

    
      
          
            
  
Yellowbrick: Machine Learning Visualization

[image: _images/visualizers.png]
Yellowbrick is a suite of visual diagnostic tools called “Visualizers” that extend the Scikit-Learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your models! For more on Yellowbrick, please see the About.

If you’re new to Yellowbrick, checkout the Quick Start or skip ahead to the Model Selection Tutorial. Yellowbrick is a rich library with many Visualizers being added on a regular basis. For details on specific Visualizers and extended usage head over to the Visualizers and API. Interested in contributing to Yellowbrick? Checkout the contributing guide [https://scikit-learn.org/stable/developers/contributing.html#contributing] . If you’ve signed up to do user testing, head over to the User Testing Instructions (and thank you!).


Visualizers

Visualizers are estimators (objects that learn from data) whose primary objective is to create visualizations that allow insight into the model selection process. In Scikit-Learn terms, they can be similar to transformers when visualizing the data space or wrap an model estimator similar to how the “ModelCV” (e.g. RidgeCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html], LassoCV [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html]) methods work. The primary goal of Yellowbrick is to create a sensical API similar to Scikit-Learn. Some of our most popular visualizers include:


Feature Visualization


	Rank Features: pairwise ranking of features to detect relationships


	Parallel Coordinates: horizontal visualization of instances


	Radial Visualization: separation of instances around a circular plot


	PCA Projection: projection of instances based on principal components


	Manifold Visualization: high dimensional visualization with manifold learning


	Feature Importances: rank features by importance or linear coefficients for a specific model


	Recursive Feature Elimination: find the best subset of features based on importance


	Joint Plots: direct data visualization with feature selection







Classification Visualization


	Class Prediction Error: shows error and support in classification


	Classification Report: visual representation of precision, recall, and F1


	ROC/AUC Curves: receiver operator characteristics and area under the curve


	Precision-Recall Curves: precision vs recall for different probability thresholds


	Confusion Matrices: visual description of class decision making


	Discrimination Threshold: find a threshold that best separates binary classes







Regression Visualization


	Prediction Error Plot: find model breakdowns along the domain of the target


	Residuals Plot: show the difference in residuals of training and test data


	Alpha Selection: show how the choice of alpha influences regularization







Clustering Visualization


	K-Elbow Plot: select k using the elbow method and various metrics


	Silhouette Plot: select k by visualizing silhouette coefficient values


	Intercluster Distance Maps: show relative distance and size/importance of clusters







Model Selection Visualization


	Validation Curve: tune a model with respect to a single hyperparameter


	Learning Curve: show if a model might benefit from more data or less complexity







Target Visualization


	Balanced Binning Reference: generate a histogram with vertical lines showing the recommended value point to bin the data into evenly distributed bins


	Class Balance: see how the distribution of classes affects the model


	Feature Correlation: display the correlation between features and dependent variables







Text Visualization


	Term Frequency: visualize the frequency distribution of terms in the corpus


	t-SNE Corpus Visualization: use stochastic neighbor embedding to project documents


	Dispersion Plot: visualize how key terms are dispersed throughout a corpus




… and more! Visualizers are being added all the time; be sure to check the examples (or even the develop branch [https://github.com/DistrictDataLabs/yellowbrick/tree/develop]) and feel free to contribute your ideas for new Visualizers!






Getting Help

Yellowbrick is a welcoming, inclusive project in the tradition of matplotlib and scikit-learn. Similar to those projects, we follow the Python Software Foundation Code of Conduct [http://www.python.org/psf/codeofconduct/]. Please don’t hesitate to reach out to us for help or if you have any contributions or bugs to report!

The primary way to ask for help with Yellowbrick is to post on our Google Groups Listserv [https://groups.google.com/forum/#!forum/yellowbrick]. This is an email list/forum that members of the community can join and respond to each other; you should be able to receive the quickest response here. Please also consider joining the group so you can respond to questions! You can also ask questions on Stack Overflow [http://stackoverflow.com/questions/tagged/yellowbrick] and tag them with “yellowbrick”. Or you can add issues on GitHub. You can also tweet or direct message us on Twitter @scikit_yb [https://twitter.com/scikit_yb].




Open Source

The Yellowbrick license [https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt] is an open source Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0] license. Yellowbrick enjoys a very active developer community; please consider joining them and contributing [https://github.com/DistrictDataLabs/yellowbrick/blob/develop/CONTRIBUTING.md]!

Yellowbrick is hosted on GitHub [https://github.com/DistrictDataLabs/yellowbrick/]. The issues [https://github.com/DistrictDataLabs/yellowbrick/issues/] and pull requests [https://github.com/DistrictDataLabs/yellowbrick/pulls] are tracked there.
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Quick Start

If you’re new to Yellowbrick, this guide will get you started and help you include visualizers in your machine learning workflow. Before we begin, however, there are several notes about development environments that you should consider.

Yellowbrick has two primary dependencies: scikit-learn [http://scikit-learn.org/] and matplotlib [http://matplotlib.org/]. If you do not have these Python packages, they will be installed alongside Yellowbrick. Note that Yellowbrick works best with scikit-learn version 0.18 or later and matplotlib version 2.0 or later. Both of these packages require some C code to be compiled, which can be difficult on some systems, like Windows. If you’re having trouble, try using a distribution of Python that includes these packages like Anaconda [https://anaconda.org].

Yellowbrick is also commonly used inside of a Jupyter Notebook [http://jupyter.org/] alongside Pandas [http://pandas.pydata.org/] data frames. Notebooks make it especially easy to coordinate code and visualizations; however, you can also use Yellowbrick inside of regular Python scripts, either saving figures to disk or showing figures in a GUI window. If you’re having trouble with this, please consult matplotlib’s backends documentation [https://matplotlib.org/faq/usage_faq.html#what-is-a-backend].


Note

Jupyter, Pandas, and other ancillary libraries like NLTK for text visualizers are not installed with Yellowbrick and must be installed separately.




Installation

Yellowbrick is compatible with Python 2.7 or later, but it is preferred to use Python 3.5 or later to take full advantage of all functionality. The simplest way to install Yellowbrick is from PyPI [https://pypi.python.org/pypi/yellowbrick] with pip [https://docs.python.org/3/installing/], Python’s preferred package installer.

$ pip install yellowbrick





Note that Yellowbrick is an active project and routinely publishes new releases with more visualizers and updates. In order to upgrade Yellowbrick to the latest version, use pip as follows.

$ pip install -U yellowbrick





You can also use the -U flag to update scikit-learn, matplotlib, or any other third party utilities that work well with Yellowbrick to their latest versions.

If you’re using Anaconda, you can take advantage of the conda [https://conda.io/docs/intro.html] utility to install the Anaconda Yellowbrick package [https://anaconda.org/DistrictDataLabs/yellowbrick]:

conda install -c districtdatalabs yellowbrick






Warning

There is a known bug [https://github.com/DistrictDataLabs/yellowbrick/issues/205] installing matplotlib on Linux with Anaconda. If you’re having trouble please let us know on GitHub.



Once installed, you should be able to import Yellowbrick without an error, both in Python and inside of Jupyter notebooks. Note that because of matplotlib, Yellowbrick does not work inside of a virtual environment without jumping through some hoops.




Using Yellowbrick

The Yellowbrick API is specifically designed to play nicely with scikit-learn. The primary interface is therefore a Visualizer – an object that learns from data to produce a visualization. Visualizers are scikit-learn Estimator [http://scikit-learn.org/stable/developers/contributing.html#apis-of-scikit-learn-objects] objects and have a similar interface along with methods for drawing. In order to use visualizers, you simply use the same workflow as with a scikit-learn model, import the visualizer, instantiate it, call the visualizer’s fit() method, then in order to render the visualization, call the visualizer’s poof() method, which does the magic!

For example, there are several visualizers that act as transformers, used to perform feature analysis prior to fitting a model. The following example visualizes a high-dimensional data set with parallel coordinates:

from yellowbrick.features import ParallelCoordinates

visualizer = ParallelCoordinates()
visualizer.fit_transform(X, y)
visualizer.poof()





As you can see, the workflow is very similar to using a scikit-learn transformer, and visualizers are intended to be integrated along with scikit-learn utilities. Arguments that change how the visualization is drawn can be passed into the visualizer upon instantiation, similarly to how hyperparameters are included with scikit-learn models.

The poof() method finalizes the drawing (adding titles, axes labels, etc) and then renders the image on your behalf. If you’re in a Jupyter notebook, the image should just appear. If you’re in a Python script, a GUI window should open with the visualization in interactive form. However, you can also save the image to disk by passing in a file path as follows:

visualizer.poof(outpath="pcoords.png")





The extension of the filename will determine how the image is rendered. In addition to the .png extension, .pdf is also commonly used.


Note

Data input to Yellowbrick is identical to that of scikit-learn: a dataset, X, which is a two-dimensional matrix of shape (n,m) where n is the number of instances (rows) and m is the number of features (columns). The dataset X can be a Pandas DataFrame, a NumPy array, or even a Python list of lists. Optionally, a vector y, which represents the target variable (in supervised learning), can also be supplied as input. The target y must have length n – the same number of elements as rows in X and can be a Pandas Series, NumPy array, or Python list.



Visualizers can also wrap scikit-learn models for evaluation, hyperparameter tuning and algorithm selection. For example, to produce a visual heatmap of a classification report, displaying the precision, recall, F1 score, and support for each class in a classifier, wrap the estimator in a visualizer as follows:

from yellowbrick.classifier import ClassificationReport
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
visualizer = ClassificationReport(model)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()





Only two additional lines of code are required to add visual evaluation of the classifier model, the instantiation of a ClassificationReport visualizer that wraps the classification estimator and a call to its poof() method. In this way, Visualizers enhance the machine learning workflow without interrupting it.

The class-based API is meant to integrate with scikit-learn directly, however on occasion there are times when you just need a quick visualization. Yellowbrick supports quick functions for taking advantage of this directly. For example, the two visual diagnostics could have been instead implemented as follows:

from sklearn.linear_model import LogisticRegression

from yellowbrick.features import parallel_coordinates
from yellowbrick.classifier import classification_report

# Displays parallel coordinates
g = parallel_coordinates(X, y)

# Displays classification report
g = classification_report(LogisticRegression(), X, y)





These quick functions give you slightly less control over the machine learning workflow, but quickly get you diagnostics on demand and are very useful in exploratory processes.




Walkthrough

Consider a regression analysis as a simple example of the use of visualizers in the machine learning workflow. Using a bike sharing dataset [https://s3.amazonaws.com/ddl-data-lake/yellowbrick/bikeshare.zip] based upon the one uploaded to the UCI Machine Learning Repository [https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset], we would like to predict the number of bikes rented in a given hour based on features like the season, weather, or if it’s a holiday.


Note

We have updated the dataset from the UCI ML repository to make it a bit easier to load into Pandas; make sure you download the Yellowbrick version of the dataset [https://s3.amazonaws.com/ddl-data-lake/yellowbrick/bikeshare.zip].



After downloading the dataset and unzipping it in your current working directory, we can load our data as follows:

import pandas as pd

data = pd.read_csv('bikeshare.csv')
X = data[[
    "season", "month", "hour", "holiday", "weekday", "workingday",
    "weather", "temp", "feelslike", "humidity", "windspeed"
]]
y = data["riders"]





The machine learning workflow is the art of creating model selection triples, a combination of features, algorithm, and hyperparameters that uniquely identifies a model fitted on a specific data set. As part of our feature selection, we want to identify features that have a linear relationship with each other, potentially introducing covariance into our model and breaking OLS (guiding us toward removing features or using regularization). We can use the Rank2D [http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.rankd] visualizer to compute Pearson correlations between all pairs of features as follows:

from yellowbrick.features import Rank2D

visualizer = Rank2D(algorithm="pearson")
visualizer.fit_transform(X)
visualizer.poof()





[image: _images/bikeshare_rank2d.png]
This figure shows us the Pearson correlation between pairs of features such that each cell in the grid represents two features identified in order on the x and y axes and whose color displays the magnitude of the correlation. A Pearson correlation of 1.0 means that there is a strong positive, linear relationship between the pairs of variables and a value of -1.0 indicates a strong negative, linear relationship (a value of zero indicates no relationship). Therefore we are looking for dark red and dark blue boxes to identify further.

In this chart, we see that the features temp and feelslike have a strong correlation and also that the feature season has a strong correlation with the feature month. This seems to make sense; the apparent temperature we feel outside depends on the actual temperature and other airquality factors, and the season of the year is described by the month! To dive in deeper, we can use the JointPlotVisualizer [http://www.scikit-yb.org/en/latest/api/yellowbrick.features.html#module-yellowbrick.features.jointplot] to inspect those relationships.

from yellowbrick.features import JointPlotVisualizer

visualizer = JointPlotVisualizer(feature='temp', target='feelslike')
visualizer.fit(X['temp'], X['feelslike'])
visualizer.poof()





[image: _images/temp_feelslike_jointplot.png]
This visualizer plots a scatter diagram of the apparent temperature on the y axis and the actual measured temperature on the x axis and draws a line of best fit using a simple linear regression. Additionally, univariate distributions are shown as histograms above the x axis for temp and next to the y axis for feelslike.  The JointPlotVisualizer gives an at-a-glance view of the very strong positive correlation of the features, as well as the range and distribution of each feature. Note that the axes are normalized to the space between zero and one, a common technique in machine learning to reduce the impact of one feature over another.

