lists, creating the comment tree.
 */
 function appendComments(comments, ul) {
 $.each(comments, function() {
 var div = createCommentDiv(this);
 ul.append($(document.createElement('li')).html(div));
 appendComments(this.children, div.find('ul.comment-children'));
 // To avoid stagnating data, don't store the comments children in data.
 this.children = null;
 div.data('comment', this);
 });
 }

 /**
 * After adding a new comment, it must be inserted in the correct
 * location in the comment tree.
 */
 function insertComment(comment) {
 var div = createCommentDiv(comment);

 // To avoid stagnating data, don't store the comments children in data.
 comment.children = null;
 div.data('comment', comment);

 var ul = $('#cl' + (comment.node || comment.parent));
 var siblings = getChildren(ul);

 var li = $(document.createElement('li'));
 li.hide();

 // Determine where in the parents children list to insert this comment.
 for(var i=0; i < siblings.length; i++) {
 if (comp(comment, siblings[i]) <= 0) {
 $('#cd' + siblings[i].id)
 .parent()
 .before(li.html(div));
 li.slideDown('fast');
 return;
 }
 }

 // If we get here, this comment rates lower than all the others,
 // or it is the only comment in the list.
 ul.append(li.html(div));
 li.slideDown('fast');
 }

 function acceptComment(id) {
 $.ajax({
 type: 'POST',
 url: opts.acceptCommentURL,
 data: {id: id},
 success: function(data, textStatus, request) {
 $('#cm' + id).fadeOut('fast');
 $('#cd' + id).removeClass('moderate');
 },
 error: function(request, textStatus, error) {
 showError('Oops, there was a problem accepting the comment.');
 }
 });
 }

 function deleteComment(id) {
 $.ajax({
 type: 'POST',
 url: opts.deleteCommentURL,
 data: {id: id},
 success: function(data, textStatus, request) {
 var div = $('#cd' + id);
 if (data == 'delete') {
 // Moderator mode: remove the comment and all children immediately
 div.slideUp('fast', function() {
 div.remove();
 });
 return;
 }
 // User mode: only mark the comment as deleted
 div
 .find('span.user-id:first')
 .text('[deleted]').end()
 .find('div.comment-text:first')
 .text('[deleted]').end()
 .find('#cm' + id + ', #dc' + id + ', #ac' + id + ', #rc' + id +
 ', #sp' + id + ', #hp' + id + ', #cr' + id + ', #rl' + id)
 .remove();
 var comment = div.data('comment');
 comment.username = '[deleted]';
 comment.text = '[deleted]';
 div.data('comment', comment);
 },
 error: function(request, textStatus, error) {
 showError('Oops, there was a problem deleting the comment.');
 }
 });
 }

 function showProposal(id) {
 $('#sp' + id).hide();
 $('#hp' + id).show();
 $('#pr' + id).slideDown('fast');
 }

 function hideProposal(id) {
 $('#hp' + id).hide();
 $('#sp' + id).show();
 $('#pr' + id).slideUp('fast');
 }

 function showProposeChange(id) {
 $('#pc' + id).hide();
 $('#hc' + id).show();
 var textarea = $('#pt' + id);
 textarea.val(textarea.data('source'));
 $.fn.autogrow.resize(textarea[0]);
 textarea.slideDown('fast');
 }

 function hideProposeChange(id) {
 $('#hc' + id).hide();
 $('#pc' + id).show();
 var textarea = $('#pt' + id);
 textarea.val('').removeAttr('disabled');
 textarea.slideUp('fast');
 }

 function toggleCommentMarkupBox(id) {
 $('#mb' + id).toggle();
 }

 /** Handle when the user clicks on a sort by link. */
 function handleReSort(link) {
 var classes = link.attr('class').split(/\s+/);
 for (var i=0; i<classes.length; i++) {
 if (classes[i] != 'sort-option') {
	by = classes[i].substring(2);
 }
 }
 setComparator();
 // Save/update the sortBy cookie.
 var expiration = new Date();
 expiration.setDate(expiration.getDate() + 365);
 document.cookie= 'sortBy=' + escape(by) +
 ';expires=' + expiration.toUTCString();
 $('ul.comment-ul').each(function(index, ul) {
 var comments = getChildren($(ul), true);
 comments = sortComments(comments);
 appendComments(comments, $(ul).empty());
 });
 }

 /**
 * Function to process a vote when a user clicks an arrow.
 */
 function handleVote(link) {
 if (!opts.voting) {
 showError("You'll need to login to vote.");
 return;
 }

 var id = link.attr('id');
 if (!id) {
 // Didn't click on one of the voting arrows.
 return;
 }
 // If it is an unvote, the new vote value is 0,
 // Otherwise it's 1 for an upvote, or -1 for a downvote.
 var value = 0;
 if (id.charAt(1) != 'u') {
 value = id.charAt(0) == 'u' ? 1 : -1;
 }
 // The data to be sent to the server.
 var d = {
 comment_id: id.substring(2),
 value: value
 };

 // Swap the vote and unvote links.
 link.hide();
 $('#' + id.charAt(0) + (id.charAt(1) == 'u' ? 'v' : 'u') + d.comment_id)
 .show();

 // The div the comment is displayed in.
 var div = $('div#cd' + d.comment_id);
 var data = div.data('comment');

 // If this is not an unvote, and the other vote arrow has
 // already been pressed, unpress it.
 if ((d.value !== 0) && (data.vote === d.value * -1)) {
 $('#' + (d.value == 1 ? 'd' : 'u') + 'u' + d.comment_id).hide();
 $('#' + (d.value == 1 ? 'd' : 'u') + 'v' + d.comment_id).show();
 }

 // Update the comments rating in the local data.
 data.rating += (data.vote === 0) ? d.value : (d.value - data.vote);
 data.vote = d.value;
 div.data('comment', data);

 // Change the rating text.
 div.find('.rating:first')
 .text(data.rating + ' point' + (data.rating == 1 ? '' : 's'));

 // Send the vote information to the server.
 $.ajax({
 type: "POST",
 url: opts.processVoteURL,
 data: d,
 error: function(request, textStatus, error) {
 showError('Oops, there was a problem casting that vote.');
 }
 });
 }

 /**
 * Open a reply form used to reply to an existing comment.
 */
 function openReply(id) {
 // Swap out the reply link for the hide link
 $('#rl' + id).hide();
 $('#cr' + id).show();

 // Add the reply li to the children ul.
 var div = $(renderTemplate(replyTemplate, {id: id})).hide();
 $('#cl' + id)
 .prepend(div)
 // Setup the submit handler for the reply form.
 .find('#rf' + id)
 .submit(function(event) {
 event.preventDefault();
 addComment($('#rf' + id));
 closeReply(id);
 })
 .find('input[type=button]')
 .click(function() {
 closeReply(id);
 });
 div.slideDown('fast', function() {
 $('#rf' + id).find('textarea').focus();
 });
 }

 /**
 * Close the reply form opened with openReply.
 */
 function closeReply(id) {
 // Remove the reply div from the DOM.
 $('#rd' + id).slideUp('fast', function() {
 $(this).remove();
 });

 // Swap out the hide link for the reply link
 $('#cr' + id).hide();
 $('#rl' + id).show();
 }

 /**
 * Recursively sort a tree of comments using the comp comparator.
 */
 function sortComments(comments) {
 comments.sort(comp);
 $.each(comments, function() {
 this.children = sortComments(this.children);
 });
 return comments;
 }

 /**
 * Get the children comments from a ul. If recursive is true,
 * recursively include childrens' children.
 */
 function getChildren(ul, recursive) {
 var children = [];
 ul.children().children("[id^='cd']")
 .each(function() {
 var comment = $(this).data('comment');
 if (recursive)
 comment.children = getChildren($(this).find('#cl' + comment.id), true);
 children.push(comment);
 });
 return children;
 }

 /** Create a div to display a comment in. */
 function createCommentDiv(comment) {
 if (!comment.displayed && !opts.moderator) {
 return $('<div class="moderate">Thank you! Your comment will show up '
 + 'once it is has been approved by a moderator.</div>');
 }
 // Prettify the comment rating.
 comment.pretty_rating = comment.rating + ' point' +
 (comment.rating == 1 ? '' : 's');
 // Make a class (for displaying not yet moderated comments differently)
 comment.css_class = comment.displayed ? '' : ' moderate';
 // Create a div for this comment.
 var context = $.extend({}, opts, comment);
 var div = $(renderTemplate(commentTemplate, context));

 // If the user has voted on this comment, highlight the correct arrow.
 if (comment.vote) {
 var direction = (comment.vote == 1) ? 'u' : 'd';
 div.find('#' + direction + 'v' + comment.id).hide();
 div.find('#' + direction + 'u' + comment.id).show();
 }

 if (opts.moderator || comment.text != '[deleted]') {
 div.find('a.reply').show();
 if (comment.proposal_diff)
 div.find('#sp' + comment.id).show();
 if (opts.moderator && !comment.displayed)
 div.find('#cm' + comment.id).show();
 if (opts.moderator || (opts.username == comment.username))
 div.find('#dc' + comment.id).show();
 }
 return div;
 }

 /**
 * A simple template renderer. Placeholders such as <%id%> are replaced
 * by context['id'] with items being escaped. Placeholders such as <#id#>
 * are not escaped.
 */
 function renderTemplate(template, context) {
 var esc = $(document.createElement('div'));

 function handle(ph, escape) {
 var cur = context;
 $.each(ph.split('.'), function() {
 cur = cur[this];
 });
 return escape ? esc.text(cur || "").html() : cur;
 }

 return template.replace(/<([%#])([\w\.]*)\1>/g, function() {
 return handle(arguments[2], arguments[1] == '%' ? true : false);
 });
 }

 /** Flash an error message briefly. */
 function showError(message) {
 $(document.createElement('div')).attr({'class': 'popup-error'})
 .append($(document.createElement('div'))
 .attr({'class': 'error-message'}).text(message))
 .appendTo('body')
 .fadeIn("slow")
 .delay(2000)
 .fadeOut("slow");
 }

 /** Add a link the user uses to open the comments popup. */
 $.fn.comment = function() {
 return this.each(function() {
 var id = $(this).attr('id').substring(1);
 var count = COMMENT_METADATA[id];
 var title = count + ' comment' + (count == 1 ? '' : 's');
 var image = count > 0 ? opts.commentBrightImage : opts.commentImage;
 var addcls = count == 0 ? ' nocomment' : '';
 $(this)
 .append(
 $(document.createElement('a')).attr({
 href: '#',
 'class': 'sphinx-comment-open' + addcls,
 id: 'ao' + id
 })
 .append($(document.createElement('img')).attr({
 src: image,
 alt: 'comment',
 title: title
 }))
 .click(function(event) {
 event.preventDefault();
 show($(this).attr('id').substring(2));
 })
)
 .append(
 $(document.createElement('a')).attr({
 href: '#',
 'class': 'sphinx-comment-close hidden',
 id: 'ah' + id
 })
 .append($(document.createElement('img')).attr({
 src: opts.closeCommentImage,
 alt: 'close',
 title: 'close'
 }))
 .click(function(event) {
 event.preventDefault();
 hide($(this).attr('id').substring(2));
 })
);
 });
 };

 var opts = {
 processVoteURL: '/_process_vote',
 addCommentURL: '/_add_comment',
 getCommentsURL: '/_get_comments',
 acceptCommentURL: '/_accept_comment',
 deleteCommentURL: '/_delete_comment',
 commentImage: '/static/_static/comment.png',
 closeCommentImage: '/static/_static/comment-close.png',
 loadingImage: '/static/_static/ajax-loader.gif',
 commentBrightImage: '/static/_static/comment-bright.png',
 upArrow: '/static/_static/up.png',
 downArrow: '/static/_static/down.png',
 upArrowPressed: '/static/_static/up-pressed.png',
 downArrowPressed: '/static/_static/down-pressed.png',
 voting: false,
 moderator: false
 };

 if (typeof COMMENT_OPTIONS != "undefined") {
 opts = jQuery.extend(opts, COMMENT_OPTIONS);
 }

 var popupTemplate = '\
 <div class="sphinx-comments" id="sc<%id%>">\
 <p class="sort-options">\
 Sort by:\
 best rated\
 newest\
 oldest\
 </p>\
 <div class="comment-header">Comments</div>\
 <div class="comment-loading" id="cn<%id%>">\
 loading comments... <img src="<%loadingImage%>" alt="" /></div>\
 <ul id="cl<%id%>" class="comment-ul">\
 <div id="ca<%id%>">\
 <p class="add-a-comment">Add a comment\
 (<a href="#" class="comment-markup" id="ab<%id%>">markup):</p>\
 <div class="comment-markup-box" id="mb<%id%>">\
 reStructured text markup: <i>*emph*</i>, **strong**, \
 <code>``code``</code>, \
 code blocks: <code>::</code> and an indented block after blank line</div>\
 <form method="post" id="cf<%id%>" class="comment-form" action="">\
 <textarea name="comment" cols="80"></textarea>\
 <p class="propose-button">\
 <a href="#" id="pc<%id%>" class="show-propose-change">\
 Propose a change ▹\
 \
 <a href="#" id="hc<%id%>" class="hide-propose-change">\
 Propose a change ▿\
 \
 </p>\
 <textarea name="proposal" id="pt<%id%>" cols="80"\
 spellcheck="false"></textarea>\
 <input type="submit" value="Add comment" />\
 <input type="hidden" name="node" value="<%id%>" />\
 <input type="hidden" name="parent" value="" />\
 </form>\
 </div>\
 </div>';

 var commentTemplate = '\
 <div id="cd<%id%>" class="sphinx-comment<%css_class%>">\
 <div class="vote">\
 <div class="arrow">\
 <a href="#" id="uv<%id%>" class="vote" title="vote up">\
 <img src="<%upArrow%>" />\
 \
 <a href="#" id="uu<%id%>" class="un vote" title="vote up">\
 <img src="<%upArrowPressed%>" />\
 \
 </div>\
 <div class="arrow">\
 <a href="#" id="dv<%id%>" class="vote" title="vote down">\
 <img src="<%downArrow%>" id="da<%id%>" />\
 \
 <a href="#" id="du<%id%>" class="un vote" title="vote down">\
 <img src="<%downArrowPressed%>" />\
 \
 </div>\
 </div>\
 <div class="comment-content">\
 <p class="tagline comment">\
 <%username%>\
 <%pretty_rating%>\
 <%time.delta%>\
 </p>\
 <div class="comment-text comment"><#text#></div>\
 <p class="comment-opts comment">\
 <a href="#" class="reply hidden" id="rl<%id%>">reply ▹\
 <a href="#" class="close-reply" id="cr<%id%>">reply ▿\
 <a href="#" id="sp<%id%>" class="show-proposal">proposal ▹\
 <a href="#" id="hp<%id%>" class="hide-proposal">proposal ▿\
 <a href="#" id="dc<%id%>" class="delete-comment hidden">delete\
 <span id="cm<%id%>" class="moderation hidden">\
 <a href="#" id="ac<%id%>" class="accept-comment">accept\
 \
 </p>\
 <pre class="proposal" id="pr<%id%>">\
<#proposal_diff#>\
 </pre>\
 <ul class="comment-children" id="cl<%id%>">\
 </div>\
 <div class="clearleft"></div>\
 </div>\
 </div>';

 var replyTemplate = '\
 \
 <div class="reply-div" id="rd<%id%>">\
 <form id="rf<%id%>">\
 <textarea name="comment" cols="80"></textarea>\
 <input type="submit" value="Add reply" />\
 <input type="button" value="Cancel" />\
 <input type="hidden" name="parent" value="<%id%>" />\
 <input type="hidden" name="node" value="" />\
 </form>\
 </div>\
 ';

 $(document).ready(function() {
 init();
 });
})(jQuery);

$(document).ready(function() {
 // add comment anchors for all paragraphs that are commentable
 $('.sphinx-has-comment').comment();

 // highlight search words in search results
 $("div.context").each(function() {
 var params = $.getQueryParameters();
 var terms = (params.q) ? params.q[0].split(/\s+/) : [];
 var result = $(this);
 $.each(terms, function() {
 result.highlightText(this.toLowerCase(), 'highlighted');
 });
 });

 // directly open comment window if requested
 var anchor = document.location.hash;
 if (anchor.substring(0, 9) == '#comment-') {
 $('#ao' + anchor.substring(9)).click();
 document.location.hash = '#s' + anchor.substring(9);
 }
});

autotest-latest/_static/jquery.js
/*! jQuery v3.2.1 | (c) JS Foundation and other contributors | jquery.org/license */
!function(a,b){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){"use strict";var c=[],d=a.document,e=Object.getPrototypeOf,f=c.slice,g=c.concat,h=c.push,i=c.indexOf,j={},k=j.toString,l=j.hasOwnProperty,m=l.toString,n=m.call(Object),o={};function p(a,b){b=b||d;var c=b.createElement("script");c.text=a,b.head.appendChild(c).parentNode.removeChild(c)}var q="3.2.1",r=function(a,b){return new r.fn.init(a,b)},s=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,t=/^-ms-/,u=/-([a-z])/g,v=function(a,b){return b.toUpperCase()};r.fn=r.prototype={jquery:q,constructor:r,length:0,toArray:function(){return f.call(this)},get:function(a){return null==a?f.call(this):a<0?this[a+this.length]:this[a]},pushStack:function(a){var b=r.merge(this.constructor(),a);return b.prevObject=this,b},each:function(a){return r.each(this,a)},map:function(a){return this.pushStack(r.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(f.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(a<0?b:0);return this.pushStack(c>=0&&c<b?[this[c]]:[])},end:function(){return this.prevObject||this.constructor()},push:h,sort:c.sort,splice:c.splice},r.extend=r.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||r.isFunction(g)||(g={}),h===i&&(g=this,h--);h<i;h++)if(null!=(a=arguments[h]))for(b in a)c=g[b],d=a[b],g!==d&&(j&&d&&(r.isPlainObject(d)||(e=Array.isArray(d)))?(e?(e=!1,f=c&&Array.isArray(c)?c:[]):f=c&&r.isPlainObject(c)?c:{},g[b]=r.extend(j,f,d)):void 0!==d&&(g[b]=d));return g},r.extend({expando:"jQuery"+(q+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===r.type(a)},isWindow:function(a){return null!=a&&a===a.window},isNumeric:function(a){var b=r.type(a);return("number"===b||"string"===b)&&!isNaN(a-parseFloat(a))},isPlainObject:function(a){var b,c;return!(!a||"[object Object]"!==k.call(a))&&(!(b=e(a))||(c=l.call(b,"constructor")&&b.constructor,"function"==typeof c&&m.call(c)===n))},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?j[k.call(a)]||"object":typeof a},globalEval:function(a){p(a)},camelCase:function(a){return a.replace(t,"ms-").replace(u,v)},each:function(a,b){var c,d=0;if(w(a)){for(c=a.length;d<c;d++)if(b.call(a[d],d,a[d])===!1)break}else for(d in a)if(b.call(a[d],d,a[d])===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(s,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(w(Object(a))?r.merge(c,"string"==typeof a?[a]:a):h.call(c,a)),c},inArray:function(a,b,c){return null==b?-1:i.call(b,a,c)},merge:function(a,b){for(var c=+b.length,d=0,e=a.length;d<c;d++)a[e++]=b[d];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;f<g;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,e,f=0,h=[];if(w(a))for(d=a.length;f<d;f++)e=b(a[f],f,c),null!=e&&h.push(e);else for(f in a)e=b(a[f],f,c),null!=e&&h.push(e);return g.apply([],h)},guid:1,proxy:function(a,b){var c,d,e;if("string"==typeof b&&(c=a[b],b=a,a=c),r.isFunction(a))return d=f.call(arguments,2),e=function(){return a.apply(b||this,d.concat(f.call(arguments)))},e.guid=a.guid=a.guid||r.guid++,e},now:Date.now,support:o}),"function"==typeof Symbol&&(r.fn[Symbol.iterator]=c[Symbol.iterator]),r.each("Boolean Number String Function Array Date RegExp Object Error Symbol".split(" "),function(a,b){j["[object "+b+"]"]=b.toLowerCase()});function w(a){var b=!!a&&"length"in a&&a.length,c=r.type(a);return"function"!==c&&!r.isWindow(a)&&("array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a)}var x=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+1*new Date,v=a.document,w=0,x=0,y=ha(),z=ha(),A=ha(),B=function(a,b){return a===b&&(l=!0),0},C={}.hasOwnProperty,D=[],E=D.pop,F=D.push,G=D.push,H=D.slice,I=function(a,b){for(var c=0,d=a.length;c<d;c++)if(a[c]===b)return c;return-1},J="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",K="[\\x20\\t\\r\\n\\f]",L="(?:\\\\.|[\\w-]|[^\0-\\xa0])+",M="\\["+K+"*("+L+")(?:"+K+"*([*^$|!~]?=)"+K+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+L+"))|)"+K+"*\\]",N=":("+L+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+M+")*)|.*)\\)|)",O=new RegExp(K+"+","g"),P=new RegExp("^"+K+"+|((?:^|[^\\\\])(?:\\\\.)*)"+K+"+$","g"),Q=new RegExp("^"+K+"*,"+K+"*"),R=new RegExp("^"+K+"*([>+~]|"+K+")"+K+"*"),S=new RegExp("="+K+"*([^\\]'\"]*?)"+K+"*\\]","g"),T=new RegExp(N),U=new RegExp("^"+L+"$"),V={ID:new RegExp("^#("+L+")"),CLASS:new RegExp("^\\.("+L+")"),TAG:new RegExp("^("+L+"|[*])"),ATTR:new RegExp("^"+M),PSEUDO:new RegExp("^"+N),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+K+"*(even|odd|(([+-]|)(\\d*)n|)"+K+"*(?:([+-]|)"+K+"*(\\d+)|))"+K+"*\\)|)","i"),bool:new RegExp("^(?:"+J+")$","i"),needsContext:new RegExp("^"+K+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+K+"*((?:-\\d)?\\d*)"+K+"*\\)|)(?=[^-]|$)","i")},W=/^(?:input|select|textarea|button)$/i,X=/^h\d$/i,Y=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,$=/[+~]/,_=new RegExp("\\\\([\\da-f]{1,6}"+K+"?|("+K+")|.)","ig"),aa=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:d<0?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)},ba=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ca=function(a,b){return b?"\0"===a?"\ufffd":a.slice(0,-1)+"\\"+a.charCodeAt(a.length-1).toString(16)+" ":"\\"+a},da=function(){m()},ea=ta(function(a){return a.disabled===!0&&("form"in a||"label"in a)},{dir:"parentNode",next:"legend"});try{G.apply(D=H.call(v.childNodes),v.childNodes),D[v.childNodes.length].nodeType}catch(fa){G={apply:D.length?function(a,b){F.apply(a,H.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function ga(a,b,d,e){var f,h,j,k,l,o,r,s=b&&b.ownerDocument,w=b?b.nodeType:9;if(d=d||[],"string"!=typeof a||!a||1!==w&&9!==w&&11!==w)return d;if(!e&&((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,p)){if(11!==w&&(l=Z.exec(a)))if(f=l[1]){if(9===w){if(!(j=b.getElementById(f)))return d;if(j.id===f)return d.push(j),d}else if(s&&(j=s.getElementById(f))&&t(b,j)&&j.id===f)return d.push(j),d}else{if(l[2])return G.apply(d,b.getElementsByTagName(a)),d;if((f=l[3])&&c.getElementsByClassName&&b.getElementsByClassName)return G.apply(d,b.getElementsByClassName(f)),d}if(c.qsa&&!A[a+" "]&&(!q||!q.test(a))){if(1!==w)s=b,r=a;else if("object"!==b.nodeName.toLowerCase()){(k=b.getAttribute("id"))?k=k.replace(ba,ca):b.setAttribute("id",k=u),o=g(a),h=o.length;while(h--)o[h]="#"+k+" "+sa(o[h]);r=o.join(","),s=$.test(a)&&qa(b.parentNode)||b}if(r)try{return G.apply(d,s.querySelectorAll(r)),d}catch(x){}finally{k===u&&b.removeAttribute("id")}}}return i(a.replace(P,"$1"),b,d,e)}function ha(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function ia(a){return a[u]=!0,a}function ja(a){var b=n.createElement("fieldset");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function ka(a,b){var c=a.split("|"),e=c.length;while(e--)d.attrHandle[c[e]]=b}function la(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&a.sourceIndex-b.sourceIndex;if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function ma(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function na(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function oa(a){return function(b){return"form"in b?b.parentNode&&b.disabled===!1?"label"in b?"label"in b.parentNode?b.parentNode.disabled===a:b.disabled===a:b.isDisabled===a||b.isDisabled!==!a&&ea(b)===a:b.disabled===a:"label"in b&&b.disabled===a}}function pa(a){return ia(function(b){return b=+b,ia(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function qa(a){return a&&"undefined"!=typeof a.getElementsByTagName&&a}c=ga.support={},f=ga.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return!!b&&"HTML"!==b.nodeName},m=ga.setDocument=function(a){var b,e,g=a?a.ownerDocument||a:v;return g!==n&&9===g.nodeType&&g.documentElement?(n=g,o=n.documentElement,p=!f(n),v!==n&&(e=n.defaultView)&&e.top!==e&&(e.addEventListener?e.addEventListener("unload",da,!1):e.attachEvent&&e.attachEvent("onunload",da)),c.attributes=ja(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ja(function(a){return a.appendChild(n.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=Y.test(n.getElementsByClassName),c.getById=ja(function(a){return o.appendChild(a).id=u,!n.getElementsByName||!n.getElementsByName(u).length}),c.getById?(d.filter.ID=function(a){var b=a.replace(_,aa);return function(a){return a.getAttribute("id")===b}},d.find.ID=function(a,b){if("undefined"!=typeof b.getElementById&&p){var c=b.getElementById(a);return c?[c]:[]}}):(d.filter.ID=function(a){var b=a.replace(_,aa);return function(a){var c="undefined"!=typeof a.getAttributeNode&&a.getAttributeNode("id");return c&&c.value===b}},d.find.ID=function(a,b){if("undefined"!=typeof b.getElementById&&p){var c,d,e,f=b.getElementById(a);if(f){if(c=f.getAttributeNode("id"),c&&c.value===a)return[f];e=b.getElementsByName(a),d=0;while(f=e[d++])if(c=f.getAttributeNode("id"),c&&c.value===a)return[f]}return[]}}),d.find.TAG=c.getElementsByTagName?function(a,b){return"undefined"!=typeof b.getElementsByTagName?b.getElementsByTagName(a):c.qsa?b.querySelectorAll(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){if("undefined"!=typeof b.getElementsByClassName&&p)return b.getElementsByClassName(a)},r=[],q=[],(c.qsa=Y.test(n.querySelectorAll))&&(ja(function(a){o.appendChild(a).innerHTML="<select id='"+u+"-\r\\' msallowcapture=''><option selected=''></option></select>",a.querySelectorAll("[msallowcapture^='']").length&&q.push("[*^$]="+K+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+K+"*(?:value|"+J+")"),a.querySelectorAll("[id~="+u+"-]").length||q.push("~="),a.querySelectorAll(":checked").length||q.push(":checked"),a.querySelectorAll("a#"+u+"+*").length||q.push(".#.+[+~]")}),ja(function(a){a.innerHTML="<select disabled='disabled'><option/></select>";var b=n.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+K+"*[*^$|!~]?="),2!==a.querySelectorAll(":enabled").length&&q.push(":enabled",":disabled"),o.appendChild(a).disabled=!0,2!==a.querySelectorAll(":disabled").length&&q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=Y.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ja(function(a){c.disconnectedMatch=s.call(a,"*"),s.call(a,"[s!='']:x"),r.push("!=",N)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=Y.test(o.compareDocumentPosition),t=b||Y.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===n||a.ownerDocument===v&&t(v,a)?-1:b===n||b.ownerDocument===v&&t(v,b)?1:k?I(k,a)-I(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,e=a.parentNode,f=b.parentNode,g=[a],h=[b];if(!e||!f)return a===n?-1:b===n?1:e?-1:f?1:k?I(k,a)-I(k,b):0;if(e===f)return la(a,b);c=a;while(c=c.parentNode)g.unshift(c);c=b;while(c=c.parentNode)h.unshift(c);while(g[d]===h[d])d++;return d?la(g[d],h[d]):g[d]===v?-1:h[d]===v?1:0},n):n},ga.matches=function(a,b){return ga(a,null,null,b)},ga.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(S,"='$1']"),c.matchesSelector&&p&&!A[b+" "]&&(!r||!r.test(b))&&(!q||!q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return ga(b,n,null,[a]).length>0},ga.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},ga.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&C.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},ga.escape=function(a){return(a+"").replace(ba,ca)},ga.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},ga.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=ga.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=ga.selectors={cacheLength:50,createPseudo:ia,match:V,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(_,aa),a[3]=(a[3]||a[4]||a[5]||"").replace(_,aa),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||ga.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&ga.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return V.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&T.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(_,aa).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+K+")"+a+"("+K+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||"undefined"!=typeof a.getAttribute&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=ga.attr(d,a);return null==e?"!="===b:!b||(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e.replace(O," ")+" ").indexOf(c)>-1:"|="===b&&(e===c||e.slice(0,c.length+1)===c+"-"))}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h,t=!1;if(q){if(f){while(p){m=b;while(m=m[p])if(h?m.nodeName.toLowerCase()===r:1===m.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){m=q,l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),j=k[a]||[],n=j[0]===w&&j[1],t=n&&j[2],m=n&&q.childNodes[n];while(m=++n&&m&&m[p]||(t=n=0)||o.pop())if(1===m.nodeType&&++t&&m===b){k[a]=[w,n,t];break}}else if(s&&(m=b,l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),j=k[a]||[],n=j[0]===w&&j[1],t=n),t===!1)while(m=++n&&m&&m[p]||(t=n=0)||o.pop())if((h?m.nodeName.toLowerCase()===r:1===m.nodeType)&&++t&&(s&&(l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),k[a]=[w,t]),m===b))break;return t-=e,t===d||t%d===0&&t/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||ga.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?ia(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=I(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:ia(function(a){var b=[],c=[],d=h(a.replace(P,"$1"));return d[u]?ia(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),b[0]=null,!c.pop()}}),has:ia(function(a){return function(b){return ga(a,b).length>0}}),contains:ia(function(a){return a=a.replace(_,aa),function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:ia(function(a){return U.test(a||"")||ga.error("unsupported lang: "+a),a=a.replace(_,aa).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:oa(!1),disabled:oa(!0),checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return X.test(a.nodeName)},input:function(a){return W.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:pa(function(){return[0]}),last:pa(function(a,b){return[b-1]}),eq:pa(function(a,b,c){return[c<0?c+b:c]}),even:pa(function(a,b){for(var c=0;c<b;c+=2)a.push(c);return a}),odd:pa(function(a,b){for(var c=1;c<b;c+=2)a.push(c);return a}),lt:pa(function(a,b,c){for(var d=c<0?c+b:c;--d>=0;)a.push(d);return a}),gt:pa(function(a,b,c){for(var d=c<0?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=ma(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=na(b);function ra(){}ra.prototype=d.filters=d.pseudos,d.setFilters=new ra,g=ga.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){c&&!(e=Q.exec(h))||(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=R.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(P," ")}),h=h.slice(c.length));for(g in d.filter)!(e=V[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?ga.error(a):z(a,i).slice(0)};function sa(a){for(var b=0,c=a.length,d="";b<c;b++)d+=a[b].value;return d}function ta(a,b,c){var d=b.dir,e=b.next,f=e||d,g=c&&"parentNode"===f,h=x++;return b.first?function(b,c,e){while(b=b[d])if(1===b.nodeType||g)return a(b,c,e);return!1}:function(b,c,i){var j,k,l,m=[w,h];if(i){while(b=b[d])if((1===b.nodeType||g)&&a(b,c,i))return!0}else while(b=b[d])if(1===b.nodeType||g)if(l=b[u]||(b[u]={}),k=l[b.uniqueID]||(l[b.uniqueID]={}),e&&e===b.nodeName.toLowerCase())b=b[d]||b;else{if((j=k[f])&&j[0]===w&&j[1]===h)return m[2]=j[2];if(k[f]=m,m[2]=a(b,c,i))return!0}return!1}}function ua(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function va(a,b,c){for(var d=0,e=b.length;d<e;d++)ga(a,b[d],c);return c}function wa(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;h<i;h++)(f=a[h])&&(c&&!c(f,d,e)||(g.push(f),j&&b.push(h)));return g}function xa(a,b,c,d,e,f){return d&&!d[u]&&(d=xa(d)),e&&!e[u]&&(e=xa(e,f)),ia(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||va(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:wa(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=wa(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?I(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=wa(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):G.apply(g,r)})}function ya(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=ta(function(a){return a===b},h,!0),l=ta(function(a){return I(b,a)>-1},h,!0),m=[function(a,c,d){var e=!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d));return b=null,e}];i<f;i++)if(c=d.relative[a[i].type])m=[ta(ua(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;e<f;e++)if(d.relative[a[e].type])break;return xa(i>1&&ua(m),i>1&&sa(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(P,"$1"),c,i<e&&ya(a.slice(i,e)),e<f&&ya(a=a.slice(e)),e<f&&sa(a))}m.push(c)}return ua(m)}function za(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,o,q,r=0,s="0",t=f&&[],u=[],v=j,x=f||e&&d.find.TAG("*",k),y=w+=null==v?1:Math.random()||.1,z=x.length;for(k&&(j=g===n||g||k);s!==z&&null!=(l=x[s]);s++){if(e&&l){o=0,g||l.ownerDocument===n||(m(l),h=!p);while(q=a[o++])if(q(l,g||n,h)){i.push(l);break}k&&(w=y)}c&&((l=!q&&l)&&r--,f&&t.push(l))}if(r+=s,c&&s!==r){o=0;while(q=b[o++])q(t,u,g,h);if(f){if(r>0)while(s--)t[s]||u[s]||(u[s]=E.call(i));u=wa(u)}G.apply(i,u),k&&!f&&u.length>0&&r+b.length>1&&ga.uniqueSort(i)}return k&&(w=y,j=v),t};return c?ia(f):f}return h=ga.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=ya(b[c]),f[u]?d.push(f):e.push(f);f=A(a,za(e,d)),f.selector=a}return f},i=ga.select=function(a,b,c,e){var f,i,j,k,l,m="function"==typeof a&&a,n=!e&&g(a=m.selector||a);if(c=c||[],1===n.length){if(i=n[0]=n[0].slice(0),i.length>2&&"ID"===(j=i[0]).type&&9===b.nodeType&&p&&d.relative[i[1].type]){if(b=(d.find.ID(j.matches[0].replace(_,aa),b)||[])[0],!b)return c;m&&(b=b.parentNode),a=a.slice(i.shift().value.length)}f=V.needsContext.test(a)?0:i.length;while(f--){if(j=i[f],d.relative[k=j.type])break;if((l=d.find[k])&&(e=l(j.matches[0].replace(_,aa),$.test(i[0].type)&&qa(b.parentNode)||b))){if(i.splice(f,1),a=e.length&&sa(i),!a)return G.apply(c,e),c;break}}}return(m||h(a,n))(e,b,!p,c,!b||$.test(a)&&qa(b.parentNode)||b),c},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ja(function(a){return 1&a.compareDocumentPosition(n.createElement("fieldset"))}),ja(function(a){return a.innerHTML="","#"===a.firstChild.getAttribute("href")})||ka("type|href|height|width",function(a,b,c){if(!c)return a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ja(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||ka("value",function(a,b,c){if(!c&&"input"===a.nodeName.toLowerCase())return a.defaultValue}),ja(function(a){return null==a.getAttribute("disabled")})||ka(J,function(a,b,c){var d;if(!c)return a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),ga}(a);r.find=x,r.expr=x.selectors,r.expr[":"]=r.expr.pseudos,r.uniqueSort=r.unique=x.uniqueSort,r.text=x.getText,r.isXMLDoc=x.isXML,r.contains=x.contains,r.escapeSelector=x.escape;var y=function(a,b,c){var d=[],e=void 0!==c;while((a=a[b])&&9!==a.nodeType)if(1===a.nodeType){if(e&&r(a).is(c))break;d.push(a)}return d},z=function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c},A=r.expr.match.needsContext;function B(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()}var C=/^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i,D=/^.[^:#\[\.,]*$/;function E(a,b,c){return r.isFunction(b)?r.grep(a,function(a,d){return!!b.call(a,d,a)!==c}):b.nodeType?r.grep(a,function(a){return a===b!==c}):"string"!=typeof b?r.grep(a,function(a){return i.call(b,a)>-1!==c}):D.test(b)?r.filter(b,a,c):(b=r.filter(b,a),r.grep(a,function(a){return i.call(b,a)>-1!==c&&1===a.nodeType}))}r.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?r.find.matchesSelector(d,a)?[d]:[]:r.find.matches(a,r.grep(b,function(a){return 1===a.nodeType}))},r.fn.extend({find:function(a){var b,c,d=this.length,e=this;if("string"!=typeof a)return this.pushStack(r(a).filter(function(){for(b=0;b<d;b++)if(r.contains(e[b],this))return!0}));for(c=this.pushStack([]),b=0;b<d;b++)r.find(a,e[b],c);return d>1?r.uniqueSort(c):c},filter:function(a){return this.pushStack(E(this,a||[],!1))},not:function(a){return this.pushStack(E(this,a||[],!0))},is:function(a){return!!E(this,"string"==typeof a&&A.test(a)?r(a):a||[],!1).length}});var F,G=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/,H=r.fn.init=function(a,b,c){var e,f;if(!a)return this;if(c=c||F,"string"==typeof a){if(e="<"===a[0]&&">"===a[a.length-1]&&a.length>=3?[null,a,null]:G.exec(a),!e||!e[1]&&b)return!b||b.jquery?(b||c).find(a):this.constructor(b).find(a);if(e[1]){if(b=b instanceof r?b[0]:b,r.merge(this,r.parseHTML(e[1],b&&b.nodeType?b.ownerDocument||b:d,!0)),C.test(e[1])&&r.isPlainObject(b))for(e in b)r.isFunction(this[e])?this[e](b[e]):this.attr(e,b[e]);return this}return f=d.getElementById(e[2]),f&&(this[0]=f,this.length=1),this}return a.nodeType?(this[0]=a,this.length=1,this):r.isFunction(a)?void 0!==c.ready?c.ready(a):a(r):r.makeArray(a,this)};H.prototype=r.fn,F=r(d);var I=/^(?:parents|prev(?:Until|All))/,J={children:!0,contents:!0,next:!0,prev:!0};r.fn.extend({has:function(a){var b=r(a,this),c=b.length;return this.filter(function(){for(var a=0;a<c;a++)if(r.contains(this,b[a]))return!0})},closest:function(a,b){var c,d=0,e=this.length,f=[],g="string"!=typeof a&&r(a);if(!A.test(a))for(;d<e;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&r.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?r.uniqueSort(f):f)},index:function(a){return a?"string"==typeof a?i.call(r(a),this[0]):i.call(this,a.jquery?a[0]:a):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(r.uniqueSort(r.merge(this.get(),r(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function K(a,b){while((a=a[b])&&1!==a.nodeType);return a}r.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return y(a,"parentNode")},parentsUntil:function(a,b,c){return y(a,"parentNode",c)},next:function(a){return K(a,"nextSibling")},prev:function(a){return K(a,"previousSibling")},nextAll:function(a){return y(a,"nextSibling")},prevAll:function(a){return y(a,"previousSibling")},nextUntil:function(a,b,c){return y(a,"nextSibling",c)},prevUntil:function(a,b,c){return y(a,"previousSibling",c)},siblings:function(a){return z((a.parentNode||{}).firstChild,a)},children:function(a){return z(a.firstChild)},contents:function(a){return B(a,"iframe")?a.contentDocument:(B(a,"template")&&(a=a.content||a),r.merge([],a.childNodes))}},function(a,b){r.fn[a]=function(c,d){var e=r.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=r.filter(d,e)),this.length>1&&(J[a]||r.uniqueSort(e),I.test(a)&&e.reverse()),this.pushStack(e)}});var L=/[^\x20\t\r\n\f]+/g;function M(a){var b={};return r.each(a.match(L)||[],function(a,c){b[c]=!0}),b}r.Callbacks=function(a){a="string"==typeof a?M(a):r.extend({},a);var b,c,d,e,f=[],g=[],h=-1,i=function(){for(e=e||a.once,d=b=!0;g.length;h=-1){c=g.shift();while(++h<f.length)f[h].apply(c[0],c[1])===!1&&a.stopOnFalse&&(h=f.length,c=!1)}a.memory||(c=!1),b=!1,e&&(f=c?[]:"")},j={add:function(){return f&&(c&&!b&&(h=f.length-1,g.push(c)),function d(b){r.each(b,function(b,c){r.isFunction(c)?a.unique&&j.has(c)||f.push(c):c&&c.length&&"string"!==r.type(c)&&d(c)})}(arguments),c&&!b&&i()),this},remove:function(){return r.each(arguments,function(a,b){var c;while((c=r.inArray(b,f,c))>-1)f.splice(c,1),c<=h&&h--}),this},has:function(a){return a?r.inArray(a,f)>-1:f.length>0},empty:function(){return f&&(f=[]),this},disable:function(){return e=g=[],f=c="",this},disabled:function(){return!f},lock:function(){return e=g=[],c||b||(f=c=""),this},locked:function(){return!!e},fireWith:function(a,c){return e||(c=c||[],c=[a,c.slice?c.slice():c],g.push(c),b||i()),this},fire:function(){return j.fireWith(this,arguments),this},fired:function(){return!!d}};return j};function N(a){return a}function O(a){throw a}function P(a,b,c,d){var e;try{a&&r.isFunction(e=a.promise)?e.call(a).done(b).fail(c):a&&r.isFunction(e=a.then)?e.call(a,b,c):b.apply(void 0,[a].slice(d))}catch(a){c.apply(void 0,[a])}}r.extend({Deferred:function(b){var c=[["notify","progress",r.Callbacks("memory"),r.Callbacks("memory"),2],["resolve","done",r.Callbacks("once memory"),r.Callbacks("once memory"),0,"resolved"],["reject","fail",r.Callbacks("once memory"),r.Callbacks("once memory"),1,"rejected"]],d="pending",e={state:function(){return d},always:function(){return f.done(arguments).fail(arguments),this},"catch":function(a){return e.then(null,a)},pipe:function(){var a=arguments;return r.Deferred(function(b){r.each(c,function(c,d){var e=r.isFunction(a[d[4]])&&a[d[4]];f[d[1]](function(){var a=e&&e.apply(this,arguments);a&&r.isFunction(a.promise)?a.promise().progress(b.notify).done(b.resolve).fail(b.reject):b[d[0]+"With"](this,e?[a]:arguments)})}),a=null}).promise()},then:function(b,d,e){var f=0;function g(b,c,d,e){return function(){var h=this,i=arguments,j=function(){var a,j;if(!(b<f)){if(a=d.apply(h,i),a===c.promise())throw new TypeError("Thenable self-resolution");j=a&&("object"==typeof a||"function"==typeof a)&&a.then,r.isFunction(j)?e?j.call(a,g(f,c,N,e),g(f,c,O,e)):(f++,j.call(a,g(f,c,N,e),g(f,c,O,e),g(f,c,N,c.notifyWith))):(d!==N&&(h=void 0,i=[a]),(e||c.resolveWith)(h,i))}},k=e?j:function(){try{j()}catch(a){r.Deferred.exceptionHook&&r.Deferred.exceptionHook(a,k.stackTrace),b+1>=f&&(d!==O&&(h=void 0,i=[a]),c.rejectWith(h,i))}};b?k():(r.Deferred.getStackHook&&(k.stackTrace=r.Deferred.getStackHook()),a.setTimeout(k))}}return r.Deferred(function(a){c[0][3].add(g(0,a,r.isFunction(e)?e:N,a.notifyWith)),c[1][3].add(g(0,a,r.isFunction(b)?b:N)),c[2][3].add(g(0,a,r.isFunction(d)?d:O))}).promise()},promise:function(a){return null!=a?r.extend(a,e):e}},f={};return r.each(c,function(a,b){var g=b[2],h=b[5];e[b[1]]=g.add,h&&g.add(function(){d=h},c[3-a][2].disable,c[0][2].lock),g.add(b[3].fire),f[b[0]]=function(){return f[b[0]+"With"](this===f?void 0:this,arguments),this},f[b[0]+"With"]=g.fireWith}),e.promise(f),b&&b.call(f,f),f},when:function(a){var b=arguments.length,c=b,d=Array(c),e=f.call(arguments),g=r.Deferred(),h=function(a){return function(c){d[a]=this,e[a]=arguments.length>1?f.call(arguments):c,--b||g.resolveWith(d,e)}};if(b<=1&&(P(a,g.done(h(c)).resolve,g.reject,!b),"pending"===g.state()||r.isFunction(e[c]&&e[c].then)))return g.then();while(c--)P(e[c],h(c),g.reject);return g.promise()}});var Q=/^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/;r.Deferred.exceptionHook=function(b,c){a.console&&a.console.warn&&b&&Q.test(b.name)&&a.console.warn("jQuery.Deferred exception: "+b.message,b.stack,c)},r.readyException=function(b){a.setTimeout(function(){throw b})};var R=r.Deferred();r.fn.ready=function(a){return R.then(a)["catch"](function(a){r.readyException(a)}),this},r.extend({isReady:!1,readyWait:1,ready:function(a){(a===!0?--r.readyWait:r.isReady)||(r.isReady=!0,a!==!0&&--r.readyWait>0||R.resolveWith(d,[r]))}}),r.ready.then=R.then;function S(){d.removeEventListener("DOMContentLoaded",S),
a.removeEventListener("load",S),r.ready()}"complete"===d.readyState||"loading"!==d.readyState&&!d.documentElement.doScroll?a.setTimeout(r.ready):(d.addEventListener("DOMContentLoaded",S),a.addEventListener("load",S));var T=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===r.type(c)){e=!0;for(h in c)T(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,r.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(r(a),c)})),b))for(;h<i;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},U=function(a){return 1===a.nodeType||9===a.nodeType||!+a.nodeType};function V(){this.expando=r.expando+V.uid++}V.uid=1,V.prototype={cache:function(a){var b=a[this.expando];return b||(b={},U(a)&&(a.nodeType?a[this.expando]=b:Object.defineProperty(a,this.expando,{value:b,configurable:!0}))),b},set:function(a,b,c){var d,e=this.cache(a);if("string"==typeof b)e[r.camelCase(b)]=c;else for(d in b)e[r.camelCase(d)]=b[d];return e},get:function(a,b){return void 0===b?this.cache(a):a[this.expando]&&a[this.expando][r.camelCase(b)]},access:function(a,b,c){return void 0===b||b&&"string"==typeof b&&void 0===c?this.get(a,b):(this.set(a,b,c),void 0!==c?c:b)},remove:function(a,b){var c,d=a[this.expando];if(void 0!==d){if(void 0!==b){Array.isArray(b)?b=b.map(r.camelCase):(b=r.camelCase(b),b=b in d?[b]:b.match(L)||[]),c=b.length;while(c--)delete d[b[c]]}(void 0===b||r.isEmptyObject(d))&&(a.nodeType?a[this.expando]=void 0:delete a[this.expando])}},hasData:function(a){var b=a[this.expando];return void 0!==b&&!r.isEmptyObject(b)}};var W=new V,X=new V,Y=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,Z=/[A-Z]/g;function $(a){return"true"===a||"false"!==a&&("null"===a?null:a===+a+""?+a:Y.test(a)?JSON.parse(a):a)}function _(a,b,c){var d;if(void 0===c&&1===a.nodeType)if(d="data-"+b.replace(Z,"-$&").toLowerCase(),c=a.getAttribute(d),"string"==typeof c){try{c=$(c)}catch(e){}X.set(a,b,c)}else c=void 0;return c}r.extend({hasData:function(a){return X.hasData(a)||W.hasData(a)},data:function(a,b,c){return X.access(a,b,c)},removeData:function(a,b){X.remove(a,b)},_data:function(a,b,c){return W.access(a,b,c)},_removeData:function(a,b){W.remove(a,b)}}),r.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=X.get(f),1===f.nodeType&&!W.get(f,"hasDataAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=r.camelCase(d.slice(5)),_(f,d,e[d])));W.set(f,"hasDataAttrs",!0)}return e}return"object"==typeof a?this.each(function(){X.set(this,a)}):T(this,function(b){var c;if(f&&void 0===b){if(c=X.get(f,a),void 0!==c)return c;if(c=_(f,a),void 0!==c)return c}else this.each(function(){X.set(this,a,b)})},null,b,arguments.length>1,null,!0)},removeData:function(a){return this.each(function(){X.remove(this,a)})}}),r.extend({queue:function(a,b,c){var d;if(a)return b=(b||"fx")+"queue",d=W.get(a,b),c&&(!d||Array.isArray(c)?d=W.access(a,b,r.makeArray(c)):d.push(c)),d||[]},dequeue:function(a,b){b=b||"fx";var c=r.queue(a,b),d=c.length,e=c.shift(),f=r._queueHooks(a,b),g=function(){r.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return W.get(a,c)||W.access(a,c,{empty:r.Callbacks("once memory").add(function(){W.remove(a,[b+"queue",c])})})}}),r.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?r.queue(this[0],a):void 0===b?this:this.each(function(){var c=r.queue(this,a,b);r._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&r.dequeue(this,a)})},dequeue:function(a){return this.each(function(){r.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=r.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=W.get(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var aa=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,ba=new RegExp("^(?:([+-])=|)("+aa+")([a-z%]*)$","i"),ca=["Top","Right","Bottom","Left"],da=function(a,b){return a=b||a,"none"===a.style.display||""===a.style.display&&r.contains(a.ownerDocument,a)&&"none"===r.css(a,"display")},ea=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e};function fa(a,b,c,d){var e,f=1,g=20,h=d?function(){return d.cur()}:function(){return r.css(a,b,"")},i=h(),j=c&&c[3]||(r.cssNumber[b]?"":"px"),k=(r.cssNumber[b]||"px"!==j&&+i)&&ba.exec(r.css(a,b));if(k&&k[3]!==j){j=j||k[3],c=c||[],k=+i||1;do f=f||".5",k/=f,r.style(a,b,k+j);while(f!==(f=h()/i)&&1!==f&&--g)}return c&&(k=+k||+i||0,e=c[1]?k+(c[1]+1)*c[2]:+c[2],d&&(d.unit=j,d.start=k,d.end=e)),e}var ga={};function ha(a){var b,c=a.ownerDocument,d=a.nodeName,e=ga[d];return e?e:(b=c.body.appendChild(c.createElement(d)),e=r.css(b,"display"),b.parentNode.removeChild(b),"none"===e&&(e="block"),ga[d]=e,e)}function ia(a,b){for(var c,d,e=[],f=0,g=a.length;f<g;f++)d=a[f],d.style&&(c=d.style.display,b?("none"===c&&(e[f]=W.get(d,"display")||null,e[f]||(d.style.display="")),""===d.style.display&&da(d)&&(e[f]=ha(d))):"none"!==c&&(e[f]="none",W.set(d,"display",c)));for(f=0;f<g;f++)null!=e[f]&&(a[f].style.display=e[f]);return a}r.fn.extend({show:function(){return ia(this,!0)},hide:function(){return ia(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){da(this)?r(this).show():r(this).hide()})}});var ja=/^(?:checkbox|radio)$/i,ka=/<([a-z][^\/\0>\x20\t\r\n\f]+)/i,la=/^$|\/(?:java|ecma)script/i,ma={option:[1,"<select multiple='multiple'>","</select>"],thead:[1,"<table>","</table>"],col:[2,"<table><colgroup>","</colgroup></table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:[0,"",""]};ma.optgroup=ma.option,ma.tbody=ma.tfoot=ma.colgroup=ma.caption=ma.thead,ma.th=ma.td;function na(a,b){var c;return c="undefined"!=typeof a.getElementsByTagName?a.getElementsByTagName(b||"*"):"undefined"!=typeof a.querySelectorAll?a.querySelectorAll(b||"*"):[],void 0===b||b&&B(a,b)?r.merge([a],c):c}function oa(a,b){for(var c=0,d=a.length;c<d;c++)W.set(a[c],"globalEval",!b||W.get(b[c],"globalEval"))}var pa=/<|&#?\w+;/;function qa(a,b,c,d,e){for(var f,g,h,i,j,k,l=b.createDocumentFragment(),m=[],n=0,o=a.length;n<o;n++)if(f=a[n],f||0===f)if("object"===r.type(f))r.merge(m,f.nodeType?[f]:f);else if(pa.test(f)){g=g||l.appendChild(b.createElement("div")),h=(ka.exec(f)||["",""])[1].toLowerCase(),i=ma[h]||ma._default,g.innerHTML=i[1]+r.htmlPrefilter(f)+i[2],k=i[0];while(k--)g=g.lastChild;r.merge(m,g.childNodes),g=l.firstChild,g.textContent=""}else m.push(b.createTextNode(f));l.textContent="",n=0;while(f=m[n++])if(d&&r.inArray(f,d)>-1)e&&e.push(f);else if(j=r.contains(f.ownerDocument,f),g=na(l.appendChild(f),"script"),j&&oa(g),c){k=0;while(f=g[k++])la.test(f.type||"")&&c.push(f)}return l}!function(){var a=d.createDocumentFragment(),b=a.appendChild(d.createElement("div")),c=d.createElement("input");c.setAttribute("type","radio"),c.setAttribute("checked","checked"),c.setAttribute("name","t"),b.appendChild(c),o.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,b.innerHTML="<textarea>x</textarea>",o.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue}();var ra=d.documentElement,sa=/^key/,ta=/^(?:mouse|pointer|contextmenu|drag|drop)|click/,ua=/^([^.]*)(?:\.(.+)|)/;function va(){return!0}function wa(){return!1}function xa(){try{return d.activeElement}catch(a){}}function ya(a,b,c,d,e,f){var g,h;if("object"==typeof b){"string"!=typeof c&&(d=d||c,c=void 0);for(h in b)ya(a,h,c,d,b[h],f);return a}if(null==d&&null==e?(e=c,d=c=void 0):null==e&&("string"==typeof c?(e=d,d=void 0):(e=d,d=c,c=void 0)),e===!1)e=wa;else if(!e)return a;return 1===f&&(g=e,e=function(a){return r().off(a),g.apply(this,arguments)},e.guid=g.guid||(g.guid=r.guid++)),a.each(function(){r.event.add(this,b,e,d,c)})}r.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,n,o,p,q=W.get(a);if(q){c.handler&&(f=c,c=f.handler,e=f.selector),e&&r.find.matchesSelector(ra,e),c.guid||(c.guid=r.guid++),(i=q.events)||(i=q.events={}),(g=q.handle)||(g=q.handle=function(b){return"undefined"!=typeof r&&r.event.triggered!==b.type?r.event.dispatch.apply(a,arguments):void 0}),b=(b||"").match(L)||[""],j=b.length;while(j--)h=ua.exec(b[j])||[],n=p=h[1],o=(h[2]||"").split(".").sort(),n&&(l=r.event.special[n]||{},n=(e?l.delegateType:l.bindType)||n,l=r.event.special[n]||{},k=r.extend({type:n,origType:p,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&r.expr.match.needsContext.test(e),namespace:o.join(".")},f),(m=i[n])||(m=i[n]=[],m.delegateCount=0,l.setup&&l.setup.call(a,d,o,g)!==!1||a.addEventListener&&a.addEventListener(n,g)),l.add&&(l.add.call(a,k),k.handler.guid||(k.handler.guid=c.guid)),e?m.splice(m.delegateCount++,0,k):m.push(k),r.event.global[n]=!0)}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,n,o,p,q=W.hasData(a)&&W.get(a);if(q&&(i=q.events)){b=(b||"").match(L)||[""],j=b.length;while(j--)if(h=ua.exec(b[j])||[],n=p=h[1],o=(h[2]||"").split(".").sort(),n){l=r.event.special[n]||{},n=(d?l.delegateType:l.bindType)||n,m=i[n]||[],h=h[2]&&new RegExp("(^|\\.)"+o.join("\\.(?:.*\\.|)")+"(\\.|$)"),g=f=m.length;while(f--)k=m[f],!e&&p!==k.origType||c&&c.guid!==k.guid||h&&!h.test(k.namespace)||d&&d!==k.selector&&("**"!==d||!k.selector)||(m.splice(f,1),k.selector&&m.delegateCount--,l.remove&&l.remove.call(a,k));g&&!m.length&&(l.teardown&&l.teardown.call(a,o,q.handle)!==!1||r.removeEvent(a,n,q.handle),delete i[n])}else for(n in i)r.event.remove(a,n+b[j],c,d,!0);r.isEmptyObject(i)&&W.remove(a,"handle events")}},dispatch:function(a){var b=r.event.fix(a),c,d,e,f,g,h,i=new Array(arguments.length),j=(W.get(this,"events")||{})[b.type]||[],k=r.event.special[b.type]||{};for(i[0]=b,c=1;c<arguments.length;c++)i[c]=arguments[c];if(b.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,b)!==!1){h=r.event.handlers.call(this,b,j),c=0;while((f=h[c++])&&!b.isPropagationStopped()){b.currentTarget=f.elem,d=0;while((g=f.handlers[d++])&&!b.isImmediatePropagationStopped())b.rnamespace&&!b.rnamespace.test(g.namespace)||(b.handleObj=g,b.data=g.data,e=((r.event.special[g.origType]||{}).handle||g.handler).apply(f.elem,i),void 0!==e&&(b.result=e)===!1&&(b.preventDefault(),b.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,b),b.result}},handlers:function(a,b){var c,d,e,f,g,h=[],i=b.delegateCount,j=a.target;if(i&&j.nodeType&&!("click"===a.type&&a.button>=1))for(;j!==this;j=j.parentNode||this)if(1===j.nodeType&&("click"!==a.type||j.disabled!==!0)){for(f=[],g={},c=0;c<i;c++)d=b[c],e=d.selector+" ",void 0===g[e]&&(g[e]=d.needsContext?r(e,this).index(j)>-1:r.find(e,this,null,[j]).length),g[e]&&f.push(d);f.length&&h.push({elem:j,handlers:f})}return j=this,i<b.length&&h.push({elem:j,handlers:b.slice(i)}),h},addProp:function(a,b){Object.defineProperty(r.Event.prototype,a,{enumerable:!0,configurable:!0,get:r.isFunction(b)?function(){if(this.originalEvent)return b(this.originalEvent)}:function(){if(this.originalEvent)return this.originalEvent[a]},set:function(b){Object.defineProperty(this,a,{enumerable:!0,configurable:!0,writable:!0,value:b})}})},fix:function(a){return a[r.expando]?a:new r.Event(a)},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==xa()&&this.focus)return this.focus(),!1},delegateType:"focusin"},blur:{trigger:function(){if(this===xa()&&this.blur)return this.blur(),!1},delegateType:"focusout"},click:{trigger:function(){if("checkbox"===this.type&&this.click&&B(this,"input"))return this.click(),!1},_default:function(a){return B(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}}},r.removeEvent=function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c)},r.Event=function(a,b){return this instanceof r.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?va:wa,this.target=a.target&&3===a.target.nodeType?a.target.parentNode:a.target,this.currentTarget=a.currentTarget,this.relatedTarget=a.relatedTarget):this.type=a,b&&r.extend(this,b),this.timeStamp=a&&a.timeStamp||r.now(),void(this[r.expando]=!0)):new r.Event(a,b)},r.Event.prototype={constructor:r.Event,isDefaultPrevented:wa,isPropagationStopped:wa,isImmediatePropagationStopped:wa,isSimulated:!1,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=va,a&&!this.isSimulated&&a.preventDefault()},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=va,a&&!this.isSimulated&&a.stopPropagation()},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=va,a&&!this.isSimulated&&a.stopImmediatePropagation(),this.stopPropagation()}},r.each({altKey:!0,bubbles:!0,cancelable:!0,changedTouches:!0,ctrlKey:!0,detail:!0,eventPhase:!0,metaKey:!0,pageX:!0,pageY:!0,shiftKey:!0,view:!0,"char":!0,charCode:!0,key:!0,keyCode:!0,button:!0,buttons:!0,clientX:!0,clientY:!0,offsetX:!0,offsetY:!0,pointerId:!0,pointerType:!0,screenX:!0,screenY:!0,targetTouches:!0,toElement:!0,touches:!0,which:function(a){var b=a.button;return null==a.which&&sa.test(a.type)?null!=a.charCode?a.charCode:a.keyCode:!a.which&&void 0!==b&&ta.test(a.type)?1&b?1:2&b?3:4&b?2:0:a.which}},r.event.addProp),r.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){r.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return e&&(e===d||r.contains(d,e))||(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),r.fn.extend({on:function(a,b,c,d){return ya(this,a,b,c,d)},one:function(a,b,c,d){return ya(this,a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,r(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return b!==!1&&"function"!=typeof b||(c=b,b=void 0),c===!1&&(c=wa),this.each(function(){r.event.remove(this,a,c,b)})}});var za=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([a-z][^\/\0>\x20\t\r\n\f]*)[^>]*)\/>/gi,Aa=/<script|<style|<link/i,Ba=/checked\s*(?:[^=]|=\s*.checked.)/i,Ca=/^true\/(.*)/,Da=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g;function Ea(a,b){return B(a,"table")&&B(11!==b.nodeType?b:b.firstChild,"tr")?r(">tbody",a)[0]||a:a}function Fa(a){return a.type=(null!==a.getAttribute("type"))+"/"+a.type,a}function Ga(a){var b=Ca.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function Ha(a,b){var c,d,e,f,g,h,i,j;if(1===b.nodeType){if(W.hasData(a)&&(f=W.access(a),g=W.set(b,f),j=f.events)){delete g.handle,g.events={};for(e in j)for(c=0,d=j[e].length;c<d;c++)r.event.add(b,e,j[e][c])}X.hasData(a)&&(h=X.access(a),i=r.extend({},h),X.set(b,i))}}function Ia(a,b){var c=b.nodeName.toLowerCase();"input"===c&&ja.test(a.type)?b.checked=a.checked:"input"!==c&&"textarea"!==c||(b.defaultValue=a.defaultValue)}function Ja(a,b,c,d){b=g.apply([],b);var e,f,h,i,j,k,l=0,m=a.length,n=m-1,q=b[0],s=r.isFunction(q);if(s||m>1&&"string"==typeof q&&!o.checkClone&&Ba.test(q))return a.each(function(e){var f=a.eq(e);s&&(b[0]=q.call(this,e,f.html())),Ja(f,b,c,d)});if(m&&(e=qa(b,a[0].ownerDocument,!1,a,d),f=e.firstChild,1===e.childNodes.length&&(e=f),f||d)){for(h=r.map(na(e,"script"),Fa),i=h.length;l<m;l++)j=e,l!==n&&(j=r.clone(j,!0,!0),i&&r.merge(h,na(j,"script"))),c.call(a[l],j,l);if(i)for(k=h[h.length-1].ownerDocument,r.map(h,Ga),l=0;l<i;l++)j=h[l],la.test(j.type||"")&&!W.access(j,"globalEval")&&r.contains(k,j)&&(j.src?r._evalUrl&&r._evalUrl(j.src):p(j.textContent.replace(Da,""),k))}return a}function Ka(a,b,c){for(var d,e=b?r.filter(b,a):a,f=0;null!=(d=e[f]);f++)c||1!==d.nodeType||r.cleanData(na(d)),d.parentNode&&(c&&r.contains(d.ownerDocument,d)&&oa(na(d,"script")),d.parentNode.removeChild(d));return a}r.extend({htmlPrefilter:function(a){return a.replace(za,"<$1></$2>")},clone:function(a,b,c){var d,e,f,g,h=a.cloneNode(!0),i=r.contains(a.ownerDocument,a);if(!(o.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||r.isXMLDoc(a)))for(g=na(h),f=na(a),d=0,e=f.length;d<e;d++)Ia(f[d],g[d]);if(b)if(c)for(f=f||na(a),g=g||na(h),d=0,e=f.length;d<e;d++)Ha(f[d],g[d]);else Ha(a,h);return g=na(h,"script"),g.length>0&&oa(g,!i&&na(a,"script")),h},cleanData:function(a){for(var b,c,d,e=r.event.special,f=0;void 0!==(c=a[f]);f++)if(U(c)){if(b=c[W.expando]){if(b.events)for(d in b.events)e[d]?r.event.remove(c,d):r.removeEvent(c,d,b.handle);c[W.expando]=void 0}c[X.expando]&&(c[X.expando]=void 0)}}}),r.fn.extend({detach:function(a){return Ka(this,a,!0)},remove:function(a){return Ka(this,a)},text:function(a){return T(this,function(a){return void 0===a?r.text(this):this.empty().each(function(){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||(this.textContent=a)})},null,a,arguments.length)},append:function(){return Ja(this,arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=Ea(this,a);b.appendChild(a)}})},prepend:function(){return Ja(this,arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=Ea(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return Ja(this,arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return Ja(this,arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},empty:function(){for(var a,b=0;null!=(a=this[b]);b++)1===a.nodeType&&(r.cleanData(na(a,!1)),a.textContent="");return this},clone:function(a,b){return a=null!=a&&a,b=null==b?a:b,this.map(function(){return r.clone(this,a,b)})},html:function(a){return T(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a&&1===b.nodeType)return b.innerHTML;if("string"==typeof a&&!Aa.test(a)&&!ma[(ka.exec(a)||["",""])[1].toLowerCase()]){a=r.htmlPrefilter(a);try{for(;c<d;c++)b=this[c]||{},1===b.nodeType&&(r.cleanData(na(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=[];return Ja(this,arguments,function(b){var c=this.parentNode;r.inArray(this,a)<0&&(r.cleanData(na(this)),c&&c.replaceChild(b,this))},a)}}),r.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){r.fn[a]=function(a){for(var c,d=[],e=r(a),f=e.length-1,g=0;g<=f;g++)c=g===f?this:this.clone(!0),r(e[g])[b](c),h.apply(d,c.get());return this.pushStack(d)}});var La=/^margin/,Ma=new RegExp("^("+aa+")(?!px)[a-z%]+$","i"),Na=function(b){var c=b.ownerDocument.defaultView;return c&&c.opener||(c=a),c.getComputedStyle(b)};!function(){function b(){if(i){i.style.cssText="box-sizing:border-box;position:relative;display:block;margin:auto;border:1px;padding:1px;top:1%;width:50%",i.innerHTML="",ra.appendChild(h);var b=a.getComputedStyle(i);c="1%"!==b.top,g="2px"===b.marginLeft,e="4px"===b.width,i.style.marginRight="50%",f="4px"===b.marginRight,ra.removeChild(h),i=null}}var c,e,f,g,h=d.createElement("div"),i=d.createElement("div");i.style&&(i.style.backgroundClip="content-box",i.cloneNode(!0).style.backgroundClip="",o.clearCloneStyle="content-box"===i.style.backgroundClip,h.style.cssText="border:0;width:8px;height:0;top:0;left:-9999px;padding:0;margin-top:1px;position:absolute",h.appendChild(i),r.extend(o,{pixelPosition:function(){return b(),c},boxSizingReliable:function(){return b(),e},pixelMarginRight:function(){return b(),f},reliableMarginLeft:function(){return b(),g}}))}();function Oa(a,b,c){var d,e,f,g,h=a.style;return c=c||Na(a),c&&(g=c.getPropertyValue(b)||c[b],""!==g||r.contains(a.ownerDocument,a)||(g=r.style(a,b)),!o.pixelMarginRight()&&Ma.test(g)&&La.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f)),void 0!==g?g+"":g}function Pa(a,b){return{get:function(){return a()?void delete this.get:(this.get=b).apply(this,arguments)}}}var Qa=/^(none|table(?!-c[ea]).+)/,Ra=/^--/,Sa={position:"absolute",visibility:"hidden",display:"block"},Ta={letterSpacing:"0",fontWeight:"400"},Ua=["Webkit","Moz","ms"],Va=d.createElement("div").style;function Wa(a){if(a in Va)return a;var b=a[0].toUpperCase()+a.slice(1),c=Ua.length;while(c--)if(a=Ua[c]+b,a in Va)return a}function Xa(a){var b=r.cssProps[a];return b||(b=r.cssProps[a]=Wa(a)||a),b}function Ya(a,b,c){var d=ba.exec(b);return d?Math.max(0,d[2]-(c||0))+(d[3]||"px"):b}function Za(a,b,c,d,e){var f,g=0;for(f=c===(d?"border":"content")?4:"width"===b?1:0;f<4;f+=2)"margin"===c&&(g+=r.css(a,c+ca[f],!0,e)),d?("content"===c&&(g-=r.css(a,"padding"+ca[f],!0,e)),"margin"!==c&&(g-=r.css(a,"border"+ca[f]+"Width",!0,e))):(g+=r.css(a,"padding"+ca[f],!0,e),"padding"!==c&&(g+=r.css(a,"border"+ca[f]+"Width",!0,e)));return g}function $a(a,b,c){var d,e=Na(a),f=Oa(a,b,e),g="border-box"===r.css(a,"boxSizing",!1,e);return Ma.test(f)?f:(d=g&&(o.boxSizingReliable()||f===a.style[b]),"auto"===f&&(f=a["offset"+b[0].toUpperCase()+b.slice(1)]),f=parseFloat(f)||0,f+Za(a,b,c||(g?"border":"content"),d,e)+"px")}r.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Oa(a,"opacity");return""===c?"1":c}}}},cssNumber:{animationIterationCount:!0,columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":"cssFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=r.camelCase(b),i=Ra.test(b),j=a.style;return i||(b=Xa(h)),g=r.cssHooks[b]||r.cssHooks[h],void 0===c?g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:j[b]:(f=typeof c,"string"===f&&(e=ba.exec(c))&&e[1]&&(c=fa(a,b,e),f="number"),null!=c&&c===c&&("number"===f&&(c+=e&&e[3]||(r.cssNumber[h]?"":"px")),o.clearCloneStyle||""!==c||0!==b.indexOf("background")||(j[b]="inherit"),g&&"set"in g&&void 0===(c=g.set(a,c,d))||(i?j.setProperty(b,c):j[b]=c)),void 0)}},css:function(a,b,c,d){var e,f,g,h=r.camelCase(b),i=Ra.test(b);return i||(b=Xa(h)),g=r.cssHooks[b]||r.cssHooks[h],g&&"get"in g&&(e=g.get(a,!0,c)),void 0===e&&(e=Oa(a,b,d)),"normal"===e&&b in Ta&&(e=Ta[b]),""===c||c?(f=parseFloat(e),c===!0||isFinite(f)?f||0:e):e}}),r.each(["height","width"],function(a,b){r.cssHooks[b]={get:function(a,c,d){if(c)return!Qa.test(r.css(a,"display"))||a.getClientRects().length&&a.getBoundingClientRect().width?$a(a,b,d):ea(a,Sa,function(){return $a(a,b,d)})},set:function(a,c,d){var e,f=d&&Na(a),g=d&&Za(a,b,d,"border-box"===r.css(a,"boxSizing",!1,f),f);return g&&(e=ba.exec(c))&&"px"!==(e[3]||"px")&&(a.style[b]=c,c=r.css(a,b)),Ya(a,c,g)}}}),r.cssHooks.marginLeft=Pa(o.reliableMarginLeft,function(a,b){if(b)return(parseFloat(Oa(a,"marginLeft"))||a.getBoundingClientRect().left-ea(a,{marginLeft:0},function(){return a.getBoundingClientRect().left}))+"px"}),r.each({margin:"",padding:"",border:"Width"},function(a,b){r.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];d<4;d++)e[a+ca[d]+b]=f[d]||f[d-2]||f[0];return e}},La.test(a)||(r.cssHooks[a+b].set=Ya)}),r.fn.extend({css:function(a,b){return T(this,function(a,b,c){var d,e,f={},g=0;if(Array.isArray(b)){for(d=Na(a),e=b.length;g<e;g++)f[b[g]]=r.css(a,b[g],!1,d);return f}return void 0!==c?r.style(a,b,c):r.css(a,b)},a,b,arguments.length>1)}});function _a(a,b,c,d,e){return new _a.prototype.init(a,b,c,d,e)}r.Tween=_a,_a.prototype={constructor:_a,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||r.easing._default,this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(r.cssNumber[c]?"":"px")},cur:function(){var a=_a.propHooks[this.prop];return a&&a.get?a.get(this):_a.propHooks._default.get(this)},run:function(a){var b,c=_a.propHooks[this.prop];return this.options.duration?this.pos=b=r.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):_a.propHooks._default.set(this),this}},_a.prototype.init.prototype=_a.prototype,_a.propHooks={_default:{get:function(a){var b;return 1!==a.elem.nodeType||null!=a.elem[a.prop]&&null==a.elem.style[a.prop]?a.elem[a.prop]:(b=r.css(a.elem,a.prop,""),b&&"auto"!==b?b:0)},set:function(a){r.fx.step[a.prop]?r.fx.step[a.prop](a):1!==a.elem.nodeType||null==a.elem.style[r.cssProps[a.prop]]&&!r.cssHooks[a.prop]?a.elem[a.prop]=a.now:r.style(a.elem,a.prop,a.now+a.unit)}}},_a.propHooks.scrollTop=_a.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},r.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2},_default:"swing"},r.fx=_a.prototype.init,r.fx.step={};var ab,bb,cb=/^(?:toggle|show|hide)$/,db=/queueHooks$/;function eb(){bb&&(d.hidden===!1&&a.requestAnimationFrame?a.requestAnimationFrame(eb):a.setTimeout(eb,r.fx.interval),r.fx.tick())}function fb(){return a.setTimeout(function(){ab=void 0}),ab=r.now()}function gb(a,b){var c,d=0,e={height:a};for(b=b?1:0;d<4;d+=2-b)c=ca[d],e["margin"+c]=e["padding"+c]=a;return b&&(e.opacity=e.width=a),e}function hb(a,b,c){for(var d,e=(kb.tweeners[b]||[]).concat(kb.tweeners["*"]),f=0,g=e.length;f<g;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,k,l="width"in b||"height"in b,m=this,n={},o=a.style,p=a.nodeType&&da(a),q=W.get(a,"fxshow");c.queue||(g=r._queueHooks(a,"fx"),null==g.unqueued&&(g.unqueued=0,h=g.empty.fire,g.empty.fire=function(){g.unqueued||h()}),g.unqueued++,m.always(function(){m.always(function(){g.unqueued--,r.queue(a,"fx").length||g.empty.fire()})}));for(d in b)if(e=b[d],cb.test(e)){if(delete b[d],f=f||"toggle"===e,e===(p?"hide":"show")){if("show"!==e||!q||void 0===q[d])continue;p=!0}n[d]=q&&q[d]||r.style(a,d)}if(i=!r.isEmptyObject(b),i||!r.isEmptyObject(n)){l&&1===a.nodeType&&(c.overflow=[o.overflow,o.overflowX,o.overflowY],j=q&&q.display,null==j&&(j=W.get(a,"display")),k=r.css(a,"display"),"none"===k&&(j?k=j:(ia([a],!0),j=a.style.display||j,k=r.css(a,"display"),ia([a]))),("inline"===k||"inline-block"===k&&null!=j)&&"none"===r.css(a,"float")&&(i||(m.done(function(){o.display=j}),null==j&&(k=o.display,j="none"===k?"":k)),o.display="inline-block")),c.overflow&&(o.overflow="hidden",m.always(function(){o.overflow=c.overflow[0],o.overflowX=c.overflow[1],o.overflowY=c.overflow[2]})),i=!1;for(d in n)i||(q?"hidden"in q&&(p=q.hidden):q=W.access(a,"fxshow",{display:j}),f&&(q.hidden=!p),p&&ia([a],!0),m.done(function(){p||ia([a]),W.remove(a,"fxshow");for(d in n)r.style(a,d,n[d])})),i=hb(p?q[d]:0,d,m),d in q||(q[d]=i.start,p&&(i.end=i.start,i.start=0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=r.camelCase(c),e=b[d],f=a[c],Array.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=r.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=kb.prefilters.length,h=r.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=ab||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;g<i;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),f<1&&i?c:(i||h.notifyWith(a,[j,1,0]),h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:r.extend({},b),opts:r.extend(!0,{specialEasing:{},easing:r.easing._default},c),originalProperties:b,originalOptions:c,startTime:ab||fb(),duration:c.duration,tweens:[],createTween:function(b,c){var d=r.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;c<d;c++)j.tweens[c].run(1);return b?(h.notifyWith(a,[j,1,0]),h.resolveWith(a,[j,b])):h.rejectWith(a,[j,b]),this}}),k=j.props;for(jb(k,j.opts.specialEasing);f<g;f++)if(d=kb.prefilters[f].call(j,a,k,j.opts))return r.isFunction(d.stop)&&(r._queueHooks(j.elem,j.opts.queue).stop=r.proxy(d.stop,d)),d;return r.map(k,hb,j),r.isFunction(j.opts.start)&&j.opts.start.call(a,j),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always),r.fx.timer(r.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j}r.Animation=r.extend(kb,{tweeners:{"*":[function(a,b){var c=this.createTween(a,b);return fa(c.elem,a,ba.exec(b),c),c}]},tweener:function(a,b){r.isFunction(a)?(b=a,a=["*"]):a=a.match(L);for(var c,d=0,e=a.length;d<e;d++)c=a[d],kb.tweeners[c]=kb.tweeners[c]||[],kb.tweeners[c].unshift(b)},prefilters:[ib],prefilter:function(a,b){b?kb.prefilters.unshift(a):kb.prefilters.push(a)}}),r.speed=function(a,b,c){var d=a&&"object"==typeof a?r.extend({},a):{complete:c||!c&&b||r.isFunction(a)&&a,duration:a,easing:c&&b||b&&!r.isFunction(b)&&b};return r.fx.off?d.duration=0:"number"!=typeof d.duration&&(d.duration in r.fx.speeds?d.duration=r.fx.speeds[d.duration]:d.duration=r.fx.speeds._default),null!=d.queue&&d.queue!==!0||(d.queue="fx"),d.old=d.complete,d.complete=function(){r.isFunction(d.old)&&d.old.call(this),d.queue&&r.dequeue(this,d.queue)},d},r.fn.extend({fadeTo:function(a,b,c,d){return this.filter(da).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=r.isEmptyObject(a),f=r.speed(b,c,d),g=function(){var b=kb(this,r.extend({},a),f);(e||W.get(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=r.timers,g=W.get(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&db.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));!b&&c||r.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=W.get(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=r.timers,g=d?d.length:0;for(c.finish=!0,r.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;b<g;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),r.each(["toggle","show","hide"],function(a,b){var c=r.fn[b];r.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(gb(b,!0),a,d,e)}}),r.each({slideDown:gb("show"),slideUp:gb("hide"),slideToggle:gb("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){r.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),r.timers=[],r.fx.tick=function(){var a,b=0,c=r.timers;for(ab=r.now();b<c.length;b++)a=c[b],a()||c[b]!==a||c.splice(b--,1);c.length||r.fx.stop(),ab=void 0},r.fx.timer=function(a){r.timers.push(a),r.fx.start()},r.fx.interval=13,r.fx.start=function(){bb||(bb=!0,eb())},r.fx.stop=function(){bb=null},r.fx.speeds={slow:600,fast:200,_default:400},r.fn.delay=function(b,c){return b=r.fx?r.fx.speeds[b]||b:b,c=c||"fx",this.queue(c,function(c,d){var e=a.setTimeout(c,b);d.stop=function(){a.clearTimeout(e)}})},function(){var a=d.createElement("input"),b=d.createElement("select"),c=b.appendChild(d.createElement("option"));a.type="checkbox",o.checkOn=""!==a.value,o.optSelected=c.selected,a=d.createElement("input"),a.value="t",a.type="radio",o.radioValue="t"===a.value}();var lb,mb=r.expr.attrHandle;r.fn.extend({attr:function(a,b){return T(this,r.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){r.removeAttr(this,a)})}}),r.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(3!==f&&8!==f&&2!==f)return"undefined"==typeof a.getAttribute?r.prop(a,b,c):(1===f&&r.isXMLDoc(a)||(e=r.attrHooks[b.toLowerCase()]||(r.expr.match.bool.test(b)?lb:void 0)),void 0!==c?null===c?void r.removeAttr(a,b):e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:(a.setAttribute(b,c+""),c):e&&"get"in e&&null!==(d=e.get(a,b))?d:(d=r.find.attr(a,b),
null==d?void 0:d))},attrHooks:{type:{set:function(a,b){if(!o.radioValue&&"radio"===b&&B(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}},removeAttr:function(a,b){var c,d=0,e=b&&b.match(L);if(e&&1===a.nodeType)while(c=e[d++])a.removeAttribute(c)}}),lb={set:function(a,b,c){return b===!1?r.removeAttr(a,c):a.setAttribute(c,c),c}},r.each(r.expr.match.bool.source.match(/\w+/g),function(a,b){var c=mb[b]||r.find.attr;mb[b]=function(a,b,d){var e,f,g=b.toLowerCase();return d||(f=mb[g],mb[g]=e,e=null!=c(a,b,d)?g:null,mb[g]=f),e}});var nb=/^(?:input|select|textarea|button)$/i,ob=/^(?:a|area)$/i;r.fn.extend({prop:function(a,b){return T(this,r.prop,a,b,arguments.length>1)},removeProp:function(a){return this.each(function(){delete this[r.propFix[a]||a]})}}),r.extend({prop:function(a,b,c){var d,e,f=a.nodeType;if(3!==f&&8!==f&&2!==f)return 1===f&&r.isXMLDoc(a)||(b=r.propFix[b]||b,e=r.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=r.find.attr(a,"tabindex");return b?parseInt(b,10):nb.test(a.nodeName)||ob.test(a.nodeName)&&a.href?0:-1}}},propFix:{"for":"htmlFor","class":"className"}}),o.optSelected||(r.propHooks.selected={get:function(a){var b=a.parentNode;return b&&b.parentNode&&b.parentNode.selectedIndex,null},set:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex)}}),r.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){r.propFix[this.toLowerCase()]=this});function pb(a){var b=a.match(L)||[];return b.join(" ")}function qb(a){return a.getAttribute&&a.getAttribute("class")||""}r.fn.extend({addClass:function(a){var b,c,d,e,f,g,h,i=0;if(r.isFunction(a))return this.each(function(b){r(this).addClass(a.call(this,b,qb(this)))});if("string"==typeof a&&a){b=a.match(L)||[];while(c=this[i++])if(e=qb(c),d=1===c.nodeType&&" "+pb(e)+" "){g=0;while(f=b[g++])d.indexOf(" "+f+" ")<0&&(d+=f+" ");h=pb(d),e!==h&&c.setAttribute("class",h)}}return this},removeClass:function(a){var b,c,d,e,f,g,h,i=0;if(r.isFunction(a))return this.each(function(b){r(this).removeClass(a.call(this,b,qb(this)))});if(!arguments.length)return this.attr("class","");if("string"==typeof a&&a){b=a.match(L)||[];while(c=this[i++])if(e=qb(c),d=1===c.nodeType&&" "+pb(e)+" "){g=0;while(f=b[g++])while(d.indexOf(" "+f+" ")>-1)d=d.replace(" "+f+" "," ");h=pb(d),e!==h&&c.setAttribute("class",h)}}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):r.isFunction(a)?this.each(function(c){r(this).toggleClass(a.call(this,c,qb(this),b),b)}):this.each(function(){var b,d,e,f;if("string"===c){d=0,e=r(this),f=a.match(L)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else void 0!==a&&"boolean"!==c||(b=qb(this),b&&W.set(this,"__className__",b),this.setAttribute&&this.setAttribute("class",b||a===!1?"":W.get(this,"__className__")||""))})},hasClass:function(a){var b,c,d=0;b=" "+a+" ";while(c=this[d++])if(1===c.nodeType&&(" "+pb(qb(c))+" ").indexOf(b)>-1)return!0;return!1}});var rb=/\r/g;r.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=r.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,r(this).val()):a,null==e?e="":"number"==typeof e?e+="":Array.isArray(e)&&(e=r.map(e,function(a){return null==a?"":a+""})),b=r.valHooks[this.type]||r.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=r.valHooks[e.type]||r.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(rb,""):null==c?"":c)}}}),r.extend({valHooks:{option:{get:function(a){var b=r.find.attr(a,"value");return null!=b?b:pb(r.text(a))}},select:{get:function(a){var b,c,d,e=a.options,f=a.selectedIndex,g="select-one"===a.type,h=g?null:[],i=g?f+1:e.length;for(d=f<0?i:g?f:0;d<i;d++)if(c=e[d],(c.selected||d===f)&&!c.disabled&&(!c.parentNode.disabled||!B(c.parentNode,"optgroup"))){if(b=r(c).val(),g)return b;h.push(b)}return h},set:function(a,b){var c,d,e=a.options,f=r.makeArray(b),g=e.length;while(g--)d=e[g],(d.selected=r.inArray(r.valHooks.option.get(d),f)>-1)&&(c=!0);return c||(a.selectedIndex=-1),f}}}}),r.each(["radio","checkbox"],function(){r.valHooks[this]={set:function(a,b){if(Array.isArray(b))return a.checked=r.inArray(r(a).val(),b)>-1}},o.checkOn||(r.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var sb=/^(?:focusinfocus|focusoutblur)$/;r.extend(r.event,{trigger:function(b,c,e,f){var g,h,i,j,k,m,n,o=[e||d],p=l.call(b,"type")?b.type:b,q=l.call(b,"namespace")?b.namespace.split("."):[];if(h=i=e=e||d,3!==e.nodeType&&8!==e.nodeType&&!sb.test(p+r.event.triggered)&&(p.indexOf(".")>-1&&(q=p.split("."),p=q.shift(),q.sort()),k=p.indexOf(":")<0&&"on"+p,b=b[r.expando]?b:new r.Event(p,"object"==typeof b&&b),b.isTrigger=f?2:3,b.namespace=q.join("."),b.rnamespace=b.namespace?new RegExp("(^|\\.)"+q.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=e),c=null==c?[b]:r.makeArray(c,[b]),n=r.event.special[p]||{},f||!n.trigger||n.trigger.apply(e,c)!==!1)){if(!f&&!n.noBubble&&!r.isWindow(e)){for(j=n.delegateType||p,sb.test(j+p)||(h=h.parentNode);h;h=h.parentNode)o.push(h),i=h;i===(e.ownerDocument||d)&&o.push(i.defaultView||i.parentWindow||a)}g=0;while((h=o[g++])&&!b.isPropagationStopped())b.type=g>1?j:n.bindType||p,m=(W.get(h,"events")||{})[b.type]&&W.get(h,"handle"),m&&m.apply(h,c),m=k&&h[k],m&&m.apply&&U(h)&&(b.result=m.apply(h,c),b.result===!1&&b.preventDefault());return b.type=p,f||b.isDefaultPrevented()||n._default&&n._default.apply(o.pop(),c)!==!1||!U(e)||k&&r.isFunction(e[p])&&!r.isWindow(e)&&(i=e[k],i&&(e[k]=null),r.event.triggered=p,e[p](),r.event.triggered=void 0,i&&(e[k]=i)),b.result}},simulate:function(a,b,c){var d=r.extend(new r.Event,c,{type:a,isSimulated:!0});r.event.trigger(d,null,b)}}),r.fn.extend({trigger:function(a,b){return this.each(function(){r.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];if(c)return r.event.trigger(a,b,c,!0)}}),r.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(a,b){r.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),r.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),o.focusin="onfocusin"in a,o.focusin||r.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){r.event.simulate(b,a.target,r.event.fix(a))};r.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=W.access(d,b);e||d.addEventListener(a,c,!0),W.access(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=W.access(d,b)-1;e?W.access(d,b,e):(d.removeEventListener(a,c,!0),W.remove(d,b))}}});var tb=a.location,ub=r.now(),vb=/\?/;r.parseXML=function(b){var c;if(!b||"string"!=typeof b)return null;try{c=(new a.DOMParser).parseFromString(b,"text/xml")}catch(d){c=void 0}return c&&!c.getElementsByTagName("parsererror").length||r.error("Invalid XML: "+b),c};var wb=/\[\]$/,xb=/\r?\n/g,yb=/^(?:submit|button|image|reset|file)$/i,zb=/^(?:input|select|textarea|keygen)/i;function Ab(a,b,c,d){var e;if(Array.isArray(b))r.each(b,function(b,e){c||wb.test(a)?d(a,e):Ab(a+"["+("object"==typeof e&&null!=e?b:"")+"]",e,c,d)});else if(c||"object"!==r.type(b))d(a,b);else for(e in b)Ab(a+"["+e+"]",b[e],c,d)}r.param=function(a,b){var c,d=[],e=function(a,b){var c=r.isFunction(b)?b():b;d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(null==c?"":c)};if(Array.isArray(a)||a.jquery&&!r.isPlainObject(a))r.each(a,function(){e(this.name,this.value)});else for(c in a)Ab(c,a[c],b,e);return d.join("&")},r.fn.extend({serialize:function(){return r.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=r.prop(this,"elements");return a?r.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!r(this).is(":disabled")&&zb.test(this.nodeName)&&!yb.test(a)&&(this.checked||!ja.test(a))}).map(function(a,b){var c=r(this).val();return null==c?null:Array.isArray(c)?r.map(c,function(a){return{name:b.name,value:a.replace(xb,"\r\n")}}):{name:b.name,value:c.replace(xb,"\r\n")}}).get()}});var Bb=/%20/g,Cb=/#.*$/,Db=/([?&])_=[^&]*/,Eb=/^(.*?):[\t]*([^\r\n]*)$/gm,Fb=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,Gb=/^(?:GET|HEAD)$/,Hb=/^\/\//,Ib={},Jb={},Kb="*/".concat("*"),Lb=d.createElement("a");Lb.href=tb.href;function Mb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(L)||[];if(r.isFunction(c))while(d=f[e++])"+"===d[0]?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function Nb(a,b,c,d){var e={},f=a===Jb;function g(h){var i;return e[h]=!0,r.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function Ob(a,b){var c,d,e=r.ajaxSettings.flatOptions||{};for(c in b)void 0!==b[c]&&((e[c]?a:d||(d={}))[c]=b[c]);return d&&r.extend(!0,a,d),a}function Pb(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===d&&(d=a.mimeType||b.getResponseHeader("Content-Type"));if(d)for(e in h)if(h[e]&&h[e].test(d)){i.unshift(e);break}if(i[0]in c)f=i[0];else{for(e in c){if(!i[0]||a.converters[e+" "+i[0]]){f=e;break}g||(g=e)}f=f||g}if(f)return f!==i[0]&&i.unshift(f),c[f]}function Qb(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}r.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:tb.href,type:"GET",isLocal:Fb.test(tb.protocol),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Kb,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/\bxml\b/,html:/\bhtml/,json:/\bjson\b/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":JSON.parse,"text xml":r.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?Ob(Ob(a,r.ajaxSettings),b):Ob(r.ajaxSettings,a)},ajaxPrefilter:Mb(Ib),ajaxTransport:Mb(Jb),ajax:function(b,c){"object"==typeof b&&(c=b,b=void 0),c=c||{};var e,f,g,h,i,j,k,l,m,n,o=r.ajaxSetup({},c),p=o.context||o,q=o.context&&(p.nodeType||p.jquery)?r(p):r.event,s=r.Deferred(),t=r.Callbacks("once memory"),u=o.statusCode||{},v={},w={},x="canceled",y={readyState:0,getResponseHeader:function(a){var b;if(k){if(!h){h={};while(b=Eb.exec(g))h[b[1].toLowerCase()]=b[2]}b=h[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return k?g:null},setRequestHeader:function(a,b){return null==k&&(a=w[a.toLowerCase()]=w[a.toLowerCase()]||a,v[a]=b),this},overrideMimeType:function(a){return null==k&&(o.mimeType=a),this},statusCode:function(a){var b;if(a)if(k)y.always(a[y.status]);else for(b in a)u[b]=[u[b],a[b]];return this},abort:function(a){var b=a||x;return e&&e.abort(b),A(0,b),this}};if(s.promise(y),o.url=((b||o.url||tb.href)+"").replace(Hb,tb.protocol+"//"),o.type=c.method||c.type||o.method||o.type,o.dataTypes=(o.dataType||"*").toLowerCase().match(L)||[""],null==o.crossDomain){j=d.createElement("a");try{j.href=o.url,j.href=j.href,o.crossDomain=Lb.protocol+"//"+Lb.host!=j.protocol+"//"+j.host}catch(z){o.crossDomain=!0}}if(o.data&&o.processData&&"string"!=typeof o.data&&(o.data=r.param(o.data,o.traditional)),Nb(Ib,o,c,y),k)return y;l=r.event&&o.global,l&&0===r.active++&&r.event.trigger("ajaxStart"),o.type=o.type.toUpperCase(),o.hasContent=!Gb.test(o.type),f=o.url.replace(Cb,""),o.hasContent?o.data&&o.processData&&0===(o.contentType||"").indexOf("application/x-www-form-urlencoded")&&(o.data=o.data.replace(Bb,"+")):(n=o.url.slice(f.length),o.data&&(f+=(vb.test(f)?"&":"?")+o.data,delete o.data),o.cache===!1&&(f=f.replace(Db,"$1"),n=(vb.test(f)?"&":"?")+"_="+ub++ +n),o.url=f+n),o.ifModified&&(r.lastModified[f]&&y.setRequestHeader("If-Modified-Since",r.lastModified[f]),r.etag[f]&&y.setRequestHeader("If-None-Match",r.etag[f])),(o.data&&o.hasContent&&o.contentType!==!1||c.contentType)&&y.setRequestHeader("Content-Type",o.contentType),y.setRequestHeader("Accept",o.dataTypes[0]&&o.accepts[o.dataTypes[0]]?o.accepts[o.dataTypes[0]]+("*"!==o.dataTypes[0]?", "+Kb+"; q=0.01":""):o.accepts["*"]);for(m in o.headers)y.setRequestHeader(m,o.headers[m]);if(o.beforeSend&&(o.beforeSend.call(p,y,o)===!1||k))return y.abort();if(x="abort",t.add(o.complete),y.done(o.success),y.fail(o.error),e=Nb(Jb,o,c,y)){if(y.readyState=1,l&&q.trigger("ajaxSend",[y,o]),k)return y;o.async&&o.timeout>0&&(i=a.setTimeout(function(){y.abort("timeout")},o.timeout));try{k=!1,e.send(v,A)}catch(z){if(k)throw z;A(-1,z)}}else A(-1,"No Transport");function A(b,c,d,h){var j,m,n,v,w,x=c;k||(k=!0,i&&a.clearTimeout(i),e=void 0,g=h||"",y.readyState=b>0?4:0,j=b>=200&&b<300||304===b,d&&(v=Pb(o,y,d)),v=Qb(o,v,y,j),j?(o.ifModified&&(w=y.getResponseHeader("Last-Modified"),w&&(r.lastModified[f]=w),w=y.getResponseHeader("etag"),w&&(r.etag[f]=w)),204===b||"HEAD"===o.type?x="nocontent":304===b?x="notmodified":(x=v.state,m=v.data,n=v.error,j=!n)):(n=x,!b&&x||(x="error",b<0&&(b=0))),y.status=b,y.statusText=(c||x)+"",j?s.resolveWith(p,[m,x,y]):s.rejectWith(p,[y,x,n]),y.statusCode(u),u=void 0,l&&q.trigger(j?"ajaxSuccess":"ajaxError",[y,o,j?m:n]),t.fireWith(p,[y,x]),l&&(q.trigger("ajaxComplete",[y,o]),--r.active||r.event.trigger("ajaxStop")))}return y},getJSON:function(a,b,c){return r.get(a,b,c,"json")},getScript:function(a,b){return r.get(a,void 0,b,"script")}}),r.each(["get","post"],function(a,b){r[b]=function(a,c,d,e){return r.isFunction(c)&&(e=e||d,d=c,c=void 0),r.ajax(r.extend({url:a,type:b,dataType:e,data:c,success:d},r.isPlainObject(a)&&a))}}),r._evalUrl=function(a){return r.ajax({url:a,type:"GET",dataType:"script",cache:!0,async:!1,global:!1,"throws":!0})},r.fn.extend({wrapAll:function(a){var b;return this[0]&&(r.isFunction(a)&&(a=a.call(this[0])),b=r(a,this[0].ownerDocument).eq(0).clone(!0),this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstElementChild)a=a.firstElementChild;return a}).append(this)),this},wrapInner:function(a){return r.isFunction(a)?this.each(function(b){r(this).wrapInner(a.call(this,b))}):this.each(function(){var b=r(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=r.isFunction(a);return this.each(function(c){r(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(a){return this.parent(a).not("body").each(function(){r(this).replaceWith(this.childNodes)}),this}}),r.expr.pseudos.hidden=function(a){return!r.expr.pseudos.visible(a)},r.expr.pseudos.visible=function(a){return!!(a.offsetWidth||a.offsetHeight||a.getClientRects().length)},r.ajaxSettings.xhr=function(){try{return new a.XMLHttpRequest}catch(b){}};var Rb={0:200,1223:204},Sb=r.ajaxSettings.xhr();o.cors=!!Sb&&"withCredentials"in Sb,o.ajax=Sb=!!Sb,r.ajaxTransport(function(b){var c,d;if(o.cors||Sb&&!b.crossDomain)return{send:function(e,f){var g,h=b.xhr();if(h.open(b.type,b.url,b.async,b.username,b.password),b.xhrFields)for(g in b.xhrFields)h[g]=b.xhrFields[g];b.mimeType&&h.overrideMimeType&&h.overrideMimeType(b.mimeType),b.crossDomain||e["X-Requested-With"]||(e["X-Requested-With"]="XMLHttpRequest");for(g in e)h.setRequestHeader(g,e[g]);c=function(a){return function(){c&&(c=d=h.onload=h.onerror=h.onabort=h.onreadystatechange=null,"abort"===a?h.abort():"error"===a?"number"!=typeof h.status?f(0,"error"):f(h.status,h.statusText):f(Rb[h.status]||h.status,h.statusText,"text"!==(h.responseType||"text")||"string"!=typeof h.responseText?{binary:h.response}:{text:h.responseText},h.getAllResponseHeaders()))}},h.onload=c(),d=h.onerror=c("error"),void 0!==h.onabort?h.onabort=d:h.onreadystatechange=function(){4===h.readyState&&a.setTimeout(function(){c&&d()})},c=c("abort");try{h.send(b.hasContent&&b.data||null)}catch(i){if(c)throw i}},abort:function(){c&&c()}}}),r.ajaxPrefilter(function(a){a.crossDomain&&(a.contents.script=!1)}),r.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/\b(?:java|ecma)script\b/},converters:{"text script":function(a){return r.globalEval(a),a}}}),r.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET")}),r.ajaxTransport("script",function(a){if(a.crossDomain){var b,c;return{send:function(e,f){b=r("<script>").prop({charset:a.scriptCharset,src:a.url}).on("load error",c=function(a){b.remove(),c=null,a&&f("error"===a.type?404:200,a.type)}),d.head.appendChild(b[0])},abort:function(){c&&c()}}}});var Tb=[],Ub=/(=)\?(?=&|$)|\?\?/;r.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=Tb.pop()||r.expando+"_"+ub++;return this[a]=!0,a}}),r.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(Ub.test(b.url)?"url":"string"==typeof b.data&&0===(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ub.test(b.data)&&"data");if(h||"jsonp"===b.dataTypes[0])return e=b.jsonpCallback=r.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(Ub,"$1"+e):b.jsonp!==!1&&(b.url+=(vb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||r.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){void 0===f?r(a).removeProp(e):a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,Tb.push(e)),g&&r.isFunction(f)&&f(g[0]),g=f=void 0}),"script"}),o.createHTMLDocument=function(){var a=d.implementation.createHTMLDocument("").body;return a.innerHTML="<form></form><form></form>",2===a.childNodes.length}(),r.parseHTML=function(a,b,c){if("string"!=typeof a)return[];"boolean"==typeof b&&(c=b,b=!1);var e,f,g;return b||(o.createHTMLDocument?(b=d.implementation.createHTMLDocument(""),e=b.createElement("base"),e.href=d.location.href,b.head.appendChild(e)):b=d),f=C.exec(a),g=!c&&[],f?[b.createElement(f[1])]:(f=qa([a],b,g),g&&g.length&&r(g).remove(),r.merge([],f.childNodes))},r.fn.load=function(a,b,c){var d,e,f,g=this,h=a.indexOf(" ");return h>-1&&(d=pb(a.slice(h)),a=a.slice(0,h)),r.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(e="POST"),g.length>0&&r.ajax({url:a,type:e||"GET",dataType:"html",data:b}).done(function(a){f=arguments,g.html(d?r("<div>").append(r.parseHTML(a)).find(d):a)}).always(c&&function(a,b){g.each(function(){c.apply(this,f||[a.responseText,b,a])})}),this},r.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){r.fn[b]=function(a){return this.on(b,a)}}),r.expr.pseudos.animated=function(a){return r.grep(r.timers,function(b){return a===b.elem}).length},r.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=r.css(a,"position"),l=r(a),m={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=r.css(a,"top"),i=r.css(a,"left"),j=("absolute"===k||"fixed"===k)&&(f+i).indexOf("auto")>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),r.isFunction(b)&&(b=b.call(a,c,r.extend({},h))),null!=b.top&&(m.top=b.top-h.top+g),null!=b.left&&(m.left=b.left-h.left+e),"using"in b?b.using.call(a,m):l.css(m)}},r.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){r.offset.setOffset(this,a,b)});var b,c,d,e,f=this[0];if(f)return f.getClientRects().length?(d=f.getBoundingClientRect(),b=f.ownerDocument,c=b.documentElement,e=b.defaultView,{top:d.top+e.pageYOffset-c.clientTop,left:d.left+e.pageXOffset-c.clientLeft}):{top:0,left:0}},position:function(){if(this[0]){var a,b,c=this[0],d={top:0,left:0};return"fixed"===r.css(c,"position")?b=c.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),B(a[0],"html")||(d=a.offset()),d={top:d.top+r.css(a[0],"borderTopWidth",!0),left:d.left+r.css(a[0],"borderLeftWidth",!0)}),{top:b.top-d.top-r.css(c,"marginTop",!0),left:b.left-d.left-r.css(c,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent;while(a&&"static"===r.css(a,"position"))a=a.offsetParent;return a||ra})}}),r.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c="pageYOffset"===b;r.fn[a]=function(d){return T(this,function(a,d,e){var f;return r.isWindow(a)?f=a:9===a.nodeType&&(f=a.defaultView),void 0===e?f?f[b]:a[d]:void(f?f.scrollTo(c?f.pageXOffset:e,c?e:f.pageYOffset):a[d]=e)},a,d,arguments.length)}}),r.each(["top","left"],function(a,b){r.cssHooks[b]=Pa(o.pixelPosition,function(a,c){if(c)return c=Oa(a,b),Ma.test(c)?r(a).position()[b]+"px":c})}),r.each({Height:"height",Width:"width"},function(a,b){r.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){r.fn[d]=function(e,f){var g=arguments.length&&(c||"boolean"!=typeof e),h=c||(e===!0||f===!0?"margin":"border");return T(this,function(b,c,e){var f;return r.isWindow(b)?0===d.indexOf("outer")?b["inner"+a]:b.document.documentElement["client"+a]:9===b.nodeType?(f=b.documentElement,Math.max(b.body["scroll"+a],f["scroll"+a],b.body["offset"+a],f["offset"+a],f["client"+a])):void 0===e?r.css(b,c,h):r.style(b,c,e,h)},b,g?e:void 0,g)}})}),r.fn.extend({bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)}}),r.holdReady=function(a){a?r.readyWait++:r.ready(!0)},r.isArray=Array.isArray,r.parseJSON=JSON.parse,r.nodeName=B,"function"==typeof define&&define.amd&&define("jquery",[],function(){return r});var Vb=a.jQuery,Wb=a.$;return r.noConflict=function(b){return a.$===r&&(a.$=Wb),b&&a.jQuery===r&&(a.jQuery=Vb),r},b||(a.jQuery=a.$=r),r});

