

Zhon

Introduction

Zhon is a Python library that provides constants commonly used in Chinese text
processing:

	CJK characters and radicals

	Chinese punctuation marks

	Chinese sentence regular expression pattern

	Pinyin vowels, consonants, lowercase, uppercase, and punctuation

	Pinyin syllable, word, and sentence regular expression patterns

	Zhuyin characters and marks

	Zhuyin syllable regular expression pattern

	CC-CEDICT characters

Installation

Zhon supports Python 2.7 and 3. Install using pip:

$ pip install zhon

If you want to download the latest source code, check out Zhon’s GitHub
repository [https://github.com/tsroten/zhon].

Be sure to report any bugs [https://github.com/tsroten/zhon/issues] you find.
Thanks!

Using Zhon

Zhon contains four modules that export helpful Chinese constants:

	zhon.hanzi

	zhon.pinyin

	zhon.zhuyin

	zhon.cedict

Zhon’s constants are formatted in one of three ways:

	Characters listed individually. These can be used with membership tests
or used to build regular expression patterns. For example, 'aeiou'.

	Character code ranges. These are used to build regular expression patterns.
For example, 'u\0041-\u005A\u0061-\u007A'.

	Regular expression pattern. These are regular expression patterns
that can be used with the regular expression library directly. For
example, '[u\0020-\u007E]+'.

Using the constants listed below is simple. For constants that list the
characters individually, you can perform membership tests or use them in
regular expressions:

>>> '车' in zhon.cedict.traditional
False

>>> # This regular expression finds all characters that aren't considered
... # traditional according to CC-CEDICT
... re.findall('[^{}]'.format(zhon.cedict.traditional), '我买了一辆车')
['买', '辆', '车']

For constants that contain character code ranges, you’ll want to build a
regular expression:

>>> re.findall('[{}]'.format(zhon.hanzi.punctuation), '我买了一辆车。')
['。']

For constants that are regular expression patterns, you can use them directly
with the regular expression library, without formatting them:

>>> re.findall(zhon.hanzi.sentence, '我买了一辆车。妈妈做的菜，很好吃！')
['我买了一辆车。', '妈妈做的菜，很好吃！']

zhon.hanzi

These constants can be used when working directly with Chinese characters.

These constants can be used in a variety of ways, but they can’t directly
distinguish between Chinese, Japanese, and Korean characters/words.
Chapter 12 of The Unicode Standard
(PDF [http://www.unicode.org/versions/Unicode6.2.0/ch12.pdf])
has some useful information about this:

There is some concern that unifying the Han characters may lead to confusion because they are sometimes used differently by the various East Asian languages. Computationally, Han character unification presents no more difficulty than employing a single Latin character set that is used to write languages as different as English and French. Programmers do not expect the characters “c”, “h”, “a”, and “t” alone to tell us whether chat is a French word for cat or an English word meaning “informal talk.” Likewise, we depend on context to identify the American hood (of a car) with the British bonnet. Few computer users are confused by the fact that ASCII can also be used to represent such words as the Welsh word ynghyd, which are strange looking to English eyes. Although it would be convenient to identify words by language for programs such as spell-checkers, it is neither practical nor productive to encode a separate Latin character set for every language that uses it.

	
zhon.hanzi.characters

	
zhon.hanzi.cjk_ideographs

	Character codes and code ranges for pertinent CJK ideograph Unicode characters. This includes:

	CJK Unified Ideographs [http://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)]

	CJK Unified Ideographs Extension A [http://en.wikipedia.org/wiki/CJK_Unified_Ideographs_Extension_A]

	CJK Unified Ideographs Extension B [http://en.wikipedia.org/wiki/CJK_Unified_Ideographs_Extension_B]

	CJK Unified Ideographs Extension C [http://en.wikipedia.org/wiki/CJK_Unified_Ideographs_Extension_C]

	CJK Unified Ideographs Extension D [http://en.wikipedia.org/wiki/CJK_Unified_Ideographs_Extension_D]

	CJK Compatibility Ideographs [http://en.wikipedia.org/wiki/CJK_Compatibility_Ideographs]

	CJK Compatibility Ideographs Supplement [http://en.wikipedia.org/wiki/CJK_Compatibility_Ideographs_Supplement]