This plot is very interesting because there appear to be some outliers in the dataset. These instances may need to be manually removed in order to improve the quality of the final model because they may represent data input errors, and potentially train the model on a skewed dataset which would return unreliable model predictions. The first instance of outliers occurs in the temp data where the feelslike  value is approximately equal to 0.25 - showing a horizontal line of data, likely created by input error.

We can also see that more extreme temperatures create an exaggerated effect in perceived temperature; the colder it is, the colder people are likely to believe it to be, and the warmer it is, the warmer it is perceived to be, with moderate temperatures generally having little effect on individual perception of comfort. This gives us a clue that feelslike  may be a better feature than temp - promising a more stable dataset, with less risk of running into outliers or errors.

We can ultimately confirm the assumption by training our model on either value, and scoring the results. If the temp  value is indeed less reliable, we should remove the temp  variable in favor of feelslike . In the meantime, we will use the feelslike  value due to the absence of outliers and input error.

At this point, we can train our model; let’s fit a linear regression to our model and plot the residuals.

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.1
)

visualizer = ResidualsPlot(LinearRegression())
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()





[image: _images/bikeshare_ols_residuals.png]
The residuals plot shows the error against the predicted value (the number of riders), and allows us to look for heteroskedasticity in the model; e.g. regions in the target where the error is greatest. The shape of the residuals can strongly inform us where OLS (ordinary least squares) is being most strongly affected by the components of our model (the features). In this case, we can see that the lower predicted number of riders results in lower model error, and conversely that the the higher predicted number of riders results in higher model error. This indicates that our model has more noise in certain regions of the target or that two variables are colinear, meaning that they are injecting error as the noise in their relationship changes.

The residuals plot also shows how the model is injecting error, the bold horizontal line at residuals = 0 is no error, and any point above or below that line indicates the magnitude of error. For example, most of the residuals are negative, and since the score is computed as actual - expected, this means that the expected value is bigger than the actual value most of the time; e.g. that our model is primarily guessing more than the actual number of riders. Moreover, there is a very interesting boundary along the top right of the residuals graph, indicating an interesting effect in model space; possibly that some feature is strongly weighted in the region of that model.

Finally the residuals are colored by training and test set. This helps us identify errors in creating train and test splits. If the test error doesn’t match the train error then our model is either overfit or underfit. Otherwise it could be an error in shuffling the dataset before creating the splits.

Along with generating the residuals plot, we also measured the performance by “scoring” our model on the test data, e.g. the code snippet visualizer.score(X_test, y_test). Because we used a linear regression model, the scoring consists of finding the R-squared value of the data [http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.score], which is a statistical measure of how close the data are to the fitted regression line. The R-squared value of any model may vary slightly between prediction/test runs, however it should generally be comparable. In our case, the R-squared value for this model was only 0.328, suggesting that linear correlation may not be the most appropriate to use for fitting this data. Let’s see if we can fit a better model using regularization, and explore another visualizer at the same time.

import numpy as np

from sklearn.linear_model import RidgeCV
from yellowbrick.regressor import AlphaSelection

alphas = np.logspace(-10, 1, 200)
visualizer = AlphaSelection(RidgeCV(alphas=alphas))
visualizer.fit(X, y)
visualizer.poof()





[image: _images/bikeshare_ridge_alphas.png]
When exploring model families, the primary thing to consider is how the model becomes more complex. As the model increases in complexity, the error due to variance increases because the model is becoming more overfit and cannot generalize to unseen data. However, the simpler the model is the more error there is likely to be due to bias; the model is underfit and therefore misses its target more frequently. The goal therefore of most machine learning is to create a model that is just complex enough, finding a middle ground between bias and variance.

For a linear model, complexity comes from the features themselves and their assigned weight according to the model. Linear models therefore expect the least number of features that achieves an explanatory result. One technique to achieve this is regularization, the introduction of a parameter called alpha that normalizes the weights of the coefficients with each other and penalizes complexity. Alpha and complexity have an inverse relationship, the higher the alpha, the lower the complexity of the model and vice versa.

The question therefore becomes how you choose alpha. One technique is to fit a number of models using cross-validation and selecting the alpha that has the lowest error. The AlphaSelection visualizer allows you to do just that, with a visual representation that shows the behavior of the regularization. As you can see in the figure above, the error decreases as the value of alpha increases up until our chosen value (in this case, 3.181) where the error starts to increase. This allows us to target the bias/variance trade-off and to explore the relationship of regularization methods (for example Ridge vs. Lasso).

We can now train our final model and visualize it with the PredictionError visualizer:

from sklearn.linear_model import Ridge
from yellowbrick.regressor import PredictionError

visualizer = PredictionError(Ridge(alpha=3.181))
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()





[image: _images/bikeshare_ridge_prediction_error.png]
The prediction error visualizer plots the actual (measured) vs. expected (predicted) values against each other. The dotted black line is the 45 degree line that indicates zero error. Like the residuals plot, this allows us to see where error is occurring and in what magnitude.

In this plot, we can see that most of the instance density is less than 200 riders. We may want to try orthogonal matching pursuit or splines to fit a regression that takes into account more regionality. We can also note that that weird topology from the residuals plot seems to be fixed using the Ridge regression, and that there is a bit more balance in our model between large and small values. Potentially the Ridge regularization cured a covariance issue we had between two features. As we move forward in our analysis using other model forms, we can continue to utilize visualizers to quickly compare and see our results.

Hopefully this workflow gives you an idea of how to integrate Visualizers into machine learning with scikit-learn and inspires you to use them in your work and write your own! For additional information on getting started with Yellowbrick, check out the Model Selection Tutorial. After that you can get up to speed on specific visualizers detailed in the Visualizers and API.







          

      

      

    

  

    
      
          
            
  
Model Selection Tutorial

In this tutorial, we are going to look at scores for a variety of
Scikit-Learn [http://scikit-learn.org] models and compare them using
visual diagnostic tools from Yellowbrick [http://www.scikit-yb.org]
in order to select the best model for our data.


The Model Selection Triple

Discussions of machine learning are frequently characterized by a singular focus on model selection. Be it logistic regression, random forests, Bayesian methods, or artificial neural networks, machine learning practitioners are often quick to express their preference. The reason for this is mostly historical. Though modern third-party machine learning libraries have made the deployment of multiple models appear nearly trivial, traditionally the application and tuning of even one of these algorithms required many years of study. As a result, machine learning practitioners tended to have strong preferences for particular (and likely more familiar) models over others.

However, model selection is a bit more nuanced than simply picking the “right” or “wrong” algorithm. In practice, the workflow includes:



	selecting and/or engineering the smallest and most predictive feature set


	choosing a set of algorithms from a model family, and


	tuning the algorithm hyperparameters to optimize performance.







The model selection triple was first described in a 2015 SIGMOD [http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf] paper by Kumar et al. In their paper, which concerns the development of next-generation database systems built to anticipate predictive modeling, the authors cogently express that such systems are badly needed due to the highly experimental nature of machine learning in practice. “Model selection,” they explain, “is iterative and exploratory because the space of [model selection triples] is usually infinite, and it is generally impossible for analysts to know a priori which [combination] will yield satisfactory accuracy and/or insights.”

Recently, much of this workflow has been automated through grid search methods, standardized APIs, and GUI-based applications. In practice, however, human intuition and guidance can more effectively hone in on quality models than exhaustive search. By visualizing the model selection process, data scientists can steer towards final, explainable models and avoid pitfalls and traps.

The Yellowbrick library is a diagnostic visualization platform for machine learning that allows data scientists to steer the model selection process. Yellowbrick extends the Scikit-Learn API with a new core object: the Visualizer. Visualizers allow visual models to be fit and transformed as part of the Scikit-Learn Pipeline process, providing visual diagnostics throughout the transformation of high dimensional data.




About the Data

This tutorial uses a modified version of the mushroom dataset [https://github.com/rebeccabilbro/rebeccabilbro.github.io/blob/master/data/agaricus-lepiota.txt] from
the UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/].
Our objective is to predict if a mushroom is poisonous or edible based on
its characteristics.

The data include descriptions of hypothetical samples corresponding to
23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each
species was identified as definitely edible, definitely poisonous, or of
unknown edibility and not recommended (this latter class was combined
with the poisonous one).

Our file, “agaricus-lepiota.txt,” contains information for 3 nominally
valued attributes and a target value from 8124 instances of mushrooms
(4208 edible, 3916 poisonous).

Let’s load the data with Pandas.

import os
import pandas as pd

names = [
    'class',
    'cap-shape',
    'cap-surface',
    'cap-color'
]

mushrooms = os.path.join('data','agaricus-lepiota.txt')
dataset   = pd.read_csv(mushrooms)
dataset.columns = names
dataset.head()














	.

	class

	cap-shape

	cap-surface

	cap-color





	0

	edible

	bell

	smooth

	white



	1

	poisonous

	convex

	scaly

	white



	2

	edible

	convex

	smooth

	gray



	3

	edible

	convex

	scaly

	yellow



	4

	edible

	bell

	smooth

	white






features = ['cap-shape', 'cap-surface', 'cap-color']
target   = ['class']

X = dataset[features]
y = dataset[target]








Feature Extraction

Our data, including the target, is categorical. We will need to change
these values to numeric ones for machine learning. In order to extract
this from the dataset, we’ll have to use Scikit-Learn transformers to
transform our input dataset into something that can be fit to a model.
Luckily, Sckit-Learn does provide a transformer for converting
categorical labels into numeric integers:
sklearn.preprocessing.LabelEncoder [http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html].
Unfortunately it can only transform a single vector at a time, so we’ll
have to adapt it in order to apply it to multiple columns.

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder, OneHotEncoder


class EncodeCategorical(BaseEstimator, TransformerMixin):
    """
    Encodes a specified list of columns or all columns if None.
    """

    def __init__(self, columns=None):
        self.columns  = [col for col in columns]
        self.encoders = None

    def fit(self, data, target=None):
        """
        Expects a data frame with named columns to encode.
        """
        # Encode all columns if columns is None
        if self.columns is None:
            self.columns = data.columns

        # Fit a label encoder for each column in the data frame
        self.encoders = {
            column: LabelEncoder().fit(data[column])
            for column in self.columns
        }
        return self

    def transform(self, data):
        """
        Uses the encoders to transform a data frame.
        """
        output = data.copy()
        for column, encoder in self.encoders.items():
            output[column] = encoder.transform(data[column])

        return output








Modeling and Evaluation


Common metrics for evaluating classifiers

Precision is the number of correct positive results divided by the
number of all positive results (e.g. How many of the mushrooms we
predicted would be edible actually were?).

Recall is the number of correct positive results divided by the
number of positive results that should have been returned (e.g. How
many of the mushrooms that were poisonous did we accurately predict were
poisonous?).

The F1 score is a measure of a test’s accuracy. It considers both
the precision and the recall of the test to compute the score. The F1
score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst at 0.

precision = true positives / (true positives + false positives)

recall = true positives / (false negatives + true positives)

F1 score = 2 * ((precision * recall) / (precision + recall))





Now we’re ready to make some predictions!

Let’s build a way to evaluate multiple estimators – first using
traditional numeric scores (which we’ll later compare to some visual
diagnostics from the Yellowbrick library).

from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline


def model_selection(X, y, estimator):
    """
    Test various estimators.
    """
    y = LabelEncoder().fit_transform(y.values.ravel())
    model = Pipeline([
         ('label_encoding', EncodeCategorical(X.keys())),
         ('one_hot_encoder', OneHotEncoder()),
         ('estimator', estimator)
    ])

    # Instantiate the classification model and visualizer
    model.fit(X, y)

    expected  = y
    predicted = model.predict(X)

    # Compute and return the F1 score (the harmonic mean of precision and recall)
    return (f1_score(expected, predicted))





# Try them all!
from sklearn.svm import LinearSVC, NuSVC, SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier





model_selection(X, y, LinearSVC())





0.65846308387744845





model_selection(X, y, NuSVC())





0.63838842388991346





model_selection(X, y, SVC())





0.66251459711950167





model_selection(X, y, SGDClassifier())





0.69944182052382997





model_selection(X, y, KNeighborsClassifier())





0.65802139037433149





model_selection(X, y, LogisticRegressionCV())





0.65846308387744845





model_selection(X, y, LogisticRegression())





0.65812609897010799





model_selection(X, y, BaggingClassifier())





0.687643484132343





model_selection(X, y, ExtraTreesClassifier())





0.68713648045448383





model_selection(X, y, RandomForestClassifier())





0.69317131158367451








Preliminary Model Evaluation

Based on the results from the F1 scores above, which model is performing
the best?






Visual Model Evaluation

Now let’s refactor our model evaluation function to use Yellowbrick’s
ClassificationReport class, a model visualizer that displays the
precision, recall, and F1 scores. This visual model analysis tool
integrates numerical scores as well as color-coded heatmaps in order to
support easy interpretation and detection, particularly the nuances of
Type I and Type II error, which are very relevant (lifesaving, even) to
our use case!

