

 Navigation

 	
 index

 	
 next |

 	x265 documentation

x265 Documentation

	Introduction
	About HEVC

	About x265

	LEGAL NOTICES

	Command Line Options
	Standalone Executable Options

	Quality reporting metrics

	Input Options

	Profile, Level, Tier

	Quad-Tree analysis

	Temporal / motion search options

	Spatial/intra options

	Mode decision / Analysis

	Psycho-visual options

	Slice decision options

	Quality, rate control and rate distortion options

	Loop filters

	VUI (Video Usability Information) options

	Bitstream options

	Debugging options

	Application Programming Interface
	Introduction

	Build Considerations

	Encoder

	Param

	Pictures

	Analysis Buffers

	Encode Process

	Cleanup

	Threading
	Thread Pool

	Wavefront Parallel Processing

	Parallel Mode Analysis

	Parallel Motion Estimation

	Frame Threading

	Lookahead

	SAO

	Preset Options
	Presets

	Tuning

	Lossless
	Lossless Encoding

	Near-lossless Encoding

	Transform Skip

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	x265 documentation

Introduction

Increasing demand for high definition and ultra-high definition video,
along with an increasing desire for video on demand has led to
exponential growth in demand for bandwidth and storage requirements.
These challenges can be met by the new High Efficiency Video Coding
(HEVC) standard, also known as H.265. The x265 HEVC encoder project was
launched by MulticoreWare in 2013, aiming to provide the most efficient,
highest performance HEVC video encoder.

About HEVC

The High Efficiency Video Coding (HEVC) was developed by the ISO/IEC
Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group
(VCEG), through their Joint Collaborative Team on Video Coding (JCT-VC).
HEVC is also known as ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T H.265.
HEVC provides superior video quality and up to twice the data
compression as the previous standard (H.264/MPEG-4 AVC). HEVC can
support 8K Ultra High Definition video, with a picture size up to
8192x4320 pixels.

About x265

The primary objective of x265 is to become the best H.265/HEVC encoder
available anywhere, offering the highest compression efficiency and the
highest performance on a wide variety of hardware platforms. The x265
encoder is available as an open source library, published under the
GPLv2 license. It is also available under a commercial license, enabling
commercial companies to utilize and distribute x265 in their solutions
without being subject to the restrictions of the GPL license.

x265 is developed by MulticoreWare [http://www.multicorewareinc.com],
leaders in high performance software solutions, with backing from
leading video technology providers including Telestream [http://www.telestream.com] and Doremi Labs [http://www.doremilabs.com] (and other companies who want to remain
anonymous at this time), and with contributions from open source
developers. x265 leverages many of the outstanding video encoding
features and optimizations from the x264 AVC encoder project.

The x265 software is available for free under the GNU GPL 2 license,
from https://bitbucket.org/multicoreware/x265. For commercial companies
that wish to distribute x265 without being subject to the open source
requirements of the GPL 2 license, commercial licenses are available
with competitive terms. Contact license @ x265.com to inquire about
commercial license terms.

While x265 is primarily designed as a video encoder software library, a
command-line executable is provided to facilitate testing and
development. We expect x265 to be utilized in many leading video
hardware and software products and services in the coming months.

LEGAL NOTICES

The x265 software is owned and copyrighted by MulticoreWare, Inc.
MulticoreWare is committed to offering the x265 software under the GNU
GPL v2 license. Companies who do not wish to integrate the x265
Software in their products under the terms of the GPL license can
contact MulticoreWare (license @ x265.com) to obtain a commercial
license agreement. Companies who use x265 under the GPL may also wish
to work with MulticoreWare to accelerate the development of specific
features or optimized support for specific hardware or software
platforms, or to contract for support.

The GNU GPL v2 license or the x265 commercial license agreement govern
your rights to access the copyrighted x265 software source code, but do
not cover any patents that may be applicable to the function of binary
executable software created from the x265 source code. You are
responsible for understanding the laws in your country, and for
licensing all applicable patent rights needed for use or distribution of
software applications created from the x265 source code. A good place
to start is with the `Motion Picture Experts Group - Licensing Authority
- HEVC Licensing Program<http://www.mpegla.com/main/PID/HEVC/default.aspx>`_.

x265 is a registered trademark of MulticoreWare, Inc. The x265 logo is
a trademark of MulticoreWare, and may only be used with explicit written
permission. All rights reserved.

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	x265 documentation

Command Line Options

Note that unless an option is listed as CLI ONLY the option is also
supported by x265_param_parse(). The CLI uses getopt to parse the
command line options so the short or long versions may be used and the
long options may be truncated to the shortest unambiguous abbreviation.
Users of the API must pass x265_param_parse() the full option name.

Preset and tune have special implications. The API user must call
x265_param_default_preset() with the preset and tune parameters they
wish to use, prior to calling x265_param_parse() to set any additional
fields. The CLI does this for the user implicitly, so all CLI options
are applied after the user’s preset and tune choices, regardless of the
order of the arguments on the command line.