	Ideographic number zero

Some of the characters in this constant will not be Chinese characters,
but this is a convienient way to approach the issue. If you’d rather have
an enormous string of Chinese characters from a Chinese dictionary, check
out zhon.cedict.

	
zhon.hanzi.radicals

	Character code ranges for the Kangxi Radicals [http://en.wikipedia.org/wiki/Kangxi_radical#Unicode]
and CJK Radicals Supplement [http://en.wikipedia.org/wiki/CJK_Radicals_Supplement]
Unicode blocks.

	
zhon.hanzi.punctuation

	This is the concatenation of zhon.hanzi.non_stops and
zhon.hanzi.stops.

	
zhon.hanzi.non_stops

	The string '＂＃＄％＆＇（）＊＋，－／：；＜＝＞＠［＼］＾＿｀｛｜｝～｟｠｢｣､、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏'.
This contains Chinese punctuation marks, excluding punctuation marks that
function as stops.

	
zhon.hanzi.stops

	The string '！？｡。'. These punctuation marks function as stops.

	
zhon.hanzi.sent

	
zhon.hanzi.sentence

	A regular expression pattern for a Chinese sentence. A sentence is defined
as a series of CJK characters (as defined by
zhon.hanzi.characters) and non-stop punctuation marks followed
by a stop and zero or more container-closing punctuation marks (e.g.
apostrophe and brackets).

>>> re.findall(zhon.hanzi.sentence, '我买了一辆车。')
['我买了一辆车。']

zhon.pinyin

These constants can be used when working with Pinyin.

	
zhon.pinyin.vowels

	The string 'aeiouvüāēīōūǖáéíóúǘǎěǐǒǔǚàèìòùǜAEIOUVÜĀĒĪŌŪǕÁÉÍÓÚǗǍĚǏǑǓǙÀÈÌÒÙǛ'. This contains every Pinyin vowel (lowercase and uppercase).

	
zhon.pinyin.consonants

	The string 'bpmfdtnlgkhjqxzcsrwyBPMFDTNLGKHJQXZCSRWY'. This
contains every Pinyin consonant (lowercase and uppercase).

	
zhon.pinyin.lowercase

	The string 'bpmfdtnlgkhjqxzcsrwyaeiouvüāēīōūǖáéíóúǘǎěǐǒǔǚàèìòùǜ'. This contains every lowercase Pinyin vowel and consonant.

	
zhon.pinyin.uppercase

	The string 'BPMFDTNLGKHJQXZCSRWYAEIOUVÜĀĒĪŌŪǕÁÉÍÓÚǗǍĚǏǑǓǙÀÈÌÒÙǛ'.
This contains every uppercase vowel and consonant.

	
zhon.pinyin.marks

	The string "·012345:-'". This contains all Pinyin marks that have
special meaning: a middle dot and numbers for indicating tone, a colon for
easily writing ü (‘u:’), a hyphen for connecting syllables within words,
and an apostrophe for separating a syllable beginning with a vowel from
the previous syllable in its word. All of these marks can be used within a
valid Pinyin word.

	
zhon.pinyin.punctuation

	The concatenation of zhon.pinyin.non_stops and
zhon.pinyin.stops.

	
zhon.pinyin.non_stops

	The string '"#$%&\'()*+,-/:;<=>@[\]^_`{|}~"'. This contains every
ASCII punctuation mark that doesn’t function as a stop.

	
zhon.pinyin.stops

	The string '.!?'. This contains every ASCII punctuation mark that
functions as a stop.

	
zhon.pinyin.printable

	The concatenation of zhon.pinyin.vowels,
zhon.pinyin.consonants, zhon.pinyin.marks,
zhon.pinyin.punctuation, and string.whitespace [https://docs.python.org/3/library/string.html#string.whitespace]. This
is essentially a Pinyin whitelist for complete Pinyin sentences – it’s
every possible valid character a Pinyin string can use assuming all
non-Chinese words that might be included (like proper nouns) use ASCII.

Validating and splitting Pinyin isn’t as simple as checking that only
valid characters exist or matching maximum-length valid syllables.
The regular expression library’s lookahead features are used in this
module’s regular expression patterns to ensure that only valid Pinyin
syllables are matched. The approach used to segment a string into valid
Pinyin syllables is roughly:

	Match the longest possible valid syllable.

	If that match is followed directly by a vowel, drop that match and try
again with the next longest possible valid syllable.

