

Yet Another Neural Network Toolbox

Welcome to the Yann Toolbox. It is a toolbox for building and learning convolutional neural
networks, built on top of theano [http://theano.readthedocs.io]. This toolbox is a homage to Prof.
Yann LeCun [http://yann.lecun.com/], one of the earliest poineers of CNNs. To setup the toolbox
refer the Installation Guide guide. Once setup, you may start with the Quick Start guide or try
your hand at the Tutorials and the guide to Getting Started. A user base discussion
group is setup on gitter [https://gitter.im/yann-users/Lobby] and also on google groups [https://groups.google.com/forum/#!forum/yann-users].

If you are here for the theano-tensorflow migration tool, click [here](http:://www.tf-lenet.readthedocs.io).

[image: Travis Report]
 [https://travis-ci.org/ragavvenkatesan/yann][image: Codecov Coverage]
 [https://codecov.io/gh/ragavvenkatesan/yann][image: Requirements Status]
 [https://requires.io/github/ragavvenkatesan/yann/requirements/?branch=master][image: MIT License]
[image: Fork to contribute to the GitHub codebase]
 [https://github.com/ragavvenkatesan/yann/][image: Documentation Status]
 [http://yann.readthedocs.io/en/latest/?badge=latest][image: Google Groups]
 [https://groups.google.com/forum/#!forum/yann-users][image: https://badges.frapsoft.com/os/v1/open-source.svg?v=103]

Warning

Yann is currently under its early phases and is presently undergoing massive development.
Expect a lot of changes. Unittests are only starting to be written, therefore the
coverage and travis build passes are not to be completely trusted. The toolbox will be
formalized in the future but at this moment, the authorship, coverage and maintanence of the
toolbox is under extremely limited manpower.

Note

While, there are more formal and wholesome toolboxes that are similar and have a much larger
userbase such as Lasagne [https://github.com/Lasagne/Lasagne], Keras [http://keras.io/], Blocks [https://blocks.readthedocs.io/en/latest/] and Caffe [http://caffe.berkeleyvision.org/], this toolbox is designed
differently. This is much simpler and versatile. Yann is designed as a supplement to an
upcoming beginner’s book on Convolutional Neural Networks and also the toolbox of choice for a
introductory course on deep learning for computer vision.

Because of this reason, Yann is specifically designed to be intuitive and easy to use for
beginners. That does not compromise Yann of any of its core purpose - to be able to build CNNs
in a plug and play fashion. It is still a good choice for a toolbox for running pre-trained
models and build complicated, non-vannilla CNN architectures that are not easy to build with
the other toolboxes. It is also a good choice for researchers and industrial scientists, who
want to quickly prototype networks and test them before developing production scale models.

Getting Started

The following will help you get quickly acquinted with Yann.

	Installation Guide

	Tutorials

	Structure of the Yann network

Quick Start

The easiest way to get going with Yann is to follow this quick start guide. If you are not
satisfied and want a more detailed introduction to the toolbox, you may refer to the
Tutorials and the Structure of the Yann network. This tutorial was also presented in CSE591 at ASU
and the video of the presentation is available. A more detailed Jupyter Notebook version of this
tutorial is available
here [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/notebooks/Logistic%20Regression.ipynb].

 Installation Guide

Installation Guide

Yann is built on top of Theano [http://deeplearning.net/software/theano/]. Theano [http://deeplearning.net/software/theano/] and all its pre-requisites are mandatory.
Once theano and its pre-requisites are setup you may setup and run this toolbox.
Theano setup is documented in the theano toolbox documentation [http://deeplearning.net/software/theano/install.html]. Yann is built with theanoo 0.8
but should be forward compatible unless theano makes a drastic release.

Quick fire Installation

Now before going through the full-fledged installation procedure, you can run through the entire
installation in one command that will install the basics required to run the toolbox. To install
the toolbox quickly do the following:

pip install git+git://github.com/ragavvenkatesan/yann.git

If it showed any errors, install numpy first. skdata has some issue that requires numpy
installed first. If you use anaconda, just install the numpy and scipy using conda install
instead of pip install. This will setup the toolbox for all intentions and purposes.

Verify that the installation of theano is indeed version 0.9 or greater by doing the following in
a python shell

import theano
theano.__version__

If the version was not 0.9, you can install 0.9 by doing the following:

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

For a full-fledged installation procedure, don’t do the above but run through the following set of
instructions. If you want to install all other supporting features like datasets, visualizers and
others, do the following:

pip install -r requirements_full.txt
pip install git+git://github.com/ragavvenkatesan/yann.git

Full installation

Dependencies

Python + pip / conda

Yann needs Python 2.7.
Please install it for your OS.. Some modules that are required
don’t come with default python. But don’t worry python comes with a package installer
called pip. You can use pip to install additional packages.

For a headache free installation, the
anaconda [https://www.continuum.io/downloads] distribution of python is
very strongly recommended because it comes with a lot of goodies pre-packaged.

C compiler

You need a C compiler, not because yann needs C, but theano and probably numpy
requires C compilers. Make sure that your OS has one. Apple osX or macOS users, if you are using
Cuda and cuDNN, prefer using command line tools 7.x+. 8 doesn’t work with cuDNN at the moment of
writing this documentation. You can download older versions of xcode and command line tools
here [https://developer.apple.com/download/more/].

numpy/scipy

Numpy 1.6 and Scipy 0.11 are needed for yann. Make sure these work well with a blas system. Prefer
Intel MKL [https://software.intel.com/en-us/intel-mkl] for blas, which is also availabe from
anaconda. MKL is free for students and researchers and is available for a small price for others.

If you use pip use

pip install numpy
pip install scipy

to install these. If you use anaconda, use

conda install mkl
conda install numpy
conda install scipy

to set these up. If not, yann installer will pip install numpy scipy anyway as part of its
requirements.

Theano

Once all the pre-requisites are setup, install theano [http://deeplearning.net/software/theano/] version 0.8 or higher.

The following .theanorc configuration can be used as a sample normally,
but you may choose other options. As an example one can use the following:

[global]
floatX=float32
device=cuda0
optimizer_including=cudnn
mode = FAST_RUN

[nvcc]
nvcc.fastmath=True
allow_gc=False

[cuda]
root=/usr/local/cuda/

[blas]
ldflags = -lmkl

[lib]
cnmem = 0.5

If you use the libgpuarray [http://deeplearning.net/software/libgpuarray/installation.html]
backend instead of the CUDA backend, use device=cuda0 or whichever device you want to run on.
If you are using CUDA backed use device=gpu0. Refer theano documentation for more on this.

Optional Dependencies

These are some optional dependencies that yann doesn’t use directly but are used by yann’s
dependencies like theano. I highly recommend these before installing theano.

Cuda

This is an optional dependency. If you need the capability of a Nvidia GPU, you will need a
suitable CUDA toolkit and drivers [https://developer.nvidia.com/cuda-toolkit]. If you do not
have this dependency installed, you won’t be able to run the code on Nvidia GPUs.Some compoenents
of the code depend on cuDNN [https://developer.nvidia.com/cudnn] for speeding things up, so
cuDNN [https://developer.nvidia.com/cudnn] is highly recommended although optional.
Nvidia has the awesome cuDNN library that is free as long as you
register as a developer [https://developer.nvidia.com/cudnn].
If you didn’t install CUDA, you can still run the toolbox, but it will be much slower running on a
CPU.

Libgpuarray

libgpuarray [http://deeplearning.net/software/libgpuarray/installation.html]
is now fully supported, cuda backend is strongly recommended for macOS, but for the Pascal
architecture of GPUs, libgpuarray seems to be performing much better. This is also an
optional but highly recommended tool

Additional Dependencies

Yann also needs the following as additional dependencies that opens up additional features.

Networkx

For those who are networking geeks, a neural network is a directed acyclic graph. So Yann
internally has the ability for every network to create a networkx style graph and do things
with it if you need. Networkx [https://networkx.github.io/] is a tremendously popular
tool for network realted tasks and we are still exploring and testing its capabilities. This might
only ever be used for visualization of network purposes, but some researcher somewhere might
use this once in the future networks get sophisticated, we never know. This is an optional
dependency, not having this dependency doesn’t affect the toolbox, except for the purposes it is
needed for.

You can install networkx as follows:

pip install networkx

skdata

Used as a port for datasets. This is Needed if you are using some common benchmark datasets.
Although this is an additional dependency, skdata is the core of the datasets module and most
datasets in this toolbox are ported through skdata unless you have matlab. Work is on-going in
integrating with fuel and other ports.

Install by using the following command:

pip install skdata

progressbar

Yann uses progressbar [https://pypi.python.org/pypi/progressbar] for aesthetic printing. You
can install it easily by using

pip install progressbar

If you don’t have progressbar, yann will simply ignore it and print progress on terminal.

Dependencies for visualization

Theano needs pydot and graphviz for visualization. We use theano’s visualization for printing
theano functions as shown
here [https://github.com/ragavvenkatesan/yann/blob/master/docs/source/pantry/samples/train.pdf].

These visualizations are highly useful during debugging. If you want the capability of producing
these for your networks, install the dependencises using the following commands:

apt-get install graphviz
pip install graphviz
pip install pydot pydot-ng

Not needed now, but might need in future.
Yann will switch from openCV to matplotlib or browser matplotlib for visualization. Install it by

pip insall matplotlib

cPickle, gzip and hdf5py

Most often the case is that cPickle and gzip these come with the python installation,
if not please install them. Yann uses these for saving down models and such.

For datasets, at the moment, yann uses cpickle. In the future, yann will migrate to hdf5 for
datasets. We don’t use hdf5py at the moment. Install hdf5py by running either,

conda install h5py

or,

pip install h5py

Yann Toolbox Setup

Finally to install the toolbox run,

pip install git+git://github.com/ragavvenkatesan/yann.git

If you have already setup the toolbox and want to just update to the bleeding-edge use,

pip install --upgrade git+git://github.com/ragavvenkatesan/yann.git

If you want to build by yourself you may clone from git and then run using setuptools. Ensure that
you have setuptools installed first.

pip install git setuptools

Once you are done, you clone the repository from git.

git clone http://github.com/ragavvenkatesan/yann

Once cloned, enter the directory and run installer.

cd yann
python setup.py install

You can run a bunch of tests (working on it) by running the following code:

python setup.py test

 Tutorials

Tutorials

If you are here for the first time you might want to consider doing the Quick Start instead
of doing the tutorials. The tutorials are meant for those who have initial practice or experience
with the toolbox and its structure. If you’d just want to see the codes or run the examples for
testing or other such purposes you could follow this tutorial/API. I recommend going through the
tutorial just in case though.

	Logistic Regression.

	Multi-layer Neural Network.

	Autoencoder Network.

	Convolutional Neural Network.

	Generative Adversarial Networks.

	Batch Normalization.

	Cooking a matlab dataset for Yann.

Todo

	Do tutorials for the following:

	
	Loading pre-trained VGG-19 net

	AlexNet

	GoogleNet

	ResNet

 Logistic Regression.

Logistic Regression.

Tutorial for logistic regression is basically the Quick Start guide. Please follow the
tutorial there. A full working code is presented in the following.

Notes

This code contains one method that explains how to build a
logistic regression classifier for the MNIST dataset using
the yann toolbox.

For a more interactive tutorial refer the notebook at
yann/pantry/tutorials/notebooks/Logistic Regression.ipynb

	
pantry.tutorials.log_reg.log_reg(dataset)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/log_reg.py]

	This function is a demo example of logistic regression.

 Multi-layer Neural Network.

Multi-layer Neural Network.

By virture of being here, it is assumed that you have gone through the Quick Start.
Let us take this one step further and create a neural network with two hidden layers. We begin as
usual by importing the network class and creating the input layer.

from yann.network import network
net = network()
dataset_params = { "dataset": "_datasets/_dataset_xxxxxx", "id": 'mnist', "n_classes" : 10 }
net.add_layer(type = "input", id ="input", dataset_init_args = dataset_params)

Instead of connecting this to a classfier as we saw in the Quick Start , let us add a couple
of fully connected hidden layers. Hidden layers can be created using layer type = dot_product.

net.add_layer (type = "dot_product",
 origin ="input",
 id = "dot_product_1",
 num_neurons = 800,
 regularize = True,
 activation ='relu')

net.add_layer (type = "dot_product",
 origin ="dot_product_1",
 id = "dot_product_2",
 num_neurons = 800,
 regularize = True,
 activation ='relu')

Notice the parameters passed. num_neurons is the number of nodes in the layer. Notice also
how we modularized the layers by using the id parameter. origin represents which layer
will be the input to the new layer. By default yann assumes all layers are input serially and
chooses the last added layer to be the input. Using origin, one can create various types of
architectures. Infact any directed acyclic graphs (DAGs) that could be hand-drawn could be
implemented. Let us now add a classifier and an objective layer to this.

net.add_layer (type = "classifier",
 id = "softmax",
 origin = "dot_product_2",
 num_classes = 10,
 activation = 'softmax',
)

net.add_layer (type = "objective",
 id = "nll",
 origin = "softmax",
)

Again notice that we have supplied a lot more arguments than before. Refer the API for more details.
Let us create our own optimizer module this time instead of using the yann default. For any
module in yann, the initialization can be done using the add_module method. The
add_module method typically takes input type which in this case is optimizer and a set
of intitliazation parameters which in our case is params = optimizer_params.
Any module params, which in this case is the optimizer_params is a dictionary of relevant
options. A typical optimizer setup is:

optimizer_params = {
 "momentum_type" : 'polyak',
 "momentum_params" : (0.9, 0.95, 30),
 "regularization" : (0.0001, 0.0002),
 "optimizer_type" : 'rmsprop',
 "id" : 'polyak-rms'
 }
net.add_module (type = 'optimizer', params = optimizer_params)

We have now successfully added a Polyak momentum with RmsProp back propagation with some [image: L_1]
and [image: L2] co-efficients that will be applied to the layers for which we passed as argument
regularize = True. For more options of parameters on optimizer refer to the optimizer
documentation [http://yann.readthedocs.io/en/master/yann/modules/optimizer.html] . This optimizer will therefore solve the following error:

[image: e(\bf{w_2,w_1,w_{\sigma}}) = \sigma(d_2(d_1(\bf{x},w_1),w_2)w_{\sigma}) + 0.0001(\vert w_2 \vert + \vert w_1\vert + \vert w_{\sigma} \vert) + 0.0002(\vert\vert w_2\vert\vert + \vert\vert w_1\vert\vert + \vert\vert w_{\sigma} \vert\vert)]

where [image: e] is the error, [image: \sigma(.)] is the sigmoid layer and [image: d_i(.)] is the
ith layer of the network. Once we are done, we can cook, train and test as usual:

learning_rates = (0.05, 0.01, 0.001)

net.cook(optimizer = 'polyak-rms',
 objective_layer = 'nll',
 datastream = 'mnist',
 classifier = 'softmax',
)

net.train(epochs = (20, 20),
 validate_after_epochs = 2,
 training_accuracy = True,
 learning_rates = learning_rates,
 show_progress = True,
 early_terminate = True)

The learning_rate, supplied here is a tuple. The first indicates a annealing of a linear rate,
the second is the initial learning rate of the first era, and the third value is the leanring rate
of the second era. Accordingly, epochs takes in a tuple with number of epochs for each era.

This time, let us not let it run the forty epochs, let us cancel in the middle after some epochs
by hitting ^c. Once it stops lets immediately test and demonstrate that the net retains the
parameters as updated as possible. Once done, lets run net.test().

Some new arguments are introduced here and they are for the most part easy to understand in context.
epoch represents a tuple which is the number of epochs of training and number of epochs of
fine tuning epochs after that. There could be several of these stages of finer tuning. Yann uses the
term ‘era’ to represent each set of epochs running with one learning rate. show_progress will
print a progress bar for each epoch. validate_after_epochs will perform
validation after such many epochs on a different validation dataset. The full code for this tutorial
with additional commentary can be found in the file pantry.tutorials.mlp.py. If you have
toolbox cloned or downloaded or just the tutorials downloaded, Run the code as,

from pantry.tutorials.mlp import mlp
mlp(dataset = 'some dataset created')

or simply,

python pantry/tutorials/mlp.py

from the toolbox root or path added to toolbox. The __init__ program has all the required
tools to create or load an already created dataset. Optionally as command line argument you can
provide the location to the dataset.

	
pantry.tutorials.mlp.mlp(dataset, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/mlp.py]

	This method is a tutorial on building a two layer multi-layer neural network. The built
network is mnist->800->800->10 .It optimizes with polyak momentum and rmsprop.