If there is an extra command line argument (not an option or an option
value) the CLI will treat it as the input filename. This effectively
makes the --input specifier optional for the input file. If
there are two extra arguments, the second is treated as the output
bitstream filename, making --output also optional if the input
filename was implied. This makes x265 in.y4m out.hevc a valid
command line. If there are more than two extra arguments, the CLI will
consider this an error and abort.

Generally, when an option expects a string value from a list of strings
the user may specify the integer ordinal of the value they desire. ie:
--log-level 3 is equivalent to --log-level debug.

Standalone Executable Options

	
--help, -h

	Display help text

CLI ONLY

	
--version, -V

	Display version details

CLI ONLY

	
--asm <integer:false:string>, --no-asm

	x265 will use all detected CPU SIMD architectures by default. You can
disable all assembly by using --no-asm or you can specify
a comma separated list of SIMD architectures to use, matching these
strings: MMX2, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX, XOP, FMA4, AVX2, FMA3

Some higher architectures imply lower ones being present, this is
handled implicitly.

One may also directly supply the CPU capability bitmap as an integer.

	
--threads <integer>

	Number of threads to allocate for the worker thread pool This pool
is used for WPP and for distributed analysis and motion search:
--wpp --pmode and --pme respectively.

If :option:`–threads`=1 is specified, then no thread pool is
created. When no thread pool is created, all the thread pool
features are implicitly disabled. If all the pool features are
disabled by the user, then the pool is implicitly disabled.

Default 0, one thread is allocated per detected hardware thread
(logical CPU cores)

	
--pmode, --no-pmode

	Parallel mode decision, or distributed mode analysis. When enabled
the encoder will distribute the analysis work of each CU (merge,
inter, intra) across multiple worker threads. Only recommended if
x265 is not already saturating the CPU cores. In RD levels 3 and 4
it will be most effective if –rect was enabled. At RD levels 5 and
6 there is generally always enough work to distribute to warrant the
overhead, assuming your CPUs are not already saturated.

–pmode will increase utilization without reducing compression
efficiency. In fact, since the modes are all measured in parallel it
makes certain early-outs impractical and thus you usually get
slightly better compression when it is enabled (at the expense of
not skipping improbable modes).

This feature is implicitly disabled when no thread pool is present.

Default disabled

	
--pme, --no-pme

	Parallel motion estimation. When enabled the encoder will distribute
motion estimation across multiple worker threads when more than two
references require motion searches for a given CU. Only recommended
if x265 is not already saturating CPU cores. --pmode is
much more effective than this option, since the amount of work it
distributes is substantially higher. With –pme it is not unusual
for the overhead of distributing the work to outweigh the
parallelism benefits.

This feature is implicitly disabled when no thread pool is present.

–pme will increase utilization on many core systems with no effect
on the output bitstream.

Default disabled

	
--preset, -p <integer|string>

	Sets parameters to preselected values, trading off compression efficiency against
encoding speed. These parameters are applied before all other input parameters are
applied, and so you can override any parameters that these values control.

	ultrafast

	superfast

	veryfast

	faster

	fast

	medium (default)

	slow

	slower

	veryslow

	placebo

	
--tune, -t <string>

	Tune the settings for a particular type of source or situation. The changes will
be applied after --preset but before all other parameters. Default none

Values: psnr, ssim, zero-latency, fast-decode.

	
--frame-threads, -F <integer>

	Number of concurrently encoded frames. Using a single frame thread
gives a slight improvement in compression, since the entire reference
frames are always available for motion compensation, but it has
severe performance implications. Default is an autodetected count
based on the number of CPU cores and whether WPP is enabled or not.

Over-allocation of frame threads will not improve performance, it
will generally just increase memory use.

	
--log-level <integer|string>

	Logging level. Debug level enables per-frame QP, metric, and bitrate
logging. If a CSV file is being generated, debug level makes the log
be per-frame rather than per-encode. Full level enables hash and
weight logging. -1 disables all logging, except certain fatal
errors, and can be specified by the string “none”.

	error

	warning

	info (default)

	debug

	full

	
--csv <filename>

	Writes encoding results to a comma separated value log file. Creates
the file if it doesnt already exist, else adds one line per run. if
--log-level is debug or above, it writes one line per
frame. Default none

	
--cu-stats, --no-cu-stats

	Records statistics on how each CU was coded (split depths and other
mode decisions) and reports those statistics at the end of the
encode. Default disabled

	
--output, -o <filename>

	Bitstream output file name. If there are two extra CLI options, the
first is implicitly the input filename and the second is the output
filename, making the --output option optional.

The output file will always contain a raw HEVC bitstream, the CLI
does not support any container file formats.

CLI ONLY

	
--no-progress

	Disable CLI periodic progress reports

CLI ONLY

Quality reporting metrics

	
--ssim, --no-ssim

	Calculate and report Structural Similarity values. It is
recommended to use --tune ssim if you are measuring ssim,
else the results should not be used for comparison purposes.
Default disabled

	
--psnr, --no-psnr

	Calculate and report Peak Signal to Noise Ratio. It is recommended
to use --tune psnr if you are measuring PSNR, else the
results should not be used for comparison purposes. Default
disabled

Input Options

	
--input <filename>

	Input filename, only raw YUV or Y4M supported. Use single dash for
stdin. This option name will be implied for the first “extra”
command line argument.