Additionally, lookahead assertions are used to ensure that hyphens and
apostrophes are only accepted when they are used correctly. This helps to
weed out non-Pinyin strings.

	
zhon.pinyin.syl

	
zhon.pinyin.syllable

	A regular expression pattern for a valid Pinyin syllable (accented or
numbered). Compile with re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to
accept uppercase letters as well.

>>> re.findall(zhon.pinyin.syllable, 'Shū zài zhuōzi shàngmian. Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shū', 'zài', 'zhuō', 'zi', 'shàng', 'mian', 'Shu1', 'zai4', 'zhuo1', 'zi5', 'shang4', 'mian5']

	
zhon.pinyin.a_syl

	
zhon.pinyin.acc_syl

	
zhon.pinyin.accented_syllable

	A regular expression for a valid accented Pinyin syllable. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.acc_syl, 'Shū zài zhuōzi shàngmian.', re.IGNORECASE)
['Shū', 'zài', 'zhuō', 'zi', 'shàng', 'mian']

	
zhon.pinyin.n_syl

	
zhon.pinyin.num_syl

	
zhon.pinyin.numbered_syllable

	A regular expression for a valid numbered Pinyin syllable. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.num_syl, 'Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shu1', 'zai4', 'zhuo1', 'zi5', 'shang4', 'mian5']

	
zhon.pinyin.word

	A regular expression pattern for a valid Pinyin word (accented or
numbered). Compile with re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to
accept uppercase letters as well.

>>> re.findall(zhon.pinyin.word, 'Shū zài zhuōzi shàngmian. Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shū', 'zài', 'zhuōzi', 'shàngmian', 'Shu1', 'zai4', 'zhuo1zi5', 'shang4mian5'

	
zhon.pinyin.a_word

	
zhon.pinyin.acc_word

	
zhon.pinyin.accented_word

	A regular expression for a valid accented Pinyin word. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.acc_word, 'Shū zài zhuōzi shàngmian.', re.IGNORECASE)
['Shū', 'zài', 'zhuōzi', 'shàngmian']

	
zhon.pinyin.n_word

	
zhon.pinyin.num_word

	
zhon.pinyin.numbered_word

	A regular expression for a valid numbered Pinyin word. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.num_word, 'Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shu1', 'zai4', 'zhuo1zi5', 'shang4mian5']

	
zhon.pinyin.sent

	
zhon.pinyin.sentence

	A regular expression pattern for a valid Pinyin sentence (accented or
numbered). Compile with re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to
accept uppercase letters as well.

>>> re.findall(zhon.pinyin.sentence, 'Shū zài zhuōzi shàngmian. Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shū zài zhuōzi shàngmian.', 'Shu1 zai4 zhuo1zi5 shang4mian5.']

	
zhon.pinyin.a_sent

	
zhon.pinyin.acc_sent

	
zhon.pinyin.accented_sentence

	A regular expression for a valid accented Pinyin sentence. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.acc_sent, 'Shū zài zhuōzi shàngmian.', re.IGNORECASE)
['Shū zài zhuōzi shàngmian.']

	
zhon.pinyin.n_sent

	
zhon.pinyin.num_sent

	
zhon.pinyin.numbered_sentence

	A regular expression for a valid numbered Pinyin sentence. Compile with
re.IGNORECASE [https://docs.python.org/3/library/re.html#re.IGNORECASE] (re.I [https://docs.python.org/3/library/re.html#re.I]) to accept uppercase letters as
well.

>>> re.findall(zhon.pinyin.num_sent, 'Shu1 zai4 zhuo1zi5 shang4mian5.', re.IGNORECASE)
['Shu1 zai4 zhuo1zi5 shang4mian5.']

zhon.zhuyin

These constants can be used when working with Zhuyin (Bopomofo).

	
zhon.zhuyin.characters

	The string 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄝㄜㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧ'.
This contains all Zhuyin characters as defined by the Bomopofo Unicode
block [http://en.wikipedia.org/wiki/Bopomofo_(Unicode_block)]. It does
not include the
Bomopofo Extended block [http://en.wikipedia.org/wiki/Bopomofo_Extended_(Unicode_block)]
that defines characters used in non-standard dialects or minority
languages.

	
zhon.zhuyin.marks

	The string 'ˇˊˋ˙'. This contains the Zhuyin tone marks.

	
zhon.zhuyin.syl

	
zhon.zhuyin.syllable

	A regular expression pattern for a valid Zhuyin syllable.