Type I error (or a “false positive”) is detecting an effect that
is not present (e.g. determining a mushroom is poisonous when it is in
fact edible).

Type II error (or a “false negative”) is failing to detect an
effect that is present (e.g. believing a mushroom is edible when it is
in fact poisonous).


Note

When running in a Jupyter Notebook, be sure to add the following line at the top of the notebook: %matplotlib notebook. This will ensure the figures are rendered correctly. For those running this code with a Python script, the figure should appear in a secondary window.



import matplotlib.pyplot as plt

from sklearn.pipeline import Pipeline
from yellowbrick.classifier import ClassificationReport


def visual_model_selection(X, y, estimator):
    """
    Test various estimators.
    """
    y = LabelEncoder().fit_transform(y.values.ravel())
    model = Pipeline([
         ('label_encoding', EncodeCategorical(X.keys())),
         ('one_hot_encoder', OneHotEncoder()),
         ('estimator', estimator)
    ])

    # Create a new figure to draw the classification report on
    _, ax = plt.subplots()

    # Instantiate the classification model and visualizer
    visualizer = ClassificationReport(
        model, ax=ax, classes=['edible', 'poisonous']
    )
    visualizer.fit(X, y)
    visualizer.score(X, y)

    # Note that to save the figure to disk, you can specify an outpath
    # argument to the poof method!
    visualizer.poof()





visual_model_selection(X, y, LinearSVC())





[image: _images/modelselect_linear_svc.png]
visual_model_selection(X, y, NuSVC())





[image: _images/modelselect_nu_svc.png]
visual_model_selection(X, y, SVC())





[image: _images/modelselect_svc.png]
visual_model_selection(X, y, SGDClassifier())





[image: _images/modelselect_sgd_classifier.png]
visual_model_selection(X, y, KNeighborsClassifier())





[image: _images/modelselect_kneighbors_classifier.png]
visual_model_selection(X, y, LogisticRegressionCV())





[image: _images/modelselect_logistic_regression_cv.png]
visual_model_selection(X, y, LogisticRegression())
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visual_model_selection(X, y, BaggingClassifier())





[image: _images/modelselect_bagging_classifier.png]
visual_model_selection(X, y, ExtraTreesClassifier())





[image: _images/modelselect_extra_trees_classifier.png]
visual_model_selection(X, y, RandomForestClassifier())





[image: _images/modelselect_random_forest_classifier.png]



Reflection


	Which model seems best now? Why?


	Which is most likely to save your life?


	How is the visual model evaluation experience different from numeric
model evaluation?










          

      

      

    

  

    
      
          
            
  
User Testing Instructions

We are looking for people to help us Alpha test the Yellowbrick project!
Helping is simple: simply create a notebook that applies the concepts in
this Getting Started guide to a small-to-medium size dataset of your
choice. Run through the examples with the dataset, and try to change
options and customize as much as possible. After you’ve exercised the
code with your examples, respond to our alpha testing
survey [https://goo.gl/forms/naoPUMFa1xNcafY83]!


Step One: Questionnaire

Please open the questionnaire, in order to familiarize yourself with the
type of feedback we are looking to receive. We are very interested in
identifying any bugs in Yellowbrick. Please include any cells in your
Jupyter notebook that produce errors so that we may reproduce the
problem.




Step Two: Dataset

Select a multivariate dataset of your own. The greater the variety of datasets that we can run through Yellowbrick, the more likely we’ll discover edge cases and exceptions! Please note that your dataset must be well-suited to modeling with scikit-learn. In particular, we recommend choosing a dataset whose target is suited to one of the following supervised learning tasks:


	Regression [https://en.wikipedia.org/wiki/Regression_analysis]
(target is a continuous variable)


	Classification [https://en.wikipedia.org/wiki/Classification_in_machine_learning]
(target is a discrete variable)




There are datasets that are well suited to both types of analysis; either way, you can use the testing methodology from this notebook for either type of task (or both). In order to find a dataset, we recommend you try the following places:


	UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/]


	MLData.org [http://mldata.org/]


	Awesome Public Datasets [https://github.com/caesar0301/awesome-public-datasets]




You’re more than welcome to choose a dataset of your own, but we do ask that you make at least the notebook containing your testing results publicly available for us to review. If the data is also public (or you’re willing to share it with the primary contributors) that will help us figure out bugs and required features much more easily!




Step Three: Notebook

Create a notebook in a GitHub repository. We suggest the following:


	Fork the Yellowbrick repository


	Under the examples directory, create a directory named with your GitHub username


	Create a notebook named testing, i.e. examples/USERNAME/testing.ipynb




Alternatively, you could just send us a notebook via Gist or your own repository. However, if you fork Yellowbrick, you can initiate a pull request to have your example added to our gallery!




Step Four: Model with Yellowbrick and Scikit-Learn

Add the following to the notebook:


	A title in markdown


	A description of the dataset and where it was obtained


	A section that loads the data into a Pandas dataframe or NumPy matrix




Then conduct the following modeling activities:


	Feature analysis using scikit-learn and Yellowbrick


	Estimator fitting using scikit-learn and Yellowbrick




You can follow along with our examples directory (check out examples.ipynb [https://github.com/DistrictDataLabs/yellowbrick/blob/master/examples/examples.ipynb]) or even create your own custom visualizers! The goal is that you create an end-to-end model from data loading to estimator(s) with visualizers along the way.

IMPORTANT: please make sure you record all errors that you get and any tracebacks you receive for step three!




Step Five: Feedback

Finally, submit feedback via the Google Form we have created:

https://goo.gl/forms/naoPUMFa1xNcafY83

This form is allowing us to aggregate multiple submissions and bugs so that we can coordinate the creation and management of issues. If you are the first to report a bug or feature request, we will make sure you’re notified (we’ll tag you using your Github username) about the created issue!




Step Six: Thanks!

Thank you for helping us make Yellowbrick better! We’d love to see pull requests for features you think should be added to the library. We’ll also be doing a user study that we would love for you to participate in. Stay tuned for more great things from Yellowbrick!







          

      

      

    

  

    
      
          
            
  
Contributing

Yellowbrick is an open source project that is supported by a community who will gratefully and humbly accept any contributions you might make to the project. Large or small, any contribution makes a big difference; and if you’ve never contributed to an open source project before, we hope you will start with Yellowbrick!

Principally, Yellowbrick development is about the addition and creation of visualizers — objects that learn from data and create a visual representation of the data or model. Visualizers integrate with scikit-learn estimators, transformers, and pipelines for specific purposes and as a result, can be simple to build and deploy. The most common contribution is a new visualizer for a specific model or model family. We’ll discuss in detail how to build visualizers later.

Beyond creating visualizers, there are many ways to contribute:


	Submit a bug report or feature request on GitHub issues [https://github.com/DistrictDataLabs/yellowbrick/issues].


	Contribute an Jupyter notebook to our examples gallery [https://github.com/DistrictDataLabs/yellowbrick/tree/develop/examples].


	Assist us with user testing.


	Add to the documentation or help with our website, scikit-yb.org [http://www.scikit-yb.org]


	Write unit or integration tests for our project.


	Answer questions on our GitHub issues [https://github.com/DistrictDataLabs/yellowbrick/issues], mailing list [http://bit.ly/yb-listserv], Stack Overflow [https://stackoverflow.com/questions/tagged/yellowbrick], and Twitter [https://twitter.com/scikit_yb].


	Translate our documentation into another language.


	Write a blog post, tweet, or share our project with others.


	Teach someone how to use Yellowbrick.




As you can see, there are lots of ways to get involved and we would be very happy for you to join us! The only thing we ask is that you abide by the principles of openness, respect, and consideration of others as described in our Code of Conduct.


Note

If you’re unsure where to start, perhaps the best place is to drop the maintainers a note via our mailing list: http://bit.ly/yb-listserv.




Getting Started on GitHub

Yellowbrick is hosted on GitHub at https://github.com/DistrictDataLabs/yellowbrick.

The typical workflow for a contributor to the codebase is as follows:


	Discover a bug or a feature by using Yellowbrick.


	Discuss with the core contributors by adding an issue [https://github.com/DistrictDataLabs/yellowbrick/issues].


	Assign yourself the task by pulling a card from our Waffle Kanban [https://waffle.io/DistrictDataLabs/yellowbrick]


	Fork the repository into your own GitHub account.


	Create a Pull Request first thing to connect with us [https://github.com/DistrictDataLabs/yellowbrick/pulls] about your task.


	Code the feature, write the tests and documentation, add your contribution.


	Review the code with core contributors who will guide you to a high quality submission.


	Merge your contribution into the Yellowbrick codebase.





Note

Please create a pull request as soon as possible, even before you’ve started coding. This will allow the core contributors to give you advice about where to add your code or utilities and discuss other style choices and implementation details as you go. Don’t wait!



We believe that contribution is collaboration and therefore emphasize communication throughout the open source process. We rely heavily on GitHub’s social coding tools to allow us to do this.


Forking the Repository

The first step is to fork the repository into your own account. This will create a copy of the codebase that you can edit and write to. Do so by clicking the “fork” button in the upper right corner of the Yellowbrick GitHub page.

Once forked, use the following steps to get your development environment set up on your computer:


	Clone the repository.


After clicking the fork button, you should be redirected to the GitHub page of the repository in your user account. You can then clone a copy of the code to your local machine.:

$ git clone https://github.com/[YOURUSERNAME]/yellowbrick
$ cd yellowbrick










	Create a virtual environment.


Yellowbrick developers typically use virtualenv [https://virtualenv.pypa.io/en/stable/] (and virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]), pyenv [https://github.com/pyenv/pyenv-virtualenv] or conda envs [https://conda.io/docs/using/envs.html] in order to manage their Python version and dependencies. Using the virtual environment tool of your choice, create one for Yellowbrick. Here’s how with virtualenv:

$ virtualenv venv










	Install dependencies.


Yellowbrick’s dependencies are in the requirements.txt document at the root of the repository. Open this file and uncomment the dependencies that are for development only. Then install the dependencies with pip:

$ pip install -r requirements.txt





Note that there may be other dependencies required for development and testing; you can simply install them with pip. For example to install
the additional dependencies for building the documentation or to run the
test suite, use the requirements.txt files in those directories:

$ pip install -r tests/requirements.txt
$ pip install -r docs/requirements.txt










	Switch to the develop branch.


The Yellowbrick repository has a develop branch that is the primary working branch for contributions. It is probably already the branch you’re on, but you can make sure and switch to it as follows:

$ git fetch
$ git checkout develop












At this point you’re ready to get started writing code. If you’re going to take on a specific task, we’d strongly encourage you to check out the issue on Waffle [https://waffle.io/DistrictDataLabs/yellowbrick] and create a pull request [https://github.com/DistrictDataLabs/yellowbrick/pulls] before you start coding to better foster communication with other contributors. More on this in the next section.




Pull Requests

A pull request (PR) [https://help.github.com/articles/about-pull-requests/] is a GitHub tool for initiating an exchange of code and creating a communication channel for Yellowbrick maintainers to discuss your contribution. In essenence, you are requesting that the maintainers merge code from your forked repository into the develop branch of the primary Yellowbrick repository. Once completed, your code will be part of Yellowbrick!

When starting a Yellowbrick contribution, open the pull request as soon as possible. We use your PR issue page to discuss your intentions and to give guidance and direction. Every time you push a commit into your forked repository, the commit is automatically included with your pull request, therefore we can review as you code. The earlier you open a PR, the more easily we can incorporate your updates, we’d hate for you to do a ton of work only to discover someone else already did it or that you went in the wrong direction and need to refactor.


Note

For a great example of a pull request for a new feature visualizer, check out this one [https://github.com/DistrictDataLabs/yellowbrick/pull/232] by Carlo Morales [https://github.com/cjmorale].



When you open a pull request, ensure it is from your forked repository to the develop branch of github.com/districtdatalabs/yellowbrick [https://github.com/districtdatalabs/yellowbrick]; we will not merge a PR into the master branch. Title your Pull Request so that it is easy to understand what you’re working on at a glance. Also be sure to include a reference to the issue that you’re working on so that correct references are set up.

After you open a PR, you should get a message from one of the maintainers. Use that time to discuss your idea and where best to implement your work. Feel free to go back and forth as you are developing with questions in the comment thread of the PR. Once you are ready, please ensure that you explicitly ping the maintainer to do a code review. Before code review, your PR should contain the following:


	Your code contribution


	Tests for your contribution


	Documentation for your contribution


	A PR comment describing the changes you made and how to use them


	A PR comment that includes an image/example of your visualizer




At this point your code will be formally reviewed by one of the contributors. We use GitHub’s code review tool, starting a new code review and adding comments to specific lines of code as well as general global comments. Please respond to the comments promptly, and don’t be afraid to ask for help implementing any requested changes! You may have to go back and forth a couple of times to complete the code review.