CLI ONLY

	
--y4m

	Parse input stream as YUV4MPEG2 regardless of file extension,
primarily intended for use with stdin (ie: --input -
--y4m). This option is implied if the input filename has
a ”.y4m” extension

CLI ONLY

	
--input-depth <integer>

	YUV only: Bit-depth of input file or stream

Values: any value between 8 and 16. Default is internal depth.

CLI ONLY

	
--dither

	Enable high quality downscaling. Dithering is based on the diffusion
of errors from one row of pixels to the next row of pixels in a
picture. Only applicable when the input bit depth is larger than
8bits and internal bit depth is 8bits. Default disabled

CLI ONLY

	
--nr <integer>

	Noise reduction - an adaptive deadzone applied after DCT
(subtracting from DCT coefficients), before quantization, on inter
blocks. It does no pixel-level filtering, doesn’t cross DCT block
boundaries, has no overlap, doesn’t affect intra blocks. The higher
the strength value parameter, the more aggressively it will reduce
noise.

Enabling noise reduction will make outputs diverge between different
numbers of frame threads. Outputs will be deterministic but the
outputs of -F2 will no longer match the outputs of -F3, etc.

Values: any value in range of 100 to 1000. Default disabled.

	
--input-res <wxh>

	YUV only: Source picture size [w x h]

CLI ONLY

	
--input-csp <integer|string>

	YUV only: Source color space. Only i420, i422, and i444 are
supported at this time. The internal color space is always the
same as the source color space (libx265 does not support any color
space conversions).

	i400

	i420 (default)

	i422

	i444

	nv12

	nv16

	
--fps <integer|float|numerator/denominator>

	YUV only: Source frame rate

Range of values: positive int or float, or num/denom

	
--interlaceMode <false|tff|bff>, --no-interlaceMode

	EXPERIMENTAL Specify interlace type of source pictures.

	progressive pictures (default)

	top field first

	bottom field first

HEVC encodes interlaced content as fields. Fields must be provided to
the encoder in the correct temporal order. The source dimensions
must be field dimensions and the FPS must be in units of fields per
second. The decoder must re-combine the fields in their correct
orientation for display.

	
--seek <integer>

	Number of frames to skip at start of input file. Default 0

CLI ONLY

	
--frames, -f <integer>

	Number of frames to be encoded. Default 0 (all)

CLI ONLY

	
--qpfile <filename>

	Specify a text file which contains frametypes and QPs for some or
all frames. The format of each line is:

framenumber frametype QP

Frametype can be one of [I,i,P,B,b]. B is a referenced B frame,
b is an unreferenced B frame. I is a keyframe (random
access point) while i is a I frame that is not a keyframe
(references are not broken).

Specifying QP (integer) is optional, and if specified they are
clamped within the encoder to qpmin/qpmax.

	
--scaling-list <filename>

	Quantization scaling lists. HEVC supports 6 quantization scaling
lists to be defined; one each for Y, Cb, Cr for intra prediction and
one each for inter prediction.

x265 does not use scaling lists by default, but this can also be
made explicit by --scaling-list off.

HEVC specifies a default set of scaling lists which may be enabled
without requiring them to be signaled in the SPS. Those scaling
lists can be enabled via --scaling-list default.

All other strings indicate a filename containing custom scaling
lists in the HM format. The encode will abort if the file is not
parsed correctly. Custom lists must be signaled in the SPS

	
--lambda-file <filename>

	Specify a text file containing values for x265_lambda_tab and
x265_lambda2_tab. Each table requires MAX_MAX_QP+1 (70) float
values.

The text file syntax is simple. Comma is considered to be
white-space. All white-space is ignored. Lines must be less than 2k
bytes in length. Content following hash (#) characters are ignored.
The values read from the file are logged at --log-level
debug.

Note that the lambda tables are process-global and so the new values
affect all encoders running in the same process.

Lambda values affect encoder mode decisions, the lower the lambda
the more bits it will try to spend on signaling information (motion
vectors and splits) and less on residual. This feature is intended
for experimentation.

Profile, Level, Tier

	
--profile <string>

	Enforce the requirements of the specified profile, ensuring the
output stream will be decodable by a decoder which supports that
profile. May abort the encode if the specified profile is
impossible to be supported by the compile options chosen for the
encoder (a high bit depth encoder will be unable to output
bitstreams compliant with Main or Mainstillpicture).

API users must use x265_param_apply_profile() after configuring
their param structure. Any changes made to the param structure after
this call might make the encode non-compliant.