	Parameters:	dataset – an already created dataset.

 Autoencoder Network.

Autoencoder Network.

By virture of being here, it is assumed that you have gone through the Quick Start.

Todo

Code is done, but text needs to be written in.

The full code for this tutorial with additional commentary can be found in the file
pantry.tutorials.autoencoder.py. If you have toolbox cloned or downloaded or just the tutorials
downloaded, Run the code as,

Todo

	Need a validation and testing thats better than just measuring rmse. Can’t find something
great.

Notes

	This code contains two methods.

	
	A shallow autoencoder with just one layer.

	A Convolutional-Deconvolutional autoencoder that uses a deconv layer.

Both these methods are setup for MNIST dataset.

	
pantry.tutorials.autoencoder.convolutional_autoencoder(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/autoencoder.py]

	This function is a demo example of a deep convolutional autoencoder.
This is an example code. You should study this code rather than merely run it.
This is also an example for using the deconvolutional layer or the transposed fractional stride
convolutional layers.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	
pantry.tutorials.autoencoder.shallow_autoencoder(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/autoencoder.py]

	This function is a demo example of a sparse shallow autoencoder.
This is an example code. You should study this code rather than merely run it.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

 Convolutional Neural Network.

Convolutional Neural Network.

By virture of being here, it is assumed that you have gone through the Quick Start.

Building a convolutional neural network is just as similar as an MLNN. The convolutional-pooling
layer or convpool layer could be added using the following statement:

net.add_layer (type = "conv_pool",
 origin = "input",
 id = "conv_pool_1",
 num_neurons = 40,
 filter_size = (5,5),
 pool_size = (2,2),
 activation = ('maxout', 'maxout', 2),
 batch_norm = True,
 regularize = True,
 verbose = verbose
)

Here the layer has 40 filters each 5X5 followed by batch normalization followed by a maxpooling
of 2X2 all with stride 1. The activation used is maxout with maxout by 2. A simpler relu layer
could be added thus,

net.add_layer (type = "conv_pool",
 origin = "input",
 id = "conv_pool_1",
 num_neurons = 40,
 filter_size = (5,5),
 pool_size = (2,2),
 activation = 'relu',
 verbose = verbose
)

Refer to the APIs for more details on the convpool layer.
It is often useful to visualize the filters learnt in a CNN, so we introduce the visualizer module
here along with the CNN tutorial. The visualizer can be setup using the add_module method of
net object.

net.add_module (type = 'visualizer',
 params = visualizer_params,
 verbose = verbose
)

where the visualizer_params is a dictionary of the following format.

visualizer_params = {
 "root" : 'lenet5',
 "frequency" : 1,
 "sample_size": 144,
 "rgb_filters": True,
 "debug_functions" : False,
 "debug_layers": False,
 "id" : 'main'
 }

root is the location where the visualizations are saved, frequency is the number of epochs
for which visualizations are saved down, sample_size number of images are saved each time.
rgb_filters make the filters save in color. Along with the activities of each layer for the
exact same images as the data itself, the filters of neural network are also saved down.
For more options of parameters on visualizer refer to the visualizer documentation [http://yann.readthedocs.io/en/master/yann/modules/visualizer.html] .

The full code for this tutorial with additional commentary can be found in the file
pantry.tutorials.lenet.py. This tutorial runs a CNN for the lenet dataset.
If you have toolbox cloned or downloaded or just the tutorials downloaded, Run the code using,

Notes

	This code contains three methods.

	
	A modern reincarnation of LeNet5 for MNIST.

	
	The same Lenet with batchnorms

	2.a. Batchnorm before activations.
2.b. Batchnorm after activations.

All these methods are setup for MNIST dataset.

Todo

Add detailed comments.

	
pantry.tutorials.lenet.lenet5(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This function is a demo example of lenet5 from the infamous paper by Yann LeCun.
This is an example code. You should study this code rather than merely run it.

Warning

This is not the exact implementation but a modern re-incarnation.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	
pantry.tutorials.lenet.lenet_maxout_batchnorm_after_activation(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This is a version with nesterov momentum and rmsprop instead of the typical sgd.
This also has maxout activations for convolutional layers, dropouts on the last
convolutional layer and the other dropout layers and this also applies batch norm
to all the layers. The difference though is that we use the batch_norm layer to apply
batch norm that applies batch norm after the activation fo the previous layer.
So we just spice things up and add a bit of steroids to
lenet5(). This also introduces a visualizer module usage.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	
pantry.tutorials.lenet.lenet_maxout_batchnorm_before_activation(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This is a version with nesterov momentum and rmsprop instead of the typical sgd.
This also has maxout activations for convolutional layers, dropouts on the last
convolutional layer and the other dropout layers and this also applies batch norm
to all the layers. The batch norm is applied by using the batch_norm = True parameters
in all layers. This batch norm is applied before activation as is used in the original
version of the paper. So we just spice things up and add a bit of steroids to
lenet5(). This also introduces a visualizer module usage.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

 Generative Adversarial Networks.

Generative Adversarial Networks.

By virture of being here, it is assumed that you have gone through the Quick Start.

Todo

Code is done, but text needs to be written in.
This code/tutorial will also explain how the network class is setup because to implement a GAN,
we need to inherit the network class out and re-write some of the methods.

The full code for this tutorial with additional commentary can be found in the file
pantry.tutorials.gan.py. If you have toolbox cloned or downloaded or just the tutorials
downloaded, Run the code as,

Referenced from

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.” In Advances in Neural Information

Processing Systems, pp. 2672-2680. 2014.

Notes

This file contains several GAN implementations:

	Shallow GAN setup for MNIST

	Shallow Wasserstein GAN setup for MNIST*

	Deep GAN (Ian Goodfellow’s original implementation) setup for MNIST

	DCGAN (Chintala et al.) setup for CIFAR 10

	LS - DCGAN setup for CIFAR 10

Todos:

	Convert the DCGANs for CELEBA.

	WGAN doesn’t work properly because of clipping.

	Check that DCGANs strides are properly setup.

	
pantry.tutorials.gan.deep_deconvolutional_gan(dataset, regularize=True, batch_norm=True, dropout_rate=0.5, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/gan.py]

	This function is a demo example of a generative adversarial network.
This is an example code. You should study this code rather than merely run it.
This method uses a few deconvolutional layers.
This method is setup to produce images of size 32X32.

	Parameters:	
	dataset – Supply a dataset.

	regularize – True (default) supplied to layer arguments

	batch_norm – True (default) supplied to layer arguments

	dropout_rate – None (default) supplied to layer arguments

	verbose – Similar to the rest of the dataset.

	Returns:	A Network object.

	Return type:	net

Notes

This method is setup for Cifar 10.

	
pantry.tutorials.gan.deep_deconvolutional_lsgan(dataset, regularize=True, batch_norm=True, dropout_rate=0.5, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/gan.py]

	This function is a demo example of a generative adversarial network.
This is an example code. You should study this code rather than merely run it.
This method uses a few deconvolutional layers as was used in the DCGAN paper.
This method is setup to produce images of size 32X32.

	Parameters:	
	dataset – Supply a dataset.

	regularize – True (default) supplied to layer arguments

	batch_norm – True (default) supplied to layer arguments

	dropout_rate – None (default) supplied to layer arguments

	verbose – Similar to the rest of the dataset.

	Returns:	A Network object.

	Return type:	net

Notes

This method is setupfor SVHN / CIFAR10.
This is an implementation of th least squares GAN with a = 0, b = 1 and c= 1 (equation 9)
[1] Least Squares Generative Adversarial Networks, Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang

	
pantry.tutorials.gan.deep_gan_mnist(dataset, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/gan.py]

	This function is a demo example of a generative adversarial network.
This is an example code. You should study this code rather than merely run it.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	Returns:	A Network object.

	Return type:	net

Notes

This network here mimics
Ian Goodfellow’s original code and implementation for MNIST adapted from his source code:
https://github.com/goodfeli/adversarial/blob/master/mnist.yaml .It might not be a perfect
replicaiton, but I tried as best as I could.

This method is setup for MNIST

	
pantry.tutorials.gan.shallow_gan_mnist(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/gan.py]

	This function is a demo example of a generative adversarial network.
This is an example code. You should study this code rather than merely run it.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

Notes

This method is setup for MNIST.

	
pantry.tutorials.gan.shallow_wgan_mnist(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/gan.py]

	This function is a demo example of a Wasserstein generative adversarial network.
This is an example code. You should study this code rather than merely run it.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

Notes

This method is setup for MNIST.
Everything in this code is the same as the shallow GAN class except for
the loss functions.

Todo

This is not verified. There is some trouble in weight clipping.

 Batch Normalization.

Batch Normalization.

Batch normalization has become one important operation in faster and stable learning of neural
networks. In batch norm we do the following:

[image: x = (\frac{x - \mu_b}{\sigma_b})\gamma + \beta]

The [image: x] is the input (and the output) of this operation, [image: \mu_b] and [image: \sigma_b]
are the mean and the variance of the minibatch of [image: x] supplied. [image: \gamma] and
[image: \beta] are learnt using back propagation. This will also store a running mean and a running
variance, which is used during inference time.

By default batch normalization can be performed on convolution and dot product layers using
the argument batch_norm = True supplied to the yann.network.add_layer method. This
will apply the batch normalization before the activation and after the core layer operation.

While this is the technique that was described in the original batch normalization paper[1]. Some
modern networks such as the Residual network [2],[3] use a re-orderd version of layer operations
that require the batch norm to be applied post-activation. This is particularly used when using
ReLU or Maxout networks[4][5]. Therefore we also provide a layer type batch_norm, that could
create a layer that simply does batch normalization on the input supplied. These layers could be
used to create a post-activation batch normalization.

This tutorial demonstrates the use of both these techniques using the same architecutre of networks
used in the Convolutional Neural Network. tutorial. The codes for these can be found in the following module methods
in pantry.tutorials.

References

	[1]	Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

	[2]	He, Kaiming, et al. “Identity mappings in deep residual networks.” European Conference on
Computer Vision. Springer International Publishing, 2016.

	[3]	He, Kaiming, et al. “Deep residual learning for image recognition.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016.

	[4]	Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve restricted boltzmann
machines.” Proceedings of the 27th International Conference on Machine Learning (ICML-10).
2010.

	[5]	Goodfellow, Ian J., et al. “Maxout networks.” arXiv preprint arXiv:1302.4389 (2013).

Notes

	This code contains three methods.

	
	A modern reincarnation of LeNet5 for MNIST.

	
	The same Lenet with batchnorms

	2.a. Batchnorm before activations.
2.b. Batchnorm after activations.

All these methods are setup for MNIST dataset.

Todo

Add detailed comments.

	
pantry.tutorials.lenet.lenet5(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This function is a demo example of lenet5 from the infamous paper by Yann LeCun.
This is an example code. You should study this code rather than merely run it.

Warning

This is not the exact implementation but a modern re-incarnation.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	
pantry.tutorials.lenet.lenet_maxout_batchnorm_after_activation(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This is a version with nesterov momentum and rmsprop instead of the typical sgd.
This also has maxout activations for convolutional layers, dropouts on the last
convolutional layer and the other dropout layers and this also applies batch norm
to all the layers. The difference though is that we use the batch_norm layer to apply
batch norm that applies batch norm after the activation fo the previous layer.
So we just spice things up and add a bit of steroids to
lenet5(). This also introduces a visualizer module usage.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

	
pantry.tutorials.lenet.lenet_maxout_batchnorm_before_activation(dataset=None, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/lenet.py]

	This is a version with nesterov momentum and rmsprop instead of the typical sgd.
This also has maxout activations for convolutional layers, dropouts on the last
convolutional layer and the other dropout layers and this also applies batch norm
to all the layers. The batch norm is applied by using the batch_norm = True parameters
in all layers. This batch norm is applied before activation as is used in the original
version of the paper. So we just spice things up and add a bit of steroids to
lenet5(). This also introduces a visualizer module usage.

	Parameters:	
	dataset – Supply a dataset.

	verbose – Similar to the rest of the dataset.

 Cooking a matlab dataset for Yann.

Cooking a matlab dataset for Yann.

By virture of being here, it is assumed that you have gone through the Quick Start.

This tutorial will help you convert a dataset from matlab workspace to yann. To begin let us
acquire Google’s Street View House Numbers dataset in Matlab [http://ufldl.stanford.edu/housenumbers/] [1]. Download from the url three
.mat files: test_32x32.mat, train_32x32.mat and extra_32x32.mat. Once downloaded we need to
divide this mat dump of data into training, testing and validation minibatches appropriately as
used by yann. This can be accomplished by the steps outlined in the code
yann\pantry\matlab\make_svhn.m. This will create data with 500 samples per mini batch with
56 training batches, 42 testing batches and 28 validation batches.

Once the mat files are setup appropriately, they are ready for yann to load and convert them into
yann data. In case of data that is not form svhn, you can open one of the ‘batch’ files in matlab
to understand how the data is spread. Typically, the x variable is vectorized images, in this
case 500X3072 (500 images per batch, 32*32*3 pixels per image). y is an integer vector labels
going from 0-10 in this case.

References

	[1]	Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng
Reading Digits in Natural Images with Unsupervised Feature Learning NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011.

To convert the code into yann, we can use the setup_dataset module at yann.utils.dataset.py
file. Simply call the initializer as,

dataset = setup_dataset(dataset_init_args = data_params,
 save_directory = save_directory,
 preprocess_init_args = preprocess_params,
 verbose = 3)

where, data_params contains information about the dataset thusly,

data_params = {
 "source" : 'matlab',
 # "name" : 'yann_svhn', # some name.
 "location" : location, # some location to load from.
 "height" : 32,
 "width" : 32,
 "channels" : 3,
 "batches2test" : 42,
 "batches2train" : 56,
 "batches2validate" : 28,
 "mini_batch_size" : 500 }

and the preprocess_params contains information on how to process the images thusly,

preprocess_params = {
 "normalize" : True,
 "ZCA" : False,
 "grayscale" : False,
 "zero_mean" : False,
 }

save_directory is simply a location to save the yann dataset. Customarialy, it is
save_directory = '_datasets'

The full code for this tutorial with additional commentary can be found in the file
pantry.tutorials.mat2yann.py.

If you have toolbox cloned or downloaded or just the tutorials
downloaded, Run the code using,

	
pantry.tutorials.mat2yann.cook_svhn_normalized(location, verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/pantry/tutorials/mat2yann.py]

	This method demonstrates how to cook a dataset for yann from matlab. Refer to the
pantry/matlab/setup_svhn.m file first to setup the dataset and make it ready for use with
yann.

	Parameters:	
	location – provide the location where the dataset is created and stored.
Refer to prepare_svhn.m file to understand how to prepare a dataset.

	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset.

Notes

By default, this will create a dataset that is not mean-subtracted.

	
class yann.utils.dataset.setup_dataset(dataset_init_args, save_directory='_datasets', verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	The setup_dataset class is used to create and assemble datasets that are friendly to the
Yann toolbox.

Todo

images option for the source.
skdata pascal isn’t working
imagenet dataset and coco needs to be setup.

	Parameters:	
	dataset_init_args – is a dictonary of the form:

data_init_args = {

 "source" : <where to get the dataset from>
 'pkl' : A theano tutorial style 'pkl' file.
 'skdata' : Download and setup from skdata
 'matlab' : Data is created and is being used from Matlab
 'images-only' : Data is created from a directory of images. This
 will be an unsupervised dataset with no labels.
 "name" : necessary only for skdata
 supports
 * ``'mnist'``
 * ``'mnist_noise1'``
 * ``'mnist_noise2'``
 * ``'mnist_noise3'``
 * ``'mnist_noise4'``
 * ``'mnist_noise5'``
 * ``'mnist_noise6'``
 * ``'mnist_bg_images'``
 * ``'mnist_bg_rand'``
 * ``'mnist_rotated'``
 * ``'mnist_rotated_bg'``.
 * ``'cifar10'``
 * ``'caltech101'``
 * ``'caltech256'``

 Refer to original paper by Hugo Larochelle [1] for these dataset details.