autotest-latest/_static/comment-close.png

autotest-latest/_static/comment.png

autotest-latest/_static/jquery-3.2.1.js
/*!
 * jQuery JavaScript Library v3.2.1
 * https://jquery.com/
 *
 * Includes Sizzle.js
 * https://sizzlejs.com/
 *
 * Copyright JS Foundation and other contributors
 * Released under the MIT license
 * https://jquery.org/license
 *
 * Date: 2017-03-20T18:59Z
 */
(function(global, factory) {

	"use strict";

	if (typeof module === "object" && typeof module.exports === "object") {

		// For CommonJS and CommonJS-like environments where a proper `window`
		// is present, execute the factory and get jQuery.
		// For environments that do not have a `window` with a `document`
		// (such as Node.js), expose a factory as module.exports.
		// This accentuates the need for the creation of a real `window`.
		// e.g. var jQuery = require("jquery")(window);
		// See ticket #14549 for more info.
		module.exports = global.document ?
			factory(global, true) :
			function(w) {
				if (!w.document) {
					throw new Error("jQuery requires a window with a document");
				}
				return factory(w);
			};
	} else {
		factory(global);
	}

// Pass this if window is not defined yet
})(typeof window !== "undefined" ? window : this, function(window, noGlobal) {

// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1
// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode
// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common
// enough that all such attempts are guarded in a try block.
"use strict";

var arr = [];

var document = window.document;

var getProto = Object.getPrototypeOf;

var slice = arr.slice;

var concat = arr.concat;

var push = arr.push;

var indexOf = arr.indexOf;

var class2type = {};

var toString = class2type.toString;

var hasOwn = class2type.hasOwnProperty;

var fnToString = hasOwn.toString;

var ObjectFunctionString = fnToString.call(Object);

var support = {};

	function DOMEval(code, doc) {
		doc = doc || document;

		var script = doc.createElement("script");

		script.text = code;
		doc.head.appendChild(script).parentNode.removeChild(script);
	}
/* global Symbol */
// Defining this global in .eslintrc.json would create a danger of using the global
// unguarded in another place, it seems safer to define global only for this module

var
	version = "3.2.1",

	// Define a local copy of jQuery
	jQuery = function(selector, context) {

		// The jQuery object is actually just the init constructor 'enhanced'
		// Need init if jQuery is called (just allow error to be thrown if not included)
		return new jQuery.fn.init(selector, context);
	},

	// Support: Android <=4.0 only
	// Make sure we trim BOM and NBSP
	rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,

	// Matches dashed string for camelizing
	rmsPrefix = /^-ms-/,
	rdashAlpha = /-([a-z])/g,

	// Used by jQuery.camelCase as callback to replace()
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn = jQuery.prototype = {

	// The current version of jQuery being used
	jquery: version,

	constructor: jQuery,

	// The default length of a jQuery object is 0
	length: 0,

	toArray: function() {
		return slice.call(this);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {

		// Return all the elements in a clean array
		if (num == null) {
			return slice.call(this);
		}

		// Return just the one element from the set
		return num < 0 ? this[num + this.length] : this[num];
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems) {

		// Build a new jQuery matched element set
		var ret = jQuery.merge(this.constructor(), elems);

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	each: function(callback) {
		return jQuery.each(this, callback);
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments));
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	eq: function(i) {
		var len = this.length,
			j = +i + (i < 0 ? len : 0);
		return this.pushStack(j >= 0 && j < len ? [this[j]] : []);
	},

	end: function() {
		return this.prevObject || this.constructor();
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: arr.sort,
	splice: arr.splice
};

jQuery.extend = jQuery.fn.extend = function() {
	var options, name, src, copy, copyIsArray, clone,
		target = arguments[0] || {},
		i = 1,
		length = arguments.length,
		deep = false;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;

		// Skip the boolean and the target
		target = arguments[i] || {};
		i++;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// Extend jQuery itself if only one argument is passed
	if (i === length) {
		target = this;
		i--;
	}

	for (; i < length; i++) {

		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {

			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging plain objects or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) ||
					(copyIsArray = Array.isArray(copy)))) {

					if (copyIsArray) {
						copyIsArray = false;
						clone = src && Array.isArray(src) ? src : [];

					} else {
						clone = src && jQuery.isPlainObject(src) ? src : {};
					}

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({

	// Unique for each copy of jQuery on the page
	expando: "jQuery" + (version + Math.random()).replace(/\D/g, ""),

	// Assume jQuery is ready without the ready module
	isReady: true,

	error: function(msg) {
		throw new Error(msg);
	},

	noop: function() {},

	isFunction: function(obj) {
		return jQuery.type(obj) === "function";
	},

	isWindow: function(obj) {
		return obj != null && obj === obj.window;
	},

	isNumeric: function(obj) {

		// As of jQuery 3.0, isNumeric is limited to
		// strings and numbers (primitives or objects)
		// that can be coerced to finite numbers (gh-2662)
		var type = jQuery.type(obj);
		return (type === "number" || type === "string") &&

			// parseFloat NaNs numeric-cast false positives ("")
			// ...but misinterprets leading-number strings, particularly hex literals ("0x...")
			// subtraction forces infinities to NaN
			!isNaN(obj - parseFloat(obj));
	},

	isPlainObject: function(obj) {
		var proto, Ctor;

		// Detect obvious negatives
		// Use toString instead of jQuery.type to catch host objects
		if (!obj || toString.call(obj) !== "[object Object]") {
			return false;
		}

		proto = getProto(obj);

		// Objects with no prototype (e.g., `Object.create(null)`) are plain
		if (!proto) {
			return true;
		}

		// Objects with prototype are plain iff they were constructed by a global Object function
		Ctor = hasOwn.call(proto, "constructor") && proto.constructor;
		return typeof Ctor === "function" && fnToString.call(Ctor) === ObjectFunctionString;
	},

	isEmptyObject: function(obj) {

		/* eslint-disable no-unused-vars */
		// See https://github.com/eslint/eslint/issues/6125
		var name;

		for (name in obj) {
			return false;
		}
		return true;
	},

	type: function(obj) {
		if (obj == null) {
			return obj + "";
		}

		// Support: Android <=2.3 only (functionish RegExp)
		return typeof obj === "object" || typeof obj === "function" ?
			class2type[toString.call(obj)] || "object" :
			typeof obj;
	},

	// Evaluates a script in a global context
	globalEval: function(code) {
		DOMEval(code);
	},

	// Convert dashed to camelCase; used by the css and data modules
	// Support: IE <=9 - 11, Edge 12 - 13
	// Microsoft forgot to hump their vendor prefix (#9572)
	camelCase: function(string) {
		return string.replace(rmsPrefix, "ms-").replace(rdashAlpha, fcamelCase);
	},

	each: function(obj, callback) {
		var length, i = 0;

		if (isArrayLike(obj)) {
			length = obj.length;
			for (; i < length; i++) {
				if (callback.call(obj[i], i, obj[i]) === false) {
					break;
				}
			}
		} else {
			for (i in obj) {
				if (callback.call(obj[i], i, obj[i]) === false) {
					break;
				}
			}
		}

		return obj;
	},

	// Support: Android <=4.0 only
	trim: function(text) {
		return text == null ?
			"" :
			(text + "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(arr, results) {
		var ret = results || [];

		if (arr != null) {
			if (isArrayLike(Object(arr))) {
				jQuery.merge(ret,
					typeof arr === "string" ?
					[arr] : arr
);
			} else {
				push.call(ret, arr);
			}
		}

		return ret;
	},

	inArray: function(elem, arr, i) {
		return arr == null ? -1 : indexOf.call(arr, elem, i);
	},

	// Support: Android <=4.0 only, PhantomJS 1 only
	// push.apply(_, arraylike) throws on ancient WebKit
	merge: function(first, second) {
		var len = +second.length,
			j = 0,
			i = first.length;

		for (; j < len; j++) {
			first[i++] = second[j];
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, invert) {
		var callbackInverse,
			matches = [],
			i = 0,
			length = elems.length,
			callbackExpect = !invert;

		// Go through the array, only saving the items
		// that pass the validator function
		for (; i < length; i++) {
			callbackInverse = !callback(elems[i], i);
			if (callbackInverse !== callbackExpect) {
				matches.push(elems[i]);
			}
		}

		return matches;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var length, value,
			i = 0,
			ret = [];

		// Go through the array, translating each of the items to their new values
		if (isArrayLike(elems)) {
			length = elems.length;
			for (; i < length; i++) {
				value = callback(elems[i], i, arg);

				if (value != null) {
					ret.push(value);
				}
			}

		// Go through every key on the object,
		} else {
			for (i in elems) {
				value = callback(elems[i], i, arg);

				if (value != null) {
					ret.push(value);
				}
			}
		}

		// Flatten any nested arrays
		return concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	// Bind a function to a context, optionally partially applying any
	// arguments.
	proxy: function(fn, context) {
		var tmp, args, proxy;

		if (typeof context === "string") {
			tmp = fn[context];
			context = fn;
			fn = tmp;
		}

		// Quick check to determine if target is callable, in the spec
		// this throws a TypeError, but we will just return undefined.
		if (!jQuery.isFunction(fn)) {
			return undefined;
		}

		// Simulated bind
		args = slice.call(arguments, 2);
		proxy = function() {
			return fn.apply(context || this, args.concat(slice.call(arguments)));
		};

		// Set the guid of unique handler to the same of original handler, so it can be removed
		proxy.guid = fn.guid = fn.guid || jQuery.guid++;

		return proxy;
	},

	now: Date.now,

	// jQuery.support is not used in Core but other projects attach their
	// properties to it so it needs to exist.
	support: support
});

if (typeof Symbol === "function") {
	jQuery.fn[Symbol.iterator] = arr[Symbol.iterator];
}

// Populate the class2type map
jQuery.each("Boolean Number String Function Array Date RegExp Object Error Symbol".split(" "),
function(i, name) {
	class2type["[object " + name + "]"] = name.toLowerCase();
});

function isArrayLike(obj) {

	// Support: real iOS 8.2 only (not reproducible in simulator)
	// `in` check used to prevent JIT error (gh-2145)
	// hasOwn isn't used here due to false negatives
	// regarding Nodelist length in IE
	var length = !!obj && "length" in obj && obj.length,
		type = jQuery.type(obj);

	if (type === "function" || jQuery.isWindow(obj)) {
		return false;
	}

	return type === "array" || length === 0 ||
		typeof length === "number" && length > 0 && (length - 1) in obj;
}
var Sizzle =
/*!
 * Sizzle CSS Selector Engine v2.3.3
 * https://sizzlejs.com/
 *
 * Copyright jQuery Foundation and other contributors
 * Released under the MIT license
 * http://jquery.org/license
 *
 * Date: 2016-08-08
 */
(function(window) {

var i,
	support,
	Expr,
	getText,
	isXML,
	tokenize,
	compile,
	select,
	outermostContext,
	sortInput,
	hasDuplicate,

	// Local document vars
	setDocument,
	document,
	docElem,
	documentIsHTML,
	rbuggyQSA,
	rbuggyMatches,
	matches,
	contains,

	// Instance-specific data
	expando = "sizzle" + 1 * new Date(),
	preferredDoc = window.document,
	dirruns = 0,
	done = 0,
	classCache = createCache(),
	tokenCache = createCache(),
	compilerCache = createCache(),
	sortOrder = function(a, b) {
		if (a === b) {
			hasDuplicate = true;
		}
		return 0;
	},

	// Instance methods
	hasOwn = ({}).hasOwnProperty,
	arr = [],
	pop = arr.pop,
	push_native = arr.push,
	push = arr.push,
	slice = arr.slice,
	// Use a stripped-down indexOf as it's faster than native
	// https://jsperf.com/thor-indexof-vs-for/5
	indexOf = function(list, elem) {
		var i = 0,
			len = list.length;
		for (; i < len; i++) {
			if (list[i] === elem) {
				return i;
			}
		}
		return -1;
	},

	booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",

	// Regular expressions

	// http://www.w3.org/TR/css3-selectors/#whitespace
	whitespace = "[\\x20\\t\\r\\n\\f]",

	// http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier
	identifier = "(?:\\\\.|[\\w-]|[^\0-\\xa0])+",

	// Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors
	attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace +
		// Operator (capture 2)
		"*([*^$|!~]?=)" + whitespace +
		// "Attribute values must be CSS identifiers [capture 5] or strings [capture 3 or capture 4]"
		"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + whitespace +
		"*\\]",

	pseudos = ":(" + identifier + ")(?:\\((" +
		// To reduce the number of selectors needing tokenize in the preFilter, prefer arguments:
		// 1. quoted (capture 3; capture 4 or capture 5)
		"('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" +
		// 2. simple (capture 6)
		"((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" +
		// 3. anything else (capture 2)
		".*" +
		")\\)|)",

	// Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter
	rwhitespace = new RegExp(whitespace + "+", "g"),
	rtrim = new RegExp("^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + whitespace + "+$", "g"),

	rcomma = new RegExp("^" + whitespace + "*," + whitespace + "*"),
	rcombinators = new RegExp("^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + "*"),

	rattributeQuotes = new RegExp("=" + whitespace + "*([^\\]'\"]*?)" + whitespace + "*\\]", "g"),

	rpseudo = new RegExp(pseudos),
	ridentifier = new RegExp("^" + identifier + "$"),

	matchExpr = {
		"ID": new RegExp("^#(" + identifier + ")"),
		"CLASS": new RegExp("^\\.(" + identifier + ")"),
		"TAG": new RegExp("^(" + identifier + "|[*])"),
		"ATTR": new RegExp("^" + attributes),
		"PSEUDO": new RegExp("^" + pseudos),
		"CHILD": new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + whitespace +
			"*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + whitespace +
			"*(\\d+)|))" + whitespace + "*\\)|)", "i"),
		"bool": new RegExp("^(?:" + booleans + ")$", "i"),
		// For use in libraries implementing .is()
		// We use this for POS matching in `select`
		"needsContext": new RegExp("^" + whitespace + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" +
			whitespace + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i")
	},

	rinputs = /^(?:input|select|textarea|button)$/i,
	rheader = /^h\d$/i,

	rnative = /^[^{]+\{\s*\[native \w/,

	// Easily-parseable/retrievable ID or TAG or CLASS selectors
	rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,

	rsibling = /[+~]/,

	// CSS escapes
	// http://www.w3.org/TR/CSS21/syndata.html#escaped-characters
	runescape = new RegExp("\\\\([\\da-f]{1,6}" + whitespace + "?|(" + whitespace + ")|.)", "ig"),
	funescape = function(_, escaped, escapedWhitespace) {
		var high = "0x" + escaped - 0x10000;
		// NaN means non-codepoint
		// Support: Firefox<24
		// Workaround erroneous numeric interpretation of +"0x"
		return high !== high || escapedWhitespace ?
			escaped :
			high < 0 ?
				// BMP codepoint
				String.fromCharCode(high + 0x10000) :
				// Supplemental Plane codepoint (surrogate pair)
				String.fromCharCode(high >> 10 | 0xD800, high & 0x3FF | 0xDC00);
	},

	// CSS string/identifier serialization
	// https://drafts.csswg.org/cssom/#common-serializing-idioms
	rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,
	fcssescape = function(ch, asCodePoint) {
		if (asCodePoint) {

			// U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER
			if (ch === "\0") {
				return "\uFFFD";
			}

			// Control characters and (dependent upon position) numbers get escaped as code points
			return ch.slice(0, -1) + "\\" + ch.charCodeAt(ch.length - 1).toString(16) + " ";
		}

		// Other potentially-special ASCII characters get backslash-escaped
		return "\\" + ch;
	},

	// Used for iframes
	// See setDocument()
	// Removing the function wrapper causes a "Permission Denied"
	// error in IE
	unloadHandler = function() {
		setDocument();
	},

	disabledAncestor = addCombinator(
		function(elem) {
			return elem.disabled === true && ("form" in elem || "label" in elem);
		},
		{ dir: "parentNode", next: "legend" }
);

// Optimize for push.apply(_, NodeList)
try {
	push.apply(
		(arr = slice.call(preferredDoc.childNodes)),
		preferredDoc.childNodes
);
	// Support: Android<4.0
	// Detect silently failing push.apply
	arr[preferredDoc.childNodes.length].nodeType;
} catch (e) {
	push = { apply: arr.length ?

		// Leverage slice if possible
		function(target, els) {
			push_native.apply(target, slice.call(els));
		} :

		// Support: IE<9
		// Otherwise append directly
		function(target, els) {
			var j = target.length,
				i = 0;
			// Can't trust NodeList.length
			while ((target[j++] = els[i++])) {}
			target.length = j - 1;
		}
	};
}

function Sizzle(selector, context, results, seed) {
	var m, i, elem, nid, match, groups, newSelector,
		newContext = context && context.ownerDocument,

		// nodeType defaults to 9, since context defaults to document
		nodeType = context ? context.nodeType : 9;

	results = results || [];

	// Return early from calls with invalid selector or context
	if (typeof selector !== "string" || !selector ||
		nodeType !== 1 && nodeType !== 9 && nodeType !== 11) {

		return results;
	}

	// Try to shortcut find operations (as opposed to filters) in HTML documents
	if (!seed) {

		if ((context ? context.ownerDocument || context : preferredDoc) !== document) {
			setDocument(context);
		}
		context = context || document;

		if (documentIsHTML) {

			// If the selector is sufficiently simple, try using a "get*By*" DOM method
			// (excepting DocumentFragment context, where the methods don't exist)
			if (nodeType !== 11 && (match = rquickExpr.exec(selector))) {

				// ID selector
				if ((m = match[1])) {

					// Document context
					if (nodeType === 9) {
						if ((elem = context.getElementById(m))) {

							// Support: IE, Opera, Webkit
							// TODO: identify versions
							// getElementById can match elements by name instead of ID
							if (elem.id === m) {
								results.push(elem);
								return results;
							}
						} else {
							return results;
						}

					// Element context
					} else {

						// Support: IE, Opera, Webkit
						// TODO: identify versions
						// getElementById can match elements by name instead of ID
						if (newContext && (elem = newContext.getElementById(m)) &&
							contains(context, elem) &&
							elem.id === m) {

							results.push(elem);
							return results;
						}
					}

				// Type selector
				} else if (match[2]) {
					push.apply(results, context.getElementsByTagName(selector));
					return results;

				// Class selector
				} else if ((m = match[3]) && support.getElementsByClassName &&
					context.getElementsByClassName) {

					push.apply(results, context.getElementsByClassName(m));
					return results;
				}
			}

			// Take advantage of querySelectorAll
			if (support.qsa &&
				!compilerCache[selector + " "] &&
				(!rbuggyQSA || !rbuggyQSA.test(selector))) {

				if (nodeType !== 1) {
					newContext = context;
					newSelector = selector;

				// qSA looks outside Element context, which is not what we want
				// Thanks to Andrew Dupont for this workaround technique
				// Support: IE <=8
				// Exclude object elements
				} else if (context.nodeName.toLowerCase() !== "object") {

					// Capture the context ID, setting it first if necessary
					if ((nid = context.getAttribute("id"))) {
						nid = nid.replace(rcssescape, fcssescape);
					} else {
						context.setAttribute("id", (nid = expando));
					}

					// Prefix every selector in the list
					groups = tokenize(selector);
					i = groups.length;
					while (i--) {
						groups[i] = "#" + nid + " " + toSelector(groups[i]);
					}
					newSelector = groups.join(",");

					// Expand context for sibling selectors
					newContext = rsibling.test(selector) && testContext(context.parentNode) ||
						context;
				}

				if (newSelector) {
					try {
						push.apply(results,
							newContext.querySelectorAll(newSelector)
);
						return results;
					} catch (qsaError) {
					} finally {
						if (nid === expando) {
							context.removeAttribute("id");
						}
					}
				}
			}
		}
	}

	// All others
	return select(selector.replace(rtrim, "$1"), context, results, seed);
}

/**
 * Create key-value caches of limited size
 * @returns {function(string, object)} Returns the Object data after storing it on itself with
 *	property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength)
 *	deleting the oldest entry
 */
function createCache() {
	var keys = [];

	function cache(key, value) {
		// Use (key + " ") to avoid collision with native prototype properties (see Issue #157)
		if (keys.push(key + " ") > Expr.cacheLength) {
			// Only keep the most recent entries
			delete cache[keys.shift()];
		}
		return (cache[key + " "] = value);
	}
	return cache;
}

/**
 * Mark a function for special use by Sizzle
 * @param {Function} fn The function to mark
 */
function markFunction(fn) {
	fn[expando] = true;
	return fn;
}

/**
 * Support testing using an element
 * @param {Function} fn Passed the created element and returns a boolean result
 */
function assert(fn) {
	var el = document.createElement("fieldset");

	try {
		return !!fn(el);
	} catch (e) {
		return false;
	} finally {
		// Remove from its parent by default
		if (el.parentNode) {
			el.parentNode.removeChild(el);
		}
		// release memory in IE
		el = null;
	}
}

/**
 * Adds the same handler for all of the specified attrs
 * @param {String} attrs Pipe-separated list of attributes
 * @param {Function} handler The method that will be applied
 */
function addHandle(attrs, handler) {
	var arr = attrs.split("|"),
		i = arr.length;

	while (i--) {
		Expr.attrHandle[arr[i]] = handler;
	}
}

/**
 * Checks document order of two siblings
 * @param {Element} a
 * @param {Element} b
 * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b
 */
function siblingCheck(a, b) {
	var cur = b && a,
		diff = cur && a.nodeType === 1 && b.nodeType === 1 &&
			a.sourceIndex - b.sourceIndex;

	// Use IE sourceIndex if available on both nodes
	if (diff) {
		return diff;
	}

	// Check if b follows a
	if (cur) {
		while ((cur = cur.nextSibling)) {
			if (cur === b) {
				return -1;
			}
		}
	}

	return a ? 1 : -1;
}

/**
 * Returns a function to use in pseudos for input types
 * @param {String} type
 */
function createInputPseudo(type) {
	return function(elem) {
		var name = elem.nodeName.toLowerCase();
		return name === "input" && elem.type === type;
	};
}

/**
 * Returns a function to use in pseudos for buttons
 * @param {String} type
 */
function createButtonPseudo(type) {
	return function(elem) {
		var name = elem.nodeName.toLowerCase();
		return (name === "input" || name === "button") && elem.type === type;
	};
}

/**
 * Returns a function to use in pseudos for :enabled/:disabled
 * @param {Boolean} disabled true for :disabled; false for :enabled
 */
function createDisabledPseudo(disabled) {

	// Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable
	return function(elem) {

		// Only certain elements can match :enabled or :disabled
		// https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled
		// https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled
		if ("form" in elem) {

			// Check for inherited disabledness on relevant non-disabled elements:
			// * listed form-associated elements in a disabled fieldset
			// https://html.spec.whatwg.org/multipage/forms.html#category-listed
			// https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled
			// * option elements in a disabled optgroup
			// https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled
			// All such elements have a "form" property.
			if (elem.parentNode && elem.disabled === false) {

				// Option elements defer to a parent optgroup if present
				if ("label" in elem) {
					if ("label" in elem.parentNode) {
						return elem.parentNode.disabled === disabled;
					} else {
						return elem.disabled === disabled;
					}
				}

				// Support: IE 6 - 11
				// Use the isDisabled shortcut property to check for disabled fieldset ancestors
				return elem.isDisabled === disabled ||

					// Where there is no isDisabled, check manually
					/* jshint -W018 */
					elem.isDisabled !== !disabled &&
						disabledAncestor(elem) === disabled;
			}

			return elem.disabled === disabled;

		// Try to winnow out elements that can't be disabled before trusting the disabled property.
		// Some victims get caught in our net (label, legend, menu, track), but it shouldn't
		// even exist on them, let alone have a boolean value.
		} else if ("label" in elem) {
			return elem.disabled === disabled;
		}

		// Remaining elements are neither :enabled nor :disabled
		return false;
	};
}

/**
 * Returns a function to use in pseudos for positionals
 * @param {Function} fn
 */
function createPositionalPseudo(fn) {
	return markFunction(function(argument) {
		argument = +argument;
		return markFunction(function(seed, matches) {
			var j,
				matchIndexes = fn([], seed.length, argument),
				i = matchIndexes.length;

			// Match elements found at the specified indexes
			while (i--) {
				if (seed[(j = matchIndexes[i])]) {
					seed[j] = !(matches[j] = seed[j]);
				}
			}
		});
	});
}

/**
 * Checks a node for validity as a Sizzle context
 * @param {Element|Object=} context
 * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value
 */
function testContext(context) {
	return context && typeof context.getElementsByTagName !== "undefined" && context;
}

// Expose support vars for convenience
support = Sizzle.support = {};

/**
 * Detects XML nodes
 * @param {Element|Object} elem An element or a document
 * @returns {Boolean} True iff elem is a non-HTML XML node
 */
isXML = Sizzle.isXML = function(elem) {
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = elem && (elem.ownerDocument || elem).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

/**
 * Sets document-related variables once based on the current document
 * @param {Element|Object} [doc] An element or document object to use to set the document
 * @returns {Object} Returns the current document
 */
setDocument = Sizzle.setDocument = function(node) {
	var hasCompare, subWindow,
		doc = node ? node.ownerDocument || node : preferredDoc;

	// Return early if doc is invalid or already selected
	if (doc === document || doc.nodeType !== 9 || !doc.documentElement) {
		return document;
	}

	// Update global variables
	document = doc;
	docElem = document.documentElement;
	documentIsHTML = !isXML(document);

	// Support: IE 9-11, Edge
	// Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936)
	if (preferredDoc !== document &&
		(subWindow = document.defaultView) && subWindow.top !== subWindow) {

		// Support: IE 11, Edge
		if (subWindow.addEventListener) {
			subWindow.addEventListener("unload", unloadHandler, false);

		// Support: IE 9 - 10 only
		} else if (subWindow.attachEvent) {
			subWindow.attachEvent("onunload", unloadHandler);
		}
	}

	/* Attributes
	-- */

	// Support: IE<8
	// Verify that getAttribute really returns attributes and not properties
	// (excepting IE8 booleans)
	support.attributes = assert(function(el) {
		el.className = "i";
		return !el.getAttribute("className");
	});

	/* getElement(s)By*
	-- */

	// Check if getElementsByTagName("*") returns only elements
	support.getElementsByTagName = assert(function(el) {
		el.appendChild(document.createComment(""));
		return !el.getElementsByTagName("*").length;
	});

	// Support: IE<9
	support.getElementsByClassName = rnative.test(document.getElementsByClassName);

	// Support: IE<10
	// Check if getElementById returns elements by name
	// The broken getElementById methods don't pick up programmatically-set names,
	// so use a roundabout getElementsByName test
	support.getById = assert(function(el) {
		docElem.appendChild(el).id = expando;
		return !document.getElementsByName || !document.getElementsByName(expando).length;
	});

	// ID filter and find
	if (support.getById) {
		Expr.filter["ID"] = function(id) {
			var attrId = id.replace(runescape, funescape);
			return function(elem) {
				return elem.getAttribute("id") === attrId;
			};
		};
		Expr.find["ID"] = function(id, context) {
			if (typeof context.getElementById !== "undefined" && documentIsHTML) {
				var elem = context.getElementById(id);
				return elem ? [elem] : [];
			}
		};
	} else {
		Expr.filter["ID"] = function(id) {
			var attrId = id.replace(runescape, funescape);
			return function(elem) {
				var node = typeof elem.getAttributeNode !== "undefined" &&
					elem.getAttributeNode("id");
				return node && node.value === attrId;
			};
		};

		// Support: IE 6 - 7 only
		// getElementById is not reliable as a find shortcut
		Expr.find["ID"] = function(id, context) {
			if (typeof context.getElementById !== "undefined" && documentIsHTML) {
				var node, i, elems,
					elem = context.getElementById(id);

				if (elem) {

					// Verify the id attribute
					node = elem.getAttributeNode("id");
					if (node && node.value === id) {
						return [elem];
					}

					// Fall back on getElementsByName
					elems = context.getElementsByName(id);
					i = 0;
					while ((elem = elems[i++])) {
						node = elem.getAttributeNode("id");
						if (node && node.value === id) {
							return [elem];
						}
					}
				}

				return [];
			}
		};
	}

	// Tag
	Expr.find["TAG"] = support.getElementsByTagName ?
		function(tag, context) {
			if (typeof context.getElementsByTagName !== "undefined") {
				return context.getElementsByTagName(tag);

			// DocumentFragment nodes don't have gEBTN
			} else if (support.qsa) {
				return context.querySelectorAll(tag);
			}
		} :

		function(tag, context) {
			var elem,
				tmp = [],
				i = 0,
				// By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too
				results = context.getElementsByTagName(tag);

			// Filter out possible comments
			if (tag === "*") {
				while ((elem = results[i++])) {
					if (elem.nodeType === 1) {
						tmp.push(elem);
					}
				}

				return tmp;
			}
			return results;
		};

	// Class
	Expr.find["CLASS"] = support.getElementsByClassName && function(className, context) {
		if (typeof context.getElementsByClassName !== "undefined" && documentIsHTML) {
			return context.getElementsByClassName(className);
		}
	};

	/* QSA/matchesSelector
	-- */

	// QSA and matchesSelector support

	// matchesSelector(:active) reports false when true (IE9/Opera 11.5)
	rbuggyMatches = [];

	// qSa(:focus) reports false when true (Chrome 21)
	// We allow this because of a bug in IE8/9 that throws an error
	// whenever `document.activeElement` is accessed on an iframe
	// So, we allow :focus to pass through QSA all the time to avoid the IE error
	// See https://bugs.jquery.com/ticket/13378
	rbuggyQSA = [];

	if ((support.qsa = rnative.test(document.querySelectorAll))) {
		// Build QSA regex
		// Regex strategy adopted from Diego Perini
		assert(function(el) {
			// Select is set to empty string on purpose
			// This is to test IE's treatment of not explicitly
			// setting a boolean content attribute,
			// since its presence should be enough
			// https://bugs.jquery.com/ticket/12359
			docElem.appendChild(el).innerHTML = "" +
				"<select id='" + expando + "-\r\\' msallowcapture=''>" +
				"<option selected=''></option></select>";