Values: main, main10, mainstillpicture, main422-8, main422-10, main444-8, main444-10

CLI ONLY

	
--level-idc <integer|float>

	Minimum decoder requirement level. Defaults to 0, which implies
auto-detection by the encoder. If specified, the encoder will
attempt to bring the encode specifications within that specified
level. If the encoder is unable to reach the level it issues a
warning and aborts the encode. If the requested requirement level is
higher than the actual level, the actual requirement level is
signaled.

Beware, specifying a decoder level will force the encoder to enable
VBV for constant rate factor encodes, which may introduce
non-determinism.

The value is specified as a float or as an integer with the level
times 10, for example level 5.1 is specified as “5.1” or “51”,
and level 5.0 is specified as “5.0” or “50”.

Annex A levels: 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 6.2

	
--high-tier, --no-high-tier

	If --level-idc has been specified, the option adds the
intention to support the High tier of that level. If your specified
level does not support a High tier, a warning is issued and this
modifier flag is ignored.

Note

--profile, --level-idc, and
--high-tier are only intended for use when you are
targeting a particular decoder (or decoders) with fixed resource
limitations and must constrain the bitstream within those limits.
Specifying a profile or level may lower the encode quality
parameters to meet those requirements but it will never raise
them.

Quad-Tree analysis

	
--wpp, --no-wpp

	Enable Wavefront Parallel Processing. The encoder may begin encoding
a row as soon as the row above it is at least two CTUs ahead in the
encode process. This gives a 3-5x gain in parallelism for about 1%
overhead in compression efficiency. Default: Enabled

	
--ctu, -s <64|32|16>

	Maximum CU size (width and height). The larger the maximum CU size,
the more efficiently x265 can encode flat areas of the picture,
giving large reductions in bitrate. However this comes at a loss of
parallelism with fewer rows of CUs that can be encoded in parallel,
and less frame parallelism as well. Because of this the faster
presets use a CU size of 32. Default: 64

	
--tu-intra-depth <1..4>

	The transform unit (residual) quad-tree begins with the same depth
as the coding unit quad-tree, but the encoder may decide to further
split the transform unit tree if it improves compression efficiency.
This setting limits the number of extra recursion depth which can be
attempted for intra coded units. Default: 1, which means the
residual quad-tree is always at the same depth as the coded unit
quad-tree

Note that when the CU intra prediction is NxN (only possible with
8x8 CUs), a TU split is implied, and thus the residual quad-tree
begins at 4x4 and cannot split any futhrer.

	
--tu-inter-depth <1..4>

	The transform unit (residual) quad-tree begins with the same depth
as the coding unit quad-tree, but the encoder may decide to further
split the transform unit tree if it improves compression efficiency.
This setting limits the number of extra recursion depth which can be
attempted for inter coded units. Default: 1. which means the
residual quad-tree is always at the same depth as the coded unit
quad-tree unless the CU was coded with rectangular or AMP
partitions, in which case a TU split is implied and thus the
residual quad-tree begins one layer below the CU quad-tree.

Temporal / motion search options

	
--me <integer|string>

	Motion search method. Generally, the higher the number the harder
the ME method will try to find an optimal match. Diamond search is
the simplest. Hexagon search is a little better. Uneven
Multi-Hexegon is an adaption of the search method used by x264 for
slower presets. Star is a three step search adapted from the HM
encoder: a star-pattern search followed by an optional radix scan
followed by an optional star-search refinement. Full is an
exhaustive search; an order of magnitude slower than all other
searches but not much better than umh or star.

	dia

	hex (default)

	umh

	star

	full

	
--subme, -m <0..7>

	Amount of subpel refinement to perform. The higher the number the
more subpel iterations and steps are performed. Default 2

	-m
	HPEL iters
	HPEL dirs
	QPEL iters
	QPEL dirs
	HPEL SATD

	0
	1
	4
	0
	4
	false

	1
	1
	4
	1
	4
	false

	2
	1
	4
	1
	4
	true

	3
	2
	4
	1
	4
	true

	4
	2
	4
	2
	4
	true

	5
	1
	8
	1
	8
	true

	6
	2
	8
	1
	8
	true

	7
	2
	8
	2
	8
	true

	
--merange <integer>

	Motion search range. Default 57

The default is derived from the default CTU size (64) minus the luma
interpolation half-length (4) minus maximum subpel distance (2)
minus one extra pixel just in case the hex search method is used. If
the search range were any larger than this, another CTU row of
latency would be required for reference frames.

Range of values: an integer from 0 to 32768

	
--max-merge <1..5>

	Maximum number of neighbor (spatial and temporal) candidate blocks
that the encoder may consider for merging motion predictions. If a
merge candidate results in no residual, it is immediately selected
as a “skip”. Otherwise the merge candidates are tested as part of
motion estimation when searching for the least cost inter option.
The max candidate number is encoded in the SPS and determines the
bit cost of signaling merge CUs. Default 2

	
--temporal-mvp, --no-temporal-mvp

	Enable temporal motion vector predictors in P and B slices.
This enables the use of the motion vector from the collocated block
in the previous frame to be used as a predictor. Default is enabled

Spatial/intra options

	
--rdpenalty <0..2>

	When set to 1, transform units of size 32x32 are given a 4x bit cost
penalty compared to smaller transform units, in intra coded CUs in P
or B slices.