When the following is true:


	Code is reviewed by at least one maintainer


	Continuous Integration tests have passed


	Code coverage and quality have not decreased


	Code is up to date with the yellowbrick develop branch




Then we will “Squash and Merge” your contribution, combining all of your commits into a single commit and merging it into the develop branch of Yellowbrick. Congratulations! Once your contribution has been merged into master, you will be officially listed as a contributor.






Developing Visualizers

In this section, we’ll discuss the basics of developing visualizers. This of course is a big topic, but hopefully these simple tips and tricks will help make sense. First thing though, check out this presentation that we put together on yellowbrick development, it discusses the expected user workflow, our integration with scikit-learn, our plans and roadmap, etc:


  
    
    Effective Matplotlib
    

    

    
 
  

    
      
          
            
  
Effective Matplotlib

Yellowbrick generates visualizations by wrapping matplotlib [http://matplotlib.org/], the most prominent Python scientific visualization library. Because of this, Yellowbrick is able to generate publication-ready images for a variety of GUI backends, image formats, and Jupyter notebooks. Yellowbrick strives to provide well-styled visual diagnostic tools and complete information. However, to customize figures or roll your own visualizers, a strong background in using matplotlib is required.

With permission, we have included part of Chris Moffitt’s [https://github.com/chris1610] Effectively Using Matplotlib [http://pbpython.com/effective-matplotlib.html] as a crash course into Matplotlib terminology and usage. For a complete example, please visit his excellent post on creating a visual sales analysis! Additionally we recommend Nicolas P. Rougier’s Matplotlib tutorial [https://www.labri.fr/perso/nrougier/teaching/matplotlib/] for an in-depth dive.


Figures and Axes

This graphic from the matplotlib faq is gold [https://matplotlib.org/faq/usage_faq.html]. Keep it handy to understand the different terminology of a plot.

[image: _images/matplotlib_anatomy.png]
Most of the terms are straightforward but the main thing to remember is that the Figure is the final image that may contain 1 or more axes. The Axes represent an individual plot. Once you understand what these are and how to access them through the object oriented API, the rest of the process starts to fall into place.

The other benefit of this knowledge is that you have a starting point when you see things on the web. If you take the time to understand this point, the rest of the matplotlib API will start to make sense.

Matplotlib keeps a global reference to the global figure and axes objects which can be modified by the pyplot API. To access this import matplotlib as follows:

import matplotlib.pyplot as plt

axes = plt.gca()





The plt.gca() function gets the current axes so that you can draw on it directly. You can also directly create a figure and axes as follows:

fig = plt.figure()
ax = fig.add_subplot(111)





Yellowbrick will use plt.gca() by default to draw on. You can access the Axes object on a visualizer via its ax property:

from sklearn.linear_model import LinearRegression
from yellowbrick.regressor import PredictionError

# Fit the visualizer
model = PredictionError(LinearRegression() )
model.fit(X_train, y_train)
model.score(X_test, y_test)

# Call finalize to draw the final yellowbrick-specific elements
model.finalize()

# Get access to the axes object and modify labels
model.ax.set_xlabel("measured concrete strength")
model.ax.set_ylabel("predicted concrete strength")
plt.savefig("peplot.pdf")





You can also pass an external Axes object directly to the visualizer:

model = PredictionError(LinearRegression(), ax=ax)





Therefore you have complete control of the style and customization of a Yellowbrick visualizer.




Creating a Custom Plot

[image: _images/matplotlib_pbpython_example.png]
The first step with any visualization is to plot the data. Often the simplest way to do this is using the standard pandas plotting function (given a DataFrame called top_10):

top_10.plot(kind='barh', y="Sales", x="Name")





The reason I recommend using pandas plotting first is that it is a quick and easy way to prototype your visualization. Since most people are probably already doing some level of data manipulation/analysis in pandas as a first step, go ahead and use the basic plots to get started.

Assuming you are comfortable with the gist of this plot, the next step is to customize it. Some of the customizations (like adding titles and labels) are very simple to use with the pandas plot function. However, you will probably find yourself needing to move outside of that functionality at some point. That’s why it is recommended to create your own Axes first and pass it to the plotting function in Pandas:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)





The resulting plot looks exactly the same as the original but we added an additional call to plt.subplots() and passed the ax to the plotting function. Why should you do this? Remember when I said it is critical to get access to the axes and figures in matplotlib? That’s what we have accomplished here. Any future customization will be done via the ax or fig objects.

We have the benefit of a quick plot from pandas but access to all the power from matplotlib now. An example should show what we can do now. Also, by using this naming convention, it is fairly straightforward to adapt others’ solutions to your unique needs.

Suppose we want to tweak the x limits and change some axis labels? Now that we have the axes in the ax variable, we have a lot of control:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set_xlabel('Total Revenue')
ax.set_ylabel('Customer');





Here’s another shortcut we can use to change the title and both labels:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')





To further demonstrate this approach, we can also adjust the size of this image. By using the plt.subplots() function, we can define the figsize in inches. We can also remove the legend using ax.legend().set_visible(False):

fig, ax = plt.subplots(figsize=(5, 6))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue')
ax.legend().set_visible(False)





There are plenty of things you probably want to do to clean up this plot. One of the biggest eye sores is the formatting of the Total Revenue numbers. Matplotlib can help us with this through the use of the FuncFormatter . This versatile function can apply a user defined function to a value and return a nicely formatted string to place on the axis.

Here is a currency formatting function to gracefully handle US dollars in the several hundred thousand dollar range:

def currency(x, pos):
    """
    The two args are the value and tick position
    """
    if x >= 1000000:
        return '${:1.1f}M'.format(x*1e-6)
    return '${:1.0f}K'.format(x*1e-3)





Now that we have a formatter function, we need to define it and apply it to the x axis. Here is the full code:

fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
formatter = FuncFormatter(currency)
ax.xaxis.set_major_formatter(formatter)
ax.legend().set_visible(False)





That’s much nicer and shows a good example of the flexibility to define your own solution to the problem.

The final customization feature I will go through is the ability to add annotations to the plot. In order to draw a vertical line, you can use ax.axvline() and to add custom text, you can use ax.text().

For this example, we’ll draw a line showing an average and include labels showing three new customers. Here is the full code with comments to pull it all together.

# Create the figure and the axes
fig, ax = plt.subplots()

# Plot the data and get the average
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
avg = top_10['Sales'].mean()

# Set limits and labels
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')

# Add a line for the average
ax.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

# Annotate the new customers
for cust in [3, 5, 8]:
ax.text(115000, cust, "New Customer")

# Format the currency
formatter = FuncFormatter(currency)
ax.xaxis.set_major_formatter(formatter)

# Hide the legend
ax.legend().set_visible(False)





[image: _images/matplotlib_single.png]
While this may not be the most exciting plot it does show how much power you have when following this approach.

Up until now, all the changes we have made have been with the individual plot. Fortunately, we also have the ability to add multiple plots on a figure as well as save the entire figure using various options.

If we decided that we wanted to put two plots on the same figure, we should have a basic understanding of how to do it. First, create the figure, then the axes, then plot it all together. We can accomplish this using plt.subplots():

fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(7, 4))





In this example, I’m using nrows and ncols to specify the size because this is very clear to the new user. In sample code you will frequently just see variables like 1,2. I think using the named parameters is a little easier to interpret later on when you’re looking at your code.

I am also using sharey=True so that the y-axis will share the same labels.

This example is also kind of nifty because the various axes get unpacked to ax0 and ax1. Now that we have these axes, you can plot them like the examples above but put one plot on ax0 and the other on ax1.

# Get the figure and the axes
fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax0)
ax0.set_xlim([-10000, 140000])
ax0.set(title='Revenue', xlabel='Total Revenue', ylabel='Customers')

# Plot the average as a vertical line
avg = top_10['Sales'].mean()
ax0.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

# Repeat for the unit plot
top_10.plot(kind='barh', y="Purchases", x="Name", ax=ax1)
avg = top_10['Purchases'].mean()
ax1.set(title='Units', xlabel='Total Units', ylabel='')
ax1.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)

# Title the figure
fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold');

# Hide the legends
ax1.legend().set_visible(False)
ax0.legend().set_visible(False)





When writing code in a Jupyter notebook you can take advantage of the %matplotlib inline or %matplotlib notebook directives to render figures inline. More often, however, you probably want to save your images to disk. Matplotlib supports many different formats for saving files. You can use fig.canvas.get_supported_filetypes() to see what your system supports:

fig.canvas.get_supported_filetypes()





{'eps': 'Encapsulated Postscript',
 'jpeg': 'Joint Photographic Experts Group',
 'jpg': 'Joint Photographic Experts Group',
 'pdf': 'Portable Document Format',
 'pgf': 'PGF code for LaTeX',
 'png': 'Portable Network Graphics',
 'ps': 'Postscript',
 'raw': 'Raw RGBA bitmap',
 'rgba': 'Raw RGBA bitmap',
 'svg': 'Scalable Vector Graphics',
 'svgz': 'Scalable Vector Graphics',
 'tif': 'Tagged Image File Format',
 'tiff': 'Tagged Image File Format'}





Since we have the fig object, we can save the figure using multiple options:

fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")





This version saves the plot as a png with opaque background. I have also specified the dpi and bbox_inches=”tight” in order to minimize excess white space.
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Yellowbrick for Teachers

For teachers and students of machine learning, Yellowbrick can be used as a framework for teaching and understanding a large variety of algorithms and methods. In fact, Yellowbrick grew out of teaching data science courses at Georgetown’s School of Continuing Studies!

The following slide deck presents an approach to teaching students about the machine learning workflow (the model selection triple), including:


	feature analysis


	feature importances


	feature engineering


	algorithm selection


	model evaluation for classification and regression


	cross-validation


	hyperparameter tuning


	the scikit-learn API
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Gallery


Feature Analysis

[image: Features Analysis adViz Visualizer]
[image: Features Analysis rank1d shapiro\]
[image: Features Analysis rank2d covariance]
[image: Parallel Coordinates for 5 features]
[image: Principal Component Plot]
[image: t-SNE Manifold Visualization]
[image: t-SNE Manifold Visualization Discrete Target]
[image: Isomap Manifold Visualization]
[image: Feature Importance using Gradient Boosting Classifier]
[image: Feature Importance using Gradient Boosting Classifier]
[image: Scatter Visualization]
[image: Joint Point Visualization]



Regression Visualizers

[image: Residuals for Ridge Model]
[image: Prediction Error for Lasso]
[image: Lasso Alpha Error]



Classification Visualizers

[image: GaussianNB Classification Report]
[image: Logistic Regression Confusion Matrix with Numeric Labels]
[image: Logistic Regression Confusion Matrix with Class Name Labels]
[image: Binary ROC Curves for Logistic Regression]
[image: Multiclass ROC Curves]
[image: Precision-Recall Curves]
[image: Multi-Label Precision-Recall Curves]
[image: Class Prediction Error for Random Forest Classifier]
[image: Threshold Plot for Logistic Regression]



Clustering Visualizers

[image: Distortion Score Elbow for Mini Batch Means Clustering]
[image: Silhoutte Plot of Mini Batch Kmeans Clustering]
[image: Intercluster Distance Maps]



Model Selection Visualizers

[image: Validation Curve for Decision Tree Regresor]
[image: Learning Curve for MultinomialNB]
[image: Learning Curve for KMeans]
[image: CV Scores for MultinomialNB Classification]
[image: CV Scores for Ridge Regression]



Text Modeling Visualizers

[image: Validation Curve for Decision Tree Regresor]
[image: TSNE Projection of Documents]
[image: Dispersion Plot]



Decision Boundaries Visualizer

[image: Nearest Neighbor Boundary Visualizer]



Target Visualizers

[image: Balanced Binning Reference]
[image: Class Balance]
[image: Feature Correlation Pearson Correlation Coefficients]
[image: Feature Correlation Mutual Information - Regression]
[image: Feature Correlation Mutual Information - Classification]
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About

[image: _images/yellowbrickroad.jpg]
Image by QuatroCinco [https://flic.kr/p/2Yj9mj], used with permission, Flickr Creative Commons.

Yellowbrick is an open source, pure Python project that extends the scikit-learn API [http://scikit-learn.org/stable/modules/classes.html] with visual analysis and diagnostic tools. The Yellowbrick API also wraps matplotlib to create publication-ready figures and interactive data explorations while still allowing developers fine-grain control of figures. For users, Yellowbrick can help evaluate the performance, stability, and predictive value of machine learning models and assist in diagnosing problems throughout the machine learning workflow.

Recently, much of this workflow has been automated through grid search methods, standardized APIs, and GUI-based applications. In practice, however, human intuition and guidance can more effectively hone in on quality models than exhaustive search. By visualizing the model selection process, data scientists can steer towards final, explainable models and avoid pitfalls and traps.

The Yellowbrick library is a diagnostic visualization platform for machine learning that allows data scientists to steer the model selection process. It extends the scikit-learn API with a new core object: the Visualizer. Visualizers allow visual models to be fit and transformed as part of the scikit-learn pipeline process, providing visual diagnostics throughout the transformation of high-dimensional data.