 "location" : necessary for 'pkl' and 'matlab' and
 'images-only'
 "mini_batch_size" : 500, # some batch size
 "mini_batches_per_batch" : (100, 20, 20), # trianing, testing, validation
 "batches2train" : 1, # number of files will be created.
 "batches2test" : 1,
 "batches2validate" : 1,
 "height" : 28, # After pre-processing
 "width" : 28,
 "channels" : 1 , # color (3) or grayscale (1) ...

 }

	preprocess_init_args – provide preprocessing arguments. This is a dictionary:

args = {
 "normalize" : <bool> True for normalize across batches
 "GCN" : True for global contrast normalization
 "ZCA" : True, kind of like a PCA representation (not fully tested)
 "grayscale" : Convert the image to grayscale
 }

	save_directory – <string> a location where the dataset is going to be saved.

	[2]	Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y. An empirical evaluation
of deep architectures on problems with many factors of variation. InProceedings
of the 24th international conference on Machine learning 2007 Jun 20
(pp. 473-480). ACM.

Notes

Yann toolbox takes datasets in a .pkl format. The dataset requires a directory
structure such as the following:

location/_dataset_XXXXX
|_ data_params.pkl
|_ train
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .
|_ valid
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .
|_ test
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .

The location id (XXXXX) is generated by this class file. The five digits that are
produced is the unique id of the dataset.

The file data_params.pkl contains one variable dataset_args used by datastream.

 Structure of the Yann network

Structure of the Yann network

[image: The structure of the net object.]

The core of the yann toolbox and its operations are built around the yann.network.network
class, which is present in the file yann/network.py. The above figure shows the organization of
the yann.network.network class. The add_xxxx() methods add either a layer or module as
nomenclature states. The network class can hold various layers and modules in various connections and
architecture that are added using the add_ methods.

Verbose

Throughout the toolbox, various methods take an argument called verbose as input. verbose is
by default always 2. verbose = 1 implies a silent run and therefore the code doesn’t print
anything unless absolutely needed. verbose=2 prints quite the standard amount of information and
verbose==3, which is friendly when being used for debugging prints annoyingly too much
information.

Initializing a network class

A network pbject can quite simply be initialized by calling

from yann.network import network
net = network()

Each layer takes in as argument While prepping the network for learning, we
can (or may) need only certain modules and layers. The process of preparing the network by selecting
and building the training, testing and validation parts of network is called cooking.

[image: A cooked network. The objects that are in gray and are shaded are uncooked parts of the network.]

The above figure shows a cooked network. The objects that are in gray and are shaded are uncooked
parts of the network. Once cooked, the network is ready for training and testing all by using other
methods within the network. The network class also has several properties such as layers, which is
a dictionary of the layers that are added to it and params, which is a dictionary of all the
parameters. All layers and modules contain a property called id through which they are referred.

 Toolbox Documentation

Toolbox Documentation

Yann toolbox is divided into different parts and written in many files. Below is an index of all
files and the API documentations.

	network - The network module

	layers - Contains the definitions of all the types of layers.
	abstract - abstraction class

	input - input layer classes

	fully_connected - fully connected layer classes

	conv_pool - conv pool layer classes

	merge - merge layer classes

	flatten - flatten layer classes

	output - output layer classes

	random - random layer classes

	transform - transform layers
	LICENSE

	batch_norm - Batch normalization layer classes

	modules - Modules that are external to the network which the network uses
	optimizer - optimizer class

	datastream - datastream class

	visualizer - visualizer class

	resultor - resultor class

	core - Core module contains the fundamentals operations of the toolbox
	conv - Definitions for all convolution functions.

	pool - Definitions for all Pooling functions.

	activations - Definitions for all activations functions.

	errors - Definitions for all point-wise error functions.

	operators - Definitions for all basic operators written for yann .

	utils - utilities that can be used as enhancement for the toolbox’s functionality
	dataset - provides a nice port to benchmark and matlab-based datasets

	graph - provides a nice port to networkx methods related to Yann

	pickle - provides a way to save the network’ parameters as a pickle file.

	raster - provides a visualization for rasterizing images.
	LICENSE

	special - contains tools for special types of networks
	gan - provides a inherited network class for a gan network.

	datasets - provides quick methods to produce common datasets.

 network - The network module

network - The network module

yann.network.py contains the definition for the base network class. It is pretty much
the most accessible part of this toolbox and forms the structure of the toolbox itself.
Any experiment using this toolbox will have to begin and end with using the network class:

	
class yann.network.network(verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	Todo:

Class definition for the class network:

All network properties, network variables and functionalities are initialized using this
class and are contained by the network object. The network.__init__ method initializes
the network class. The network.__init___ function has many purposes depending on the
arguments supplied.

Provide any or all of the following arguments. Appropriate errors will be thrown if the
parameters are not supplied correctly.

Todo

	posteriors in a classifier layers is not really a probability. Need to fix this.

	Parameters:	
	verbose – Similar to any 3-level verbose in the toolbox.

	type – option takes only ‘classifier’ for now. Will add ‘encoders’
and others later

	borrow – Check theano's borrow. Default is True.

	Returns:	network object with parameters setup.

	Return type:	yann.network.network

	
add_layer(type, verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	
Todo

Need to add the following:
* Inception Layer.
* LSTM layer.
* ...

	Parameters:	
	type – <string> options include
‘input’ or ‘data’ - which indicates an input layer.
‘conv_pool’ or ‘convolution’ - indicates a convolutional - pooling layer
‘deconv’ or ‘deconvolution’ - indicates a fractional stride convoltuion layer
‘dot_product’ or ‘hidden’ or ‘mlp’ or ‘fully_connected’ - indicates a hidden fully
connected layer
‘classifier’ or ‘softmax’ or ‘output’ or ‘label’ - indicates a classifier layer
‘objective’ or ‘loss’ or ‘energy’ - a layer that creates a loss function
‘merge’ or ‘join’ - a layer that merges two layers.
‘flatten’ - a layer that produces a flattened output of a block data.
‘random’ - a layer that produces random numbers.
‘rotate’ - a layer that rotate the input images.
‘tensor’ - a layer that converts the input tensor as an input layer.
From now on everything is optional args..

	id – <string> how to identify the layer by.
Default is just layer number that starts with 0.

	origin – id will use the output of that layer as input to the new layer.
Default is the last layer created. This variable for input type of layers
is not a layer, but a datastream id. For merge layer, this is a
tuple of two layer ids.

	verbose – similar to the rest of the toolbox.

	mean_subtract – if True we will subtract the mean from each image, else not.

	num_neurons – number of neurons in the layer

	dataset – <string> Location to the dataset.
used when layer type is input.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	stride – tuple (int , int). Used as convolution stride. Default (1,1)

	batch_norm – If provided will be used, default is False.

	border_mode – Refer to border_mode variable in yann.core.conv, module
conv

	pool_size – Subsample size, default is (1,1).

	pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

	learnable – Default is True, if True we backprop on that layer. If False
Layer is obstinate.

	shape – tuple of shape to unflatten to (height, width, channels) in case layer was an
unflatten layer

	input_params – Supply params or initializations from a pre-trained system.

	dropout_rate – If you want to dropout this layer’s output provide the output.

	regularize – True is you want to apply regularization, False if not.

	num_classes – int number of classes to classify.

	objective – objective provided by classifier
nll-negative log likelihood,
cce-categorical cross entropy,
bce-binary cross entropy,
hinge-hinge loss . For classifier layer.

	dataset_init_args – same as for the dataset module. In fact this argument is needed
only when dataset module is not setup.

	datastream_id – When using input layer or during objective layer, use this to identify
which datastream to take data from.

	regularizer – Default is (0.001, 0.001) coeffients for L1, L2 regulaizer
coefficients.

	error – merge layers take an option called 'error' which can be None or others
which are methods in yann.core.errors.

	angle – Takes value between [0,1] to capture the angle between [0,180] degrees
Default is None. If None is specified, random number is generated from a uniform
distriibution between 0 and 1.

	layer_type – If value supply, else it is default 'discriminator'. For other
layers, if the layer class takes an argument type, supply that argument here
as layer_type. merge layer for instance will use this arugment as its
type argument.

	
add_module(type, params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	Use this function to add a module to the net.

	Parameters:	
	type – which module to add. Options are 'resultor', 'visualizer', 'optimizer'
'datastream'

	params – If the type was 'resultor' params is a dictionary of the form:

params = {
 "root" : "<root directory to save stuff inside>"
 "results" : "<results_file_name>.txt",
 "errors" : "<error_file_name>.txt",
 "costs" : "<cost_file_name>.txt",
 "confusion": "<confusion_file_name>.txt",
 "network" : "<network_save_file_name>.pkl"
 "id" : id of the resultor
 }

While the filenames are optional, root must be provided. If a particular file
is not provided, that value will not be saved. This value is supplied to setup the
resultor module of :mod: network.

If the type was 'visualizer' params is a dictionary of the form:

parmas = {
 "root" : location to save the visualizations
 "frequency" : <integer>, after how many epochs do you need to
 visualize. Default value is 1import os

 "sample_size" : <integer, prefer squares>, simply save down random
 images from the datasets also saves down activations
 for the same images also. Default value is 16
 "rgb_filters" : <bool> flag. if True 3D-RGB CNN filters are rendered.
 Default value is False
 "id" : id of the visualizer
 }

If the type was 'optimizer' params is a dictionary of the form:

params = {
 "momentum_type" : <option> takes 'false' <no momentum>, 'polyak'
 and 'nesterov'. Default value is 'polyak'
 "momentum_params" : (<value in [0,1]>, <value in [0,1]>, <int>),
 (momentum coeffient at start, at end, at what
 epoch to end momentum increase). Default is
 the tuple (0.5, 0.95,50)
 "learning_rate" : (initial_learning_rate, fine_tuning_learning_rate,
 annealing_decay_rate). Default is the tuple
 (0.1,0.001,0.005)
 "regularization" : (l1_coeff, l2_coeff). Default is (0.001, 0.001)
 "optimizer_type": <option>, takes 'sgd', 'adagrad', 'rmsprop', 'adam'.
 Default is 'rmsprop'
 "objective_function": <option>, takes
 'nll'-negative log likelihood,
 'cce'-categorical cross entropy,
 'bce'-binary cross entropy.
 Default is 'nll'
 "id" : id of the optimizer
 }

If the type was ``'datastream' params is a dictionary of the form:

params = {
 "dataset": <location>
 "svm" : False or True
 ``svm`` if ``True``, a one-hot label set will also be setup.
 "n_classes": <int>
 ``n_classes`` if ``svm`` is ``True``, we need to know how
 many ``n_classes`` are present.
 "id": id of the datastream
 }

	verbose – Similar to rest of the toolbox.

	
cook(verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This function builds the backprop network, and makes the trainer, tester and validator
theano functions. The trainer builds the trainers for a particular objective layer and
optimizer.

	Parameters:	
	optimizer – Supply which optimizer to use.
Default is last optimizer created.

	datastream – Supply which datastream to use.
Default is the last datastream created.

	visualizer – Supply a visualizer to cook with.
Default is the last visualizer created.

	classifier_layer – supply the layer of classifier.
Default is the last classifier layer created.

	objective_layers – Supply a list of layer ids of layers that has the objective function.
Default is last objective layer created if no classifier is provided.

	objective_weights – Supply a list of weights to be multiplied by each value of the
objective layers. Default is 1.

	active_layers – Supply a list of active layers. If this parameter is supplied all
'learnabile' of all layers will be ignored and only these layers
will be trained. By default, all the learnable layers are used.

	verbose – Similar to the rest of the toolbox.

	
deactivate_layer(id, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method will remove a layer’s parameters from the active_layer dictionary.

	Parameters:	
	id – Layer which you want to de activate.

	verbose – as usual.

Notes

If the network was cooked, it would have to be re-cooked after deactivation.

	
get_params(verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method returns a dictionary of layer weights and bias in numpy format.

	Parameters:	verbose – Blah..

	Returns:	A dictionary of parameters.

	Return type:	OrderedDict

	
layer_activity(id, index=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	Use this function to visualize or print out the outputs of each layer.
I don’t know why this might be useful, but its fun to check this out I guess. This will only
work after the dataset is initialized.

	Parameters:	
	id – id of the layer that you want to visualize the output for.

	index – Which batch of data should I use for producing the outputs.
Default is 0

	
pretty_print(verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method is used to pretty print the network’s connections
This is going to be deprecated with the use of visualizer module.

	
print_status(epoch, print_lr=False, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This function prints the cost of the current epoch, learning rate and momentum of the
network at the moment. This also calls the resultor to process results.

Todo

This needs to to go to visualizer.

	Parameters:	
	verbose – Just as always.

	epoch – Which epoch are we at ?

	
save_params(epoch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method will save down a list of network parameters

	Parameters:	
	verbose – As usual

	epoch – epoch.

	
test(show_progress=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This function is used for producing the testing accuracy.

	Parameters:	verbose – As usual

	
train(verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	Training function of the network. Calling this will begin training.

	Parameters:	
	epochs – (num_epochs for each learning rate...) to train Default is (20, 20)

	validate_after_epochs – 1, after how many epochs do you want to validate ?

	save_after_epochs – 1, Save network after that many epochs of training.

	show_progress – default is True, will display a clean progressbar.
If verbose is 3 or more - False

	early_terminate – True will allow early termination.

	learning_rates – (annealing_rate, learning_rates ...) length must be one more than
epochs Default is (0.05, 0.01, 0.001)

	
validate(epoch=0, training_accuracy=False, show_progress=False, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	Method is use to run validation. It will also load the validation dataset.

	Parameters:	
	verbose – Just as always

	show_progress – Display progressbar ?

	training_accuracy – Do you want to print accuracy on the training set as well ?

	
visualize(epoch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method will use the cooked visualizer to save down the visualizations

	Parameters:	epoch – supply the epoch number (used to create directories to save

	
visualize_activities(epoch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method will save down all layer activities for the correct epoch.

	Parameters:	
	epoch – What epoch is being running now.

	verbose – As always.

	
visualize_filters(epoch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/network.py]

	This method will save down all layer filters for the correct epoch.

	Parameters:	
	epoch – What epoch is being running now.

	verbose – As always.

 layers - Contains the definitions of all the types of layers.

layers - Contains the definitions of all the types of layers.

The module yann.layers contains the definition for the different types of layers
that are accessible in yann. It contains various layers including:

	abstract.layer

	input.input_layer

	
	fully_connected.dropout_dot_product_layer and

	fully_connected.dot_product_layer

	
	conv_pool.dropout_conv_pool_layer_2d and

	conv_pool.conv_pool_layer_2d

	ouput.classifier_layer

	output.objective_layer

	merge.merge_layer

	flatten.flatten_layer

	flatten.unflatten_layer

	random.random_layer

	
	batch_norm.batch_norm_layer_2d and

	batch_norm.dropout_batch_norm_layer_2d

	
	batch_norm.batch_norm_layer_1d and

	batch_norm.dropout_batch_norm_layer_1d

All these are inherited classes from layer class, which is abstract.

Specific layers that can be used are

	abstract - abstraction class

	input - input layer classes

	fully_connected - fully connected layer classes

	conv_pool - conv pool layer classes

	merge - merge layer classes

	flatten - flatten layer classes

	output - output layer classes

	random - random layer classes

	transform - transform layers
	LICENSE

	batch_norm - Batch normalization layer classes

 abstract - abstraction class

abstract - abstraction class

The file yann.layers.abstract.py contains the definition for the abstract layer:

Todo

	LSTM / GRN layers

	An Embed layer that is going to create a new embedding space for two layer’s activations to
project on to the same space and minimize its distances.

	
class yann.layers.abstract.layer(id, type, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/abstract.py]

	Prototype for what a layer should look like. Every layer should inherit from this. This is
a template class do not use this directly, you need to use a specific type of layer which
again will be called by yann.network.network.add_layer

	Parameters:	
	id – String

	origin – String id

	type – string- 'classifier', 'dot-product', 'objective', 'conv_pool',
'input' .. .

Notes

	Use self.type, self.origin, self.destination``, self.output, self.inference

	self.output_shape for outside calls and purposes.

	
get_params(borrow=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/abstract.py]

	This method returns the parameters of the layer in a numpy ndarray format.