When set to 2, transform units of size 32x32 are not even attempted,
unless otherwise required by the maximum recursion depth. For this
option to be effective with 32x32 intra CUs,
--tu-intra-depth must be at least 2. For it to be
effective with 64x64 intra CUs, --tu-intra-depth must be
at least 3.

Note that in HEVC an intra transform unit (a block of the residual
quad-tree) is also a prediction unit, meaning that the intra
prediction signal is generated for each TU block, the residual
subtracted and then coded. The coding unit simply provides the
prediction modes that will be used when predicting all of the
transform units within the CU. This means that when you prevent
32x32 intra transform units, you are preventing 32x32 intra
predictions.

Default 0, disabled.

Values: 0:disabled 1:4x cost penalty 2:force splits

	
--b-intra, --no-b-intra

	Enables the evaluation of intra modes in B slices. Default disabled.

	
--tskip, --no-tskip

	Enable evaluation of transform skip (bypass DCT but still use
quantization) coding for 4x4 TU coded blocks.

Only effective at RD levels 3 and above, which perform RDO mode
decisions. Default disabled

	
--tskip-fast, --no-tskip-fast

	Only evaluate transform skip for NxN intra predictions (4x4 blocks).
Only applicable if transform skip is enabled. For chroma, only
evaluate if luma used tskip. Inter block tskip analysis is
unmodified. Default disabled

	
--strong-intra-smoothing, --no-strong-intra-smoothing

	Enable strong intra smoothing for 32x32 intra blocks. Default enabled

	
--constrained-intra, --no-constrained-intra

	Constrained intra prediction. When generating intra predictions for
blocks in inter slices, only intra-coded reference pixels are used.
Inter-coded reference pixels are replaced with intra-coded neighbor
pixels or default values. The general idea is to block the
propagation of reference errors that may have resulted from lossy
signals. Default disabled

Mode decision / Analysis

	
--rect, --no-rect

	Enable analysis of rectangular motion partitions Nx2N and 2NxN
(50/50 splits, two directions). Default disabled

	
--amp, --no-amp

	Enable analysis of asymmetric motion partitions (75/25 splits, four
directions). At RD levels 0 through 4, AMP partitions are only
considered at CU sizes 32x32 and below. At RD levels 5 and 6, it
will only consider AMP partitions as merge candidates (no motion
search) at 64x64, and as merge or inter candidates below 64x64.

The AMP partitions which are searched are derived from the current
best inter partition. If Nx2N (vertical rectangular) is the best
current prediction, then left and right asymmetrical splits will be
evaluated. If 2NxN (horizontal rectangular) is the best current
prediction, then top and bottom asymmetrical splits will be
evaluated, If 2Nx2N is the best prediction, and the block is not a
merge/skip, then all four AMP partitions are evaluated.

This setting has no effect if rectangular partitions are disabled.
Default disabled

	
--early-skip, --no-early-skip

	Measure full CU size (2Nx2N) merge candidates first; if no residual
is found the analysis is short circuited. Default disabled

	
--fast-cbf, --no-fast-cbf

	Short circuit analysis if a prediction is found that does not set
the coded block flag (aka: no residual was encoded). It prevents
the encoder from perhaps finding other predictions that also have no
residual but require less signaling bits or have less distortion.
Only applicable for RD levels 5 and 6. Default disabled

	
--fast-intra, --no-fast-intra

	Perform an initial scan of every fifth intra angular mode, then
check modes +/- 2 distance from the best mode, then +/- 1 distance
from the best mode, effectively performing a gradient descent. When
enabled 10 modes in total are checked. When disabled all 33 angular
modes are checked. Only applicable for --rd levels 3 and
below (medium preset and faster).

	
--weightp, -w, --no-weightp

	Enable weighted prediction in P slices. This enables weighting
analysis in the lookahead, which influences slice decisions, and
enables weighting analysis in the main encoder which allows P
reference samples to have a weight function applied to them prior to
using them for motion compensation. In video which has lighting
changes, it can give a large improvement in compression efficiency.
Default is enabled

	
--weightb, --no-weightb

	Enable weighted prediction in B slices. Default disabled

	
--rd <0..6>

	Level of RDO in mode decision. The higher the value, the more
exhaustive the analysis and the more rate distortion optimization is
used. The lower the value the faster the encode, the higher the
value the smaller the bitstream (in general). Default 3

Note that this table aims for accuracy, but is not necessarily our
final target behavior for each mode.

	Level
	Description

	0
	sa8d mode and split decisions, intra w/ source pixels

	1
	recon generated (better intra), RDO merge/skip selection

	2
	RDO splits and merge/skip selection

	3
	RDO mode and split decisions

	4
	Adds RDO Quant

	5
	Adds RDO prediction decisions

	6
	Currently same as 5

Range of values: 0: least .. 6: full RDO analysis

	
--cu-lossless, --no-cu-lossless

	For each CU, evaluate lossless (transform and quant bypass) encode
of the best non-lossless mode option as a potential rate distortion
optimization. If the global option --lossless has been
specified, all CUs will be encoded as lossless unconditionally
regardless of whether this option was enabled. Default disabled.