			// Support: IE8, Opera 11-12.16
			// Nothing should be selected when empty strings follow ^= or $= or *=
			// The test attribute must be unknown in Opera but "safe" for WinRT
			// https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section
			if (el.querySelectorAll("[msallowcapture^='']").length) {
				rbuggyQSA.push("[*^$]=" + whitespace + "*(?:''|\"\")");
			}

			// Support: IE8
			// Boolean attributes and "value" are not treated correctly
			if (!el.querySelectorAll("[selected]").length) {
				rbuggyQSA.push("\\[" + whitespace + "*(?:value|" + booleans + ")");
			}

			// Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+
			if (!el.querySelectorAll("[id~=" + expando + "-]").length) {
				rbuggyQSA.push("~=");
			}

			// Webkit/Opera - :checked should return selected option elements
			// http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked
			// IE8 throws error here and will not see later tests
			if (!el.querySelectorAll(":checked").length) {
				rbuggyQSA.push(":checked");
			}

			// Support: Safari 8+, iOS 8+
			// https://bugs.webkit.org/show_bug.cgi?id=136851
			// In-page `selector#id sibling-combinator selector` fails
			if (!el.querySelectorAll("a#" + expando + "+*").length) {
				rbuggyQSA.push(".#.+[+~]");
			}
		});

		assert(function(el) {
			el.innerHTML = "" +
				"<select disabled='disabled'><option/></select>";

			// Support: Windows 8 Native Apps
			// The type and name attributes are restricted during .innerHTML assignment
			var input = document.createElement("input");
			input.setAttribute("type", "hidden");
			el.appendChild(input).setAttribute("name", "D");

			// Support: IE8
			// Enforce case-sensitivity of name attribute
			if (el.querySelectorAll("[name=d]").length) {
				rbuggyQSA.push("name" + whitespace + "*[*^$|!~]?=");
			}

			// FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled)
			// IE8 throws error here and will not see later tests
			if (el.querySelectorAll(":enabled").length !== 2) {
				rbuggyQSA.push(":enabled", ":disabled");
			}

			// Support: IE9-11+
			// IE's :disabled selector does not pick up the children of disabled fieldsets
			docElem.appendChild(el).disabled = true;
			if (el.querySelectorAll(":disabled").length !== 2) {
				rbuggyQSA.push(":enabled", ":disabled");
			}

			// Opera 10-11 does not throw on post-comma invalid pseudos
			el.querySelectorAll("*,:x");
			rbuggyQSA.push(",.*:");
		});
	}

	if ((support.matchesSelector = rnative.test((matches = docElem.matches ||
		docElem.webkitMatchesSelector ||
		docElem.mozMatchesSelector ||
		docElem.oMatchesSelector ||
		docElem.msMatchesSelector)))) {

		assert(function(el) {
			// Check to see if it's possible to do matchesSelector
			// on a disconnected node (IE 9)
			support.disconnectedMatch = matches.call(el, "*");

			// This should fail with an exception
			// Gecko does not error, returns false instead
			matches.call(el, "[s!='']:x");
			rbuggyMatches.push("!=", pseudos);
		});
	}

	rbuggyQSA = rbuggyQSA.length && new RegExp(rbuggyQSA.join("|"));
	rbuggyMatches = rbuggyMatches.length && new RegExp(rbuggyMatches.join("|"));

	/* Contains
	-- */
	hasCompare = rnative.test(docElem.compareDocumentPosition);

	// Element contains another
	// Purposefully self-exclusive
	// As in, an element does not contain itself
	contains = hasCompare || rnative.test(docElem.contains) ?
		function(a, b) {
			var adown = a.nodeType === 9 ? a.documentElement : a,
				bup = b && b.parentNode;
			return a === bup || !!(bup && bup.nodeType === 1 && (
				adown.contains ?
					adown.contains(bup) :
					a.compareDocumentPosition && a.compareDocumentPosition(bup) & 16
));
		} :
		function(a, b) {
			if (b) {
				while ((b = b.parentNode)) {
					if (b === a) {
						return true;
					}
				}
			}
			return false;
		};

	/* Sorting
	-- */

	// Document order sorting
	sortOrder = hasCompare ?
	function(a, b) {

		// Flag for duplicate removal
		if (a === b) {
			hasDuplicate = true;
			return 0;
		}

		// Sort on method existence if only one input has compareDocumentPosition
		var compare = !a.compareDocumentPosition - !b.compareDocumentPosition;
		if (compare) {
			return compare;
		}

		// Calculate position if both inputs belong to the same document
		compare = (a.ownerDocument || a) === (b.ownerDocument || b) ?
			a.compareDocumentPosition(b) :

			// Otherwise we know they are disconnected
			1;

		// Disconnected nodes
		if (compare & 1 ||
			(!support.sortDetached && b.compareDocumentPosition(a) === compare)) {

			// Choose the first element that is related to our preferred document
			if (a === document || a.ownerDocument === preferredDoc && contains(preferredDoc, a)) {
				return -1;
			}
			if (b === document || b.ownerDocument === preferredDoc && contains(preferredDoc, b)) {
				return 1;
			}

			// Maintain original order
			return sortInput ?
				(indexOf(sortInput, a) - indexOf(sortInput, b)) :
				0;
		}

		return compare & 4 ? -1 : 1;
	} :
	function(a, b) {
		// Exit early if the nodes are identical
		if (a === b) {
			hasDuplicate = true;
			return 0;
		}

		var cur,
			i = 0,
			aup = a.parentNode,
			bup = b.parentNode,
			ap = [a],
			bp = [b];

		// Parentless nodes are either documents or disconnected
		if (!aup || !bup) {
			return a === document ? -1 :
				b === document ? 1 :
				aup ? -1 :
				bup ? 1 :
				sortInput ?
				(indexOf(sortInput, a) - indexOf(sortInput, b)) :
				0;

		// If the nodes are siblings, we can do a quick check
		} else if (aup === bup) {
			return siblingCheck(a, b);
		}

		// Otherwise we need full lists of their ancestors for comparison
		cur = a;
		while ((cur = cur.parentNode)) {
			ap.unshift(cur);
		}
		cur = b;
		while ((cur = cur.parentNode)) {
			bp.unshift(cur);
		}

		// Walk down the tree looking for a discrepancy
		while (ap[i] === bp[i]) {
			i++;
		}

		return i ?
			// Do a sibling check if the nodes have a common ancestor
			siblingCheck(ap[i], bp[i]) :

			// Otherwise nodes in our document sort first
			ap[i] === preferredDoc ? -1 :
			bp[i] === preferredDoc ? 1 :
			0;
	};

	return document;
};

Sizzle.matches = function(expr, elements) {
	return Sizzle(expr, null, null, elements);
};

Sizzle.matchesSelector = function(elem, expr) {
	// Set document vars if needed
	if ((elem.ownerDocument || elem) !== document) {
		setDocument(elem);
	}

	// Make sure that attribute selectors are quoted
	expr = expr.replace(rattributeQuotes, "='$1']");

	if (support.matchesSelector && documentIsHTML &&
		!compilerCache[expr + " "] &&
		(!rbuggyMatches || !rbuggyMatches.test(expr)) &&
		(!rbuggyQSA || !rbuggyQSA.test(expr))) {

		try {
			var ret = matches.call(elem, expr);

			// IE 9's matchesSelector returns false on disconnected nodes
			if (ret || support.disconnectedMatch ||
					// As well, disconnected nodes are said to be in a document
					// fragment in IE 9
					elem.document && elem.document.nodeType !== 11) {
				return ret;
			}
		} catch (e) {}
	}

	return Sizzle(expr, document, null, [elem]).length > 0;
};

Sizzle.contains = function(context, elem) {
	// Set document vars if needed
	if ((context.ownerDocument || context) !== document) {
		setDocument(context);
	}
	return contains(context, elem);
};

Sizzle.attr = function(elem, name) {
	// Set document vars if needed
	if ((elem.ownerDocument || elem) !== document) {
		setDocument(elem);
	}

	var fn = Expr.attrHandle[name.toLowerCase()],
		// Don't get fooled by Object.prototype properties (jQuery #13807)
		val = fn && hasOwn.call(Expr.attrHandle, name.toLowerCase()) ?
			fn(elem, name, !documentIsHTML) :
			undefined;

	return val !== undefined ?
		val :
		support.attributes || !documentIsHTML ?
			elem.getAttribute(name) :
			(val = elem.getAttributeNode(name)) && val.specified ?
				val.value :
				null;
};

Sizzle.escape = function(sel) {
	return (sel + "").replace(rcssescape, fcssescape);
};

Sizzle.error = function(msg) {
	throw new Error("Syntax error, unrecognized expression: " + msg);
};

/**
 * Document sorting and removing duplicates
 * @param {ArrayLike} results
 */
Sizzle.uniqueSort = function(results) {
	var elem,
		duplicates = [],
		j = 0,
		i = 0;

	// Unless we *know* we can detect duplicates, assume their presence
	hasDuplicate = !support.detectDuplicates;
	sortInput = !support.sortStable && results.slice(0);
	results.sort(sortOrder);

	if (hasDuplicate) {
		while ((elem = results[i++])) {
			if (elem === results[i]) {
				j = duplicates.push(i);
			}
		}
		while (j--) {
			results.splice(duplicates[j], 1);
		}
	}

	// Clear input after sorting to release objects
	// See https://github.com/jquery/sizzle/pull/225
	sortInput = null;

	return results;
};

/**
 * Utility function for retrieving the text value of an array of DOM nodes
 * @param {Array|Element} elem
 */
getText = Sizzle.getText = function(elem) {
	var node,
		ret = "",
		i = 0,
		nodeType = elem.nodeType;

	if (!nodeType) {
		// If no nodeType, this is expected to be an array
		while ((node = elem[i++])) {
			// Do not traverse comment nodes
			ret += getText(node);
		}
	} else if (nodeType === 1 || nodeType === 9 || nodeType === 11) {
		// Use textContent for elements
		// innerText usage removed for consistency of new lines (jQuery #11153)
		if (typeof elem.textContent === "string") {
			return elem.textContent;
		} else {
			// Traverse its children
			for (elem = elem.firstChild; elem; elem = elem.nextSibling) {
				ret += getText(elem);
			}
		}
	} else if (nodeType === 3 || nodeType === 4) {
		return elem.nodeValue;
	}
	// Do not include comment or processing instruction nodes

	return ret;
};

Expr = Sizzle.selectors = {

	// Can be adjusted by the user
	cacheLength: 50,

	createPseudo: markFunction,

	match: matchExpr,

	attrHandle: {},

	find: {},

	relative: {
		">": { dir: "parentNode", first: true },
		" ": { dir: "parentNode" },
		"+": { dir: "previousSibling", first: true },
		"~": { dir: "previousSibling" }
	},

	preFilter: {
		"ATTR": function(match) {
			match[1] = match[1].replace(runescape, funescape);

			// Move the given value to match[3] whether quoted or unquoted
			match[3] = (match[3] || match[4] || match[5] || "").replace(runescape, funescape);

			if (match[2] === "~=") {
				match[3] = " " + match[3] + " ";
			}

			return match.slice(0, 4);
		},

		"CHILD": function(match) {
			/* matches from matchExpr["CHILD"]
				1 type (only|nth|...)
				2 what (child|of-type)
				3 argument (even|odd|\d*|\d*n([+-]\d+)?|...)
				4 xn-component of xn+y argument ([+-]?\d*n|)
				5 sign of xn-component
				6 x of xn-component
				7 sign of y-component
				8 y of y-component
			*/
			match[1] = match[1].toLowerCase();

			if (match[1].slice(0, 3) === "nth") {
				// nth-* requires argument
				if (!match[3]) {
					Sizzle.error(match[0]);
				}

				// numeric x and y parameters for Expr.filter.CHILD
				// remember that false/true cast respectively to 0/1
				match[4] = +(match[4] ? match[5] + (match[6] || 1) : 2 * (match[3] === "even" || match[3] === "odd"));
				match[5] = +((match[7] + match[8]) || match[3] === "odd");

			// other types prohibit arguments
			} else if (match[3]) {
				Sizzle.error(match[0]);
			}

			return match;
		},

		"PSEUDO": function(match) {
			var excess,
				unquoted = !match[6] && match[2];

			if (matchExpr["CHILD"].test(match[0])) {
				return null;
			}

			// Accept quoted arguments as-is
			if (match[3]) {
				match[2] = match[4] || match[5] || "";

			// Strip excess characters from unquoted arguments
			} else if (unquoted && rpseudo.test(unquoted) &&
				// Get excess from tokenize (recursively)
				(excess = tokenize(unquoted, true)) &&
				// advance to the next closing parenthesis
				(excess = unquoted.indexOf(")", unquoted.length - excess) - unquoted.length)) {

				// excess is a negative index
				match[0] = match[0].slice(0, excess);
				match[2] = unquoted.slice(0, excess);
			}

			// Return only captures needed by the pseudo filter method (type and argument)
			return match.slice(0, 3);
		}
	},

	filter: {

		"TAG": function(nodeNameSelector) {
			var nodeName = nodeNameSelector.replace(runescape, funescape).toLowerCase();
			return nodeNameSelector === "*" ?
				function() { return true; } :
				function(elem) {
					return elem.nodeName && elem.nodeName.toLowerCase() === nodeName;
				};
		},

		"CLASS": function(className) {
			var pattern = classCache[className + " "];

			return pattern ||
				(pattern = new RegExp("(^|" + whitespace + ")" + className + "(" + whitespace + "|$)")) &&
				classCache(className, function(elem) {
					return pattern.test(typeof elem.className === "string" && elem.className || typeof elem.getAttribute !== "undefined" && elem.getAttribute("class") || "");
				});
		},

		"ATTR": function(name, operator, check) {
			return function(elem) {
				var result = Sizzle.attr(elem, name);

				if (result == null) {
					return operator === "!=";
				}
				if (!operator) {
					return true;
				}

				result += "";

				return operator === "=" ? result === check :
					operator === "!=" ? result !== check :
					operator === "^=" ? check && result.indexOf(check) === 0 :
					operator === "*=" ? check && result.indexOf(check) > -1 :
					operator === "$=" ? check && result.slice(-check.length) === check :
					operator === "~=" ? (" " + result.replace(rwhitespace, " ") + " ").indexOf(check) > -1 :
					operator === "|=" ? result === check || result.slice(0, check.length + 1) === check + "-" :
					false;
			};
		},

		"CHILD": function(type, what, argument, first, last) {
			var simple = type.slice(0, 3) !== "nth",
				forward = type.slice(-4) !== "last",
				ofType = what === "of-type";

			return first === 1 && last === 0 ?

				// Shortcut for :nth-*(n)
				function(elem) {
					return !!elem.parentNode;
				} :

				function(elem, context, xml) {
					var cache, uniqueCache, outerCache, node, nodeIndex, start,
						dir = simple !== forward ? "nextSibling" : "previousSibling",
						parent = elem.parentNode,
						name = ofType && elem.nodeName.toLowerCase(),
						useCache = !xml && !ofType,
						diff = false;

					if (parent) {

						// :(first|last|only)-(child|of-type)
						if (simple) {
							while (dir) {
								node = elem;
								while ((node = node[dir])) {
									if (ofType ?
										node.nodeName.toLowerCase() === name :
										node.nodeType === 1) {

										return false;
									}
								}
								// Reverse direction for :only-* (if we haven't yet done so)
								start = dir = type === "only" && !start && "nextSibling";
							}
							return true;
						}

						start = [forward ? parent.firstChild : parent.lastChild];

						// non-xml :nth-child(...) stores cache data on `parent`
						if (forward && useCache) {

							// Seek `elem` from a previously-cached index

							// ...in a gzip-friendly way
							node = parent;
							outerCache = node[expando] || (node[expando] = {});

							// Support: IE <9 only
							// Defend against cloned attroperties (jQuery gh-1709)
							uniqueCache = outerCache[node.uniqueID] ||
								(outerCache[node.uniqueID] = {});

							cache = uniqueCache[type] || [];
							nodeIndex = cache[0] === dirruns && cache[1];
							diff = nodeIndex && cache[2];
							node = nodeIndex && parent.childNodes[nodeIndex];

							while ((node = ++nodeIndex && node && node[dir] ||

								// Fallback to seeking `elem` from the start
								(diff = nodeIndex = 0) || start.pop())) {

								// When found, cache indexes on `parent` and break
								if (node.nodeType === 1 && ++diff && node === elem) {
									uniqueCache[type] = [dirruns, nodeIndex, diff];
									break;
								}
							}

						} else {
							// Use previously-cached element index if available
							if (useCache) {
								// ...in a gzip-friendly way
								node = elem;
								outerCache = node[expando] || (node[expando] = {});

								// Support: IE <9 only
								// Defend against cloned attroperties (jQuery gh-1709)
								uniqueCache = outerCache[node.uniqueID] ||
									(outerCache[node.uniqueID] = {});

								cache = uniqueCache[type] || [];
								nodeIndex = cache[0] === dirruns && cache[1];
								diff = nodeIndex;
							}

							// xml :nth-child(...)
							// or :nth-last-child(...) or :nth(-last)?-of-type(...)
							if (diff === false) {
								// Use the same loop as above to seek `elem` from the start
								while ((node = ++nodeIndex && node && node[dir] ||
									(diff = nodeIndex = 0) || start.pop())) {

									if ((ofType ?
										node.nodeName.toLowerCase() === name :
										node.nodeType === 1) &&
										++diff) {

										// Cache the index of each encountered element
										if (useCache) {
											outerCache = node[expando] || (node[expando] = {});

											// Support: IE <9 only
											// Defend against cloned attroperties (jQuery gh-1709)
											uniqueCache = outerCache[node.uniqueID] ||
												(outerCache[node.uniqueID] = {});

											uniqueCache[type] = [dirruns, diff];
										}

										if (node === elem) {
											break;
										}
									}
								}
							}
						}

						// Incorporate the offset, then check against cycle size
						diff -= last;
						return diff === first || (diff % first === 0 && diff / first >= 0);
					}
				};
		},

		"PSEUDO": function(pseudo, argument) {
			// pseudo-class names are case-insensitive
			// http://www.w3.org/TR/selectors/#pseudo-classes
			// Prioritize by case sensitivity in case custom pseudos are added with uppercase letters
			// Remember that setFilters inherits from pseudos
			var args,
				fn = Expr.pseudos[pseudo] || Expr.setFilters[pseudo.toLowerCase()] ||
					Sizzle.error("unsupported pseudo: " + pseudo);

			// The user may use createPseudo to indicate that
			// arguments are needed to create the filter function
			// just as Sizzle does
			if (fn[expando]) {
				return fn(argument);
			}

			// But maintain support for old signatures
			if (fn.length > 1) {
				args = [pseudo, pseudo, "", argument];
				return Expr.setFilters.hasOwnProperty(pseudo.toLowerCase()) ?
					markFunction(function(seed, matches) {
						var idx,
							matched = fn(seed, argument),
							i = matched.length;
						while (i--) {
							idx = indexOf(seed, matched[i]);
							seed[idx] = !(matches[idx] = matched[i]);
						}
					}) :
					function(elem) {
						return fn(elem, 0, args);
					};
			}

			return fn;
		}
	},

	pseudos: {
		// Potentially complex pseudos
		"not": markFunction(function(selector) {
			// Trim the selector passed to compile
			// to avoid treating leading and trailing
			// spaces as combinators
			var input = [],
				results = [],
				matcher = compile(selector.replace(rtrim, "$1"));

			return matcher[expando] ?
				markFunction(function(seed, matches, context, xml) {
					var elem,
						unmatched = matcher(seed, null, xml, []),
						i = seed.length;

					// Match elements unmatched by `matcher`
					while (i--) {
						if ((elem = unmatched[i])) {
							seed[i] = !(matches[i] = elem);
						}
					}
				}) :
				function(elem, context, xml) {
					input[0] = elem;
					matcher(input, null, xml, results);
					// Don't keep the element (issue #299)
					input[0] = null;
					return !results.pop();
				};
		}),

		"has": markFunction(function(selector) {
			return function(elem) {
				return Sizzle(selector, elem).length > 0;
			};
		}),

		"contains": markFunction(function(text) {
			text = text.replace(runescape, funescape);
			return function(elem) {
				return (elem.textContent || elem.innerText || getText(elem)).indexOf(text) > -1;
			};
		}),

		// "Whether an element is represented by a :lang() selector
		// is based solely on the element's language value
		// being equal to the identifier C,
		// or beginning with the identifier C immediately followed by "-".
		// The matching of C against the element's language value is performed case-insensitively.
		// The identifier C does not have to be a valid language name."
		// http://www.w3.org/TR/selectors/#lang-pseudo
		"lang": markFunction(function(lang) {
			// lang value must be a valid identifier
			if (!ridentifier.test(lang || "")) {
				Sizzle.error("unsupported lang: " + lang);
			}
			lang = lang.replace(runescape, funescape).toLowerCase();
			return function(elem) {
				var elemLang;
				do {
					if ((elemLang = documentIsHTML ?
						elem.lang :
						elem.getAttribute("xml:lang") || elem.getAttribute("lang"))) {

						elemLang = elemLang.toLowerCase();
						return elemLang === lang || elemLang.indexOf(lang + "-") === 0;
					}
				} while ((elem = elem.parentNode) && elem.nodeType === 1);
				return false;
			};
		}),

		// Miscellaneous
		"target": function(elem) {
			var hash = window.location && window.location.hash;
			return hash && hash.slice(1) === elem.id;
		},

		"root": function(elem) {
			return elem === docElem;
		},

		"focus": function(elem) {
			return elem === document.activeElement && (!document.hasFocus || document.hasFocus()) && !!(elem.type || elem.href || ~elem.tabIndex);
		},

		// Boolean properties
		"enabled": createDisabledPseudo(false),
		"disabled": createDisabledPseudo(true),

		"checked": function(elem) {
			// In CSS3, :checked should return both checked and selected elements
			// http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked
			var nodeName = elem.nodeName.toLowerCase();
			return (nodeName === "input" && !!elem.checked) || (nodeName === "option" && !!elem.selected);
		},

		"selected": function(elem) {
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			if (elem.parentNode) {
				elem.parentNode.selectedIndex;
			}

			return elem.selected === true;
		},

		// Contents
		"empty": function(elem) {
			// http://www.w3.org/TR/selectors/#empty-pseudo
			// :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5),
			// but not by others (comment: 8; processing instruction: 7; etc.)
			// nodeType < 6 works because attributes (2) do not appear as children
			for (elem = elem.firstChild; elem; elem = elem.nextSibling) {
				if (elem.nodeType < 6) {
					return false;
				}
			}
			return true;
		},

		"parent": function(elem) {
			return !Expr.pseudos["empty"](elem);
		},

		// Element/input types
		"header": function(elem) {
			return rheader.test(elem.nodeName);
		},

		"input": function(elem) {
			return rinputs.test(elem.nodeName);
		},

		"button": function(elem) {
			var name = elem.nodeName.toLowerCase();
			return name === "input" && elem.type === "button" || name === "button";
		},

		"text": function(elem) {
			var attr;
			return elem.nodeName.toLowerCase() === "input" &&
				elem.type === "text" &&

				// Support: IE<8
				// New HTML5 attribute values (e.g., "search") appear with elem.type === "text"
				((attr = elem.getAttribute("type")) == null || attr.toLowerCase() === "text");
		},

		// Position-in-collection
		"first": createPositionalPseudo(function() {
			return [0];
		}),

		"last": createPositionalPseudo(function(matchIndexes, length) {
			return [length - 1];
		}),

		"eq": createPositionalPseudo(function(matchIndexes, length, argument) {
			return [argument < 0 ? argument + length : argument];
		}),

		"even": createPositionalPseudo(function(matchIndexes, length) {
			var i = 0;
			for (; i < length; i += 2) {
				matchIndexes.push(i);
			}
			return matchIndexes;
		}),

		"odd": createPositionalPseudo(function(matchIndexes, length) {
			var i = 1;
			for (; i < length; i += 2) {
				matchIndexes.push(i);
			}
			return matchIndexes;
		}),

		"lt": createPositionalPseudo(function(matchIndexes, length, argument) {
			var i = argument < 0 ? argument + length : argument;
			for (; --i >= 0;) {
				matchIndexes.push(i);
			}
			return matchIndexes;
		}),

		"gt": createPositionalPseudo(function(matchIndexes, length, argument) {
			var i = argument < 0 ? argument + length : argument;
			for (; ++i < length;) {
				matchIndexes.push(i);
			}
			return matchIndexes;
		})
	}
};

Expr.pseudos["nth"] = Expr.pseudos["eq"];

// Add button/input type pseudos
for (i in { radio: true, checkbox: true, file: true, password: true, image: true }) {
	Expr.pseudos[i] = createInputPseudo(i);
}
for (i in { submit: true, reset: true }) {
	Expr.pseudos[i] = createButtonPseudo(i);
}

// Easy API for creating new setFilters
function setFilters() {}
setFilters.prototype = Expr.filters = Expr.pseudos;
Expr.setFilters = new setFilters();

tokenize = Sizzle.tokenize = function(selector, parseOnly) {
	var matched, match, tokens, type,
		soFar, groups, preFilters,
		cached = tokenCache[selector + " "];

	if (cached) {
		return parseOnly ? 0 : cached.slice(0);
	}

	soFar = selector;
	groups = [];
	preFilters = Expr.preFilter;

	while (soFar) {

		// Comma and first run
		if (!matched || (match = rcomma.exec(soFar))) {
			if (match) {
				// Don't consume trailing commas as valid
				soFar = soFar.slice(match[0].length) || soFar;
			}
			groups.push((tokens = []));
		}

		matched = false;

		// Combinators
		if ((match = rcombinators.exec(soFar))) {
			matched = match.shift();
			tokens.push({
				value: matched,
				// Cast descendant combinators to space
				type: match[0].replace(rtrim, " ")
			});
			soFar = soFar.slice(matched.length);
		}

		// Filters
		for (type in Expr.filter) {
			if ((match = matchExpr[type].exec(soFar)) && (!preFilters[type] ||
				(match = preFilters[type](match)))) {
				matched = match.shift();
				tokens.push({
					value: matched,
					type: type,
					matches: match
				});
				soFar = soFar.slice(matched.length);
			}
		}

		if (!matched) {
			break;
		}
	}

	// Return the length of the invalid excess
	// if we're just parsing
	// Otherwise, throw an error or return tokens
	return parseOnly ?
		soFar.length :
		soFar ?
			Sizzle.error(selector) :
			// Cache the tokens
			tokenCache(selector, groups).slice(0);
};

function toSelector(tokens) {
	var i = 0,
		len = tokens.length,
		selector = "";
	for (; i < len; i++) {
		selector += tokens[i].value;
	}
	return selector;
}

function addCombinator(matcher, combinator, base) {
	var dir = combinator.dir,
		skip = combinator.next,
		key = skip || dir,
		checkNonElements = base && key === "parentNode",
		doneName = done++;

	return combinator.first ?
		// Check against closest ancestor/preceding element
		function(elem, context, xml) {
			while ((elem = elem[dir])) {
				if (elem.nodeType === 1 || checkNonElements) {
					return matcher(elem, context, xml);
				}
			}
			return false;
		} :

		// Check against all ancestor/preceding elements
		function(elem, context, xml) {
			var oldCache, uniqueCache, outerCache,
				newCache = [dirruns, doneName];

			// We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching
			if (xml) {
				while ((elem = elem[dir])) {
					if (elem.nodeType === 1 || checkNonElements) {
						if (matcher(elem, context, xml)) {
							return true;
						}
					}
				}
			} else {
				while ((elem = elem[dir])) {
					if (elem.nodeType === 1 || checkNonElements) {
						outerCache = elem[expando] || (elem[expando] = {});

						// Support: IE <9 only
						// Defend against cloned attroperties (jQuery gh-1709)
						uniqueCache = outerCache[elem.uniqueID] || (outerCache[elem.uniqueID] = {});

						if (skip && skip === elem.nodeName.toLowerCase()) {
							elem = elem[dir] || elem;
						} else if ((oldCache = uniqueCache[key]) &&
							oldCache[0] === dirruns && oldCache[1] === doneName) {

							// Assign to newCache so results back-propagate to previous elements
							return (newCache[2] = oldCache[2]);
						} else {
							// Reuse newcache so results back-propagate to previous elements
							uniqueCache[key] = newCache;

							// A match means we're done; a fail means we have to keep checking
							if ((newCache[2] = matcher(elem, context, xml))) {
								return true;
							}
						}
					}
				}
			}
			return false;
		};
}

function elementMatcher(matchers) {
	return matchers.length > 1 ?
		function(elem, context, xml) {
			var i = matchers.length;
			while (i--) {
				if (!matchers[i](elem, context, xml)) {
					return false;
				}
			}
			return true;
		} :
		matchers[0];
}

function multipleContexts(selector, contexts, results) {
	var i = 0,
		len = contexts.length;
	for (; i < len; i++) {
		Sizzle(selector, contexts[i], results);
	}
	return results;
}

function condense(unmatched, map, filter, context, xml) {
	var elem,
		newUnmatched = [],
		i = 0,
		len = unmatched.length,
		mapped = map != null;

	for (; i < len; i++) {
		if ((elem = unmatched[i])) {
			if (!filter || filter(elem, context, xml)) {
				newUnmatched.push(elem);
				if (mapped) {
					map.push(i);
				}
			}
		}
	}

	return newUnmatched;
}

function setMatcher(preFilter, selector, matcher, postFilter, postFinder, postSelector) {
	if (postFilter && !postFilter[expando]) {
		postFilter = setMatcher(postFilter);
	}
	if (postFinder && !postFinder[expando]) {
		postFinder = setMatcher(postFinder, postSelector);
	}
	return markFunction(function(seed, results, context, xml) {
		var temp, i, elem,
			preMap = [],
			postMap = [],
			preexisting = results.length,

			// Get initial elements from seed or context
			elems = seed || multipleContexts(selector || "*", context.nodeType ? [context] : context, []),

			// Prefilter to get matcher input, preserving a map for seed-results synchronization
			matcherIn = preFilter && (seed || !selector) ?
				condense(elems, preMap, preFilter, context, xml) :
				elems,

			matcherOut = matcher ?
				// If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results,
				postFinder || (seed ? preFilter : preexisting || postFilter) ?

					// ...intermediate processing is necessary
					[] :

					// ...otherwise use results directly
					results :
				matcherIn;

		// Find primary matches
		if (matcher) {
			matcher(matcherIn, matcherOut, context, xml);
		}

		// Apply postFilter
		if (postFilter) {
			temp = condense(matcherOut, postMap);
			postFilter(temp, [], context, xml);

			// Un-match failing elements by moving them back to matcherIn
			i = temp.length;
			while (i--) {
				if ((elem = temp[i])) {
					matcherOut[postMap[i]] = !(matcherIn[postMap[i]] = elem);
				}
			}
		}

		if (seed) {
			if (postFinder || preFilter) {
				if (postFinder) {
					// Get the final matcherOut by condensing this intermediate into postFinder contexts
					temp = [];
					i = matcherOut.length;
					while (i--) {
						if ((elem = matcherOut[i])) {
							// Restore matcherIn since elem is not yet a final match
							temp.push((matcherIn[i] = elem));
						}
					}
					postFinder(null, (matcherOut = []), temp, xml);
				}

				// Move matched elements from seed to results to keep them synchronized
				i = matcherOut.length;
				while (i--) {
					if ((elem = matcherOut[i]) &&
						(temp = postFinder ? indexOf(seed, elem) : preMap[i]) > -1) {

						seed[temp] = !(results[temp] = elem);
					}
				}
			}

		// Add elements to results, through postFinder if defined
		} else {
			matcherOut = condense(
				matcherOut === results ?
					matcherOut.splice(preexisting, matcherOut.length) :
					matcherOut
);
			if (postFinder) {
				postFinder(null, results, matcherOut, xml);
			} else {
				push.apply(results, matcherOut);
			}
		}
	});
}

function matcherFromTokens(tokens) {
	var checkContext, matcher, j,
		len = tokens.length,
		leadingRelative = Expr.relative[tokens[0].type],
		implicitRelative = leadingRelative || Expr.relative[" "],
		i = leadingRelative ? 1 : 0,

		// The foundational matcher ensures that elements are reachable from top-level context(s)
		matchContext = addCombinator(function(elem) {
			return elem === checkContext;
		}, implicitRelative, true),
		matchAnyContext = addCombinator(function(elem) {
			return indexOf(checkContext, elem) > -1;
		}, implicitRelative, true),
		matchers = [function(elem, context, xml) {
			var ret = (!leadingRelative && (xml || context !== outermostContext)) || (
				(checkContext = context).nodeType ?
					matchContext(elem, context, xml) :
					matchAnyContext(elem, context, xml));
			// Avoid hanging onto element (issue #299)
			checkContext = null;
			return ret;
		}];

	for (; i < len; i++) {
		if ((matcher = Expr.relative[tokens[i].type])) {
			matchers = [addCombinator(elementMatcher(matchers), matcher)];
		} else {
			matcher = Expr.filter[tokens[i].type].apply(null, tokens[i].matches);

			// Return special upon seeing a positional matcher
			if (matcher[expando]) {
				// Find the next relative operator (if any) for proper handling
				j = ++i;
				for (; j < len; j++) {
					if (Expr.relative[tokens[j].type]) {
						break;
					}
				}
				return setMatcher(
					i > 1 && elementMatcher(matchers),
					i > 1 && toSelector(
						// If the preceding token was a descendant combinator, insert an implicit any-element `*`
						tokens.slice(0, i - 1).concat({ value: tokens[i - 2].type === " " ? "*" : "" })
).replace(rtrim, "$1"),
					matcher,
					i < j && matcherFromTokens(tokens.slice(i, j)),
					j < len && matcherFromTokens((tokens = tokens.slice(j))),
					j < len && toSelector(tokens)
);
			}
			matchers.push(matcher);
		}
	}

	return elementMatcher(matchers);
}

function matcherFromGroupMatchers(elementMatchers, setMatchers) {
	var bySet = setMatchers.length > 0,
		byElement = elementMatchers.length > 0,
		superMatcher = function(seed, context, xml, results, outermost) {
			var elem, j, matcher,
				matchedCount = 0,
				i = "0",
				unmatched = seed && [],
				setMatched = [],
				contextBackup = outermostContext,
				// We must always have either seed elements or outermost context
				elems = seed || byElement && Expr.find["TAG"]("*", outermost),
				// Use integer dirruns iff this is the outermost matcher
				dirrunsUnique = (dirruns += contextBackup == null ? 1 : Math.random() || 0.1),
				len = elems.length;

			if (outermost) {
				outermostContext = context === document || context || outermost;
			}

			// Add elements passing elementMatchers directly to results
			// Support: IE<9, Safari
			// Tolerate NodeList properties (IE: "length"; Safari: <number>) matching elements by id
			for (; i !== len && (elem = elems[i]) != null; i++) {
				if (byElement && elem) {
					j = 0;
					if (!context && elem.ownerDocument !== document) {
						setDocument(elem);
						xml = !documentIsHTML;
					}
					while ((matcher = elementMatchers[j++])) {
						if (matcher(elem, context || document, xml)) {
							results.push(elem);
							break;
						}
					}
					if (outermost) {
						dirruns = dirrunsUnique;
					}
				}

				// Track unmatched elements for set filters
				if (bySet) {
					// They will have gone through all possible matchers
					if ((elem = !matcher && elem)) {
						matchedCount--;
					}

					// Lengthen the array for every element, matched or not
					if (seed) {
						unmatched.push(elem);
					}
				}
			}

			// `i` is now the count of elements visited above, and adding it to `matchedCount`
			// makes the latter nonnegative.
			matchedCount += i;

			// Apply set filters to unmatched elements
			// NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount`
			// equals `i`), unless we didn't visit _any_ elements in the above loop because we have
			// no element matchers and no seed.
			// Incrementing an initially-string "0" `i` allows `i` to remain a string only in that
			// case, which will result in a "00" `matchedCount` that differs from `i` but is also
			// numerically zero.
			if (bySet && i !== matchedCount) {
				j = 0;
				while ((matcher = setMatchers[j++])) {
					matcher(unmatched, setMatched, context, xml);
				}

				if (seed) {
					// Reintegrate element matches to eliminate the need for sorting
					if (matchedCount > 0) {
						while (i--) {
							if (!(unmatched[i] || setMatched[i])) {
								setMatched[i] = pop.call(results);
							}
						}
					}

					// Discard index placeholder values to get only actual matches
					setMatched = condense(setMatched);
				}

				// Add matches to results
				push.apply(results, setMatched);

				// Seedless set matches succeeding multiple successful matchers stipulate sorting
				if (outermost && !seed && setMatched.length > 0 &&
					(matchedCount + setMatchers.length) > 1) {

					Sizzle.uniqueSort(results);
				}
			}

			// Override manipulation of globals by nested matchers
			if (outermost) {
				dirruns = dirrunsUnique;
				outermostContext = contextBackup;
			}

			return unmatched;
		};

	return bySet ?
		markFunction(superMatcher) :
		superMatcher;
}

compile = Sizzle.compile = function(selector, match /* Internal Use Only */) {
	var i,
		setMatchers = [],
		elementMatchers = [],
		cached = compilerCache[selector + " "];

	if (!cached) {
		// Generate a function of recursive functions that can be used to check each element
		if (!match) {
			match = tokenize(selector);
		}
		i = match.length;
		while (i--) {
			cached = matcherFromTokens(match[i]);
			if (cached[expando]) {
				setMatchers.push(cached);
			} else {
				elementMatchers.push(cached);
			}
		}

		// Cache the compiled function
		cached = compilerCache(selector, matcherFromGroupMatchers(elementMatchers, setMatchers));

		// Save selector and tokenization
		cached.selector = selector;
	}
	return cached;
};

/**
 * A low-level selection function that works with Sizzle's compiled
 * selector functions
 * @param {String|Function} selector A selector or a pre-compiled
 * selector function built with Sizzle.compile
 * @param {Element} context
 * @param {Array} [results]
 * @param {Array} [seed] A set of elements to match against
 */
select = Sizzle.select = function(selector, context, results, seed) {
	var i, tokens, token, type, find,
		compiled = typeof selector === "function" && selector,
		match = !seed && tokenize((selector = compiled.selector || selector));

	results = results || [];

	// Try to minimize operations if there is only one selector in the list and no seed
	// (the latter of which guarantees us context)
	if (match.length === 1) {

		// Reduce context if the leading compound selector is an ID
		tokens = match[0] = match[0].slice(0);
		if (tokens.length > 2 && (token = tokens[0]).type === "ID" &&
				context.nodeType === 9 && documentIsHTML && Expr.relative[tokens[1].type]) {

			context = (Expr.find["ID"](token.matches[0].replace(runescape, funescape), context) || [])[0];
			if (!context) {
				return results;

			// Precompiled matchers will still verify ancestry, so step up a level
			} else if (compiled) {
				context = context.parentNode;
			}

			selector = selector.slice(tokens.shift().value.length);
		}

		// Fetch a seed set for right-to-left matching
		i = matchExpr["needsContext"].test(selector) ? 0 : tokens.length;
		while (i--) {
			token = tokens[i];

			// Abort if we hit a combinator
			if (Expr.relative[(type = token.type)]) {
				break;
			}
			if ((find = Expr.find[type])) {
				// Search, expanding context for leading sibling combinators
				if ((seed = find(
					token.matches[0].replace(runescape, funescape),
					rsibling.test(tokens[0].type) && testContext(context.parentNode) || context
))) {

					// If seed is empty or no tokens remain, we can return early
					tokens.splice(i, 1);
					selector = seed.length && toSelector(tokens);
					if (!selector) {
						push.apply(results, seed);
						return results;
					}

					break;
				}
			}
		}
	}

	// Compile and execute a filtering function if one is not provided
	// Provide `match` to avoid retokenization if we modified the selector above
	(compiled || compile(selector, match))(
		seed,
		context,
		!documentIsHTML,
		results,
		!context || rsibling.test(selector) && testContext(context.parentNode) || context
);
	return results;
};

// One-time assignments

// Sort stability
support.sortStable = expando.split("").sort(sortOrder).join("") === expando;

// Support: Chrome 14-35+
// Always assume duplicates if they aren't passed to the comparison function
support.detectDuplicates = !!hasDuplicate;

// Initialize against the default document
setDocument();

// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27)
// Detached nodes confoundingly follow *each other*
support.sortDetached = assert(function(el) {
	// Should return 1, but returns 4 (following)
	return el.compareDocumentPosition(document.createElement("fieldset")) & 1;
});

// Support: IE<8
// Prevent attribute/property "interpolation"
// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx
if (!assert(function(el) {
	el.innerHTML = "";
	return el.firstChild.getAttribute("href") === "#" ;
})) {
	addHandle("type|href|height|width", function(elem, name, isXML) {
		if (!isXML) {
			return elem.getAttribute(name, name.toLowerCase() === "type" ? 1 : 2);
		}
	});
}

// Support: IE<9
// Use defaultValue in place of getAttribute("value")
if (!support.attributes || !assert(function(el) {
	el.innerHTML = "<input/>";
	el.firstChild.setAttribute("value", "");
	return el.firstChild.getAttribute("value") === "";
})) {
	addHandle("value", function(elem, name, isXML) {
		if (!isXML && elem.nodeName.toLowerCase() === "input") {
			return elem.defaultValue;
		}
	});
}

// Support: IE<9
// Use getAttributeNode to fetch booleans when getAttribute lies
if (!assert(function(el) {
	return el.getAttribute("disabled") == null;
})) {
	addHandle(booleans, function(elem, name, isXML) {
		var val;
		if (!isXML) {
			return elem[name] === true ? name.toLowerCase() :
					(val = elem.getAttributeNode(name)) && val.specified ?
					val.value :
				null;
		}
	});
}

return Sizzle;

})(window);

jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;

// Deprecated
jQuery.expr[":"] = jQuery.expr.pseudos;
jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort;
jQuery.text = Sizzle.getText;
jQuery.isXMLDoc = Sizzle.isXML;
jQuery.contains = Sizzle.contains;
jQuery.escapeSelector = Sizzle.escape;

var dir = function(elem, dir, until) {
	var matched = [],
		truncate = until !== undefined;

	while ((elem = elem[dir]) && elem.nodeType !== 9) {
		if (elem.nodeType === 1) {
			if (truncate && jQuery(elem).is(until)) {
				break;
			}
			matched.push(elem);
		}
	}
	return matched;
};

var siblings = function(n, elem) {
	var matched = [];

	for (; n; n = n.nextSibling) {
		if (n.nodeType === 1 && n !== elem) {
			matched.push(n);
		}
	}

	return matched;
};

var rneedsContext = jQuery.expr.match.needsContext;

function nodeName(elem, name) {

 return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase();

};
var rsingleTag = (/^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i);

var risSimple = /^.[^:#\[\.,]*$/;

// Implement the identical functionality for filter and not
function winnow(elements, qualifier, not) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) !== not;
		});
	}

	// Single element
	if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem) {
			return (elem === qualifier) !== not;
		});
	}

	// Arraylike of elements (jQuery, arguments, Array)
	if (typeof qualifier !== "string") {
		return jQuery.grep(elements, function(elem) {
			return (indexOf.call(qualifier, elem) > -1) !== not;
		});
	}

	// Simple selector that can be filtered directly, removing non-Elements
	if (risSimple.test(qualifier)) {
		return jQuery.filter(qualifier, elements, not);
	}

	// Complex selector, compare the two sets, removing non-Elements
	qualifier = jQuery.filter(qualifier, elements);
	return jQuery.grep(elements, function(elem) {
		return (indexOf.call(qualifier, elem) > -1) !== not && elem.nodeType === 1;
	});
}

jQuery.filter = function(expr, elems, not) {
	var elem = elems[0];

	if (not) {
		expr = ":not(" + expr + ")";
	}

	if (elems.length === 1 && elem.nodeType === 1) {
		return jQuery.find.matchesSelector(elem, expr) ? [elem] : [];
	}

	return jQuery.find.matches(expr, jQuery.grep(elems, function(elem) {
		return elem.nodeType === 1;
	}));
};

jQuery.fn.extend({
	find: function(selector) {
		var i, ret,
			len = this.length,
			self = this;

		if (typeof selector !== "string") {
			return this.pushStack(jQuery(selector).filter(function() {
				for (i = 0; i < len; i++) {
					if (jQuery.contains(self[i], this)) {
						return true;
					}
				}
			}));
		}

		ret = this.pushStack([]);

		for (i = 0; i < len; i++) {
			jQuery.find(selector, self[i], ret);
		}

		return len > 1 ? jQuery.uniqueSort(ret) : ret;
	},
	filter: function(selector) {
		return this.pushStack(winnow(this, selector || [], false));
	},
	not: function(selector) {
		return this.pushStack(winnow(this, selector || [], true));
	},
	is: function(selector) {
		return !!winnow(
			this,

			// If this is a positional/relative selector, check membership in the returned set
			// so $("p:first").is("p:last") won't return true for a doc with two "p".
			typeof selector === "string" && rneedsContext.test(selector) ?
				jQuery(selector) :
				selector || [],
			false
).length;
	}
});

// Initialize a jQuery object

// A central reference to the root jQuery(document)
var rootjQuery,

	// A simple way to check for HTML strings
	// Prioritize #id over <tag> to avoid XSS via location.hash (#9521)
	// Strict HTML recognition (#11290: must start with <)
	// Shortcut simple #id case for speed
	rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/,

	init = jQuery.fn.init = function(selector, context, root) {
		var match, elem;

		// HANDLE: $(""), $(null), $(undefined), $(false)
		if (!selector) {
			return this;
		}

		// Method init() accepts an alternate rootjQuery
		// so migrate can support jQuery.sub (gh-2101)
		root = root || rootjQuery;

		// Handle HTML strings
		if (typeof selector === "string") {
			if (selector[0] === "<" &&
				selector[selector.length - 1] === ">" &&
				selector.length >= 3) {

				// Assume that strings that start and end with <> are HTML and skip the regex check
				match = [null, selector, null];

			} else {
				match = rquickExpr.exec(selector);
			}

			// Match html or make sure no context is specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					context = context instanceof jQuery ? context[0] : context;

					// Option to run scripts is true for back-compat
					// Intentionally let the error be thrown if parseHTML is not present
					jQuery.merge(this, jQuery.parseHTML(
						match[1],
						context && context.nodeType ? context.ownerDocument || context : document,
						true
));

					// HANDLE: $(html, props)
					if (rsingleTag.test(match[1]) && jQuery.isPlainObject(context)) {
						for (match in context) {

							// Properties of context are called as methods if possible
							if (jQuery.isFunction(this[match])) {
								this[match](context[match]);

							// ...and otherwise set as attributes
							} else {
								this.attr(match, context[match]);
							}
						}
					}

					return this;

				// HANDLE: $(#id)
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {

						// Inject the element directly into the jQuery object
						this[0] = elem;
						this.length = 1;
					}
					return this;
				}

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || root).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return this.constructor(context).find(selector);
			}

		// HANDLE: $(DOMElement)
		} else if (selector.nodeType) {
			this[0] = selector;
			this.length = 1;
			return this;

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return root.ready !== undefined ?
				root.ready(selector) :

				// Execute immediately if ready is not present
				selector(jQuery);
		}

		return jQuery.makeArray(selector, this);
	};

// Give the init function the jQuery prototype for later instantiation
init.prototype = jQuery.fn;

// Initialize central reference
rootjQuery = jQuery(document);

var rparentsprev = /^(?:parents|prev(?:Until|All))/,

	// Methods guaranteed to produce a unique set when starting from a unique set
	guaranteedUnique = {
		children: true,
		contents: true,
		next: true,
		prev: true
	};

jQuery.fn.extend({
	has: function(target) {
		var targets = jQuery(target, this),
			l = targets.length;

		return this.filter(function() {
			var i = 0;
			for (; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	closest: function(selectors, context) {
		var cur,
			i = 0,
			l = this.length,
			matched = [],
			targets = typeof selectors !== "string" && jQuery(selectors);

		// Positional selectors never match, since there's no _selection_ context
		if (!rneedsContext.test(selectors)) {
			for (; i < l; i++) {
				for (cur = this[i]; cur && cur !== context; cur = cur.parentNode) {

					// Always skip document fragments
					if (cur.nodeType < 11 && (targets ?
						targets.index(cur) > -1 :

						// Don't pass non-elements to Sizzle
						cur.nodeType === 1 &&
							jQuery.find.matchesSelector(cur, selectors))) {

						matched.push(cur);
						break;
					}
				}
			}
		}

		return this.pushStack(matched.length > 1 ? jQuery.uniqueSort(matched) : matched);
	},

	// Determine the position of an element within the set
	index: function(elem) {

		// No argument, return index in parent
		if (!elem) {
			return (this[0] && this[0].parentNode) ? this.first().prevAll().length : -1;
		}

		// Index in selector
		if (typeof elem === "string") {
			return indexOf.call(jQuery(elem), this[0]);
		}

		// Locate the position of the desired element
		return indexOf.call(this,

			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem
);
	},

	add: function(selector, context) {
		return this.pushStack(
			jQuery.uniqueSort(
				jQuery.merge(this.get(), jQuery(selector, context))
)
);
	},

	addBack: function(selector) {
		return this.add(selector == null ?
			this.prevObject : this.prevObject.filter(selector)
);
	}
});

function sibling(cur, dir) {
	while ((cur = cur[dir]) && cur.nodeType !== 1) {}
	return cur;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return sibling(elem, "nextSibling");
	},
	prev: function(elem) {
		return sibling(elem, "previousSibling");
	},
	nextAll: function(elem) {
		return dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return siblings((elem.parentNode || {}).firstChild, elem);
	},
	children: function(elem) {
		return siblings(elem.firstChild);
	},
	contents: function(elem) {
 if (nodeName(elem, "iframe")) {
 return elem.contentDocument;
 }

 // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only
 // Treat the template element as a regular one in browsers that
 // don't support it.
 if (nodeName(elem, "template")) {
 elem = elem.content || elem;
 }

 return jQuery.merge([], elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var matched = jQuery.map(this, fn, until);

		if (name.slice(-5) !== "Until") {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			matched = jQuery.filter(selector, matched);
		}

		if (this.length > 1) {

			// Remove duplicates
			if (!guaranteedUnique[name]) {
				jQuery.uniqueSort(matched);
			}

			// Reverse order for parents* and prev-derivatives
			if (rparentsprev.test(name)) {
				matched.reverse();
			}
		}

		return this.pushStack(matched);
	};
});
var rnothtmlwhite = (/[^\x20\t\r\n\f]+/g);

// Convert String-formatted options into Object-formatted ones
function createOptions(options) {
	var object = {};
	jQuery.each(options.match(rnothtmlwhite) || [], function(_, flag) {
		object[flag] = true;
	});
	return object;
}

/*
 * Create a callback list using the following parameters:
 *
 *	options: an optional list of space-separated options that will change how
 *			the callback list behaves or a more traditional option object
 *
 * By default a callback list will act like an event callback list and can be
 * "fired" multiple times.
 *
 * Possible options:
 *
 *	once:			will ensure the callback list can only be fired once (like a Deferred)
 *
 *	memory:			will keep track of previous values and will call any callback added
 *					after the list has been fired right away with the latest "memorized"
 *					values (like a Deferred)
 *
 *	unique:			will ensure a callback can only be added once (no duplicate in the list)
 *
 *	stopOnFalse:	interrupt callings when a callback returns false
 *
 */
jQuery.Callbacks = function(options) {

	// Convert options from String-formatted to Object-formatted if needed
	// (we check in cache first)
	options = typeof options === "string" ?
		createOptions(options) :
		jQuery.extend({}, options);

	var // Flag to know if list is currently firing
		firing,

		// Last fire value for non-forgettable lists
		memory,

		// Flag to know if list was already fired
		fired,

		// Flag to prevent firing
		locked,

		// Actual callback list
		list = [],

		// Queue of execution data for repeatable lists
		queue = [],

		// Index of currently firing callback (modified by add/remove as needed)
		firingIndex = -1,

		// Fire callbacks
		fire = function() {

			// Enforce single-firing
			locked = locked || options.once;

			// Execute callbacks for all pending executions,
			// respecting firingIndex overrides and runtime changes
			fired = firing = true;
			for (; queue.length; firingIndex = -1) {
				memory = queue.shift();
				while (++firingIndex < list.length) {

					// Run callback and check for early termination
					if (list[firingIndex].apply(memory[0], memory[1]) === false &&
						options.stopOnFalse) {

						// Jump to end and forget the data so .add doesn't re-fire
						firingIndex = list.length;
						memory = false;
					}
				}
			}

			// Forget the data if we're done with it
			if (!options.memory) {
				memory = false;
			}

			firing = false;

			// Clean up if we're done firing for good
			if (locked) {

				// Keep an empty list if we have data for future add calls
				if (memory) {
					list = [];

				// Otherwise, this object is spent
				} else {
					list = "";
				}
			}
		},

		// Actual Callbacks object
		self = {

			// Add a callback or a collection of callbacks to the list
			add: function() {
				if (list) {

					// If we have memory from a past run, we should fire after adding
					if (memory && !firing) {
						firingIndex = list.length - 1;
						queue.push(memory);
					}

					(function add(args) {
						jQuery.each(args, function(_, arg) {
							if (jQuery.isFunction(arg)) {
								if (!options.unique || !self.has(arg)) {
									list.push(arg);
								}
							} else if (arg && arg.length && jQuery.type(arg) !== "string") {

								// Inspect recursively
								add(arg);
							}
						});
					})(arguments);

					if (memory && !firing) {
						fire();
					}
				}
				return this;
			},

			// Remove a callback from the list
			remove: function() {
				jQuery.each(arguments, function(_, arg) {
					var index;
					while ((index = jQuery.inArray(arg, list, index)) > -1) {
						list.splice(index, 1);

						// Handle firing indexes
						if (index <= firingIndex) {
							firingIndex--;
						}
					}
				});
				return this;
			},

			// Check if a given callback is in the list.
			// If no argument is given, return whether or not list has callbacks attached.
			has: function(fn) {
				return fn ?
					jQuery.inArray(fn, list) > -1 :
					list.length > 0;
			},

			// Remove all callbacks from the list
			empty: function() {
				if (list) {
					list = [];
				}
				return this;
			},

			// Disable .fire and .add
			// Abort any current/pending executions
			// Clear all callbacks and values
			disable: function() {
				locked = queue = [];
				list = memory = "";
				return this;
			},
			disabled: function() {
				return !list;
			},

			// Disable .fire
			// Also disable .add unless we have memory (since it would have no effect)
			// Abort any pending executions
			lock: function() {
				locked = queue = [];
				if (!memory && !firing) {
					list = memory = "";
				}
				return this;
			},
			locked: function() {
				return !!locked;
			},

			// Call all callbacks with the given context and arguments
			fireWith: function(context, args) {
				if (!locked) {
					args = args || [];
					args = [context, args.slice ? args.slice() : args];
					queue.push(args);
					if (!firing) {
						fire();
					}
				}
				return this;
			},

			// Call all the callbacks with the given arguments
			fire: function() {
				self.fireWith(this, arguments);
				return this;
			},

			// To know if the callbacks have already been called at least once
			fired: function() {
				return !!fired;
			}
		};

	return self;
};

function Identity(v) {
	return v;
}
function Thrower(ex) {
	throw ex;
}

function adoptValue(value, resolve, reject, noValue) {
	var method;

	try {

		// Check for promise aspect first to privilege synchronous behavior
		if (value && jQuery.isFunction((method = value.promise))) {
			method.call(value).done(resolve).fail(reject);

		// Other thenables
		} else if (value && jQuery.isFunction((method = value.then))) {
			method.call(value, resolve, reject);

		// Other non-thenables
		} else {

			// Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer:
			// * false: [value].slice(0) => resolve(value)
			// * true: [value].slice(1) => resolve()
			resolve.apply(undefined, [value].slice(noValue));
		}

	// For Promises/A+, convert exceptions into rejections
	// Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in
	// Deferred#then to conditionally suppress rejection.
	} catch (value) {

		// Support: Android 4.0 only
		// Strict mode functions invoked without .call/.apply get global-object context
		reject.apply(undefined, [value]);
	}
}

jQuery.extend({

	Deferred: function(func) {
		var tuples = [

				// action, add listener, callbacks,
				//then handlers, argument index, [final state]
				["notify", "progress", jQuery.Callbacks("memory"),
					jQuery.Callbacks("memory"), 2],
				["resolve", "done", jQuery.Callbacks("once memory"),
					jQuery.Callbacks("once memory"), 0, "resolved"],
				["reject", "fail", jQuery.Callbacks("once memory"),
					jQuery.Callbacks("once memory"), 1, "rejected"]
],
			state = "pending",
			promise = {
				state: function() {
					return state;
				},
				always: function() {
					deferred.done(arguments).fail(arguments);
					return this;
				},
				"catch": function(fn) {
					return promise.then(null, fn);
				},

				// Keep pipe for back-compat
				pipe: function(/* fnDone, fnFail, fnProgress */) {
					var fns = arguments;

					return jQuery.Deferred(function(newDefer) {
						jQuery.each(tuples, function(i, tuple) {

							// Map tuples (progress, done, fail) to arguments (done, fail, progress)
							var fn = jQuery.isFunction(fns[tuple[4]]) && fns[tuple[4]];

							// deferred.progress(function() { bind to newDefer or newDefer.notify })
							// deferred.done(function() { bind to newDefer or newDefer.resolve })
							// deferred.fail(function() { bind to newDefer or newDefer.reject })
							deferred[tuple[1]](function() {
								var returned = fn && fn.apply(this, arguments);
								if (returned && jQuery.isFunction(returned.promise)) {
									returned.promise()
										.progress(newDefer.notify)
										.done(newDefer.resolve)
										.fail(newDefer.reject);
								} else {
									newDefer[tuple[0] + "With"](
										this,
										fn ? [returned] : arguments
);
								}
							});
						});
						fns = null;
					}).promise();
				},
				then: function(onFulfilled, onRejected, onProgress) {
					var maxDepth = 0;
					function resolve(depth, deferred, handler, special) {
						return function() {
							var that = this,
								args = arguments,
								mightThrow = function() {
									var returned, then;

									// Support: Promises/A+ section 2.3.3.3.3
									// https://promisesaplus.com/#point-59
									// Ignore double-resolution attempts
									if (depth < maxDepth) {
										return;
									}

									returned = handler.apply(that, args);

									// Support: Promises/A+ section 2.3.1
									// https://promisesaplus.com/#point-48
									if (returned === deferred.promise()) {
										throw new TypeError("Thenable self-resolution");
									}

									// Support: Promises/A+ sections 2.3.3.1, 3.5
									// https://promisesaplus.com/#point-54
									// https://promisesaplus.com/#point-75
									// Retrieve `then` only once
									then = returned &&

										// Support: Promises/A+ section 2.3.4
										// https://promisesaplus.com/#point-64
										// Only check objects and functions for thenability
										(typeof returned === "object" ||
											typeof returned === "function") &&
										returned.then;

									// Handle a returned thenable
									if (jQuery.isFunction(then)) {

										// Special processors (notify) just wait for resolution
										if (special) {
											then.call(
												returned,
												resolve(maxDepth, deferred, Identity, special),
												resolve(maxDepth, deferred, Thrower, special)
);

										// Normal processors (resolve) also hook into progress
										} else {

											// ...and disregard older resolution values
											maxDepth++;

											then.call(
												returned,
												resolve(maxDepth, deferred, Identity, special),
												resolve(maxDepth, deferred, Thrower, special),
												resolve(maxDepth, deferred, Identity,
													deferred.notifyWith)
);
										}

									// Handle all other returned values
									} else {

										// Only substitute handlers pass on context
										// and multiple values (non-spec behavior)
										if (handler !== Identity) {
											that = undefined;
											args = [returned];
										}

										// Process the value(s)
										// Default process is resolve
										(special || deferred.resolveWith)(that, args);
									}
								},

								// Only normal processors (resolve) catch and reject exceptions
								process = special ?
									mightThrow :
									function() {
										try {
											mightThrow();
										} catch (e) {

											if (jQuery.Deferred.exceptionHook) {
												jQuery.Deferred.exceptionHook(e,
													process.stackTrace);
											}

											// Support: Promises/A+ section 2.3.3.3.4.1
											// https://promisesaplus.com/#point-61
											// Ignore post-resolution exceptions
											if (depth + 1 >= maxDepth) {

												// Only substitute handlers pass on context
												// and multiple values (non-spec behavior)
												if (handler !== Thrower) {
													that = undefined;
													args = [e];
												}

												deferred.rejectWith(that, args);
											}
										}
									};

							// Support: Promises/A+ section 2.3.3.3.1
							// https://promisesaplus.com/#point-57
							// Re-resolve promises immediately to dodge false rejection from
							// subsequent errors
							if (depth) {
								process();
							} else {

								// Call an optional hook to record the stack, in case of exception
								// since it's otherwise lost when execution goes async
								if (jQuery.Deferred.getStackHook) {
									process.stackTrace = jQuery.Deferred.getStackHook();
								}
								window.setTimeout(process);
							}
						};
					}

					return jQuery.Deferred(function(newDefer) {

						// progress_handlers.add(...)
						tuples[0][3].add(
							resolve(
								0,
								newDefer,
								jQuery.isFunction(onProgress) ?
									onProgress :
									Identity,
								newDefer.notifyWith
)
);

						// fulfilled_handlers.add(...)
						tuples[1][3].add(
							resolve(
								0,
								newDefer,
								jQuery.isFunction(onFulfilled) ?
									onFulfilled :
									Identity
)
);

						// rejected_handlers.add(...)
						tuples[2][3].add(
							resolve(
								0,
								newDefer,
								jQuery.isFunction(onRejected) ?
									onRejected :
									Thrower
)
);
					}).promise();
				},

				// Get a promise for this deferred
				// If obj is provided, the promise aspect is added to the object
				promise: function(obj) {
					return obj != null ? jQuery.extend(obj, promise) : promise;
				}
			},
			deferred = {};

		// Add list-specific methods
		jQuery.each(tuples, function(i, tuple) {
			var list = tuple[2],
				stateString = tuple[5];

			// promise.progress = list.add
			// promise.done = list.add
			// promise.fail = list.add
			promise[tuple[1]] = list.add;

			// Handle state
			if (stateString) {
				list.add(
					function() {

						// state = "resolved" (i.e., fulfilled)
						// state = "rejected"
						state = stateString;
					},

					// rejected_callbacks.disable
					// fulfilled_callbacks.disable
					tuples[3 - i][2].disable,

					// progress_callbacks.lock
					tuples[0][2].lock
);
			}

			// progress_handlers.fire
			// fulfilled_handlers.fire
			// rejected_handlers.fire
			list.add(tuple[3].fire);

			// deferred.notify = function() { deferred.notifyWith(...) }
			// deferred.resolve = function() { deferred.resolveWith(...) }
			// deferred.reject = function() { deferred.rejectWith(...) }
			deferred[tuple[0]] = function() {
				deferred[tuple[0] + "With"](this === deferred ? undefined : this, arguments);
				return this;
			};

			// deferred.notifyWith = list.fireWith
			// deferred.resolveWith = list.fireWith
			// deferred.rejectWith = list.fireWith
			deferred[tuple[0] + "With"] = list.fireWith;
		});

		// Make the deferred a promise
		promise.promise(deferred);

		// Call given func if any
		if (func) {
			func.call(deferred, deferred);
		}

		// All done!
		return deferred;
	},

	// Deferred helper
	when: function(singleValue) {
		var

			// count of uncompleted subordinates
			remaining = arguments.length,

			// count of unprocessed arguments
			i = remaining,

			// subordinate fulfillment data
			resolveContexts = Array(i),
			resolveValues = slice.call(arguments),

			// the master Deferred
			master = jQuery.Deferred(),

			// subordinate callback factory
			updateFunc = function(i) {
				return function(value) {
					resolveContexts[i] = this;
					resolveValues[i] = arguments.length > 1 ? slice.call(arguments) : value;
					if (!(--remaining)) {
						master.resolveWith(resolveContexts, resolveValues);
					}
				};
			};

		// Single- and empty arguments are adopted like Promise.resolve
		if (remaining <= 1) {
			adoptValue(singleValue, master.done(updateFunc(i)).resolve, master.reject,
				!remaining);

			// Use .then() to unwrap secondary thenables (cf. gh-3000)
			if (master.state() === "pending" ||
				jQuery.isFunction(resolveValues[i] && resolveValues[i].then)) {

				return master.then();
			}
		}

		// Multiple arguments are aggregated like Promise.all array elements
		while (i--) {
			adoptValue(resolveValues[i], updateFunc(i), master.reject);
		}

		return master.promise();
	}
});

// These usually indicate a programmer mistake during development,
// warn about them ASAP rather than swallowing them by default.
var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/;

jQuery.Deferred.exceptionHook = function(error, stack) {

	// Support: IE 8 - 9 only
	// Console exists when dev tools are open, which can happen at any time
	if (window.console && window.console.warn && error && rerrorNames.test(error.name)) {
		window.console.warn("jQuery.Deferred exception: " + error.message, error.stack, stack);
	}
};

jQuery.readyException = function(error) {
	window.setTimeout(function() {
		throw error;
	});
};

// The deferred used on DOM ready
var readyList = jQuery.Deferred();

jQuery.fn.ready = function(fn) {

	readyList
		.then(fn)

		// Wrap jQuery.readyException in a function so that the lookup
		// happens at the time of error handling instead of callback
		// registration.
		.catch(function(error) {
			jQuery.readyException(error);
		});

	return this;
};

jQuery.extend({

	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,

	// A counter to track how many items to wait for before
	// the ready event fires. See #6781
	readyWait: 1,

	// Handle when the DOM is ready
	ready: function(wait) {

		// Abort if there are pending holds or we're already ready
		if (wait === true ? --jQuery.readyWait : jQuery.isReady) {
			return;
		}

		// Remember that the DOM is ready
		jQuery.isReady = true;

		// If a normal DOM Ready event fired, decrement, and wait if need be
		if (wait !== true && --jQuery.readyWait > 0) {
			return;
		}

		// If there are functions bound, to execute
		readyList.resolveWith(document, [jQuery]);
	}
});

jQuery.ready.then = readyList.then;

// The ready event handler and self cleanup method
function completed() {
	document.removeEventListener("DOMContentLoaded", completed);
	window.removeEventListener("load", completed);
	jQuery.ready();
}

// Catch cases where $(document).ready() is called
// after the browser event has already occurred.
// Support: IE <=9 - 10 only
// Older IE sometimes signals "interactive" too soon
if (document.readyState === "complete" ||
	(document.readyState !== "loading" && !document.documentElement.doScroll)) {

	// Handle it asynchronously to allow scripts the opportunity to delay ready
	window.setTimeout(jQuery.ready);

} else {

	// Use the handy event callback
	document.addEventListener("DOMContentLoaded", completed);

	// A fallback to window.onload, that will always work
	window.addEventListener("load", completed);
}

// Multifunctional method to get and set values of a collection
// The value/s can optionally be executed if it's a function
var access = function(elems, fn, key, value, chainable, emptyGet, raw) {
	var i = 0,
		len = elems.length,
		bulk = key == null;

	// Sets many values
	if (jQuery.type(key) === "object") {
		chainable = true;
		for (i in key) {
			access(elems, fn, i, key[i], true, emptyGet, raw);
		}