	Parameters:	
	borrow – Theano borrow, default is True.

	verbose – As always

Notes

This is a slow method, because we are taking the values out of GPU. Ordinarily, I should
have used get_value(borrow = True), but I can’t do this because some parameters are
theano.tensor.var.TensorVariable which needs to be run through eval.

	
print_layer(prefix=' ', nest=True, last=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/abstract.py]

	Print information about the layer

	Parameters:	
	nest – If True will print the tree from here on. If False it will print only this
layer.

	prefix – Is what prefix you want to add to the network print command.

 input - input layer classes

input - input layer classes

The file yann.layers.input.py contains the definition for the input lyer modules.

	
class yann.layers.input.dropout_input_layer(mini_batch_size, id, x, dropout_rate=0.5, height=28, width=28, channels=1, mean_subtract=False, rng=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/input.py]

	Creates a new input_layer. The layer doesn’t do much except to take the networks’ x and
reshapes it into images. This is needed because yann dataset module assumes data in
vectorized image formats as used in mnist - theano tutorials.

This class also creates a branch between a mean subtracted and non-mean subtracted input.
It always assumes as default to use the non-mean subtracted input but if mean_subtract
flag is provided, it will use the other option.

	Parameters:	
	x – theano.tensor variable with rows are vectorized images.
if None, will create a new one.

	mini_batch_size – Number of images in the data variable.

	height – Height of each image.

	width – Width of each image.

	channels – Number of channels in each image.

	mean_subtract – Defauly is False.

	verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network
input_layer.output_shape will tell you the output size.

	
class yann.layers.input.dropout_tensor_layer(id, input, input_shape, rng=None, dropout_rate=0.5, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/input.py]

	This converts a theano tensor or a shared value into a layer. Simply the
value becomes the layer’s outptus.

	Parameters:	
	input – some tensor

	input_shape – shape of the tensor

	dropout_rate – default is 0.5, typically.

	rng – Random number generator

	verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network
input_layer.output_shape will tell you the output size.

	
class yann.layers.input.input_layer(mini_batch_size, x, id=-1, height=28, width=28, channels=1, mean_subtract=False, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/input.py]

	reshapes it into images. This is needed because yann dataset module assumes data in
vectorized image formats as used in mnist - theano tutorials.

This class also creates a branch between a mean subtracted and non-mean subtracted input.
It always assumes as default to use the non-mean subtracted input but if mean_subtract
flag is provided, it will use the other option.

	Parameters:	
	x – theano.tensor variable with rows are vectorized images.

	y – theano.tensor variable

	one_hot_y – theano.tensor variable

	mini_batch_size – Number of images in the data variable.

	height – Height of each image.

	width – Width of each image.

	id – Supply a layer id

	channels – Number of channels in each image.

	mean_subtract – Defauly is False.

	verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network
input_layer.output_shape will tell you the output size.
Use input_layer.x, input_layer.y and input_layer_one_hot_y tensors
for connections.

	
class yann.layers.input.tensor_layer(id, input, input_shape, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/input.py]

	This converts a theano tensor or a shared value into a layer. Simply the
value becomes the layer’s outptus.

	Parameters:	
	input – some tensor

	input_shape – shape of the tensor

	verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network
input_layer.output_shape will tell you the output size.

 fully_connected - fully connected layer classes

fully_connected - fully connected layer classes

The file yann.layers.fully_connected.py contains the definition for the fc layers.

	
class yann.layers.fully_connected.dot_product_layer(input, num_neurons, input_shape, id, rng=None, input_params=None, borrow=True, activation='relu', batch_norm=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/fully_connected.py]

	This class is the typical neural hidden layer and batch normalization layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	num_neurons – number of neurons in the layer

	input_shape – (mini_batch_size, input_size) theano shared

	batch_norm – If provided will be used, default is False.

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use dot_product_layer.output and dot_product_layer.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b and alpha
which are also a list in params, another property of this class.

	
L2 = None[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/fully_connected.py]

	Ioffe, Sergey, and Christian Szegedy. “Batch normalization – Accelerating deep network
training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

	
class yann.layers.fully_connected.dropout_dot_product_layer(input, num_neurons, input_shape, id, dropout_rate=0.5, rng=None, input_params=None, borrow=True, activation='relu', batch_norm=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/fully_connected.py]

	This class is the typical dropout neural hidden layer and batch normalization layer. Called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	num_neurons – number of neurons in the layer

	input_shape – (mini_batch_size, input_size)

	batch_norm – If provided will be used, default is False.

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

	dropout_rate – 0.5 is the default.

Notes

Use dropout_dot_product_layer.output and dropout_dot_product_layer.output_shape from
this class. L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b and alpha
which are also a list in params, another property of this class.

 conv_pool - conv pool layer classes

conv_pool - conv pool layer classes

The file yann.layers.conv_pool.py contains the definition for the conv pool layers.

Todo

	Need to the deconvolutional-unpooling layer.

	Something is still not good about the convolutional batch norm layer.

	
class yann.layers.conv_pool.conv_pool_layer_2d(input, nkerns, input_shape, id, filter_shape=(3, 3), poolsize=(2, 2), pooltype='max', batch_norm=False, border_mode='valid', stride=(1, 1), rng=None, borrow=True, activation='relu', input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	nkerns – number of neurons in the layer

	input_shape – (mini_batch_size, channels, height, width)

	filter_shape – (<int>,<int>)

	pool_size – Subsample size, default is (1,1).

	pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

	batch_norm – If provided will be used, default is False.

	border_mode – Refer to border_mode variable in yann.core.conv, module conv

	stride – tuple (int , int). Used as convolution stride. Default (1,1)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b, gamam, beta,``running_mean`` and
running_var which are also a list in params, another property of this class.

	
print_layer(prefix=' ', nest=False, last=True)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	Print information about the layer

	
class yann.layers.conv_pool.deconv_layer_2d(input, nkerns, input_shape, id, output_shape, filter_shape=(3, 3), poolsize=(1, 1), pooltype='max', batch_norm=False, border_mode='valid', stride=(1, 1), rng=None, borrow=True, activation='relu', input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	nkerns – number of neurons in the layer

	input_shape – (mini_batch_size, channels, height, width)

	filter_shape – (<int>,<int>)

	pool_size – Subsample size, default is (1,1). Right now does not take a pooling.

	pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

	batch_norm – If provided will be used, default is False.

	border_mode – Refer to border_mode variable in yann.core.conv, module conv

	stride – tuple (int , int). Used as convolution stride. Default (1,1)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b, gamam, beta,``running_mean`` and
running_var which are also a list in params, another property of this class.

	
print_layer(prefix=' ', nest=False, last=True)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	Print information about the layer

	
class yann.layers.conv_pool.dropout_conv_pool_layer_2d(input, nkerns, input_shape, id, dropout_rate=0.5, filter_shape=(3, 3), poolsize=(2, 2), pooltype='max', batch_norm=True, border_mode='valid', stride=(1, 1), rng=None, borrow=True, activation='relu', input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	nkerns – number of neurons in the layer

	input_shape – (mini_batch_size, channels, height, width)

	filter_shape – (<int>,<int>)

	pool_size – Subsample size, default is (1,1).

	pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

	batch_norm – If provided will be used, default is False.

	border_mode – Refer to border_mode variable in yann.core.conv, module
conv

	stride – tuple (int , int). Used as convolution stride. Default (1,1)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b and alpha
which are also a list in params, another property of this class.

	
class yann.layers.conv_pool.dropout_deconv_layer_2d(input, nkerns, input_shape, id, output_shape, dropout_rate=0.5, filter_shape=(3, 3), poolsize=(1, 1), pooltype='max', batch_norm=True, border_mode='valid', stride=(1, 1), rng=None, borrow=True, activation='relu', input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/conv_pool.py]

	This class is the typical 2D deconvolutional and batch normalization layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	nkerns – number of neurons in the layer

	input_shape – (mini_batch_size, channels, height, width)

	filter_shape – (<int>,<int>)

	pool_size – Subsample size, default is (1,1).

	pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

	batch_norm – If provided will be used, default is False.

	border_mode – Refer to border_mode variable in yann.core.conv, module
conv

	stride – tuple (int , int). Used as convolution stride. Default (1,1)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b and alpha
which are also a list in params, another property of this class.

 merge - merge layer classes

merge - merge layer classes

The file yann.layers.merge.py contains the definition for the merge layers.

	
class yann.layers.merge.dropout_merge_layer(x, input_shape, id=-1, error='rmse', rng=None, dropout_rate=0.5, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/merge.py]

	This is a dropotu merge layer. This takes two layer inputs and produces an error between them
if the type argument supplied was 'error'. It does other things too accordingly.

	Parameters:	
	x – a list of inputs (lenght must be two basically)

	input_shape – List of the shapes of all inputs.

	type – 'error' creates an error layer.
other options are 'sum' and 'concatenate'

	error – If the type was 'error', then this variable is used.
options include, 'rmse', 'l2', 'l1',``’cross_entropy’``.

	
class yann.layers.merge.merge_layer(x, input_shape, id=-1, type='error', error='rmse', input_type='layer', verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/merge.py]

	This is a merge layer. This takes two layer inputs and produces an error between them if the
type argument supplied was 'error'. It does other things too accordingly.

	Parameters:	
	x – a list of inputs (lenght must be two basically)

	input_shape – List of the shapes of all inputs.

	type – 'error' creates an error layer.
other options are 'sum', 'batch' and 'concatenate'

	error – If the type was 'error', then this variable is used.
options include, 'rmse', 'l2', 'l1',``’cross_entropy’``.

	input_type – If this argument was 'tensor', we simply merge the ouptus,
if this was not provided or was 'layer', this merges the outputs
of the two layers.

Notes

'concatenate' concatenates the outputs on the channels where as 'batch' concatenates
across the batches. It will increase the batchsize.

	
loss(type=None)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/merge.py]

	This method will return the cost function of the merge layer. This can be used by the
optimizer module for instance to acquire a symbolic loss function that tries to minimize
the distance between the two layers.

	Parameters:	
	y – symbolic theano.ivector variable of labels to calculate loss from.

	type – options
None - Simple error
‘log’ - log loss

	Returns:	loss value.

	Return type:	theano symbolic variable

	
output_shape = None[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/merge.py]

	if len(input_shape) == 2 – self.num_neurons = self.output_shape[-1]
elif len(input_shape) == 4:

self.num_neurons = self.output_shape[1]

 flatten - flatten layer classes

flatten - flatten layer classes

The file yann.layers.flatten.py contains the definition for the flatten layers.

	
class yann.layers.flatten.flatten_layer(input, input_shape, id=-1, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/flatten.py]

	This is a flatten layer. This takes a square layer and flatten it.

	Parameters:	
	input – output of some layer.

	id – id of the layer

	verbose – as usual

	
class yann.layers.flatten.unflatten_layer(input, shape, input_shape, id=-1, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/flatten.py]

	This is an unflatten layer. This takes a flattened input and unflattens it.

	Parameters:	
	input – output of some layer.

	shape – shape to unflatten.

	id – id of the layer

	verbose – as usual.

 output - output layer classes

output - output layer classes

The file yann.layers.output.py contains the definition for the conv pool layers.

	
class yann.layers.output.classifier_layer(input, input_shape, id, num_classes=10, rng=None, input_params=None, borrow=True, activation='softmax', verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/output.py]

	This class is the typical classifier layer. It should be called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, features)

	num_classes – number of classes to classify into

	filter_shape – (<int>,<int>)

	batch_norm – <bool> (Not active yet. Will be implemented in near future.)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	rng – typically numpy.random.

	activation – String, takes options that are listed in activations Needed for
layers that use activations.
Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature.
Refer to the module activations to know more.
Default is ‘softmax’

	input_params – Supply params or initializations from a pre-trained system.

Notes

Use classifier_layer.output and classifier_layer.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization.
The class also has in public w, b and alpha which are also a list in params,
another property of this class.

	
errors(y)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/output.py]

	This function returns a count of wrong predictions.

	Parameters:	y – datastreamer’s y variable, that has the lables.

	Returns:	number of wrong predictions.

	Return type:	theano variable

	
get_params(borrow=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/output.py]

	This method returns the parameters of the layer in a numpy ndarray format.

	Parameters:	
	borrow – Theano borrow, default is True.

	verbose – As always

Notes

This is a slow method, because we are taking the values out of GPU. Ordinarily, I should
have used get_value(borrow = True), but I can’t do this because some parameters are
theano.tensor.var.TensorVariable which needs to be run through eval.

	
loss(y, type)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/output.py]

	This method will return the cost function of the classifier layer. This can be used by the
optimizer module for instance to acquire a symbolic loss function.

	Parameters:	
	y – symbolic theano.ivector variable of labels to calculate loss from.

	type – options ‘nll’ - negative log likelihood,
‘cce’ - categorical cross entropy,
‘bce’ - binary cross entropy,
‘hinge’ - max-margin hinge loss.

	Returns:	loss value.

	Return type:	theano symbolic variable

	
class yann.layers.output.objective_layer(id, loss, labels=None, objective='nll', L1=None, L2=None, l1_coeff=0.001, l2_coeff=0.001, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/output.py]

	This class is an objective layer. It just has a wrapper for loss function.
I need this because I am making objective as a loss layer.

	Parameters:	
	loss – yann.network.layers.classifier_layer.loss() method, or some thenao variable
if other types of objective layers.

	labels – theano.shared variable of labels.

	objective – 'nll', 'cce', 'nll' or ''bce'' or 'hinge' for classifier
kayers. 'value'. Value will just use the value as
an objective and minimizes that. depends on what is the classifier layer being used.

Each have their own options. This is usually a string.

	L1 – Symbolic weight of the L1 added together

	L2 – Sumbolic L2 of the weights added together

	l1_coeff – Coefficient to weight L1 by.

	l2_coeff – Coefficient to weight L2 by.

	verbose – Similar to the rest of the toolbox.

Todo

The loss method needs to change in input.

Notes

Use objective_layer.output and from this class.

 random - random layer classes

random - random layer classes

The file yann.layers.random.py contains the definition for the merge layers.

	
class yann.layers.random.random_layer(num_neurons, id=-1, distribution='binomial', verbose=2, options=None)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/random.py]

	This is a random generation layer.

	Parameters:	
	num_neurons – List of the shapes of all inputs.

	distribution – 'binomial', 'uniform', 'normal' 'gaussian'

	limits – tuple for uniform

	mu – mean for gaussian

	sigma – variance for gaussian

	p – if type is 'binomial' supply a p variable. Default is 0.5

	id – Supply a layer id

	num_neurons – Supply the output shape of the layer desired.

	verbose – As always

 transform - transform layers

transform - transform layers

The file yann.layers.transform.py contains the definition for the transformation layers.

This code is used to rotate the images given some angles between [0,1].

Obliging License, credit and conditions for Lasagne: Some part of the file was
directly reproduced from the Lasagne code base.

Author: Anchit Agarwal

LICENSE

Copyright (c) 2014-2015 Lasagne contributors

Lasagne uses a shared copyright model: each contributor holds copyright over
their contributions to Lasagne. The project versioning records all such
contribution and copyright details.
By contributing to the Lasagne repository through pull-request, comment,
or otherwise, the contributor releases their content to the license and
copyright terms herein.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

	
class yann.layers.transform.dropout_rotate_layer(input, input_shape, id, rng=None, dropout_rate=0.5, angle=None, borrow=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/transform.py]

	This class is the typical dropout neural hidden layer and batch normalization layer. Called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, channels, height, width

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, input_size)

	angle – value from [0,1]

	borrow – theano borrow, typically True.

	rng – typically numpy.random.

	dropout_rate – 0.5 is the default.

Notes

Use dropout_rotate_layer.output and dropout_rotate_layer.output_shape from
this class.

	
class yann.layers.transform.rotate_layer(input, input_shape, id, angle=None, borrow=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/transform.py]

	This is a rotate layer. This takes a layer and an angle (rotation normalized in [0,1]) as input
and rotates the batch of images by the specified rotation parameter.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, channels, height, width

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, input_size)

	angle – value from [0,1]

	borrow – theano borrow, typically True.

	input_params – Supply params or initializations from a pre-trained system.

 batch_norm - Batch normalization layer classes

batch_norm - Batch normalization layer classes

The file yann.layers.batch_norm.py contains the definition for the batch norm layers. Batch norm
can by default be applied to convolution and fully connected layers by sullying an argument
batch_norm = True, in the layer arguments. But this in-built method applies batch norm
prior to layer activation. Some architectures including ResNet involves batch norms after the
activations of the layer. Therefore there is a need for an independent batch norm layer that simply
applies batch norm for some outputs. The layers in this module can do that.