Model Selection

Discussions of machine learning are frequently characterized by a singular focus on model selection. Be it logistic regression, random forests, Bayesian methods, or artificial neural networks, machine learning practitioners are often quick to express their preference. The reason for this is mostly historical. Though modern third-party machine learning libraries have made the deployment of multiple models appear nearly trivial, traditionally the application and tuning of even one of these algorithms required many years of study. As a result, machine learning practitioners tended to have strong preferences for particular (and likely more familiar) models over others.

However, model selection is a bit more nuanced than simply picking the “right” or “wrong” algorithm. In practice, the workflow includes:



	selecting and/or engineering the smallest and most predictive feature set


	choosing a set of algorithms from a model family


	tuning the algorithm hyperparameters to optimize performance







The model selection triple was first described in a 2015 SIGMOD [http://cseweb.ucsd.edu/~arunkk/vision/SIGMODRecord15.pdf] paper by Kumar et al. In their paper, which concerns the development of next-generation database systems built to anticipate predictive modeling, the authors cogently express that such systems are badly needed due to the highly experimental nature of machine learning in practice. “Model selection,” they explain, “is iterative and exploratory because the space of [model selection triples] is usually infinite, and it is generally impossible for analysts to know a priori which [combination] will yield satisfactory accuracy and/or insights.”




Who is Yellowbrick for?

Yellowbrick Visualizers have multiple use cases:



	For data scientists, they can help evaluate the stability and predictive value of machine learning models and improve the speed of the experimental workflow.


	For data engineers, Yellowbrick provides visual tools for monitoring model performance in real world applications.


	For users of models, Yellowbrick provides visual interpretation of the behavior of the model in high dimensional feature space.


	For teachers and students, Yellowbrick is a framework for teaching and understanding a large variety of algorithms and methods.










Name Origin

The Yellowbrick package gets its name from the fictional element in the 1900 children’s novel The Wonderful Wizard of Oz by American author L. Frank Baum. In the book, the yellow brick road is the path that the protagonist, Dorothy Gale, must travel in order to reach her destination in the Emerald City.


	From Wikipedia [https://en.wikipedia.org/wiki/Yellow_brick_road]:

	“The road is first introduced in the third chapter of The Wonderful Wizard of Oz. The road begins in the heart of the eastern quadrant called Munchkin Country in the Land of Oz. It functions as a guideline that leads all who follow it, to the road’s ultimate destination—the imperial capital of Oz called Emerald City that is located in the exact center of the entire continent. In the book, the novel’s main protagonist, Dorothy, is forced to search for the road before she can begin her quest to seek the Wizard. This is because the cyclone from Kansas did not release her farmhouse closely near it as it did in the various film adaptations. After the council with the native Munchkins and their dear friend the Good Witch of the North, Dorothy begins looking for it and sees many pathways and roads nearby, (all of which lead in various directions). Thankfully it doesn’t take her too long to spot the one paved with bright yellow bricks.”








Team

Yellowbrick is developed by data scientists who believe in open source and the project enjoys contributions from Python developers all over the world. The project was started by @rebeccabilbro [https://github.com/rebeccabilbro] and @bbengfort [https://github.com/bbengfort] as an attempt to better explain machine learning concepts to their students; they quickly realized, however, that the potential for visual steering could have a large impact on practical data science and developed it into a high-level Python library.

Yellowbrick is incubated by District Data Labs [http://www.districtdatalabs.com/], an organization that is dedicated to collaboration and open source development. As part of District Data Labs, Yellowbrick was first introduced to the Python Community at PyCon 2016 [https://youtu.be/c5DaaGZWQqY] in both talks and during the development sprints. The project was then carried on through DDL Research Labs (semester-long sprints where members of the DDL community contribute to various data-related projects).

For a full list of current maintainers and core contributors, please see MAINTAINERS.md [https://github.com/DistrictDataLabs/yellowbrick/blob/develop/MAINTAINERS.md] in the root of our GitHub repository. Thank you so much to everyone who has contributed to Yellowbrick [https://github.com/DistrictDataLabs/yellowbrick/graphs/contributors]!




License

Yellowbrick is an open source project and its license [https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt] is an implementation of the FOSS Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0] license by the Apache Software Foundation. In plain English [https://tldrlegal.com/license/apache-license-2.0-(apache-2.0)] this means that you can use Yellowbrick for commercial purposes, modify and distribute the source code, and even sublicense it. We want you to use Yellowbrick, profit from it, and contribute back if you do cool things with it.

There are, however, a couple of requirements that we ask from you. First, when you copy or distribute Yellowbrick source code, please include our copyright and license found in the LICENSE.txt [https://github.com/DistrictDataLabs/yellowbrick/blob/master/LICENSE.txt] at the root of our software repository. In addition, if we create a file called “NOTICE” in our project you must also include that in your source distribution. The “NOTICE” file will include attribution and thanks to those who have worked so hard on the project! Finally you can’t hold District Data Labs or any Yellowbrick contributor liable for your use of our software, nor use any of our names, trademarks, or logos.

We think that’s a pretty fair deal, and we’re big believers in open source. If you make any changes to our software, use it commercially or academically, or have any other interest, we’d love to hear about it.




Presentations

Yellowbrick has enjoyed the spotlight in several presentations at recent conferences. We hope that these notebooks, talks, and slides will help you understand Yellowbrick a bit better.


	Conference Presentations (videos):

	
	Visual Diagnostics for More Informed Machine Learning: Within and Beyond Scikit-Learn (PyCon 2016) [https://youtu.be/c5DaaGZWQqY]


	Yellowbrick: Steering Machine Learning with Visual Transformers (PyData London 2017) [https://youtu.be/2ZKng7pCB5k]






	Jupyter Notebooks:

	
	Data Science Delivered: ML Regression Predications [https://github.com/ianozsvald/data_science_delivered/blob/master/ml_explain_regression_prediction.ipynb]






	Slides:

	
	Machine Learning Libraries You’d Wish You’d Known About (PyData Budapest 2017) [https://speakerdeck.com/ianozsvald/machine-learning-libraries-youd-wish-youd-known-about-1]


	Visualizing the Model Selection Process [https://www.slideshare.net/BenjaminBengfort/visualizing-the-model-selection-process]


	Visualizing Model Selection with Scikit-Yellowbrick [https://www.slideshare.net/BenjaminBengfort/visualizing-model-selection-with-scikityellowbrick-an-introduction-to-developing-visualizers]


	Visual Pipelines for Text Analysis (Data Intelligence 2017) [https://speakerdeck.com/dataintelligence/visual-pipelines-for-text-analysis]











Citing Yellowbrick

[image: _images/zenodo.1206239.svg]
 [https://doi.org/10.5281/zenodo.1206239]We hope that Yellowbrick facilitates machine learning of all kinds and we’re particularly fond of academic work and research. If you’re writing a scientific publication that uses Yellowbrick you can cite Bengfort et al. (2018) with the following BibTex:

@software{bengfort_yellowbrick_2018,
    title = {Yellowbrick},
    rights = {Apache License 2.0},
    url = {http://www.scikit-yb.org/en/latest/},
    abstract = {Yellowbrick is an open source, pure Python project that
        extends the Scikit-Learn {API} with visual analysis and
        diagnostic tools. The Yellowbrick {API} also wraps Matplotlib to
        create publication-ready figures and interactive data
        explorations while still allowing developers fine-grain control
        of figures. For users, Yellowbrick can help evaluate the
        performance, stability, and predictive value of machine learning
        models, and assist in diagnosing problems throughout the machine
        learning workflow.},
    version = {0.6},
    author = {Bengfort, Benjamin and Danielsen, Nathan and
        Bilbro, Rebecca and Gray, Larry and {McIntyre}, Kristen and
        Richardson, George and Miller, Taylor and Mayfield, Gary and
        Schafer, Phillip and Keung, Jason},
    date = {2018-03-17},
    doi = {10.5281/zenodo.1206264}
}





You can also find DOI (digital object identifiers) for every version of Yellowbrick on zenodo.org [https://doi.org/10.5281/zenodo.1206239]; use the BibTeX on this site to reference specific versions or changes made to the software.

We’re also currently working on a scientific paper that describes Yellowbrick in the context of steering the model selection process. Stay tuned for a pre-release of this paper on arXiv.




Contacting Us

The best way to contact the Yellowbrick team is to send us a note on one of the following platforms:


	Send an email via our mailing list [http://bit.ly/yb-listserv].


	Direct message us on Twitter [https://twitter.com/scikit_yb].


	Ask a question on Stack Overflow [https://stackoverflow.com/questions/tagged/yellowbrick].


	Report an issue on our GitHub Repo [https://github.com/DistrictDataLabs/yellowbrick].
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Frequently Asked Questions

Welcome to our frequently asked questions page. We’re glad that you’re using Yellowbrick! If your question is not captured here, please submit it to our Google Groups Listserv [https://groups.google.com/forum/#!forum/yellowbrick]. This is an email list/forum that you, as a Yellowbrick user, can join and interact with other users to address and troubleshoot Yellowbrick issues. The Google Groups Listserv is where you should be able to receive the quickest response. We would welcome and encourage you to join the group so that you can respond to others’ questions! You can also ask questions on Stack Overflow [http://stackoverflow.com/questions/tagged/yellowbrick] and tag them with “yellowbrick”. Finally, you can add issues on GitHub and you can tweet or direct message us on Twitter @scikit_yb [https://twitter.com/scikit_yb].


How can I change the size of a Yellowbrick plot?

You can change the size of a plot by passing in the desired dimensions in pixels on instantiation of the visualizer:

# Import the visualizer
from yellowbrick.features import RadViz

# Instantiate the visualizer using the ``size`` param
visualizer = RadViz(
    classes=classes, features=features, size=(1080, 720)
)

...





Note: we are considering adding support for passing in size in inches in a future Yellowbrick release. For a convenient inch-to-pixel converter, check out www.unitconversion.org [http://www.unitconversion.org/typography/inchs-to-pixels-y-conversion.html].




How can I change the title of a Yellowbrick plot?

You can change the title of a plot by passing in the desired title as a string on instantiation:

from yellowbrick.classifier import ROCAUC
from sklearn.linear_model import RidgeClassifier

# Create your custom title
my_title = "ROCAUC Curves for Multiclass RidgeClassifier"

# Instantiate the visualizer passing the custom title
visualizer = ROCAUC(
    RidgeClassifier(), classes=classes, title=my_title
)

...








How can I change the color of a Yellowbrick plot?

To customize coloring in your plot, use the colors or cmap (or colormap) arguments. Note that different visualizers may require slightly different arguments depending on how they construct the plots.

For instance, the Manifold Visualization accepts a colors argument, for which discrete targets should be the name of one of the Colors and Style or a list of matplotlib colors [https://matplotlib.org/examples/color/named_colors.html] represented as strings:
For instance, the Manifold Visualization accepts a colors argument, for which discrete targets should be the name of a palette from the Yellowbrick Colors and Style or a list of matplotlib colors [https://matplotlib.org/examples/color/named_colors.html] represented as strings:

from yellowbrick.features.manifold import Manifold

visualizer = Manifold(
    manifold="tsne", target="discrete", colors=["teal", "orchid"]
)

...





… whereas for continuous targets, colors should be a colormap:

from yellowbrick.features.manifold import Manifold

visualizer = Manifold(
    manifold="isomap", target="continuous", colors="YlOrRd"
)

...





Other visualizers accept a cmap argument:

from sklearn.linear_model import LogisticRegression
from yellowbrick.classifier import ConfusionMatrix

visualizer = ConfusionMatrix(
    LogisticRegression(), cmap="YlGnBu"
)

...





Or a colormap argument:

from yellowbrick.features import ParallelCoordinates

# Instantiate the visualizer
visualizer = ParallelCoordinates(
    classes=classes, features=features, colormap="PRGn"
)

...





The Residuals Plot accepts color argument for the training and test points, train_color and test_color, respectively:

from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import ElasticNet

visualizer = ResidualsPlot(
    model=ElasticNet()
    train_color=train_color,  # color of points model was trained on
    test_color=train_color,   # color of points model was tested on
    line_color=line_color    # color of zero-error line
)








How can I save a Yellowbrick plot?

Save your Yellowbrick plot by passing an outpath into poof():

from sklearn.cluster import MiniBatchKMeans
from yellowbrick.cluster import KElbowVisualizer

visualizer = KElbowVisualizer(MiniBatchKMeans(), k=(4,12))

visualizer.fit(X)
visualizer.poof(outpath="kelbow_minibatchkmeans.png")

...





Most backends support png, pdf, ps, eps and svg to save your work!




How can I make overlapping points show up better?

You can use the alpha param to change the opacity of plotted points (where alpha=1 is complete opacity, and alpha=0 is complete transparency):

from yellowbrick.contrib.scatter import ScatterVisualizer

visualizer = ScatterVisualizer(
    x="light", y="C02", classes=classes, alpha=0.5
)








How can I access the sample datasets used in the examples?

Visit the Example Datasets page.
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Code of Conduct

The Yellowbrick project is an open source, Python affiliated project. As a result, all interactions that occur with Yellowbrick must meet the guidelines described by the Python Software Foundation Code of Conduct [https://www.python.org/psf/codeofconduct/]. This includes interactions on all websites, tools, and resources used by Yellowbrick members including (but not limited to) mailing lists, issue trackers, GitHub, StackOverflow, etc.