	// Sets one value
	} else if (value !== undefined) {
		chainable = true;

		if (!jQuery.isFunction(value)) {
			raw = true;
		}

		if (bulk) {

			// Bulk operations run against the entire set
			if (raw) {
				fn.call(elems, value);
				fn = null;

			// ...except when executing function values
			} else {
				bulk = fn;
				fn = function(elem, key, value) {
					return bulk.call(jQuery(elem), value);
				};
			}
		}

		if (fn) {
			for (; i < len; i++) {
				fn(
					elems[i], key, raw ?
					value :
					value.call(elems[i], i, fn(elems[i], key))
);
			}
		}
	}

	if (chainable) {
		return elems;
	}

	// Gets
	if (bulk) {
		return fn.call(elems);
	}

	return len ? fn(elems[0], key) : emptyGet;
};
var acceptData = function(owner) {

	// Accepts only:
	// - Node
	// - Node.ELEMENT_NODE
	// - Node.DOCUMENT_NODE
	// - Object
	// - Any
	return owner.nodeType === 1 || owner.nodeType === 9 || !(+owner.nodeType);
};

function Data() {
	this.expando = jQuery.expando + Data.uid++;
}

Data.uid = 1;

Data.prototype = {

	cache: function(owner) {

		// Check if the owner object already has a cache
		var value = owner[this.expando];

		// If not, create one
		if (!value) {
			value = {};

			// We can accept data for non-element nodes in modern browsers,
			// but we should not, see #8335.
			// Always return an empty object.
			if (acceptData(owner)) {

				// If it is a node unlikely to be stringify-ed or looped over
				// use plain assignment
				if (owner.nodeType) {
					owner[this.expando] = value;

				// Otherwise secure it in a non-enumerable property
				// configurable must be true to allow the property to be
				// deleted when data is removed
				} else {
					Object.defineProperty(owner, this.expando, {
						value: value,
						configurable: true
					});
				}
			}
		}

		return value;
	},
	set: function(owner, data, value) {
		var prop,
			cache = this.cache(owner);

		// Handle: [owner, key, value] args
		// Always use camelCase key (gh-2257)
		if (typeof data === "string") {
			cache[jQuery.camelCase(data)] = value;

		// Handle: [owner, { properties }] args
		} else {

			// Copy the properties one-by-one to the cache object
			for (prop in data) {
				cache[jQuery.camelCase(prop)] = data[prop];
			}
		}
		return cache;
	},
	get: function(owner, key) {
		return key === undefined ?
			this.cache(owner) :

			// Always use camelCase key (gh-2257)
			owner[this.expando] && owner[this.expando][jQuery.camelCase(key)];
	},
	access: function(owner, key, value) {

		// In cases where either:
		//
		// 1. No key was specified
		// 2. A string key was specified, but no value provided
		//
		// Take the "read" path and allow the get method to determine
		// which value to return, respectively either:
		//
		// 1. The entire cache object
		// 2. The data stored at the key
		//
		if (key === undefined ||
				((key && typeof key === "string") && value === undefined)) {

			return this.get(owner, key);
		}

		// When the key is not a string, or both a key and value
		// are specified, set or extend (existing objects) with either:
		//
		// 1. An object of properties
		// 2. A key and value
		//
		this.set(owner, key, value);

		// Since the "set" path can have two possible entry points
		// return the expected data based on which path was taken[*]
		return value !== undefined ? value : key;
	},
	remove: function(owner, key) {
		var i,
			cache = owner[this.expando];

		if (cache === undefined) {
			return;
		}

		if (key !== undefined) {

			// Support array or space separated string of keys
			if (Array.isArray(key)) {

				// If key is an array of keys...
				// We always set camelCase keys, so remove that.
				key = key.map(jQuery.camelCase);
			} else {
				key = jQuery.camelCase(key);

				// If a key with the spaces exists, use it.
				// Otherwise, create an array by matching non-whitespace
				key = key in cache ?
					[key] :
					(key.match(rnothtmlwhite) || []);
			}

			i = key.length;

			while (i--) {
				delete cache[key[i]];
			}
		}

		// Remove the expando if there's no more data
		if (key === undefined || jQuery.isEmptyObject(cache)) {

			// Support: Chrome <=35 - 45
			// Webkit & Blink performance suffers when deleting properties
			// from DOM nodes, so set to undefined instead
			// https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted)
			if (owner.nodeType) {
				owner[this.expando] = undefined;
			} else {
				delete owner[this.expando];
			}
		}
	},
	hasData: function(owner) {
		var cache = owner[this.expando];
		return cache !== undefined && !jQuery.isEmptyObject(cache);
	}
};
var dataPriv = new Data();

var dataUser = new Data();

//	Implementation Summary
//
//	1. Enforce API surface and semantic compatibility with 1.9.x branch
//	2. Improve the module's maintainability by reducing the storage
//		paths to a single mechanism.
//	3. Use the same single mechanism to support "private" and "user" data.
//	4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData)
//	5. Avoid exposing implementation details on user objects (eg. expando properties)
//	6. Provide a clear path for implementation upgrade to WeakMap in 2014

var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,
	rmultiDash = /[A-Z]/g;

function getData(data) {
	if (data === "true") {
		return true;
	}

	if (data === "false") {
		return false;
	}

	if (data === "null") {
		return null;
	}

	// Only convert to a number if it doesn't change the string
	if (data === +data + "") {
		return +data;
	}

	if (rbrace.test(data)) {
		return JSON.parse(data);
	}

	return data;
}

function dataAttr(elem, key, data) {
	var name;

	// If nothing was found internally, try to fetch any
	// data from the HTML5 data-* attribute
	if (data === undefined && elem.nodeType === 1) {
		name = "data-" + key.replace(rmultiDash, "-$&").toLowerCase();
		data = elem.getAttribute(name);

		if (typeof data === "string") {
			try {
				data = getData(data);
			} catch (e) {}

			// Make sure we set the data so it isn't changed later
			dataUser.set(elem, key, data);
		} else {
			data = undefined;
		}
	}
	return data;
}

jQuery.extend({
	hasData: function(elem) {
		return dataUser.hasData(elem) || dataPriv.hasData(elem);
	},

	data: function(elem, name, data) {
		return dataUser.access(elem, name, data);
	},

	removeData: function(elem, name) {
		dataUser.remove(elem, name);
	},

	// TODO: Now that all calls to _data and _removeData have been replaced
	// with direct calls to dataPriv methods, these can be deprecated.
	_data: function(elem, name, data) {
		return dataPriv.access(elem, name, data);
	},

	_removeData: function(elem, name) {
		dataPriv.remove(elem, name);
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		var i, name, data,
			elem = this[0],
			attrs = elem && elem.attributes;

		// Gets all values
		if (key === undefined) {
			if (this.length) {
				data = dataUser.get(elem);

				if (elem.nodeType === 1 && !dataPriv.get(elem, "hasDataAttrs")) {
					i = attrs.length;
					while (i--) {

						// Support: IE 11 only
						// The attrs elements can be null (#14894)
						if (attrs[i]) {
							name = attrs[i].name;
							if (name.indexOf("data-") === 0) {
								name = jQuery.camelCase(name.slice(5));
								dataAttr(elem, name, data[name]);
							}
						}
					}
					dataPriv.set(elem, "hasDataAttrs", true);
				}
			}

			return data;
		}

		// Sets multiple values
		if (typeof key === "object") {
			return this.each(function() {
				dataUser.set(this, key);
			});
		}

		return access(this, function(value) {
			var data;

			// The calling jQuery object (element matches) is not empty
			// (and therefore has an element appears at this[0]) and the
			// `value` parameter was not undefined. An empty jQuery object
			// will result in `undefined` for elem = this[0] which will
			// throw an exception if an attempt to read a data cache is made.
			if (elem && value === undefined) {

				// Attempt to get data from the cache
				// The key will always be camelCased in Data
				data = dataUser.get(elem, key);
				if (data !== undefined) {
					return data;
				}

				// Attempt to "discover" the data in
				// HTML5 custom data-* attrs
				data = dataAttr(elem, key);
				if (data !== undefined) {
					return data;
				}

				// We tried really hard, but the data doesn't exist.
				return;
			}

			// Set the data...
			this.each(function() {

				// We always store the camelCased key
				dataUser.set(this, key, value);
			});
		}, null, value, arguments.length > 1, null, true);
	},

	removeData: function(key) {
		return this.each(function() {
			dataUser.remove(this, key);
		});
	}
});

jQuery.extend({
	queue: function(elem, type, data) {
		var queue;

		if (elem) {
			type = (type || "fx") + "queue";
			queue = dataPriv.get(elem, type);

			// Speed up dequeue by getting out quickly if this is just a lookup
			if (data) {
				if (!queue || Array.isArray(data)) {
					queue = dataPriv.access(elem, type, jQuery.makeArray(data));
				} else {
					queue.push(data);
				}
			}
			return queue || [];
		}
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type),
			startLength = queue.length,
			fn = queue.shift(),
			hooks = jQuery._queueHooks(elem, type),
			next = function() {
				jQuery.dequeue(elem, type);
			};

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
			startLength--;
		}

		if (fn) {

			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			// Clear up the last queue stop function
			delete hooks.stop;
			fn.call(elem, next, hooks);
		}

		if (!startLength && hooks) {
			hooks.empty.fire();
		}
	},

	// Not public - generate a queueHooks object, or return the current one
	_queueHooks: function(elem, type) {
		var key = type + "queueHooks";
		return dataPriv.get(elem, key) || dataPriv.access(elem, key, {
			empty: jQuery.Callbacks("once memory").add(function() {
				dataPriv.remove(elem, [type + "queue", key]);
			})
		});
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		var setter = 2;

		if (typeof type !== "string") {
			data = type;
			type = "fx";
			setter--;
		}

		if (arguments.length < setter) {
			return jQuery.queue(this[0], type);
		}

		return data === undefined ?
			this :
			this.each(function() {
				var queue = jQuery.queue(this, type, data);

				// Ensure a hooks for this queue
				jQuery._queueHooks(this, type);

				if (type === "fx" && queue[0] !== "inprogress") {
					jQuery.dequeue(this, type);
				}
			});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},
	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	},

	// Get a promise resolved when queues of a certain type
	// are emptied (fx is the type by default)
	promise: function(type, obj) {
		var tmp,
			count = 1,
			defer = jQuery.Deferred(),
			elements = this,
			i = this.length,
			resolve = function() {
				if (!(--count)) {
					defer.resolveWith(elements, [elements]);
				}
			};

		if (typeof type !== "string") {
			obj = type;
			type = undefined;
		}
		type = type || "fx";

		while (i--) {
			tmp = dataPriv.get(elements[i], type + "queueHooks");
			if (tmp && tmp.empty) {
				count++;
				tmp.empty.add(resolve);
			}
		}
		resolve();
		return defer.promise(obj);
	}
});
var pnum = (/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/).source;

var rcssNum = new RegExp("^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i");

var cssExpand = ["Top", "Right", "Bottom", "Left"];

var isHiddenWithinTree = function(elem, el) {

		// isHiddenWithinTree might be called from jQuery#filter function;
		// in that case, element will be second argument
		elem = el || elem;

		// Inline style trumps all
		return elem.style.display === "none" ||
			elem.style.display === "" &&

			// Otherwise, check computed style
			// Support: Firefox <=43 - 45
			// Disconnected elements can have computed display: none, so first confirm that elem is
			// in the document.
			jQuery.contains(elem.ownerDocument, elem) &&

			jQuery.css(elem, "display") === "none";
	};

var swap = function(elem, options, callback, args) {
	var ret, name,
		old = {};

	// Remember the old values, and insert the new ones
	for (name in options) {
		old[name] = elem.style[name];
		elem.style[name] = options[name];
	}

	ret = callback.apply(elem, args || []);

	// Revert the old values
	for (name in options) {
		elem.style[name] = old[name];
	}

	return ret;
};

function adjustCSS(elem, prop, valueParts, tween) {
	var adjusted,
		scale = 1,
		maxIterations = 20,
		currentValue = tween ?
			function() {
				return tween.cur();
			} :
			function() {
				return jQuery.css(elem, prop, "");
			},
		initial = currentValue(),
		unit = valueParts && valueParts[3] || (jQuery.cssNumber[prop] ? "" : "px"),

		// Starting value computation is required for potential unit mismatches
		initialInUnit = (jQuery.cssNumber[prop] || unit !== "px" && +initial) &&
			rcssNum.exec(jQuery.css(elem, prop));

	if (initialInUnit && initialInUnit[3] !== unit) {

		// Trust units reported by jQuery.css
		unit = unit || initialInUnit[3];

		// Make sure we update the tween properties later on
		valueParts = valueParts || [];

		// Iteratively approximate from a nonzero starting point
		initialInUnit = +initial || 1;

		do {

			// If previous iteration zeroed out, double until we get *something*.
			// Use string for doubling so we don't accidentally see scale as unchanged below
			scale = scale || ".5";

			// Adjust and apply
			initialInUnit = initialInUnit / scale;
			jQuery.style(elem, prop, initialInUnit + unit);

		// Update scale, tolerating zero or NaN from tween.cur()
		// Break the loop if scale is unchanged or perfect, or if we've just had enough.
		} while (
			scale !== (scale = currentValue() / initial) && scale !== 1 && --maxIterations
);
	}

	if (valueParts) {
		initialInUnit = +initialInUnit || +initial || 0;

		// Apply relative offset (+=/-=) if specified
		adjusted = valueParts[1] ?
			initialInUnit + (valueParts[1] + 1) * valueParts[2] :
			+valueParts[2];
		if (tween) {
			tween.unit = unit;
			tween.start = initialInUnit;
			tween.end = adjusted;
		}
	}
	return adjusted;
}

var defaultDisplayMap = {};

function getDefaultDisplay(elem) {
	var temp,
		doc = elem.ownerDocument,
		nodeName = elem.nodeName,
		display = defaultDisplayMap[nodeName];

	if (display) {
		return display;
	}

	temp = doc.body.appendChild(doc.createElement(nodeName));
	display = jQuery.css(temp, "display");

	temp.parentNode.removeChild(temp);

	if (display === "none") {
		display = "block";
	}
	defaultDisplayMap[nodeName] = display;

	return display;
}

function showHide(elements, show) {
	var display, elem,
		values = [],
		index = 0,
		length = elements.length;

	// Determine new display value for elements that need to change
	for (; index < length; index++) {
		elem = elements[index];
		if (!elem.style) {
			continue;
		}

		display = elem.style.display;
		if (show) {

			// Since we force visibility upon cascade-hidden elements, an immediate (and slow)
			// check is required in this first loop unless we have a nonempty display value (either
			// inline or about-to-be-restored)
			if (display === "none") {
				values[index] = dataPriv.get(elem, "display") || null;
				if (!values[index]) {
					elem.style.display = "";
				}
			}
			if (elem.style.display === "" && isHiddenWithinTree(elem)) {
				values[index] = getDefaultDisplay(elem);
			}
		} else {
			if (display !== "none") {
				values[index] = "none";

				// Remember what we're overwriting
				dataPriv.set(elem, "display", display);
			}
		}
	}

	// Set the display of the elements in a second loop to avoid constant reflow
	for (index = 0; index < length; index++) {
		if (values[index] != null) {
			elements[index].style.display = values[index];
		}
	}

	return elements;
}

jQuery.fn.extend({
	show: function() {
		return showHide(this, true);
	},
	hide: function() {
		return showHide(this);
	},
	toggle: function(state) {
		if (typeof state === "boolean") {
			return state ? this.show() : this.hide();
		}

		return this.each(function() {
			if (isHiddenWithinTree(this)) {
				jQuery(this).show();
			} else {
				jQuery(this).hide();
			}
		});
	}
});
var rcheckableType = (/^(?:checkbox|radio)$/i);

var rtagName = (/<([a-z][^\/\0>\x20\t\r\n\f]+)/i);

var rscriptType = (/^$|\/(?:java|ecma)script/i);

// We have to close these tags to support XHTML (#13200)
var wrapMap = {

	// Support: IE <=9 only
	option: [1, "<select multiple='multiple'>", "</select>"],

	// XHTML parsers do not magically insert elements in the
	// same way that tag soup parsers do. So we cannot shorten
	// this by omitting <tbody> or other required elements.
	thead: [1, "<table>", "</table>"],
	col: [2, "<table><colgroup>", "</colgroup></table>"],
	tr: [2, "<table><tbody>", "</tbody></table>"],
	td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],

	_default: [0, "", ""]
};

// Support: IE <=9 only
wrapMap.optgroup = wrapMap.option;

wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

function getAll(context, tag) {

	// Support: IE <=9 - 11 only
	// Use typeof to avoid zero-argument method invocation on host objects (#15151)
	var ret;

	if (typeof context.getElementsByTagName !== "undefined") {
		ret = context.getElementsByTagName(tag || "*");

	} else if (typeof context.querySelectorAll !== "undefined") {
		ret = context.querySelectorAll(tag || "*");

	} else {
		ret = [];
	}

	if (tag === undefined || tag && nodeName(context, tag)) {
		return jQuery.merge([context], ret);
	}

	return ret;
}

// Mark scripts as having already been evaluated
function setGlobalEval(elems, refElements) {
	var i = 0,
		l = elems.length;

	for (; i < l; i++) {
		dataPriv.set(
			elems[i],
			"globalEval",
			!refElements || dataPriv.get(refElements[i], "globalEval")
);
	}
}

var rhtml = /<|&#?\w+;/;

function buildFragment(elems, context, scripts, selection, ignored) {
	var elem, tmp, tag, wrap, contains, j,
		fragment = context.createDocumentFragment(),
		nodes = [],
		i = 0,
		l = elems.length;

	for (; i < l; i++) {
		elem = elems[i];

		if (elem || elem === 0) {

			// Add nodes directly
			if (jQuery.type(elem) === "object") {

				// Support: Android <=4.0 only, PhantomJS 1 only
				// push.apply(_, arraylike) throws on ancient WebKit
				jQuery.merge(nodes, elem.nodeType ? [elem] : elem);

			// Convert non-html into a text node
			} else if (!rhtml.test(elem)) {
				nodes.push(context.createTextNode(elem));

			// Convert html into DOM nodes
			} else {
				tmp = tmp || fragment.appendChild(context.createElement("div"));

				// Deserialize a standard representation
				tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase();
				wrap = wrapMap[tag] || wrapMap._default;
				tmp.innerHTML = wrap[1] + jQuery.htmlPrefilter(elem) + wrap[2];

				// Descend through wrappers to the right content
				j = wrap[0];
				while (j--) {
					tmp = tmp.lastChild;
				}

				// Support: Android <=4.0 only, PhantomJS 1 only
				// push.apply(_, arraylike) throws on ancient WebKit
				jQuery.merge(nodes, tmp.childNodes);

				// Remember the top-level container
				tmp = fragment.firstChild;

				// Ensure the created nodes are orphaned (#12392)
				tmp.textContent = "";
			}
		}
	}

	// Remove wrapper from fragment
	fragment.textContent = "";

	i = 0;
	while ((elem = nodes[i++])) {

		// Skip elements already in the context collection (trac-4087)
		if (selection && jQuery.inArray(elem, selection) > -1) {
			if (ignored) {
				ignored.push(elem);
			}
			continue;
		}

		contains = jQuery.contains(elem.ownerDocument, elem);

		// Append to fragment
		tmp = getAll(fragment.appendChild(elem), "script");

		// Preserve script evaluation history
		if (contains) {
			setGlobalEval(tmp);
		}

		// Capture executables
		if (scripts) {
			j = 0;
			while ((elem = tmp[j++])) {
				if (rscriptType.test(elem.type || "")) {
					scripts.push(elem);
				}
			}
		}
	}

	return fragment;
}

(function() {
	var fragment = document.createDocumentFragment(),
		div = fragment.appendChild(document.createElement("div")),
		input = document.createElement("input");

	// Support: Android 4.0 - 4.3 only
	// Check state lost if the name is set (#11217)
	// Support: Windows Web Apps (WWA)
	// `name` and `type` must use .setAttribute for WWA (#14901)
	input.setAttribute("type", "radio");
	input.setAttribute("checked", "checked");
	input.setAttribute("name", "t");

	div.appendChild(input);

	// Support: Android <=4.1 only
	// Older WebKit doesn't clone checked state correctly in fragments
	support.checkClone = div.cloneNode(true).cloneNode(true).lastChild.checked;

	// Support: IE <=11 only
	// Make sure textarea (and checkbox) defaultValue is properly cloned
	div.innerHTML = "<textarea>x</textarea>";
	support.noCloneChecked = !!div.cloneNode(true).lastChild.defaultValue;
})();
var documentElement = document.documentElement;

var
	rkeyEvent = /^key/,
	rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/,
	rtypenamespace = /^([^.]*)(?:\.(.+)|)/;

function returnTrue() {
	return true;
}

function returnFalse() {
	return false;
}

// Support: IE <=9 only
// See #13393 for more info
function safeActiveElement() {
	try {
		return document.activeElement;
	} catch (err) { }
}

function on(elem, types, selector, data, fn, one) {
	var origFn, type;

	// Types can be a map of types/handlers
	if (typeof types === "object") {

		// (types-Object, selector, data)
		if (typeof selector !== "string") {

			// (types-Object, data)
			data = data || selector;
			selector = undefined;
		}
		for (type in types) {
			on(elem, type, selector, data, types[type], one);
		}
		return elem;
	}

	if (data == null && fn == null) {

		// (types, fn)
		fn = selector;
		data = selector = undefined;
	} else if (fn == null) {
		if (typeof selector === "string") {

			// (types, selector, fn)
			fn = data;
			data = undefined;
		} else {

			// (types, data, fn)
			fn = data;
			data = selector;
			selector = undefined;
		}
	}
	if (fn === false) {
		fn = returnFalse;
	} else if (!fn) {
		return elem;
	}

	if (one === 1) {
		origFn = fn;
		fn = function(event) {

			// Can use an empty set, since event contains the info
			jQuery().off(event);
			return origFn.apply(this, arguments);
		};

		// Use same guid so caller can remove using origFn
		fn.guid = origFn.guid || (origFn.guid = jQuery.guid++);
	}
	return elem.each(function() {
		jQuery.event.add(this, types, fn, data, selector);
	});
}

/*
 * Helper functions for managing events -- not part of the public interface.
 * Props to Dean Edwards' addEvent library for many of the ideas.
 */
jQuery.event = {

	global: {},

	add: function(elem, types, handler, data, selector) {

		var handleObjIn, eventHandle, tmp,
			events, t, handleObj,
			special, handlers, type, namespaces, origType,
			elemData = dataPriv.get(elem);

		// Don't attach events to noData or text/comment nodes (but allow plain objects)
		if (!elemData) {
			return;
		}

		// Caller can pass in an object of custom data in lieu of the handler
		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
			selector = handleObjIn.selector;
		}

		// Ensure that invalid selectors throw exceptions at attach time
		// Evaluate against documentElement in case elem is a non-element node (e.g., document)
		if (selector) {
			jQuery.find.matchesSelector(documentElement, selector);
		}

		// Make sure that the handler has a unique ID, used to find/remove it later
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure and main handler, if this is the first
		if (!(events = elemData.events)) {
			events = elemData.events = {};
		}
		if (!(eventHandle = elemData.handle)) {
			eventHandle = elemData.handle = function(e) {

				// Discard the second event of a jQuery.event.trigger() and
				// when an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ?
					jQuery.event.dispatch.apply(elem, arguments) : undefined;
			};
		}

		// Handle multiple events separated by a space
		types = (types || "").match(rnothtmlwhite) || [""];
		t = types.length;
		while (t--) {
			tmp = rtypenamespace.exec(types[t]) || [];
			type = origType = tmp[1];
			namespaces = (tmp[2] || "").split(".").sort();

			// There *must* be a type, no attaching namespace-only handlers
			if (!type) {
				continue;
			}

			// If event changes its type, use the special event handlers for the changed type
			special = jQuery.event.special[type] || {};

			// If selector defined, determine special event api type, otherwise given type
			type = (selector ? special.delegateType : special.bindType) || type;

			// Update special based on newly reset type
			special = jQuery.event.special[type] || {};

			// handleObj is passed to all event handlers
			handleObj = jQuery.extend({
				type: type,
				origType: origType,
				data: data,
				handler: handler,
				guid: handler.guid,
				selector: selector,
				needsContext: selector && jQuery.expr.match.needsContext.test(selector),
				namespace: namespaces.join(".")
			}, handleObjIn);

			// Init the event handler queue if we're the first
			if (!(handlers = events[type])) {
				handlers = events[type] = [];
				handlers.delegateCount = 0;

				// Only use addEventListener if the special events handler returns false
				if (!special.setup ||
					special.setup.call(elem, data, namespaces, eventHandle) === false) {

					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle);
					}
				}
			}

			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add to the element's handler list, delegates in front
			if (selector) {
				handlers.splice(handlers.delegateCount++, 0, handleObj);
			} else {
				handlers.push(handleObj);
			}

			// Keep track of which events have ever been used, for event optimization
			jQuery.event.global[type] = true;
		}

	},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, selector, mappedTypes) {

		var j, origCount, tmp,
			events, t, handleObj,
			special, handlers, type, namespaces, origType,
			elemData = dataPriv.hasData(elem) && dataPriv.get(elem);

		if (!elemData || !(events = elemData.events)) {
			return;
		}

		// Once for each type.namespace in types; type may be omitted
		types = (types || "").match(rnothtmlwhite) || [""];
		t = types.length;
		while (t--) {
			tmp = rtypenamespace.exec(types[t]) || [];
			type = origType = tmp[1];
			namespaces = (tmp[2] || "").split(".").sort();

			// Unbind all events (on this namespace, if provided) for the element
			if (!type) {
				for (type in events) {
					jQuery.event.remove(elem, type + types[t], handler, selector, true);
				}
				continue;
			}

			special = jQuery.event.special[type] || {};
			type = (selector ? special.delegateType : special.bindType) || type;
			handlers = events[type] || [];
			tmp = tmp[2] &&
				new RegExp("(^|\\.)" + namespaces.join("\\.(?:.*\\.|)") + "(\\.|$)");

			// Remove matching events
			origCount = j = handlers.length;
			while (j--) {
				handleObj = handlers[j];

				if ((mappedTypes || origType === handleObj.origType) &&
					(!handler || handler.guid === handleObj.guid) &&
					(!tmp || tmp.test(handleObj.namespace)) &&
					(!selector || selector === handleObj.selector ||
						selector === "**" && handleObj.selector)) {
					handlers.splice(j, 1);

					if (handleObj.selector) {
						handlers.delegateCount--;
					}
					if (special.remove) {
						special.remove.call(elem, handleObj);
					}
				}
			}

			// Remove generic event handler if we removed something and no more handlers exist
			// (avoids potential for endless recursion during removal of special event handlers)
			if (origCount && !handlers.length) {
				if (!special.teardown ||
					special.teardown.call(elem, namespaces, elemData.handle) === false) {

					jQuery.removeEvent(elem, type, elemData.handle);
				}

				delete events[type];
			}
		}

		// Remove data and the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			dataPriv.remove(elem, "handle events");
		}
	},

	dispatch: function(nativeEvent) {

		// Make a writable jQuery.Event from the native event object
		var event = jQuery.event.fix(nativeEvent);

		var i, j, ret, matched, handleObj, handlerQueue,
			args = new Array(arguments.length),
			handlers = (dataPriv.get(this, "events") || {})[event.type] || [],
			special = jQuery.event.special[event.type] || {};

		// Use the fix-ed jQuery.Event rather than the (read-only) native event
		args[0] = event;

		for (i = 1; i < arguments.length; i++) {
			args[i] = arguments[i];
		}

		event.delegateTarget = this;

		// Call the preDispatch hook for the mapped type, and let it bail if desired
		if (special.preDispatch && special.preDispatch.call(this, event) === false) {
			return;
		}

		// Determine handlers
		handlerQueue = jQuery.event.handlers.call(this, event, handlers);

		// Run delegates first; they may want to stop propagation beneath us
		i = 0;
		while ((matched = handlerQueue[i++]) && !event.isPropagationStopped()) {
			event.currentTarget = matched.elem;

			j = 0;
			while ((handleObj = matched.handlers[j++]) &&
				!event.isImmediatePropagationStopped()) {

				// Triggered event must either 1) have no namespace, or 2) have namespace(s)
				// a subset or equal to those in the bound event (both can have no namespace).
				if (!event.rnamespace || event.rnamespace.test(handleObj.namespace)) {

					event.handleObj = handleObj;
					event.data = handleObj.data;

					ret = ((jQuery.event.special[handleObj.origType] || {}).handle ||
						handleObj.handler).apply(matched.elem, args);

					if (ret !== undefined) {
						if ((event.result = ret) === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}
				}
			}
		}

		// Call the postDispatch hook for the mapped type
		if (special.postDispatch) {
			special.postDispatch.call(this, event);
		}

		return event.result;
	},

	handlers: function(event, handlers) {
		var i, handleObj, sel, matchedHandlers, matchedSelectors,
			handlerQueue = [],
			delegateCount = handlers.delegateCount,
			cur = event.target;

		// Find delegate handlers
		if (delegateCount &&

			// Support: IE <=9
			// Black-hole SVG <use> instance trees (trac-13180)
			cur.nodeType &&

			// Support: Firefox <=42
			// Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861)
			// https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click
			// Support: IE 11 only
			// ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343)
			!(event.type === "click" && event.button >= 1)) {

			for (; cur !== this; cur = cur.parentNode || this) {

				// Don't check non-elements (#13208)
				// Don't process clicks on disabled elements (#6911, #8165, #11382, #11764)
				if (cur.nodeType === 1 && !(event.type === "click" && cur.disabled === true)) {
					matchedHandlers = [];
					matchedSelectors = {};
					for (i = 0; i < delegateCount; i++) {
						handleObj = handlers[i];

						// Don't conflict with Object.prototype properties (#13203)
						sel = handleObj.selector + " ";

						if (matchedSelectors[sel] === undefined) {
							matchedSelectors[sel] = handleObj.needsContext ?
								jQuery(sel, this).index(cur) > -1 :
								jQuery.find(sel, this, null, [cur]).length;
						}
						if (matchedSelectors[sel]) {
							matchedHandlers.push(handleObj);
						}
					}
					if (matchedHandlers.length) {
						handlerQueue.push({ elem: cur, handlers: matchedHandlers });
					}
				}
			}
		}

		// Add the remaining (directly-bound) handlers
		cur = this;
		if (delegateCount < handlers.length) {
			handlerQueue.push({ elem: cur, handlers: handlers.slice(delegateCount) });
		}

		return handlerQueue;
	},

	addProp: function(name, hook) {
		Object.defineProperty(jQuery.Event.prototype, name, {
			enumerable: true,
			configurable: true,

			get: jQuery.isFunction(hook) ?
				function() {
					if (this.originalEvent) {
							return hook(this.originalEvent);
					}
				} :
				function() {
					if (this.originalEvent) {
							return this.originalEvent[name];
					}
				},

			set: function(value) {
				Object.defineProperty(this, name, {
					enumerable: true,
					configurable: true,
					writable: true,
					value: value
				});
			}
		});
	},

	fix: function(originalEvent) {
		return originalEvent[jQuery.expando] ?
			originalEvent :
			new jQuery.Event(originalEvent);
	},

	special: {
		load: {

			// Prevent triggered image.load events from bubbling to window.load
			noBubble: true
		},
		focus: {

			// Fire native event if possible so blur/focus sequence is correct
			trigger: function() {
				if (this !== safeActiveElement() && this.focus) {
					this.focus();
					return false;
				}
			},
			delegateType: "focusin"
		},
		blur: {
			trigger: function() {
				if (this === safeActiveElement() && this.blur) {
					this.blur();
					return false;
				}
			},
			delegateType: "focusout"
		},
		click: {

			// For checkbox, fire native event so checked state will be right
			trigger: function() {
				if (this.type === "checkbox" && this.click && nodeName(this, "input")) {
					this.click();
					return false;
				}
			},

			// For cross-browser consistency, don't fire native .click() on links
			_default: function(event) {
				return nodeName(event.target, "a");
			}
		},

		beforeunload: {
			postDispatch: function(event) {

				// Support: Firefox 20+
				// Firefox doesn't alert if the returnValue field is not set.
				if (event.result !== undefined && event.originalEvent) {
					event.originalEvent.returnValue = event.result;
				}
			}
		}
	}
};

jQuery.removeEvent = function(elem, type, handle) {

	// This "if" is needed for plain objects
	if (elem.removeEventListener) {
		elem.removeEventListener(type, handle);
	}
};

jQuery.Event = function(src, props) {

	// Allow instantiation without the 'new' keyword
	if (!(this instanceof jQuery.Event)) {
		return new jQuery.Event(src, props);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;

		// Events bubbling up the document may have been marked as prevented
		// by a handler lower down the tree; reflect the correct value.
		this.isDefaultPrevented = src.defaultPrevented ||
				src.defaultPrevented === undefined &&

				// Support: Android <=2.3 only
				src.returnValue === false ?
			returnTrue :
			returnFalse;

		// Create target properties
		// Support: Safari <=6 - 7 only
		// Target should not be a text node (#504, #13143)
		this.target = (src.target && src.target.nodeType === 3) ?
			src.target.parentNode :
			src.target;

		this.currentTarget = src.currentTarget;
		this.relatedTarget = src.relatedTarget;

	// Event type
	} else {
		this.type = src;
	}

	// Put explicitly provided properties onto the event object
	if (props) {
		jQuery.extend(this, props);
	}

	// Create a timestamp if incoming event doesn't have one
	this.timeStamp = src && src.timeStamp || jQuery.now();

	// Mark it as fixed
	this[jQuery.expando] = true;
};

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	constructor: jQuery.Event,
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse,
	isSimulated: false,

	preventDefault: function() {
		var e = this.originalEvent;

		this.isDefaultPrevented = returnTrue;

		if (e && !this.isSimulated) {
			e.preventDefault();
		}
	},
	stopPropagation: function() {
		var e = this.originalEvent;

		this.isPropagationStopped = returnTrue;

		if (e && !this.isSimulated) {
			e.stopPropagation();
		}
	},
	stopImmediatePropagation: function() {
		var e = this.originalEvent;

		this.isImmediatePropagationStopped = returnTrue;

		if (e && !this.isSimulated) {
			e.stopImmediatePropagation();
		}

		this.stopPropagation();
	}
};

// Includes all common event props including KeyEvent and MouseEvent specific props
jQuery.each({
	altKey: true,
	bubbles: true,
	cancelable: true,
	changedTouches: true,
	ctrlKey: true,
	detail: true,
	eventPhase: true,
	metaKey: true,
	pageX: true,
	pageY: true,
	shiftKey: true,
	view: true,
	"char": true,
	charCode: true,
	key: true,
	keyCode: true,
	button: true,
	buttons: true,
	clientX: true,
	clientY: true,
	offsetX: true,
	offsetY: true,
	pointerId: true,
	pointerType: true,
	screenX: true,
	screenY: true,
	targetTouches: true,
	toElement: true,
	touches: true,

	which: function(event) {
		var button = event.button;

		// Add which for key events
		if (event.which == null && rkeyEvent.test(event.type)) {
			return event.charCode != null ? event.charCode : event.keyCode;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		if (!event.which && button !== undefined && rmouseEvent.test(event.type)) {
			if (button & 1) {
				return 1;
			}

			if (button & 2) {
				return 3;
			}

			if (button & 4) {
				return 2;
			}

			return 0;
		}

		return event.which;
	}
}, jQuery.event.addProp);

// Create mouseenter/leave events using mouseover/out and event-time checks
// so that event delegation works in jQuery.
// Do the same for pointerenter/pointerleave and pointerover/pointerout
//
// Support: Safari 7 only
// Safari sends mouseenter too often; see:
// https://bugs.chromium.org/p/chromium/issues/detail?id=470258
// for the description of the bug (it existed in older Chrome versions as well).
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout",
	pointerenter: "pointerover",
	pointerleave: "pointerout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		delegateType: fix,
		bindType: fix,

		handle: function(event) {
			var ret,
				target = this,
				related = event.relatedTarget,
				handleObj = event.handleObj;

			// For mouseenter/leave call the handler if related is outside the target.
			// NB: No relatedTarget if the mouse left/entered the browser window
			if (!related || (related !== target && !jQuery.contains(target, related))) {
				event.type = handleObj.origType;
				ret = handleObj.handler.apply(this, arguments);
				event.type = fix;
			}
			return ret;
		}
	};
});

jQuery.fn.extend({

	on: function(types, selector, data, fn) {
		return on(this, types, selector, data, fn);
	},
	one: function(types, selector, data, fn) {
		return on(this, types, selector, data, fn, 1);
	},
	off: function(types, selector, fn) {
		var handleObj, type;
		if (types && types.preventDefault && types.handleObj) {

			// (event) dispatched jQuery.Event
			handleObj = types.handleObj;
			jQuery(types.delegateTarget).off(
				handleObj.namespace ?
					handleObj.origType + "." + handleObj.namespace :
					handleObj.origType,
				handleObj.selector,
				handleObj.handler
);
			return this;
		}
		if (typeof types === "object") {

			// (types-object [, selector])
			for (type in types) {
				this.off(type, selector, types[type]);
			}
			return this;
		}
		if (selector === false || typeof selector === "function") {

			// (types [, fn])
			fn = selector;
			selector = undefined;
		}
		if (fn === false) {
			fn = returnFalse;
		}
		return this.each(function() {
			jQuery.event.remove(this, types, fn, selector);
		});
	}
});

var

	/* eslint-disable max-len */

	// See https://github.com/eslint/eslint/issues/3229
	rxhtmlTag = /<(?!area|br|col|embed|hr|img|input|link|meta|param)(([a-z][^\/\0>\x20\t\r\n\f]*)[^>]*)\/>/gi,

	/* eslint-enable */

	// Support: IE <=10 - 11, Edge 12 - 13
	// In IE/Edge using regex groups here causes severe slowdowns.
	// See https://connect.microsoft.com/IE/feedback/details/1736512/
	rnoInnerhtml = /<script|<style|<link/i,

	// checked="checked" or checked
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i,
	rscriptTypeMasked = /^true\/(.*)/,
	rcleanScript = /^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g;

// Prefer a tbody over its parent table for containing new rows
function manipulationTarget(elem, content) {
	if (nodeName(elem, "table") &&
		nodeName(content.nodeType !== 11 ? content : content.firstChild, "tr")) {

		return jQuery(">tbody", elem)[0] || elem;
	}

	return elem;
}

// Replace/restore the type attribute of script elements for safe DOM manipulation
function disableScript(elem) {
	elem.type = (elem.getAttribute("type") !== null) + "/" + elem.type;
	return elem;
}
function restoreScript(elem) {
	var match = rscriptTypeMasked.exec(elem.type);

	if (match) {
		elem.type = match[1];
	} else {
		elem.removeAttribute("type");
	}

	return elem;
}

function cloneCopyEvent(src, dest) {
	var i, l, type, pdataOld, pdataCur, udataOld, udataCur, events;

	if (dest.nodeType !== 1) {
		return;
	}

	// 1. Copy private data: events, handlers, etc.
	if (dataPriv.hasData(src)) {
		pdataOld = dataPriv.access(src);
		pdataCur = dataPriv.set(dest, pdataOld);
		events = pdataOld.events;

		if (events) {
			delete pdataCur.handle;
			pdataCur.events = {};

			for (type in events) {
				for (i = 0, l = events[type].length; i < l; i++) {
					jQuery.event.add(dest, type, events[type][i]);
				}
			}
		}
	}

	// 2. Copy user data
	if (dataUser.hasData(src)) {
		udataOld = dataUser.access(src);
		udataCur = jQuery.extend({}, udataOld);

		dataUser.set(dest, udataCur);
	}
}

// Fix IE bugs, see support tests
function fixInput(src, dest) {
	var nodeName = dest.nodeName.toLowerCase();

	// Fails to persist the checked state of a cloned checkbox or radio button.
	if (nodeName === "input" && rcheckableType.test(src.type)) {
		dest.checked = src.checked;

	// Fails to return the selected option to the default selected state when cloning options
	} else if (nodeName === "input" || nodeName === "textarea") {
		dest.defaultValue = src.defaultValue;
	}
}

function domManip(collection, args, callback, ignored) {

	// Flatten any nested arrays
	args = concat.apply([], args);

	var fragment, first, scripts, hasScripts, node, doc,
		i = 0,
		l = collection.length,
		iNoClone = l - 1,
		value = args[0],
		isFunction = jQuery.isFunction(value);

	// We can't cloneNode fragments that contain checked, in WebKit
	if (isFunction ||
			(l > 1 && typeof value === "string" &&
				!support.checkClone && rchecked.test(value))) {
		return collection.each(function(index) {
			var self = collection.eq(index);
			if (isFunction) {
				args[0] = value.call(this, index, self.html());
			}
			domManip(self, args, callback, ignored);
		});
	}

	if (l) {
		fragment = buildFragment(args, collection[0].ownerDocument, false, collection, ignored);
		first = fragment.firstChild;

		if (fragment.childNodes.length === 1) {
			fragment = first;
		}

		// Require either new content or an interest in ignored elements to invoke the callback
		if (first || ignored) {
			scripts = jQuery.map(getAll(fragment, "script"), disableScript);
			hasScripts = scripts.length;

			// Use the original fragment for the last item
			// instead of the first because it can end up
			// being emptied incorrectly in certain situations (#8070).
			for (; i < l; i++) {
				node = fragment;

				if (i !== iNoClone) {
					node = jQuery.clone(node, true, true);

					// Keep references to cloned scripts for later restoration
					if (hasScripts) {

						// Support: Android <=4.0 only, PhantomJS 1 only
						// push.apply(_, arraylike) throws on ancient WebKit
						jQuery.merge(scripts, getAll(node, "script"));
					}
				}

				callback.call(collection[i], node, i);
			}

			if (hasScripts) {
				doc = scripts[scripts.length - 1].ownerDocument;

				// Reenable scripts
				jQuery.map(scripts, restoreScript);

				// Evaluate executable scripts on first document insertion
				for (i = 0; i < hasScripts; i++) {
					node = scripts[i];
					if (rscriptType.test(node.type || "") &&
						!dataPriv.access(node, "globalEval") &&
						jQuery.contains(doc, node)) {

						if (node.src) {

							// Optional AJAX dependency, but won't run scripts if not present
							if (jQuery._evalUrl) {
								jQuery._evalUrl(node.src);
							}
						} else {
							DOMEval(node.textContent.replace(rcleanScript, ""), doc);
						}
					}
				}
			}
		}
	}

	return collection;
}

function remove(elem, selector, keepData) {
	var node,
		nodes = selector ? jQuery.filter(selector, elem) : elem,
		i = 0;

	for (; (node = nodes[i]) != null; i++) {
		if (!keepData && node.nodeType === 1) {
			jQuery.cleanData(getAll(node));
		}

		if (node.parentNode) {
			if (keepData && jQuery.contains(node.ownerDocument, node)) {
				setGlobalEval(getAll(node, "script"));
			}
			node.parentNode.removeChild(node);
		}
	}

	return elem;
}

jQuery.extend({
	htmlPrefilter: function(html) {
		return html.replace(rxhtmlTag, "<$1></$2>");
	},

	clone: function(elem, dataAndEvents, deepDataAndEvents) {
		var i, l, srcElements, destElements,
			clone = elem.cloneNode(true),
			inPage = jQuery.contains(elem.ownerDocument, elem);

		// Fix IE cloning issues
		if (!support.noCloneChecked && (elem.nodeType === 1 || elem.nodeType === 11) &&
				!jQuery.isXMLDoc(elem)) {

			// We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2
			destElements = getAll(clone);
			srcElements = getAll(elem);

			for (i = 0, l = srcElements.length; i < l; i++) {
				fixInput(srcElements[i], destElements[i]);
			}
		}

		// Copy the events from the original to the clone
		if (dataAndEvents) {
			if (deepDataAndEvents) {
				srcElements = srcElements || getAll(elem);
				destElements = destElements || getAll(clone);

				for (i = 0, l = srcElements.length; i < l; i++) {
					cloneCopyEvent(srcElements[i], destElements[i]);
				}
			} else {
				cloneCopyEvent(elem, clone);
			}
		}

		// Preserve script evaluation history
		destElements = getAll(clone, "script");
		if (destElements.length > 0) {
			setGlobalEval(destElements, !inPage && getAll(elem, "script"));
		}

		// Return the cloned set
		return clone;
	},

	cleanData: function(elems) {
		var data, elem, type,
			special = jQuery.event.special,
			i = 0;

		for (; (elem = elems[i]) !== undefined; i++) {
			if (acceptData(elem)) {
				if ((data = elem[dataPriv.expando])) {
					if (data.events) {
						for (type in data.events) {
							if (special[type]) {
								jQuery.event.remove(elem, type);

							// This is a shortcut to avoid jQuery.event.remove's overhead
							} else {
								jQuery.removeEvent(elem, type, data.handle);
							}
						}
					}

					// Support: Chrome <=35 - 45+
					// Assign undefined instead of using delete, see Data#remove
					elem[dataPriv.expando] = undefined;
				}
				if (elem[dataUser.expando]) {

					// Support: Chrome <=35 - 45+
					// Assign undefined instead of using delete, see Data#remove
					elem[dataUser.expando] = undefined;
				}
			}
		}
	}
});

jQuery.fn.extend({
	detach: function(selector) {
		return remove(this, selector, true);
	},

	remove: function(selector) {
		return remove(this, selector);
	},

	text: function(value) {
		return access(this, function(value) {
			return value === undefined ?
				jQuery.text(this) :
				this.empty().each(function() {
					if (this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9) {
						this.textContent = value;
					}
				});
		}, null, value, arguments.length);
	},

	append: function() {
		return domManip(this, arguments, function(elem) {
			if (this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9) {
				var target = manipulationTarget(this, elem);
				target.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return domManip(this, arguments, function(elem) {
			if (this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9) {
				var target = manipulationTarget(this, elem);
				target.insertBefore(elem, target.firstChild);
			}
		});
	},

	before: function() {
		return domManip(this, arguments, function(elem) {
			if (this.parentNode) {
				this.parentNode.insertBefore(elem, this);
			}
		});
	},

	after: function() {
		return domManip(this, arguments, function(elem) {
			if (this.parentNode) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			}
		});
	},

	empty: function() {
		var elem,
			i = 0;

		for (; (elem = this[i]) != null; i++) {
			if (elem.nodeType === 1) {

				// Prevent memory leaks
				jQuery.cleanData(getAll(elem, false));

				// Remove any remaining nodes
				elem.textContent = "";
			}
		}

		return this;
	},

	clone: function(dataAndEvents, deepDataAndEvents) {
		dataAndEvents = dataAndEvents == null ? false : dataAndEvents;
		deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents;

		return this.map(function() {
			return jQuery.clone(this, dataAndEvents, deepDataAndEvents);
		});
	},

	html: function(value) {
		return access(this, function(value) {
			var elem = this[0] || {},
				i = 0,
				l = this.length;

			if (value === undefined && elem.nodeType === 1) {
				return elem.innerHTML;
			}

			// See if we can take a shortcut and just use innerHTML
			if (typeof value === "string" && !rnoInnerhtml.test(value) &&
				!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

				value = jQuery.htmlPrefilter(value);

				try {
					for (; i < l; i++) {
						elem = this[i] || {};

						// Remove element nodes and prevent memory leaks
						if (elem.nodeType === 1) {
							jQuery.cleanData(getAll(elem, false));
							elem.innerHTML = value;
						}
					}

					elem = 0;

				// If using innerHTML throws an exception, use the fallback method
				} catch (e) {}
			}

			if (elem) {
				this.empty().append(value);
			}
		}, null, value, arguments.length);
	},

	replaceWith: function() {
		var ignored = [];

		// Make the changes, replacing each non-ignored context element with the new content
		return domManip(this, arguments, function(elem) {
			var parent = this.parentNode;

			if (jQuery.inArray(this, ignored) < 0) {
				jQuery.cleanData(getAll(this));
				if (parent) {
					parent.replaceChild(elem, this);
				}
			}

		// Force callback invocation
		}, ignored);
	}
});

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var elems,
			ret = [],
			insert = jQuery(selector),
			last = insert.length - 1,
			i = 0;

		for (; i <= last; i++) {
			elems = i === last ? this : this.clone(true);
			jQuery(insert[i])[original](elems);

			// Support: Android <=4.0 only, PhantomJS 1 only
			// .get() because push.apply(_, arraylike) throws on ancient WebKit
			push.apply(ret, elems.get());
		}

		return this.pushStack(ret);
	};
});
var rmargin = (/^margin/);

var rnumnonpx = new RegExp("^(" + pnum + ")(?!px)[a-z%]+$", "i");

var getStyles = function(elem) {

		// Support: IE <=11 only, Firefox <=30 (#15098, #14150)
		// IE throws on elements created in popups
		// FF meanwhile throws on frame elements through "defaultView.getComputedStyle"
		var view = elem.ownerDocument.defaultView;

		if (!view || !view.opener) {
			view = window;
		}

		return view.getComputedStyle(elem);
	};

(function() {

	// Executing both pixelPosition & boxSizingReliable tests require only one layout
	// so they're executed at the same time to save the second computation.
	function computeStyleTests() {

		// This is a singleton, we need to execute it only once
		if (!div) {
			return;
		}

		div.style.cssText =
			"box-sizing:border-box;" +
			"position:relative;display:block;" +
			"margin:auto;border:1px;padding:1px;" +
			"top:1%;width:50%";
		div.innerHTML = "";
		documentElement.appendChild(container);

		var divStyle = window.getComputedStyle(div);
		pixelPositionVal = divStyle.top !== "1%";

		// Support: Android 4.0 - 4.3 only, Firefox <=3 - 44
		reliableMarginLeftVal = divStyle.marginLeft === "2px";
		boxSizingReliableVal = divStyle.width === "4px";

		// Support: Android 4.0 - 4.3 only
		// Some styles come back with percentage values, even though they shouldn't
		div.style.marginRight = "50%";
		pixelMarginRightVal = divStyle.marginRight === "4px";

		documentElement.removeChild(container);

		// Nullify the div so it wouldn't be stored in the memory and
		// it will also be a sign that checks already performed
		div = null;
	}

	var pixelPositionVal, boxSizingReliableVal, pixelMarginRightVal, reliableMarginLeftVal,
		container = document.createElement("div"),
		div = document.createElement("div");

	// Finish early in limited (non-browser) environments
	if (!div.style) {
		return;
	}

	// Support: IE <=9 - 11 only
	// Style of cloned element affects source element cloned (#8908)
	div.style.backgroundClip = "content-box";
	div.cloneNode(true).style.backgroundClip = "";
	support.clearCloneStyle = div.style.backgroundClip === "content-box";

	container.style.cssText = "border:0;width:8px;height:0;top:0;left:-9999px;" +
		"padding:0;margin-top:1px;position:absolute";
	container.appendChild(div);

	jQuery.extend(support, {
		pixelPosition: function() {
			computeStyleTests();
			return pixelPositionVal;
		},
		boxSizingReliable: function() {
			computeStyleTests();
			return boxSizingReliableVal;
		},
		pixelMarginRight: function() {
			computeStyleTests();
			return pixelMarginRightVal;
		},
		reliableMarginLeft: function() {
			computeStyleTests();
			return reliableMarginLeftVal;
		}
	});
})();

function curCSS(elem, name, computed) {
	var width, minWidth, maxWidth, ret,

		// Support: Firefox 51+
		// Retrieving style before computed somehow
		// fixes an issue with getting wrong values
		// on detached elements
		style = elem.style;

	computed = computed || getStyles(elem);

	// getPropertyValue is needed for:
	// .css('filter') (IE 9 only, #12537)
	// .css('--customProperty) (#3144)
	if (computed) {
		ret = computed.getPropertyValue(name) || computed[name];

		if (ret === "" && !jQuery.contains(elem.ownerDocument, elem)) {
			ret = jQuery.style(elem, name);
		}

		// A tribute to the "awesome hack by Dean Edwards"
		// Android Browser returns percentage for some values,
		// but width seems to be reliably pixels.
		// This is against the CSSOM draft spec:
		// https://drafts.csswg.org/cssom/#resolved-values
		if (!support.pixelMarginRight() && rnumnonpx.test(ret) && rmargin.test(name)) {

			// Remember the original values
			width = style.width;
			minWidth = style.minWidth;
			maxWidth = style.maxWidth;

			// Put in the new values to get a computed value out
			style.minWidth = style.maxWidth = style.width = ret;
			ret = computed.width;

			// Revert the changed values
			style.width = width;
			style.minWidth = minWidth;
			style.maxWidth = maxWidth;
		}
	}

	return ret !== undefined ?

		// Support: IE <=9 - 11 only
		// IE returns zIndex value as an integer.
		ret + "" :
		ret;
}

function addGetHookIf(conditionFn, hookFn) {

	// Define the hook, we'll check on the first run if it's really needed.
	return {
		get: function() {
			if (conditionFn()) {

				// Hook not needed (or it's not possible to use it due
				// to missing dependency), remove it.
				delete this.get;
				return;
			}

			// Hook needed; redefine it so that the support test is not executed again.
			return (this.get = hookFn).apply(this, arguments);
		}
	};
}

var

	// Swappable if display is none or starts with table
	// except "table", "table-cell", or "table-caption"
	// See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display
	rdisplayswap = /^(none|table(?!-c[ea]).+)/,
	rcustomProp = /^--/,
	cssShow = { position: "absolute", visibility: "hidden", display: "block" },
	cssNormalTransform = {
		letterSpacing: "0",
		fontWeight: "400"
	},

	cssPrefixes = ["Webkit", "Moz", "ms"],
	emptyStyle = document.createElement("div").style;

// Return a css property mapped to a potentially vendor prefixed property
function vendorPropName(name) {

	// Shortcut for names that are not vendor prefixed
	if (name in emptyStyle) {
		return name;
	}

	// Check for vendor prefixed names
	var capName = name[0].toUpperCase() + name.slice(1),
		i = cssPrefixes.length;

	while (i--) {
		name = cssPrefixes[i] + capName;
		if (name in emptyStyle) {
			return name;
		}
	}
}

// Return a property mapped along what jQuery.cssProps suggests or to
// a vendor prefixed property.
function finalPropName(name) {
	var ret = jQuery.cssProps[name];
	if (!ret) {
		ret = jQuery.cssProps[name] = vendorPropName(name) || name;
	}
	return ret;
}

function setPositiveNumber(elem, value, subtract) {

	// Any relative (+/-) values have already been
	// normalized at this point
	var matches = rcssNum.exec(value);
	return matches ?

		// Guard against undefined "subtract", e.g., when used as in cssHooks
		Math.max(0, matches[2] - (subtract || 0)) + (matches[3] || "px") :
		value;
}

function augmentWidthOrHeight(elem, name, extra, isBorderBox, styles) {
	var i,
		val = 0;

	// If we already have the right measurement, avoid augmentation
	if (extra === (isBorderBox ? "border" : "content")) {
		i = 4;

	// Otherwise initialize for horizontal or vertical properties
	} else {
		i = name === "width" ? 1 : 0;
	}

	for (; i < 4; i += 2) {

		// Both box models exclude margin, so add it if we want it
		if (extra === "margin") {
			val += jQuery.css(elem, extra + cssExpand[i], true, styles);
		}

		if (isBorderBox) {

			// border-box includes padding, so remove it if we want content
			if (extra === "content") {
				val -= jQuery.css(elem, "padding" + cssExpand[i], true, styles);
			}

			// At this point, extra isn't border nor margin, so remove border
			if (extra !== "margin") {
				val -= jQuery.css(elem, "border" + cssExpand[i] + "Width", true, styles);
			}
		} else {

			// At this point, extra isn't content, so add padding
			val += jQuery.css(elem, "padding" + cssExpand[i], true, styles);

			// At this point, extra isn't content nor padding, so add border
			if (extra !== "padding") {
				val += jQuery.css(elem, "border" + cssExpand[i] + "Width", true, styles);
			}
		}
	}

	return val;
}

function getWidthOrHeight(elem, name, extra) {

	// Start with computed style
	var valueIsBorderBox,
		styles = getStyles(elem),
		val = curCSS(elem, name, styles),
		isBorderBox = jQuery.css(elem, "boxSizing", false, styles) === "border-box";

	// Computed unit is not pixels. Stop here and return.
	if (rnumnonpx.test(val)) {
		return val;
	}

	// Check for style in case a browser which returns unreliable values
	// for getComputedStyle silently falls back to the reliable elem.style
	valueIsBorderBox = isBorderBox &&
		(support.boxSizingReliable() || val === elem.style[name]);

	// Fall back to offsetWidth/Height when value is "auto"
	// This happens for inline elements with no explicit setting (gh-3571)
	if (val === "auto") {
		val = elem["offset" + name[0].toUpperCase() + name.slice(1)];
	}

	// Normalize "", auto, and prepare for extra
	val = parseFloat(val) || 0;

	// Use the active box-sizing model to add/subtract irrelevant styles
	return (val +
		augmentWidthOrHeight(
			elem,
			name,
			extra || (isBorderBox ? "border" : "content"),
			valueIsBorderBox,
			styles
)
) + "px";
}

jQuery.extend({

	// Add in style property hooks for overriding the default
	// behavior of getting and setting a style property
	cssHooks: {
		opacity: {
			get: function(elem, computed) {
				if (computed) {

					// We should always get a number back from opacity
					var ret = curCSS(elem, "opacity");
					return ret === "" ? "1" : ret;
				}
			}
		}
	},

	// Don't automatically add "px" to these possibly-unitless properties
	cssNumber: {
		"animationIterationCount": true,
		"columnCount": true,
		"fillOpacity": true,
		"flexGrow": true,
		"flexShrink": true,
		"fontWeight": true,
		"lineHeight": true,
		"opacity": true,
		"order": true,
		"orphans": true,
		"widows": true,
		"zIndex": true,
		"zoom": true
	},

	// Add in properties whose names you wish to fix before
	// setting or getting the value
	cssProps: {
		"float": "cssFloat"
	},

	// Get and set the style property on a DOM Node
	style: function(elem, name, value, extra) {

		// Don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style) {
			return;
		}

		// Make sure that we're working with the right name
		var ret, type, hooks,
			origName = jQuery.camelCase(name),
			isCustomProp = rcustomProp.test(name),
			style = elem.style;

		// Make sure that we're working with the right name. We don't
		// want to query the value if it is a CSS custom property
		// since they are user-defined.
		if (!isCustomProp) {
			name = finalPropName(origName);
		}

		// Gets hook for the prefixed version, then unprefixed version
		hooks = jQuery.cssHooks[name] || jQuery.cssHooks[origName];

		// Check if we're setting a value
		if (value !== undefined) {
			type = typeof value;

			// Convert "+=" or "-=" to relative numbers (#7345)
			if (type === "string" && (ret = rcssNum.exec(value)) && ret[1]) {
				value = adjustCSS(elem, name, ret);

				// Fixes bug #9237
				type = "number";
			}

			// Make sure that null and NaN values aren't set (#7116)
			if (value == null || value !== value) {
				return;
			}

			// If a number was passed in, add the unit (except for certain CSS properties)
			if (type === "number") {
				value += ret && ret[3] || (jQuery.cssNumber[origName] ? "" : "px");
			}

			// background-* props affect original clone's values
			if (!support.clearCloneStyle && value === "" && name.indexOf("background") === 0) {
				style[name] = "inherit";
			}

			// If a hook was provided, use that value, otherwise just set the specified value
			if (!hooks || !("set" in hooks) ||
				(value = hooks.set(elem, value, extra)) !== undefined) {

				if (isCustomProp) {
					style.setProperty(name, value);
				} else {
					style[name] = value;
				}
			}

		} else {

			// If a hook was provided get the non-computed value from there
			if (hooks && "get" in hooks &&
				(ret = hooks.get(elem, false, extra)) !== undefined) {

				return ret;
			}

			// Otherwise just get the value from the style object
			return style[name];
		}
	},

	css: function(elem, name, extra, styles) {
		var val, num, hooks,
			origName = jQuery.camelCase(name),
			isCustomProp = rcustomProp.test(name);

		// Make sure that we're working with the right name. We don't
		// want to modify the value if it is a CSS custom property
		// since they are user-defined.
		if (!isCustomProp) {
			name = finalPropName(origName);
		}

		// Try prefixed name followed by the unprefixed name
		hooks = jQuery.cssHooks[name] || jQuery.cssHooks[origName];

		// If a hook was provided get the computed value from there
		if (hooks && "get" in hooks) {
			val = hooks.get(elem, true, extra);
		}

		// Otherwise, if a way to get the computed value exists, use that
		if (val === undefined) {
			val = curCSS(elem, name, styles);
		}

		// Convert "normal" to computed value
		if (val === "normal" && name in cssNormalTransform) {
			val = cssNormalTransform[name];
		}

		// Make numeric if forced or a qualifier was provided and val looks numeric
		if (extra === "" || extra) {
			num = parseFloat(val);
			return extra === true || isFinite(num) ? num || 0 : val;
		}

		return val;
	}
});

jQuery.each(["height", "width"], function(i, name) {
	jQuery.cssHooks[name] = {
		get: function(elem, computed, extra) {
			if (computed) {

				// Certain elements can have dimension info if we invisibly show them
				// but it must have a current display style that would benefit
				return rdisplayswap.test(jQuery.css(elem, "display")) &&

					// Support: Safari 8+
					// Table columns in Safari have non-zero offsetWidth & zero
					// getBoundingClientRect().width unless display is changed.
					// Support: IE <=11 only
					// Running getBoundingClientRect on a disconnected node
					// in IE throws an error.
					(!elem.getClientRects().length || !elem.getBoundingClientRect().width) ?
						swap(elem, cssShow, function() {
							return getWidthOrHeight(elem, name, extra);
						}) :
						getWidthOrHeight(elem, name, extra);
			}
		},

		set: function(elem, value, extra) {
			var matches,
				styles = extra && getStyles(elem),
				subtract = extra && augmentWidthOrHeight(
					elem,
					name,
					extra,
					jQuery.css(elem, "boxSizing", false, styles) === "border-box",
					styles
);

			// Convert to pixels if value adjustment is needed
			if (subtract && (matches = rcssNum.exec(value)) &&
				(matches[3] || "px") !== "px") {

				elem.style[name] = value;
				value = jQuery.css(elem, name);
			}

			return setPositiveNumber(elem, value, subtract);
		}
	};
});

jQuery.cssHooks.marginLeft = addGetHookIf(support.reliableMarginLeft,
	function(elem, computed) {
		if (computed) {
			return (parseFloat(curCSS(elem, "marginLeft")) ||
				elem.getBoundingClientRect().left -
					swap(elem, { marginLeft: 0 }, function() {
						return elem.getBoundingClientRect().left;
					})
) + "px";
		}
	}
);

// These hooks are used by animate to expand properties
jQuery.each({
	margin: "",
	padding: "",
	border: "Width"
}, function(prefix, suffix) {
	jQuery.cssHooks[prefix + suffix] = {
		expand: function(value) {
			var i = 0,
				expanded = {},

				// Assumes a single number if not a string
				parts = typeof value === "string" ? value.split(" ") : [value];

			for (; i < 4; i++) {
				expanded[prefix + cssExpand[i] + suffix] =
					parts[i] || parts[i - 2] || parts[0];
			}

			return expanded;
		}
	};

	if (!rmargin.test(prefix)) {
		jQuery.cssHooks[prefix + suffix].set = setPositiveNumber;
	}
});

jQuery.fn.extend({
	css: function(name, value) {
		return access(this, function(elem, name, value) {
			var styles, len,
				map = {},
				i = 0;

			if (Array.isArray(name)) {
				styles = getStyles(elem);
				len = name.length;

				for (; i < len; i++) {
					map[name[i]] = jQuery.css(elem, name[i], false, styles);
				}

				return map;
			}

			return value !== undefined ?
				jQuery.style(elem, name, value) :
				jQuery.css(elem, name);
		}, name, value, arguments.length > 1);
	}
});

function Tween(elem, options, prop, end, easing) {
	return new Tween.prototype.init(elem, options, prop, end, easing);
}
jQuery.Tween = Tween;

Tween.prototype = {
	constructor: Tween,
	init: function(elem, options, prop, end, easing, unit) {
		this.elem = elem;
		this.prop = prop;
		this.easing = easing || jQuery.easing._default;
		this.options = options;
		this.start = this.now = this.cur();
		this.end = end;
		this.unit = unit || (jQuery.cssNumber[prop] ? "" : "px");
	},
	cur: function() {
		var hooks = Tween.propHooks[this.prop];

		return hooks && hooks.get ?
			hooks.get(this) :
			Tween.propHooks._default.get(this);
	},
	run: function(percent) {
		var eased,
			hooks = Tween.propHooks[this.prop];

		if (this.options.duration) {
			this.pos = eased = jQuery.easing[this.easing](
				percent, this.options.duration * percent, 0, 1, this.options.duration
);
		} else {
			this.pos = eased = percent;
		}
		this.now = (this.end - this.start) * eased + this.start;

		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		if (hooks && hooks.set) {
			hooks.set(this);
		} else {
			Tween.propHooks._default.set(this);
		}
		return this;
	}
};

Tween.prototype.init.prototype = Tween.prototype;

Tween.propHooks = {
	_default: {
		get: function(tween) {
			var result;

			// Use a property on the element directly when it is not a DOM element,
			// or when there is no matching style property that exists.
			if (tween.elem.nodeType !== 1 ||
				tween.elem[tween.prop] != null && tween.elem.style[tween.prop] == null) {
				return tween.elem[tween.prop];
			}

			// Passing an empty string as a 3rd parameter to .css will automatically
			// attempt a parseFloat and fallback to a string if the parse fails.
			// Simple values such as "10px" are parsed to Float;
			// complex values such as "rotate(1rad)" are returned as-is.
			result = jQuery.css(tween.elem, tween.prop, "");

			// Empty strings, null, undefined and "auto" are converted to 0.
			return !result || result === "auto" ? 0 : result;
		},
		set: function(tween) {

			// Use step hook for back compat.
			// Use cssHook if its there.
			// Use .style if available and use plain properties where available.
			if (jQuery.fx.step[tween.prop]) {
				jQuery.fx.step[tween.prop](tween);
			} else if (tween.elem.nodeType === 1 &&
				(tween.elem.style[jQuery.cssProps[tween.prop]] != null ||
					jQuery.cssHooks[tween.prop])) {
				jQuery.style(tween.elem, tween.prop, tween.now + tween.unit);
			} else {
				tween.elem[tween.prop] = tween.now;
			}
		}
	}
};

// Support: IE <=9 only
// Panic based approach to setting things on disconnected nodes
Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = {
	set: function(tween) {
		if (tween.elem.nodeType && tween.elem.parentNode) {
			tween.elem[tween.prop] = tween.now;
		}
	}
};

jQuery.easing = {
	linear: function(p) {
		return p;
	},
	swing: function(p) {
		return 0.5 - Math.cos(p * Math.PI) / 2;
	},
	_default: "swing"
};

jQuery.fx = Tween.prototype.init;