There are four classes in this file. Two for one-dimensions and two for two-dimnensions.

Todo

	Need to the deconvolutional-unpooling layer.

	Something is still not good about the convolutional batch norm layer.

	
class yann.layers.batch_norm.batch_norm_layer_1d(input, input_shape, id, rng=None, borrow=True, input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/batch_norm.py]

	This class is the typical 1D batchnorm layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, channels, height, width)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	input_params – Supply params or initializations from a pre-trained system.

	
class yann.layers.batch_norm.batch_norm_layer_2d(input, input_shape, id, rng=None, borrow=True, input_params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/batch_norm.py]

	This class is the typical 2D batchnorm layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, channels, height, width)

	rng – typically numpy.random.

	borrow – theano borrow, typicall True.

	input_params – Supply params or initializations from a pre-trained system.

	
class yann.layers.batch_norm.dropout_batch_norm_layer_1d(input, input_shape, id, rng=None, borrow=True, input_params=None, dropout_rate=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/batch_norm.py]

	This class is the typical 1D batchnorm layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, channels, height, width)

	borrow – theano borrow, typicall True.

	dropout_rate – bernoulli probabilty to dropoutby

	input_params – Supply params or initializations from a pre-trained system.

	
class yann.layers.batch_norm.dropout_batch_norm_layer_2d(input, input_shape, id, rng=None, borrow=True, input_params=None, dropout_rate=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/layers/batch_norm.py]

	This class is the typical 2D batchnorm layer. It is called
by the add_layer method in network class.

	Parameters:	
	input – An input theano.tensor variable. Even theano.shared will work as long as they
are in the following shape mini_batch_size, height, width, channels

	verbose – similar to the rest of the toolbox.

	input_shape – (mini_batch_size, channels, height, width)

	borrow – theano borrow, typicall True.

	dropout_rate – bernoulli probabilty to dropoutby

	input_params – Supply params or initializations from a pre-trained system.

 modules - Modules that are external to the network which the network uses

modules - Modules that are external to the network which the network uses

	The module yann.modules contains the definition for the network modules. It contains

	various modules including:

	visualizer is used to produce network visualizations. It will take the activities,
filters and data from a network and produce activations.

	resultor is used to save down network results.

	optimizer is the backbone of the SGD and optimization.

	dataset is the module that creates, loads, caches and feeds data to the network.

	optimizer - optimizer class

	datastream - datastream class

	visualizer - visualizer class

	resultor - resultor class

 optimizer - optimizer class

optimizer - optimizer class

The file yann.modules.optimizer.py contains the definition for the optimizer:

	
class yann.modules.optimizer.optimizer(optimizer_init_args, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/optimizer.py]

	Optimizer is an important module of the toolbox. Optimizer creates the protocols required
for learning. yann‘s optimizer supports the following optimization techniques:

	Stochastic Gradient Descent

	AdaGrad [1]

	RmsProp [2]

	Adam [3]

	Adadelta [4]

Optimizer also supports the following momentum techniques:

	Polyak [5]

	Nesterov [6]

	[1]	John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for
online learning and stochastic optimization. JMLR

	[2]	Yann N. Dauphin, Harm de Vries, Junyoung Chung, Yoshua Bengio,”RMSProp and
equilibrated adaptive learning rates for non-convex optimization”, or
arXiv:1502.04390v1

	[3]	Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.”
arXiv preprint arXiv:1412.6980 (2014).

	[4]	Zeiler, Matthew D. “ADADELTA: an adaptive learning rate method.” arXiv preprint
arXiv:1212.5701 (2012).

	[5]	Polyak, Boris Teodorovich. “Some methods of speeding up the convergence of
iteration methods.” USSR Computational Mathematics and Mathematical Physics 4.5
(1964): 1-17. Implementation was adapted from Sutskever, Ilya, et al. “On the
importance of initialization and momentum in deep learning.” Proceedings of the
30th international conference on machine learning (ICML-13). 2013.

	[6]	Nesterov, Yurii. “A method of solving a convex programming problem with
convergence rate O (1/k2).” Soviet Mathematics Doklady. Vol. 27. No. 2. 1983.
Adapted from Sebastien Bubeck’s [https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/] blog.

	Parameters:	
	verbose – Similar to any 3-level verbose in the toolbox.

	optimizer_init_args – optimizer_init_args is a dictionary like:

optimizer_params = {
 "momentum_type" : <option> 'false' <no momentum>, 'polyak', 'nesterov'.
 Default value is 'false'
 "momentum_params" : (<option in range [0,1]>, <option in range [0,1]>, <int>)
 (momentum coeffient at start,at end,
 at what epoch to end momentum increase)
 Default is the tuple (0.5, 0.95,50)
 "optimizer_type" : <option>, 'sgd', 'adagrad', 'rmsprop', 'adam'.
 Default is 'sgd'
 "id" : id of the optimizer
 }

	Returns:	Optimizer object

	Return type:	yann.modules.optimizer

	
calculate_gradients(params, objective, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/optimizer.py]

	This method initializes the gradients.

	Parameters:	
	params – Supply learnable active parameters of a network.

	objective – supply a theano graph connecting the params to a loss

	verbose – Just as always

Notes

Once this is setup, optimizer.gradients are available

	
create_updates(verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/optimizer.py]

	This basically creates all the updates and update functions which trainers can iterate
upon.

	Parameters:	verbose – Just as always

 datastream - datastream class

datastream - datastream class

The file yann.modules.datastream.py contains the definition for the datastream:

	
class yann.modules.datastream.datastream(dataset_init_args, borrow=True, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/datastream.py]

	This module initializes the dataset to the network class and provides all dataset related
functionalities. It also provides for dynamically loading and caching dataset batches.
:mod: add_layer will use this to initialize.

	Parameters:	
	dataset_init_args – Is a dictionary of the form:

	borrow – Theano’s borrow. Default value is True.

dataset_init_args = {
 "dataset": <location>
 "svm" : False or True
 ``svm`` if ``True``, a one-hot label set will also be setup.
 "n_classes": <int>
 ``n_classes`` if ``svm`` is ``True``, we need to know how
 many ``n_classes`` are present.
 "id": id of the datastream
 }

	verbose – Similar to verbose throughout the toolbox.

	Returns:	A dataset module object that has the details of loader and other things.

	Return type:	dataset

Todo

	Datastream should work with Fuel perhaps ?

	Support HDf5 perhaps

	
initialize_dataset(verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/datastream.py]

	Load the initial training batch of data on to data_x and data_y variables
and create shared memories.

Todo

I am assuming that training has the largest number of data. This is immaterial when
caching but during set_data routine, I need to be careful.

	Parameters:	verbose – Toolbox style verbose.

	
load_data(type='train', batch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/datastream.py]

	Will load the data from the file and will return the data. The important thing to note
is that all the datasets in :mod: yann all require a y or a variable to
predict. In case of auto-encoder for instance, the thing to predict is the image
itself. Setup dataset thusly.

	Parameters:	
	type – train, test or valid.
default is train

	batch – Supply an integer

	verbose – Simliar to verbose in toolbox.

Todo

Create and load dataset for type = ‘x’

	Returns:	data_x, data_y

	Return type:	numpy.ndarray

	
one_hot_labels(y, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/datastream.py]

	Function takes in labels and returns a one-hot encoding. Used for max-margin loss.
:param y: Labels to be encoded.n_classes
:param verbose: Typical as in the rest of the toolbox.

Notes

self.n_classes: Number of unique classes in the labels.

This could be found out using the following:
.. code-block: python

import numpy
n_classes = len(numpy.unique(y))

This might be potentially dangerous in case of cached dataset. Although
this is the default if n_classes is not provided as input to this
module, I discourage anyone from using this.

	Returns:	one-hot encoded label list.

	Return type:	numpy ndarray

	
set_data(type='train', batch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/datastream.py]

	This can work only after network is cooked.

	Parameters:	
	batch – which batch of data to load and set

	verbose – as usual

 visualizer - visualizer class

visualizer - visualizer class

The file yann.modules.visualizer.py contains the definition for the visualizer:

	
yann.modules.visualizer.save_images(imgs, prefix, is_color, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	This functions produces a visualiation of the filters.

	Parameters:	
	imgs – images of shape .. [num_imgs, height, width, channels] Note the change in order.
it can also be in lots of other shapes and they will be reshaped and saved as images.

	prefix – address to save the image to

	is_color – If the image is color or not. True only if image shape is of color images.

	verbose – As Always

	
class yann.modules.visualizer.visualizer(visualizer_init_args, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	Visualizer saves down images to visualize. The initilizer only initializes the directories
for storing visuals. Three types of visualizations are saved down:

	filters of each layer

	activations of each layer

	raw images to check the activations against

	Parameters:	
	verbose – Similar to any 3-level verbose in the toolbox.

	visualizer_init_args – visualer_params is a dictionary of the form:

visualizer_init_args = {
 "root" : <location to save the visualizations at>,
 "frequency" : <integer>, after how many epochs do you need to
 visualize. Default value is 1
 "sample_size": <integer, prefer squares>, simply save down random
 images from the datasets saves down activations for the
 same images also. Default value is 16
 "rgb_filters": <bool> flag. if True a 3D-RGB rendition of the CNN
 filters is rendered. Default value is False.
 "debug_functions" : <bool> visualize train and test and other theano functions.
 default is False. Needs pydot and dv2viz to be installed.
 "debug_layers" : <bool> Will print layer activities from input to that layer
 output. (this is almost always useless because test debug
 function will combine all these layers and print directly.)
 "id" : id of the visualizer
 }

	Returns:	A visualizer object.

	Return type:	yann.modules.visualizer

	
initialize(batch_size, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	Function that cooks the visualizer for some dataset.

	Parameters:	
	batch_size – form dataset

	verbose – as always

	
theano_function_visualizer(function, short_variable_names=False, format='pdf', verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	This basically prints a visualization of any theano function using the in-built theano
visualizer. It will save both a interactive html file and a plain old png file. This is
just a wrapper to theano’s visualization tools.

	Parameters:	
	function – theano function to print

	short_variable_names – If True will print variables in short.

	format – Any pydot supported format. Default is ‘pdf’

	verbose – As usual.

	
visualize_activities(layer_activities, epoch, index=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	This method saves down all activities.

	Parameters:	
	layer_activities – network’s layer_activities as created

	epoch – what epoch are we running currently.

	verbose – as always

	
visualize_filters(layers, epoch, index=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	This method saves down all activities.

	Parameters:	
	layers – network’s layer dictionary

	epoch – what epoch are we running currently.

	verbose – as always

	
visualize_images(imgs, loc=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/visualizer.py]

	Visualize the images in the dataset. Assumes that the data in the tensor variable imgs is
in shape (batch_size, height, width, channels). Assumes that batchsize does not change.

	Parameters:	
	imgs – tensor of data

	verbose – as usual.

 resultor - resultor class

resultor - resultor class

The file yann.modules.resultor.py contains the definition for the resultor:

	
class yann.modules.resultor.resultor(resultor_init_args, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/resultor.py]

	Resultor of the network saves down resultor. The initilizer initializes the directories
for storing results.

	Parameters:	
	verbose – Similar to any 3-level verbose in the toolbox.

	resultor_init_args – resultor_init_args is a dictionary of the form

resultor_init_args = {
 "root" : "<root directory to save stuff inside>",
 "results" : "<results_file_name>.txt",
 "errors" : "<error_file_name>.txt",
 "costs" : "<cost_file_name>.txt",
 "learning_rate" : "<learning_rate_file_name>.txt"
 "momentum" : <momentum_file_name>.txt
 "visualize" : <bool>
 "save_confusion" : <bool>
 "id" : id of the resultor
 }

While the filenames are optional, root must be provided. If a particular file is
not provided, that value will not be saved.

	Returns:	A resultor object

	Return type:	yann.modules.resultor

Todo

Remove the input file names, assume file names as default.

	
print_confusion(epoch=0, train=None, valid=None, test=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/resultor.py]

	This method will print the confusion matrix down in files.

	Parameters:	
	epoch – This is used merely to create a directory for each epoch so that there is a copy.

	train – training confusion matrix as gained by the validate method.

	valid – validation confusion amtrix as gained by the validate method.

	test – testing confusion matrix as gained by the test method.

	verbose – As usual.

	
process_results(cost, lr, mom, params=None, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/resultor.py]

	This method will print results and also write them down in the appropriate files.

	Parameters:	
	cost – Cost, is a float

	lr – Learning Rate, is a float

	mom – Momentum, is a float.

	
update_plot(verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/resultor.py]

	
Todo

This method should update the open plots with costs and other values. Ideally, a browser
based system should be implemented, such as using mpl3d or using bokeh. This system
should open opne browser where it should update realtime the cost of training, validation
and testing accuracies per epoch, display the visualizations of filters, some indication
of the weight of gradient trained, confusion matrices, learning rate and momentum plots
etc.

 core - Core module contains the fundamentals operations of the toolbox

core - Core module contains the fundamentals operations of the toolbox

The module core contains the work horse of the yann toolbox. These are very
fundamental operations that are not needed to be known by or used by a user, but other modules
in the toolbox will use these constantly.

	conv - Definitions for all convolution functions.

	pool - Definitions for all Pooling functions.

	activations - Definitions for all activations functions.

	errors - Definitions for all point-wise error functions.

	operators - Definitions for all basic operators written for yann .

 conv - Definitions for all convolution functions.

conv - Definitions for all convolution functions.

The file yann.core.conv.py contains the definition for all the convolution
functions available.

yann.core.conv.py is one file that contains all the convolution operators.
It contains two functions for performing either 2d convolution (conv2d) or 3d convolution
(conv3d).

These functions shall be called by every convolution layer from yann.layers.py

Todo

	Add 3D convolution support from theano.

	Add Masked convolution support.

	
class yann.core.conv.convolver_2d(input, filters, subsample, filter_shape, image_shape, border_mode='valid', verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/conv.py]

	Class that performs convolution

This class basically performs convolution. These ouputs can be probed using the
convolution layer if needed. This keeps things simple.

	Parameters:	
	input – This variable should either thenao.tensor4 (theano.matrix
reshaped also works) variable or an output from a pervious layer which is
a theano.tensor4 convolved with a theano.shared. The input should
be of shape (batchsize, channels, height, width). For those who have
tried pylearn2 or such, this is called bc01 format.

	fitlers – This variable should be theano.shared variables of filter weights
could even be a filter bank. filters should be of shape (nchannels,
nkerns, filter_height, filter_width). nchannles is the number of input channels and nkerns is the number of kernels or output channels.

	subsample – Stride Tuple of (int, int).

	filter_shape – This variable should be a tuple or an array:
[nkerns, nchannles, filter_height, filter_width]

	image_shape – This variable should a tuple or an array:
[batchsize, channels, height, width]
image_shape[1] must be equal to filter_shape[1]

	border_mode – The input to this can be either 'same' or other theano defaults

Notes

	conv2d.out output, Output that could be provided as
output to the next layer or to other convolutional layer options.
The size of the outut depends on border mode and subsample
operation performed.

	conv2d.out_shp: (int, int), A tuple (height, width) of all feature maps

The options for border_mode input which at the moment of writing this doc are

	'valid' - apply filter wherever it completely overlaps with the
input. Generates output of shape input shape - filter shape + 1

	'full'- apply filter wherever it partly overlaps with the input.
Generates output of shape input shape + filter shape - 1

	'half': pad input with a symmetric border of filter rows // 2
rows and filter columns // 2 columns, then perform a valid
convolution. For filters with an odd number of rows and columns, this
leads to the output shape being equal to the input shape.

	<int>: pad input with a symmetric border of zeros of the given
width, then perform a valid convolution.

	(<int1>, <int2>): pad input with a symmetric border of int1
rows and int2 columns, then perform a valid convolution.

Refer to theano documentation’s convolution page [http://deeplearning.net/software/theano/library/tensor/nnet/conv.html]
for more details on this.
Basically cuDNN is used for same because at the moment of writing
this funciton, theano.conv2d doesn’t support``same`` convolutions
on the GPU. For everything else, theano default will be used.