In general this means everyone is expected to be open, considerate, and
respectful of others no matter what their position is within the project.

Beyond this code of conduct, Yellowbrick is striving to set a very particular tone for contributors to the project. We show gratitiude for any contribution, no matter how small. We don’t only point out constructive criticism, we always identify positive feedback. When we communicate via text, we write as though we are speaking to each other and our mothers are in the room with us. Our goal is to make Yellowbrick the best possible place to do your first open source contribution, no matter who you are.
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Changelog


Version 0.9


	Tag: v0.9 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.9]


	Deployed: Wednesday, November 14, 2018


	Contributors: Rebecca Bilbro, Benjamin Bengfort, Zijie (ZJ) Poh, Kristen McIntyre, Nathan Danielsen, David Waterman, Larry Gray, Prema Roman, Juan Kehoe, Alyssa Batula, Peter Espinosa, Joanne Lin, @rlshuhart, @archaeocharlie, @dschoenleber, Tim Black, @iguk1987, Mohammed Fadhil, Jonathan Lacanlale, Andrew Godbehere, Sivasurya Santhanam, Gopal Krishna





	Major Changes:

	
	Target module added for visualizing dependent variable in supervised models.


	Prototype missing values visualizer in contrib module.


	BalancedBinningReference visualizer for thresholding unbalanced data (undocumented).


	CVScores visualizer to instrument cross-validation.


	FeatureCorrelation visualizer to compare relationship between a single independent variable and the target.


	ICDM visualizer, intercluster distance mapping using projections similar to those used in pyLDAVis.


	PrecisionRecallCurve visualizer showing the relationship of precision and recall in a threshold-based classifier.


	Enhanced FeatureImportance for multi-target and multi-coefficient models (e.g probabilistic models) and allows stacked bar chart.


	Adds option to plot PDF to ResidualsPlot histogram.


	Adds document boundaries option to DispersionPlot and uses colored markers to depict class.


	Added alpha parameter for opacity to the scatter plot visualizer.


	Modify KElbowVisualizer to accept a list of k values.


	ROCAUC bugfix to allow binary classifiers that only have a decision function.


	TSNE bugfix so that title and size params are respected.


	ConfusionMatrix bugfix to correct percentage displays adding to 100.


	ResidualsPlot bugfix to ensure specified colors are both in histogram and scatterplot.


	Fixed unicode decode error on Py2 compatible Windows using Hobbies corpus.


	Require matplotlib 1.5.1 or matplotlib 2.0 (matplotlib 3.0 not supported yet).


	Deprecated percent and sample_weight arguments to ConfusionMatrix fit method.


	Yellowbrick now depends on SciPy 1.0 and scikit-learn 0.20.






	Minor Changes:

	
	Removed hardcoding of SilhouetteVisualizer axes dimensions.


	Audit classifiers to ensure they conform to score API.


	Fix for Manifold fit_transform bug.


	Fixed Manifold import bug.


	Started reworking datasets API for easier loading of examples.


	Added Timer utility for keeping track of fit times.


	Added slides to documentation for teachers teaching ML/Yellowbrick.


	Added an FAQ to the documentation.


	Manual legend drawing utility.


	New examples notebooks for regression and clustering.


	Example of interactive classification visualization using ipywidgets.


	Example of using Yellowbrick with PyTorch.


	Repairs to ROCAUC tests and binary/multiclass ROCAUC construction.


	Rename tests/random.py to tests/rand.py to prevent NumPy errors.


	Improves ROCAUC, KElbowVisualizer, and SilhouetteVisualizer documentation.


	Fixed visual display bug in JointPlotVisualizer.


	Fixed image in JointPlotVisualizer documentation.


	Clear figure option to poof.


	Fix color plotting error in residuals plot quick method.


	Fixed bugs in KElbowVisualizer, FeatureImportance, Index, and Datasets documentation.


	Use LGTM for code quality analysis (replacing Landscape).


	Updated contributing docs for better PR workflow.


	Submitted JOSS paper.











Version 0.8


	Tag: v0.8 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.8.0]


	Deployed: Thursday, July 12, 2018


	Contributors: Rebecca Bilbro, Benjamin Bengfort, Nathan Danielsen, Larry Gray, Prema Roman, Adam Morris, Kristen McIntyre, Raul Peralta, Sayali Sonawane, Alyssa Riley, Petr Mitev, Chris Stehlik, @thekylesaurus, Luis Carlos Mejia Garcia, Raul Samayoa, Carlo Mazzaferro





	Major Changes:

	
	Added Support to ClassificationReport - @ariley1472


	We have an updated Image Gallery - @ralle123


	Improved performance of ParallelCoordinates Visualizer @ thekylesaurus


	Added Alpha Transparency to RadViz Visualizer @lumega


	CVScores Visualizer - @pdamodaran


	Added fast and alpha parameters to ParallelCoordinates visualizer @bbengfort


	Make support an optional parameter for ClassificationReport @lwgray


	Bug Fix for Usage of multidimensional arrays in FeatureImportance visualizer @rebeccabilbro


	Deprecate ScatterVisualizer to contrib @bbengfort


	Implements histogram alongside ResidualsPlot @bbengfort


	Adds biplot to the PCADecomposition visualizer @RaulPL


	Adds Datasaurus Dataset to show importance of visualizing data @lwgray


	Add DispersionPlot Plot @lwgray






	Minor Changes:

	
	Fix grammar in tutorial.rst - @chrisfs


	Added Note to tutorial indicating subtle differences when working in Jupyter notebook - @chrisfs


	Update Issue template @bbengfort


	Added Test to check for NLTK postag data availability - @Sayali


	Clarify quick start documentation @mitevpi


	Deprecated DecisionBoundary


	Threshold Visualization aliases deprecated











Version 0.7


	Tag: v0.7 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.7]


	Deployed: Thursday, May 17, 2018


	Contributors: Benjamin Bengfort, Nathan Danielsen, Rebecca Bilbro, Larry Gray, Ian Ozsvald, Jeremy Tuloup, Abhishek Bharani, Raúl Peralta Lozada,  Tabishsada, Kristen McIntyre, Neal Humphrey




Changes:



	New Feature! Manifold visualizers implement high-dimensional visualization for non-linear structural feature analysis.


	New Feature!  There is now a  model_selection module with LearningCurve and ValidationCurve visualizers.


	New Feature! The RFECV (recursive feature elimination)  visualizer with cross-validation visualizes how removing the least performing features improves the overall model.


	New Feature! The VisualizerGrid is an implementation of the MultipleVisualizer that creates axes for each visualizer using plt.subplots, laying the visualizers out as a grid.


	New Feature! Added yellowbrick.datasets to load example datasets.


	New Experimental Feature!  An experimental StatsModelsWrapper was added to yellowbrick.contrib.statsmodels that will allow user to use StatsModels estimators with visualizers.


	Enhancement! ClassificationReport documentation to include more details about how to interpret each of the metrics and compare the reports against each other.


	Enhancement!  Modifies scoring mechanism for regressor visualizers to include the R2 value in the plot itself with the legend.


	Enhancement!  Updated and renamed the ThreshViz to be defined as DiscriminationThreshold, implements a few more discrimination features such as F1 score, maximizing arguments and annotations.


	Enhancement!  Update clustering visualizers and corresponding distortion_score to handle sparse matrices.


	Added code of conduct to meet the GitHub community guidelines as part of our contributing documentation.


	Added is_probabilistic type checker and converted the type checking tests to pytest.


	Added a contrib module and DecisionBoundaries visualizer has been moved to it until further work is completed.


	Numerous fixes and improvements to documentation and tests. Add academic citation example and Zenodo DOI to the Readme.








	Bug Fixes:

	
	Adds RandomVisualizer for testing and add it to the VisualizerGrid test cases.


	Fix / update tests in tests.test_classifier.test_class_prediction_error.py to remove hardcoded data.






	Deprecation Warnings:

	
	ScatterPlotVisualizer is being moved to contrib in 0.8


	DecisionBoundaryVisualizer is being moved to contrib in 0.8


	ThreshViz is renamed to DiscriminationThreshold.








NOTE: These deprecation warnings originally mentioned deprecation in 0.7, but their life was extended by an additional version.




Version 0.6


	Tag: v0.6 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.6]


	Deployed: Saturday, March 17, 2018


	Contributors: Benjamin Bengfort, Nathan Danielsen, Rebecca Bilbro, Larry Gray, Kristen McIntyre, George Richardson, Taylor Miller, Gary Mayfield, Phillip Schafer, Jason Keung





	Changes:

	
	New Feature! The FeatureImportances Visualizer enables the user to visualize the most informative (relative and absolute) features in their model, plotting a bar graph of feature_importances_ or coef_ attributes.


	New Feature! The ExplainedVariance Visualizer produces a plot of the explained variance resulting from a dimensionality reduction to help identify the best tradeoff between number of dimensions and amount of information retained from the data.


	New Feature! The GridSearchVisualizer creates a color plot showing the best grid search scores across two parameters.


	New Feature! The ClassPredictionError Visualizer is a heatmap implementation of the class balance visualizer, which provides a way to quickly understand how successfully your classifier is predicting the correct classes.


	New Feature! The ThresholdVisualizer allows the user to visualize the bounds of precision, recall and queue rate at different thresholds for binary targets after a given number of trials.


	New MultiFeatureVisualizer helper class to provide base functionality for getting the names of features for use in plot annotation.


	Adds font size param to the confusion matrix to adjust its visibility.


	Add quick method for the confusion matrix


	Tests: In this version, we’ve switched from using nose to pytest. Image comparison tests have been added and the visual tests are updated to matplotlib 2.2.0. Test coverage has also been improved for a number of visualizers, including JointPlot, AlphaPlot, FreqDist, RadViz, ElbowPlot, SilhouettePlot, ConfusionMatrix, Rank1D, and Rank2D.


	Documentation updates, including discussion of Image Comparison Tests for contributors.






	Bug Fixes:

	
	Fixes the resolve_colors function. You can now pass in a number of colors and a colormap and get back the correct number of colors.


	Fixes TSNEVisualizer Value Error when no classes are specified.


	Adds the circle back to RadViz! This visualizer has also been updated to ensure there’s a visualization even when there are missing values


	Updated RocAuc to correctly check the number of classes


	Switch from converting structured arrays to ndarrays using np.copy instead of np.tolist to avoid NumPy deprecation warning.


	DataVisualizer updated to remove np.nan values and warn the user that nans are not plotted.


	ClassificationReport no longer has lines that run through the numbers, is more grid-like






	Deprecation Warnings:

	
	ScatterPlotVisualizer is being moved to contrib in 0.7


	DecisionBoundaryVisualizer is being moved to contrib in 0.7











Version 0.5


	Tag: v0.5 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.5]


	Deployed: Wednesday, August 9, 2017


	Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Carlo Morales, Jim Stearns, Phillip Schafer, Jason Keung





	Changes:

	
	Added VisualTestCase.


	New PCADecomposition Visualizer, which decomposes high-dimensional data into two or three dimensions so that each instance can be plotted in a scatter plot.


	New and improved ROCAUC Visualizer, which now supports multiclass classification.


	Prototype DecisionBoundary Visualizer, which is a bivariate data visualization algorithm that plots the decision boundaries of each class.


	Added Rank1D Visualizer, which is a one-dimensional ranking of features that utilizes the Shapiro-Wilks ranking by taking into account only a single feature at a time (e.g. histogram analysis).


	Improved PredictionErrorPlot with identity line, shared limits, and R-squared.


	Updated FreqDist Visualizer to make word features a hyperparameter.


	Added normalization and scaling to ParallelCoordinates.


	Added Learning Curve Visualizer, which displays a learning curve based on the number of samples versus the training and cross validation scores to show how a model learns and improves with experience.


	Added data downloader module to the Yellowbrick library.


	Complete overhaul of the Yellowbrick documentation; categories of methods are located in separate pages to make it easier to read and contribute to the documentation.


	Added a new color palette inspired by ANN-generated colors [http://lewisandquark.tumblr.com/]






	Bug Fixes:

	
	Repairs to PCA, RadViz, FreqDist unit tests


	Repair to matplotlib version check in JointPlotVisualizer











Hotfix 0.4.2

Update to the deployment docs and package on both Anaconda and PyPI.


	Tag: v0.4.2 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.2]


	Deployed: Monday, May 22, 2017


	Contributors: Benjamin Bengfort, Jason Keung







Version 0.4.1

This release is an intermediate version bump in anticipation of the PyCon 2017 sprints.

The primary goals of this version were to (1) update the Yellowbrick dependencies (2) enhance the Yellowbrick documentation to help orient new users and contributors, and (3) make several small additions and upgrades (e.g. pulling the Yellowbrick utils into a standalone module).

We have updated the scikit-learn and SciPy dependencies from version 0.17.1 or later to 0.18 or later. This primarily entails moving from from sklearn.cross_validation import train_test_split to from sklearn.model_selection import train_test_split.

The updates to the documentation include new Quickstart and Installation guides, as well as updates to the Contributors documentation, which is modeled on the scikit-learn contributing documentation.