// Back compat <1.8 extension point
jQuery.fx.step = {};

var
	fxNow, inProgress,
	rfxtypes = /^(?:toggle|show|hide)$/,
	rrun = /queueHooks$/;

function schedule() {
	if (inProgress) {
		if (document.hidden === false && window.requestAnimationFrame) {
			window.requestAnimationFrame(schedule);
		} else {
			window.setTimeout(schedule, jQuery.fx.interval);
		}

		jQuery.fx.tick();
	}
}

// Animations created synchronously will run synchronously
function createFxNow() {
	window.setTimeout(function() {
		fxNow = undefined;
	});
	return (fxNow = jQuery.now());
}

// Generate parameters to create a standard animation
function genFx(type, includeWidth) {
	var which,
		i = 0,
		attrs = { height: type };

	// If we include width, step value is 1 to do all cssExpand values,
	// otherwise step value is 2 to skip over Left and Right
	includeWidth = includeWidth ? 1 : 0;
	for (; i < 4; i += 2 - includeWidth) {
		which = cssExpand[i];
		attrs["margin" + which] = attrs["padding" + which] = type;
	}

	if (includeWidth) {
		attrs.opacity = attrs.width = type;
	}

	return attrs;
}

function createTween(value, prop, animation) {
	var tween,
		collection = (Animation.tweeners[prop] || []).concat(Animation.tweeners["*"]),
		index = 0,
		length = collection.length;
	for (; index < length; index++) {
		if ((tween = collection[index].call(animation, prop, value))) {

			// We're done with this property
			return tween;
		}
	}
}

function defaultPrefilter(elem, props, opts) {
	var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display,
		isBox = "width" in props || "height" in props,
		anim = this,
		orig = {},
		style = elem.style,
		hidden = elem.nodeType && isHiddenWithinTree(elem),
		dataShow = dataPriv.get(elem, "fxshow");

	// Queue-skipping animations hijack the fx hooks
	if (!opts.queue) {
		hooks = jQuery._queueHooks(elem, "fx");
		if (hooks.unqueued == null) {
			hooks.unqueued = 0;
			oldfire = hooks.empty.fire;
			hooks.empty.fire = function() {
				if (!hooks.unqueued) {
					oldfire();
				}
			};
		}
		hooks.unqueued++;

		anim.always(function() {

			// Ensure the complete handler is called before this completes
			anim.always(function() {
				hooks.unqueued--;
				if (!jQuery.queue(elem, "fx").length) {
					hooks.empty.fire();
				}
			});
		});
	}

	// Detect show/hide animations
	for (prop in props) {
		value = props[prop];
		if (rfxtypes.test(value)) {
			delete props[prop];
			toggle = toggle || value === "toggle";
			if (value === (hidden ? "hide" : "show")) {

				// Pretend to be hidden if this is a "show" and
				// there is still data from a stopped show/hide
				if (value === "show" && dataShow && dataShow[prop] !== undefined) {
					hidden = true;

				// Ignore all other no-op show/hide data
				} else {
					continue;
				}
			}
			orig[prop] = dataShow && dataShow[prop] || jQuery.style(elem, prop);
		}
	}

	// Bail out if this is a no-op like .hide().hide()
	propTween = !jQuery.isEmptyObject(props);
	if (!propTween && jQuery.isEmptyObject(orig)) {
		return;
	}

	// Restrict "overflow" and "display" styles during box animations
	if (isBox && elem.nodeType === 1) {

		// Support: IE <=9 - 11, Edge 12 - 13
		// Record all 3 overflow attributes because IE does not infer the shorthand
		// from identically-valued overflowX and overflowY
		opts.overflow = [style.overflow, style.overflowX, style.overflowY];

		// Identify a display type, preferring old show/hide data over the CSS cascade
		restoreDisplay = dataShow && dataShow.display;
		if (restoreDisplay == null) {
			restoreDisplay = dataPriv.get(elem, "display");
		}
		display = jQuery.css(elem, "display");
		if (display === "none") {
			if (restoreDisplay) {
				display = restoreDisplay;
			} else {

				// Get nonempty value(s) by temporarily forcing visibility
				showHide([elem], true);
				restoreDisplay = elem.style.display || restoreDisplay;
				display = jQuery.css(elem, "display");
				showHide([elem]);
			}
		}

		// Animate inline elements as inline-block
		if (display === "inline" || display === "inline-block" && restoreDisplay != null) {
			if (jQuery.css(elem, "float") === "none") {

				// Restore the original display value at the end of pure show/hide animations
				if (!propTween) {
					anim.done(function() {
						style.display = restoreDisplay;
					});
					if (restoreDisplay == null) {
						display = style.display;
						restoreDisplay = display === "none" ? "" : display;
					}
				}
				style.display = "inline-block";
			}
		}
	}

	if (opts.overflow) {
		style.overflow = "hidden";
		anim.always(function() {
			style.overflow = opts.overflow[0];
			style.overflowX = opts.overflow[1];
			style.overflowY = opts.overflow[2];
		});
	}

	// Implement show/hide animations
	propTween = false;
	for (prop in orig) {

		// General show/hide setup for this element animation
		if (!propTween) {
			if (dataShow) {
				if ("hidden" in dataShow) {
					hidden = dataShow.hidden;
				}
			} else {
				dataShow = dataPriv.access(elem, "fxshow", { display: restoreDisplay });
			}

			// Store hidden/visible for toggle so `.stop().toggle()` "reverses"
			if (toggle) {
				dataShow.hidden = !hidden;
			}

			// Show elements before animating them
			if (hidden) {
				showHide([elem], true);
			}

			/* eslint-disable no-loop-func */

			anim.done(function() {

			/* eslint-enable no-loop-func */

				// The final step of a "hide" animation is actually hiding the element
				if (!hidden) {
					showHide([elem]);
				}
				dataPriv.remove(elem, "fxshow");
				for (prop in orig) {
					jQuery.style(elem, prop, orig[prop]);
				}
			});
		}

		// Per-property setup
		propTween = createTween(hidden ? dataShow[prop] : 0, prop, anim);
		if (!(prop in dataShow)) {
			dataShow[prop] = propTween.start;
			if (hidden) {
				propTween.end = propTween.start;
				propTween.start = 0;
			}
		}
	}
}

function propFilter(props, specialEasing) {
	var index, name, easing, value, hooks;

	// camelCase, specialEasing and expand cssHook pass
	for (index in props) {
		name = jQuery.camelCase(index);
		easing = specialEasing[name];
		value = props[index];
		if (Array.isArray(value)) {
			easing = value[1];
			value = props[index] = value[0];
		}

		if (index !== name) {
			props[name] = value;
			delete props[index];
		}

		hooks = jQuery.cssHooks[name];
		if (hooks && "expand" in hooks) {
			value = hooks.expand(value);
			delete props[name];

			// Not quite $.extend, this won't overwrite existing keys.
			// Reusing 'index' because we have the correct "name"
			for (index in value) {
				if (!(index in props)) {
					props[index] = value[index];
					specialEasing[index] = easing;
				}
			}
		} else {
			specialEasing[name] = easing;
		}
	}
}

function Animation(elem, properties, options) {
	var result,
		stopped,
		index = 0,
		length = Animation.prefilters.length,
		deferred = jQuery.Deferred().always(function() {

			// Don't match elem in the :animated selector
			delete tick.elem;
		}),
		tick = function() {
			if (stopped) {
				return false;
			}
			var currentTime = fxNow || createFxNow(),
				remaining = Math.max(0, animation.startTime + animation.duration - currentTime),

				// Support: Android 2.3 only
				// Archaic crash bug won't allow us to use `1 - (0.5 || 0)` (#12497)
				temp = remaining / animation.duration || 0,
				percent = 1 - temp,
				index = 0,
				length = animation.tweens.length;

			for (; index < length; index++) {
				animation.tweens[index].run(percent);
			}

			deferred.notifyWith(elem, [animation, percent, remaining]);

			// If there's more to do, yield
			if (percent < 1 && length) {
				return remaining;
			}

			// If this was an empty animation, synthesize a final progress notification
			if (!length) {
				deferred.notifyWith(elem, [animation, 1, 0]);
			}

			// Resolve the animation and report its conclusion
			deferred.resolveWith(elem, [animation]);
			return false;
		},
		animation = deferred.promise({
			elem: elem,
			props: jQuery.extend({}, properties),
			opts: jQuery.extend(true, {
				specialEasing: {},
				easing: jQuery.easing._default
			}, options),
			originalProperties: properties,
			originalOptions: options,
			startTime: fxNow || createFxNow(),
			duration: options.duration,
			tweens: [],
			createTween: function(prop, end) {
				var tween = jQuery.Tween(elem, animation.opts, prop, end,
						animation.opts.specialEasing[prop] || animation.opts.easing);
				animation.tweens.push(tween);
				return tween;
			},
			stop: function(gotoEnd) {
				var index = 0,

					// If we are going to the end, we want to run all the tweens
					// otherwise we skip this part
					length = gotoEnd ? animation.tweens.length : 0;
				if (stopped) {
					return this;
				}
				stopped = true;
				for (; index < length; index++) {
					animation.tweens[index].run(1);
				}

				// Resolve when we played the last frame; otherwise, reject
				if (gotoEnd) {
					deferred.notifyWith(elem, [animation, 1, 0]);
					deferred.resolveWith(elem, [animation, gotoEnd]);
				} else {
					deferred.rejectWith(elem, [animation, gotoEnd]);
				}
				return this;
			}
		}),
		props = animation.props;

	propFilter(props, animation.opts.specialEasing);

	for (; index < length; index++) {
		result = Animation.prefilters[index].call(animation, elem, props, animation.opts);
		if (result) {
			if (jQuery.isFunction(result.stop)) {
				jQuery._queueHooks(animation.elem, animation.opts.queue).stop =
					jQuery.proxy(result.stop, result);
			}
			return result;
		}
	}

	jQuery.map(props, createTween, animation);

	if (jQuery.isFunction(animation.opts.start)) {
		animation.opts.start.call(elem, animation);
	}

	// Attach callbacks from options
	animation
		.progress(animation.opts.progress)
		.done(animation.opts.done, animation.opts.complete)
		.fail(animation.opts.fail)
		.always(animation.opts.always);

	jQuery.fx.timer(
		jQuery.extend(tick, {
			elem: elem,
			anim: animation,
			queue: animation.opts.queue
		})
);

	return animation;
}

jQuery.Animation = jQuery.extend(Animation, {

	tweeners: {
		"*": [function(prop, value) {
			var tween = this.createTween(prop, value);
			adjustCSS(tween.elem, prop, rcssNum.exec(value), tween);
			return tween;
		}]
	},

	tweener: function(props, callback) {
		if (jQuery.isFunction(props)) {
			callback = props;
			props = ["*"];
		} else {
			props = props.match(rnothtmlwhite);
		}

		var prop,
			index = 0,
			length = props.length;

		for (; index < length; index++) {
			prop = props[index];
			Animation.tweeners[prop] = Animation.tweeners[prop] || [];
			Animation.tweeners[prop].unshift(callback);
		}
	},

	prefilters: [defaultPrefilter],

	prefilter: function(callback, prepend) {
		if (prepend) {
			Animation.prefilters.unshift(callback);
		} else {
			Animation.prefilters.push(callback);
		}
	}
});

jQuery.speed = function(speed, easing, fn) {
	var opt = speed && typeof speed === "object" ? jQuery.extend({}, speed) : {
		complete: fn || !fn && easing ||
			jQuery.isFunction(speed) && speed,
		duration: speed,
		easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
	};

	// Go to the end state if fx are off
	if (jQuery.fx.off) {
		opt.duration = 0;

	} else {
		if (typeof opt.duration !== "number") {
			if (opt.duration in jQuery.fx.speeds) {
				opt.duration = jQuery.fx.speeds[opt.duration];

			} else {
				opt.duration = jQuery.fx.speeds._default;
			}
		}
	}

	// Normalize opt.queue - true/undefined/null -> "fx"
	if (opt.queue == null || opt.queue === true) {
		opt.queue = "fx";
	}

	// Queueing
	opt.old = opt.complete;

	opt.complete = function() {
		if (jQuery.isFunction(opt.old)) {
			opt.old.call(this);
		}

		if (opt.queue) {
			jQuery.dequeue(this, opt.queue);
		}
	};

	return opt;
};

jQuery.fn.extend({
	fadeTo: function(speed, to, easing, callback) {

		// Show any hidden elements after setting opacity to 0
		return this.filter(isHiddenWithinTree).css("opacity", 0).show()

			// Animate to the value specified
			.end().animate({ opacity: to }, speed, easing, callback);
	},
	animate: function(prop, speed, easing, callback) {
		var empty = jQuery.isEmptyObject(prop),
			optall = jQuery.speed(speed, easing, callback),
			doAnimation = function() {

				// Operate on a copy of prop so per-property easing won't be lost
				var anim = Animation(this, jQuery.extend({}, prop), optall);

				// Empty animations, or finishing resolves immediately
				if (empty || dataPriv.get(this, "finish")) {
					anim.stop(true);
				}
			};
			doAnimation.finish = doAnimation;

		return empty || optall.queue === false ?
			this.each(doAnimation) :
			this.queue(optall.queue, doAnimation);
	},
	stop: function(type, clearQueue, gotoEnd) {
		var stopQueue = function(hooks) {
			var stop = hooks.stop;
			delete hooks.stop;
			stop(gotoEnd);
		};

		if (typeof type !== "string") {
			gotoEnd = clearQueue;
			clearQueue = type;
			type = undefined;
		}
		if (clearQueue && type !== false) {
			this.queue(type || "fx", []);
		}

		return this.each(function() {
			var dequeue = true,
				index = type != null && type + "queueHooks",
				timers = jQuery.timers,
				data = dataPriv.get(this);

			if (index) {
				if (data[index] && data[index].stop) {
					stopQueue(data[index]);
				}
			} else {
				for (index in data) {
					if (data[index] && data[index].stop && rrun.test(index)) {
						stopQueue(data[index]);
					}
				}
			}

			for (index = timers.length; index--;) {
				if (timers[index].elem === this &&
					(type == null || timers[index].queue === type)) {

					timers[index].anim.stop(gotoEnd);
					dequeue = false;
					timers.splice(index, 1);
				}
			}

			// Start the next in the queue if the last step wasn't forced.
			// Timers currently will call their complete callbacks, which
			// will dequeue but only if they were gotoEnd.
			if (dequeue || !gotoEnd) {
				jQuery.dequeue(this, type);
			}
		});
	},
	finish: function(type) {
		if (type !== false) {
			type = type || "fx";
		}
		return this.each(function() {
			var index,
				data = dataPriv.get(this),
				queue = data[type + "queue"],
				hooks = data[type + "queueHooks"],
				timers = jQuery.timers,
				length = queue ? queue.length : 0;

			// Enable finishing flag on private data
			data.finish = true;

			// Empty the queue first
			jQuery.queue(this, type, []);

			if (hooks && hooks.stop) {
				hooks.stop.call(this, true);
			}

			// Look for any active animations, and finish them
			for (index = timers.length; index--;) {
				if (timers[index].elem === this && timers[index].queue === type) {
					timers[index].anim.stop(true);
					timers.splice(index, 1);
				}
			}

			// Look for any animations in the old queue and finish them
			for (index = 0; index < length; index++) {
				if (queue[index] && queue[index].finish) {
					queue[index].finish.call(this);
				}
			}

			// Turn off finishing flag
			delete data.finish;
		});
	}
});

jQuery.each(["toggle", "show", "hide"], function(i, name) {
	var cssFn = jQuery.fn[name];
	jQuery.fn[name] = function(speed, easing, callback) {
		return speed == null || typeof speed === "boolean" ?
			cssFn.apply(this, arguments) :
			this.animate(genFx(name, true), speed, easing, callback);
	};
});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show"),
	slideUp: genFx("hide"),
	slideToggle: genFx("toggle"),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" },
	fadeToggle: { opacity: "toggle" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, easing, callback) {
		return this.animate(props, speed, easing, callback);
	};
});

jQuery.timers = [];
jQuery.fx.tick = function() {
	var timer,
		i = 0,
		timers = jQuery.timers;

	fxNow = jQuery.now();

	for (; i < timers.length; i++) {
		timer = timers[i];

		// Run the timer and safely remove it when done (allowing for external removal)
		if (!timer() && timers[i] === timer) {
			timers.splice(i--, 1);
		}
	}

	if (!timers.length) {
		jQuery.fx.stop();
	}
	fxNow = undefined;
};

jQuery.fx.timer = function(timer) {
	jQuery.timers.push(timer);
	jQuery.fx.start();
};

jQuery.fx.interval = 13;
jQuery.fx.start = function() {
	if (inProgress) {
		return;
	}

	inProgress = true;
	schedule();
};

jQuery.fx.stop = function() {
	inProgress = null;
};

jQuery.fx.speeds = {
	slow: 600,
	fast: 200,

	// Default speed
	_default: 400
};

// Based off of the plugin by Clint Helfers, with permission.
// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/
jQuery.fn.delay = function(time, type) {
	time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
	type = type || "fx";

	return this.queue(type, function(next, hooks) {
		var timeout = window.setTimeout(next, time);
		hooks.stop = function() {
			window.clearTimeout(timeout);
		};
	});
};

(function() {
	var input = document.createElement("input"),
		select = document.createElement("select"),
		opt = select.appendChild(document.createElement("option"));

	input.type = "checkbox";

	// Support: Android <=4.3 only
	// Default value for a checkbox should be "on"
	support.checkOn = input.value !== "";

	// Support: IE <=11 only
	// Must access selectedIndex to make default options select
	support.optSelected = opt.selected;

	// Support: IE <=11 only
	// An input loses its value after becoming a radio
	input = document.createElement("input");
	input.value = "t";
	input.type = "radio";
	support.radioValue = input.value === "t";
})();

var boolHook,
	attrHandle = jQuery.expr.attrHandle;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, jQuery.attr, name, value, arguments.length > 1);
	},

	removeAttr: function(name) {
		return this.each(function() {
			jQuery.removeAttr(this, name);
		});
	}
});

jQuery.extend({
	attr: function(elem, name, value) {
		var ret, hooks,
			nType = elem.nodeType;

		// Don't get/set attributes on text, comment and attribute nodes
		if (nType === 3 || nType === 8 || nType === 2) {
			return;
		}

		// Fallback to prop when attributes are not supported
		if (typeof elem.getAttribute === "undefined") {
			return jQuery.prop(elem, name, value);
		}

		// Attribute hooks are determined by the lowercase version
		// Grab necessary hook if one is defined
		if (nType !== 1 || !jQuery.isXMLDoc(elem)) {
			hooks = jQuery.attrHooks[name.toLowerCase()] ||
				(jQuery.expr.match.bool.test(name) ? boolHook : undefined);
		}

		if (value !== undefined) {
			if (value === null) {
				jQuery.removeAttr(elem, name);
				return;
			}

			if (hooks && "set" in hooks &&
				(ret = hooks.set(elem, value, name)) !== undefined) {
				return ret;
			}

			elem.setAttribute(name, value + "");
			return value;
		}

		if (hooks && "get" in hooks && (ret = hooks.get(elem, name)) !== null) {
			return ret;
		}

		ret = jQuery.find.attr(elem, name);

		// Non-existent attributes return null, we normalize to undefined
		return ret == null ? undefined : ret;
	},

	attrHooks: {
		type: {
			set: function(elem, value) {
				if (!support.radioValue && value === "radio" &&
					nodeName(elem, "input")) {
					var val = elem.value;
					elem.setAttribute("type", value);
					if (val) {
						elem.value = val;
					}
					return value;
				}
			}
		}
	},

	removeAttr: function(elem, value) {
		var name,
			i = 0,

			// Attribute names can contain non-HTML whitespace characters
			// https://html.spec.whatwg.org/multipage/syntax.html#attributes-2
			attrNames = value && value.match(rnothtmlwhite);

		if (attrNames && elem.nodeType === 1) {
			while ((name = attrNames[i++])) {
				elem.removeAttribute(name);
			}
		}
	}
});

// Hooks for boolean attributes
boolHook = {
	set: function(elem, value, name) {
		if (value === false) {

			// Remove boolean attributes when set to false
			jQuery.removeAttr(elem, name);
		} else {
			elem.setAttribute(name, name);
		}
		return name;
	}
};

jQuery.each(jQuery.expr.match.bool.source.match(/\w+/g), function(i, name) {
	var getter = attrHandle[name] || jQuery.find.attr;

	attrHandle[name] = function(elem, name, isXML) {
		var ret, handle,
			lowercaseName = name.toLowerCase();

		if (!isXML) {

			// Avoid an infinite loop by temporarily removing this function from the getter
			handle = attrHandle[lowercaseName];
			attrHandle[lowercaseName] = ret;
			ret = getter(elem, name, isXML) != null ?
				lowercaseName :
				null;
			attrHandle[lowercaseName] = handle;
		}
		return ret;
	};
});

var rfocusable = /^(?:input|select|textarea|button)$/i,
	rclickable = /^(?:a|area)$/i;

jQuery.fn.extend({
	prop: function(name, value) {
		return access(this, jQuery.prop, name, value, arguments.length > 1);
	},

	removeProp: function(name) {
		return this.each(function() {
			delete this[jQuery.propFix[name] || name];
		});
	}
});

jQuery.extend({
	prop: function(elem, name, value) {
		var ret, hooks,
			nType = elem.nodeType;

		// Don't get/set properties on text, comment and attribute nodes
		if (nType === 3 || nType === 8 || nType === 2) {
			return;
		}

		if (nType !== 1 || !jQuery.isXMLDoc(elem)) {

			// Fix name and attach hooks
			name = jQuery.propFix[name] || name;
			hooks = jQuery.propHooks[name];
		}

		if (value !== undefined) {
			if (hooks && "set" in hooks &&
				(ret = hooks.set(elem, value, name)) !== undefined) {
				return ret;
			}

			return (elem[name] = value);
		}

		if (hooks && "get" in hooks && (ret = hooks.get(elem, name)) !== null) {
			return ret;
		}

		return elem[name];
	},

	propHooks: {
		tabIndex: {
			get: function(elem) {

				// Support: IE <=9 - 11 only
				// elem.tabIndex doesn't always return the
				// correct value when it hasn't been explicitly set
				// https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				// Use proper attribute retrieval(#12072)
				var tabindex = jQuery.find.attr(elem, "tabindex");

				if (tabindex) {
					return parseInt(tabindex, 10);
				}

				if (
					rfocusable.test(elem.nodeName) ||
					rclickable.test(elem.nodeName) &&
					elem.href
) {
					return 0;
				}

				return -1;
			}
		}
	},

	propFix: {
		"for": "htmlFor",
		"class": "className"
	}
});

// Support: IE <=11 only
// Accessing the selectedIndex property
// forces the browser to respect setting selected
// on the option
// The getter ensures a default option is selected
// when in an optgroup
// eslint rule "no-unused-expressions" is disabled for this code
// since it considers such accessions noop
if (!support.optSelected) {
	jQuery.propHooks.selected = {
		get: function(elem) {

			/* eslint no-unused-expressions: "off" */

			var parent = elem.parentNode;
			if (parent && parent.parentNode) {
				parent.parentNode.selectedIndex;
			}
			return null;
		},
		set: function(elem) {

			/* eslint no-unused-expressions: "off" */

			var parent = elem.parentNode;
			if (parent) {
				parent.selectedIndex;

				if (parent.parentNode) {
					parent.parentNode.selectedIndex;
				}
			}
		}
	};
}

jQuery.each([
	"tabIndex",
	"readOnly",
	"maxLength",
	"cellSpacing",
	"cellPadding",
	"rowSpan",
	"colSpan",
	"useMap",
	"frameBorder",
	"contentEditable"
], function() {
	jQuery.propFix[this.toLowerCase()] = this;
});

	// Strip and collapse whitespace according to HTML spec
	// https://html.spec.whatwg.org/multipage/infrastructure.html#strip-and-collapse-whitespace
	function stripAndCollapse(value) {
		var tokens = value.match(rnothtmlwhite) || [];
		return tokens.join(" ");
	}

function getClass(elem) {
	return elem.getAttribute && elem.getAttribute("class") || "";
}

jQuery.fn.extend({
	addClass: function(value) {
		var classes, elem, cur, curValue, clazz, j, finalValue,
			i = 0;

		if (jQuery.isFunction(value)) {
			return this.each(function(j) {
				jQuery(this).addClass(value.call(this, j, getClass(this)));
			});
		}

		if (typeof value === "string" && value) {
			classes = value.match(rnothtmlwhite) || [];

			while ((elem = this[i++])) {
				curValue = getClass(elem);
				cur = elem.nodeType === 1 && (" " + stripAndCollapse(curValue) + " ");

				if (cur) {
					j = 0;
					while ((clazz = classes[j++])) {
						if (cur.indexOf(" " + clazz + " ") < 0) {
							cur += clazz + " ";
						}
					}

					// Only assign if different to avoid unneeded rendering.
					finalValue = stripAndCollapse(cur);
					if (curValue !== finalValue) {
						elem.setAttribute("class", finalValue);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		var classes, elem, cur, curValue, clazz, j, finalValue,
			i = 0;

		if (jQuery.isFunction(value)) {
			return this.each(function(j) {
				jQuery(this).removeClass(value.call(this, j, getClass(this)));
			});
		}

		if (!arguments.length) {
			return this.attr("class", "");
		}

		if (typeof value === "string" && value) {
			classes = value.match(rnothtmlwhite) || [];

			while ((elem = this[i++])) {
				curValue = getClass(elem);

				// This expression is here for better compressibility (see addClass)
				cur = elem.nodeType === 1 && (" " + stripAndCollapse(curValue) + " ");

				if (cur) {
					j = 0;
					while ((clazz = classes[j++])) {

						// Remove *all* instances
						while (cur.indexOf(" " + clazz + " ") > -1) {
							cur = cur.replace(" " + clazz + " ", " ");
						}
					}

					// Only assign if different to avoid unneeded rendering.
					finalValue = stripAndCollapse(cur);
					if (curValue !== finalValue) {
						elem.setAttribute("class", finalValue);
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value;

		if (typeof stateVal === "boolean" && type === "string") {
			return stateVal ? this.addClass(value) : this.removeClass(value);
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				jQuery(this).toggleClass(
					value.call(this, i, getClass(this), stateVal),
					stateVal
);
			});
		}

		return this.each(function() {
			var className, i, self, classNames;

			if (type === "string") {

				// Toggle individual class names
				i = 0;
				self = jQuery(this);
				classNames = value.match(rnothtmlwhite) || [];

				while ((className = classNames[i++])) {

					// Check each className given, space separated list
					if (self.hasClass(className)) {
						self.removeClass(className);
					} else {
						self.addClass(className);
					}
				}

			// Toggle whole class name
			} else if (value === undefined || type === "boolean") {
				className = getClass(this);
				if (className) {

					// Store className if set
					dataPriv.set(this, "__className__", className);
				}

				// If the element has a class name or if we're passed `false`,
				// then remove the whole classname (if there was one, the above saved it).
				// Otherwise bring back whatever was previously saved (if anything),
				// falling back to the empty string if nothing was stored.
				if (this.setAttribute) {
					this.setAttribute("class",
						className || value === false ?
						"" :
						dataPriv.get(this, "__className__") || ""
);
				}
			}
		});
	},

	hasClass: function(selector) {
		var className, elem,
			i = 0;

		className = " " + selector + " ";
		while ((elem = this[i++])) {
			if (elem.nodeType === 1 &&
				(" " + stripAndCollapse(getClass(elem)) + " ").indexOf(className) > -1) {
					return true;
			}
		}

		return false;
	}
});

var rreturn = /\r/g;

jQuery.fn.extend({
	val: function(value) {
		var hooks, ret, isFunction,
			elem = this[0];

		if (!arguments.length) {
			if (elem) {
				hooks = jQuery.valHooks[elem.type] ||
					jQuery.valHooks[elem.nodeName.toLowerCase()];

				if (hooks &&
					"get" in hooks &&
					(ret = hooks.get(elem, "value")) !== undefined
) {
					return ret;
				}

				ret = elem.value;

				// Handle most common string cases
				if (typeof ret === "string") {
					return ret.replace(rreturn, "");
				}

				// Handle cases where value is null/undef or number
				return ret == null ? "" : ret;
			}

			return;
		}

		isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var val;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, jQuery(this).val());
			} else {
				val = value;
			}

			// Treat null/undefined as ""; convert numbers to string
			if (val == null) {
				val = "";

			} else if (typeof val === "number") {
				val += "";

			} else if (Array.isArray(val)) {
				val = jQuery.map(val, function(value) {
					return value == null ? "" : value + "";
				});
			}

			hooks = jQuery.valHooks[this.type] || jQuery.valHooks[this.nodeName.toLowerCase()];

			// If set returns undefined, fall back to normal setting
			if (!hooks || !("set" in hooks) || hooks.set(this, val, "value") === undefined) {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	valHooks: {
		option: {
			get: function(elem) {

				var val = jQuery.find.attr(elem, "value");
				return val != null ?
					val :

					// Support: IE <=10 - 11 only
					// option.text throws exceptions (#14686, #14858)
					// Strip and collapse whitespace
					// https://html.spec.whatwg.org/#strip-and-collapse-whitespace
					stripAndCollapse(jQuery.text(elem));
			}
		},
		select: {
			get: function(elem) {
				var value, option, i,
					options = elem.options,
					index = elem.selectedIndex,
					one = elem.type === "select-one",
					values = one ? null : [],
					max = one ? index + 1 : options.length;

				if (index < 0) {
					i = max;

				} else {
					i = one ? index : 0;
				}

				// Loop through all the selected options
				for (; i < max; i++) {
					option = options[i];

					// Support: IE <=9 only
					// IE8-9 doesn't update selected after form reset (#2551)
					if ((option.selected || i === index) &&

							// Don't return options that are disabled or in a disabled optgroup
							!option.disabled &&
							(!option.parentNode.disabled ||
								!nodeName(option.parentNode, "optgroup"))) {

						// Get the specific value for the option
						value = jQuery(option).val();

						// We don't need an array for one selects
						if (one) {
							return value;
						}

						// Multi-Selects return an array
						values.push(value);
					}
				}

				return values;
			},

			set: function(elem, value) {
				var optionSet, option,
					options = elem.options,
					values = jQuery.makeArray(value),
					i = options.length;

				while (i--) {
					option = options[i];

					/* eslint-disable no-cond-assign */

					if (option.selected =
						jQuery.inArray(jQuery.valHooks.option.get(option), values) > -1
) {
						optionSet = true;
					}

					/* eslint-enable no-cond-assign */
				}

				// Force browsers to behave consistently when non-matching value is set
				if (!optionSet) {
					elem.selectedIndex = -1;
				}
				return values;
			}
		}
	}
});

// Radios and checkboxes getter/setter
jQuery.each(["radio", "checkbox"], function() {
	jQuery.valHooks[this] = {
		set: function(elem, value) {
			if (Array.isArray(value)) {
				return (elem.checked = jQuery.inArray(jQuery(elem).val(), value) > -1);
			}
		}
	};
	if (!support.checkOn) {
		jQuery.valHooks[this].get = function(elem) {
			return elem.getAttribute("value") === null ? "on" : elem.value;
		};
	}
});

// Return jQuery for attributes-only inclusion

var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/;

jQuery.extend(jQuery.event, {

	trigger: function(event, data, elem, onlyHandlers) {

		var i, cur, tmp, bubbleType, ontype, handle, special,
			eventPath = [elem || document],
			type = hasOwn.call(event, "type") ? event.type : event,
			namespaces = hasOwn.call(event, "namespace") ? event.namespace.split(".") : [];

		cur = tmp = elem = elem || document;

		// Don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// focus/blur morphs to focusin/out; ensure we're not firing them right now
		if (rfocusMorph.test(type + jQuery.event.triggered)) {
			return;
		}

		if (type.indexOf(".") > -1) {

			// Namespaced trigger; create a regexp to match event type in handle()
			namespaces = type.split(".");
			type = namespaces.shift();
			namespaces.sort();
		}
		ontype = type.indexOf(":") < 0 && "on" + type;

		// Caller can pass in a jQuery.Event object, Object, or just an event type string
		event = event[jQuery.expando] ?
			event :
			new jQuery.Event(type, typeof event === "object" && event);

		// Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true)
		event.isTrigger = onlyHandlers ? 2 : 3;
		event.namespace = namespaces.join(".");
		event.rnamespace = event.namespace ?
			new RegExp("(^|\\.)" + namespaces.join("\\.(?:.*\\.|)") + "(\\.|$)") :
			null;

		// Clean up the event in case it is being reused
		event.result = undefined;
		if (!event.target) {
			event.target = elem;
		}

		// Clone any incoming data and prepend the event, creating the handler arg list
		data = data == null ?
			[event] :
			jQuery.makeArray(data, [event]);

		// Allow special events to draw outside the lines
		special = jQuery.event.special[type] || {};
		if (!onlyHandlers && special.trigger && special.trigger.apply(elem, data) === false) {
			return;
		}

		// Determine event propagation path in advance, per W3C events spec (#9951)
		// Bubble up to document, then to window; watch for a global ownerDocument var (#9724)
		if (!onlyHandlers && !special.noBubble && !jQuery.isWindow(elem)) {

			bubbleType = special.delegateType || type;
			if (!rfocusMorph.test(bubbleType + type)) {
				cur = cur.parentNode;
			}
			for (; cur; cur = cur.parentNode) {
				eventPath.push(cur);
				tmp = cur;
			}

			// Only add window if we got to document (e.g., not plain obj or detached DOM)
			if (tmp === (elem.ownerDocument || document)) {
				eventPath.push(tmp.defaultView || tmp.parentWindow || window);
			}
		}

		// Fire handlers on the event path
		i = 0;
		while ((cur = eventPath[i++]) && !event.isPropagationStopped()) {

			event.type = i > 1 ?
				bubbleType :
				special.bindType || type;

			// jQuery handler
			handle = (dataPriv.get(cur, "events") || {})[event.type] &&
				dataPriv.get(cur, "handle");
			if (handle) {
				handle.apply(cur, data);
			}

			// Native handler
			handle = ontype && cur[ontype];
			if (handle && handle.apply && acceptData(cur)) {
				event.result = handle.apply(cur, data);
				if (event.result === false) {
					event.preventDefault();
				}
			}
		}
		event.type = type;

		// If nobody prevented the default action, do it now
		if (!onlyHandlers && !event.isDefaultPrevented()) {

			if ((!special._default ||
				special._default.apply(eventPath.pop(), data) === false) &&
				acceptData(elem)) {

				// Call a native DOM method on the target with the same name as the event.
				// Don't do default actions on window, that's where global variables be (#6170)
				if (ontype && jQuery.isFunction(elem[type]) && !jQuery.isWindow(elem)) {

					// Don't re-trigger an onFOO event when we call its FOO() method
					tmp = elem[ontype];

					if (tmp) {
						elem[ontype] = null;
					}

					// Prevent re-triggering of the same event, since we already bubbled it above
					jQuery.event.triggered = type;
					elem[type]();
					jQuery.event.triggered = undefined;

					if (tmp) {
						elem[ontype] = tmp;
					}
				}
			}
		}

		return event.result;
	},

	// Piggyback on a donor event to simulate a different one
	// Used only for `focus(in | out)` events
	simulate: function(type, elem, event) {
		var e = jQuery.extend(
			new jQuery.Event(),
			event,
			{
				type: type,
				isSimulated: true
			}
);

		jQuery.event.trigger(e, null, elem);
	}

});

jQuery.fn.extend({

	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},
	triggerHandler: function(type, data) {
		var elem = this[0];
		if (elem) {
			return jQuery.event.trigger(type, data, elem, true);
		}
	}
});

jQuery.each(("blur focus focusin focusout resize scroll click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup contextmenu").split(" "),
	function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(data, fn) {
		return arguments.length > 0 ?
			this.on(name, null, data, fn) :
			this.trigger(name);
	};
});

jQuery.fn.extend({
	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

support.focusin = "onfocusin" in window;

// Support: Firefox <=44
// Firefox doesn't have focus(in | out) events
// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787
//
// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1
// focus(in | out) events fire after focus & blur events,
// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order
// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857
if (!support.focusin) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {

		// Attach a single capturing handler on the document while someone wants focusin/focusout
		var handler = function(event) {
			jQuery.event.simulate(fix, event.target, jQuery.event.fix(event));
		};

		jQuery.event.special[fix] = {
			setup: function() {
				var doc = this.ownerDocument || this,
					attaches = dataPriv.access(doc, fix);

				if (!attaches) {
					doc.addEventListener(orig, handler, true);
				}
				dataPriv.access(doc, fix, (attaches || 0) + 1);
			},
			teardown: function() {
				var doc = this.ownerDocument || this,
					attaches = dataPriv.access(doc, fix) - 1;

				if (!attaches) {
					doc.removeEventListener(orig, handler, true);
					dataPriv.remove(doc, fix);

				} else {
					dataPriv.access(doc, fix, attaches);
				}
			}
		};
	});
}
var location = window.location;

var nonce = jQuery.now();

var rquery = (/\?/);

// Cross-browser xml parsing
jQuery.parseXML = function(data) {
	var xml;
	if (!data || typeof data !== "string") {
		return null;
	}

	// Support: IE 9 - 11 only
	// IE throws on parseFromString with invalid input.
	try {
		xml = (new window.DOMParser()).parseFromString(data, "text/xml");
	} catch (e) {
		xml = undefined;
	}

	if (!xml || xml.getElementsByTagName("parsererror").length) {
		jQuery.error("Invalid XML: " + data);
	}
	return xml;
};

var
	rbracket = /\[\]$/,
	rCRLF = /\r?\n/g,
	rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i,
	rsubmittable = /^(?:input|select|textarea|keygen)/i;

function buildParams(prefix, obj, traditional, add) {
	var name;

	if (Array.isArray(obj)) {

		// Serialize array item.
		jQuery.each(obj, function(i, v) {
			if (traditional || rbracket.test(prefix)) {

				// Treat each array item as a scalar.
				add(prefix, v);

			} else {

				// Item is non-scalar (array or object), encode its numeric index.
				buildParams(
					prefix + "[" + (typeof v === "object" && v != null ? i : "") + "]",
					v,
					traditional,
					add
);
			}
		});

	} else if (!traditional && jQuery.type(obj) === "object") {

		// Serialize object item.
		for (name in obj) {
			buildParams(prefix + "[" + name + "]", obj[name], traditional, add);
		}

	} else {

		// Serialize scalar item.
		add(prefix, obj);
	}
}

// Serialize an array of form elements or a set of
// key/values into a query string
jQuery.param = function(a, traditional) {
	var prefix,
		s = [],
		add = function(key, valueOrFunction) {

			// If value is a function, invoke it and use its return value
			var value = jQuery.isFunction(valueOrFunction) ?
				valueOrFunction() :
				valueOrFunction;

			s[s.length] = encodeURIComponent(key) + "=" +
				encodeURIComponent(value == null ? "" : value);
		};

	// If an array was passed in, assume that it is an array of form elements.
	if (Array.isArray(a) || (a.jquery && !jQuery.isPlainObject(a))) {

		// Serialize the form elements
		jQuery.each(a, function() {
			add(this.name, this.value);
		});

	} else {

		// If traditional, encode the "old" way (the way 1.3.2 or older
		// did it), otherwise encode params recursively.
		for (prefix in a) {
			buildParams(prefix, a[prefix], traditional, add);
		}
	}

	// Return the resulting serialization
	return s.join("&");
};

jQuery.fn.extend({
	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {

			// Can add propHook for "elements" to filter or add form elements
			var elements = jQuery.prop(this, "elements");
			return elements ? jQuery.makeArray(elements) : this;
		})
		.filter(function() {
			var type = this.type;

			// Use .is(":disabled") so that fieldset[disabled] works
			return this.name && !jQuery(this).is(":disabled") &&
				rsubmittable.test(this.nodeName) && !rsubmitterTypes.test(type) &&
				(this.checked || !rcheckableType.test(type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			if (val == null) {
				return null;
			}

			if (Array.isArray(val)) {
				return jQuery.map(val, function(val) {
					return { name: elem.name, value: val.replace(rCRLF, "\r\n") };
				});
			}

			return { name: elem.name, value: val.replace(rCRLF, "\r\n") };
		}).get();
	}
});

var
	r20 = /%20/g,
	rhash = /#.*$/,
	rantiCache = /([?&])_=[^&]*/,
	rheaders = /^(.*?):[\t]*([^\r\n]*)$/mg,

	// #7653, #8125, #8152: local protocol detection
	rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/,
	rnoContent = /^(?:GET|HEAD)$/,
	rprotocol = /^\/\//,

	/* Prefilters
	 * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example)
	 * 2) These are called:
	 * - BEFORE asking for a transport
	 * - AFTER param serialization (s.data is a string if s.processData is true)
	 * 3) key is the dataType
	 * 4) the catchall symbol "*" can be used
	 * 5) execution will start with transport dataType and THEN continue down to "*" if needed
	 */
	prefilters = {},

	/* Transports bindings
	 * 1) key is the dataType
	 * 2) the catchall symbol "*" can be used
	 * 3) selection will start with transport dataType and THEN go to "*" if needed
	 */
	transports = {},

	// Avoid comment-prolog char sequence (#10098); must appease lint and evade compression
	allTypes = "*/".concat("*"),

	// Anchor tag for parsing the document origin
	originAnchor = document.createElement("a");
	originAnchor.href = location.href;

// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport
function addToPrefiltersOrTransports(structure) {

	// dataTypeExpression is optional and defaults to "*"
	return function(dataTypeExpression, func) {

		if (typeof dataTypeExpression !== "string") {
			func = dataTypeExpression;
			dataTypeExpression = "*";
		}

		var dataType,
			i = 0,
			dataTypes = dataTypeExpression.toLowerCase().match(rnothtmlwhite) || [];

		if (jQuery.isFunction(func)) {

			// For each dataType in the dataTypeExpression
			while ((dataType = dataTypes[i++])) {

				// Prepend if requested
				if (dataType[0] === "+") {
					dataType = dataType.slice(1) || "*";
					(structure[dataType] = structure[dataType] || []).unshift(func);

				// Otherwise append
				} else {
					(structure[dataType] = structure[dataType] || []).push(func);
				}
			}
		}
	};
}

// Base inspection function for prefilters and transports
function inspectPrefiltersOrTransports(structure, options, originalOptions, jqXHR) {

	var inspected = {},
		seekingTransport = (structure === transports);

	function inspect(dataType) {
		var selected;
		inspected[dataType] = true;
		jQuery.each(structure[dataType] || [], function(_, prefilterOrFactory) {
			var dataTypeOrTransport = prefilterOrFactory(options, originalOptions, jqXHR);
			if (typeof dataTypeOrTransport === "string" &&
				!seekingTransport && !inspected[dataTypeOrTransport]) {

				options.dataTypes.unshift(dataTypeOrTransport);
				inspect(dataTypeOrTransport);
				return false;
			} else if (seekingTransport) {
				return !(selected = dataTypeOrTransport);
			}
		});
		return selected;
	}

	return inspect(options.dataTypes[0]) || !inspected["*"] && inspect("*");
}

// A special extend for ajax options
// that takes "flat" options (not to be deep extended)
// Fixes #9887
function ajaxExtend(target, src) {
	var key, deep,
		flatOptions = jQuery.ajaxSettings.flatOptions || {};

	for (key in src) {
		if (src[key] !== undefined) {
			(flatOptions[key] ? target : (deep || (deep = {})))[key] = src[key];
		}
	}
	if (deep) {
		jQuery.extend(true, target, deep);
	}

	return target;
}

/* Handles responses to an ajax request:
 * - finds the right dataType (mediates between content-type and expected dataType)
 * - returns the corresponding response
 */
function ajaxHandleResponses(s, jqXHR, responses) {

	var ct, type, finalDataType, firstDataType,
		contents = s.contents,
		dataTypes = s.dataTypes;

	// Remove auto dataType and get content-type in the process
	while (dataTypes[0] === "*") {
		dataTypes.shift();
		if (ct === undefined) {
			ct = s.mimeType || jqXHR.getResponseHeader("Content-Type");
		}
	}

	// Check if we're dealing with a known content-type
	if (ct) {
		for (type in contents) {
			if (contents[type] && contents[type].test(ct)) {
				dataTypes.unshift(type);
				break;
			}
		}
	}

	// Check to see if we have a response for the expected dataType
	if (dataTypes[0] in responses) {
		finalDataType = dataTypes[0];
	} else {

		// Try convertible dataTypes
		for (type in responses) {
			if (!dataTypes[0] || s.converters[type + " " + dataTypes[0]]) {
				finalDataType = type;
				break;
			}
			if (!firstDataType) {
				firstDataType = type;
			}
		}

		// Or just use first one
		finalDataType = finalDataType || firstDataType;
	}

	// If we found a dataType
	// We add the dataType to the list if needed
	// and return the corresponding response
	if (finalDataType) {
		if (finalDataType !== dataTypes[0]) {
			dataTypes.unshift(finalDataType);
		}
		return responses[finalDataType];
	}
}

/* Chain conversions given the request and the original response
 * Also sets the responseXXX fields on the jqXHR instance
 */
function ajaxConvert(s, response, jqXHR, isSuccess) {
	var conv2, current, conv, tmp, prev,
		converters = {},

		// Work with a copy of dataTypes in case we need to modify it for conversion
		dataTypes = s.dataTypes.slice();

	// Create converters map with lowercased keys
	if (dataTypes[1]) {
		for (conv in s.converters) {
			converters[conv.toLowerCase()] = s.converters[conv];
		}
	}

	current = dataTypes.shift();

	// Convert to each sequential dataType
	while (current) {

		if (s.responseFields[current]) {
			jqXHR[s.responseFields[current]] = response;
		}

		// Apply the dataFilter if provided
		if (!prev && isSuccess && s.dataFilter) {
			response = s.dataFilter(response, s.dataType);
		}

		prev = current;
		current = dataTypes.shift();

		if (current) {

			// There's only work to do if current dataType is non-auto
			if (current === "*") {

				current = prev;

			// Convert response if prev dataType is non-auto and differs from current
			} else if (prev !== "*" && prev !== current) {

				// Seek a direct converter
				conv = converters[prev + " " + current] || converters["* " + current];

				// If none found, seek a pair
				if (!conv) {
					for (conv2 in converters) {

						// If conv2 outputs current
						tmp = conv2.split(" ");
						if (tmp[1] === current) {

							// If prev can be converted to accepted input
							conv = converters[prev + " " + tmp[0]] ||
								converters["* " + tmp[0]];
							if (conv) {

								// Condense equivalence converters
								if (conv === true) {
									conv = converters[conv2];

								// Otherwise, insert the intermediate dataType
								} else if (converters[conv2] !== true) {
									current = tmp[0];
									dataTypes.unshift(tmp[1]);
								}
								break;
							}
						}
					}
				}

				// Apply converter (if not an equivalence)
				if (conv !== true) {

					// Unless errors are allowed to bubble, catch and return them
					if (conv && s.throws) {
						response = conv(response);
					} else {
						try {
							response = conv(response);
						} catch (e) {
							return {
								state: "parsererror",
								error: conv ? e : "No conversion from " + prev + " to " + current
							};
						}
					}
				}
			}
		}
	}

	return { state: "success", data: response };
}

jQuery.extend({

	// Counter for holding the number of active queries
	active: 0,

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajaxSettings: {
		url: location.href,
		type: "GET",
		isLocal: rlocalProtocol.test(location.protocol),
		global: true,
		processData: true,
		async: true,
		contentType: "application/x-www-form-urlencoded; charset=UTF-8",

		/*
		timeout: 0,
		data: null,
		dataType: null,
		username: null,
		password: null,
		cache: null,
		throws: false,
		traditional: false,
		headers: {},
		*/

		accepts: {
			"*": allTypes,
			text: "text/plain",
			html: "text/html",
			xml: "application/xml, text/xml",
			json: "application/json, text/javascript"
		},

		contents: {
			xml: /\bxml\b/,
			html: /\bhtml/,
			json: /\bjson\b/
		},

		responseFields: {
			xml: "responseXML",
			text: "responseText",
			json: "responseJSON"
		},

		// Data converters
		// Keys separate source (or catchall "*") and destination types with a single space
		converters: {

			// Convert anything to text
			"* text": String,

			// Text to html (true = no transformation)
			"text html": true,

			// Evaluate text as a json expression
			"text json": JSON.parse,

			// Parse text as xml
			"text xml": jQuery.parseXML
		},

		// For options that shouldn't be deep extended:
		// you can add your own custom options here if
		// and when you create one that shouldn't be
		// deep extended (see ajaxExtend)
		flatOptions: {
			url: true,
			context: true
		}
	},

	// Creates a full fledged settings object into target
	// with both ajaxSettings and settings fields.
	// If target is omitted, writes into ajaxSettings.
	ajaxSetup: function(target, settings) {
		return settings ?

			// Building a settings object
			ajaxExtend(ajaxExtend(target, jQuery.ajaxSettings), settings) :

			// Extending ajaxSettings
			ajaxExtend(jQuery.ajaxSettings, target);
	},

	ajaxPrefilter: addToPrefiltersOrTransports(prefilters),
	ajaxTransport: addToPrefiltersOrTransports(transports),

	// Main method
	ajax: function(url, options) {

		// If url is an object, simulate pre-1.5 signature
		if (typeof url === "object") {
			options = url;
			url = undefined;
		}

		// Force options to be an object
		options = options || {};

		var transport,

			// URL without anti-cache param
			cacheURL,

			// Response headers
			responseHeadersString,
			responseHeaders,

			// timeout handle
			timeoutTimer,

			// Url cleanup var
			urlAnchor,

			// Request state (becomes false upon send and true upon completion)
			completed,

			// To know if global events are to be dispatched
			fireGlobals,

			// Loop variable
			i,

			// uncached part of the url
			uncached,

			// Create the final options object
			s = jQuery.ajaxSetup({}, options),

			// Callbacks context
			callbackContext = s.context || s,

			// Context for global events is callbackContext if it is a DOM node or jQuery collection
			globalEventContext = s.context &&
				(callbackContext.nodeType || callbackContext.jquery) ?
					jQuery(callbackContext) :
					jQuery.event,

			// Deferreds
			deferred = jQuery.Deferred(),
			completeDeferred = jQuery.Callbacks("once memory"),

			// Status-dependent callbacks
			statusCode = s.statusCode || {},

			// Headers (they are sent all at once)
			requestHeaders = {},
			requestHeadersNames = {},

			// Default abort message
			strAbort = "canceled",

			// Fake xhr
			jqXHR = {
				readyState: 0,

				// Builds headers hashtable if needed
				getResponseHeader: function(key) {
					var match;
					if (completed) {
						if (!responseHeaders) {
							responseHeaders = {};
							while ((match = rheaders.exec(responseHeadersString))) {
								responseHeaders[match[1].toLowerCase()] = match[2];
							}
						}
						match = responseHeaders[key.toLowerCase()];
					}
					return match == null ? null : match;
				},

				// Raw string
				getAllResponseHeaders: function() {
					return completed ? responseHeadersString : null;
				},

				// Caches the header
				setRequestHeader: function(name, value) {
					if (completed == null) {
						name = requestHeadersNames[name.toLowerCase()] =
							requestHeadersNames[name.toLowerCase()] || name;
						requestHeaders[name] = value;
					}
					return this;
				},

				// Overrides response content-type header
				overrideMimeType: function(type) {
					if (completed == null) {
						s.mimeType = type;
					}
					return this;
				},

				// Status-dependent callbacks
				statusCode: function(map) {
					var code;
					if (map) {
						if (completed) {

							// Execute the appropriate callbacks
							jqXHR.always(map[jqXHR.status]);
						} else {

							// Lazy-add the new callbacks in a way that preserves old ones
							for (code in map) {
								statusCode[code] = [statusCode[code], map[code]];
							}
						}
					}
					return this;
				},

				// Cancel the request
				abort: function(statusText) {
					var finalText = statusText || strAbort;
					if (transport) {
						transport.abort(finalText);
					}
					done(0, finalText);
					return this;
				}
			};

		// Attach deferreds
		deferred.promise(jqXHR);

		// Add protocol if not provided (prefilters might expect it)
		// Handle falsy url in the settings object (#10093: consistency with old signature)
		// We also use the url parameter if available
		s.url = ((url || s.url || location.href) + "")
			.replace(rprotocol, location.protocol + "//");

		// Alias method option to type as per ticket #12004
		s.type = options.method || options.type || s.method || s.type;

		// Extract dataTypes list
		s.dataTypes = (s.dataType || "*").toLowerCase().match(rnothtmlwhite) || [""];

		// A cross-domain request is in order when the origin doesn't match the current origin.
		if (s.crossDomain == null) {
			urlAnchor = document.createElement("a");

			// Support: IE <=8 - 11, Edge 12 - 13
			// IE throws exception on accessing the href property if url is malformed,
			// e.g. http://example.com:80x/
			try {
				urlAnchor.href = s.url;

				// Support: IE <=8 - 11 only
				// Anchor's host property isn't correctly set when s.url is relative
				urlAnchor.href = urlAnchor.href;
				s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !==
					urlAnchor.protocol + "//" + urlAnchor.host;
			} catch (e) {

				// If there is an error parsing the URL, assume it is crossDomain,
				// it can be rejected by the transport if it is invalid
				s.crossDomain = true;
			}
		}

		// Convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Apply prefilters
		inspectPrefiltersOrTransports(prefilters, s, options, jqXHR);

		// If request was aborted inside a prefilter, stop there
		if (completed) {
			return jqXHR;
		}

		// We can fire global events as of now if asked to
		// Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118)
		fireGlobals = jQuery.event && s.global;

		// Watch for a new set of requests
		if (fireGlobals && jQuery.active++ === 0) {
			jQuery.event.trigger("ajaxStart");
		}

		// Uppercase the type
		s.type = s.type.toUpperCase();

		// Determine if request has content
		s.hasContent = !rnoContent.test(s.type);

		// Save the URL in case we're toying with the If-Modified-Since
		// and/or If-None-Match header later on
		// Remove hash to simplify url manipulation
		cacheURL = s.url.replace(rhash, "");

		// More options handling for requests with no content
		if (!s.hasContent) {

			// Remember the hash so we can put it back
			uncached = s.url.slice(cacheURL.length);

			// If data is available, append data to url
			if (s.data) {
				cacheURL += (rquery.test(cacheURL) ? "&" : "?") + s.data;

				// #9682: remove data so that it's not used in an eventual retry
				delete s.data;
			}

			// Add or update anti-cache param if needed
			if (s.cache === false) {
				cacheURL = cacheURL.replace(rantiCache, "$1");
				uncached = (rquery.test(cacheURL) ? "&" : "?") + "_=" + (nonce++) + uncached;
			}

			// Put hash and anti-cache on the URL that will be requested (gh-1732)
			s.url = cacheURL + uncached;

		// Change '%20' to '+' if this is encoded form body content (gh-2658)
		} else if (s.data && s.processData &&
			(s.contentType || "").indexOf("application/x-www-form-urlencoded") === 0) {
			s.data = s.data.replace(r20, "+");
		}

		// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
		if (s.ifModified) {
			if (jQuery.lastModified[cacheURL]) {
				jqXHR.setRequestHeader("If-Modified-Since", jQuery.lastModified[cacheURL]);
			}
			if (jQuery.etag[cacheURL]) {
				jqXHR.setRequestHeader("If-None-Match", jQuery.etag[cacheURL]);
			}
		}

		// Set the correct header, if data is being sent
		if (s.data && s.hasContent && s.contentType !== false || options.contentType) {
			jqXHR.setRequestHeader("Content-Type", s.contentType);
		}

		// Set the Accepts header for the server, depending on the dataType
		jqXHR.setRequestHeader(
			"Accept",
			s.dataTypes[0] && s.accepts[s.dataTypes[0]] ?
				s.accepts[s.dataTypes[0]] +
					(s.dataTypes[0] !== "*" ? ", " + allTypes + "; q=0.01" : "") :
				s.accepts["*"]
);

		// Check for headers option
		for (i in s.headers) {
			jqXHR.setRequestHeader(i, s.headers[i]);
		}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend &&
			(s.beforeSend.call(callbackContext, jqXHR, s) === false || completed)) {

			// Abort if not done already and return
			return jqXHR.abort();
		}

		// Aborting is no longer a cancellation
		strAbort = "abort";

		// Install callbacks on deferreds
		completeDeferred.add(s.complete);
		jqXHR.done(s.success);
		jqXHR.fail(s.error);

		// Get transport
		transport = inspectPrefiltersOrTransports(transports, s, options, jqXHR);

		// If no transport, we auto-abort
		if (!transport) {
			done(-1, "No Transport");
		} else {
			jqXHR.readyState = 1;

			// Send global event
			if (fireGlobals) {
				globalEventContext.trigger("ajaxSend", [jqXHR, s]);
			}

			// If request was aborted inside ajaxSend, stop there
			if (completed) {
				return jqXHR;
			}

			// Timeout
			if (s.async && s.timeout > 0) {
				timeoutTimer = window.setTimeout(function() {
					jqXHR.abort("timeout");
				}, s.timeout);
			}

			try {
				completed = false;
				transport.send(requestHeaders, done);
			} catch (e) {

				// Rethrow post-completion exceptions
				if (completed) {
					throw e;
				}

				// Propagate others as results
				done(-1, e);
			}
		}

		// Callback for when everything is done
		function done(status, nativeStatusText, responses, headers) {
			var isSuccess, success, error, response, modified,
				statusText = nativeStatusText;

			// Ignore repeat invocations
			if (completed) {
				return;
			}

			completed = true;

			// Clear timeout if it exists
			if (timeoutTimer) {
				window.clearTimeout(timeoutTimer);
			}

			// Dereference transport for early garbage collection
			// (no matter how long the jqXHR object will be used)
			transport = undefined;

			// Cache response headers
			responseHeadersString = headers || "";

			// Set readyState
			jqXHR.readyState = status > 0 ? 4 : 0;

			// Determine if successful
			isSuccess = status >= 200 && status < 300 || status === 304;

			// Get response data
			if (responses) {
				response = ajaxHandleResponses(s, jqXHR, responses);
			}

			// Convert no matter what (that way responseXXX fields are always set)
			response = ajaxConvert(s, response, jqXHR, isSuccess);

			// If successful, handle type chaining
			if (isSuccess) {

				// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
				if (s.ifModified) {
					modified = jqXHR.getResponseHeader("Last-Modified");
					if (modified) {
						jQuery.lastModified[cacheURL] = modified;
					}
					modified = jqXHR.getResponseHeader("etag");
					if (modified) {
						jQuery.etag[cacheURL] = modified;
					}
				}

				// if no content
				if (status === 204 || s.type === "HEAD") {
					statusText = "nocontent";

				// if not modified
				} else if (status === 304) {
					statusText = "notmodified";

				// If we have data, let's convert it
				} else {
					statusText = response.state;
					success = response.data;
					error = response.error;
					isSuccess = !error;
				}
			} else {

				// Extract error from statusText and normalize for non-aborts
				error = statusText;
				if (status || !statusText) {
					statusText = "error";
					if (status < 0) {
						status = 0;
					}
				}
			}

			// Set data for the fake xhr object
			jqXHR.status = status;
			jqXHR.statusText = (nativeStatusText || statusText) + "";

			// Success/Error
			if (isSuccess) {
				deferred.resolveWith(callbackContext, [success, statusText, jqXHR]);
			} else {
				deferred.rejectWith(callbackContext, [jqXHR, statusText, error]);
			}

			// Status-dependent callbacks
			jqXHR.statusCode(statusCode);
			statusCode = undefined;

			if (fireGlobals) {
				globalEventContext.trigger(isSuccess ? "ajaxSuccess" : "ajaxError",
					[jqXHR, s, isSuccess ? success : error]);
			}

			// Complete
			completeDeferred.fireWith(callbackContext, [jqXHR, statusText]);

			if (fireGlobals) {
				globalEventContext.trigger("ajaxComplete", [jqXHR, s]);

				// Handle the global AJAX counter
				if (!(--jQuery.active)) {
					jQuery.event.trigger("ajaxStop");
				}
			}
		}

		return jqXHR;
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	getScript: function(url, callback) {
		return jQuery.get(url, undefined, callback, "script");
	}
});

jQuery.each(["get", "post"], function(i, method) {
	jQuery[method] = function(url, data, callback, type) {

		// Shift arguments if data argument was omitted
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = undefined;
		}

		// The url can be an options object (which then must have .url)
		return jQuery.ajax(jQuery.extend({
			url: url,
			type: method,
			dataType: type,
			data: data,
			success: callback
		}, jQuery.isPlainObject(url) && url));
	};
});

jQuery._evalUrl = function(url) {
	return jQuery.ajax({
		url: url,

		// Make this explicit, since user can override this through ajaxSetup (#11264)
		type: "GET",
		dataType: "script",
		cache: true,
		async: false,
		global: false,
		"throws": true
	});
};

jQuery.fn.extend({
	wrapAll: function(html) {
		var wrap;

		if (this[0]) {
			if (jQuery.isFunction(html)) {
				html = html.call(this[0]);
			}

			// The elements to wrap the target around
			wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstElementChild) {
					elem = elem.firstElementChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this),
				contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		var isFunction = jQuery.isFunction(html);

		return this.each(function(i) {
			jQuery(this).wrapAll(isFunction ? html.call(this, i) : html);
		});
	},

	unwrap: function(selector) {
		this.parent(selector).not("body").each(function() {
			jQuery(this).replaceWith(this.childNodes);
		});
		return this;
	}
});

jQuery.expr.pseudos.hidden = function(elem) {
	return !jQuery.expr.pseudos.visible(elem);
};
jQuery.expr.pseudos.visible = function(elem) {
	return !!(elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length);
};

jQuery.ajaxSettings.xhr = function() {
	try {
		return new window.XMLHttpRequest();
	} catch (e) {}
};

var xhrSuccessStatus = {

		// File protocol always yields status code 0, assume 200
		0: 200,

		// Support: IE <=9 only
		// #1450: sometimes IE returns 1223 when it should be 204
		1223: 204
	},
	xhrSupported = jQuery.ajaxSettings.xhr();

support.cors = !!xhrSupported && ("withCredentials" in xhrSupported);
support.ajax = xhrSupported = !!xhrSupported;

jQuery.ajaxTransport(function(options) {
	var callback, errorCallback;

	// Cross domain only allowed if supported through XMLHttpRequest
	if (support.cors || xhrSupported && !options.crossDomain) {
		return {
			send: function(headers, complete) {
				var i,
					xhr = options.xhr();

				xhr.open(
					options.type,
					options.url,
					options.async,
					options.username,
					options.password
);

				// Apply custom fields if provided
				if (options.xhrFields) {
					for (i in options.xhrFields) {
						xhr[i] = options.xhrFields[i];
					}
				}

				// Override mime type if needed
				if (options.mimeType && xhr.overrideMimeType) {
					xhr.overrideMimeType(options.mimeType);
				}

				// X-Requested-With header
				// For cross-domain requests, seeing as conditions for a preflight are
				// akin to a jigsaw puzzle, we simply never set it to be sure.
				// (it can always be set on a per-request basis or even using ajaxSetup)
				// For same-domain requests, won't change header if already provided.
				if (!options.crossDomain && !headers["X-Requested-With"]) {
					headers["X-Requested-With"] = "XMLHttpRequest";
				}

				// Set headers
				for (i in headers) {
					xhr.setRequestHeader(i, headers[i]);
				}

				// Callback
				callback = function(type) {
					return function() {
						if (callback) {
							callback = errorCallback = xhr.onload =
								xhr.onerror = xhr.onabort = xhr.onreadystatechange = null;

							if (type === "abort") {
								xhr.abort();
							} else if (type === "error") {

								// Support: IE <=9 only
								// On a manual native abort, IE9 throws
								// errors on any property access that is not readyState
								if (typeof xhr.status !== "number") {
									complete(0, "error");
								} else {
									complete(

										// File: protocol always yields status 0; see #8605, #14207
										xhr.status,
										xhr.statusText
);
								}
							} else {
								complete(
									xhrSuccessStatus[xhr.status] || xhr.status,
									xhr.statusText,

									// Support: IE <=9 only
									// IE9 has no XHR2 but throws on binary (trac-11426)
									// For XHR2 non-text, let the caller handle it (gh-2498)
									(xhr.responseType || "text") !== "text" ||
									typeof xhr.responseText !== "string" ?
										{ binary: xhr.response } :
										{ text: xhr.responseText },
									xhr.getAllResponseHeaders()
);
							}
						}
					};
				};

				// Listen to events
				xhr.onload = callback();
				errorCallback = xhr.onerror = callback("error");

				// Support: IE 9 only
				// Use onreadystatechange to replace onabort
				// to handle uncaught aborts
				if (xhr.onabort !== undefined) {
					xhr.onabort = errorCallback;
				} else {
					xhr.onreadystatechange = function() {

						// Check readyState before timeout as it changes
						if (xhr.readyState === 4) {

							// Allow onerror to be called first,
							// but that will not handle a native abort
							// Also, save errorCallback to a variable
							// as xhr.onerror cannot be accessed
							window.setTimeout(function() {
								if (callback) {
									errorCallback();
								}
							});
						}
					};
				}

				// Create the abort callback
				callback = callback("abort");

				try {

					// Do send the request (this may raise an exception)
					xhr.send(options.hasContent && options.data || null);
				} catch (e) {

					// #14683: Only rethrow if this hasn't been notified as an error yet
					if (callback) {
						throw e;
					}
				}
			},

			abort: function() {
				if (callback) {
					callback();
				}
			}
		};
	}
});

// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432)
jQuery.ajaxPrefilter(function(s) {
	if (s.crossDomain) {
		s.contents.script = false;
	}
});

// Install script dataType
jQuery.ajaxSetup({
	accepts: {
		script: "text/javascript, application/javascript, " +
			"application/ecmascript, application/x-ecmascript"
	},
	contents: {
		script: /\b(?:java|ecma)script\b/
	},
	converters: {
		"text script": function(text) {
			jQuery.globalEval(text);
			return text;
		}
	}
});

// Handle cache's special case and crossDomain
jQuery.ajaxPrefilter("script", function(s) {
	if (s.cache === undefined) {
		s.cache = false;
	}
	if (s.crossDomain) {
		s.type = "GET";
	}
});

// Bind script tag hack transport
jQuery.ajaxTransport("script", function(s) {

	// This transport only deals with cross domain requests
	if (s.crossDomain) {
		var script, callback;
		return {
			send: function(_, complete) {
				script = jQuery("<script>").prop({
					charset: s.scriptCharset,
					src: s.url
				}).on(
					"load error",
					callback = function(evt) {
						script.remove();
						callback = null;
						if (evt) {
							complete(evt.type === "error" ? 404 : 200, evt.type);
						}
					}
);

				// Use native DOM manipulation to avoid our domManip AJAX trickery
				document.head.appendChild(script[0]);
			},
			abort: function() {
				if (callback) {
					callback();
				}
			}
		};
	}
});

var oldCallbacks = [],
	rjsonp = /(=)\?(?=&|$)|\?\?/;

// Default jsonp settings
jQuery.ajaxSetup({
	jsonp: "callback",
	jsonpCallback: function() {
		var callback = oldCallbacks.pop() || (jQuery.expando + "_" + (nonce++));
		this[callback] = true;
		return callback;
	}
});

// Detect, normalize options and install callbacks for jsonp requests
jQuery.ajaxPrefilter("json jsonp", function(s, originalSettings, jqXHR) {

	var callbackName, overwritten, responseContainer,
		jsonProp = s.jsonp !== false && (rjsonp.test(s.url) ?
			"url" :
			typeof s.data === "string" &&
				(s.contentType || "")
					.indexOf("application/x-www-form-urlencoded") === 0 &&
				rjsonp.test(s.data) && "data"
);

	// Handle iff the expected data type is "jsonp" or we have a parameter to set
	if (jsonProp || s.dataTypes[0] === "jsonp") {

		// Get callback name, remembering preexisting value associated with it
		callbackName = s.jsonpCallback = jQuery.isFunction(s.jsonpCallback) ?
			s.jsonpCallback() :
			s.jsonpCallback;

		// Insert callback into url or form data
		if (jsonProp) {
			s[jsonProp] = s[jsonProp].replace(rjsonp, "$1" + callbackName);
		} else if (s.jsonp !== false) {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.jsonp + "=" + callbackName;
		}

		// Use data converter to retrieve json after script execution
		s.converters["script json"] = function() {
			if (!responseContainer) {
				jQuery.error(callbackName + " was not called");
			}
			return responseContainer[0];
		};

		// Force json dataType
		s.dataTypes[0] = "json";

		// Install callback
		overwritten = window[callbackName];
		window[callbackName] = function() {
			responseContainer = arguments;
		};

		// Clean-up function (fires after converters)
		jqXHR.always(function() {

			// If previous value didn't exist - remove it
			if (overwritten === undefined) {
				jQuery(window).removeProp(callbackName);

			// Otherwise restore preexisting value
			} else {
				window[callbackName] = overwritten;
			}

			// Save back as free
			if (s[callbackName]) {

				// Make sure that re-using the options doesn't screw things around
				s.jsonpCallback = originalSettings.jsonpCallback;

				// Save the callback name for future use
				oldCallbacks.push(callbackName);
			}

			// Call if it was a function and we have a response
			if (responseContainer && jQuery.isFunction(overwritten)) {
				overwritten(responseContainer[0]);
			}

			responseContainer = overwritten = undefined;
		});

		// Delegate to script
		return "script";
	}
});

// Support: Safari 8 only
// In Safari 8 documents created via document.implementation.createHTMLDocument
// collapse sibling forms: the second one becomes a child of the first one.
// Because of that, this security measure has to be disabled in Safari 8.
// https://bugs.webkit.org/show_bug.cgi?id=137337
support.createHTMLDocument = (function() {
	var body = document.implementation.createHTMLDocument("").body;
	body.innerHTML = "<form></form><form></form>";
	return body.childNodes.length === 2;
})();

// Argument "data" should be string of html
// context (optional): If specified, the fragment will be created in this context,
// defaults to document
// keepScripts (optional): If true, will include scripts passed in the html string
jQuery.parseHTML = function(data, context, keepScripts) {
	if (typeof data !== "string") {
		return [];
	}
	if (typeof context === "boolean") {
		keepScripts = context;
		context = false;
	}

	var base, parsed, scripts;

	if (!context) {

		// Stop scripts or inline event handlers from being executed immediately
		// by using document.implementation
		if (support.createHTMLDocument) {
			context = document.implementation.createHTMLDocument("");

			// Set the base href for the created document
			// so any parsed elements with URLs
			// are based on the document's URL (gh-2965)
			base = context.createElement("base");
			base.href = document.location.href;
			context.head.appendChild(base);
		} else {
			context = document;
		}
	}

	parsed = rsingleTag.exec(data);
	scripts = !keepScripts && [];

	// Single tag
	if (parsed) {
		return [context.createElement(parsed[1])];
	}

	parsed = buildFragment([data], context, scripts);

	if (scripts && scripts.length) {
		jQuery(scripts).remove();
	}

	return jQuery.merge([], parsed.childNodes);
};

/**
 * Load a url into a page
 */
jQuery.fn.load = function(url, params, callback) {
	var selector, type, response,
		self = this,
		off = url.indexOf(" ");

	if (off > -1) {
		selector = stripAndCollapse(url.slice(off));
		url = url.slice(0, off);
	}

	// If it's a function
	if (jQuery.isFunction(params)) {

		// We assume that it's the callback
		callback = params;
		params = undefined;

	// Otherwise, build a param string
	} else if (params && typeof params === "object") {
		type = "POST";
	}

	// If we have elements to modify, make the request
	if (self.length > 0) {
		jQuery.ajax({
			url: url,

			// If "type" variable is undefined, then "GET" method will be used.
			// Make value of this field explicit since
			// user can override it through ajaxSetup method
			type: type || "GET",
			dataType: "html",
			data: params
		}).done(function(responseText) {

			// Save response for use in complete callback
			response = arguments;

			self.html(selector ?