>>> re.findall(zhon.zhuyin.syllable, 'ㄓㄨˋ ㄧㄣ ㄈㄨˊ ㄏㄠˋ')
['ㄓㄨˋ', 'ㄧㄣ', 'ㄈㄨˊ', 'ㄏㄠˋ']

zhon.cedict

These constants are built from the CC-CEDICT dictionary [http://cc-cedict.org/wiki/].
They aren’t guaranteed to contain every possible Chinese character. They only
provide characters that exist in the CC-CEDICT dictionary.

	
zhon.cedict.all

	A string containing all Chinese characters found in CC-CEDICT [http://cc-cedict.org/wiki/].

	
zhon.cedict.trad

	
zhon.cedict.traditional

	A string containing characters considered by CC-CEDICT [http://cc-cedict.org/wiki/] to be Traditional Chinese characters.
Some of these characters are also present in
zhon.cedict.simplified because many characters were left
untouched by the simplification process.

	
zhon.cedict.simp

	
zhon.cedict.simplified

	A string containing characters considered by CC-CEDICT [http://cc-cedict.org/wiki/] to be Simplified Chinese characters.
Some of these characters are also present in
zhon.cedict.traditional because many characters were left
untouched by the simplification process.

 Python Module Index

 z

 		 	

 		
 z	

 	[image: -]
 	
 zhon	

 	
 	
 zhon.cedict	

 	
 	
 zhon.hanzi	

 	
 	
 zhon.pinyin	

 	
 	
 zhon.zhuyin	

Index

 A
 | C
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	a_sent (in module zhon.pinyin)

 	a_syl (in module zhon.pinyin)

 	a_word (in module zhon.pinyin)

 	acc_sent (in module zhon.pinyin)

 	acc_syl (in module zhon.pinyin)

 	
 	acc_word (in module zhon.pinyin)

 	accented_sentence (in module zhon.pinyin)

 	accented_syllable (in module zhon.pinyin)

 	accented_word (in module zhon.pinyin)

 	all (in module zhon.cedict)

C

 	
 	characters (in module zhon.hanzi)

 	(in module zhon.zhuyin)

 	
 	cjk_ideographs (in module zhon.hanzi)

 	consonants (in module zhon.pinyin)

L

 	
 	lowercase (in module zhon.pinyin)

M

 	
 	marks (in module zhon.pinyin)

 	(in module zhon.zhuyin)

N

 	
 	n_sent (in module zhon.pinyin)

 	n_syl (in module zhon.pinyin)

 	n_word (in module zhon.pinyin)

 	non_stops (in module zhon.hanzi)

 	(in module zhon.pinyin)

 	
 	num_sent (in module zhon.pinyin)

 	num_syl (in module zhon.pinyin)

 	num_word (in module zhon.pinyin)

 	numbered_sentence (in module zhon.pinyin)

 	numbered_syllable (in module zhon.pinyin)

 	numbered_word (in module zhon.pinyin)

P

 	
 	printable (in module zhon.pinyin)

 	
 	punctuation (in module zhon.hanzi)

 	(in module zhon.pinyin)

R

 	
 	radicals (in module zhon.hanzi)

S

 	
 	sent (in module zhon.hanzi)

 	(in module zhon.pinyin)

 	sentence (in module zhon.hanzi)

 	(in module zhon.pinyin)

 	simp (in module zhon.cedict)

 	simplified (in module zhon.cedict)

 	
 	stops (in module zhon.hanzi)

 	(in module zhon.pinyin)

 	syl (in module zhon.pinyin)

 	(in module zhon.zhuyin)

 	syllable (in module zhon.pinyin)

 	(in module zhon.zhuyin)

T

 	
 	trad (in module zhon.cedict)

 	
 	traditional (in module zhon.cedict)

U

 	
 	uppercase (in module zhon.pinyin)

V

 	
 	vowels (in module zhon.pinyin)

W

 	
 	word (in module zhon.pinyin)

Z

 	
 	zhon (module)

 	zhon.cedict (module)

 	
 	zhon.hanzi (module)

 	zhon.pinyin (module)

 	zhon.zhuyin (module)

 nav.xhtml

 Table of Contents

 		Zhon

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