Only effective at RD levels 3 and above, which perform RDO mode
decisions.

	
--signhide, --no-signhide

	Hide sign bit of one coeff per TU (rdo). The last sign is implied.
This requires analyzing all the coefficients to determine if a sign
must be toggled, and then to determine which one can be toggled with
the least amount of distortion. Default enabled

Psycho-visual options

Left to its own devices, the encoder will make mode decisions based on a
simple rate distortion formula, trading distortion for bitrate. This is
generally effective except for the manner in which this distortion is
measured. It tends to favor blurred reconstructed blocks over blocks
which have wrong motion. The human eye generally prefers the wrong
motion over the blur and thus x265 offers psycho-visual adjustments to
the rate distortion algorithm.

--psy-rd will add an extra cost to reconstructed blocks which
do not match the visual energy of the source block. The higher the
strength of --psy-rd the more strongly it will favor similar
energy over blur and the more aggressively it will ignore rate
distortion. If it is too high, it will introduce visal artifacts and
increase bitrate enough for rate control to increase quantization
globally, reducing overall quality. psy-rd will tend to reduce the use
of blurred prediction modes, like DC and planar intra and bi-directional
inter prediction.

--psy-rdoq will adjust the distortion cost used in
rate-distortion optimized quantization (RDO quant), enabled in
--rd 4 and above, favoring the preservation of energy in the
reconstructed image. --psy-rdoq prevents RDOQ from blurring
all of the encoding options which psy-rd has to chose from. At low
strength levels, psy-rdoq will influence the quantization level
decisions, favoring higher AC energy in the reconstructed image. As
psy-rdoq strength is increased, more non-zero coefficient levels are
added and fewer coefficients are zeroed by RDOQ’s rate distortion
analysis. High levels of psy-rdoq can double the bitrate which can have
a drastic effect on rate control, forcing higher overall QP, and can
cause ringing artifacts. psy-rdoq is less accurate than psy-rd, it is
biasing towards energy in general while psy-rd biases towards the energy
of the source image. But very large psy-rdoq values can sometimes be
beneficial, preserving film grain for instance.

As a general rule, when both psycho-visual features are disabled, the
encoder will tend to blur blocks in areas of difficult motion. Turning
on small amounts of psy-rd and psy-rdoq will improve the perceived
visual quality. Increasing psycho-visual strength further will improve
quality and begin introducing artifacts and increase bitrate, which may
force rate control to increase global QP. Finding the optimal
psycho-visual parameters for a given video requires experimentation. Our
recommended defaults (1.0 for both) are generally on the low end of the
spectrum. And generally the lower the bitrate, the lower the optimal
psycho-visual settings.

	
--psy-rd <float>

	Influence rate distortion optimizated mode decision to preserve the
energy of the source image in the encoded image at the expense of
compression efficiency. It only has effect on presets which use
RDO-based mode decisions (--rd 3 and above). 1.0 is a
typical value. Default disabled. Experimental

Range of values: 0 .. 2.0

	
--psy-rdoq <float>

	Influence rate distortion optimized quantization by favoring higher
energy in the reconstructed image. This generally improves perceived
visual quality at the cost of lower quality metric scores. It only
has effect on slower presets which use RDO Quantization
(--rd 4, 5 and 6). 1.0 is a typical value. Default
disabled. High values can be beneficial in preserving high-frequency
detail like film grain. Experimental

Range of values: 0 .. 50.0

Slice decision options

	
--open-gop, --no-open-gop

	Enable open GOP, allow I-slices to be non-IDR. Default enabled

	
--keyint, -I <integer>

	Max intra period in frames. A special case of infinite-gop (single
keyframe at the beginning of the stream) can be triggered with
argument -1. Use 1 to force all-intra. Default 250

	
--min-keyint, -i <integer>

	Minimum GOP size. Scenecuts closer together than this are coded as I
or P, not IDR. Minimum keyint is clamped to be at least half of
--keyint. If you wish to force regular keyframe intervals
and disable adaptive I frame placement, you must use
--no-scenecut.

Range of values: >=0 (0: auto)

	
--scenecut <integer>, --no-scenecut

	How aggressively I-frames need to be inserted. The higher the
threshold value, the more aggressive the I-frame placement.
--scenecut 0 or --no-scenecut disables adaptive
I frame placement. Default 40

	
--rc-lookahead <integer>

	Number of frames for slice-type decision lookahead (a key
determining factor for encoder latency). The longer the lookahead
buffer the more accurate scenecut decisions will be, and the more
effective cuTree will be at improving adaptive quant. Having a
lookahead larger than the max keyframe interval is not helpful.
Default 20

Range of values: Between the maximum consecutive bframe count (--bframes) and 250

	
--b-adapt <integer>

	Adaptive B frame scheduling. Default 2

Values: 0:none; 1:fast; 2:full(trellis)

	
--bframes, -b <0..16>

	Maximum number of consecutive b-frames. Use --bframes 0 to
force all P/I low-latency encodes. Default 4. This parameter has a
quadratic effect on the amount of memory allocated and the amount of
work performed by the full trellis version of --b-adapt
lookahead.