				// If a selector was specified, locate the right elements in a dummy div
				// Exclude scripts to avoid IE 'Permission Denied' errors
				jQuery("<div>").append(jQuery.parseHTML(responseText)).find(selector) :

				// Otherwise use the full result
				responseText);

		// If the request succeeds, this function gets "data", "status", "jqXHR"
		// but they are ignored because response was set above.
		// If it fails, this function gets "jqXHR", "status", "error"
		}).always(callback && function(jqXHR, status) {
			self.each(function() {
				callback.apply(this, response || [jqXHR.responseText, status, jqXHR]);
			});
		});
	}

	return this;
};

// Attach a bunch of functions for handling common AJAX events
jQuery.each([
	"ajaxStart",
	"ajaxStop",
	"ajaxComplete",
	"ajaxError",
	"ajaxSuccess",
	"ajaxSend"
], function(i, type) {
	jQuery.fn[type] = function(fn) {
		return this.on(type, fn);
	};
});

jQuery.expr.pseudos.animated = function(elem) {
	return jQuery.grep(jQuery.timers, function(fn) {
		return elem === fn.elem;
	}).length;
};

jQuery.offset = {
	setOffset: function(elem, options, i) {
		var curPosition, curLeft, curCSSTop, curTop, curOffset, curCSSLeft, calculatePosition,
			position = jQuery.css(elem, "position"),
			curElem = jQuery(elem),
			props = {};

		// Set position first, in-case top/left are set even on static elem
		if (position === "static") {
			elem.style.position = "relative";
		}

		curOffset = curElem.offset();
		curCSSTop = jQuery.css(elem, "top");
		curCSSLeft = jQuery.css(elem, "left");
		calculatePosition = (position === "absolute" || position === "fixed") &&
			(curCSSTop + curCSSLeft).indexOf("auto") > -1;

		// Need to be able to calculate position if either
		// top or left is auto and position is either absolute or fixed
		if (calculatePosition) {
			curPosition = curElem.position();
			curTop = curPosition.top;
			curLeft = curPosition.left;

		} else {
			curTop = parseFloat(curCSSTop) || 0;
			curLeft = parseFloat(curCSSLeft) || 0;
		}

		if (jQuery.isFunction(options)) {

			// Use jQuery.extend here to allow modification of coordinates argument (gh-1848)
			options = options.call(elem, i, jQuery.extend({}, curOffset));
		}

		if (options.top != null) {
			props.top = (options.top - curOffset.top) + curTop;
		}
		if (options.left != null) {
			props.left = (options.left - curOffset.left) + curLeft;
		}

		if ("using" in options) {
			options.using.call(elem, props);

		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	offset: function(options) {

		// Preserve chaining for setter
		if (arguments.length) {
			return options === undefined ?
				this :
				this.each(function(i) {
					jQuery.offset.setOffset(this, options, i);
				});
		}

		var doc, docElem, rect, win,
			elem = this[0];

		if (!elem) {
			return;
		}

		// Return zeros for disconnected and hidden (display: none) elements (gh-2310)
		// Support: IE <=11 only
		// Running getBoundingClientRect on a
		// disconnected node in IE throws an error
		if (!elem.getClientRects().length) {
			return { top: 0, left: 0 };
		}

		rect = elem.getBoundingClientRect();

		doc = elem.ownerDocument;
		docElem = doc.documentElement;
		win = doc.defaultView;

		return {
			top: rect.top + win.pageYOffset - docElem.clientTop,
			left: rect.left + win.pageXOffset - docElem.clientLeft
		};
	},

	position: function() {
		if (!this[0]) {
			return;
		}

		var offsetParent, offset,
			elem = this[0],
			parentOffset = { top: 0, left: 0 };

		// Fixed elements are offset from window (parentOffset = {top:0, left: 0},
		// because it is its only offset parent
		if (jQuery.css(elem, "position") === "fixed") {

			// Assume getBoundingClientRect is there when computed position is fixed
			offset = elem.getBoundingClientRect();

		} else {

			// Get *real* offsetParent
			offsetParent = this.offsetParent();

			// Get correct offsets
			offset = this.offset();
			if (!nodeName(offsetParent[0], "html")) {
				parentOffset = offsetParent.offset();
			}

			// Add offsetParent borders
			parentOffset = {
				top: parentOffset.top + jQuery.css(offsetParent[0], "borderTopWidth", true),
				left: parentOffset.left + jQuery.css(offsetParent[0], "borderLeftWidth", true)
			};
		}

		// Subtract parent offsets and element margins
		return {
			top: offset.top - parentOffset.top - jQuery.css(elem, "marginTop", true),
			left: offset.left - parentOffset.left - jQuery.css(elem, "marginLeft", true)
		};
	},

	// This method will return documentElement in the following cases:
	// 1) For the element inside the iframe without offsetParent, this method will return
	// documentElement of the parent window
	// 2) For the hidden or detached element
	// 3) For body or html element, i.e. in case of the html node - it will return itself
	//
	// but those exceptions were never presented as a real life use-cases
	// and might be considered as more preferable results.
	//
	// This logic, however, is not guaranteed and can change at any point in the future
	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent;

			while (offsetParent && jQuery.css(offsetParent, "position") === "static") {
				offsetParent = offsetParent.offsetParent;
			}

			return offsetParent || documentElement;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each({ scrollLeft: "pageXOffset", scrollTop: "pageYOffset" }, function(method, prop) {
	var top = "pageYOffset" === prop;

	jQuery.fn[method] = function(val) {
		return access(this, function(elem, method, val) {

			// Coalesce documents and windows
			var win;
			if (jQuery.isWindow(elem)) {
				win = elem;
			} else if (elem.nodeType === 9) {
				win = elem.defaultView;
			}

			if (val === undefined) {
				return win ? win[prop] : elem[method];
			}

			if (win) {
				win.scrollTo(
					!top ? val : win.pageXOffset,
					top ? val : win.pageYOffset
);

			} else {
				elem[method] = val;
			}
		}, method, val, arguments.length);
	};
});

// Support: Safari <=7 - 9.1, Chrome <=37 - 49
// Add the top/left cssHooks using jQuery.fn.position
// Webkit bug: https://bugs.webkit.org/show_bug.cgi?id=29084
// Blink bug: https://bugs.chromium.org/p/chromium/issues/detail?id=589347
// getComputedStyle returns percent when specified for top/left/bottom/right;
// rather than make the css module depend on the offset module, just check for it here
jQuery.each(["top", "left"], function(i, prop) {
	jQuery.cssHooks[prop] = addGetHookIf(support.pixelPosition,
		function(elem, computed) {
			if (computed) {
				computed = curCSS(elem, prop);

				// If curCSS returns percentage, fallback to offset
				return rnumnonpx.test(computed) ?
					jQuery(elem).position()[prop] + "px" :
					computed;
			}
		}
);
});

// Create innerHeight, innerWidth, height, width, outerHeight and outerWidth methods
jQuery.each({ Height: "height", Width: "width" }, function(name, type) {
	jQuery.each({ padding: "inner" + name, content: type, "": "outer" + name },
		function(defaultExtra, funcName) {

		// Margin is only for outerHeight, outerWidth
		jQuery.fn[funcName] = function(margin, value) {
			var chainable = arguments.length && (defaultExtra || typeof margin !== "boolean"),
				extra = defaultExtra || (margin === true || value === true ? "margin" : "border");

			return access(this, function(elem, type, value) {
				var doc;

				if (jQuery.isWindow(elem)) {

					// $(window).outerWidth/Height return w/h including scrollbars (gh-1729)
					return funcName.indexOf("outer") === 0 ?
						elem["inner" + name] :
						elem.document.documentElement["client" + name];
				}

				// Get document width or height
				if (elem.nodeType === 9) {
					doc = elem.documentElement;

					// Either scroll[Width/Height] or offset[Width/Height] or client[Width/Height],
					// whichever is greatest
					return Math.max(
						elem.body["scroll" + name], doc["scroll" + name],
						elem.body["offset" + name], doc["offset" + name],
						doc["client" + name]
);
				}

				return value === undefined ?

					// Get width or height on the element, requesting but not forcing parseFloat
					jQuery.css(elem, type, extra) :

					// Set width or height on the element
					jQuery.style(elem, type, value, extra);
			}, type, chainable ? margin : undefined, chainable);
		};
	});
});

jQuery.fn.extend({

	bind: function(types, data, fn) {
		return this.on(types, null, data, fn);
	},
	unbind: function(types, fn) {
		return this.off(types, null, fn);
	},

	delegate: function(selector, types, data, fn) {
		return this.on(types, selector, data, fn);
	},
	undelegate: function(selector, types, fn) {

		// (namespace) or (selector, types [, fn])
		return arguments.length === 1 ?
			this.off(selector, "**") :
			this.off(types, selector || "**", fn);
	}
});

jQuery.holdReady = function(hold) {
	if (hold) {
		jQuery.readyWait++;
	} else {
		jQuery.ready(true);
	}
};
jQuery.isArray = Array.isArray;
jQuery.parseJSON = JSON.parse;
jQuery.nodeName = nodeName;

// Register as a named AMD module, since jQuery can be concatenated with other
// files that may use define, but not via a proper concatenation script that
// understands anonymous AMD modules. A named AMD is safest and most robust
// way to register. Lowercase jquery is used because AMD module names are
// derived from file names, and jQuery is normally delivered in a lowercase
// file name. Do this after creating the global so that if an AMD module wants
// to call noConflict to hide this version of jQuery, it will work.

// Note that for maximum portability, libraries that are not jQuery should
// declare themselves as anonymous modules, and avoid setting a global if an
// AMD loader is present. jQuery is a special case. For more information, see
// https://github.com/jrburke/requirejs/wiki/Updating-existing-libraries#wiki-anon

if (typeof define === "function" && define.amd) {
	define("jquery", [], function() {
		return jQuery;
	});
}

var

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$;

jQuery.noConflict = function(deep) {
	if (window.$ === jQuery) {
		window.$ = _$;
	}

	if (deep && window.jQuery === jQuery) {
		window.jQuery = _jQuery;
	}

	return jQuery;
};

// Expose jQuery and $ identifiers, even in AMD
// (#7102#comment:10, https://github.com/jquery/jquery/pull/557)
// and CommonJS for browser emulators (#13566)
if (!noGlobal) {
	window.jQuery = window.$ = jQuery;
}

return jQuery;
});

autotest-latest/_static/plus.png

autotest-latest/_static/underscore.js
// Underscore.js 1.3.1
// (c) 2009-2012 Jeremy Ashkenas, DocumentCloud Inc.
// Underscore is freely distributable under the MIT license.
// Portions of Underscore are inspired or borrowed from Prototype,
// Oliver Steele's Functional, and John Resig's Micro-Templating.
// For all details and documentation:
// http://documentcloud.github.com/underscore
(function(){function q(a,c,d){if(a===c)return a!==0||1/a==1/c;if(a==null||c==null)return a===c;if(a._chain)a=a._wrapped;if(c._chain)c=c._wrapped;if(a.isEqual&&b.isFunction(a.isEqual))return a.isEqual(c);if(c.isEqual&&b.isFunction(c.isEqual))return c.isEqual(a);var e=l.call(a);if(e!=l.call(c))return false;switch(e){case "[object String]":return a==String(c);case "[object Number]":return a!=+a?c!=+c:a==0?1/a==1/c:a==+c;case "[object Date]":case "[object Boolean]":return+a==+c;case "[object RegExp]":return a.source==
c.source&&a.global==c.global&&a.multiline==c.multiline&&a.ignoreCase==c.ignoreCase}if(typeof a!="object"||typeof c!="object")return false;for(var f=d.length;f--;)if(d[f]==a)return true;d.push(a);var f=0,g=true;if(e=="[object Array]"){if(f=a.length,g=f==c.length)for(;f--;)if(!(g=f in a==f in c&&q(a[f],c[f],d)))break}else{if("constructor"in a!="constructor"in c||a.constructor!=c.constructor)return false;for(var h in a)if(b.has(a,h)&&(f++,!(g=b.has(c,h)&&q(a[h],c[h],d))))break;if(g){for(h in c)if(b.has(c,
h)&&!f--)break;g=!f}}d.pop();return g}var r=this,G=r._,n={},k=Array.prototype,o=Object.prototype,i=k.slice,H=k.unshift,l=o.toString,I=o.hasOwnProperty,w=k.forEach,x=k.map,y=k.reduce,z=k.reduceRight,A=k.filter,B=k.every,C=k.some,p=k.indexOf,D=k.lastIndexOf,o=Array.isArray,J=Object.keys,s=Function.prototype.bind,b=function(a){return new m(a)};if(typeof exports!=="undefined"){if(typeof module!=="undefined"&&module.exports)exports=module.exports=b;exports._=b}else r._=b;b.VERSION="1.3.1";var j=b.each=
b.forEach=function(a,c,d){if(a!=null)if(w&&a.forEach===w)a.forEach(c,d);else if(a.length===+a.length)for(var e=0,f=a.length;e<f;e++){if(e in a&&c.call(d,a[e],e,a)===n)break}else for(e in a)if(b.has(a,e)&&c.call(d,a[e],e,a)===n)break};b.map=b.collect=function(a,c,b){var e=[];if(a==null)return e;if(x&&a.map===x)return a.map(c,b);j(a,function(a,g,h){e[e.length]=c.call(b,a,g,h)});if(a.length===+a.length)e.length=a.length;return e};b.reduce=b.foldl=b.inject=function(a,c,d,e){var f=arguments.length>2;a==
null&&(a=[]);if(y&&a.reduce===y)return e&&(c=b.bind(c,e)),f?a.reduce(c,d):a.reduce(c);j(a,function(a,b,i){f?d=c.call(e,d,a,b,i):(d=a,f=true)});if(!f)throw new TypeError("Reduce of empty array with no initial value");return d};b.reduceRight=b.foldr=function(a,c,d,e){var f=arguments.length>2;a==null&&(a=[]);if(z&&a.reduceRight===z)return e&&(c=b.bind(c,e)),f?a.reduceRight(c,d):a.reduceRight(c);var g=b.toArray(a).reverse();e&&!f&&(c=b.bind(c,e));return f?b.reduce(g,c,d,e):b.reduce(g,c)};b.find=b.detect=
function(a,c,b){var e;E(a,function(a,g,h){if(c.call(b,a,g,h))return e=a,true});return e};b.filter=b.select=function(a,c,b){var e=[];if(a==null)return e;if(A&&a.filter===A)return a.filter(c,b);j(a,function(a,g,h){c.call(b,a,g,h)&&(e[e.length]=a)});return e};b.reject=function(a,c,b){var e=[];if(a==null)return e;j(a,function(a,g,h){c.call(b,a,g,h)||(e[e.length]=a)});return e};b.every=b.all=function(a,c,b){var e=true;if(a==null)return e;if(B&&a.every===B)return a.every(c,b);j(a,function(a,g,h){if(!(e=
e&&c.call(b,a,g,h)))return n});return e};var E=b.some=b.any=function(a,c,d){c||(c=b.identity);var e=false;if(a==null)return e;if(C&&a.some===C)return a.some(c,d);j(a,function(a,b,h){if(e||(e=c.call(d,a,b,h)))return n});return!!e};b.include=b.contains=function(a,c){var b=false;if(a==null)return b;return p&&a.indexOf===p?a.indexOf(c)!=-1:b=E(a,function(a){return a===c})};b.invoke=function(a,c){var d=i.call(arguments,2);return b.map(a,function(a){return(b.isFunction(c)?c||a:a[c]).apply(a,d)})};b.pluck=
function(a,c){return b.map(a,function(a){return a[c]})};b.max=function(a,c,d){if(!c&&b.isArray(a))return Math.max.apply(Math,a);if(!c&&b.isEmpty(a))return-Infinity;var e={computed:-Infinity};j(a,function(a,b,h){b=c?c.call(d,a,b,h):a;b>=e.computed&&(e={value:a,computed:b})});return e.value};b.min=function(a,c,d){if(!c&&b.isArray(a))return Math.min.apply(Math,a);if(!c&&b.isEmpty(a))return Infinity;var e={computed:Infinity};j(a,function(a,b,h){b=c?c.call(d,a,b,h):a;b<e.computed&&(e={value:a,computed:b})});
return e.value};b.shuffle=function(a){var b=[],d;j(a,function(a,f){f==0?b[0]=a:(d=Math.floor(Math.random()*(f+1)),b[f]=b[d],b[d]=a)});return b};b.sortBy=function(a,c,d){return b.pluck(b.map(a,function(a,b,g){return{value:a,criteria:c.call(d,a,b,g)}}).sort(function(a,b){var c=a.criteria,d=b.criteria;return c<d?-1:c>d?1:0}),"value")};b.groupBy=function(a,c){var d={},e=b.isFunction(c)?c:function(a){return a[c]};j(a,function(a,b){var c=e(a,b);(d[c]||(d[c]=[])).push(a)});return d};b.sortedIndex=function(a,
c,d){d||(d=b.identity);for(var e=0,f=a.length;e<f;){var g=e+f>>1;d(a[g])<d(c)?e=g+1:f=g}return e};b.toArray=function(a){return!a?[]:a.toArray?a.toArray():b.isArray(a)?i.call(a):b.isArguments(a)?i.call(a):b.values(a)};b.size=function(a){return b.toArray(a).length};b.first=b.head=function(a,b,d){return b!=null&&!d?i.call(a,0,b):a[0]};b.initial=function(a,b,d){return i.call(a,0,a.length-(b==null||d?1:b))};b.last=function(a,b,d){return b!=null&&!d?i.call(a,Math.max(a.length-b,0)):a[a.length-1]};b.rest=
b.tail=function(a,b,d){return i.call(a,b==null||d?1:b)};b.compact=function(a){return b.filter(a,function(a){return!!a})};b.flatten=function(a,c){return b.reduce(a,function(a,e){if(b.isArray(e))return a.concat(c?e:b.flatten(e));a[a.length]=e;return a},[])};b.without=function(a){return b.difference(a,i.call(arguments,1))};b.uniq=b.unique=function(a,c,d){var d=d?b.map(a,d):a,e=[];b.reduce(d,function(d,g,h){if(0==h||(c===true?b.last(d)!=g:!b.include(d,g)))d[d.length]=g,e[e.length]=a[h];return d},[]);
return e};b.union=function(){return b.uniq(b.flatten(arguments,true))};b.intersection=b.intersect=function(a){var c=i.call(arguments,1);return b.filter(b.uniq(a),function(a){return b.every(c,function(c){return b.indexOf(c,a)>=0})})};b.difference=function(a){var c=b.flatten(i.call(arguments,1));return b.filter(a,function(a){return!b.include(c,a)})};b.zip=function(){for(var a=i.call(arguments),c=b.max(b.pluck(a,"length")),d=Array(c),e=0;e<c;e++)d[e]=b.pluck(a,""+e);return d};b.indexOf=function(a,c,
d){if(a==null)return-1;var e;if(d)return d=b.sortedIndex(a,c),a[d]===c?d:-1;if(p&&a.indexOf===p)return a.indexOf(c);for(d=0,e=a.length;d<e;d++)if(d in a&&a[d]===c)return d;return-1};b.lastIndexOf=function(a,b){if(a==null)return-1;if(D&&a.lastIndexOf===D)return a.lastIndexOf(b);for(var d=a.length;d--;)if(d in a&&a[d]===b)return d;return-1};b.range=function(a,b,d){arguments.length<=1&&(b=a||0,a=0);for(var d=arguments[2]||1,e=Math.max(Math.ceil((b-a)/d),0),f=0,g=Array(e);f<e;)g[f++]=a,a+=d;return g};
var F=function(){};b.bind=function(a,c){var d,e;if(a.bind===s&&s)return s.apply(a,i.call(arguments,1));if(!b.isFunction(a))throw new TypeError;e=i.call(arguments,2);return d=function(){if(!(this instanceof d))return a.apply(c,e.concat(i.call(arguments)));F.prototype=a.prototype;var b=new F,g=a.apply(b,e.concat(i.call(arguments)));return Object(g)===g?g:b}};b.bindAll=function(a){var c=i.call(arguments,1);c.length==0&&(c=b.functions(a));j(c,function(c){a[c]=b.bind(a[c],a)});return a};b.memoize=function(a,
c){var d={};c||(c=b.identity);return function(){var e=c.apply(this,arguments);return b.has(d,e)?d[e]:d[e]=a.apply(this,arguments)}};b.delay=function(a,b){var d=i.call(arguments,2);return setTimeout(function(){return a.apply(a,d)},b)};b.defer=function(a){return b.delay.apply(b,[a,1].concat(i.call(arguments,1)))};b.throttle=function(a,c){var d,e,f,g,h,i=b.debounce(function(){h=g=false},c);return function(){d=this;e=arguments;var b;f||(f=setTimeout(function(){f=null;h&&a.apply(d,e);i()},c));g?h=true:
a.apply(d,e);i();g=true}};b.debounce=function(a,b){var d;return function(){var e=this,f=arguments;clearTimeout(d);d=setTimeout(function(){d=null;a.apply(e,f)},b)}};b.once=function(a){var b=false,d;return function(){if(b)return d;b=true;return d=a.apply(this,arguments)}};b.wrap=function(a,b){return function(){var d=[a].concat(i.call(arguments,0));return b.apply(this,d)}};b.compose=function(){var a=arguments;return function(){for(var b=arguments,d=a.length-1;d>=0;d--)b=[a[d].apply(this,b)];return b[0]}};
b.after=function(a,b){return a<=0?b():function(){if(--a<1)return b.apply(this,arguments)}};b.keys=J||function(a){if(a!==Object(a))throw new TypeError("Invalid object");var c=[],d;for(d in a)b.has(a,d)&&(c[c.length]=d);return c};b.values=function(a){return b.map(a,b.identity)};b.functions=b.methods=function(a){var c=[],d;for(d in a)b.isFunction(a[d])&&c.push(d);return c.sort()};b.extend=function(a){j(i.call(arguments,1),function(b){for(var d in b)a[d]=b[d]});return a};b.defaults=function(a){j(i.call(arguments,
1),function(b){for(var d in b)a[d]==null&&(a[d]=b[d])});return a};b.clone=function(a){return!b.isObject(a)?a:b.isArray(a)?a.slice():b.extend({},a)};b.tap=function(a,b){b(a);return a};b.isEqual=function(a,b){return q(a,b,[])};b.isEmpty=function(a){if(b.isArray(a)||b.isString(a))return a.length===0;for(var c in a)if(b.has(a,c))return false;return true};b.isElement=function(a){return!!(a&&a.nodeType==1)};b.isArray=o||function(a){return l.call(a)=="[object Array]"};b.isObject=function(a){return a===Object(a)};
b.isArguments=function(a){return l.call(a)=="[object Arguments]"};if(!b.isArguments(arguments))b.isArguments=function(a){return!(!a||!b.has(a,"callee"))};b.isFunction=function(a){return l.call(a)=="[object Function]"};b.isString=function(a){return l.call(a)=="[object String]"};b.isNumber=function(a){return l.call(a)=="[object Number]"};b.isNaN=function(a){return a!==a};b.isBoolean=function(a){return a===true||a===false||l.call(a)=="[object Boolean]"};b.isDate=function(a){return l.call(a)=="[object Date]"};
b.isRegExp=function(a){return l.call(a)=="[object RegExp]"};b.isNull=function(a){return a===null};b.isUndefined=function(a){return a===void 0};b.has=function(a,b){return I.call(a,b)};b.noConflict=function(){r._=G;return this};b.identity=function(a){return a};b.times=function(a,b,d){for(var e=0;e<a;e++)b.call(d,e)};b.escape=function(a){return(""+a).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""").replace(/'/g,"'").replace(/\//g,"/")};b.mixin=function(a){j(b.functions(a),
function(c){K(c,b[c]=a[c])})};var L=0;b.uniqueId=function(a){var b=L++;return a?a+b:b};b.templateSettings={evaluate:/<%([\s\S]+?)%>/g,interpolate:/<%=([\s\S]+?)%>/g,escape:/<%-([\s\S]+?)%>/g};var t=/.^/,u=function(a){return a.replace(/\\\\/g,"\\").replace(/\\'/g,"'")};b.template=function(a,c){var d=b.templateSettings,d="var __p=[],print=function(){__p.push.apply(__p,arguments);};with(obj||{}){__p.push('"+a.replace(/\\/g,"\\\\").replace(/'/g,"\\'").replace(d.escape||t,function(a,b){return"',_.escape("+
u(b)+"),'"}).replace(d.interpolate||t,function(a,b){return"',"+u(b)+",'"}).replace(d.evaluate||t,function(a,b){return"');"+u(b).replace(/[\r\n\t]/g," ")+";__p.push('"}).replace(/\r/g,"\\r").replace(/\n/g,"\\n").replace(/\t/g,"\\t")+"');}return __p.join('');",e=new Function("obj","_",d);return c?e(c,b):function(a){return e.call(this,a,b)}};b.chain=function(a){return b(a).chain()};var m=function(a){this._wrapped=a};b.prototype=m.prototype;var v=function(a,c){return c?b(a).chain():a},K=function(a,c){m.prototype[a]=
function(){var a=i.call(arguments);H.call(a,this._wrapped);return v(c.apply(b,a),this._chain)}};b.mixin(b);j("pop,push,reverse,shift,sort,splice,unshift".split(","),function(a){var b=k[a];m.prototype[a]=function(){var d=this._wrapped;b.apply(d,arguments);var e=d.length;(a=="shift"||a=="splice")&&e===0&&delete d[0];return v(d,this._chain)}});j(["concat","join","slice"],function(a){var b=k[a];m.prototype[a]=function(){return v(b.apply(this._wrapped,arguments),this._chain)}});m.prototype.chain=function(){this._chain=
true;return this};m.prototype.value=function(){return this._wrapped}}).call(this);

autotest-latest/_static/pygments.css
.highlight .hll { background-color: #ffffcc }
.highlight { background: #eeffcc; }
.highlight .c { color: #408090; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #007020; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #007020 } /* Comment.Preproc */
.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #333333 } /* Generic.Output */
.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #007020 } /* Keyword.Pseudo */
.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #902000 } /* Keyword.Type */
.highlight .m { color: #208050 } /* Literal.Number */
.highlight .s { color: #4070a0 } /* Literal.String */
.highlight .na { color: #4070a0 } /* Name.Attribute */
.highlight .nb { color: #007020 } /* Name.Builtin */
.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
.highlight .no { color: #60add5 } /* Name.Constant */
.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #007020 } /* Name.Exception */
.highlight .nf { color: #06287e } /* Name.Function */
.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #bb60d5 } /* Name.Variable */
.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #208050 } /* Literal.Number.Bin */
.highlight .mf { color: #208050 } /* Literal.Number.Float */
.highlight .mh { color: #208050 } /* Literal.Number.Hex */
.highlight .mi { color: #208050 } /* Literal.Number.Integer */
.highlight .mo { color: #208050 } /* Literal.Number.Oct */
.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
.highlight .sc { color: #4070a0 } /* Literal.String.Char */
.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
.highlight .sx { color: #c65d09 } /* Literal.String.Other */
.highlight .sr { color: #235388 } /* Literal.String.Regex */
.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
.highlight .ss { color: #517918 } /* Literal.String.Symbol */
.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #06287e } /* Name.Function.Magic */
.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */

autotest-latest/_static/underscore-1.3.1.js
// Underscore.js 1.3.1
// (c) 2009-2012 Jeremy Ashkenas, DocumentCloud Inc.
// Underscore is freely distributable under the MIT license.
// Portions of Underscore are inspired or borrowed from Prototype,
// Oliver Steele's Functional, and John Resig's Micro-Templating.
// For all details and documentation:
// http://documentcloud.github.com/underscore

(function() {

 // Baseline setup
 // --------------

 // Establish the root object, `window` in the browser, or `global` on the server.
 var root = this;

 // Save the previous value of the `_` variable.
 var previousUnderscore = root._;

 // Establish the object that gets returned to break out of a loop iteration.
 var breaker = {};

 // Save bytes in the minified (but not gzipped) version:
 var ArrayProto = Array.prototype, ObjProto = Object.prototype, FuncProto = Function.prototype;

 // Create quick reference variables for speed access to core prototypes.
 var slice = ArrayProto.slice,
 unshift = ArrayProto.unshift,
 toString = ObjProto.toString,
 hasOwnProperty = ObjProto.hasOwnProperty;

 // All **ECMAScript 5** native function implementations that we hope to use
 // are declared here.
 var
 nativeForEach = ArrayProto.forEach,
 nativeMap = ArrayProto.map,
 nativeReduce = ArrayProto.reduce,
 nativeReduceRight = ArrayProto.reduceRight,
 nativeFilter = ArrayProto.filter,
 nativeEvery = ArrayProto.every,
 nativeSome = ArrayProto.some,
 nativeIndexOf = ArrayProto.indexOf,
 nativeLastIndexOf = ArrayProto.lastIndexOf,
 nativeIsArray = Array.isArray,
 nativeKeys = Object.keys,
 nativeBind = FuncProto.bind;

 // Create a safe reference to the Underscore object for use below.
 var _ = function(obj) { return new wrapper(obj); };

 // Export the Underscore object for **Node.js**, with
 // backwards-compatibility for the old `require()` API. If we're in
 // the browser, add `_` as a global object via a string identifier,
 // for Closure Compiler "advanced" mode.
 if (typeof exports !== 'undefined') {
 if (typeof module !== 'undefined' && module.exports) {
 exports = module.exports = _;
 }
 exports._ = _;
 } else {
 root['_'] = _;
 }

 // Current version.
 _.VERSION = '1.3.1';

 // Collection Functions
 // --------------------

 // The cornerstone, an `each` implementation, aka `forEach`.
 // Handles objects with the built-in `forEach`, arrays, and raw objects.
 // Delegates to **ECMAScript 5**'s native `forEach` if available.
 var each = _.each = _.forEach = function(obj, iterator, context) {
 if (obj == null) return;
 if (nativeForEach && obj.forEach === nativeForEach) {
 obj.forEach(iterator, context);
 } else if (obj.length === +obj.length) {
 for (var i = 0, l = obj.length; i < l; i++) {
 if (i in obj && iterator.call(context, obj[i], i, obj) === breaker) return;
 }
 } else {
 for (var key in obj) {
 if (_.has(obj, key)) {
 if (iterator.call(context, obj[key], key, obj) === breaker) return;
 }
 }
 }
 };

 // Return the results of applying the iterator to each element.
 // Delegates to **ECMAScript 5**'s native `map` if available.
 _.map = _.collect = function(obj, iterator, context) {
 var results = [];
 if (obj == null) return results;
 if (nativeMap && obj.map === nativeMap) return obj.map(iterator, context);
 each(obj, function(value, index, list) {
 results[results.length] = iterator.call(context, value, index, list);
 });
 if (obj.length === +obj.length) results.length = obj.length;
 return results;
 };

 // **Reduce** builds up a single result from a list of values, aka `inject`,
 // or `foldl`. Delegates to **ECMAScript 5**'s native `reduce` if available.
 _.reduce = _.foldl = _.inject = function(obj, iterator, memo, context) {
 var initial = arguments.length > 2;
 if (obj == null) obj = [];
 if (nativeReduce && obj.reduce === nativeReduce) {
 if (context) iterator = _.bind(iterator, context);
 return initial ? obj.reduce(iterator, memo) : obj.reduce(iterator);
 }
 each(obj, function(value, index, list) {
 if (!initial) {
 memo = value;
 initial = true;
 } else {
 memo = iterator.call(context, memo, value, index, list);
 }
 });
 if (!initial) throw new TypeError('Reduce of empty array with no initial value');
 return memo;
 };

 // The right-associative version of reduce, also known as `foldr`.
 // Delegates to **ECMAScript 5**'s native `reduceRight` if available.
 _.reduceRight = _.foldr = function(obj, iterator, memo, context) {
 var initial = arguments.length > 2;
 if (obj == null) obj = [];
 if (nativeReduceRight && obj.reduceRight === nativeReduceRight) {
 if (context) iterator = _.bind(iterator, context);
 return initial ? obj.reduceRight(iterator, memo) : obj.reduceRight(iterator);
 }
 var reversed = _.toArray(obj).reverse();
 if (context && !initial) iterator = _.bind(iterator, context);
 return initial ? _.reduce(reversed, iterator, memo, context) : _.reduce(reversed, iterator);
 };

 // Return the first value which passes a truth test. Aliased as `detect`.
 _.find = _.detect = function(obj, iterator, context) {
 var result;
 any(obj, function(value, index, list) {
 if (iterator.call(context, value, index, list)) {
 result = value;
 return true;
 }
 });
 return result;
 };

 // Return all the elements that pass a truth test.
 // Delegates to **ECMAScript 5**'s native `filter` if available.
 // Aliased as `select`.
 _.filter = _.select = function(obj, iterator, context) {
 var results = [];
 if (obj == null) return results;
 if (nativeFilter && obj.filter === nativeFilter) return obj.filter(iterator, context);
 each(obj, function(value, index, list) {
 if (iterator.call(context, value, index, list)) results[results.length] = value;
 });
 return results;
 };

 // Return all the elements for which a truth test fails.
 _.reject = function(obj, iterator, context) {
 var results = [];
 if (obj == null) return results;
 each(obj, function(value, index, list) {
 if (!iterator.call(context, value, index, list)) results[results.length] = value;
 });
 return results;
 };

 // Determine whether all of the elements match a truth test.
 // Delegates to **ECMAScript 5**'s native `every` if available.
 // Aliased as `all`.
 _.every = _.all = function(obj, iterator, context) {
 var result = true;
 if (obj == null) return result;
 if (nativeEvery && obj.every === nativeEvery) return obj.every(iterator, context);
 each(obj, function(value, index, list) {
 if (!(result = result && iterator.call(context, value, index, list))) return breaker;
 });
 return result;
 };

 // Determine if at least one element in the object matches a truth test.
 // Delegates to **ECMAScript 5**'s native `some` if available.
 // Aliased as `any`.
 var any = _.some = _.any = function(obj, iterator, context) {
 iterator || (iterator = _.identity);
 var result = false;
 if (obj == null) return result;
 if (nativeSome && obj.some === nativeSome) return obj.some(iterator, context);
 each(obj, function(value, index, list) {
 if (result || (result = iterator.call(context, value, index, list))) return breaker;
 });
 return !!result;
 };

 // Determine if a given value is included in the array or object using `===`.
 // Aliased as `contains`.
 _.include = _.contains = function(obj, target) {
 var found = false;
 if (obj == null) return found;
 if (nativeIndexOf && obj.indexOf === nativeIndexOf) return obj.indexOf(target) != -1;
 found = any(obj, function(value) {
 return value === target;
 });
 return found;
 };

 // Invoke a method (with arguments) on every item in a collection.
 _.invoke = function(obj, method) {
 var args = slice.call(arguments, 2);
 return _.map(obj, function(value) {
 return (_.isFunction(method) ? method || value : value[method]).apply(value, args);
 });
 };

 // Convenience version of a common use case of `map`: fetching a property.
 _.pluck = function(obj, key) {
 return _.map(obj, function(value){ return value[key]; });
 };

 // Return the maximum element or (element-based computation).
 _.max = function(obj, iterator, context) {
 if (!iterator && _.isArray(obj)) return Math.max.apply(Math, obj);
 if (!iterator && _.isEmpty(obj)) return -Infinity;
 var result = {computed : -Infinity};
 each(obj, function(value, index, list) {
 var computed = iterator ? iterator.call(context, value, index, list) : value;
 computed >= result.computed && (result = {value : value, computed : computed});
 });
 return result.value;
 };

 // Return the minimum element (or element-based computation).
 _.min = function(obj, iterator, context) {
 if (!iterator && _.isArray(obj)) return Math.min.apply(Math, obj);
 if (!iterator && _.isEmpty(obj)) return Infinity;
 var result = {computed : Infinity};
 each(obj, function(value, index, list) {
 var computed = iterator ? iterator.call(context, value, index, list) : value;
 computed < result.computed && (result = {value : value, computed : computed});
 });
 return result.value;
 };

 // Shuffle an array.
 _.shuffle = function(obj) {
 var shuffled = [], rand;
 each(obj, function(value, index, list) {
 if (index == 0) {
 shuffled[0] = value;
 } else {
 rand = Math.floor(Math.random() * (index + 1));
 shuffled[index] = shuffled[rand];
 shuffled[rand] = value;
 }
 });
 return shuffled;
 };

 // Sort the object's values by a criterion produced by an iterator.
 _.sortBy = function(obj, iterator, context) {
 return _.pluck(_.map(obj, function(value, index, list) {
 return {
 value : value,
 criteria : iterator.call(context, value, index, list)
 };
 }).sort(function(left, right) {
 var a = left.criteria, b = right.criteria;
 return a < b ? -1 : a > b ? 1 : 0;
 }), 'value');
 };

 // Groups the object's values by a criterion. Pass either a string attribute
 // to group by, or a function that returns the criterion.
 _.groupBy = function(obj, val) {
 var result = {};
 var iterator = _.isFunction(val) ? val : function(obj) { return obj[val]; };
 each(obj, function(value, index) {
 var key = iterator(value, index);
 (result[key] || (result[key] = [])).push(value);
 });
 return result;
 };

 // Use a comparator function to figure out at what index an object should
 // be inserted so as to maintain order. Uses binary search.
 _.sortedIndex = function(array, obj, iterator) {
 iterator || (iterator = _.identity);
 var low = 0, high = array.length;
 while (low < high) {
 var mid = (low + high) >> 1;
 iterator(array[mid]) < iterator(obj) ? low = mid + 1 : high = mid;
 }
 return low;
 };

 // Safely convert anything iterable into a real, live array.
 _.toArray = function(iterable) {
 if (!iterable) return [];
 if (iterable.toArray) return iterable.toArray();
 if (_.isArray(iterable)) return slice.call(iterable);
 if (_.isArguments(iterable)) return slice.call(iterable);
 return _.values(iterable);
 };

 // Return the number of elements in an object.
 _.size = function(obj) {
 return _.toArray(obj).length;
 };

 // Array Functions
 // ---------------

 // Get the first element of an array. Passing **n** will return the first N
 // values in the array. Aliased as `head`. The **guard** check allows it to work
 // with `_.map`.
 _.first = _.head = function(array, n, guard) {
 return (n != null) && !guard ? slice.call(array, 0, n) : array[0];
 };

 // Returns everything but the last entry of the array. Especcialy useful on
 // the arguments object. Passing **n** will return all the values in
 // the array, excluding the last N. The **guard** check allows it to work with
 // `_.map`.
 _.initial = function(array, n, guard) {
 return slice.call(array, 0, array.length - ((n == null) || guard ? 1 : n));
 };

 // Get the last element of an array. Passing **n** will return the last N
 // values in the array. The **guard** check allows it to work with `_.map`.
 _.last = function(array, n, guard) {
 if ((n != null) && !guard) {
 return slice.call(array, Math.max(array.length - n, 0));
 } else {
 return array[array.length - 1];
 }
 };

 // Returns everything but the first entry of the array. Aliased as `tail`.
 // Especially useful on the arguments object. Passing an **index** will return
 // the rest of the values in the array from that index onward. The **guard**
 // check allows it to work with `_.map`.
 _.rest = _.tail = function(array, index, guard) {
 return slice.call(array, (index == null) || guard ? 1 : index);
 };

 // Trim out all falsy values from an array.
 _.compact = function(array) {
 return _.filter(array, function(value){ return !!value; });
 };

 // Return a completely flattened version of an array.
 _.flatten = function(array, shallow) {
 return _.reduce(array, function(memo, value) {
 if (_.isArray(value)) return memo.concat(shallow ? value : _.flatten(value));
 memo[memo.length] = value;
 return memo;
 }, []);
 };

 // Return a version of the array that does not contain the specified value(s).
 _.without = function(array) {
 return _.difference(array, slice.call(arguments, 1));
 };

 // Produce a duplicate-free version of the array. If the array has already
 // been sorted, you have the option of using a faster algorithm.
 // Aliased as `unique`.
 _.uniq = _.unique = function(array, isSorted, iterator) {
 var initial = iterator ? _.map(array, iterator) : array;
 var result = [];
 _.reduce(initial, function(memo, el, i) {
 if (0 == i || (isSorted === true ? _.last(memo) != el : !_.include(memo, el))) {
 memo[memo.length] = el;
 result[result.length] = array[i];
 }
 return memo;
 }, []);
 return result;
 };

 // Produce an array that contains the union: each distinct element from all of
 // the passed-in arrays.
 _.union = function() {
 return _.uniq(_.flatten(arguments, true));
 };

 // Produce an array that contains every item shared between all the
 // passed-in arrays. (Aliased as "intersect" for back-compat.)
 _.intersection = _.intersect = function(array) {
 var rest = slice.call(arguments, 1);
 return _.filter(_.uniq(array), function(item) {
 return _.every(rest, function(other) {
 return _.indexOf(other, item) >= 0;
 });
 });
 };

 // Take the difference between one array and a number of other arrays.
 // Only the elements present in just the first array will remain.
 _.difference = function(array) {
 var rest = _.flatten(slice.call(arguments, 1));
 return _.filter(array, function(value){ return !_.include(rest, value); });
 };

 // Zip together multiple lists into a single array -- elements that share
 // an index go together.
 _.zip = function() {
 var args = slice.call(arguments);
 var length = _.max(_.pluck(args, 'length'));
 var results = new Array(length);
 for (var i = 0; i < length; i++) results[i] = _.pluck(args, "" + i);
 return results;
 };

 // If the browser doesn't supply us with indexOf (I'm looking at you, **MSIE**),
 // we need this function. Return the position of the first occurrence of an
 // item in an array, or -1 if the item is not included in the array.
 // Delegates to **ECMAScript 5**'s native `indexOf` if available.
 // If the array is large and already in sort order, pass `true`
 // for **isSorted** to use binary search.
 _.indexOf = function(array, item, isSorted) {
 if (array == null) return -1;
 var i, l;
 if (isSorted) {
 i = _.sortedIndex(array, item);
 return array[i] === item ? i : -1;
 }
 if (nativeIndexOf && array.indexOf === nativeIndexOf) return array.indexOf(item);
 for (i = 0, l = array.length; i < l; i++) if (i in array && array[i] === item) return i;
 return -1;
 };

 // Delegates to **ECMAScript 5**'s native `lastIndexOf` if available.
 _.lastIndexOf = function(array, item) {
 if (array == null) return -1;
 if (nativeLastIndexOf && array.lastIndexOf === nativeLastIndexOf) return array.lastIndexOf(item);
 var i = array.length;
 while (i--) if (i in array && array[i] === item) return i;
 return -1;
 };

 // Generate an integer Array containing an arithmetic progression. A port of
 // the native Python `range()` function. See
 // [the Python documentation](http://docs.python.org/library/functions.html#range).
 _.range = function(start, stop, step) {
 if (arguments.length <= 1) {
 stop = start || 0;
 start = 0;
 }
 step = arguments[2] || 1;

 var len = Math.max(Math.ceil((stop - start) / step), 0);
 var idx = 0;
 var range = new Array(len);

 while(idx < len) {
 range[idx++] = start;
 start += step;
 }

 return range;
 };

 // Function (ahem) Functions
 // ------------------

 // Reusable constructor function for prototype setting.
 var ctor = function(){};

 // Create a function bound to a given object (assigning `this`, and arguments,
 // optionally). Binding with arguments is also known as `curry`.
 // Delegates to **ECMAScript 5**'s native `Function.bind` if available.
 // We check for `func.bind` first, to fail fast when `func` is undefined.
 _.bind = function bind(func, context) {
 var bound, args;
 if (func.bind === nativeBind && nativeBind) return nativeBind.apply(func, slice.call(arguments, 1));
 if (!_.isFunction(func)) throw new TypeError;
 args = slice.call(arguments, 2);
 return bound = function() {
 if (!(this instanceof bound)) return func.apply(context, args.concat(slice.call(arguments)));
 ctor.prototype = func.prototype;
 var self = new ctor;
 var result = func.apply(self, args.concat(slice.call(arguments)));
 if (Object(result) === result) return result;
 return self;
 };
 };

 // Bind all of an object's methods to that object. Useful for ensuring that
 // all callbacks defined on an object belong to it.
 _.bindAll = function(obj) {
 var funcs = slice.call(arguments, 1);
 if (funcs.length == 0) funcs = _.functions(obj);
 each(funcs, function(f) { obj[f] = _.bind(obj[f], obj); });
 return obj;
 };

 // Memoize an expensive function by storing its results.
 _.memoize = function(func, hasher) {
 var memo = {};
 hasher || (hasher = _.identity);
 return function() {
 var key = hasher.apply(this, arguments);
 return _.has(memo, key) ? memo[key] : (memo[key] = func.apply(this, arguments));
 };
 };

 // Delays a function for the given number of milliseconds, and then calls
 // it with the arguments supplied.
 _.delay = function(func, wait) {
 var args = slice.call(arguments, 2);
 return setTimeout(function(){ return func.apply(func, args); }, wait);
 };

 // Defers a function, scheduling it to run after the current call stack has
 // cleared.
 _.defer = function(func) {
 return _.delay.apply(_, [func, 1].concat(slice.call(arguments, 1)));
 };

 // Returns a function, that, when invoked, will only be triggered at most once
 // during a given window of time.
 _.throttle = function(func, wait) {
 var context, args, timeout, throttling, more;
 var whenDone = _.debounce(function(){ more = throttling = false; }, wait);
 return function() {
 context = this; args = arguments;
 var later = function() {
 timeout = null;
 if (more) func.apply(context, args);
 whenDone();
 };
 if (!timeout) timeout = setTimeout(later, wait);
 if (throttling) {
 more = true;
 } else {
 func.apply(context, args);
 }
 whenDone();
 throttling = true;
 };
 };

 // Returns a function, that, as long as it continues to be invoked, will not
 // be triggered. The function will be called after it stops being called for
 // N milliseconds.
 _.debounce = function(func, wait) {
 var timeout;
 return function() {
 var context = this, args = arguments;
 var later = function() {
 timeout = null;
 func.apply(context, args);
 };
 clearTimeout(timeout);
 timeout = setTimeout(later, wait);
 };
 };

 // Returns a function that will be executed at most one time, no matter how
 // often you call it. Useful for lazy initialization.
 _.once = function(func) {
 var ran = false, memo;
 return function() {
 if (ran) return memo;
 ran = true;
 return memo = func.apply(this, arguments);
 };
 };

 // Returns the first function passed as an argument to the second,
 // allowing you to adjust arguments, run code before and after, and
 // conditionally execute the original function.
 _.wrap = function(func, wrapper) {
 return function() {
 var args = [func].concat(slice.call(arguments, 0));
 return wrapper.apply(this, args);
 };
 };

 // Returns a function that is the composition of a list of functions, each
 // consuming the return value of the function that follows.
 _.compose = function() {
 var funcs = arguments;
 return function() {
 var args = arguments;
 for (var i = funcs.length - 1; i >= 0; i--) {
 args = [funcs[i].apply(this, args)];
 }
 return args[0];
 };
 };

 // Returns a function that will only be executed after being called N times.
 _.after = function(times, func) {
 if (times <= 0) return func();
 return function() {
 if (--times < 1) { return func.apply(this, arguments); }
 };
 };

 // Object Functions
 // ----------------

 // Retrieve the names of an object's properties.
 // Delegates to **ECMAScript 5**'s native `Object.keys`
 _.keys = nativeKeys || function(obj) {
 if (obj !== Object(obj)) throw new TypeError('Invalid object');
 var keys = [];
 for (var key in obj) if (_.has(obj, key)) keys[keys.length] = key;
 return keys;
 };

 // Retrieve the values of an object's properties.
 _.values = function(obj) {
 return _.map(obj, _.identity);
 };

 // Return a sorted list of the function names available on the object.
 // Aliased as `methods`
 _.functions = _.methods = function(obj) {
 var names = [];
 for (var key in obj) {
 if (_.isFunction(obj[key])) names.push(key);
 }
 return names.sort();
 };

 // Extend a given object with all the properties in passed-in object(s).
 _.extend = function(obj) {
 each(slice.call(arguments, 1), function(source) {
 for (var prop in source) {
 obj[prop] = source[prop];
 }
 });
 return obj;
 };

 // Fill in a given object with default properties.
 _.defaults = function(obj) {
 each(slice.call(arguments, 1), function(source) {
 for (var prop in source) {
 if (obj[prop] == null) obj[prop] = source[prop];
 }
 });
 return obj;
 };

 // Create a (shallow-cloned) duplicate of an object.
 _.clone = function(obj) {
 if (!_.isObject(obj)) return obj;
 return _.isArray(obj) ? obj.slice() : _.extend({}, obj);
 };

 // Invokes interceptor with the obj, and then returns obj.
 // The primary purpose of this method is to "tap into" a method chain, in
 // order to perform operations on intermediate results within the chain.
 _.tap = function(obj, interceptor) {
 interceptor(obj);
 return obj;
 };

 // Internal recursive comparison function.
 function eq(a, b, stack) {
 // Identical objects are equal. `0 === -0`, but they aren't identical.
 // See the Harmony `egal` proposal: http://wiki.ecmascript.org/doku.php?id=harmony:egal.
 if (a === b) return a !== 0 || 1 / a == 1 / b;
 // A strict comparison is necessary because `null == undefined`.
 if (a == null || b == null) return a === b;
 // Unwrap any wrapped objects.
 if (a._chain) a = a._wrapped;
 if (b._chain) b = b._wrapped;
 // Invoke a custom `isEqual` method if one is provided.
 if (a.isEqual && _.isFunction(a.isEqual)) return a.isEqual(b);
 if (b.isEqual && _.isFunction(b.isEqual)) return b.isEqual(a);
 // Compare `[[Class]]` names.
 var className = toString.call(a);
 if (className != toString.call(b)) return false;
 switch (className) {
 // Strings, numbers, dates, and booleans are compared by value.
 case '[object String]':
 // Primitives and their corresponding object wrappers are equivalent; thus, `"5"` is
 // equivalent to `new String("5")`.
 return a == String(b);
 case '[object Number]':
 // `NaN`s are equivalent, but non-reflexive. An `egal` comparison is performed for
 // other numeric values.
 return a != +a ? b != +b : (a == 0 ? 1 / a == 1 / b : a == +b);
 case '[object Date]':
 case '[object Boolean]':
 // Coerce dates and booleans to numeric primitive values. Dates are compared by their
 // millisecond representations. Note that invalid dates with millisecond representations
 // of `NaN` are not equivalent.
 return +a == +b;
 // RegExps are compared by their source patterns and flags.
 case '[object RegExp]':
 return a.source == b.source &&
 a.global == b.global &&
 a.multiline == b.multiline &&
 a.ignoreCase == b.ignoreCase;
 }
 if (typeof a != 'object' || typeof b != 'object') return false;
 // Assume equality for cyclic structures. The algorithm for detecting cyclic
 // structures is adapted from ES 5.1 section 15.12.3, abstract operation `JO`.
 var length = stack.length;
 while (length--) {
 // Linear search. Performance is inversely proportional to the number of
 // unique nested structures.
 if (stack[length] == a) return true;
 }
 // Add the first object to the stack of traversed objects.
 stack.push(a);
 var size = 0, result = true;
 // Recursively compare objects and arrays.
 if (className == '[object Array]') {
 // Compare array lengths to determine if a deep comparison is necessary.
 size = a.length;
 result = size == b.length;
 if (result) {
 // Deep compare the contents, ignoring non-numeric properties.
 while (size--) {
 // Ensure commutative equality for sparse arrays.
 if (!(result = size in a == size in b && eq(a[size], b[size], stack))) break;
 }
 }
 } else {
 // Objects with different constructors are not equivalent.
 if ('constructor' in a != 'constructor' in b || a.constructor != b.constructor) return false;
 // Deep compare objects.
 for (var key in a) {
 if (_.has(a, key)) {
 // Count the expected number of properties.
 size++;
 // Deep compare each member.
 if (!(result = _.has(b, key) && eq(a[key], b[key], stack))) break;
 }
 }
 // Ensure that both objects contain the same number of properties.
 if (result) {
 for (key in b) {
 if (_.has(b, key) && !(size--)) break;
 }
 result = !size;
 }
 }
 // Remove the first object from the stack of traversed objects.
 stack.pop();
 return result;
 }

 // Perform a deep comparison to check if two objects are equal.
 _.isEqual = function(a, b) {
 return eq(a, b, []);
 };

 // Is a given array, string, or object empty?
 // An "empty" object has no enumerable own-properties.
 _.isEmpty = function(obj) {
 if (_.isArray(obj) || _.isString(obj)) return obj.length === 0;
 for (var key in obj) if (_.has(obj, key)) return false;
 return true;
 };

 // Is a given value a DOM element?
 _.isElement = function(obj) {
 return !!(obj && obj.nodeType == 1);
 };

 // Is a given value an array?
 // Delegates to ECMA5's native Array.isArray
 _.isArray = nativeIsArray || function(obj) {
 return toString.call(obj) == '[object Array]';
 };

 // Is a given variable an object?
 _.isObject = function(obj) {
 return obj === Object(obj);
 };

 // Is a given variable an arguments object?
 _.isArguments = function(obj) {
 return toString.call(obj) == '[object Arguments]';
 };
 if (!_.isArguments(arguments)) {
 _.isArguments = function(obj) {
 return !!(obj && _.has(obj, 'callee'));
 };
 }

 // Is a given value a function?
 _.isFunction = function(obj) {
 return toString.call(obj) == '[object Function]';
 };

 // Is a given value a string?
 _.isString = function(obj) {
 return toString.call(obj) == '[object String]';
 };

 // Is a given value a number?
 _.isNumber = function(obj) {
 return toString.call(obj) == '[object Number]';
 };

 // Is the given value `NaN`?
 _.isNaN = function(obj) {
 // `NaN` is the only value for which `===` is not reflexive.
 return obj !== obj;
 };

 // Is a given value a boolean?
 _.isBoolean = function(obj) {
 return obj === true || obj === false || toString.call(obj) == '[object Boolean]';
 };

 // Is a given value a date?
 _.isDate = function(obj) {
 return toString.call(obj) == '[object Date]';
 };

 // Is the given value a regular expression?
 _.isRegExp = function(obj) {
 return toString.call(obj) == '[object RegExp]';
 };

 // Is a given value equal to null?
 _.isNull = function(obj) {
 return obj === null;
 };

 // Is a given variable undefined?
 _.isUndefined = function(obj) {
 return obj === void 0;
 };

 // Has own property?
 _.has = function(obj, key) {
 return hasOwnProperty.call(obj, key);
 };

 // Utility Functions
 // -----------------

 // Run Underscore.js in *noConflict* mode, returning the `_` variable to its
 // previous owner. Returns a reference to the Underscore object.
 _.noConflict = function() {
 root._ = previousUnderscore;
 return this;
 };

 // Keep the identity function around for default iterators.
 _.identity = function(value) {
 return value;
 };

 // Run a function **n** times.
 _.times = function (n, iterator, context) {
 for (var i = 0; i < n; i++) iterator.call(context, i);
 };

 // Escape a string for HTML interpolation.
 _.escape = function(string) {
 return (''+string).replace(/&/g, '&').replace(/</g, '<').replace(/>/g, '>').replace(/"/g, '"').replace(/'/g, ''').replace(/\//g,'/');
 };

 // Add your own custom functions to the Underscore object, ensuring that
 // they're correctly added to the OOP wrapper as well.
 _.mixin = function(obj) {
 each(_.functions(obj), function(name){
 addToWrapper(name, _[name] = obj[name]);
 });
 };

 // Generate a unique integer id (unique within the entire client session).
 // Useful for temporary DOM ids.
 var idCounter = 0;
 _.uniqueId = function(prefix) {
 var id = idCounter++;
 return prefix ? prefix + id : id;
 };

 // By default, Underscore uses ERB-style template delimiters, change the
 // following template settings to use alternative delimiters.
 _.templateSettings = {
 evaluate : /<%([\s\S]+?)%>/g,
 interpolate : /<%=([\s\S]+?)%>/g,
 escape : /<%-([\s\S]+?)%>/g
 };

 // When customizing `templateSettings`, if you don't want to define an
 // interpolation, evaluation or escaping regex, we need one that is
 // guaranteed not to match.
 var noMatch = /.^/;

 // Within an interpolation, evaluation, or escaping, remove HTML escaping
 // that had been previously added.
 var unescape = function(code) {
 return code.replace(/\\\\/g, '\\').replace(/\\'/g, "'");
 };

 // JavaScript micro-templating, similar to John Resig's implementation.
 // Underscore templating handles arbitrary delimiters, preserves whitespace,
 // and correctly escapes quotes within interpolated code.
 _.template = function(str, data) {
 var c = _.templateSettings;
 var tmpl = 'var __p=[],print=function(){__p.push.apply(__p,arguments);};' +
 'with(obj||{}){__p.push(\'' +
 str.replace(/\\/g, '\\\\')
 .replace(/'/g, "\\'")
 .replace(c.escape || noMatch, function(match, code) {
 return "',_.escape(" + unescape(code) + "),'";
 })
 .replace(c.interpolate || noMatch, function(match, code) {
 return "'," + unescape(code) + ",'";
 })
 .replace(c.evaluate || noMatch, function(match, code) {
 return "');" + unescape(code).replace(/[\r\n\t]/g, ' ') + ";__p.push('";
 })
 .replace(/\r/g, '\\r')
 .replace(/\n/g, '\\n')
 .replace(/\t/g, '\\t')
 + "');}return __p.join('');";
 var func = new Function('obj', '_', tmpl);
 if (data) return func(data, _);
 return function(data) {
 return func.call(this, data, _);
 };
 };

 // Add a "chain" function, which will delegate to the wrapper.
 _.chain = function(obj) {
 return _(obj).chain();
 };

 // The OOP Wrapper
 // ---------------

 // If Underscore is called as a function, it returns a wrapped object that
 // can be used OO-style. This wrapper holds altered versions of all the
 // underscore functions. Wrapped objects may be chained.
 var wrapper = function(obj) { this._wrapped = obj; };

 // Expose `wrapper.prototype` as `_.prototype`
 _.prototype = wrapper.prototype;

 // Helper function to continue chaining intermediate results.
 var result = function(obj, chain) {
 return chain ? _(obj).chain() : obj;
 };

 // A method to easily add functions to the OOP wrapper.
 var addToWrapper = function(name, func) {
 wrapper.prototype[name] = function() {
 var args = slice.call(arguments);
 unshift.call(args, this._wrapped);
 return result(func.apply(_, args), this._chain);
 };
 };

 // Add all of the Underscore functions to the wrapper object.
 .mixin();

 // Add all mutator Array functions to the wrapper.
 each(['pop', 'push', 'reverse', 'shift', 'sort', 'splice', 'unshift'], function(name) {
 var method = ArrayProto[name];
 wrapper.prototype[name] = function() {
 var wrapped = this._wrapped;
 method.apply(wrapped, arguments);
 var length = wrapped.length;
 if ((name == 'shift' || name == 'splice') && length === 0) delete wrapped[0];
 return result(wrapped, this._chain);
 };
 });

 // Add all accessor Array functions to the wrapper.
 each(['concat', 'join', 'slice'], function(name) {
 var method = ArrayProto[name];
 wrapper.prototype[name] = function() {
 return result(method.apply(this._wrapped, arguments), this._chain);
 };
 });

 // Start chaining a wrapped Underscore object.
 wrapper.prototype.chain = function() {
 this._chain = true;
 return this;
 };

 // Extracts the result from a wrapped and chained object.
 wrapper.prototype.value = function() {
 return this._wrapped;
 };