This version also included upgrades to the KMeans visualizer, which now supports not only silhouette_score but also distortion_score and calinski_harabaz_score. The distortion_score computes the mean distortion of all samples as the sum of the squared distances between each observation and its closest centroid. This is the metric that KMeans attempts to minimize as it is fitting the model. The calinski_harabaz_score is defined as ratio between the within-cluster dispersion and the between-cluster dispersion.

Finally, this release includes a prototype of the VisualPipeline, which extends scikit-learn’s Pipeline class, allowing multiple Visualizers to be chained or sequenced together.


	Tag: v0.4.1 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4.1]


	Deployed: Monday, May 22, 2017


	Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen





	Changes:

	
	Score and model visualizers now wrap estimators as proxies so that all methods on the estimator can be directly accessed from the visualizer


	Updated scikit-learn dependency from >=0.17.1  to >=0.18


	Replaced sklearn.cross_validation with model_selection


	Updated SciPy dependency from >=0.17.1 to >=0.18


	ScoreVisualizer now subclasses ModelVisualizer; towards allowing both fitted and unfitted models passed to Visualizers


	Added CI tests for Python 3.6 compatibility


	Added new quickstart guide and install instructions


	Updates to the contributors documentation


	Added distortion_score and calinski_harabaz_score computations and visualizations to KMeans visualizer.


	Replaced the self.ax property on all of the individual draw methods with a new property on the Visualizer class that ensures all visualizers automatically have axes.


	Refactored the utils module into a package


	Continuing to update the docstrings to conform to Sphinx


	Added a prototype visual pipeline class that extends the scikit-learn pipeline class to ensure that visualizers get called correctly.






	Bug Fixes:

	
	Fixed title bug in Rank2D FeatureVisualizer











Version 0.4

This release is the culmination of the Spring 2017 DDL Research Labs that focused on developing Yellowbrick as a community effort guided by a sprint/agile workflow. We added several more visualizers, did a lot of user testing and bug fixes, updated the documentation, and generally discovered how best to make Yellowbrick a friendly project to contribute to.

Notable in this release is the inclusion of two new feature visualizers that use few, simple dimensions to visualize features against the target. The JointPlotVisualizer graphs a scatter plot of two dimensions in the data set and plots a best fit line across it. The ScatterVisualizer also uses two features, but also colors the graph by the target variable, adding a third dimension to the visualization.

This release also adds support for clustering visualizations, namely the elbow method for selecting K, KElbowVisualizer and a visualization of cluster size and density using the SilhouetteVisualizer. The release also adds support for regularization analysis using the AlphaSelection visualizer. Both the text and classification modules were also improved with the inclusion of the PosTagVisualizer and the ConfusionMatrix visualizer respectively.

This release also added an Anaconda repository and distribution so that users can conda install yellowbrick. Even more notable, we got Yellowbrick stickers! We’ve also updated the documentation to make it more friendly and a bit more visual; fixing the API rendering errors. All-in-all, this was a big release with a lot of contributions and we thank everyone that participated in the lab!


	Tag: v0.4 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.4]


	Deployed: Thursday, May 4, 2017


	Contributors: Benjamin Bengfort, Rebecca Bilbro, Nathan Danielsen, Matt Andersen, Prema Roman, Neal Humphrey, Jason Keung, Bala Venkatesan, Paul Witt, Morgan Mendis, Tuuli Morril





	Changes:

	
	Part of speech tags visualizer – PosTagVisualizer.


	Alpha selection visualizer for regularized regression – AlphaSelection


	Confusion Matrix Visualizer – ConfusionMatrix


	Elbow method for selecting K vis – KElbowVisualizer


	Silhouette score cluster visualization – SilhouetteVisualizer


	Joint plot visualizer with best fit – JointPlotVisualizer


	Scatter visualization of features – ScatterVisualizer


	Added three more example datasets: mushroom, game, and bike share


	Contributor’s documentation and style guide


	Maintainers listing and contacts


	Light/Dark background color selection utility


	Structured array detection utility


	Updated classification report to use colormesh


	Added anacondas packaging and distribution


	Refactoring of the regression, cluster, and classification modules


	Image based testing methodology


	Docstrings updated to a uniform style and rendering


	Submission of several more user studies











Version 0.3.3

Intermediate sprint to demonstrate prototype implementations of text visualizers for NLP models. Primary contributions were the FreqDistVisualizer and the TSNEVisualizer.

The TSNEVisualizer displays a projection of a vectorized corpus in two dimensions using TSNE, a nonlinear dimensionality reduction method that is particularly well suited to embedding in two or three dimensions for visualization as a scatter plot. TSNE is widely used in text analysis to show clusters or groups of documents or utterances and their relative proximities.

The FreqDistVisualizer implements frequency distribution plot that tells us the frequency of each vocabulary item in the text. In general, it could count any kind of observable event. It is a distribution because it tells us how the total number of word tokens in the text are distributed across the vocabulary items.


	Tag: v0.3.3 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.3]


	Deployed: Wednesday, February 22, 2017


	Contributors: Rebecca Bilbro, Benjamin Bengfort





	Changes:

	
	TSNEVisualizer for 2D projections of vectorized documents


	FreqDistVisualizer for token frequency of text in a corpus


	Added the user testing evaluation to the documentation


	Created scikit-yb.org and host documentation there with RFD


	Created a sample corpus and text examples notebook


	Created a base class for text, TextVisualizer


	Model selection tutorial using Mushroom Dataset


	Created a text examples notebook but have not added to documentation.











Version 0.3.2

Hardened the Yellowbrick API to elevate the idea of a Visualizer to a first principle. This included reconciling shifts in the development of the preliminary versions to the new API, formalizing Visualizer methods like draw() and finalize(), and adding utilities that revolve around scikit-learn. To that end we also performed administrative tasks like refreshing the documentation and preparing the repository for more and varied open source contributions.


	Tag: v0.3.2 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.2]


	Deployed: Friday, January 20, 2017


	Contributors: Benjamin Bengfort, Rebecca Bilbro





	Changes:

	
	Converted Mkdocs documentation to Sphinx documentation


	Updated docstrings for all Visualizers and functions


	Created a DataVisualizer base class for dataset visualization


	Single call functions for simple visualizer interaction


	Added yellowbrick specific color sequences and palettes and env handling


	More robust examples with downloader from DDL host


	Better axes handling in visualizer, matplotlib/sklearn integration


	Added a finalize method to complete drawing before render


	Improved testing on real data sets from examples


	Bugfix: score visualizer renders in notebook but not in Python scripts.


	Bugfix: tests updated to support new API











Hotfix 0.3.1

Hotfix to solve pip install issues with Yellowbrick.


	Tag: v0.3.1 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3.1a2]


	Deployed: Monday, October 10, 2016


	Contributors: Benjamin Bengfort


	Changes:

	
	Modified packaging and wheel for Python 2.7 and 3.5 compatibility


	Modified deployment to PyPI and pip install ability


	Fixed Travis-CI tests with the backend failures.















Version 0.3

This release marks a major change from the previous MVP releases as Yellowbrick moves towards direct integration with scikit-learn for visual diagnostics and steering of machine learning and could therefore be considered the first alpha release of the library. To that end we have created a Visualizer model which extends sklearn.base.BaseEstimator and can be used directly in the ML Pipeline. There are a number of visualizers that can be used throughout the model selection process, including for feature analysis, model selection, and hyperparameter tuning.

In this release specifically, we focused on visualizers in the data space for feature analysis and visualizers in the model space for scoring and evaluating models. Future releases will extend these base classes and add more functionality.


	Tag: v0.3 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.3]


	Deployed: Sunday, October 9, 2016


	Contributors: Benjamin Bengfort, Rebecca Bilbro, Marius van Niekerk


	Enhancements:

	
	Created an API for visualization with machine learning: Visualizers that are BaseEstimators.


	Created a class hierarchy for Visualizers throughout the ML process particularly feature analysis and model evaluation


	Visualizer interface is draw method which can be called multiple times on data or model spaces and a poof method to finalize the figure and display or save to disk.


	ScoreVisualizers wrap scikit-learn estimators and implement fit() and predict() (pass-throughs to the estimator) and also score which calls draw in order to visually score the estimator. If the estimator isn’t appropriate for the scoring method an exception is raised.


	ROCAUC is a ScoreVisualizer that plots the receiver operating characteristic curve and displays the area under the curve score.


	ClassificationReport is a ScoreVisualizer that renders the confusion matrix of a classifier as a heatmap.


	PredictionError is a ScoreVisualizer that plots the actual vs. predicted values and the 45 degree accuracy line for regressors.


	ResidualPlot is a ScoreVisualizer that plots the residuals (y - yhat) across the actual values (y) with the zero accuracy line for both train and test sets.


	ClassBalance is a ScoreVisualizer that displays the support for each class as a bar plot.


	FeatureVisualizers are scikit-learn Transformers that implement fit() and transform() and operate on the data space, calling draw to display instances.


	ParallelCoordinates plots instances with class across each feature dimension as line segments across a horizontal space.


	RadViz plots instances with class in a circular space where each feature dimension is an arc around the circumference and points are plotted relative to the weight of the feature.


	Rank2D plots pairwise scores of features as a heatmap in the space [-1, 1] to show relative importance of features. Currently implemented ranking functions are Pearson correlation and covariance.


	Coordinated and added palettes in the bgrmyck space and implemented a version of the Seaborn set_palette and set_color_codes functions as well as the ColorPalette object and other matplotlib.rc modifications.


	Inherited Seaborn’s notebook context and whitegrid axes style but make them the default, don’t allow user to modify (if they’d like to, they’ll have to import Seaborn). This gives Yellowbrick a consistent look and feel without giving too much work to the user and prepares us for matplotlib 2.0.


	Jupyter Notebook with Examples of all Visualizers and usage.






	Bug Fixes:

	
	Fixed Travis-CI test failures with matplotlib.use(‘Agg’).


	Fixed broken link to Quickstart on README


	Refactor of the original API to the scikit-learn Visualizer API















Version 0.2

Intermediate steps towards a complete API for visualization. Preparatory stages for scikit-learn visual pipelines.


	Tag: v0.2 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.2]


	Deployed: Sunday, September 4, 2016


	Contributors: Benjamin Bengfort, Rebecca Bilbro, Patrick O’Melveny, Ellen Lowy, Laura Lorenz


	Changes:

	
	Continued attempts to fix the Travis-CI Scipy install failure (broken tests)


	Utility function: get the name of the model


	Specified a class based API and the basic interface (render, draw, fit, predict, score)


	Added more documentation, converted to Sphinx, autodoc, docstrings for viz methods, and a quickstart


	How to contribute documentation, repo images etc.


	Prediction error plot for regressors (mvp)


	Residuals plot for regressors (mvp)


	Basic style settings a la seaborn


	ROC/AUC plot for classifiers (mvp)


	Best fit functions for “select best”, linear, quadratic


	Several Jupyter notebooks for examples and demonstrations















Version 0.1

Created the yellowbrick library MVP with two primary operations: a classification report heat map and a ROC/AUC curve model analysis for classifiers. This is the base package deployment for continuing yellowbrick development.


	Tag: v0.1 [https://github.com/DistrictDataLabs/yellowbrick/releases/tag/v0.1]


	Deployed: Wednesday, May 18, 2016


	Contributors: Benjamin Bengfort, Rebecca Bilbro


	Changes:

	
	Created the Anscombe quartet visualization example


	Added DDL specific color maps and a stub for more style handling


	Created crplot which visualizes the confusion matrix of a classifier


	Created rocplot_compare which compares two classifiers using ROC/AUC metrics


	Stub tests/stub documentation
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      	ALGORITHMS (yellowbrick.features.manifold.Manifold attribute)


  

  	
      	AlphaSelection (class in yellowbrick.regressor.alphas)


      	anscombe() (in module yellowbrick.anscombe)


  





B


  	
      	BalancedBinningReference (class in yellowbrick.target.binning)


  





C


  	
      	ClassBalance (class in yellowbrick.target.class_balance)


      	ClassificationReport (class in yellowbrick.classifier.classification_report)


      	ClassPredictionError (class in yellowbrick.classifier.class_prediction_error)


      	cluster_centers_ (yellowbrick.cluster.icdm.InterclusterDistance attribute)


      	color_palette() (in module yellowbrick.style.palettes)


  

  	
      	ColorMap (class in yellowbrick.style.colors)


      	colors (yellowbrick.style.colors.ColorMap attribute)


      	ConfusionMatrix (class in yellowbrick.classifier.confusion_matrix)


      	count() (yellowbrick.text.freqdist.FrequencyVisualizer method)


      	CVScores (class in yellowbrick.model_selection.cross_validation)


  





D


  	
      	DecisionBoundariesVisualizer (class in yellowbrick.contrib.classifier.boundaries)


      	DiscriminationThreshold (class in yellowbrick.classifier.threshold)


      	DispersionPlot (class in yellowbrick.text.dispersion)


      	draw() (yellowbrick.classifier.class_prediction_error.ClassPredictionError method)

      
        	(yellowbrick.classifier.classification_report.ClassificationReport method)


        	(yellowbrick.classifier.confusion_matrix.ConfusionMatrix method)


        	(yellowbrick.classifier.prcurve.PrecisionRecallCurve method)