	
--bframe-bias <integer>

	Bias towards B frames in slicetype decision. The higher the bias the
more likely x265 is to use B frames. Can be any value between -90
and 100 and is clipped to that range. Default 0

	
--b-pyramid, --no-b-pyramid

	Use B-frames as references, when possible. Default enabled

	
--ref <1..16>

	Max number of L0 references to be allowed. This number has a linear
multiplier effect on the amount of work performed in motion search,
but will generally have a beneficial affect on compression and
distortion. Default 3

Quality, rate control and rate distortion options

	
--bitrate <integer>

	Enables single-pass ABR rate control. Specify the target bitrate in
kbps. Default is 0 (CRF)

Range of values: An integer greater than 0

	
--crf <0..51.0>

	Quality-controlled variable bitrate. CRF is the default rate control
method; it does not try to reach any particular bitrate target,
instead it tries to achieve a given uniform quality and the size of
the bitstream is determined by the complexity of the source video.
The higher the rate factor the higher the quantization and the lower
the quality. Default rate factor is 28.0.

	
--crf-max <0..51.0>

	Specify an upper limit to the rate factor which may be assigned to
any given frame (ensuring a max QP). This is dangerous when CRF is
used in combination with VBV as it may result in buffer underruns.
Default disabled

	
--crf-min <0..51.0>

	Specify an lower limit to the rate factor which may be assigned to
any given frame (ensuring a min QP). This is dangerous when CRF is
used in combination with VBV as it may result in buffer underruns.
Default disabled

	
--vbv-bufsize <integer>

	Specify the size of the VBV buffer (kbits). Enables VBV in ABR
mode. In CRF mode, --vbv-maxrate must also be specified.
Default 0 (vbv disabled)

	
--vbv-maxrate <integer>

	Maximum local bitrate (kbits/sec). Will be used only if vbv-bufsize
is also non-zero. Both vbv-bufsize and vbv-maxrate are required to
enable VBV in CRF mode. Default 0 (disabled)

	
--vbv-init <float>

	Initial buffer occupancy. The portion of the decode buffer which
must be full before the decoder will begin decoding. Determines
absolute maximum frame size. May be specified as a fractional value
between 0 and 1, or in kbits. In other words these two option pairs
are equivalent:

:option:`--vbv-bufsize` 1000 :option:`--vbv-init` 900
:option:`--vbv-bufsize` 1000 :option:`--vbv-init` 0.9

Default 0.9

Range of values: fractional: 0 - 1.0, or kbits: 2 .. bufsize

	
--qp, -q <integer>

	Specify base quantization parameter for Constant QP rate control.
Using this option enables Constant QP rate control. The specified QP
is assigned to P slices. I and B slices are given QPs relative to P
slices using param->rc.ipFactor and param->rc.pbFactor unless QP 0
is specified, in which case QP 0 is used for all slice types. Note
that QP 0 does not cause lossless encoding, it only disables
quantization. Default disabled (CRF)

Range of values: an integer from 0 to 51

	
--ipratio <float>

	QP ratio factor between I and P slices. This ratio is used in all of
the rate control modes. Some --tune options may change the
default value. It is not typically manually specified. Default 1.4

	
--pbratio <float>

	QP ratio factor between P and B slices. This ratio is used in all of
the rate control modes. Some --tune options may change the
default value. It is not typically manually specified. Default 1.3

	
--lossless, --no-lossless

	Enables true lossless coding by bypassing scaling, transform,
quantization and in-loop filter processes. This is used for
ultra-high bitrates with zero loss of quality. Reconstructed output
pictures are bit-exact to the input pictures. Lossless encodes
implicitly have no rate control, all rate control options are
ignored. Slower presets will generally achieve better compression
efficiency (and generate smaller bitstreams). Default disabled.

	
--aq-mode <0|1|2>

	Adaptive Quantization operating mode. Raise or lower per-block
quantization based on complexity analysis of the source image. The
more complex the block, the more quantization is used. This offsets
the tendency of the encoder to spend too many bits on complex areas
and not enough in flat areas.

	disabled

	AQ enabled

	AQ enabled with auto-variance (default)

	
--aq-strength <float>

	Adjust the strength of the adaptive quantization offsets. Setting
--aq-strength to 0 disables AQ. Default 1.0.