}).call(this);

autotest-latest/_static/searchtools.js
/*
 * searchtools.js_t
 * ~~~~~~~~~~~~~~~~
 *
 * Sphinx JavaScript utilities for the full-text search.
 *
 * :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

/* Non-minified version JS is _stemmer.js if file is provided */
/**
 * Porter Stemmer
 */
var Stemmer = function() {

 var step2list = {
 ational: 'ate',
 tional: 'tion',
 enci: 'ence',
 anci: 'ance',
 izer: 'ize',
 bli: 'ble',
 alli: 'al',
 entli: 'ent',
 eli: 'e',
 ousli: 'ous',
 ization: 'ize',
 ation: 'ate',
 ator: 'ate',
 alism: 'al',
 iveness: 'ive',
 fulness: 'ful',
 ousness: 'ous',
 aliti: 'al',
 iviti: 'ive',
 biliti: 'ble',
 logi: 'log'
 };

 var step3list = {
 icate: 'ic',
 ative: '',
 alize: 'al',
 iciti: 'ic',
 ical: 'ic',
 ful: '',
 ness: ''
 };

 var c = "[^aeiou]"; // consonant
 var v = "[aeiouy]"; // vowel
 var C = c + "[^aeiouy]*"; // consonant sequence
 var V = v + "[aeiou]*"; // vowel sequence

 var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0
 var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1
 var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1
 var s_v = "^(" + C + ")?" + v; // vowel in stem

 this.stemWord = function (w) {
 var stem;
 var suffix;
 var firstch;
 var origword = w;

 if (w.length < 3)
 return w;

 var re;
 var re2;
 var re3;
 var re4;

 firstch = w.substr(0,1);
 if (firstch == "y")
 w = firstch.toUpperCase() + w.substr(1);

 // Step 1a
 re = /^(.+?)(ss|i)es$/;
 re2 = /^(.+?)([^s])s$/;

 if (re.test(w))
 w = w.replace(re,"$1$2");
 else if (re2.test(w))
 w = w.replace(re2,"$1$2");

 // Step 1b
 re = /^(.+?)eed$/;
 re2 = /^(.+?)(ed|ing)$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 re = new RegExp(mgr0);
 if (re.test(fp[1])) {
 re = /.$/;
 w = w.replace(re,"");
 }
 }
 else if (re2.test(w)) {
 var fp = re2.exec(w);
 stem = fp[1];
 re2 = new RegExp(s_v);
 if (re2.test(stem)) {
 w = stem;
 re2 = /(at|bl|iz)$/;
 re3 = new RegExp("([^aeiouylsz])\\1$");
 re4 = new RegExp("^" + C + v + "[^aeiouwxy]$");
 if (re2.test(w))
 w = w + "e";
 else if (re3.test(w)) {
 re = /.$/;
 w = w.replace(re,"");
 }
 else if (re4.test(w))
 w = w + "e";
 }
 }

 // Step 1c
 re = /^(.+?)y$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 stem = fp[1];
 re = new RegExp(s_v);
 if (re.test(stem))
 w = stem + "i";
 }

 // Step 2
 re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 stem = fp[1];
 suffix = fp[2];
 re = new RegExp(mgr0);
 if (re.test(stem))
 w = stem + step2list[suffix];
 }

 // Step 3
 re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 stem = fp[1];
 suffix = fp[2];
 re = new RegExp(mgr0);
 if (re.test(stem))
 w = stem + step3list[suffix];
 }

 // Step 4
 re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/;
 re2 = /^(.+?)(s|t)(ion)$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 stem = fp[1];
 re = new RegExp(mgr1);
 if (re.test(stem))
 w = stem;
 }
 else if (re2.test(w)) {
 var fp = re2.exec(w);
 stem = fp[1] + fp[2];
 re2 = new RegExp(mgr1);
 if (re2.test(stem))
 w = stem;
 }

 // Step 5
 re = /^(.+?)e$/;
 if (re.test(w)) {
 var fp = re.exec(w);
 stem = fp[1];
 re = new RegExp(mgr1);
 re2 = new RegExp(meq1);
 re3 = new RegExp("^" + C + v + "[^aeiouwxy]$");
 if (re.test(stem) || (re2.test(stem) && !(re3.test(stem))))
 w = stem;
 }
 re = /ll$/;
 re2 = new RegExp(mgr1);
 if (re.test(w) && re2.test(w)) {
 re = /.$/;
 w = w.replace(re,"");
 }

 // and turn initial Y back to y
 if (firstch == "y")
 w = firstch.toLowerCase() + w.substr(1);
 return w;
 }
}

/**
 * Simple result scoring code.
 */
var Scorer = {
 // Implement the following function to further tweak the score for each result
 // The function takes a result array [filename, title, anchor, descr, score]
 // and returns the new score.
 /*
 score: function(result) {
 return result[4];
 },
 */

 // query matches the full name of an object
 objNameMatch: 11,
 // or matches in the last dotted part of the object name
 objPartialMatch: 6,
 // Additive scores depending on the priority of the object
 objPrio: {0: 15, // used to be importantResults
 1: 5, // used to be objectResults
 2: -5}, // used to be unimportantResults
 // Used when the priority is not in the mapping.
 objPrioDefault: 0,

 // query found in title
 title: 15,
 // query found in terms
 term: 5
};

var splitChars = (function() {
 var result = {};
 var singles = [96, 180, 187, 191, 215, 247, 749, 885, 903, 907, 909, 930, 1014, 1648,
 1748, 1809, 2416, 2473, 2481, 2526, 2601, 2609, 2612, 2615, 2653, 2702,
 2706, 2729, 2737, 2740, 2857, 2865, 2868, 2910, 2928, 2948, 2961, 2971,
 2973, 3085, 3089, 3113, 3124, 3213, 3217, 3241, 3252, 3295, 3341, 3345,
 3369, 3506, 3516, 3633, 3715, 3721, 3736, 3744, 3748, 3750, 3756, 3761,
 3781, 3912, 4239, 4347, 4681, 4695, 4697, 4745, 4785, 4799, 4801, 4823,
 4881, 5760, 5901, 5997, 6313, 7405, 8024, 8026, 8028, 8030, 8117, 8125,
 8133, 8181, 8468, 8485, 8487, 8489, 8494, 8527, 11311, 11359, 11687, 11695,
 11703, 11711, 11719, 11727, 11735, 12448, 12539, 43010, 43014, 43019, 43587,
 43696, 43713, 64286, 64297, 64311, 64317, 64319, 64322, 64325, 65141];
 var i, j, start, end;
 for (i = 0; i < singles.length; i++) {
 result[singles[i]] = true;
 }
 var ranges = [[0, 47], [58, 64], [91, 94], [123, 169], [171, 177], [182, 184], [706, 709],
 [722, 735], [741, 747], [751, 879], [888, 889], [894, 901], [1154, 1161],
 [1318, 1328], [1367, 1368], [1370, 1376], [1416, 1487], [1515, 1519], [1523, 1568],
 [1611, 1631], [1642, 1645], [1750, 1764], [1767, 1773], [1789, 1790], [1792, 1807],
 [1840, 1868], [1958, 1968], [1970, 1983], [2027, 2035], [2038, 2041], [2043, 2047],
 [2070, 2073], [2075, 2083], [2085, 2087], [2089, 2307], [2362, 2364], [2366, 2383],
 [2385, 2391], [2402, 2405], [2419, 2424], [2432, 2436], [2445, 2446], [2449, 2450],
 [2483, 2485], [2490, 2492], [2494, 2509], [2511, 2523], [2530, 2533], [2546, 2547],
 [2554, 2564], [2571, 2574], [2577, 2578], [2618, 2648], [2655, 2661], [2672, 2673],
 [2677, 2692], [2746, 2748], [2750, 2767], [2769, 2783], [2786, 2789], [2800, 2820],
 [2829, 2830], [2833, 2834], [2874, 2876], [2878, 2907], [2914, 2917], [2930, 2946],
 [2955, 2957], [2966, 2968], [2976, 2978], [2981, 2983], [2987, 2989], [3002, 3023],
 [3025, 3045], [3059, 3076], [3130, 3132], [3134, 3159], [3162, 3167], [3170, 3173],
 [3184, 3191], [3199, 3204], [3258, 3260], [3262, 3293], [3298, 3301], [3312, 3332],
 [3386, 3388], [3390, 3423], [3426, 3429], [3446, 3449], [3456, 3460], [3479, 3481],
 [3518, 3519], [3527, 3584], [3636, 3647], [3655, 3663], [3674, 3712], [3717, 3718],
 [3723, 3724], [3726, 3731], [3752, 3753], [3764, 3772], [3774, 3775], [3783, 3791],
 [3802, 3803], [3806, 3839], [3841, 3871], [3892, 3903], [3949, 3975], [3980, 4095],
 [4139, 4158], [4170, 4175], [4182, 4185], [4190, 4192], [4194, 4196], [4199, 4205],
 [4209, 4212], [4226, 4237], [4250, 4255], [4294, 4303], [4349, 4351], [4686, 4687],
 [4702, 4703], [4750, 4751], [4790, 4791], [4806, 4807], [4886, 4887], [4955, 4968],
 [4989, 4991], [5008, 5023], [5109, 5120], [5741, 5742], [5787, 5791], [5867, 5869],
 [5873, 5887], [5906, 5919], [5938, 5951], [5970, 5983], [6001, 6015], [6068, 6102],
 [6104, 6107], [6109, 6111], [6122, 6127], [6138, 6159], [6170, 6175], [6264, 6271],
 [6315, 6319], [6390, 6399], [6429, 6469], [6510, 6511], [6517, 6527], [6572, 6592],
 [6600, 6607], [6619, 6655], [6679, 6687], [6741, 6783], [6794, 6799], [6810, 6822],
 [6824, 6916], [6964, 6980], [6988, 6991], [7002, 7042], [7073, 7085], [7098, 7167],
 [7204, 7231], [7242, 7244], [7294, 7400], [7410, 7423], [7616, 7679], [7958, 7959],
 [7966, 7967], [8006, 8007], [8014, 8015], [8062, 8063], [8127, 8129], [8141, 8143],
 [8148, 8149], [8156, 8159], [8173, 8177], [8189, 8303], [8306, 8307], [8314, 8318],
 [8330, 8335], [8341, 8449], [8451, 8454], [8456, 8457], [8470, 8472], [8478, 8483],
 [8506, 8507], [8512, 8516], [8522, 8525], [8586, 9311], [9372, 9449], [9472, 10101],
 [10132, 11263], [11493, 11498], [11503, 11516], [11518, 11519], [11558, 11567],
 [11622, 11630], [11632, 11647], [11671, 11679], [11743, 11822], [11824, 12292],
 [12296, 12320], [12330, 12336], [12342, 12343], [12349, 12352], [12439, 12444],
 [12544, 12548], [12590, 12592], [12687, 12689], [12694, 12703], [12728, 12783],
 [12800, 12831], [12842, 12880], [12896, 12927], [12938, 12976], [12992, 13311],
 [19894, 19967], [40908, 40959], [42125, 42191], [42238, 42239], [42509, 42511],
 [42540, 42559], [42592, 42593], [42607, 42622], [42648, 42655], [42736, 42774],
 [42784, 42785], [42889, 42890], [42893, 43002], [43043, 43055], [43062, 43071],
 [43124, 43137], [43188, 43215], [43226, 43249], [43256, 43258], [43260, 43263],
 [43302, 43311], [43335, 43359], [43389, 43395], [43443, 43470], [43482, 43519],
 [43561, 43583], [43596, 43599], [43610, 43615], [43639, 43641], [43643, 43647],
 [43698, 43700], [43703, 43704], [43710, 43711], [43715, 43738], [43742, 43967],
 [44003, 44015], [44026, 44031], [55204, 55215], [55239, 55242], [55292, 55295],
 [57344, 63743], [64046, 64047], [64110, 64111], [64218, 64255], [64263, 64274],
 [64280, 64284], [64434, 64466], [64830, 64847], [64912, 64913], [64968, 65007],
 [65020, 65135], [65277, 65295], [65306, 65312], [65339, 65344], [65371, 65381],
 [65471, 65473], [65480, 65481], [65488, 65489], [65496, 65497]];
 for (i = 0; i < ranges.length; i++) {
 start = ranges[i][0];
 end = ranges[i][1];
 for (j = start; j <= end; j++) {
 result[j] = true;
 }
 }
 return result;
})();

function splitQuery(query) {
 var result = [];
 var start = -1;
 for (var i = 0; i < query.length; i++) {
 if (splitChars[query.charCodeAt(i)]) {
 if (start !== -1) {
 result.push(query.slice(start, i));
 start = -1;
 }
 } else if (start === -1) {
 start = i;
 }
 }
 if (start !== -1) {
 result.push(query.slice(start));
 }
 return result;
}

/**
 * Search Module
 */
var Search = {

 _index : null,
 _queued_query : null,
 _pulse_status : -1,

 init : function() {
 var params = $.getQueryParameters();
 if (params.q) {
 var query = params.q[0];
 $('input[name="q"]')[0].value = query;
 this.performSearch(query);
 }
 },

 loadIndex : function(url) {
 $.ajax({type: "GET", url: url, data: null,
 dataType: "script", cache: true,
 complete: function(jqxhr, textstatus) {
 if (textstatus != "success") {
 document.getElementById("searchindexloader").src = url;
 }
 }});
 },

 setIndex : function(index) {
 var q;
 this._index = index;
 if ((q = this._queued_query) !== null) {
 this._queued_query = null;
 Search.query(q);
 }
 },

 hasIndex : function() {
 return this._index !== null;
 },

 deferQuery : function(query) {
 this._queued_query = query;
 },

 stopPulse : function() {
 this._pulse_status = 0;
 },

 startPulse : function() {
 if (this._pulse_status >= 0)
 return;
 function pulse() {
 var i;
 Search._pulse_status = (Search._pulse_status + 1) % 4;
 var dotString = '';
 for (i = 0; i < Search._pulse_status; i++)
 dotString += '.';
 Search.dots.text(dotString);
 if (Search._pulse_status > -1)
 window.setTimeout(pulse, 500);
 }
 pulse();
 },

 /**
 * perform a search for something (or wait until index is loaded)
 */
 performSearch : function(query) {
 // create the required interface elements
 this.out = $('#search-results');
 this.title = $('<h2>' + _('Searching') + '</h2>').appendTo(this.out);
 this.dots = $('').appendTo(this.title);
 this.status = $('<p style="display: none"></p>').appendTo(this.out);
 this.output = $('<ul class="search"/>').appendTo(this.out);

 $('#search-progress').text(_('Preparing search...'));
 this.startPulse();

 // index already loaded, the browser was quick!
 if (this.hasIndex())
 this.query(query);
 else
 this.deferQuery(query);
 },

 /**
 * execute search (requires search index to be loaded)
 */
 query : function(query) {
 var i;
 var stopwords = ["a","and","are","as","at","be","but","by","for","if","in","into","is","it","near","no","not","of","on","or","such","that","the","their","then","there","these","they","this","to","was","will","with"];

 // stem the searchterms and add them to the correct list
 var stemmer = new Stemmer();
 var searchterms = [];
 var excluded = [];
 var hlterms = [];
 var tmp = splitQuery(query);
 var objectterms = [];
 for (i = 0; i < tmp.length; i++) {
 if (tmp[i] !== "") {
 objectterms.push(tmp[i].toLowerCase());
 }

 if ($u.indexOf(stopwords, tmp[i].toLowerCase()) != -1 || tmp[i].match(/^\d+$/) ||
 tmp[i] === "") {
 // skip this "word"
 continue;
 }
 // stem the word
 var word = stemmer.stemWord(tmp[i].toLowerCase());
 // prevent stemmer from cutting word smaller than two chars
 if(word.length < 3 && tmp[i].length >= 3) {
 word = tmp[i];
 }
 var toAppend;
 // select the correct list
 if (word[0] == '-') {
 toAppend = excluded;
 word = word.substr(1);
 }
 else {
 toAppend = searchterms;
 hlterms.push(tmp[i].toLowerCase());
 }
 // only add if not already in the list
 if (!$u.contains(toAppend, word))
 toAppend.push(word);
 }
 var highlightstring = '?highlight=' + $.urlencode(hlterms.join(" "));

 // console.debug('SEARCH: searching for:');
 // console.info('required: ', searchterms);
 // console.info('excluded: ', excluded);

 // prepare search
 var terms = this._index.terms;
 var titleterms = this._index.titleterms;

 // array of [filename, title, anchor, descr, score]
 var results = [];
 $('#search-progress').empty();

 // lookup as object
 for (i = 0; i < objectterms.length; i++) {
 var others = [].concat(objectterms.slice(0, i),
 objectterms.slice(i+1, objectterms.length));
 results = results.concat(this.performObjectSearch(objectterms[i], others));
 }

 // lookup as search terms in fulltext
 results = results.concat(this.performTermsSearch(searchterms, excluded, terms, titleterms));

 // let the scorer override scores with a custom scoring function
 if (Scorer.score) {
 for (i = 0; i < results.length; i++)
 results[i][4] = Scorer.score(results[i]);
 }

 // now sort the results by score (in opposite order of appearance, since the
 // display function below uses pop() to retrieve items) and then
 // alphabetically
 results.sort(function(a, b) {
 var left = a[4];
 var right = b[4];
 if (left > right) {
 return 1;
 } else if (left < right) {
 return -1;
 } else {
 // same score: sort alphabetically
 left = a[1].toLowerCase();
 right = b[1].toLowerCase();
 return (left > right) ? -1 : ((left < right) ? 1 : 0);
 }
 });

 // for debugging
 //Search.lastresults = results.slice(); // a copy
 //console.info('search results:', Search.lastresults);

 // print the results
 var resultCount = results.length;
 function displayNextItem() {
 // results left, load the summary and display it
 if (results.length) {
 var item = results.pop();
 var listItem = $('<li style="display:none">');
 if (DOCUMENTATION_OPTIONS.FILE_SUFFIX === '') {
 // dirhtml builder
 var dirname = item[0] + '/';
 if (dirname.match(/\/index\/$/)) {
 dirname = dirname.substring(0, dirname.length-6);
 } else if (dirname == 'index/') {
 dirname = '';
 }
 listItem.append($('<a/>').attr('href',
 DOCUMENTATION_OPTIONS.URL_ROOT + dirname +
 highlightstring + item[2]).html(item[1]));
 } else {
 // normal html builders
 listItem.append($('<a/>').attr('href',
 item[0] + DOCUMENTATION_OPTIONS.FILE_SUFFIX +
 highlightstring + item[2]).html(item[1]));
 }
 if (item[3]) {
 listItem.append($(' (' + item[3] + ')'));
 Search.output.append(listItem);
 listItem.slideDown(5, function() {
 displayNextItem();
 });
 } else if (DOCUMENTATION_OPTIONS.HAS_SOURCE) {
 var suffix = DOCUMENTATION_OPTIONS.SOURCELINK_SUFFIX;
 if (suffix === undefined) {
 suffix = '.txt';
 }
 $.ajax({url: DOCUMENTATION_OPTIONS.URL_ROOT + '_sources/' + item[5] + (item[5].slice(-suffix.length) === suffix ? '' : suffix),
 dataType: "text",
 complete: function(jqxhr, textstatus) {
 var data = jqxhr.responseText;
 if (data !== '' && data !== undefined) {
 listItem.append(Search.makeSearchSummary(data, searchterms, hlterms));
 }
 Search.output.append(listItem);
 listItem.slideDown(5, function() {
 displayNextItem();
 });
 }});
 } else {
 // no source available, just display title
 Search.output.append(listItem);
 listItem.slideDown(5, function() {
 displayNextItem();
 });
 }
 }
 // search finished, update title and status message
 else {
 Search.stopPulse();
 Search.title.text(_('Search Results'));
 if (!resultCount)
 Search.status.text(_('Your search did not match any documents. Please make sure that all words are spelled correctly and that you\'ve selected enough categories.'));
 else
 Search.status.text(_('Search finished, found %s page(s) matching the search query.').replace('%s', resultCount));
 Search.status.fadeIn(500);
 }
 }
 displayNextItem();
 },

 /**
 * search for object names
 */
 performObjectSearch : function(object, otherterms) {
 var filenames = this._index.filenames;
 var docnames = this._index.docnames;
 var objects = this._index.objects;
 var objnames = this._index.objnames;
 var titles = this._index.titles;

 var i;
 var results = [];

 for (var prefix in objects) {
 for (var name in objects[prefix]) {
 var fullname = (prefix ? prefix + '.' : '') + name;
 if (fullname.toLowerCase().indexOf(object) > -1) {
 var score = 0;
 var parts = fullname.split('.');
 // check for different match types: exact matches of full name or
 // "last name" (i.e. last dotted part)
 if (fullname == object || parts[parts.length - 1] == object) {
 score += Scorer.objNameMatch;
 // matches in last name
 } else if (parts[parts.length - 1].indexOf(object) > -1) {
 score += Scorer.objPartialMatch;
 }
 var match = objects[prefix][name];
 var objname = objnames[match[1]][2];
 var title = titles[match[0]];
 // If more than one term searched for, we require other words to be
 // found in the name/title/description
 if (otherterms.length > 0) {
 var haystack = (prefix + ' ' + name + ' ' +
 objname + ' ' + title).toLowerCase();
 var allfound = true;
 for (i = 0; i < otherterms.length; i++) {
 if (haystack.indexOf(otherterms[i]) == -1) {
 allfound = false;
 break;
 }
 }
 if (!allfound) {
 continue;
 }
 }
 var descr = objname + _(', in ') + title;

 var anchor = match[3];
 if (anchor === '')
 anchor = fullname;
 else if (anchor == '-')
 anchor = objnames[match[1]][1] + '-' + fullname;
 // add custom score for some objects according to scorer
 if (Scorer.objPrio.hasOwnProperty(match[2])) {
 score += Scorer.objPrio[match[2]];
 } else {
 score += Scorer.objPrioDefault;
 }
 results.push([docnames[match[0]], fullname, '#'+anchor, descr, score, filenames[match[0]]]);
 }
 }
 }

 return results;
 },

 /**
 * search for full-text terms in the index
 */
 performTermsSearch : function(searchterms, excluded, terms, titleterms) {
 var docnames = this._index.docnames;
 var filenames = this._index.filenames;
 var titles = this._index.titles;

 var i, j, file;
 var fileMap = {};
 var scoreMap = {};
 var results = [];

 // perform the search on the required terms
 for (i = 0; i < searchterms.length; i++) {
 var word = searchterms[i];
 var files = [];
 var _o = [
 {files: terms[word], score: Scorer.term},
 {files: titleterms[word], score: Scorer.title}
];

 // no match but word was a required one
 if ($u.every(_o, function(o){return o.files === undefined;})) {
 break;
 }
 // found search word in contents
 $u.each(_o, function(o) {
 var _files = o.files;
 if (_files === undefined)
 return

 if (_files.length === undefined)
 _files = [_files];
 files = files.concat(_files);

 // set score for the word in each file to Scorer.term
 for (j = 0; j < _files.length; j++) {
 file = _files[j];
 if (!(file in scoreMap))
 scoreMap[file] = {}
 scoreMap[file][word] = o.score;
 }
 });

 // create the mapping
 for (j = 0; j < files.length; j++) {
 file = files[j];
 if (file in fileMap)
 fileMap[file].push(word);
 else
 fileMap[file] = [word];
 }
 }

 // now check if the files don't contain excluded terms
 for (file in fileMap) {
 var valid = true;

 // check if all requirements are matched
 if (fileMap[file].length != searchterms.length)
 continue;

 // ensure that none of the excluded terms is in the search result
 for (i = 0; i < excluded.length; i++) {
 if (terms[excluded[i]] == file ||
 titleterms[excluded[i]] == file ||
 $u.contains(terms[excluded[i]] || [], file) ||
 $u.contains(titleterms[excluded[i]] || [], file)) {
 valid = false;
 break;
 }
 }

 // if we have still a valid result we can add it to the result list
 if (valid) {
 // select one (max) score for the file.
 // for better ranking, we should calculate ranking by using words statistics like basic tf-idf...
 var score = $u.max($u.map(fileMap[file], function(w){return scoreMap[file][w]}));
 results.push([docnames[file], titles[file], '', null, score, filenames[file]]);
 }
 }
 return results;
 },

 /**
 * helper function to return a node containing the
 * search summary for a given text. keywords is a list
 * of stemmed words, hlwords is the list of normal, unstemmed
 * words. the first one is used to find the occurrence, the
 * latter for highlighting it.
 */
 makeSearchSummary : function(text, keywords, hlwords) {
 var textLower = text.toLowerCase();
 var start = 0;
 $.each(keywords, function() {
 var i = textLower.indexOf(this.toLowerCase());
 if (i > -1)
 start = i;
 });
 start = Math.max(start - 120, 0);
 var excerpt = ((start > 0) ? '...' : '') +
 $.trim(text.substr(start, 240)) +
 ((start + 240 - text.length) ? '...' : '');
 var rv = $('<div class="context"></div>').text(excerpt);
 $.each(hlwords, function() {
 rv = rv.highlightText(this, 'highlighted');
 });
 return rv;
 }
};

$(document).ready(function() {
 Search.init();
});

autotest-latest/_static/file.png

autotest-latest/_static/minus.png

autotest-latest/_static/documentation_options.js
var DOCUMENTATION_OPTIONS = {
 URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
 VERSION: '0.16.3-44-g0d527f',
 LANGUAGE: 'en',
 COLLAPSE_INDEX: false,
 FILE_SUFFIX: '.html',
 HAS_SOURCE: true,
 SOURCELINK_SUFFIX: '.txt'
};

autotest-latest/_static/up-pressed.png

autotest-latest/_static/comment-bright.png

autotest-latest/_static/basic.css
/*
 * basic.css
 * ~~~~~~~~~
 *
 * Sphinx stylesheet -- basic theme.
 *
 * :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

/* -- main layout --- */

div.clearer {
 clear: both;
}

/* -- relbar -- */

div.related {
 width: 100%;
 font-size: 90%;
}

div.related h3 {
 display: none;
}

div.related ul {
 margin: 0;
 padding: 0 0 0 10px;
 list-style: none;
}

div.related li {
 display: inline;
}

div.related li.right {
 float: right;
 margin-right: 5px;
}

/* -- sidebar --- */

div.sphinxsidebarwrapper {
 padding: 10px 5px 0 10px;
}

div.sphinxsidebar {
 float: left;
 width: 230px;
 margin-left: -100%;
 font-size: 90%;
 word-wrap: break-word;
 overflow-wrap : break-word;
}

div.sphinxsidebar ul {
 list-style: none;
}

div.sphinxsidebar ul ul,
div.sphinxsidebar ul.want-points {
 margin-left: 20px;
 list-style: square;
}

div.sphinxsidebar ul ul {
 margin-top: 0;
 margin-bottom: 0;
}

div.sphinxsidebar form {
 margin-top: 10px;
}

div.sphinxsidebar input {
 border: 1px solid #98dbcc;
 font-family: sans-serif;
 font-size: 1em;
}

div.sphinxsidebar #searchbox input[type="text"] {
 float: left;
 width: 80%;
 padding: 0.25em;
 box-sizing: border-box;
}

div.sphinxsidebar #searchbox input[type="submit"] {
 float: left;
 width: 20%;
 border-left: none;
 padding: 0.25em;
 box-sizing: border-box;
}

img {
 border: 0;
 max-width: 100%;
}

/* -- search page --- */

ul.search {
 margin: 10px 0 0 20px;
 padding: 0;
}

ul.search li {
 padding: 5px 0 5px 20px;
 background-image: url(file.png);
 background-repeat: no-repeat;
 background-position: 0 7px;
}

ul.search li a {
 font-weight: bold;
}

ul.search li div.context {
 color: #888;
 margin: 2px 0 0 30px;
 text-align: left;
}

ul.keywordmatches li.goodmatch a {
 font-weight: bold;
}

/* -- index page -- */

table.contentstable {
 width: 90%;
 margin-left: auto;
 margin-right: auto;
}

table.contentstable p.biglink {
 line-height: 150%;
}

a.biglink {
 font-size: 1.3em;
}

span.linkdescr {
 font-style: italic;
 padding-top: 5px;
 font-size: 90%;
}

/* -- general index --- */

table.indextable {
 width: 100%;
}

table.indextable td {
 text-align: left;
 vertical-align: top;
}

table.indextable ul {
 margin-top: 0;
 margin-bottom: 0;
 list-style-type: none;
}

table.indextable > tbody > tr > td > ul {
 padding-left: 0em;
}

table.indextable tr.pcap {
 height: 10px;
}

table.indextable tr.cap {
 margin-top: 10px;
 background-color: #f2f2f2;
}

img.toggler {
 margin-right: 3px;
 margin-top: 3px;
 cursor: pointer;
}

div.modindex-jumpbox {
 border-top: 1px solid #ddd;
 border-bottom: 1px solid #ddd;
 margin: 1em 0 1em 0;
 padding: 0.4em;
}

div.genindex-jumpbox {
 border-top: 1px solid #ddd;
 border-bottom: 1px solid #ddd;
 margin: 1em 0 1em 0;
 padding: 0.4em;
}

/* -- domain module index --- */

table.modindextable td {
 padding: 2px;
 border-collapse: collapse;
}

/* -- general body styles --- */

div.body {
 min-width: 450px;
 max-width: 800px;
}

div.body p, div.body dd, div.body li, div.body blockquote {
 -moz-hyphens: auto;
 -ms-hyphens: auto;
 -webkit-hyphens: auto;
 hyphens: auto;
}

a.headerlink {
 visibility: hidden;
}

h1:hover > a.headerlink,
h2:hover > a.headerlink,
h3:hover > a.headerlink,
h4:hover > a.headerlink,
h5:hover > a.headerlink,
h6:hover > a.headerlink,
dt:hover > a.headerlink,
caption:hover > a.headerlink,
p.caption:hover > a.headerlink,
div.code-block-caption:hover > a.headerlink {
 visibility: visible;
}

div.body p.caption {
 text-align: inherit;
}

div.body td {
 text-align: left;
}

.first {
 margin-top: 0 !important;
}

p.rubric {
 margin-top: 30px;
 font-weight: bold;
}

img.align-left, .figure.align-left, object.align-left {
 clear: left;
 float: left;
 margin-right: 1em;
}

img.align-right, .figure.align-right, object.align-right {
 clear: right;
 float: right;
 margin-left: 1em;
}

img.align-center, .figure.align-center, object.align-center {
 display: block;
 margin-left: auto;
 margin-right: auto;
}

.align-left {
 text-align: left;
}

.align-center {
 text-align: center;
}

.align-right {
 text-align: right;
}

/* -- sidebars -- */

div.sidebar {
 margin: 0 0 0.5em 1em;
 border: 1px solid #ddb;
 padding: 7px 7px 0 7px;
 background-color: #ffe;
 width: 40%;
 float: right;
}

p.sidebar-title {
 font-weight: bold;
}

/* -- topics -- */

div.topic {
 border: 1px solid #ccc;
 padding: 7px 7px 0 7px;
 margin: 10px 0 10px 0;
}

p.topic-title {
 font-size: 1.1em;
 font-weight: bold;
 margin-top: 10px;
}

/* -- admonitions --- */

div.admonition {
 margin-top: 10px;
 margin-bottom: 10px;
 padding: 7px;
}

div.admonition dt {
 font-weight: bold;
}

div.admonition dl {
 margin-bottom: 0;
}

p.admonition-title {
 margin: 0px 10px 5px 0px;
 font-weight: bold;
}

div.body p.centered {
 text-align: center;
 margin-top: 25px;
}

/* -- tables -- */

table.docutils {
 border: 0;
 border-collapse: collapse;
}

table.align-center {
 margin-left: auto;
 margin-right: auto;
}

table caption span.caption-number {
 font-style: italic;
}

table caption span.caption-text {
}

table.docutils td, table.docutils th {
 padding: 1px 8px 1px 5px;
 border-top: 0;
 border-left: 0;
 border-right: 0;
 border-bottom: 1px solid #aaa;
}

table.footnote td, table.footnote th {
 border: 0 !important;
}

th {
 text-align: left;
 padding-right: 5px;
}

table.citation {
 border-left: solid 1px gray;
 margin-left: 1px;
}

table.citation td {
 border-bottom: none;
}

/* -- figures --- */

div.figure {
 margin: 0.5em;
 padding: 0.5em;
}

div.figure p.caption {
 padding: 0.3em;
}

div.figure p.caption span.caption-number {
 font-style: italic;
}

div.figure p.caption span.caption-text {
}

/* -- field list styles --- */

table.field-list td, table.field-list th {
 border: 0 !important;
}

.field-list ul {
 margin: 0;
 padding-left: 1em;
}

.field-list p {
 margin: 0;
}

.field-name {
 -moz-hyphens: manual;
 -ms-hyphens: manual;
 -webkit-hyphens: manual;
 hyphens: manual;
}

/* -- other body styles --- */

ol.arabic {
 list-style: decimal;
}

ol.loweralpha {
 list-style: lower-alpha;
}

ol.upperalpha {
 list-style: upper-alpha;
}

ol.lowerroman {
 list-style: lower-roman;
}

ol.upperroman {
 list-style: upper-roman;
}

dl {
 margin-bottom: 15px;
}

dd p {
 margin-top: 0px;
}

dd ul, dd table {
 margin-bottom: 10px;
}

dd {
 margin-top: 3px;
 margin-bottom: 10px;
 margin-left: 30px;
}

dt:target, span.highlighted {
 background-color: #fbe54e;
}

rect.highlighted {
 fill: #fbe54e;
}

dl.glossary dt {
 font-weight: bold;
 font-size: 1.1em;
}

.optional {
 font-size: 1.3em;
}

.sig-paren {
 font-size: larger;
}

.versionmodified {
 font-style: italic;
}

.system-message {
 background-color: #fda;
 padding: 5px;
 border: 3px solid red;
}

.footnote:target {
 background-color: #ffa;
}

.line-block {
 display: block;
 margin-top: 1em;
 margin-bottom: 1em;
}

.line-block .line-block {
 margin-top: 0;
 margin-bottom: 0;
 margin-left: 1.5em;
}

.guilabel, .menuselection {
 font-family: sans-serif;
}

.accelerator {
 text-decoration: underline;
}

.classifier {
 font-style: oblique;
}

abbr, acronym {
 border-bottom: dotted 1px;
 cursor: help;
}

/* -- code displays --- */

pre {
 overflow: auto;
 overflow-y: hidden; /* fixes display issues on Chrome browsers */
}

span.pre {
 -moz-hyphens: none;
 -ms-hyphens: none;
 -webkit-hyphens: none;
 hyphens: none;
}

td.linenos pre {
 padding: 5px 0px;
 border: 0;
 background-color: transparent;
 color: #aaa;
}

table.highlighttable {
 margin-left: 0.5em;
}

table.highlighttable td {
 padding: 0 0.5em 0 0.5em;
}

div.code-block-caption {
 padding: 2px 5px;
 font-size: small;
}

div.code-block-caption code {
 background-color: transparent;
}

div.code-block-caption + div > div.highlight > pre {
 margin-top: 0;
}

div.code-block-caption span.caption-number {
 padding: 0.1em 0.3em;
 font-style: italic;
}

div.code-block-caption span.caption-text {
}

div.literal-block-wrapper {
 padding: 1em 1em 0;
}

div.literal-block-wrapper div.highlight {
 margin: 0;
}

code.descname {
 background-color: transparent;
 font-weight: bold;
 font-size: 1.2em;
}

code.descclassname {
 background-color: transparent;
}

code.xref, a code {
 background-color: transparent;
 font-weight: bold;
}

h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
 background-color: transparent;
}

.viewcode-link {
 float: right;
}

.viewcode-back {
 float: right;
 font-family: sans-serif;
}

div.viewcode-block:target {
 margin: -1px -10px;
 padding: 0 10px;
}

/* -- math display -- */

img.math {
 vertical-align: middle;
}

div.body div.math p {
 text-align: center;
}

span.eqno {
 float: right;
}

span.eqno a.headerlink {
 position: relative;
 left: 0px;
 z-index: 1;
}

div.math:hover a.headerlink {
 visibility: visible;
}

/* -- printout stylesheet --- */

@media print {
 div.document,
 div.documentwrapper,
 div.bodywrapper {
 margin: 0 !important;
 width: 100%;
 }

 div.sphinxsidebar,
 div.related,
 div.footer,
 #top-link {
 display: none;
 }
}

autotest-latest/_static/fonts/fontawesome-webfont.svg

Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016
 By ,,,
Copyright Dave Gandy 2016. All rights reserved.

autotest-latest/_static/fonts/Lato-BoldItalic.ttf

autotest-latest/_static/fonts/fontawesome-webfont.woff

autotest-latest/_static/fonts/Lato-Regular.ttf

autotest-latest/_static/fonts/fontawesome-webfont.ttf

autotest-latest/_static/fonts/RobotoSlab-Regular.ttf

autotest-latest/_static/fonts/Lato-Italic.ttf

autotest-latest/_static/fonts/RobotoSlab-Bold.ttf

autotest-latest/_static/fonts/Lato-Bold.ttf

autotest-latest/_static/fonts/fontawesome-webfont.eot

autotest-latest/_static/fonts/fontawesome-webfont.woff2

autotest-latest/_static/fonts/Inconsolata-Bold.ttf

autotest-latest/_static/fonts/Inconsolata-Regular.ttf

autotest-latest/_static/js/modernizr.min.js
/* Modernizr 2.6.2 (Custom Build) | MIT & BSD
 * Build: http://modernizr.com/download/#-fontface-backgroundsize-borderimage-borderradius-boxshadow-flexbox-hsla-multiplebgs-opacity-rgba-textshadow-cssanimations-csscolumns-generatedcontent-cssgradients-cssreflections-csstransforms-csstransforms3d-csstransitions-applicationcache-canvas-canvastext-draganddrop-hashchange-history-audio-video-indexeddb-input-inputtypes-localstorage-postmessage-sessionstorage-websockets-websqldatabase-webworkers-geolocation-inlinesvg-smil-svg-svgclippaths-touch-webgl-shiv-mq-cssclasses-addtest-prefixed-teststyles-testprop-testallprops-hasevent-prefixes-domprefixes-load
 */
;window.Modernizr=function(a,b,c){function D(a){j.cssText=a}function E(a,b){return D(n.join(a+";")+(b||""))}function F(a,b){return typeof a===b}function G(a,b){return!!~(""+a).indexOf(b)}function H(a,b){for(var d in a){var e=a[d];if(!G(e,"-")&&j[e]!==c)return b=="pfx"?e:!0}return!1}function I(a,b,d){for(var e in a){var f=b[a[e]];if(f!==c)return d===!1?a[e]:F(f,"function")?f.bind(d||b):f}return!1}function J(a,b,c){var d=a.charAt(0).toUpperCase()+a.slice(1),e=(a+" "+p.join(d+" ")+d).split(" ");return F(b,"string")||F(b,"undefined")?H(e,b):(e=(a+" "+q.join(d+" ")+d).split(" "),I(e,b,c))}function K(){e.input=function(c){for(var d=0,e=c.length;d<e;d++)u[c[d]]=c[d]in k;return u.list&&(u.list=!!b.createElement("datalist")&&!!a.HTMLDataListElement),u}("autocomplete autofocus list placeholder max min multiple pattern required step".split(" ")),e.inputtypes=function(a){for(var d=0,e,f,h,i=a.length;d<i;d++)k.setAttribute("type",f=a[d]),e=k.type!=="text",e&&(k.value=l,k.style.cssText="position:absolute;visibility:hidden;",/^range$/.test(f)&&k.style.WebkitAppearance!==c?(g.appendChild(k),h=b.defaultView,e=h.getComputedStyle&&h.getComputedStyle(k,null).WebkitAppearance!=="textfield"&&k.offsetHeight!==0,g.removeChild(k)):/^(search|tel)$/.test(f)||(/^(url|email)$/.test(f)?e=k.checkValidity&&k.checkValidity()===!1:e=k.value!=l)),t[a[d]]=!!e;return t}("search tel url email datetime date month week time datetime-local number range color".split(" "))}var d="2.6.2",e={},f=!0,g=b.documentElement,h="modernizr",i=b.createElement(h),j=i.style,k=b.createElement("input"),l=":)",m={}.toString,n=" -webkit- -moz- -o- -ms- ".split(" "),o="Webkit Moz O ms",p=o.split(" "),q=o.toLowerCase().split(" "),r={svg:"http://www.w3.org/2000/svg"},s={},t={},u={},v=[],w=v.slice,x,y=function(a,c,d,e){var f,i,j,k,l=b.createElement("div"),m=b.body,n=m||b.createElement("body");if(parseInt(d,10))while(d--)j=b.createElement("div"),j.id=e?e[d]:h+(d+1),l.appendChild(j);return f=["­",'<style id="s',h,'">',a,"</style>"].join(""),l.id=h,(m?l:n).innerHTML+=f,n.appendChild(l),m||(n.style.background="",n.style.overflow="hidden",k=g.style.overflow,g.style.overflow="hidden",g.appendChild(n)),i=c(l,a),m?l.parentNode.removeChild(l):(n.parentNode.removeChild(n),g.style.overflow=k),!!i},z=function(b){var c=a.matchMedia||a.msMatchMedia;if(c)return c(b).matches;var d;return y("@media "+b+" { #"+h+" { position: absolute; } }",function(b){d=(a.getComputedStyle?getComputedStyle(b,null):b.currentStyle)["position"]=="absolute"}),d},A=function(){function d(d,e){e=e||b.createElement(a[d]||"div"),d="on"+d;var f=d in e;return f||(e.setAttribute||(e=b.createElement("div")),e.setAttribute&&e.removeAttribute&&(e.setAttribute(d,""),f=F(e[d],"function"),F(e[d],"undefined")||(e[d]=c),e.removeAttribute(d))),e=null,f}var a={select:"input",change:"input",submit:"form",reset:"form",error:"img",load:"img",abort:"img"};return d}(),B={}.hasOwnProperty,C;!F(B,"undefined")&&!F(B.call,"undefined")?C=function(a,b){return B.call(a,b)}:C=function(a,b){return b in a&&F(a.constructor.prototype[b],"undefined")},Function.prototype.bind||(Function.prototype.bind=function(b){var c=this;if(typeof c!="function")throw new TypeError;var d=w.call(arguments,1),e=function(){if(this instanceof e){var a=function(){};a.prototype=c.prototype;var f=new a,g=c.apply(f,d.concat(w.call(arguments)));return Object(g)===g?g:f}return c.apply(b,d.concat(w.call(arguments)))};return e}),s.flexbox=function(){return J("flexWrap")},s.canvas=function(){var a=b.createElement("canvas");return!!a.getContext&&!!a.getContext("2d")},s.canvastext=function(){return!!e.canvas&&!!F(b.createElement("canvas").getContext("2d").fillText,"function")},s.webgl=function(){return!!a.WebGLRenderingContext},s.touch=function(){var c;return"ontouchstart"in a||a.DocumentTouch&&b instanceof DocumentTouch?c=!0:y(["@media (",n.join("touch-enabled),("),h,")","{#modernizr{top:9px;position:absolute}}"].join(""),function(a){c=a.offsetTop===9}),c},s.geolocation=function(){return"geolocation"in navigator},s.postmessage=function(){return!!a.postMessage},s.websqldatabase=function(){return!!a.openDatabase},s.indexedDB=function(){return!!J("indexedDB",a)},s.hashchange=function(){return A("hashchange",a)&&(b.documentMode===c||b.documentMode>7)},s.history=function(){return!!a.history&&!!history.pushState},s.draganddrop=function(){var a=b.createElement("div");return"draggable"in a||"ondragstart"in a&&"ondrop"in a},s.websockets=function(){return"WebSocket"in a||"MozWebSocket"in a},s.rgba=function(){return D("background-color:rgba(150,255,150,.5)"),G(j.backgroundColor,"rgba")},s.hsla=function(){return D("background-color:hsla(120,40%,100%,.5)"),G(j.backgroundColor,"rgba")||G(j.backgroundColor,"hsla")},s.multiplebgs=function(){return D("background:url(https://),url(https://),red url(https://)"),/(url\s*\(.*?){3}/.test(j.background)},s.backgroundsize=function(){return J("backgroundSize")},s.borderimage=function(){return J("borderImage")},s.borderradius=function(){return J("borderRadius")},s.boxshadow=function(){return J("boxShadow")},s.textshadow=function(){return b.createElement("div").style.textShadow===""},s.opacity=function(){return E("opacity:.55"),/^0.55$/.test(j.opacity)},s.cssanimations=function(){return J("animationName")},s.csscolumns=function(){return J("columnCount")},s.cssgradients=function(){var a="background-image:",b="gradient(linear,left top,right bottom,from(#9f9),to(white));",c="linear-gradient(left top,#9f9, white);";return D((a+"-webkit- ".split(" ").join(b+a)+n.join(c+a)).slice(0,-a.length)),G(j.backgroundImage,"gradient")},s.cssreflections=function(){return J("boxReflect")},s.csstransforms=function(){return!!J("transform")},s.csstransforms3d=function(){var a=!!J("perspective");return a&&"webkitPerspective"in g.style&&y("@media (transform-3d),(-webkit-transform-3d){#modernizr{left:9px;position:absolute;height:3px;}}",function(b,c){a=b.offsetLeft===9&&b.offsetHeight===3}),a},s.csstransitions=function(){return J("transition")},s.fontface=function(){var a;return y('@font-face {font-family:"font";src:url("https://")}',function(c,d){var e=b.getElementById("smodernizr"),f=e.sheet||e.styleSheet,g=f?f.cssRules&&f.cssRules[0]?f.cssRules[0].cssText:f.cssText||"":"";a=/src/i.test(g)&&g.indexOf(d.split(" ")[0])===0}),a},s.generatedcontent=function(){var a;return y(["#",h,"{font:0/0 a}#",h,':after{content:"',l,'";visibility:hidden;font:3px/1 a}'].join(""),function(b){a=b.offsetHeight>=3}),a},s.video=function(){var a=b.createElement("video"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('video/ogg; codecs="theora"').replace(/^no$/,""),c.h264=a.canPlayType('video/mp4; codecs="avc1.42E01E"').replace(/^no$/,""),c.webm=a.canPlayType('video/webm; codecs="vp8, vorbis"').replace(/^no$/,"")}catch(d){}return c},s.audio=function(){var a=b.createElement("audio"),c=!1;try{if(c=!!a.canPlayType)c=new Boolean(c),c.ogg=a.canPlayType('audio/ogg; codecs="vorbis"').replace(/^no$/,""),c.mp3=a.canPlayType("audio/mpeg;").replace(/^no$/,""),c.wav=a.canPlayType('audio/wav; codecs="1"').replace(/^no$/,""),c.m4a=(a.canPlayType("audio/x-m4a;")||a.canPlayType("audio/aac;")).replace(/^no$/,"")}catch(d){}return c},s.localstorage=function(){try{return localStorage.setItem(h,h),localStorage.removeItem(h),!0}catch(a){return!1}},s.sessionstorage=function(){try{return sessionStorage.setItem(h,h),sessionStorage.removeItem(h),!0}catch(a){return!1}},s.webworkers=function(){return!!a.Worker},s.applicationcache=function(){return!!a.applicationCache},s.svg=function(){return!!b.createElementNS&&!!b.createElementNS(r.svg,"svg").createSVGRect},s.inlinesvg=function(){var a=b.createElement("div");return a.innerHTML="<svg/>",(a.firstChild&&a.firstChild.namespaceURI)==r.svg},s.smil=function(){return!!b.createElementNS&&/SVGAnimate/.test(m.call(b.createElementNS(r.svg,"animate")))},s.svgclippaths=function(){return!!b.createElementNS&&/SVGClipPath/.test(m.call(b.createElementNS(r.svg,"clipPath")))};for(var L in s)C(s,L)&&(x=L.toLowerCase(),e[x]=s[L](),v.push((e[x]?"":"no-")+x));return e.input||K(),e.addTest=function(a,b){if(typeof a=="object")for(var d in a)C(a,d)&&e.addTest(d,a[d]);else{a=a.toLowerCase();if(e[a]!==c)return e;b=typeof b=="function"?b():b,typeof f!="undefined"&&f&&(g.className+=" "+(b?"":"no-")+a),e[a]=b}return e},D(""),i=k=null,function(a,b){function k(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function l(){var a=r.elements;return typeof a=="string"?a.split(" "):a}function m(a){var b=i[a[g]];return b||(b={},h++,a[g]=h,i[h]=b),b}function n(a,c,f){c||(c=b);if(j)return c.createElement(a);f||(f=m(c));var g;return f.cache[a]?g=f.cache[a].cloneNode():e.test(a)?g=(f.cache[a]=f.createElem(a)).cloneNode():g=f.createElem(a),g.canHaveChildren&&!d.test(a)?f.frag.appendChild(g):g}function o(a,c){a||(a=b);if(j)return a.createDocumentFragment();c=c||m(a);var d=c.frag.cloneNode(),e=0,f=l(),g=f.length;for(;e<g;e++)d.createElement(f[e]);return d}function p(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return r.shivMethods?n(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+l().join().replace(/\w+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(r,b.frag)}function q(a){a||(a=b);var c=m(a);return r.shivCSS&&!f&&!c.hasCSS&&(c.hasCSS=!!k(a,"article,aside,figcaption,figure,footer,header,hgroup,nav,section{display:block}mark{background:#FF0;color:#000}")),j||p(a,c),a}var c=a.html5||{},d=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,e=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,f,g="_html5shiv",h=0,i={},j;(function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",f="hidden"in a,j=a.childNodes.length==1||function(){b.createElement("a");var a=b.createDocumentFragment();return typeof a.cloneNode=="undefined"||typeof a.createDocumentFragment=="undefined"||typeof a.createElement=="undefined"}()}catch(c){f=!0,j=!0}})();var r={elements:c.elements||"abbr article aside audio bdi canvas data datalist details figcaption figure footer header hgroup mark meter nav output progress section summary time video",shivCSS:c.shivCSS!==!1,supportsUnknownElements:j,shivMethods:c.shivMethods!==!1,type:"default",shivDocument:q,createElement:n,createDocumentFragment:o};a.html5=r,q(b)}(this,b),e._version=d,e._prefixes=n,e._domPrefixes=q,e._cssomPrefixes=p,e.mq=z,e.hasEvent=A,e.testProp=function(a){return H([a])},e.testAllProps=J,e.testStyles=y,e.prefixed=function(a,b,c){return b?J(a,b,c):J(a,"pfx")},g.className=g.className.replace(/(^|\s)no-js(\s|$)/,"$1$2")+(f?" js "+v.join(" "):""),e}(this,this.document),function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}}(this,document),Modernizr.load=function(){yepnope.apply(window,[].slice.call(arguments,0))};

autotest-latest/_static/js/theme.js
require=function r(s,a,l){function c(i,n){if(!a[i]){if(!s[i]){var e="function"==typeof require&&require;if(!n&&e)return e(i,!0);if(u)return u(i,!0);var t=new Error("Cannot find module '"+i+"'");throw t.code="MODULE_NOT_FOUND",t}var o=a[i]={exports:{}};s[i][0].call(o.exports,function(n){var e=s[i][1][n];return c(e||n)},o,o.exports,r,s,a,l)}return a[i].exports}for(var u="function"==typeof require&&require,n=0;n<l.length;n++)c(l[n]);return c}({"sphinx-rtd-theme":[function(n,e,i){var jQuery="undefined"!=typeof window?window.jQuery:n("jquery");e.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(e){var i=this;"undefined"==typeof withStickNav&&(e=!0),i.isRunning||(i.isRunning=!0,jQuery(function(n){i.init(n),i.reset(),i.win.on("hashchange",i.reset),e&&i.win.on("scroll",function(){i.linkScroll||i.winScroll||(i.winScroll=!0,requestAnimationFrame(function(){i.onScroll()}))}),i.win.on("resize",function(){i.winResize||(i.winResize=!0,requestAnimationFrame(function(){i.onResize()}))}),i.onResize()}))},enableSticky:function(){this.enable(!0)},init:function(i){i(document);var t=this;this.navBar=i("div.wy-side-scroll:first"),this.win=i(window),i(document).on("click","[data-toggle='wy-nav-top']",function(){i("[data-toggle='wy-nav-shift']").toggleClass("shift"),i("[data-toggle='rst-versions']").toggleClass("shift")}).on("click",".wy-menu-vertical .current ul li a",function(){var n=i(this);i("[data-toggle='wy-nav-shift']").removeClass("shift"),i("[data-toggle='rst-versions']").toggleClass("shift"),t.toggleCurrent(n),t.hashChange()}).on("click","[data-toggle='rst-current-version']",function(){i("[data-toggle='rst-versions']").toggleClass("shift-up")}),i("table.docutils:not(.field-list,.footnote,.citation)").wrap("<div class='wy-table-responsive'></div>"),i("table.docutils.footnote").wrap("<div class='wy-table-responsive footnote'></div>"),i("table.docutils.citation").wrap("<div class='wy-table-responsive citation'></div>"),i(".wy-menu-vertical ul").not(".simple").siblings("a").each(function(){var e=i(this);expand=i(''),expand.on("click",function(n){return t.toggleCurrent(e),n.stopPropagation(),!1}),e.prepend(expand)})},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),i=e.find('[href="'+n+'"]');if(0===i.length){var t=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(i=e.find('[href="#'+t.attr("id")+'"]')).length&&(i=e.find('[href="#"]'))}0<i.length&&($(".wy-menu-vertical .current").removeClass("current"),i.addClass("current"),i.closest("li.toctree-l1").addClass("current"),i.closest("li.toctree-l1").parent().addClass("current"),i.closest("li.toctree-l1").addClass("current"),i.closest("li.toctree-l2").addClass("current"),i.closest("li.toctree-l3").addClass("current"),i.closest("li.toctree-l4").addClass("current"))}catch(o){console.log("Error expanding nav for anchor",o)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,i=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(i),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",function(){this.linkScroll=!1})},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current"),e.siblings().find("li.current").removeClass("current"),e.find("> ul li.current").removeClass("current"),e.toggleClass("current")}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:e.exports.ThemeNav,StickyNav:e.exports.ThemeNav}),function(){for(var r=0,n=["ms","moz","webkit","o"],e=0;e<n.length&&!window.requestAnimationFrame;++e)window.requestAnimationFrame=window[n[e]+"RequestAnimationFrame"],window.cancelAnimationFrame=window[n[e]+"CancelAnimationFrame"]||window[n[e]+"CancelRequestAnimationFrame"];window.requestAnimationFrame||(window.requestAnimationFrame=function(n,e){var i=(new Date).getTime(),t=Math.max(0,16-(i-r)),o=window.setTimeout(function(){n(i+t)},t);return r=i+t,o}),window.cancelAnimationFrame||(window.cancelAnimationFrame=function(n){clearTimeout(n)})}()},{jquery:"jquery"}]},{},["sphinx-rtd-theme"]);

autotest-latest/_static/css/badge_only.css
.fa:before{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-weight:normal;font-style:normal;src:url("../fonts/fontawesome-webfont.eot");src:url("../fonts/fontawesome-webfont.eot?#iefix") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff") format("woff"),url("../fonts/fontawesome-webfont.ttf") format("truetype"),url("../fonts/fontawesome-webfont.svg#FontAwesome") format("svg")}.fa:before{display:inline-block;font-family:FontAwesome;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa{display:inline-block;text-decoration:inherit}li .fa{display:inline-block}li .fa-large:before,li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-0.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before,ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before{content:""}.icon-book:before{content:""}.fa-caret-down:before{content:""}.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.icon-caret-up:before{content:""}.fa-caret-left:before{content:""}.icon-caret-left:before{content:""}.fa-caret-right:before{content:""}.icon-caret-right:before{content:""}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up{height:auto;max-height:100%}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px}.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge .fa-book{float:none}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge .rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}