Todo

Implement border_mode = 'same' for libgpuarray backend. As of now only supports
CUDA backend.

Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for
same convolution.

	
class yann.core.conv.deconvolver_2d(input, filters, subsample, filter_shape, image_shape, output_shape, border_mode='valid', verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/conv.py]

	class that performs deconvolution

This class basically performs convolution.

	Parameters:	
	input – This variable should either thenao.tensor4 (theano.matrix
reshaped also works) variable or an output from a pervious layer which is
a theano.tensor4 convolved with a theano.shared. The input should
be of shape (batchsize, channels, height, width). For those who have
tried pylearn2 or such, this is called bc01 format.

	fitlers – This variable should be theano.shared variables of filter weights
could even be a filter bank. filters should be of shape (nchannels,
nkerns, filter_height, filter_width). nchannles is the number of input channels and nkerns is the number of kernels or output channels.

	subsample – Stride Tuple of (int, int).

	filter_shape – This variable should be a tuple or an array:
[nkerns, nchannles, filter_height, filter_width]

	image_shape – This variable should a tuple or an array:
[batchsize, channels, height, width]
image_shape[1] must be equal to filter_shape[1]

	output_shape – Request a size of output of image required. This variable should a tuple.

	border_mode – The input to this can be either 'same' or other theano defaults

Notes

	conv2d.out output, Output that could be provided as
output to the next layer or to other convolutional layer options.
The size of the outut depends on border mode and subsample
operation performed.

	conv2d.out_shp: (int, int), A tuple (height, width) of all feature maps

The options for border_mode input which at the moment of writing this doc are

	'valid' - apply filter wherever it completely overlaps with the
input. Generates output of shape input shape - filter shape + 1

	'full'- apply filter wherever it partly overlaps with the input.
Generates output of shape input shape + filter shape - 1

	'half': pad input with a symmetric border of filter rows // 2
rows and filter columns // 2 columns, then perform a valid
convolution. For filters with an odd number of rows and columns, this
leads to the output shape being equal to the input shape.

	<int>: pad input with a symmetric border of zeros of the given
width, then perform a valid convolution.

	(<int1>, <int2>): pad input with a symmetric border of int1
rows and int2 columns, then perform a valid convolution.

Refer to theano documentation’s convolution page [http://deeplearning.net/software/theano/library/tensor/nnet/conv.html]
for more details on this.
Basically cuDNN is used for same because at the moment of writing
this funciton, theano.conv2d doesn’t support``same`` convolutions
on the GPU. For everything else, theano default will be used.

Todo

Implement border_mode = 'same' and full for libgpuarray backend. As of now only supports
CUDA backend.

Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for
same convolution.

Right now deconvolution works only with border_mode = 'valid'

 pool - Definitions for all Pooling functions.

pool - Definitions for all Pooling functions.

The file yann.core.pool.py contains the definition for all the Pooling
functions available.

Todo

	Need to support max_rand_pool and rand_pool

	
class yann.core.pool.pooler_2d(input, ds, img_shp, mode='max', ignore_border=True, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/pool.py]

	function that performs pooling

	Parameters:	
	input – This variable should either thenao.tensor4 (theano.matrix
reshaped also works) variable or an output from a pervious layer which is
a theano.tensor4 convolved with a theano.shared.
The input should be of shape (batchsize, channels, height, width).
For those who have tried pylearn2 or such, this is called bc01 format.

	img_shp – This variable should a tuple or an array: [batchsize, channels, height, width]

	ds – tuple of pool sizes for rows and columns. (pool height, pool width)

	mode – {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}
Operation executed on each window. max and sum

	if max_same_size we do maxpooling with output is the same size.

	if max we do do maxpooling with output being downsampled.
Output size will be (batchsize, channels, height/ds[0], width/ds[1]).

	if mean we do do meanpooling with output being downsampled.
Output size will be (batchsize, channels, height/ds[0], width/ds[1]).

	if sum we do do sum pooling with output being downsampled.
Output size will be (batchsize, channels, height/ds[0], width/ds[1]).

	ignore_border – (default is False) Consider theano’s documentation [http://deeplearning.net/software/theano/library/tensor/signal/pool.html].
It is directly supplied to theano’s pool module.

 activations - Definitions for all activations functions.

activations - Definitions for all activations functions.

The file yann.core.activations.py contains the definition for all the activation
functions available.

You can import all these functions and supply the fuctions as arguments to functions that use
activation variable as an input. Refer to the mnist example in the modelzoo for how to do
this. It contains various activations as defined below:

	
yann.core.activations.Abs(x)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Absolute value Units.

Applies point-wise absolute value to the input supplied.

	Parameters:	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	Returns:	returns a absolute output of the same shape as the input.

	Return type:	same as input

	
yann.core.activations.Elu(x, alpha=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Exponential Linear Units.

Applies point-wise ela to the input supplied. alpha is defualt to 0.
Supplying a value to alpha would make this a leay Elu.

Notes

	Reference :Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate

	deep network learning by exponential linear units (elus).” arXiv preprint arXiv:1511.07289
(2015).

	Parameters:	
	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	alpha – should be a float. Default is 1.

	Returns:	returns a point-wise rectified output.

	Return type:	same as input

	
yann.core.activations.Maxout(x, maxout_size, input_size, type='maxout', dimension=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Function performs the maxout activation.
You can import all these functions and supply the fuctions as arguments to functions
that use activation variable as an input. Refer to the mnist example in the
modelzoo for how to do this.

	Parameters:	
	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists. Size of the argument must strictly be windowed runnable
through stride. Second dimension must be the channels to maxout from

	maxout_size – is the size of the window to stride through

	input_size – is number of nodes in the input

	dimension – If 1 perform MLP layer maxout, input must be two dimensional.
If 2 perform CNN layer maxout, input must be four dimensional.

	type – If maxout perform, [1]
If meanout or mixedout perform, meanout or mixed out respectively
from [2]

	[1]	Yu, Dingjun, et al. “Mixed Pooling for Convolutional Neural Networks.” Rough
Sets and Knowledge Technology. Springer International Publishing,
2014. 364-375.

	[2]	Ian Goodfellow et al. ” Maxout Networks ” on arXiv. (jmlr).

	Returns:	
	
	theano.tensor4 output, Output that could be provided

	
as output to the next layer or to other convolutional
layer options. the size of the output depends on border
mode and subsample operation performed.

	tuple, Number of feature maps after maxout is applied

	Return type:	theano.tensor4

	
yann.core.activations.ReLU(x, alpha=0)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Rectified Linear Units.

Applies point-wise rectification to the input supplied. alpha is defualt to 0.
Supplying a value to alpha would make this a leay ReLU.

Notes

	Reference: Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve restricted

	boltzmann machines.” Proceedings of the 27th International Conference on Machine Learning
(ICML-10). 2010.

	Parameters:	
	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	alpha – should be a float.

	Returns:	returns a point-wise rectified output.

	Return type:	same as input

	
yann.core.activations.Sigmoid(x)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Sigmoid Units.

Applies point-wise sigmoid to the input supplied.

	Parameters:	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	Returns:	returns a point-wise sigmoid output of the same shape as the input.

	Return type:	same as input

	
yann.core.activations.Softmax(x, temp=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Softmax Units.

Applies row-wise softmax to the input supplied.

	Parameters:	
	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	temp – temperature of type float. Mainly used during distillation, normal
softmax prefer T=1.

Notes

Refer [3] for details.

	[3]	Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in
a neural network.” arXiv preprint arXiv:1503.02531 (2015).

	Returns:	returns a row-wise softmax output of the same shape as the input.

	Return type:	same as input

	
yann.core.activations.Squared(x)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Squared Units.

Applies point-wise squaring to the input supplied.

	Parameters:	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	Returns:	returns a squared output of the same shape as the input.

	Return type:	same as input

	
yann.core.activations.Tanh(x)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/activations.py]

	Tanh Units.

Applies point-wise hyperbolic tangent to the input supplied.

	Parameters:	x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

	Returns:	returns a point-wise hyperbolic tangent output.

	Return type:	same as input

 errors - Definitions for all point-wise error functions.

errors - Definitions for all point-wise error functions.

The file yann.core.errors.py contains the definition for all the point-wise error
functions available.

	
yann.core.errors.cross_entropy(a, b)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/errors.py]

	This function produces a point-wise cross entropy error between a and b

	Parameters:	
	a – first input

	b – second input

	Returns:	Computational graph with the error.

	Return type:	theano shared variable

	
yann.core.errors.l1(a, b)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/errors.py]

	This function produces a point-wise L1 error between a and b

	Parameters:	
	a – first input

	b – second input

	Returns:	Computational graph with the error.

	Return type:	theano shared variable

	
yann.core.errors.rmse(a, b)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/errors.py]

	This function produces a point-wise root mean squared error error between a and b

	Parameters:	
	a – first input

	b – second input

	Returns:	Computational graph with the error.

	Return type:	theano shared variable

 operators - Definitions for all basic operators written for yann .

operators - Definitions for all basic operators written for yann .

The file yann.core.operators.py contains the definition for all the operators
written specifically for yann. Typically yann’s fundamental operators come from theano
or numpy. This is needed only for explicit operators not available clearly elsewhere.

	
yann.core.operators.copy_params(source, destination, borrow=True, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/core/operators.py]

	Internal function that copies paramters maintaining theano shared nature.

	Parameters:	
	source – Source

	destination – destination

Notes

Was using deep copy to do this. This seems faster. But can I use theano.clone ?

 utils - utilities that can be used as enhancement for the toolbox’s functionality

utils - utilities that can be used as enhancement for the toolbox’s functionality

Many additional utilities are provided with this toolbox. They are
divided into different modules and written in many files. Below is an index of all files and
their documentations.

	dataset - provides a nice port to benchmark and matlab-based datasets

	graph - provides a nice port to networkx methods related to Yann

	pickle - provides a way to save the network’ parameters as a pickle file.

	raster - provides a visualization for rasterizing images.
	LICENSE

 dataset - provides a nice port to benchmark and matlab-based datasets

dataset - provides a nice port to benchmark and matlab-based datasets

The file yann.utils.dataset.py contains the definition for the dataset ports. It contains
support to various benchmark datasets
through skdata [https://jaberg.github.io/skdata/]. There is also support to a dataset that can be imported from matlab.

Todo

	None of the PASCAL dataset retrievers from skdata is working. This need to be coded
in.

	Need a method to create dataset from a directory of images. - prepare for imagenet and
coco.

	See if support can be made for fuel.

	
yann.utils.dataset.create_shared_memory_dataset(data_xy, borrow=True, verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	This function creates a shared theano memory to be used for dataset purposes.

	Parameters:	
	data_xy – [data_x, data_y] that will be assigned to shared_x and shared_y
on output.

	borrow – default value is True. This is a theano shared memory type variabe.

	verbose – Similar to verbose everywhere else.

	svm – default is False. If True, we also return a shared_svm_y for
max-margin type last layer.

	Returns:	
	shared_x, shared_y is svm is False. If not, ``shared_x,

	shared_y, shared_svm_y``

	Return type:	theano.shared

	
yann.utils.dataset.download_data(url, location)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	

	
yann.utils.dataset.load_cifar100()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the cifar 100 dataset and returns the dataset in full

TODO: Need to implement this.

	
yann.utils.dataset.load_data_mat(height, width, channels, location, batch=0, type_set='train', load_z=False)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Use this code if the data was created in matlab in the right format and needed to be
loaded. The way to create is to have variables x, y, z with z being an optional
data to load. x is assumed to be the data in matrix double format with rows being
each image in vectorized fashion and y is assumed to be lables in int or
double.

The files are stored in the following format: loc/type/batch_0.mat. This code needs
scipy to run.

	Parameters:	
	height – The height of each image in the dataset.

	width – The width of each image in the dataset.

	channels – 3 if RGB, 1 if grayscale and so on.

	location – Location of the dataset.

	batch – if multi batch, then how many batches of data is present if not use 1

	Returns:	Tuple (data_x, data_y) if requested, also (data_x,data_y,data_z)

	Return type:	float32 tuple

Todo

Need to add preprocessing in this.

	
yann.utils.dataset.load_images_only(batch_size, location, n_train_images, n_test_images, n_valid_images, rand_perm, batch=1, type_set='train', height=218, width=178, channels=3, verbose=False)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset and returns the dataset in full.

	Parameters:	
	mini_batch_size – What is the size of the batch.

	n_train_images – number of training images.

	n_test_images – number of testing images.

	n_valid_images – number of validating images.

	rand_perm – Create a random permutation list of images to be sampled to batches.

	type_set – What dataset you need, test, train or valid.

	height – Height of the image

	width – Width of the image.

	verbose – similar to dataset.

	Returns:	data_x

	Return type:	list

	
yann.utils.dataset.load_skdata_caltech101(batch_size, n_train_images, n_test_images, n_valid_images, rand_perm, batch=1, type_set='train', height=256, width=256, verbose=False)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in part

	Parameters:	
	batch_size – What is the size of the batch.

	n_train_images – number of training images.

	n_test_images – number of testing images.

	n_valid_images – number of validating images.

	rand_perm – Create a random permutation list of images to be sampled to batches.

	type_set – What dataset you need, test, train or valid.

	height – Height of the image

	width – Width of the image.

	verbose – similar to dataset.

Todo

This is not a finished function.

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_caltech256(batch_size, n_train_images, n_test_images, n_valid_images, rand_perm, batch=1, type_set='train', height=256, width=256, verbose=False)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in part

	Parameters:	
	mini_batch_size – What is the size of the batch.

	n_train_images – number of training images.

	n_test_images – number of testing images.

	n_valid_images – number of validating images.

	rand_perm – Create a random permutation list of images to be sampled to batches.

	type_set – What dataset you need, test, train or valid.

	height – Height of the image

	width – Width of the image.

	verbose – similar to dataset.

Todo

This is not a finished function.

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_cifar10()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_bg_images()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_bg_rand()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise1()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise2()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise3()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset
in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise4()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset
in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise5()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_noise6()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y),(test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_rotated()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.load_skdata_mnist_rotated_bg()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that downloads the dataset from skdata and returns the dataset in full

	Returns:	[(train_x, train_y, train_y),(valid_x, valid_y, valid_y), (test_x, test_y, test_y)]

	Return type:	list

	
yann.utils.dataset.pickle_dataset(loc, batch, data)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Function that stores down an object as a pickle file given its filename and obj

	Parameters:	
	loc – Provide location to save as a string

	batch – provide a batch number to save the file as

	data – Pass the data that needs to be picked down. Could also be a tuple

	
class yann.utils.dataset.setup_dataset(dataset_init_args, save_directory='_datasets', verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	The setup_dataset class is used to create and assemble datasets that are friendly to the
Yann toolbox.

Todo

images option for the source.
skdata pascal isn’t working
imagenet dataset and coco needs to be setup.

	Parameters:	
	dataset_init_args – is a dictonary of the form:

data_init_args = {

 "source" : <where to get the dataset from>
 'pkl' : A theano tutorial style 'pkl' file.
 'skdata' : Download and setup from skdata
 'matlab' : Data is created and is being used from Matlab
 'images-only' : Data is created from a directory of images. This
 will be an unsupervised dataset with no labels.
 "name" : necessary only for skdata
 supports
 * ``'mnist'``
 * ``'mnist_noise1'``
 * ``'mnist_noise2'``
 * ``'mnist_noise3'``
 * ``'mnist_noise4'``
 * ``'mnist_noise5'``
 * ``'mnist_noise6'``
 * ``'mnist_bg_images'``
 * ``'mnist_bg_rand'``
 * ``'mnist_rotated'``
 * ``'mnist_rotated_bg'``.
 * ``'cifar10'``
 * ``'caltech101'``
 * ``'caltech256'``

 Refer to original paper by Hugo Larochelle [1] for these dataset details.

 "location" : necessary for 'pkl' and 'matlab' and
 'images-only'
 "mini_batch_size" : 500, # some batch size
 "mini_batches_per_batch" : (100, 20, 20), # trianing, testing, validation
 "batches2train" : 1, # number of files will be created.
 "batches2test" : 1,
 "batches2validate" : 1,
 "height" : 28, # After pre-processing
 "width" : 28,
 "channels" : 1 , # color (3) or grayscale (1) ...