        	(yellowbrick.classifier.rocauc.ROCAUC method)


        	(yellowbrick.classifier.threshold.DiscriminationThreshold method)


        	(yellowbrick.cluster.elbow.KElbowVisualizer method)


        	(yellowbrick.cluster.icdm.InterclusterDistance method)


        	(yellowbrick.cluster.silhouette.SilhouetteVisualizer method)


        	(yellowbrick.contrib.classifier.boundaries.DecisionBoundariesVisualizer method)


        	(yellowbrick.contrib.missing.bar.MissingValuesBar method)


        	(yellowbrick.contrib.missing.dispersion.MissingValuesDispersion method)


        	(yellowbrick.contrib.scatter.ScatterVisualizer method)


        	(yellowbrick.features.importances.FeatureImportances method)


        	(yellowbrick.features.jointplot.JointPlotVisualizer method)


        	(yellowbrick.features.manifold.Manifold method)


        	(yellowbrick.features.pca.PCADecomposition method)


        	(yellowbrick.features.pcoords.ParallelCoordinates method)


        	(yellowbrick.features.radviz.RadialVisualizer method)


        	(yellowbrick.features.rankd.Rank1D method)


        	(yellowbrick.features.rankd.Rank2D method)


        	(yellowbrick.features.rfecv.RFECV method)


        	(yellowbrick.model_selection.cross_validation.CVScores method)


        	(yellowbrick.model_selection.learning_curve.LearningCurve method)


        	(yellowbrick.model_selection.validation_curve.ValidationCurve method)


        	(yellowbrick.regressor.alphas.AlphaSelection method)


        	(yellowbrick.regressor.alphas.ManualAlphaSelection method)


        	(yellowbrick.regressor.residuals.PredictionError method)


        	(yellowbrick.regressor.residuals.ResidualsPlot method)


        	(yellowbrick.target.binning.BalancedBinningReference method)


        	(yellowbrick.target.class_balance.ClassBalance method)


        	(yellowbrick.target.feature_correlation.FeatureCorrelation method)


        	(yellowbrick.text.dispersion.DispersionPlot method)


        	(yellowbrick.text.freqdist.FrequencyVisualizer method)


        	(yellowbrick.text.tsne.TSNEVisualizer method)


      


  

  	
      	draw_classes() (yellowbrick.features.pcoords.ParallelCoordinates method)


      	draw_instances() (yellowbrick.features.pcoords.ParallelCoordinates method)


      	draw_joint() (yellowbrick.features.jointplot.JointPlotVisualizer method)


      	draw_multi_dispersion_chart() (yellowbrick.contrib.missing.dispersion.MissingValuesDispersion method)


      	draw_stacked_bar() (yellowbrick.contrib.missing.bar.MissingValuesBar method)


      	draw_xy() (yellowbrick.features.jointplot.JointPlotVisualizer method)


  





F


  	
      	FeatureCorrelation (class in yellowbrick.target.feature_correlation)


      	FeatureImportances (class in yellowbrick.features.importances)


      	finalize() (yellowbrick.classifier.class_prediction_error.ClassPredictionError method)

      
        	(yellowbrick.classifier.classification_report.ClassificationReport method)


        	(yellowbrick.classifier.confusion_matrix.ConfusionMatrix method)


        	(yellowbrick.classifier.prcurve.PrecisionRecallCurve method)


        	(yellowbrick.classifier.rocauc.ROCAUC method)


        	(yellowbrick.classifier.threshold.DiscriminationThreshold method)


        	(yellowbrick.cluster.elbow.KElbowVisualizer method)


        	(yellowbrick.cluster.icdm.InterclusterDistance method)


        	(yellowbrick.cluster.silhouette.SilhouetteVisualizer method)


        	(yellowbrick.contrib.classifier.boundaries.DecisionBoundariesVisualizer method)


        	(yellowbrick.contrib.missing.bar.MissingValuesBar method)


        	(yellowbrick.contrib.missing.dispersion.MissingValuesDispersion method)


        	(yellowbrick.contrib.scatter.ScatterVisualizer method)


        	(yellowbrick.features.importances.FeatureImportances method)


        	(yellowbrick.features.jointplot.JointPlotVisualizer method)


        	(yellowbrick.features.manifold.Manifold method)


        	(yellowbrick.features.pca.PCADecomposition method)


        	(yellowbrick.features.pcoords.ParallelCoordinates method)


        	(yellowbrick.features.radviz.RadialVisualizer method)


        	(yellowbrick.features.rfecv.RFECV method)


        	(yellowbrick.model_selection.cross_validation.CVScores method)


        	(yellowbrick.model_selection.learning_curve.LearningCurve method)


        	(yellowbrick.model_selection.validation_curve.ValidationCurve method)


        	(yellowbrick.regressor.alphas.AlphaSelection method)


        	(yellowbrick.regressor.residuals.PredictionError method)


        	(yellowbrick.regressor.residuals.ResidualsPlot method)


        	(yellowbrick.target.binning.BalancedBinningReference method)


        	(yellowbrick.target.class_balance.ClassBalance method)


        	(yellowbrick.target.feature_correlation.FeatureCorrelation method)


        	(yellowbrick.text.dispersion.DispersionPlot method)


        	(yellowbrick.text.freqdist.FrequencyVisualizer method)


        	(yellowbrick.text.tsne.TSNEVisualizer method)


      


  

  	
      	fit() (yellowbrick.classifier.prcurve.PrecisionRecallCurve method)

      
        	(yellowbrick.classifier.threshold.DiscriminationThreshold method)


        	(yellowbrick.cluster.elbow.KElbowVisualizer method)


        	(yellowbrick.cluster.icdm.InterclusterDistance method)


        	(yellowbrick.cluster.silhouette.SilhouetteVisualizer method)


        	(yellowbrick.contrib.classifier.boundaries.DecisionBoundariesVisualizer method)


        	(yellowbrick.contrib.scatter.ScatterVisualizer method)


        	(yellowbrick.contrib.statsmodels.base.StatsModelsWrapper method)


        	(yellowbrick.features.importances.FeatureImportances method)


        	(yellowbrick.features.jointplot.JointPlotVisualizer method)


        	(yellowbrick.features.manifold.Manifold method)


        	(yellowbrick.features.pca.PCADecomposition method)


        	(yellowbrick.features.pcoords.ParallelCoordinates method)


        	(yellowbrick.features.rfecv.RFECV method)


        	(yellowbrick.model_selection.cross_validation.CVScores method)


        	(yellowbrick.model_selection.learning_curve.LearningCurve method)


        	(yellowbrick.model_selection.validation_curve.ValidationCurve method)


        	(yellowbrick.regressor.alphas.AlphaSelection method)


        	(yellowbrick.regressor.alphas.ManualAlphaSelection method)


        	(yellowbrick.regressor.residuals.ResidualsPlot method)


        	(yellowbrick.target.binning.BalancedBinningReference method)


        	(yellowbrick.target.class_balance.ClassBalance method)


        	(yellowbrick.target.feature_correlation.FeatureCorrelation method)


        	(yellowbrick.text.dispersion.DispersionPlot method)


        	(yellowbrick.text.freqdist.FrequencyVisualizer method)


        	(yellowbrick.text.tsne.TSNEVisualizer method)


      


      	fit_draw() (yellowbrick.contrib.classifier.boundaries.DecisionBoundariesVisualizer method)


      	fit_draw_poof() (yellowbrick.contrib.classifier.boundaries.DecisionBoundariesVisualizer method)


      	fit_transform() (yellowbrick.features.manifold.Manifold method)


      	FrequencyVisualizer (class in yellowbrick.text.freqdist)


  





G


  	
      	get_color_cycle() (in module yellowbrick.style.colors)


  

  	
      	get_nan_col_counts() (yellowbrick.contrib.missing.bar.MissingValuesBar method)


      	get_nan_locs() (yellowbrick.contrib.missing.dispersion.MissingValuesDispersion method)
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      	hax (yellowbrick.regressor.residuals.ResidualsPlot attribute)
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      	InterclusterDistance (class in yellowbrick.cluster.icdm)
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      	JointPlotVisualizer (class in yellowbrick.features.jointplot)
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      	KElbowVisualizer (class in yellowbrick.cluster.elbow)


  





L


  	
      	lax (yellowbrick.cluster.icdm.InterclusterDistance attribute)


  

  	
      	LearningCurve (class in yellowbrick.model_selection.learning_curve)


  





M


  	
      	make_transformer() (yellowbrick.text.tsne.TSNEVisualizer method)


      	Manifold (class in yellowbrick.features.manifold)


      	manifold (yellowbrick.features.manifold.Manifold attribute)


  

  	
      	ManualAlphaSelection (class in yellowbrick.regressor.alphas)


      	MissingValuesBar (class in yellowbrick.contrib.missing.bar)


      	MissingValuesDispersion (class in yellowbrick.contrib.missing.dispersion)


  





N


  	
      	normalize() (yellowbrick.features.radviz.RadialVisualizer static method)


      	NORMALIZERS (yellowbrick.features.pcoords.ParallelCoordinates attribute)


  

  	
      	NULL_CLASS (yellowbrick.text.dispersion.DispersionPlot attribute)

      
        	(yellowbrick.text.tsne.TSNEVisualizer attribute)


      


  





P


  	
      	ParallelCoordinates (class in yellowbrick.features.pcoords)


      	PCADecomposition (class in yellowbrick.features.pca)


      	poof() (yellowbrick.target.binning.BalancedBinningReference method)


  

  	
      	PrecisionRecallCurve (class in yellowbrick.classifier.prcurve)


      	predict() (yellowbrick.contrib.statsmodels.base.StatsModelsWrapper method)


      	PredictionError (class in yellowbrick.regressor.residuals)


  





R


  	
      	RadialVisualizer (class in yellowbrick.features.radviz)


      	RadViz (in module yellowbrick.features.radviz)


      	Rank1D (class in yellowbrick.features.rankd)


      	Rank2D (class in yellowbrick.features.rankd)


      	ranking_methods (yellowbrick.features.rankd.Rank1D attribute)

      
        	(yellowbrick.features.rankd.Rank2D attribute)


      


  

  	
      	reset_defaults() (in module yellowbrick.style.rcmod)


      	reset_orig() (in module yellowbrick.style.rcmod)


      	ResidualsPlot (class in yellowbrick.regressor.residuals)


      	resolve_colors() (in module yellowbrick.style.colors)


      	RFECV (class in yellowbrick.features.rfecv)


      	ROCAUC (class in yellowbrick.classifier.rocauc)


  





S


  	
      	ScatterVisualizer (class in yellowbrick.contrib.scatter)


      	score() (yellowbrick.classifier.class_prediction_error.ClassPredictionError method)

      
        	(yellowbrick.classifier.classification_report.ClassificationReport method)


        	(yellowbrick.classifier.confusion_matrix.ConfusionMatrix method)


        	(yellowbrick.classifier.prcurve.PrecisionRecallCurve method)


        	(yellowbrick.classifier.rocauc.ROCAUC method)


        	(yellowbrick.contrib.statsmodels.base.StatsModelsWrapper method)


        	(yellowbrick.regressor.alphas.AlphaSelection method)


        	(yellowbrick.regressor.alphas.ManualAlphaSelection method)


        	(yellowbrick.regressor.residuals.PredictionError method)


        	(yellowbrick.regressor.residuals.ResidualsPlot method)


      


  

  	
      	set_aesthetic() (in module yellowbrick.style.rcmod)


      	set_color_codes() (in module yellowbrick.style.palettes)


      	set_palette() (in module yellowbrick.style.rcmod)


      	set_style() (in module yellowbrick.style.rcmod)


      	SilhouetteVisualizer (class in yellowbrick.cluster.silhouette)


      	StatsModelsWrapper (class in yellowbrick.contrib.statsmodels.base)


  





T


  	
      	transform() (yellowbrick.features.manifold.Manifold method)

      
        	(yellowbrick.features.pca.PCADecomposition method)


      


  

  	
      	transformer (yellowbrick.cluster.icdm.InterclusterDistance attribute)


      	TSNEVisualizer (class in yellowbrick.text.tsne)


  





V


  	
      	ValidationCurve (class in yellowbrick.model_selection.validation_curve)


  





Y


  	
      	yellowbrick.anscombe (module)


      	yellowbrick.classifier.class_prediction_error (module)


      	yellowbrick.classifier.classification_report (module)


      	yellowbrick.classifier.confusion_matrix (module)


      	yellowbrick.classifier.prcurve (module)


      	yellowbrick.classifier.rocauc (module)


      	yellowbrick.classifier.threshold (module)


      	yellowbrick.cluster.elbow (module)


      	yellowbrick.cluster.icdm (module)


      	yellowbrick.cluster.silhouette (module)


      	yellowbrick.contrib.classifier.boundaries (module)


      	yellowbrick.contrib.missing.bar (module)


      	yellowbrick.contrib.missing.dispersion (module)


      	yellowbrick.contrib.scatter (module)


      	yellowbrick.contrib.statsmodels.base (module)


      	yellowbrick.features.importances (module)


      	yellowbrick.features.jointplot (module)


      	yellow