autotest-latest/_static/css/theme.css
*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}audio:not([controls]){display:none}[hidden]{display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:hover,a:active{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:bold}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;color:#000;text-decoration:none}mark{background:#ff0;color:#000;font-style:italic;font-weight:bold}pre,code,.rst-content tt,.rst-content code,kbd,samp{font-family:monospace,serif;_font-family:"courier new",monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:before,q:after{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}ul,ol,dl{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure{margin:0}form{margin:0}fieldset{border:0;margin:0;padding:0}label{cursor:pointer}legend{border:0;*margin-left:-7px;padding:0;white-space:normal}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type="button"],input[type="reset"],input[type="submit"]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{box-sizing:border-box;padding:0;*width:13px;*height:13px}input[type="search"]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}textarea{overflow:auto;vertical-align:top;resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none !important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{html,body,section{background:none !important}*{box-shadow:none !important;text-shadow:none !important;filter:none !important;-ms-filter:none !important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:.5cm}p,h2,.rst-content .toctree-wrapper p.caption,h3{orphans:3;widows:3}h2,.rst-content .toctree-wrapper p.caption,h3{page-break-after:avoid}}.fa:before,.wy-menu-vertical li span.toctree-expand:before,.wy-menu-vertical li.on a span.toctree-expand:before,.wy-menu-vertical li.current>a span.toctree-expand:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.rst-content .admonition,.btn,input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"],select,textarea,.wy-menu-vertical li.on a,.wy-menu-vertical li.current>a,.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a,.wy-nav-top a{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}/*!
 * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
 * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
 */@font-face{font-family:'FontAwesome';src:url("../fonts/fontawesome-webfont.eot?v=4.7.0");src:url("../fonts/fontawesome-webfont.eot?#iefix&v=4.7.0") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff2?v=4.7.0") format("woff2"),url("../fonts/fontawesome-webfont.woff?v=4.7.0") format("woff"),url("../fonts/fontawesome-webfont.ttf?v=4.7.0") format("truetype"),url("../fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular") format("svg");font-weight:normal;font-style:normal}.fa,.wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.current>a span.toctree-expand,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.rst-content code.download span:first-child,.icon{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.3333333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.2857142857em;text-align:center}.fa-ul{padding-left:0;margin-left:2.1428571429em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.1428571429em;width:2.1428571429em;top:.1428571429em;text-align:center}.fa-li.fa-lg{left:-1.8571428571em}.fa-border{padding:.2em .25em .15em;border:solid 0.08em #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left,.wy-menu-vertical li span.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a span.fa-pull-left.toctree-expand,.wy-menu-vertical li.current>a span.fa-pull-left.toctree-expand,.rst-content .fa-pull-left.admonition-title,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content dl dt .fa-pull-left.headerlink,.rst-content p.caption .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.rst-content code.download span.fa-pull-left:first-child,.fa-pull-left.icon{margin-right:.3em}.fa.fa-pull-right,.wy-menu-vertical li span.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a span.fa-pull-right.toctree-expand,.wy-menu-vertical li.current>a span.fa-pull-right.toctree-expand,.rst-content .fa-pull-right.admonition-title,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content dl dt .fa-pull-right.headerlink,.rst-content p.caption .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.rst-content code.download span.fa-pull-right:first-child,.fa-pull-right.icon{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.wy-menu-vertical li span.pull-left.toctree-expand,.wy-menu-vertical li.on a span.pull-left.toctree-expand,.wy-menu-vertical li.current>a span.pull-left.toctree-expand,.rst-content .pull-left.admonition-title,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content dl dt .pull-left.headerlink,.rst-content p.caption .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.rst-content code.download span.pull-left:first-child,.pull-left.icon{margin-right:.3em}.fa.pull-right,.wy-menu-vertical li span.pull-right.toctree-expand,.wy-menu-vertical li.on a span.pull-right.toctree-expand,.wy-menu-vertical li.current>a span.pull-right.toctree-expand,.rst-content .pull-right.admonition-title,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content dl dt .pull-right.headerlink,.rst-content p.caption .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.rst-content code.download span.pull-right:first-child,.pull-right.icon{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}.fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-remove:before,.fa-close:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-gear:before,.fa-cog:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-rotate-right:before,.fa-repeat:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success
.wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.rst-content .admonition-title:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-warning:before,.fa-exclamation-triangle:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-gears:before,.fa-cogs:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-save:before,.fa-floppy-o:before{content:""}.fa-square:before{content:""}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.wy-dropdown .caret:before,.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-unsorted:before,.fa-sort:before{content:""}.fa-sort-down:before,.fa-sort-desc:before{content:""}.fa-sort-up:before,.fa-sort-asc:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-legal:before,.fa-gavel:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-flash:before,.fa-bolt:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-paste:before,.fa-clipboard:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-unlink:before,.fa-chain-broken:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.on a span.toctree-expand:before,.wy-menu-vertical li.current>a
span.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:""}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:""}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:""}.fa-euro:before,.fa-eur:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-rupee:before,.fa-inr:before{content:""}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:""}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:""}.fa-won:before,.fa-krw:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-turkish-lira:before,.fa-try:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li
span.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-institution:before,.fa-bank:before,.fa-university:before{content:""}.fa-mortar-board:before,.fa-graduation-cap:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:""}.fa-file-zip-o:before,.fa-file-archive-o:before{content:""}.fa-file-sound-o:before,.fa-file-audio-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:""}.fa-ge:before,.fa-empire:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-send:before,.fa-paper-plane:before{content:""}.fa-send-o:before,.fa-paper-plane-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-hotel:before,.fa-bed:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-yc:before,.fa-y-combinator:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-tv:before,.fa-television:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:""}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-signing:before,.fa-sign-language:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-vcard:before,.fa-address-card:before{content:""}.fa-vcard-o:before,.fa-address-card-o:be
fore{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.current>a span.toctree-expand,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.rst-content code.download span:first-child,.icon,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context{font-family:inherit}.fa:before,.wy-menu-vertical li span.toctree-expand:before,.wy-menu-vertical li.on a span.toctree-expand:before,.wy-menu-vertical li.current>a span.toctree-expand:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before{font-family:"FontAwesome";display:inline-block;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa,a .wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li a span.toctree-expand,.wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.current>a span.toctree-expand,a .rst-content .admonition-title,.rst-content a .admonition-title,a .rst-content h1 .headerlink,.rst-content h1 a .headerlink,a .rst-content h2 .headerlink,.rst-content h2 a .headerlink,a .rst-content h3 .headerlink,.rst-content h3 a .headerlink,a .rst-content h4 .headerlink,.rst-content h4 a .headerlink,a .rst-content h5 .headerlink,.rst-content h5 a .headerlink,a .rst-content h6 .headerlink,.rst-content h6 a .headerlink,a .rst-content dl dt .headerlink,.rst-content dl dt a .headerlink,a .rst-content p.caption .headerlink,.rst-content p.caption a .headerlink,a .rst-content table>caption .headerlink,.rst-content table>caption a .headerlink,a .rst-content tt.download span:first-child,.rst-content tt.download a span:first-child,a .rst-content code.download span:first-child,.rst-content code.download a span:first-child,a .icon{display:inline-block;text-decoration:inherit}.btn .fa,.btn .wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li .btn span.toctree-expand,.btn .wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.on a .btn span.toctree-expand,.btn .wy-menu-vertical li.current>a span.toctree-expand,.wy-menu-vertical li.current>a .btn span.toctree-expand,.btn .rst-content .admonition-title,.rst-content .btn .admonition-title,.btn .rst-content h1 .headerlink,.rst-content h1 .btn .headerlink,.btn .rst-content h2 .headerlink,.rst-content h2 .btn .headerlink,.btn .rst-content h3 .headerlink,.rst-content h3 .btn .headerlink,.btn .rst-content h4 .headerlink,.rst-content h4 .btn .headerlink,.btn .rst-content h5 .headerlink,.rst-content h5 .btn .headerlink,.btn .rst-content h6 .headerlink,.rst-content h6 .btn .headerlink,.btn .rst-content dl dt .headerlink,.rst-content dl dt .btn .headerlink,.btn .rst-content p.caption .headerlink,.rst-content p.caption .btn .headerlink,.btn .rst-content table>caption .headerlink,.rst-content table>caption .btn .headerlink,.btn .rst-content tt.download span:first-child,.rst-content tt.download .btn span:first-child,.btn .rst-content code.download span:first-child,.rst-content code.download .btn span:first-child,.btn .icon,.nav .fa,.nav .wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li .nav span.toctree-expand,.nav .wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.on a .nav span.toctree-expand,.nav .wy-menu-vertical li.current>a span.toctree-expand,.wy-menu-vertical li.current>a .nav span.toctree-expand,.nav .rst-content .admonition-title,.rst-content .nav .admonition-title,.nav .rst-content h1 .headerlink,.rst-content h1 .nav .headerlink,.nav .rst-content h2 .headerlink,.rst-content h2 .nav .headerlink,.nav .rst-content h3 .headerlink,.rst-content h3 .nav .headerlink,.nav .rst-content h4 .headerlink,.rst-content h4 .nav .headerlink,.nav .rst-content h5 .headerlink,.rst-content h5 .nav .headerlink,.nav .rst-content h6 .headerlink,.rst-content h6 .nav .headerlink,.nav .rst-content dl dt .headerlink,.rst-content dl dt .nav .headerlink,.nav .rst-content p.caption .headerlink,.rst-content p.caption .nav .headerlink,.nav .rst-content table>caption .headerlink,.rst-content table>caption .nav .headerlink,.nav .rst-content tt.download span:first-child,.rst-content tt.download .nav span:first-child,.nav .rst-content code.download span:first-child,.rst-content code.download .nav span:first-child,.nav .icon{display:inline}.btn .fa.fa-large,.btn .wy-menu-vertical li span.fa-large.toctree-expand,.wy-menu-vertical li .btn span.fa-large.toctree-expand,.btn .rst-content .fa-large.admonition-title,.rst-content .btn .fa-large.admonition-title,.btn .rst-content h1 .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.btn .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .btn .fa-large.headerlink,.btn .rst-content p.caption .fa-large.headerlink,.rst-content p.caption .btn .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.rst-content tt.download .btn span.fa-large:first-child,.btn .rst-content code.download span.fa-large:first-child,.rst-content code.download .btn span.fa-large:first-child,.btn .fa-large.icon,.nav .fa.fa-large,.nav .wy-menu-vertical li span.fa-large.toctree-expand,.wy-menu-vertical li .nav span.fa-large.toctree-expand,.nav .rst-content .fa-large.admonition-title,.rst-content .nav .fa-large.admonition-title,.nav .rst-content h1 .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.nav .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.nav .rst-content p.caption .fa-large.headerlink,.rst-content p.caption .nav .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.nav .rst-content code.download span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.nav .fa-large.icon{line-height:.9em}.btn .fa.fa-spin,.btn .wy-menu-vertical li span.fa-spin.toctree-expand,.wy-menu-vertical li .btn span.fa-spin.toctree-expand,.btn .rst-content .fa-spin.admonition-title,.rst-content .btn .fa-spin.admonition-title,.btn .rst-content h1 .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.btn .rst-content h2
.fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.btn .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .btn .fa-spin.headerlink,.btn .rst-content p.caption .fa-spin.headerlink,.rst-content p.caption .btn .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.rst-content tt.download .btn span.fa-spin:first-child,.btn .rst-content code.download span.fa-spin:first-child,.rst-content code.download .btn span.fa-spin:first-child,.btn .fa-spin.icon,.nav .fa.fa-spin,.nav .wy-menu-vertical li span.fa-spin.toctree-expand,.wy-menu-vertical li .nav span.fa-spin.toctree-expand,.nav .rst-content .fa-spin.admonition-title,.rst-content .nav .fa-spin.admonition-title,.nav .rst-content h1 .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.nav .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.nav .rst-content p.caption .fa-spin.headerlink,.rst-content p.caption .nav .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.nav .rst-content code.download span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.nav .fa-spin.icon{display:inline-block}.btn.fa:before,.wy-menu-vertical li span.btn.toctree-expand:before,.rst-content .btn.admonition-title:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content dl dt .btn.headerlink:before,.rst-content p.caption .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.rst-content code.download span.btn:first-child:before,.btn.icon:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.wy-menu-vertical li span.btn.toctree-expand:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content p.caption .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.rst-content code.download span.btn:first-child:hover:before,.btn.icon:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .wy-menu-vertical li span.toctree-expand:before,.wy-menu-vertical li .btn-mini span.toctree-expand:before,.btn-mini .rst-content .admonition-title:before,.rst-content .btn-mini .admonition-title:before,.btn-mini .rst-content h1 .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.btn-mini .rst-content dl dt .headerlink:before,.rst-content dl dt .btn-mini .headerlink:before,.btn-mini .rst-content p.caption .headerlink:before,.rst-content p.caption .btn-mini .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.rst-content tt.download .btn-mini span:first-child:before,.btn-mini .rst-content code.download span:first-child:before,.rst-content code.download .btn-mini span:first-child:before,.btn-mini .icon:before{font-size:14px;vertical-align:-15%}.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.rst-content .admonition{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.wy-alert-title,.rst-content .admonition-title{color:#fff;font-weight:bold;display:block;color:#fff;background:#6ab0de;margin:-12px;padding:6px 12px;margin-bottom:12px}.wy-alert.wy-alert-danger,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.admonition{background:#fdf3f2}.wy-alert.wy-alert-danger .wy-alert-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .danger .wy-alert-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .danger .admonition-title,.rst-content .error .admonition-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition .admonition-title{background:#f29f97}.wy-alert.wy-alert-warning,.rst-content .wy-alert-warning.note,.rst-content .attention,.rst-content .caution,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.tip,.rst-content .warning,.rst-content .wy-alert-warning.seealso,.rst-content .admonition-todo,.rst-content .wy-alert-warning.admonition{background:#ffedcc}.wy-alert.wy-alert-warning .wy-alert-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .attention .wy-alert-title,.rst-content .caution .wy-alert-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .attention .admonition-title,.rst-content .caution .admonition-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .warning .admonition-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .admonition-todo .admonition-title,.rst-content .wy-alert-warning.admonition .admonition-title{background:#f0b37e}.wy-alert.wy-alert-info,.rst-content .note,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.rst-content .seealso,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.admonition{background:#e7f2fa}.wy-alert.wy-alert-info .wy-alert-title,.rst-content .note .wy-alert-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content
.wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.rst-content .note .admonition-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .seealso .admonition-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition .admonition-title{background:#6ab0de}.wy-alert.wy-alert-success,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.warning,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.admonition{background:#dbfaf4}.wy-alert.wy-alert-success .wy-alert-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .hint .wy-alert-title,.rst-content .important .wy-alert-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .hint .admonition-title,.rst-content .important .admonition-title,.rst-content .tip .admonition-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition .admonition-title{background:#1abc9c}.wy-alert.wy-alert-neutral,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.admonition{background:#f3f6f6}.wy-alert.wy-alert-neutral .wy-alert-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition .admonition-title{color:#404040;background:#e1e4e5}.wy-alert.wy-alert-neutral a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a{color:#2980B9}.wy-alert p:last-child,.rst-content .note p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.rst-content .seealso p:last-child,.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0px;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,0.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27AE60}.wy-tray-container li.wy-tray-item-info{background:#2980B9}.wy-tray-container li.wy-tray-item-warning{background:#E67E22}.wy-tray-container li.wy-tray-item-danger{background:#E74C3C}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width: 768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px 12px;color:#fff;border:1px solid rgba(0,0,0,0.1);background-color:#27AE60;text-decoration:none;font-weight:normal;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:0px 1px 2px -1px rgba(255,255,255,0.5) inset,0px -2px 0px 0px rgba(0,0,0,0.1) inset;outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:0px -1px 0px 0px rgba(0,0,0,0.05) inset,0px 2px 0px 0px rgba(0,0,0,0.1) inset;padding:8px 12px 6px 12px}.btn:visited{color:#fff}.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn-disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn-disabled:hover,.btn-disabled:focus,.btn-disabled:active{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980B9 !important}.btn-info:hover{background-color:#2e8ece !important}.btn-neutral{background-color:#f3f6f6 !important;color:#404040 !important}.btn-neutral:hover{background-color:#e5ebeb !important;color:#404040}.btn-neutral:visited{color:#404040 !important}.btn-success{background-color:#27AE60 !important}.btn-success:hover{background-color:#295 !important}.btn-danger{background-color:#E74C3C !important}.btn-danger:hover{background-color:#ea6153 !important}.btn-warning{background-color:#E67E22 !important}.btn-warning:hover{background-color:#e98b39 !important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f !important}.btn-link{background-color:transparent !important;color:#2980B9;box-shadow:none;border-color:transparent !important}.btn-link:hover{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:active{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:visited{color:#9B59B6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:before,.wy-btn-group:after{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active
.wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:solid 1px #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,0.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980B9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:solid 1px #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type="search"]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980B9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned input,.wy-form-aligned textarea,.wy-form-aligned select,.wy-form-aligned .wy-help-inline,.wy-form-aligned label{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{border:0;margin:0;padding:0}legend{display:block;width:100%;border:0;padding:0;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label{display:block;margin:0 0 .3125em 0;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;*zoom:1;max-width:68em;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#E74C3C}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full input[type="text"],.wy-control-group .wy-form-full input[type="password"],.wy-control-group .wy-form-full input[type="email"],.wy-control-group .wy-form-full input[type="url"],.wy-control-group .wy-form-full input[type="date"],.wy-control-group .wy-form-full input[type="month"],.wy-control-group .wy-form-full input[type="time"],.wy-control-group .wy-form-full input[type="datetime"],.wy-control-group .wy-form-full input[type="datetime-local"],.wy-control-group .wy-form-full input[type="week"],.wy-control-group .wy-form-full input[type="number"],.wy-control-group .wy-form-full input[type="search"],.wy-control-group .wy-form-full input[type="tel"],.wy-control-group .wy-form-full input[type="color"],.wy-control-group .wy-form-halves input[type="text"],.wy-control-group .wy-form-halves input[type="password"],.wy-control-group .wy-form-halves input[type="email"],.wy-control-group .wy-form-halves input[type="url"],.wy-control-group .wy-form-halves input[type="date"],.wy-control-group .wy-form-halves input[type="month"],.wy-control-group .wy-form-halves input[type="time"],.wy-control-group .wy-form-halves input[type="datetime"],.wy-control-group .wy-form-halves input[type="datetime-local"],.wy-control-group .wy-form-halves input[type="week"],.wy-control-group .wy-form-halves input[type="number"],.wy-control-group .wy-form-halves input[type="search"],.wy-control-group .wy-form-halves input[type="tel"],.wy-control-group .wy-form-halves input[type="color"],.wy-control-group .wy-form-thirds input[type="text"],.wy-control-group .wy-form-thirds input[type="password"],.wy-control-group .wy-form-thirds input[type="email"],.wy-control-group .wy-form-thirds input[type="url"],.wy-control-group .wy-form-thirds input[type="date"],.wy-control-group .wy-form-thirds input[type="month"],.wy-control-group .wy-form-thirds input[type="time"],.wy-control-group .wy-form-thirds input[type="datetime"],.wy-control-group .wy-form-thirds input[type="datetime-local"],.wy-control-group .wy-form-thirds input[type="week"],.wy-control-group .wy-form-thirds input[type="number"],.wy-control-group .wy-form-thirds input[type="search"],.wy-control-group .wy-form-thirds input[type="tel"],.wy-control-group .wy-form-thirds input[type="color"]{width:100%}.wy-control-group .wy-form-full{float:left;display:block;margin-right:2.3576515979%;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.3576515979%;width:48.821174201%}.wy-control-group .wy-form-halves:last-child{margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n+1){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.3576515979%;width:31.7615656014%}.wy-control-group .wy-form-thirds:last-child{margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control{margin:6px 0 0 0;font-size:90%}.wy-control-no-input{display:inline-block;margin:6px 0 0 0;font-size:90%}.wy-control-group.fluid-input input[type="text"],.wy-control-group.fluid-input input[type="password"],.wy-control-group.fluid-input input[type="email"],.wy-control-group.fluid-input input[type="url"],.wy-control-group.fluid-input input[type="date"],.wy-control-group.fluid-input input[type="month"],.wy-control-group.fluid-input input[type="time"],.wy-control-group.fluid-input input[type="datetime"],.wy-control-group.fluid-input input[type="datetime-local"],.wy-control-group.fluid-input input[type="week"],.wy-control-group.fluid-input input[type="number"],.wy-control-group.fluid-input input[type="search"],.wy-control-group.fluid-input input[type="tel"],.wy-control-group.fluid-input input[type="color"]{width:100%}.wy-form-message-inline{display:inline-block;padding-left:.3em;color:#666;vertical-align:middle;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;*overflow:visible}input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type="datetime-local"]{padding:.34375em .625em}input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type="search"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type="search"]::-webkit-search-cancel-button,input[type="search"]::-webkit-search-decoration{-webkit-appearance:none}input[type="text"]:focus,input[type="password"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus{outline:0;outline:thin dotted \9;border-color:#333}input.no-focus:focus{border-color:#ccc !important}input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:1px auto #129FEA}input[type="text"][disabled],input[type="password"][disabled],input[type="email"][disabled],input[type="url"][disabled],input[type="date"][disabled],input[type="month"][disabled],input[type="time"][disabled],input[type="datetime"][disabled],input[type="datetime-local"][disabled],input[type="week"][disabled],input[type="number"][disabled],input[type="search"][disabled],input[type="tel"][disabled],input[type="color"][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#E74C3C;border:1px solid
#E74C3C}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#E74C3C}input[type="file"]:focus:invalid:focus,input[type="radio"]:focus:invalid:focus,input[type="checkbox"]:focus:invalid:focus{outline-color:#E74C3C}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type="radio"][disabled],input[type="checkbox"][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:solid 1px #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{position:absolute;content:"";display:block;left:0;top:0;width:36px;height:12px;border-radius:4px;background:#ccc;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{position:absolute;content:"";display:block;width:18px;height:18px;border-radius:4px;background:#999;left:-3px;top:-3px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27AE60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#E74C3C}.wy-control-group.wy-control-group-error input[type="text"],.wy-control-group.wy-control-group-error input[type="password"],.wy-control-group.wy-control-group-error input[type="email"],.wy-control-group.wy-control-group-error input[type="url"],.wy-control-group.wy-control-group-error input[type="date"],.wy-control-group.wy-control-group-error input[type="month"],.wy-control-group.wy-control-group-error input[type="time"],.wy-control-group.wy-control-group-error input[type="datetime"],.wy-control-group.wy-control-group-error input[type="datetime-local"],.wy-control-group.wy-control-group-error input[type="week"],.wy-control-group.wy-control-group-error input[type="number"],.wy-control-group.wy-control-group-error input[type="search"],.wy-control-group.wy-control-group-error input[type="tel"],.wy-control-group.wy-control-group-error input[type="color"]{border:solid 1px #E74C3C}.wy-control-group.wy-control-group-error textarea{border:solid 1px #E74C3C}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27AE60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#E74C3C}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#E67E22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980B9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width: 480px){.wy-form button[type="submit"]{margin:.7em 0 0}.wy-form input[type="text"],.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:.3em;display:block}.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0 0}.wy-form .wy-help-inline,.wy-form-message-inline,.wy-form-message{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width: 768px){.tablet-hide{display:none}}@media screen and (max-width: 480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.wy-table,.rst-content table.docutils,.rst-content table.field-list{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.wy-table caption,.rst-content table.docutils caption,.rst-content table.field-list caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td,.wy-table th,.rst-content table.docutils th,.rst-content table.field-list th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.wy-table td:first-child,.rst-content table.docutils td:first-child,.rst-content table.field-list td:first-child,.wy-table th:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list th:first-child{border-left-width:0}.wy-table thead,.rst-content table.docutils thead,.rst-content table.field-list thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.wy-table thead th,.rst-content table.docutils thead th,.rst-content table.field-list thead th{font-weight:bold;border-bottom:solid 2px #e1e4e5}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td{background-color:transparent;vertical-align:middle}.wy-table td p,.rst-content table.docutils td p,.rst-content table.field-list td p{line-height:18px}.wy-table td p:last-child,.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child{margin-bottom:0}.wy-table .wy-table-cell-min,.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min{width:1%;padding-right:0}.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:gray;font-size:90%}.wy-table-tertiary{color:gray;font-size:80%}.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td,.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td{background-color:#f3f6f6}.wy-table-backed{background-color:#f3f6f6}.wy-table-bordered-all,.rst-content table.docutils{border:1px solid #e1e4e5}.wy-table-bordered-all td,.rst-content table.docutils td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.wy-table-bordered-all tbody>tr:last-child td,.rst-content table.docutils tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px 0;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0 !important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980B9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9B59B6}html{height:100%;overflow-x:hidden}body{font-family:"Lato","proxima-nova","Helvetica
Neue",Arial,sans-serif;font-weight:normal;color:#404040;min-height:100%;overflow-x:hidden;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#E67E22 !important}a.wy-text-warning:hover{color:#eb9950 !important}.wy-text-info{color:#2980B9 !important}a.wy-text-info:hover{color:#409ad5 !important}.wy-text-success{color:#27AE60 !important}a.wy-text-success:hover{color:#36d278 !important}.wy-text-danger{color:#E74C3C !important}a.wy-text-danger:hover{color:#ed7669 !important}.wy-text-neutral{color:#404040 !important}a.wy-text-neutral:hover{color:#595959 !important}h1,h2,.rst-content .toctree-wrapper p.caption,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif}p{line-height:24px;margin:0;font-size:16px;margin-bottom:24px}h1{font-size:175%}h2,.rst-content .toctree-wrapper p.caption{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}code,.rst-content tt,.rst-content code{white-space:nowrap;max-width:100%;background:#fff;border:solid 1px #e1e4e5;font-size:75%;padding:0 5px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;color:#E74C3C;overflow-x:auto}code.code-large,.rst-content tt.code-large{font-size:90%}.wy-plain-list-disc,.rst-content .section ul,.rst-content .toctree-wrapper ul,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.wy-plain-list-disc li,.rst-content .section ul li,.rst-content .toctree-wrapper ul li,article ul li{list-style:disc;margin-left:24px}.wy-plain-list-disc li p:last-child,.rst-content .section ul li p:last-child,.rst-content .toctree-wrapper ul li p:last-child,article ul li p:last-child{margin-bottom:0}.wy-plain-list-disc li ul,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li ul,article ul li ul{margin-bottom:0}.wy-plain-list-disc li li,.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,article ul li li{list-style:circle}.wy-plain-list-disc li li li,.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,article ul li li li{list-style:square}.wy-plain-list-disc li ol li,.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,article ul li ol li{list-style:decimal}.wy-plain-list-decimal,.rst-content .section ol,.rst-content ol.arabic,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.wy-plain-list-decimal li,.rst-content .section ol li,.rst-content ol.arabic li,article ol li{list-style:decimal;margin-left:24px}.wy-plain-list-decimal li p:last-child,.rst-content .section ol li p:last-child,.rst-content ol.arabic li p:last-child,article ol li p:last-child{margin-bottom:0}.wy-plain-list-decimal li ul,.rst-content .section ol li ul,.rst-content ol.arabic li ul,article ol li ul{margin-bottom:0}.wy-plain-list-decimal li ul li,.rst-content .section ol li ul li,.rst-content ol.arabic li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:before,.wy-breadcrumbs:after{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs li{display:inline-block}.wy-breadcrumbs li.wy-breadcrumbs-aside{float:right}.wy-breadcrumbs li a{display:inline-block;padding:5px}.wy-breadcrumbs li a:first-child{padding-left:0}.wy-breadcrumbs li code,.wy-breadcrumbs li .rst-content tt,.rst-content .wy-breadcrumbs li tt{padding:5px;border:none;background:none}.wy-breadcrumbs li code.literal,.wy-breadcrumbs li .rst-content tt.literal,.rst-content .wy-breadcrumbs li tt.literal{color:#404040}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width: 480px){.wy-breadcrumbs-extra{display:none}.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:before,.wy-menu-horiz:after{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz ul,.wy-menu-horiz li{display:inline-block}.wy-menu-horiz li:hover{background:rgba(255,255,255,0.1)}.wy-menu-horiz li.divide-left{border-left:solid 1px #404040}.wy-menu-horiz li.divide-right{border-right:solid 1px #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{height:32px;display:inline-block;line-height:32px;padding:0 1.618em;margin-bottom:0;display:block;font-weight:bold;text-transform:uppercase;font-size:80%;color:#6f6f6f;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:solid 1px #404040}.wy-menu-vertical li.divide-bottom{border-bottom:solid 1px #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:gray;border-right:solid 1px #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.wy-menu-vertical li code,.wy-menu-vertical li .rst-content tt,.rst-content .wy-menu-vertical li tt{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li span.toctree-expand{display:block;float:left;margin-left:-1.2em;font-size:.8em;line-height:1.6em;color:#4d4d4d}.wy-menu-vertical li.on a,.wy-menu-vertical li.current>a{color:#404040;padding:.4045em 1.618em;font-weight:bold;position:relative;background:#fcfcfc;border:none;padding-left:1.618em -4px}.wy-menu-vertical li.on a:hover,.wy-menu-vertical li.current>a:hover{background:#fcfcfc}.wy-menu-vertical li.on a:hover span.toctree-expand,.wy-menu-vertical li.current>a:hover span.toctree-expand{color:gray}.wy-menu-vertical li.on a span.toctree-expand,.wy-menu-vertical li.current>a span.toctree-expand{display:block;font-size:.8em;line-height:1.6em;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:solid 1px #c9c9c9;border-top:solid 1px #c9c9c9}.wy-menu-vertical li.toctree-l1.current li.toctree-l2>ul,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>ul{display:none}.wy-menu-vertical li.toctree-l1.current li.toctree-l2.current>ul,.wy-menu-vertical li.toctree-l2.current li.toctree-l3.current>ul{display:block}.wy-menu-vertical li.toctree-l2.current>a{background:#c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{display:block;background:#c9c9c9;padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l2 a:hover span.toctree-expand{color:gray}.wy-menu-vertical li.toctree-l2 span.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3{font-size:.9em}.wy-menu-vertical li.toctree-l3.current>a{background:#bdbdbd;padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{display:block;background:#bdbdbd;padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l3 a:hover span.toctree-expand{color:gray}.wy-menu-vertical li.toctree-l3 span.toctree-expand{color:#969696}.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#b3b3b3;font-weight:normal}.wy-menu-vertical a{display:inline-block;line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#b3b3b3}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover span.toctree-expand{color:#b3b3b3}.wy-menu-vertical a:active{background-color:#2980B9;cursor:pointer;color:#fff}.wy-menu-vertical a:active span.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980B9;text-align:center;padding:.809em;display:block;color:#fcfcfc;margin-bottom:.809em}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em auto;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a{color:#fcfcfc;font-size:100%;font-weight:bold;display:inline-block;padding:4px 6px;margin-bottom:.809em}.wy-side-nav-search>a:hover,.wy-side-nav-search .wy-dropdown>a:hover{background:rgba(255,255,255,0.1)}.wy-side-nav-search>a img.logo,.wy-side-nav-search .wy-dropdown>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search>a.icon img.logo,.wy-side-nav-search .wy-dropdown>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:normal;color:rgba(255,255,255,0.3)}.wy-nav .wy-menu-vertical header{color:#2980B9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980B9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s
ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980B9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:before,.wy-nav-top:after{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:bold}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,0.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:gray}footer p{margin-bottom:12px}footer span.commit code,footer span.commit .rst-content tt,.rst-content footer span.commit tt{padding:0px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;font-size:1em;background:none;border:none;color:gray}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:before,.rst-footer-buttons:after{width:100%}.rst-footer-buttons:before,.rst-footer-buttons:after{display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:before,.rst-breadcrumbs-buttons:after{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:solid 1px #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:solid 1px #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:gray;font-size:90%}@media screen and (max-width: 768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-side-scroll{width:auto}.wy-side-nav-search{width:auto}.wy-menu.wy-menu-vertical{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width: 1100px){.wy-nav-content-wrap{background:rgba(0,0,0,0.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,footer,.wy-nav-side{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .wy-menu-vertical li span.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version span.toctree-expand,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content p.caption .headerlink,.rst-content p.caption .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .icon{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up{height:auto;max-height:100%}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px}.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge .rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content img{max-width:100%;height:auto}.rst-content div.figure{margin-bottom:24px}.rst-content div.figure p.caption{font-style:italic}.rst-content div.figure p:last-child.caption{margin-bottom:0px}.rst-content div.figure.align-center{text-align:center}.rst-content .section>img,.rst-content .section>a>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block,.rst-content div[class^='highlight']{border:1px solid #e1e4e5;padding:0px;overflow-x:auto;margin:1px 0 24px 0}.rst-content pre.literal-block div[class^='highlight'],.rst-content div[class^='highlight'] div[class^='highlight']{border:none;margin:0}.rst-content div[class^='highlight'] td.code{width:100%}.rst-content .linenodiv pre{border-right:solid 1px #e6e9ea;margin:0;padding:12px 12px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^='highlight'] pre{white-space:pre;margin:0;padding:12px 12px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;display:block;overflow:auto}.rst-content div[class^='highlight'] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content pre.literal-block,.rst-content div[class^='highlight'] pre,.rst-content .linenodiv pre{font-size:12px;line-height:normal}@media print{.rst-content .codeblock,.rst-content div[class^='highlight'],.rst-content div[class^='highlight'] pre{white-space:pre-wrap}}.rst-content .note .last,.rst-content .attention .last,.rst-content .caution .last,.rst-content .danger .last,.rst-content .error .last,.rst-content .hint .last,.rst-content .important .last,.rst-content .tip .last,.rst-content .warning .last,.rst-content .seealso .last,.rst-content .admonition-todo .last,.rst-content .admonition .last{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,0.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent !important;border-color:rgba(0,0,0,0.1) !important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha li{list-style:upper-alpha}.rst-content .section ol p,.rst-content .section ul
p{margin-bottom:12px}.rst-content .section ol p:last-child,.rst-content .section ul p:last-child{margin-bottom:24px}.rst-content .line-block{margin-left:0px;margin-bottom:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0px}.rst-content .topic-title{font-weight:bold;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0px 0px 24px 24px}.rst-content .align-left{float:left;margin:0px 24px 24px 0px}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content .toctree-wrapper p.caption .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.rst-content p.caption .headerlink,.rst-content table>caption .headerlink{visibility:hidden;font-size:14px}.rst-content h1 .headerlink:after,.rst-content h2 .headerlink:after,.rst-content .toctree-wrapper p.caption .headerlink:after,.rst-content h3 .headerlink:after,.rst-content h4 .headerlink:after,.rst-content h5 .headerlink:after,.rst-content h6 .headerlink:after,.rst-content dl dt .headerlink:after,.rst-content p.caption .headerlink:after,.rst-content table>caption .headerlink:after{content:"";font-family:FontAwesome}.rst-content h1:hover .headerlink:after,.rst-content h2:hover .headerlink:after,.rst-content .toctree-wrapper p.caption:hover .headerlink:after,.rst-content h3:hover .headerlink:after,.rst-content h4:hover .headerlink:after,.rst-content h5:hover .headerlink:after,.rst-content h6:hover .headerlink:after,.rst-content dl dt:hover .headerlink:after,.rst-content p.caption:hover .headerlink:after,.rst-content table>caption:hover .headerlink:after{visibility:visible}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:solid 1px #e1e4e5}.rst-content .sidebar p,.rst-content .sidebar ul,.rst-content .sidebar dl{font-size:90%}.rst-content .sidebar .last{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif;font-weight:bold;background:#e1e4e5;padding:6px 12px;margin:-24px;margin-bottom:24px;font-size:100%}.rst-content .highlighted{background:#F1C40F;display:inline-block;font-weight:bold;padding:0 6px}.rst-content .footnote-reference,.rst-content .citation-reference{vertical-align:baseline;position:relative;top:-0.4em;line-height:0;font-size:90%}.rst-content table.docutils.citation,.rst-content table.docutils.footnote{background:none;border:none;color:gray}.rst-content table.docutils.citation td,.rst-content table.docutils.citation tr,.rst-content table.docutils.footnote td,.rst-content table.docutils.footnote tr{border:none;background-color:transparent !important;white-space:normal}.rst-content table.docutils.citation td.label,.rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}.rst-content table.docutils.citation tt,.rst-content table.docutils.citation code,.rst-content table.docutils.footnote tt,.rst-content table.docutils.footnote code{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}.rst-content table.field-list{border:none}.rst-content table.field-list td{border:none}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content tt,.rst-content tt,.rst-content code{color:#000;padding:2px 5px}.rst-content tt big,.rst-content tt em,.rst-content tt big,.rst-content code big,.rst-content tt em,.rst-content code em{font-size:100% !important;line-height:normal}.rst-content tt.literal,.rst-content tt.literal,.rst-content code.literal{color:#E74C3C}.rst-content tt.xref,a .rst-content tt,.rst-content tt.xref,.rst-content code.xref,a .rst-content tt,a .rst-content code{font-weight:bold;color:#404040}.rst-content a tt,.rst-content a tt,.rst-content a code{color:#2980B9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:bold}.rst-content dl p,.rst-content dl table,.rst-content dl ul,.rst-content dl ol{margin-bottom:12px !important}.rst-content dl dd{margin:0 0 12px 24px}.rst-content dl:not(.docutils){margin-bottom:24px}.rst-content dl:not(.docutils) dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980B9;border-top:solid 3px #6ab0de;padding:6px;position:relative}.rst-content dl:not(.docutils) dt:before{color:#6ab0de}.rst-content dl:not(.docutils) dt .headerlink{color:#404040;font-size:100% !important}.rst-content dl:not(.docutils) dl dt{margin-bottom:6px;border:none;border-left:solid 3px #ccc;background:#f0f0f0;color:#555}.rst-content dl:not(.docutils) dl dt .headerlink{color:#404040;font-size:100% !important}.rst-content dl:not(.docutils) dt:first-child{margin-top:0}.rst-content dl:not(.docutils) tt,.rst-content dl:not(.docutils) tt,.rst-content dl:not(.docutils) code{font-weight:bold}.rst-content dl:not(.docutils) tt.descname,.rst-content dl:not(.docutils) tt.descclassname,.rst-content dl:not(.docutils) tt.descname,.rst-content dl:not(.docutils) code.descname,.rst-content dl:not(.docutils) tt.descclassname,.rst-content dl:not(.docutils) code.descclassname{background-color:transparent;border:none;padding:0;font-size:100% !important}.rst-content dl:not(.docutils) tt.descname,.rst-content dl:not(.docutils) tt.descname,.rst-content dl:not(.docutils) code.descname{font-weight:bold}.rst-content dl:not(.docutils) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:bold}.rst-content dl:not(.docutils) .property{display:inline-block;padding-right:8px}.rst-content .viewcode-link,.rst-content .viewcode-back{display:inline-block;color:#27AE60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:bold}.rst-content tt.download,.rst-content code.download{background:inherit;padding:inherit;font-weight:normal;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content tt.download span:first-child,.rst-content code.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content tt.download span:first-child:before,.rst-content code.download span:first-child:before{margin-right:4px}.rst-content .guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .versionmodified{font-style:italic}@media screen and (max-width: 480px){.rst-content .sidebar{width:100%}}span[id*='MathJax-Span']{color:#404040}.math{text-align:center}@font-face{font-family:"Inconsolata";font-style:normal;font-weight:400;src:local("Inconsolata"),local("Inconsolata-Regular"),url(../fonts/Inconsolata-Regular.ttf) format("truetype")}@font-face{font-family:"Inconsolata";font-style:normal;font-weight:700;src:local("Inconsolata Bold"),local("Inconsolata-Bold"),url(../fonts/Inconsolata-Bold.ttf) format("truetype")}@font-face{font-family:"Lato";font-style:normal;font-weight:400;src:local("Lato Regular"),local("Lato-Regular"),url(../fonts/Lato-Regular.ttf) format("truetype")}@font-face{font-family:"Lato";font-style:normal;font-weight:700;src:local("Lato Bold"),local("Lato-Bold"),url(../fonts/Lato-Bold.ttf) format("truetype")}@font-face{font-family:"Lato";font-style:italic;font-weight:400;src:local("Lato Italic"),local("Lato-Italic"),url(../fonts/Lato-Italic.ttf) format("truetype")}@font-face{font-family:"Lato";font-style:italic;font-weight:700;src:local("Lato Bold Italic"),local("Lato-BoldItalic"),url(../fonts/Lato-BoldItalic.ttf) format("truetype")}@font-face{font-family:"Roboto Slab";font-style:normal;font-weight:400;src:local("Roboto Slab Regular"),local("RobotoSlab-Regular"),url(../fonts/RobotoSlab-Regular.ttf) format("truetype")}@font-face{font-family:"Roboto Slab";font-style:normal;font-weight:700;src:local("Roboto Slab Bold"),local("RobotoSlab-Bold"),url(../fonts/RobotoSlab-Bold.ttf) format("truetype")}

autotest-latest/_downloads/admanski.pdf

Autotest — Testing the Untestable

John Admanski
Google Inc.

jadmanski@google.com

Steve Howard
Google Inc.

showard@google.com

Abstract

Increased automated testing has been one of the most
popular and beneficial trends in software engineering.
Yet low-level systems such as the kernel and hardware
have proven extremely difficult to test effectively, and as
a result much kernel testing has taken place in a manual
and relatively ad-hoc manner. Most existing test frame-
works are designed to test higher-level software isolated
from the underlying platform, which is assumed to be
stable and reliable. Testing the underlying platform it-
self requires a completely new set of assumptions and
these must be reflected in the framework’s design from
the ground up. The design must incorporate the machine
under test as an important component of the system and
must anticipate failures at any level within the kernel
and hardware. Furthermore, the system must be capable
of scaling to hundreds or even thousands of machines
under test, enabling the simultaneous testing of many
different development kernels each on a variety of hard-
ware platforms. The system must therefore facilitate ef-
ficient sharing of machine resources among developers
and handle automatic upkeep of the fleet. Finally, the
system must achieve end-to-end automation to make it
simple for developers to perform basic testing and incor-
porate their own tests with minimal effort and no knowl-
edge of the framework’s internals. At the same time, it
must accommodate complex cluster-level tests and di-
verse, specialized testing environments within the same
scheduling, execution and reporting framework.

Autotest is an open-source project that overcomes these
challenges to enable large-scale, fully automated test-
ing of low-level systems and detection of rare bugs
and subtle performance regressions. Using Autotest at
Google, kernel developers get per-checkin testing on a
pool of hundreds of machines, and hardware test engi-
neers can qualify thousands of new machines in a short
time frame. This paper will cover the above challenges
and present some of the solutions successfully employed
in Autotest. It will focus on the layered system architec-

ture and how that enables the distribution of not only
the test execution environment but the entire test control
system, as well as the leveraging of Python to provide
simple but infinitely extensible job control and test har-
nesses, and the automatic system health monitoring and
machine repairs used to isolate users from the manage-
ment of the test bed.

1 Introduction

Autotest is a framework for fully automated testing of
low-level systems, including kernels and hardware. It
is designed to provide end-to-end automation for func-
tional and performance tests against running kernels or
hardware with as little manual setup as possible. This
automation allows testing to be performed with less
wasted effort, greater frequency, and higher consistency.
It also allows tests to be easily pushed upstream to vari-
ous developers, moving testing earlier into the develop-
ment cycle.

Using Autotest, kernel and hardware engineers can
achieve much greater test coverage than such compo-
nents usually receive. This typical lack of effective
low-level systems testing comes with good reason: au-
tomated testing of such systems is a difficult task and
presents many challenges distinct from userspace soft-
ware testing. This paper introduces the requirements
Autotest aims to meet and some of the unique challenges
that arise from these requirements, including robust test-
ing in the face of system instability, scaling to thousands
of test machines, and minimizing complexity of test ex-
ecution and test development. The paper will discuss
solutions for each of these challenges that have been em-
ployed in Autotest to achieve effective, fully automated
low-level systems testing.

2 Background

High-quality automated testing is a necessity for any
large, long-lived software project to maintain stability

1

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autotest
Client

Test Machine

Autoserv

Test Server

Autoserv

Test Server

Autoserv

Frontend

Control Server

Job
Scheduler

USERS

Figure 1: High level operation of a complete Autotest system

while permitting rapid development. This is as true for
the Linux kernel and other system software as it is for
user-space software. However, so far the benefits of
automated testing have been most successfully realized
within user-space applications.

Most existing test automation frameworks are targeted
at software running on top of the platform provided by
the hardware and operating system, the realm in which
nearly all software operates. By taking advantage of
the assumption that an application is running in a re-
liable standardized environment provided by the plat-
form, a framework can abstract away and simplify most
of the underlying system. When attempting to provide
the same services for kernel (and hardware) testing, this
assumption is no longer reasonable since the underlying
system is an integral component of what is being tested.
This was part of the original motivation for the develop-
ment of the first versions of Autotest and its predecessor,
IBM Autobench[5][4].

Autotest begins with the goal of testing the underlying
platform itself, and this goal engenders a unique set of
requirements. Firstly, because the platform on which

Autotest runs is itself under test, Autotest must be built
from the ground up to assume system instability. This
requires graceful handling of kernel panics, hardware
lockups, network failures, and other unexpected fail-
ures. In addition, tasks such as kernel installation and
hardware configuration must be simple, commonplace
activities in Autotest.

Secondly, because the platform under test cannot be eas-
ily virtualized, every running test requires a physical
machine. Hardware virtualization may be used for basic
kernel testing, but as it fails to produce accurate per-
formance results and can mask platform-specific func-
tional issues it is useful only for the most basic kernel
functional verification. Autotest is therefore built to run
every test on a physical machine, both for kernel and
hardware testing. This makes coordination among mul-
tiple machines a core necessity in Autotest and further-
more implies that scaling requires distribution of testing
among hundreds or even thousands of machines. This
additionally creates a need for a system of efficient shar-
ing of test machines between users to maximize utiliza-
tion over such a large test fleet.

2

Finally, Autotest must fulfill the generic requirements
of any testing framework. In particular, Autotest must
minimize the overhead imposed on test developers. It
must be trivial to incorporate existing tests, easy to write
simple new tests, and possible to write complex multi-
process or multimachine tests, all within the same basic
framework. Furthermore, developing tests should be a
simple, familiar process, requiring interaction with only
a small subset of the available infrastructure. Tests must
therefore be easily executable by hand and simultane-
ously pluggable into a large-scale scheduling system.
These levels of abstraction are broken down into distinct
modules discussed in more detail throughout this paper.

As illustrated in Figure 1, the lowest layer of the sys-
tem is the Autotest client, a simple test framework that
runs on individual machines. The next layer, Autoserv,
is designed to run on centralized test servers to automat-
ically install and execute clients and to coordinate multi-
machine tests. The outermost layer consists of a single
frontend and job scheduler to allow multiple users to
share a single test fleet and results repository. Note that
the dependencies go in only one direction making the
design more modular and allowing users to interact with
the system on multiple levels. On a large scale users can
push a button on a web interface to launch a complete
test suite on a large cluster of machines while on a small
scale users can run a single test on a local workstation
by executing a shell command.

2.1 Related work

The Linux Test Project "has a goal to deliver test suites
to the open source community that validate the reliabil-
ity, robustness, and stability of Linux"[1]. It is a collec-
tion of functional and stress tests for the Linux kernel
and related features as well as a client infrastructure for
test execution. The client infrastructure eases the ex-
ecution of a many tests (there are over 3,000 tests in-
cluded), supports running tests in parallel, can generate
background stress during test execution, and generates a
report of test results at the end of a run. LTP is not, how-
ever, intended to be a general-purpose, fully-automated
kernel testing framework. There are a number of Au-
totest goals that are specifically non-goals of LTP[8]. It
is essentially a collection of tests and is therefore suit-
able for inclusion into Autotest as a test, and indeed such
inclusion has been easily done.

An automation framework called Xentest was developed

for testing the Xen virtualization project. David Bar-
rera et al. note that “testing Linux under Xen and test-
ing Linux itself are very much alike” and perform part
of their testing by “running standard test suites under
Linux running on top of Xen”, including LTP[3]. Since
testing Xen is much like testing the underlying hardware
itself the goals of Autotest share much in common with
those of Xentest, both from a kernel testing and a hard-
ware testing point of view. Xentest is a collection of
scripts with support for building and booting Xen, run-
ning tests under it, and gathering results logs together. It
does not support any automated analysis of test results
to determine pass/fail conditions. Test runs are config-
urable by a control file using the Python ConfigParser
module. This provides simple configuration but lacks
any programmatic power within control files. Finally,
Xentest is built closely around Xen and does not aim to
be generic framework for kernel or hardware testing. On
the other hand, Autotest could be used to perform Xen
testing much like Xentest does and some work has been
done on this in the past.

Crackerjack is another test automation system, one de-
signed specifically for regression testing[10]. It focuses
on finding incompatible API changes between kernel
versions. This is valuable testing but is a narrower focus
from that of Autotest.

Two frameworks that address the problem of distributed
kernel testing are PyReT[6] and ANTS[2]. The former
depends on a shared file system for all communications
while the latter uses a serial console. Both of these re-
quirements on test machines were deemed too restrictive
for Autotest, which relies solely on an SSH connection
for communications. ANTS is quite robust to test ma-
chine failures, as it configures all test machines from
scratch using network booting and is capable of using
remote power control to reset and recover machines that
have become unresponsive. The system additionally in-
cludes a machine reservation tool so that machines can
be shared between developers and the automated sys-
tem without conflict. These are all important features
that have found their way into Autotest. However, the
system is built strictly for nightly testing and does not
support a general queue of user-customizable jobs. It
includes very limited results analysis in the form of an
email report upon completion of the night’s tests. It runs
a number of open-source tests (including LTP) but does
not support more complex, multimachine tests. Finally,
the system is proprietary and therefore of little direct

3

utility to the community.

For distributed performance testing of the kernel there
exist systems presented by Alexander Ufimtsev[9] and
Tim Chen[7]. In both systems, test machines operate
autonomously, running a client harness which moni-
tors the kernel repository, building and testing new re-
leases as they appear. In this sense, the systems are
built around the specific purpose of per-release testing,
although the latter system includes support for testing
arbitrary patches on any kernel. Both systems’ clients
transmit results to a central repository, a remote server in
the former case and a shared database in the latter. The
former system includes some automated analysis for re-
gression detection based on differences from previous
averages, a task not yet implemented in Autotest. The
latter system includes a web frontend displaying graphs
of each benchmark over kernel versions, with support
for displaying profiler information, rerunning tests or
bisecting to find the patch responsible for a regression.
Autotest includes partial support for these features but
could benefit from improvements in this area.

3 Autotest Client

The most basic requirement that Autotest is intended to
fulfill is to provide an environment for running tests on
a machine in a way that meets the following criteria:

1. The lowest, most bare-metal access must be avail-
able.

2. Test results are available in a standard machine-
parseable way.

3. Standard tests developed outside of the framework
can be easily run within it.

The first of the criteria, low-level system access, seems
fairly self-evident when writing tests which are aimed at
the kernel and the hardware itself. To test a particular
component of a system, the test must be written using
tools that have access the standard API for that compo-
nent. Since C is the lingua franca of the systems world,
a C API can generally be counted on as being available,
but even that isn’t always the case. When creating a file
system during a test, mkfs is going to be the easiest
and most readily available mechanism; so as well as be-
ing able to easily incorporate custom C the framework
must also make it easy to work with external tools.

This initial requirement could have been satisfied by
writing the framework itself in C, but that would ulti-
mately have conflicted with the other requirements that
Autotest was expected to meet. First, this would’ve
made calling out to external applications ultimately
more difficult; while functions like fork, exec,
popen and system provide all the basic mechanisms
needed to launch an external process and collect results
from it, working with them in C requires a relatively
large amount of boilerplate compared to a higher-level
scripting language such as Perl or Python. This only be-
comes more true if the output of the executed process
needs to be manipulated and/or parsed in any way. The
second requirement that test results be logged in a stan-
dard way almost guarantees that the test will need to do
string manipulation, another task simplified by using a
scripting language.

To meet these somewhat conflicting requirements, the
Autotest framework itself was written in Python, with
utilities provided to simplify the compilation and exe-
cution of C code. Tests themselves are implemented by
creating a Python module defining a test subclass, sat-
isfying a standardized, pre-defined interface. Individual
tests are packaged up in a directory and can be bundled
along with whatever additional resources are needed,
such as data files, C code to be compiled and executed
or even pre-compiled binaries if necessary.

This also satisfies the third of the three requirements, the
ability to run standard tests written independently of Au-
totest. All that is required is to bundle the components
necessary for the test with a simple Python wrapper. The
wrapper is responsible for setting up any necessary en-
vironment, executing the underlying test, and translat-
ing the results from the form produced by the test into
Autotest standard logging calls. The wrappers are gen-
erally quite simple; the median size of a test wrapper in
the current Autotest distribution is only 38 lines.

Using Python for implementing tests also provides an
easy mechanism for bundling up suites of tests or cus-
tomizing the execution of specific tests. Tests them-
selves are executed by writing a “control file” which is
simply a Python script executing in a predefined envi-
ronment. It can be a single line saying “execute this
test”, a more complex script that executes a whole se-
quence of tests, or even a script that conditionally exe-
cutes tests depending on what hardware and kernel are
running on the machine. The environment provided by
Autotest contains additional utilities that allow control

4

files to put the machine into any state necessary for ex-
ecuting tests, even if it requires installing a kernel and
rebooting the machine. Having the full power of Python
available allows test runners to perform limitless cus-
tomization without having to learn a custom job control
language.

This power does come with one major drawback,
though. Due to the dynamic nature of Python and the
power available to control files, it is impossible to stat-
ically determine much information about a job. For ex-
ample, it is impossible to know in advance what tests a
job will run, and indeed the set of tests run may poten-
tially be nondeterministic. This limitation has not been
severe enough to outweigh the benefits of this approach.

3.1 Installation Problems

As this system was put into use at Google, the instal-
lation of Autotest onto test machines quickly became a
serious performance issue. Allowing test developers to
bundle data, source code and even binaries with their
tests made it easy to write tests but allowed the instal-
lation size to grow dramatically. The situation could be
somewhat alleviated by minimizing how often an install
was necessary, but in practice this only helps if the test
framework can be pre-installed on the systems.

The solution to this problem is a fairly standard one:
rather than treating Autotest and its test suite as a single,
monolithic package, break it up into a set of packages:

• a core package containing the framework itself

• packages for the various utilities and dependencies
such as profilers, compilers and any non-standard
system utilities that would need to be installed

• packages for the individual tests

Each package is able to declare other packages as de-
pendencies. The core package can be installed every-
where and is fairly lightweight, consisting only of a set
of Python source files without any of the more heavy-
weight data and binaries required by some tests. When
executing a job, the framework is then able to dynami-
cally download and install any packages needed to exe-
cute a specific test.

4 Autotest Server

4.1 Distributing test runs across machines

The Autotest client provides sufficient infrastructure for
running low-level tests but it only executes tests and col-
lects results on a single machine. To test a kernel on
multiple hardware configurations, a tester would need
to install the test client on multiple machines, manually
run jobs on each of these machines, and examine the
results scattered across these systems.

This deficiency led to the development of Autoserv, an
Autotest Server, a separate layer designed around the
client. It allows a user to run a test by executing a
server process on a machine other than the test machine.
The server process will connect to the remote test ma-
chine via SSH, install an Autotest client, run a job on
the client, and then pull the results back from the test
machine. Localizing these server runs to a single ma-
chine allows users to run test jobs on arbitrary sets of
machines while collecting all the results into a central
location for analysis.

4.2 Recovering failed test systems

Once users start running tests on larger sets of machines,
dealing with crashed systems becomes a much more
common occurrence. As the number of test machines
increases, bad kernels (and random chance) are going to
result in more failed systems. When testing on a single
machine, manual intervention is the simplest method of
dealing with failure, but this does not scale to hundreds
or thousands of machines. Automation becomes neces-
sary with two major requirements:

• Automatically detect and report on test machine
failures

• Provide a mechanism for repairing broken systems

Handling these requirements entirely within the client
running on the test machine is impractical; detecting
and reporting a kernel panic or hardware failure will
not even be possible when the crash kills the test pro-
cesses on the machine. Similarly, repair may require
re-imaging a machine which will wipe out the client it-
self.

5

With job execution controlled from a remote machine,
handling these requirements becomes feasible. Au-
toserv implements support for monitoring serial console
output, network console output and general syslog out-
put in /var/log. It can also interact with external ser-
vices that collect crash dumps and even power cycle the
machine if that capability is available. In the very worst
case the server process can at least clearly log the failure
of the job (and any tests it was running) along with the
last known state of the failed test machine.

Automated repair can also be performed. This is im-
plemented in Autoserv in an escalating fashion, first by
making several attempts to put the machine back into a
known good state, then by optionally calling out to any
local infrastructure in place to carry out a complete rein-
stallation of the machine, and finally, if necessary, by es-
calating the repair process to a human. Testing on large
numbers of machines now becomes much more practi-
cal when systems broken by bad kernels (or bad tests)
can be put back into a working state with a minimum of
human intervention.

4.3 Multi-machine tests

Remote control of test execution also introduces the
opportunity to run single tests that span multiple ma-
chines. While this could be done with the Autotest client
alone by running the client on a master test system and
having it drive other slave test systems, this would re-
quire duplicating most of the “remote control” infras-
tructure from the server directly into the client. This
could also be problematic from a security point of view
since, rather than routing control through a single server,
the test machines would require much more liberal ac-
cess to one another.

Since Autotest already established the need for a sep-
arate server mechanism, it was natural to extend it to
support “server-side” testing. Instead of only providing
a fixed set of server operations (install client and run job,
repair, etc.), Autoserv allows testers to supply a Python
control file for execution on the server, just like on the
client. This can be used to implement, for example, a
network test with the following flow:

• Install Autotest client on two machines

• Launch “network server” job on one machine

• Launch “network client” job on one machine

• Wait for both jobs to complete and collect results

No single-machine networking test can duplicate the
same results, particularly when attempting to quantify
networking performance and not just test the stability of
the network stack.

This also allows for execution of larger-scale cluster
testing. Although this begins to creep beyond the scope
of systems testing it still has significant value, not as a
way to test the cluster applications but rather as a way
of testing the impact of kernel and hardware changes
on larger-scale applications. A smaller-scale cluster test
can follow a workflow similar to that for network test-
ing. Alternatively, a server job can make use of pre-
existing cluster setup and management tools, simply
driving the external services and collecting results af-
terwards.

4.4 Mitigating Network Unreliability

While one of the primary goals of Autoserv is to in-
crease reliability, it also introduces new unreliabilities as
an unfortunate side effect. The primary issue is that it in-
troduces a new point of failure, the connection between
the server and the client machines. Working directly
with the client, a user can launch a job on a machine
and return after expected completion, and any transient
network issues will not affect the test result. This is no
longer the case when the job is being controlled by a re-
mote server that continuously monitors the test machine.
The problem can be alleviated somewhat by periodically
polling the remote machine rather than continually mon-
itoring it, but ultimately this only reduces susceptibility
to the problem.

Implementing more reliable communications over
OpenSSH ultimately proved too difficult, primarily due
to the lack of control over and visibility into network
failure modes. One alternative considered was to use
a completely separate communication mechanism, but
this was rejected as impractical. Using SSH provides
Autotest with a robust and secure mechanism for com-
munication and remote execution, without requiring the
large investment of time and labor required to invent a
custom protocol that would then need to be installed on
every test machine.

Instead the solution was to add an alternative SSH im-
plementation that uses a Python package (paramiko1)

1http://www.lag.net/paramiko/

6

instead of launching an external OpenSSH process. Us-
ing an in-process library allowed tighter integration and
communication between Autoserv and the SSH imple-
mentation, allowing the use of long-lived SSH connec-
tions with automatic recovery from network failure. At
the same time modifications were made to the Autotest
client to allow it to be run as a detachable daemon so
that the automatic connection recovery could re-attach
to clients with no impact on the local testing.

Adding paramiko support had the additional benefit
of reducing the overhead of executing SSH operations
from Autoserv by performing them in-process, as well
as simplifying the use of multi-channel SSH sessions
to avoid the cost of continually creating and terminat-
ing new sessions. Within Autoserv this is implemented
in such a way that the paramiko-based implementation
can be used as a drop-in replacement for the OpenSSH-
based one, allowing testers to make use of whichever
is better suited to their needs. OpenSSH works better
“out of the box” with most Linux configurations, while
paramiko, which requires more setup and configuration,
ultimately allows for more reliable, lightweight connec-
tions.

5 Scheduler and Frontend

5.1 Shared machine pool

Autoserv provides a convenient and reliable way for in-
dividual users to test small numbers of platforms. As a
standalone application, however, it cannot possibly ful-
fill the requirement of scaling to thousands of machine
and achieving efficient utilization of a shared machine
pool. To address these needs the Autotest service ar-
chitecture provides a layer on top of Autoserv that al-
lows Autotest to operate as a shared service rather than
a standalone application. Rather than execute the Au-
totest client or server directly, users interact with a cen-
tral service instance through a web- or command-line-
based interface. The service maintains a shared machine
pool and a global queue of test jobs requested by users.
There are three major components that make this usage
model possible. The Autotest Frontend is an interface
for users to schedule and monitor test jobs and manage
the machine pool. The Autotest Scheduler is responsi-
ble for executing and monitoring Autoserv to run tests
on machines in the pool in response to user requests. Fi-
nally, the results analysis interface, not discussed in this

paper, provides a common interface to view, aggregate
and analyze test results.

The Autotest Frontend is a web application for schedul-
ing tests, monitoring ongoing testing, and managing test
machines. It operates on a database which takes the
available tests, the machines in the shared test bed, and
the global queue of test jobs that have been scheduled by
users. The scheduler interacts with the frontend through
this database, executing test jobs that have been sched-
uled and updating the statuses of jobs and machines
based on execution progress.

The frontend supports a number of features to help users
organize the machine pool. First, the system supports
access control lists to restrict the set of users that can run
tests on certain machines. Some machines may be open
for general testing, but some users, particularly hard-
ware testers, will have dedicated machines that cannot
be used by others. Second, the system supports tagging
of machines with arbitrary labels. The most common
usage of this feature is to mark the platform of a ma-
chine, which is often important for both job scheduling
and results analysis. Labels can additionally be used to
declare machine capabilities, such as remote power con-
trol, or to group together large numbers of machines for
easier scheduling.

The scheduler is a daemon running on the server whose
primary purpose is to execute and monitor Autoserv pro-
cesses. The scheduler continuously matches up sched-
uled test jobs with available machines, launches Au-
toserv processes to execute these jobs, and monitors
these processes to completion. It updates the database
with the status of each job throughout execution, allow-
ing the user to track job progress. Upon completion,
the scheduler executes a parser to read Autoserv’s struc-
tured results logs into a database of test results. The
user can then perform powerful analysis of these results
through a special results analysis interface.

An important feature of the scheduler is its statelessness.
While it maintains plenty of in-memory state, all impor-
tant state can be reconstructed from the database. This
is exactly what happens upon scheduler startup, ensur-
ing that when the scheduler needs to restart, all tests will
continue running uninterrupted and machine time won’t
be wasted. This is critical for minimizing user impact
during deployments of new Autotest versions or after a
scheduler crash.

7

In addition, as the test fleet scales to thousands of ma-
chines, automated fleet health management becomes
critical. To this end, the scheduler takes advantage of
Autoserv’s machine diagnosis and repair functionality.
The scheduler launches special Autoserv processes to
verify machine health before each job and perform re-
pairs as necessary. Machines that cannot be repaired
are marked as such in the database, from which a ma-
chine health dashboard can read and summarize ma-
chine health data. Additionally, the scheduler performs
periodic reverification of known dead machines to catch
any manual repairs that may have occurred.

5.2 Distributed execution for scalability

When all Autoserv processes are running on a sin-
gle server, serious performance degradation tends to
set in around 1,000 simultaneous machines under test.
The scheduler supports global throttling of running pro-
cesses to avoid bringing the system to a halt, but this still
leaves a scalability limit imposed by the hardware itself.
To alleviate the problem and allow for further scaling,
the scheduler supports distributing Autoserv processes
among a pool of servers.

A single scheduler coordinates execution among mul-
tiple servers and all results are centralized on a single
archive server after execution completes. Each server
can support roughly 1,000 machines under test, and to
date no Autotest installation has reached a limit on the
number of servers that can be utilized in the system.
In addition to increasing scalability, distributed execu-
tion increases system reliability. Since execution servers
are completely independent of each other, each can fail
completely without bringing the entire service to a halt.
With this distributed execution model, the Autotest ser-
vice at Google has scaled to approximately 5,000 simul-
taneous machines under test.

5.3 Automatic generation of control files

To run a single test, users of Autoserv can run one of the
existing control files written for each test. However, in
order to run multiple tests within a single execution the
user must write a custom control file. While control files
have been kept as simple as possible, writing a custom
control file still presents a major barrier to entry for new
users. To this end, the Autotest Frontend simplifies the

process of running multiple tests by support automatic
generation of control files.

Creating a job through the frontend consists of select-
ing a number of tests, a number of machines, and a va-
riety of job options. The user can select tests from a
list, which includes a description of each test, and the
frontend will automatically generate a control file to run
the selected tests. Users may also specify a kernel to
install and select profilers to enable during testing and
the generated control file will incorporate all of these
options. This allows users to run moderately complex
jobs through Autotest with ease, without requiring any
knowledge of control files. Machines can be similarly
selected from a list, either one-by-one or in bulk based
on filtering by hostname or platform (or any other ma-
chine label). Furthermore, users may request that the
job run on any machine of a particular platform and al-
low the scheduler to select one at run time. This feature
helps increase utilization of shared test machines and
makes it particularly easy to run automated jobs without
a static, dedicated set of machines.

5.4 Support for high-level automation

The bulk of the work for the web frontend is per-
formed on the web server, which operates primarily as
an RPC server. It is written in Python using the Django2

web framework and communicates with a MySQL3

database. The web interface is a fully-fledged applica-
tion running in the browser implemented using Google
Web Toolkit4. It communicates with the server solely
through the RPC interface. There is also a command-
line interface, implemented in Python, which communi-
cates with the server through the same RPC interface.
This is made possible by the use of the lightweight
JSON5 data-interchange format which is easily im-
plemented in either language. Furthermore, custom
scripts can be written that access the RPC interface di-
rectly, providing the full capabilities of the web frontend
through a simple interface. This supports powerful and
easy high-level automation, allowing users to extend the
functionality of Autotest with external scripts layered on
top of the frontend.

2http://www.djangoproject.com/
3http://www.mysql.com/
4http://code.google.com/webtoolkit/
5http://www.json.org

8

6 Future Directions

Autotest has made great strides in automating the exe-
cution of kernel and hardware tests. But test execution
usually occurs in the context of a qualification process,
and the full qualification process remains a tedious and
rather mechanical ordeal. Qualifying a new kernel gen-
erally involves running a collection of functional and
performances tests over a large population of machines
representing a range of hardware platforms. The choice
of tests to execute may be dependent on the outcome
of earlier tests. The results must then be compared to
those for a known stable kernel to find statistically sig-
nificant deviations. Furthermore, a continuous testing
system would like to execute this entire process in a
fully-automated fashion, reporting deviations on a per-
change basis. Qualifying a collection of new machines
involves a similar, but not identical, process. In partic-
ular, individual machines will must be tracked through
a cycle of testing, triaging, and repairing by either up-
dating system software or manipulating hardware com-
ponents. At the same time, this individualized tracking
must scale to hundreds or thousands of machines, and
the process must culminate in a report of significant de-
viations from a known stable platform.

While Autotest abstracts away many of the low-level is-
sues involved in these processes, it does little to auto-
mate these higher-level processes. Successful automa-
tion of such processes is one of the major unsolved prob-
lems for the Autotest project. Fortunately, the high-level
automation support provided by the frontend makes it
possible to prototype solutions to these problems. Such
solutions can be built on top of the Autotest architecture
without requiring modifications to Autotest itself, and
indeed a number of such solutions have been built to
satisfy needs of particular Autotest users. These proto-
types provide a useful path forward to incorporate such
automation into the Autotest system.

In addition, improved reporting remains an area of great
opportunity for Autotest. Autotest’s current reporting
interface can generate a variety of reports, potentially
spanning multiple jobs, but it still requires a significant
manual effort to draw useful high-level conclusions and
it still makes triage of failures a difficult task. To aid
the former task, Autotest needs to support better auto-
mated folding of larger amounts of data into smaller,
more concise reports which highlight significant qual-
ity deviations and hide the rest of the data. For easier

triaging of failures, Autotest needs to better categorize
and organize test output and more efficiently guide users
to the places where failure details are most likely to be
found.

7 Conclusion

A significant amount of developer time has been in-
vested in Autotest to enable the continuous execution of
small- and large-scale tests on thousands of machines.
This effort has successfully overcome numerous prob-
lems with reliability and scalability inherent in testing
low-level systems such as the kernel and hardware com-
ponents. While further work remains to be done to im-
prove and automate the high-level testing workflow, the
fundamental components are in place and already usable
for large-scale testing today.

Acknowledgements

We would like to thank Martin Bligh for his input to and
his reviews of drafts of this paper.

Legal Statement

This work represents the view of the authors and does
not necessarily represent the views of Google.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, produce and service names may be the
trademarks or service marks of others.

References

[1] Linux Test Project.
http://ltp.sourceforge.net.

[2] Jason Baietto. Linux Quality Assurance Utilizing
An Automated Nightly Test System. http:
//www.ccur.com/isddocs/ANTS.pdf.

[3] David Berrera, Li Ge, Stephanie Glass, and Paul
Larson. Testing the Xen Hypervisor and Linux
Virtual Machines. In Linux Symposium, volume 1,
pages 271–288, 2005.

9

[4] Kamalesh Bibulal and Balbir Singh. Keeping the
Linux Kernel Honest. In Linux Symposium,
volume 1, pages 19–29, 2008.

[5] Martin Bligh and Andy P. Whitcroft. Fully
Automated Testing of the Linux Kernel. In Linux
Symposium, volume 1, pages 113–125, 2006.

[6] Aaron Bowen, Paul Fox, James M. Kenefick Jr.,
Ashton Romney, Jason Ruesch, Jeremy Wilde,
and Justin Wilson. Automated Regression
Hunting. In Linux Symposium, volume 2, pages
27–35, 2006.

[7] Tim Chen, Leonid I. Ananiev, and Alexander V.
Tikhonov. Keeping Kernel Performance from
Regressions. In Linux Symposium, volume 1,
pages 93–102, 2007.

[8] Subrata Modak and Balbir Singh. Building a
Robust Linux kernel piggybacking The Linux
Test Project. In Linux Symposium, volume 2,
pages 91–100, 2008.

[9] Alexander Ufimtsev and Liam Murphy.
Automatic System for Linux Kernel Performance
Testing. In Linux Symposium, volume 2, pages
403–408, 2006.

[10] Hiro Yoshioka. Regression Test Framework and
Kernel Execution Coverage. In Linux Symposium,
volume 2, pages 285–296, 2007.

10

autotest-latest/_downloads/autotest_slides.odp
AUTOTEST

				

				

				Martin J. Bligh mbligh@google.com

				Andy Whitcroft apw@shadowen.org

				Steve Howard showard@google.com

				John Admanski jadmanski@google.com

				+ many others

				

				

				http://autotest.kernel.org/

				http://test.kernel.org

				

				

Theme created by

	Sakari Koivunen and Henrik Omma

	Released under the LGPL license.

Autotest Objectives

		Fully automated system testing

				Functional

				Regression

				Performance

				Cluster

				Test suites

		Automate kernel development

				Debug

				Profile

				Share and communicate

				Search for data

		Visualise, analyse, publish, share

				Matrixes

				Graphs

				Dashboards

				Email

Why fully automated testing

for the Linux Kernel?

		Changes in the development model (eg. no 2.7 tree)

		Increasing pace of development

		Increasing diversity of hardware

		Linux more broadly deployed, higher expectations

		People are slow, and either expensive or unreliable.

		Automated testing is cheap, and fast.

		Consistent, available testers that don't disappear.

		Good debug setups - serial consoles, etc.

		Filter hardware problems by replication of machines.

Code flow of the Linux Kernel

Why test upstream?

Test early. Test often.

		Prevent replication of bad code into other code bases

		Fewer users are exposed to the bug

		Code is still fresh in the authors mind

		Change isn't interacting with subsequent changes

		Code is at the top of the stack - easy to remove.

		You're going to hit the same bugs eventually anyway ...

		Goal is to run the SAME tests upstream as downstream

		Kernel is hard to unit test

		Huge number of developers. Loose methodology

Testing isn't just running tests

		Testing is about finding and FIXING problems; running tests is the easy part. We need:

		 Clear PASS / FAIL.

		 Performance statistics (multiple aspects per test)

		 Warnings for unusual events (observed errors, etc)

		 Profiling data (oprofile, /proc files, sar, vmstat, ...)

		 Reproducible situations

		 Hand off to other teams, developers, vendors, etc.

		 Efficient machine sharing, access control

		 Capture procedural knowledge in a system, not a person

State of the union

		Testing done too late, in isolated silos

		Hardware vendors, Distros, ISVs

		Harnesses vs test suites:

				LTP, STP, ABAT/autobench.

		Developers are busy

		Fixing bugs is boring - facilitate

		Waste time doing repetitive tasks

		Poor communication on problem repro

What needs to change?

		We are great at sharing some code

		Terrible at sharing tests, and test results

		Open, pluggable client, share tests (autotest)

		More tests, more machines, further upstream

		Collation of results from multiple sources (tko)

		Push results back to community (email + web)

		Bring together hardware, OS, userspace testing

		FIX THE BUGS!

A closer look inside

So ... how does

this thing work?

Autotest vs Other harnesses

		ONE harness to do performance, stress, multi-machine testing, etc.

		Consistent results & logging structure

		Web and CLI front end

		Web and CLI analysis backend

		Shared machine pool & scheduler

		EASY to write new tests: low entry barrier

		Open source – share tests with vendors

		Control files are powerful!

		Proven scaling – 6000 machines+

Structural overview of autotest

Autotest Client

		Client was the original part of autotest

		Runs on the machine under test

		Pluggable – can be run directly by developer, etc.

		$ bin/autotest <control file>

Anatomy of a test

Autotest server

		Server side consists of:

				Mirror / trigger engine

				Scheduler and job queueing

				One autoserv process per server-side job

		Server capabilities

				Install client from scratch, reboot, flash BIOS

				Run multi-machine jobs

				Machine health monitoring (verify, repair)

				Results collection

				

		$ server/autoserv -m mach1,mach2 -c <control file>

Day in the life of a job

Autotest design goals

		Modular, simple, well defined APIs.

		Separate tests from core

		Powerful and flexible.

		Simple - low barrier to entry for test development

		Distributed, scalable development and maintainership

		Maintainable code

		Robust, consistent results. Good error handling.

		Isolate different failure types.

		Results format is consistent, human readable, and easily machine-parsible.

What is test.kernel.org (tko)?

		A collation, publication, and analysis engine.

		Parse log files into a database

		Draw graphs and pretty pictures

		The “back end” of autotest

		Can take collated input from many sources.

TKO (test.kernel.org) workflow

What tests are supported?

		This is the list of external client tests. We also support custom tests

		Tests / Testsuites

aborttest, aio_dio_bugs, aiostress, barriertest, bash_shared_mapping, bonnie, btreplay, container_functional, cpu_hotplug, cpuset_tasks, cyclictest, dacapo, dbench, dbt2, disktest, download, fio, fs_mark, fsdev, fsfuzzer, fsstress, fsx, hackbench, interbench, iosched_bugs, iozone, iperf, ipv6connect, isic, kernbench, kernelbuild, kvmtest, libhugetlbfs, linus_stress, lmbench, lsb_dtk, ltp, memory_api, netperf2, netpipe, parallel_dd, perfmon, pi_tests, pktgen, posixtest, profiler_test, reaim, real_time_tests, rmaptest, rttester, scrashme, selftest, shrink_slab, signaltest, sleeptest, sparse, spew, stress, sysbench, tbench, tiobench, tsc, unixbench, uptime, xmtest

		Profilers

		iostat, lttng, oprofile, sar, ktrace, catprofile,

		lockmeter, mpstat, readprofile, vmstat, blktrace

		It only takes about 10 minutes to wrap a test

Inside the sausage factory

So ... what do these

control files look like?

And what about tests?

Control files are powerful

		Every test comes with a sample control file

				job.run_test('dbench')

		Most have optional arguments

				job.run_test('dbench', nprocs=4, tag='small')

				job.run_test('dbench', nprocs=32, tag='large')

				

		Enable profilers

				job.profilers.add('oprofile', 'ICACHE_MISSES:100000')

				job.run_test(kernbench)

				job.profilers.delete('oprofile')

		Flow control

		for threads in (2, 64, 1024):

				 job.run_test('kernbench', threads, 5, tag=str(threads))

Control files are powerful

		Handle filesystems

				p = job.partition('/dev/hda2', job.tmpdir)

				p.mkfs('ext4', args='-O ^has_journal')

				p.mount(args='-o nobh')

				try:

				 job.run_test('fsx', dir=job.tmpdir, tag='ext3')

				finally:

				 fs.unmount()

				

		Run multiple tests in parallel

				def kernbench():

				 job.run_test('kernbench', iterations=2, threads=5)

				

				def dbench():

				 job.run_test('dbench')

				

				job.parallel([kernbench], [dbench])

				

Control files are powerful

		Handle filesystems

				p = job.partition('/dev/hda2', job.tmpdir)

				p.mkfs('ext4', args='-O ^has_journal')

				p.mount(args='-o nobh')

				try:

				 job.run_test('fsx', dir=job.tmpdir, tag='ext3')

				finally:

				 fs.unmount()

				

		Build a new kernel and reboot

				def step_init():

				 job.next_step([step_test])

				 testkernel = job.kernel('2.6.16')

				 testkernel.patch('/tmp/fix_everything.patch.bz2')

				 testkernel.config('http://mbligh.org/config/config.up')

				 testkernel.build()

				 testkernel.boot()

				

				def step_test():

				 job.run_test('kernbench', threads=2, iterations=5)

Example test - dbench

import os, re

from autotest_lib.client.bin import utils, test

class dbench(test.test):

 version = 3

 # http://samba.org/ftp/tridge/dbench/dbench-3.04.tar.gz

 def setup(self, tarball='dbench-3.04.tar.gz'):

 tarball = utils.unmap_url(self.bindir, tarball, self.tmpdir)

 utils.extract_tarball_to_dir(tarball, self.srcdir)

 os.chdir(self.srcdir)

 utils.system('patch -p1 < ../dbench_startup.patch')

 utils.system('./configure')

 utils.system('make')

 def run_once(self, dir='.', nprocs=None, seconds=600, args=''):

 if not nprocs:

 nprocs = self.job.cpu_count()

 loadfile = os.path.join(self.srcdir, 'client.txt')

 dbench = os.path.join(self.srcdir, 'dbench')

 cmd = '%s %s %s -D %s -c %s -t %d' % (dbench, nprocs, args,

 dir, loadfile, seconds)

 self.results = utils.system_output(cmd, retain_output=True)

 def postprocess_iteration(self):

 pattern = re.compile(r"Throughput (.*?) MB/sec (.*?) procs")

 (throughput, procs) = pattern.findall(self.results)[0]

 self.write_perf_keyval({'throughput':throughput, 'procs':procs})

This is just an introduction

		Server vs. client side control files & tests

		Comparisons across releases

		Automated bisection chop search

		Better failure capture / debug tools

				sysinfo

				Netconsole, Crashdump

				Hardware probes, fault injectors

				Thermal, power consumption, etc.

Results analysis

Performance analysis

Performance analysis

Why Python?

		Easy to learn, simple syntax

		Easy to maintain, consistent style

		Exception handling

		Powerful

		Has a wide library of modules to leverage

		The spacing "issue"

Summary

		Automate testing

		Move testing upstream

		Autotest is a powerful modular system

				Pluggable into any harness, or standalone

				Flexible control scripts in Python

				Tests, profilers, multi-machine, filesystems

				Performance, stress, functional

		test.kernel.org collates, analyses and publishes

Conclusion

		Thanks to ...

				The Autotest development community

				Google, IBM, OSL

				

		References

				http://autotest.kernel.org/

				http://test.kernel.org

Click to edit the title text format

		Click to edit the outline text format

				Second Outline Level

						Third Outline Level

								Fourth Outline Level

										Fifth Outline Level

												Sixth Outline Level

														Seventh Outline Level

																Eighth Outline Level

																		Ninth Outline Level

Click to edit the notes' format

autotest-latest/_images/hostlist.png

autotest-latest/_images/scheduler_flow.png

autotest-latest/_images/joblist.png

autotest-latest/_images/overall_structure.png

autotest-latest/_images/adminhostlist.png

autotest-latest/_images/frontend.png

autotest-latest/_images/tko.png

autotest-latest/_images/GitTrackingIssueStates.png

autotest-latest/_images/admin.png

autotest-latest/_images/job_flow.png

autotest-latest/_images/hostedit.png

autotest-latest/_images/parser_algorithm.png

autotest-latest/_images/GitTrackingIssueWorkflow.png

autotest-latest/_images/hostview.png

autotest-latest/_images/createjob.png

autotest-latest/_images/metrics_interface.png

autotest-latest/_images/codeflow.png

autotest-latest/_images/jobview.png

autotest-latest/_images/new_tko.png

autotest-latest/_images/graphing_filter.png

autotest-latest/_images/existing_scripts_interface.png

autotest-latest/_images/block_structure.png

autotest-latest/_images/kernbench-moe.png