 }

	preprocess_init_args – provide preprocessing arguments. This is a dictionary:

args = {
 "normalize" : <bool> True for normalize across batches
 "GCN" : True for global contrast normalization
 "ZCA" : True, kind of like a PCA representation (not fully tested)
 "grayscale" : Convert the image to grayscale
 }

	save_directory – <string> a location where the dataset is going to be saved.

	[1]	Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y. An empirical evaluation
of deep architectures on problems with many factors of variation. InProceedings
of the 24th international conference on Machine learning 2007 Jun 20
(pp. 473-480). ACM.

Notes

Yann toolbox takes datasets in a .pkl format. The dataset requires a directory
structure such as the following:

location/_dataset_XXXXX
|_ data_params.pkl
|_ train
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .
|_ valid
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .
|_ test
 |_ batch_0.pkl
 |_ batch_1.pkl
 .
 .
 .

The location id (XXXXX) is generated by this class file. The five digits that are
produced is the unique id of the dataset.

The file data_params.pkl contains one variable dataset_args used by datastream.

	
dataset_location()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Use this function that return the location of dataset.

	
yann.utils.dataset.shuffle(data, verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/dataset.py]

	Method shuffles the dataset with x and y

	Parameters:	data – Either a tuple of a nd array. If tuple, will assume x and y.

	Returns:	Shuffled version of the same.

	Return type:	data

Notes

Obnly tuple works at the moment.

 graph - provides a nice port to networkx methods related to Yann

graph - provides a nice port to networkx methods related to Yann

The file yann.utils.graph.py contains the definition for the networkx ports. If
networkx was installed, each network class also creates a networkx.DiGraph within itself
which is accessible through net = network(), net.graph. In each layer some representative
nodes (max limited) will be added to this graph and can be seen at net.graph.nodes().
Its attributes will be layer prorperties such as type, output_shape and so on.

yann.utils.graph has some ports that uses this networkx graph.

This includes: draw_network which draws the network.

The documentation follows:

	
yann.utils.graph.draw_network(graph, filename='network.pdf', show=False, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/graph.py]

	This is a simple wrapper to the networkx_draw.

	Parameters:	
	graph – Supply a networkx graph object. NNs are all DiGraphs.

	filename – what file to save down as. Will add ‘.png’ to the end.

	verbose – Do I even have to talk about this ?

Notes

Takes any format that networkx plotter takes. This is not ready to be used. Still buggy
sometimes.
Rudra is working on developing this further internally.
This is slow at the moment.

 pickle - provides a way to save the network’ parameters as a pickle file.

pickle - provides a way to save the network’ parameters as a pickle file.

The file yann.utils.pickle.py contains the definition for the pickle methods. Use pickle
method in the file to save the params down as a pickle file. Note that this only saves the
parameters down and not the architecture or optimizers or other modules. The id of the layers
will also be saved along as dictionary keys so you can use them to create a network.

The documentation follows:

	
yann.utils.pickle.load(infile, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/pickle.py]

	This method loads a pickled network and returns the parameters.

	Parameters:	infile – Filename of the network pickled by this pickle method.

	Returns:	A dictionary of parameters.

	Return type:	params

	
yann.utils.pickle.pickle(net, filename, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/pickle.py]

	This method saves the weights of all the layers.

	Parameters:	
	net – A yann network object

	filename – What is the name of the file to pickle the network as.

	verbose – Blah..

	
yann.utils.pickle.shared_params(params, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/pickle.py]

	This will convert a loaded set of parameters to shared variables that could be
passed as input_params to the add_layer method.

	Parameters:	params – List from get_params method.

 raster - provides a visualization for rasterizing images.

raster - provides a visualization for rasterizing images.

The file yann.utils.raster.py contains the definition for the rasters. This code is not mine and
is lifted from theano utils. This code is used to remove the dependency on now out-dated pylearn2
library. Yann uses pylearn2’s make_viewer to create images that are raster. Migrating to this
tile_raster_images from theano tutorials. Obliging License, credit and conditions for Theano
Deep Learning Tutorials: This entire file was
completely and directly reproduced from the theano deep learning tutorials.

Copyright (c) 2010–2015, Deep Learning Tutorials Development Team
All rights reserved.

This code is used to remove the dependency on now out-dated pylearn2 library. Yann uses pylearn2’s
make_viewer to create images that are raster. Migrating to this tile_raster_images from theano
tutorials.

Obliging License, credit and conditions for Theano Deep Learning Tutorials: This entire file was
completely and directly reproduced from the theano deep learnign tutorials.

LICENSE

Copyright (c) 2010–2015, Deep Learning Tutorials Development Team
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Theano nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ‘’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	
yann.utils.raster.scale_to_unit_interval(ndar, eps=1e-08)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/raster.py]

	Scales all values in the ndarray ndar to be between 0 and 1

	
yann.utils.raster.tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), scale_rows_to_unit_interval=True, output_pixel_vals=True)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/utils/raster.py]

	Transform an array with one flattened image per row, into an array in
which images are reshaped and layed out like tiles on a floor.
This function is useful for visualizing datasets whose rows are images,
and also columns of matrices for transforming those rows
(such as the first layer of a neural net).
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
be 2-D ndarrays or None;
:param X: a 2-D array in which every row is a flattened image.
:type img_shape: tuple; (height, width)
:param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols)
:param tile_shape: the number of images to tile (rows, cols)
:param output_pixel_vals: if output should be pixel values (i.e. int8
values) or floats
:param scale_rows_to_unit_interval: if the values need to be scaled before
being plotted to [0,1] or not
:returns: array suitable for viewing as an image.
(See:Image.fromarray.)
:rtype: a 2-d array with same dtype as X.

 special - contains tools for special types of networks

special - contains tools for special types of networks

This module contains tools for special types of networks. Most special types of networks involve
inheriting the main network class and re-writing a new class for different types of networks

	gan - provides a inherited network class for a gan network.

	datasets - provides quick methods to produce common datasets.

 gan - provides a inherited network class for a gan network.

gan - provides a inherited network class for a gan network.

The file yann.special.gan.py contains the definition for gan-style network. Any GAN network
can be built using this class. It is basically an inherited network from the yann.network file.

Support for the implementation from

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.” In Advances in Neural Information
Processing Systems, pp. 2672-2680. 2014.

Todo

There seems to be something wrong with the fine-tuning update. Code crashes after a call to
_new_era. This needs debugging and fixing.

	
class yann.special.gan.gan(verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This class is inherited from the network class and has its own methods modified in support of gan
networks.

Todo

Sumith Chintala says that its better to seperate generator and dataset when training
discriminator. Do that.

in __init__ kwargs = kwargs is not a good option Check its working.

	Parameters:	as the network class (Same) –

	
cook(objective_layers, discriminator_layers, generator_layers, game_layers, softmax_layer=None, classifier_layers=None, optimizer_params=None, verbose=2, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This function builds the backprop network, and makes the trainer, tester and validator
theano functions. The trainer builds the trainers for a particular objective layer and
optimizer.

	Parameters:	
	optimizer_params – Supply optimizer_params.

	datastream – Supply which datastream to use.
Default is the last datastream created.

	visualizer – Supply a visualizer to cook with.

	objective_layers – Supply a tuple of layer ids of layers that have the objective
functions (classification, discriminator, generator)

	classifier – supply the classifier layer of the discriminator.

	discriminator – supply the discriminator layer of the data stream.

	generator – supply the last generator layer.

	generator_layers – list or tuple of all generator layers

	discriminator_layers – list or tuple of all discriminator layers

	classifier_layers – list or tuple of all classifier layers

	game_layers – list or tuple of two layers. The first is D(G(z)) and the second is D(x)

	verbose – Similar to the rest of the toolbox.

	
cook_discriminator(optimizer_params, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This method cooks the real optimizer.

	Parameters:	verbose – as always

	
cook_generator(optimizer_params, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This method cooks the fake optimizer.

	Parameters:	verbose – as always

	
cook_softmax_optimizer(optimizer_params, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This method cooks the softmax optimizer.

	Parameters:	verbose – as always

	
initialize_train(verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	Internal function that creates a train methods for the GAN network

	Parameters:	verbose – as always

	
print_status(epoch, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	This function prints the costs of the current epoch, learning rate and momentum of the
network at the moment.

Todo

This needs to to go to visualizer.

	Parameters:	
	verbose – Just as always.

	epoch – Which epoch are we at ?

	
train(verbose, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	Training function of the network. Calling this will begin training.

	Parameters:	
	epochs – (num_epochs for each learning rate...) to train Default is (20, 20)

	validate_after_epochs – 1, after how many epochs do you want to validate ?

	show_progress – default is True, will display a clean progressbar.
If verbose is 3 or more - False

	early_terminate – True will allow early termination.

	k – how many discriminator updates for every generator update.

	learning_rates – (annealing_rate, learning_rates ...) length must be one more than
epochs Default is (0.05, 0.01, 0.001)

	save_after_epochs – 1, Save network after that many epochs of training.

	pre_train_discriminator – If you want to pre-train the discriminator to make it stay
ahead of the generator for making predictions. This will only
train the softmax layer loss and not the fake or real loss.

	
validate(epoch=0, training_accuracy=False, show_progress=False, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/gan.py]

	Method is use to run validation. It will also load the validation dataset.

	Parameters:	
	verbose – Just as always

	show_progress – Display progressbar ?

	training_accuracy – Do you want to print accuracy on the training set as well ?

 datasets - provides quick methods to produce common datasets.

datasets - provides quick methods to produce common datasets.

The file yann.special.datasets.py contains the definition for some methods that can produce
quickly some datasets. Some of them include :

	cook_mnist

	cook_cifar10

	...

	
class yann.special.datasets.combine_split_datasets(loc, verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	This will combine two split datasets into one.

Todo

Extend it for non-split datasets also.

	Parameters:	
	loc – A tuple of a list of locations of two dataset to be blended.

	verbose – As always

Notes

At this moment, mini_batches_per_batch and mini_batch_size of both datasets must be the
same.
This only splits the train data with shot. The test and valid hold both.
This is designed for the incremental learning.
New labels are created in one shot labels for the second datasets. This does not assume
that labels are shared between the two datasets.

	
combine(verbose=1)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Thie method runs the combine.

	Parameters:	verbose – As Always

	
dataset_location()[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Use this function that return the location of dataset.

	
load_data(n_batches_1, n_batches_2, type='train', batch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Will load the data from the file and will return the data. Will supply two batches one from
each set respectively.

	Parameters:	
	type – train, test or valid.
default is train

	batch – Supply an integer

	n_batches_1 – Number of batches in dataset 1

	n_batches_2 – Number of batches in dataset 2

	verbose – Simliar to verbose in toolbox.

Todo

Create and load dataset for type = ‘x’

	Returns:	data_x, data_y

	Return type:	numpy.ndarray

	
save_data(data_x, data_y, type='train', batch=0, verbose=2)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Saves down a batch of data.

	
yann.special.datasets.cook_caltech101(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook cifar10 dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_caltech256(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook cifar10 dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_celeba_normalized_zero_mean(verbose=1, location='_data/celebA', **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook Celeb-A dataset in preparation for GANs. Will take as input,

	Parameters:	
	location – Location where celebA was downloaded using
yann.specials.datasets.download_celebA

	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_cifar10(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook cifar10 dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_cifar10_normalized(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook cifar10 dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_cifar10_normalized_zero_mean(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook cifar10 dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.cook_mnist(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook mnist dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

By default, this will create a dataset that is not mean-subtracted.

	
yann.special.datasets.cook_mnist_multi_load(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Testing code, mainly.
Wrapper to cook mnist dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

This just creates a data_params that loads multiple batches without cache. I use this
to test the cahcing working on datastream module.

	
yann.special.datasets.cook_mnist_normalized(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook mnist dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

By default, this will create a dataset that is not mean-subtracted.

	
yann.special.datasets.cook_mnist_normalized_zero_mean(verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Wrapper to cook mnist dataset. Will take as input,

	Parameters:	
	save_directory – which directory to save the cooked dataset onto.

	dataset_parms – default is the dictionary. Refer to setup_dataset

	preprocess_params – default is the dictionary. Refer to setup_dataset

	
yann.special.datasets.download_celebA(data_dir='celebA')[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	This method downloads celebA dataset into directory _data/data_dir.

	Parameters:	data_dir – Location to save the data.

	
class yann.special.datasets.mix_split_datasets(loc, verbose=1, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Everything is the same, except, labels are mixed.

	
class yann.special.datasets.split_all(dataset_init_args, save_directory='_datasets', verbose=0, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Inheriting from the setup dataset. The new methods added will include the split.

	
class yann.special.datasets.split_continual(dataset_init_args, save_directory='_datasets', verbose=0, n_classes=10, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Inheriting from the setup dataset. This method will produce datasets setup for continual
learning systems.

	
class yann.special.datasets.split_only_train(dataset_init_args, save_directory='_datasets', verbose=0, **kwargs)[source] [https://github.com/ragavvenkatesan/yann/blob/master/yann/special/datasets.py]

	Inheriting from the split dataset. The new methods added will include the split.

 The story behind Yann

The story behind Yann

I am Ragav Venkatesan [http://www.ragav.net], the creator of Yann. I started building convolutional neural networks
in early 2015. I began with theano [http://deeplearning.net/software/theano/] and started
following and implementing their tutorials. As I started reading new papers and coding new
technologies, I slowly integrated them into what was soon developing into a toolbox. My lab mates at
Visual Representaiton and Processing Group [http://www.public.asu.edu/~bli24/Research.html] also started getting into CNN research and started
using my toolbox so I formalized it and hosted it on GitHub [https://github.com/ragavvenkatesan/yann]. Originally it was a completely
unstructured and completely demodularized toolbox and went with the name ‘samosa’. The original
codebase still exists in older commits on the git. This toolbox still at its core is still the
theano tutorials from which it was built.

After considerable effort being put in to make this toolbox modular, and testing it out and after
using the toolbox on some of my own research. This toolbox, which began as a pet project is
something that I am now proud to share with the rest of DL community with.

This toolbox is also used with the course CSE 591 [http://www.ragav.net/cse591] at ASU in Spring of 2017. With more features
being added into the toolbox, I figured I would clean it up, formalize it and write some good
documentation so that interested people could use it after. Thus after being rechristened as Yann,
this toolbox was born.

Warning

This is a personal toolbox that I wrote as a project for myself. I promise nothing. Although I
try to make sure everything is perfectly working. I encourage anyone to use it, contribute to it
and write on top of it with that caveat. I still have a lot of code to be written - unittests,
optimizers, pre-trained models, dataset ports and for all of these I would really appreciate
contributors and help.

Tip

I am working on tutorials and quickstart guides for this toolbox. As such, I try to go in detail
in these tutorials, but I am assuming a pre-requisite training and knowledge on CNNs and
Neural Neworks. If you are here looking for a tutorial for those and are disappointed with the
material here, please read Prof. Yoshua Bengio’s book on Deep Learning, or read the examples
from theano tutorials [http://deeplearning.net/software/theano/tutorial/examples.html]. Theano tutorials also will help understand theano [http://deeplearning.net/software/theano/] which is the
backend I used for this toolbox. As the course begins, I will add more tutorials with notes that
will make this more useful and interactive.

What is in the toolbox ?

This toolbox started with the beautiful theano tutorials [http://deeplearning.net/software/theano/tutorial/examples.html].
The code that is here in yann has the following popular features that all deep net
toolboxes seem to have. Among many others there are:

	CNNs with easy architecture management: Because layers can take origins as inputs, pretty much
any architecture that can be drawn on a blackboard can be constructed using this toolbox.

	Dataset handling capabilities: Features to setup data as simple matlab files
that can be loaded in python and run in batches for training. Alternatively, there is also a
wrapper to skdata’s [https://jaberg.github.io/skdata/] dataset interface and future plans for adding the Fuel [https://github.com/mila-udem/fuel] interface also.
As of now, directt ports through skdata to cifar10, mnist, extended mnists for Hugo Larochelle
, caltech101, caltech256. More to be added soon.

	Data visualization capabilities: Visualize the activities of select images (or random) from
the train set on each layer after select number of epochs of training. Also view filters after
select number of epochs. I find this very effective for my understanding.

	Techniques from recent publications: This is where things change a lot and for someone who is
getting into deep learning fresh without much theoretical machine learning it would
be really helpful. With only a few flags and parameters, one could
switch entire optimization methods, including gradient descent, adaGrad, rmsProp add momentums
like Polyak Momentum, Nesterov’s accelerated gradients etc. One switch converts the whole networks
into a max-margin formulation from a softmax formulation. All of these options are plug and play
or more like add and cook. Most new methods that are recently published
and are added including but not limited to:

	Dropouts[1]

	adaGrad[2]

	Polyak Momentum[3]

	Nesterov’s Accelerated Gradients [4]

	rmsProp [5]

	*Adam [8]

	Maxout and Mixed out Networks [6]

	*FitNets and MentorNets[9,15]

	VGG-19 [10]

	*Inception Module [11]

	Batch Normalization [12]

	ReLU / ELU and other activations supported through theano [13,14]

	Generative Adversarial Networks [16]

Those marked * are not fully tested yet.

References

	[1]	Srivastava, Nitish, et al. “Dropout: A simple way to prevent neural networks from
overfitting.” The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

	[2]	John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR

	[3]	Polyak, Boris Teodorovich. “Some methods of speeding up the convergence of iteration
methods.” USSR Computational Mathematics and Mathematical Physics 4.5 (1964): 1-17.
Implementation was adapted from Sutskever, Ilya, et al. “On the importance of
initialization and momentum in deep learning.” Proceedings of the 30th international
conference on machine learning (ICML-13). 2013.

	[4]	Nesterov, Yurii. “A method of solving a convex programming problem with convergence rate O
(1/k2).” Soviet Mathematics Doklady. Vol. 27. No. 2. 1983. Adapted
from Sebastien Bubeck’s [https://blogs.princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent/] blog.

	[5]	Yann N. Dauphin, Harm de Vries, Junyoung Chung, Yoshua Bengio,”RMSProp and equilibrated
adaptive learning rates for non-convex optimization”, or arXiv:1502.04390v1

	[6]	Goodfellow, Ian J., et al. “Maxout networks.” arXiv preprint arXiv:1302.4389 (2013).

	[7]	Yu, Dingjun, et al. “Mixed Pooling for Convolutional Neural Networks.” Rough Sets and
Knowledge Technology. Springer International Publishing, 2014. 364-375.

	[8]	Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv
preprint arXiv:1412.6980 (2014).

	[9]	Romero, Adriana, et al. “Fitnets: Hints for thin deep nets.” arXiv preprint arXiv:1412.6550
(2014).

	[10]	Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale
image recognition.” arXiv preprint arXiv:1409.1556 (2014).

	[11]	Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V. and Rabinovich, A., 2015. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1-9).

	[12]	Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

	[13]	Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve restricted boltzmann
machines.” Proceedings of the 27th International Conference on Machine Learning (ICML-10).
2010.

	[14]	Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate deep
network learning by exponential linear units (elus).” arXiv preprint arXiv:1511.07289
(2015).

	[15]	Venkatesan, Ragav, and Baoxin Li. “Diving deeper into mentee networks.” arXiv preprint
arXiv:1604.08220 (2016).

	[16]	Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.” In Advances in
Neural Information Processing Systems, pp. 2672-2680. 2014.

 License

License

Yann
Release: Yann V 1.0rc1

The MIT License

Copyright (c) [2015 - 2016] Ragav Venkatesan [http://www.ragav.net]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice, the credits below and this permission notice
shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Credits and copyright attributions to other sources:

	First and foremost, this toolbox was develoepd largely by adding functionality
to the amazing theano tutorials [http://deeplearning.net/software/theano/tutorial/] .
The theano tutorial today looks much different from what it was when yann was
developed on top of it. Although yann looks completely different now being its
own entity, one can still find some philosophy and structure of the theano
tutorial code embedded here and there in the toolbox. Therefore enormous
credit is due to theano tutorial and theano developers for this toolbox. A lot of
developement issues with this toolbox was solved also due to the incredible
customer support that was provided by the theano developers at their google groups
forum and the issues section of the theano github page.
Copyright (c) 2008–2016, Theano Development Team All rights reserved.

	The dropouts part of the code was adapted from Misha Denil’s Dropout code.
The code at the moment does not look at all like the code that Misa Denil
originally had, but it was developed from his code and therefore requires
that due credit be assigned and acknowledgement provided.
Refer to license here [https://github.com/mdenil/dropout/blob/master/LICENSE] .
Including his copyright notice here. Copyright (C) 2012 Misha Denil

	Ofcourse, this toolbox contains code from numpy, Contains code from NumPy,
Copyright (c) 2005-2011, NumPy Developers. All rights reserved.

	Lasagne played a signnificant role in the developement of yann. Part of the intention
in begining to develop yann was that Lasagne was getting too large for the
authors to keep up. Lasagne therefore insipired some of the aspects of this toolbox.
One of the contributors who submitted the rotate layer, used code re-distributed from
Lasagne toolbox as well. So, in honoring their license,
Copyright (c) 2014-2016 Lasagne contributors.

	Credit is also due to developers of skdata, progressbar, networkx and developers of
all the other dependencies that helping in the creating of this toolbox. Go team OpenSource!

 Python Module Index

 Python Module Index

 p |
 y

 		 	

 		
 p	

 	[image: -]
 	
 pantry	

 	
 	
 pantry.tutorials.autoencoder	

 	
 	
 pantry.tutorials.gan	

 	
 	
 pantry.tutorials.lenet	

 	
 	
 pantry.tutorials.log_reg	

 	
 	
 pantry.tutorials.mat2yann	

 	
 	
 pantry.tutorials.mlp	

 		 	

 		
 y	

 	[image: -]
 	
 yann	

 	
 	
 yann.core.activations	

 	
 	
 yann.core.conv	

 	
 	
 yann.core.errors	

 	
 	
 yann.core.operators	

 	
 	
 yann.core.pool	

 	
 	
 yann.layers.abstract	

 	
 	
 yann.layers.batch_norm	

 	
 	
 yann.layers.conv_pool	

 	
 	
 yann.layers.flatten	

 	
 	
 yann.layers.fully_connected	

 	
 	
 yann.layers.input	

 	
 	
 yann.layers.merge	

 	
 	
 yann.layers.output	

 	
 	
 yann.layers.random	

 	
 	
 yann.layers.transform	

 	
 	
 yann.modules.datastream	

 	
 	
 yann.modules.optimizer	

 	
 	
 yann.modules.resultor	

 	
 	
 yann.modules.visualizer	

 	
 	
 yann.network	

 	
 	
 yann.special.datasets	

 	
 	
 yann.special.gan	

 	
 	
 yann.utils.dataset	

 	
 	
 yann.utils.graph	

 	
 	
 yann.utils.pickle	

 	
 	
 yann.utils.raster	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Y

A

 	
 	Abs() (in module yann.core.activations)

 	
 	add_layer() (yann.network.network method)

 	add_module() (yann.network.network method)

B

 	
 	batch_norm_layer_1d (class in yann.layers.batch_norm)

 	
 	batch_norm_layer_2d (class in yann.layers.batch_norm)

C

 	
 	calculate_gradients() (yann.modules.optimizer.optimizer method)

 	classifier_layer (class in yann.layers.output)

 	combine() (yann.special.datasets.combine_split_datasets method)

 	combine_split_datasets (class in yann.special.datasets)

 	conv_pool_layer_2d (class in yann.layers.conv_pool)

 	convolutional_autoencoder() (in module pantry.tutorials.autoencoder)

 	convolver_2d (class in yann.core.conv)

 	cook() (yann.network.network method)

 	(yann.special.gan.gan method)

 	cook_caltech101() (in module yann.special.datasets)

 	cook_caltech256() (in module yann.special.datasets)

 	cook_celeba_normalized_zero_mean() (in module yann.special.datasets)

 	cook_cifar10() (in module yann.special.datasets)

 	
 	cook_cifar10_normalized() (in module yann.special.datasets)

 	cook_cifar10_normalized_zero_mean() (in module yann.special.datasets)

 	cook_discriminator() (yann.special.gan.gan method)

 	cook_generator() (yann.special.gan.gan method)

 	cook_mnist() (in module yann.special.datasets)

 	cook_mnist_multi_load() (in module yann.special.datasets)

 	cook_mnist_normalized() (in module yann.special.datasets)

 	cook_mnist_normalized_zero_mean() (in module yann.special.datasets)

 	cook_softmax_optimizer() (yann.special.gan.gan method)

 	cook_svhn_normalized() (in module pantry.tutorials.mat2yann)

 	copy_params() (in module yann.core.operators)

 	create_shared_memory_dataset() (in module yann.utils.dataset)

 	create_updates() (yann.modules.optimizer.optimizer method)

 	cross_entropy() (in module yann.core.errors)

D

 	
 	dataset_location() (yann.special.datasets.combine_split_datasets method)

 	(yann.utils.dataset.setup_dataset method)

 	datastream (class in yann.modules.datastream)

 	deactivate_layer() (yann.network.network method)

 	deconv_layer_2d (class in yann.layers.conv_pool)

 	deconvolver_2d (class in yann.core.conv)

 	deep_deconvolutional_gan() (in module pantry.tutorials.gan)

 	deep_deconvolutional_lsgan() (in module pantry.tutorials.gan)

 	deep_gan_mnist() (in module pantry.tutorials.gan)

 	dot_product_layer (class in yann.layers.fully_connected)

 	download_celebA() (in module yann.special.datasets)

 	
 	download_data() (in module yann.utils.dataset)

 	draw_network() (in module yann.utils.graph)

 	dropout_batch_norm_layer_1d (class in yann.layers.batch_norm)

 	dropout_batch_norm_layer_2d (class in yann.layers.batch_norm)

 	dropout_conv_pool_layer_2d (class in yann.layers.conv_pool)

 	dropout_deconv_layer_2d (class in yann.layers.conv_pool)

 	dropout_dot_product_layer (class in yann.layers.fully_connected)

 	dropout_input_layer (class in yann.layers.input)

 	dropout_merge_layer (class in yann.layers.merge)

 	dropout_rotate_layer (class in yann.layers.transform)

 	dropout_tensor_layer (class in yann.layers.input)

E

 	
 	Elu() (in module yann.core.activations)

 	
 	errors() (yann.layers.output.classifier_layer method)

F

 	
 	flatten_layer (class in yann.layers.flatten)

G

 	
 	gan (class in yann.special.gan)

 	get_params() (yann.layers.abstract.layer method)

 	(yann.layers.output.classifier_layer method)

 	(yann.network.network method)

I

 	
 	initialize() (yann.modules.visualizer.visualizer method)

 	initialize_dataset() (yann.modules.datastream.datastream method)

 	
 	initialize_train() (yann.special.gan.gan method)

 	input_layer (class in yann.layers.input)

L

 	
 	l1() (in module yann.core.errors)

 	L2 (yann.layers.fully_connected.dot_product_layer attribute)

 	layer (class in yann.layers.abstract)

 	layer_activity() (yann.network.network method)

 	lenet5() (in module pantry.tutorials.lenet), [1]

 	lenet_maxout_batchnorm_after_activation() (in module pantry.tutorials.lenet), [1]

 	lenet_maxout_batchnorm_before_activation() (in module pantry.tutorials.lenet), [1]

 	load() (in module yann.utils.pickle)

 	load_cifar100() (in module yann.utils.dataset)

 	load_data() (yann.modules.datastream.datastream method)

 	(yann.special.datasets.combine_split_datasets method)

 	load_data_mat() (in module yann.utils.dataset)

 	load_images_only() (in module yann.utils.dataset)

 	load_skdata_caltech101() (in module yann.utils.dataset)

 	load_skdata_caltech256() (in module yann.utils.dataset)

 	
 	load_skdata_cifar10() (in module yann.utils.dataset)

 	load_skdata_mnist() (in module yann.utils.dataset)

 	load_skdata_mnist_bg_images() (in module yann.utils.dataset)

 	load_skdata_mnist_bg_rand() (in module yann.utils.dataset)

 	load_skdata_mnist_noise1() (in module yann.utils.dataset)

 	load_skdata_mnist_noise2() (in module yann.utils.dataset)

 	load_skdata_mnist_noise3() (in module yann.utils.dataset)

 	load_skdata_mnist_noise4() (in module yann.utils.dataset)

 	load_skdata_mnist_noise5() (in module yann.utils.dataset)

 	load_skdata_mnist_noise6() (in module yann.utils.dataset)

 	load_skdata_mnist_rotated() (in module yann.utils.dataset)

 	load_skdata_mnist_rotated_bg() (in module yann.utils.dataset)

 	log_reg() (in module pantry.tutorials.log_reg)

 	loss() (yann.layers.merge.merge_layer method)

 	(yann.layers.output.classifier_layer method)

M

 	
 	Maxout() (in module yann.core.activations)

 	merge_layer (class in yann.layers.merge)

 	
 	mix_split_datasets (class in yann.special.datasets)

 	mlp() (in module pantry.tutorials.mlp)

N

 	
 	network (class in yann.network)

O

 	
 	objective_layer (class in yann.layers.output)

 	one_hot_labels() (yann.modules.datastream.datastream method)

 	
 	optimizer (class in yann.modules.optimizer)

 	output_shape (yann.layers.merge.merge_layer attribute)

P

 	
 	pantry.tutorials.autoencoder (module)

 	pantry.tutorials.gan (module)

 	pantry.tutorials.lenet (module), [1]

 	pantry.tutorials.log_reg (module)

 	pantry.tutorials.mat2yann (module)

 	pantry.tutorials.mlp (module)

 	pickle() (in module yann.utils.pickle)

 	pickle_dataset() (in module yann.utils.dataset)

 	
 	pooler_2d (class in yann.core.pool)

 	pretty_print() (yann.network.network method)

 	print_confusion() (yann.modules.resultor.resultor method)

 	print_layer() (yann.layers.abstract.layer method)

 	(yann.layers.conv_pool.conv_pool_layer_2d method)

 	(yann.layers.conv_pool.deconv_layer_2d method)

 	print_status() (yann.network.network method)

 	(yann.special.gan.gan method)

 	process_results() (yann.modules.resultor.resultor method)

R

 	
 	random_layer (class in yann.layers.random)

 	ReLU() (in module yann.core.activations)

 	
 	resultor (class in yann.modules.resultor)

 	rmse() (in module yann.core.errors)

 	rotate_layer (class in yann.layers.transform)

S

 	
 	save_data() (yann.special.datasets.combine_split_datasets method)

 	save_images() (in module yann.modules.visualizer)

 	save_params() (yann.network.network method)

 	scale_to_unit_interval() (in module yann.utils.raster)

 	set_data() (yann.modules.datastream.datastream method)

 	setup_dataset (class in yann.utils.dataset), [1]

 	shallow_autoencoder() (in module pantry.tutorials.autoencoder)

 	shallow_gan_mnist() (in module pantry.tutorials.gan)

 	
 	shallow_wgan_mnist() (in module pantry.tutorials.gan)

 	shared_params() (in module yann.utils.pickle)

 	shuffle() (in module yann.utils.dataset)

 	Sigmoid() (in module yann.core.activations)

 	Softmax() (in module yann.core.activations)

 	split_all (class in yann.special.datasets)

 	split_continual (class in yann.special.datasets)

 	split_only_train (class in yann.special.datasets)

 	Squared() (in module yann.core.activations)

T

 	
 	Tanh() (in module yann.core.activations)

 	tensor_layer (class in yann.layers.input)

 	test() (yann.network.network method)

 	
 	theano_function_visualizer() (yann.modules.visualizer.visualizer method)

 	tile_raster_images() (in module yann.utils.raster)

 	train() (yann.network.network method)

 	(yann.special.gan.gan method)

U

 	
 	unflatten_layer (class in yann.layers.flatten)

 	
 	update_plot() (yann.modules.resultor.resultor method)

V

 	
 	validate() (yann.network.network method)

 	(yann.special.gan.gan method)

 	visualize() (yann.network.network method)

 	visualize_activities() (yann.modules.visualizer.visualizer method)

 	(yann.network.network method)

 	
 	visualize_filters() (yann.modules.visualizer.visualizer method)

 	(yann.network.network method)

 	visualize_images() (yann.modules.visualizer.visualizer method)

 	visualizer (class in yann.modules.visualizer)

Y

 	
 	yann.core.activations (module)

 	yann.core.conv (module)

 	yann.core.errors (module)

 	yann.core.operators (module)

 	y