Range of values: 0.0 to 3.0

	
--cutree, --no-cutree

	Enable the use of lookahead’s lowres motion vector fields to
determine the amount of reuse of each block to tune adaptive
quantization factors. CU blocks which are heavily reused as motion
reference for later frames are given a lower QP (more bits) while CU
blocks which are quickly changed and are not referenced are given
less bits. This tends to improve detail in the backgrounds of video
with less detail in areas of high motion. Default enabled

	
--cbqpoffs <integer>

	Offset of Cb chroma QP from the luma QP selected by rate control.
This is a general way to spend more or less bits on the chroma
channel. Default 0

Range of values: -12 to 12

	
--crqpoffs <integer>

	Offset of Cr chroma QP from the luma QP selected by rate control.
This is a general way to spend more or less bits on the chroma
channel. Default 0

Range of values: -12 to 12

	
--pass <integer>

	Enable multipass rate control mode. Input is encoded multiple times,
storing the encoded information of each pass in a stats file from which
the consecutive pass tunes the qp of each frame to improve the quality
of the output. Default disabled

	First pass, creates stats file

	Last pass, does not overwrite stats file

	Nth pass, overwrites stats file

Range of values: 1 to 3

	
--slow-firstpass, --no-slow-firstpass

	Enable a slow and more detailed first pass encode in Multipass rate
control mode. Speed of the first pass encode is slightly lesser and
quality midly improved when compared to the default settings in a
multipass encode. Default disabled (turbo mode enabled)

When turbo first pass is not disabled, these options are
set on the first pass to improve performance:

	--fast-intra

	--no-rect

	--no-amp

	--early-skip

	--ref = 1

	--max-merge = 1

	--me = DIA

	--subme = MIN(2, --subme)

	--rd = MIN(2, --rd)

	
--analysis-mode <string|int>

	Specify whether analysis information of each frame is output by encoder
or input for reuse. By reading the analysis data writen by an
earlier encode of the same sequence, substantial redundant work may
be avoided.

The following data may be stored and reused:
I frames - split decisions and luma intra directions of all CUs.
P/B frames - motion vectors are dumped at each depth for all CUs.

Values: off(0), save(1): dump analysis data, load(2): read analysis data

	
--analysis-file <filename>

	Specify a filename for analysis data (see --analysis-mode)
If no filename is specified, x265_analysis.dat is used.

Loop filters

	
--lft, --no-lft

	Toggle deblocking loop filter, default enabled

	
--sao, --no-sao

	Toggle Sample Adaptive Offset loop filter, default enabled

	
--sao-non-deblock, --no-sao-non-deblock

	Specify how to handle depencency between SAO and deblocking filter.
When enabled, non-deblocked pixels are used for SAO analysis. When
disabled, SAO analysis skips the right/bottom boundary areas.
Default disabled

VUI (Video Usability Information) options

x265 emits a VUI with only the timing info by default. If the SAR is
specified (or read from a Y4M header) it is also included. All other
VUI fields must be manually specified.

	
--sar <integer|w:h>

	Sample Aspect Ratio, the ratio of width to height of an individual
sample (pixel). The user may supply the width and height explicitly
or specify an integer from the predefined list of aspect ratios
defined in the HEVC specification. Default undefined (not signaled)

	1:1 (square)

	12:11

	10:11

	16:11

	40:33

	24:11

	20:11

	32:11

	80:33

	18:11

	15:11

	64:33

	160:99

	4:3

	3:2

	2:1

	
--crop-rect <left,top,right,bottom>

	Define the (overscan) region of the image that does not contain
information because it was added to achieve certain resolution or
aspect ratio. The decoder may be directed to crop away this region
before displaying the images via the --overscan option.
Default undefined (not signaled)

	
--overscan <show|crop>

	Specify whether it is appropriate for the decoder to display or crop
the overscan area. Default unspecified (not signaled)

	
--videoformat <integer|string>

	Specify the source format of the original analog video prior to
digitizing and encoding. Default undefined (not signaled)

	component

	pal

	ntsc

	secam

	mac

	undefined

	
--range <full|limited>

	Specify output range of black level and range of luma and chroma
signals. Default undefined (not signaled)

	
--colorprim <integer|string>

	Specify color primitive to use when converting to RGB. Default
undefined (not signaled)

	bt709

	undef

	reserved

	bt470m

	bt470bg

	smpte170m

	smpte240m

	film

	bt2020

	
--transfer <integer|string>

	Specify transfer characteristics. Default undefined (not signaled)

	bt709

	undef

	reserved

	bt470m

	bt470bg

	smpte170m

	smpte240m

	linear

	log100

	log316

	iec61966-2-4

	bt1361e

	iec61966-2-1

	bt2020-10

	bt2020-12

	
--colormatrix <integer|string>

	Specify color matrix setting i.e set the matrix coefficients used in
deriving the luma and chroma. Default undefined (not signaled)

	GBR

	bt709

	undef

	reserved

	fcc

	bt470bg

	smpte170m

	smpte240m

	YCgCo

	bt2020nc

	bt2020c

	
--chromalocs <0..5>

	Specify chroma sample location for 4:2:0 inputs. Consult the HEVC
specification for a description of these values. Default undefined
(not signaled)

Bitstream options

	
--repeat-headers, --no-repeat-headers

	If enabled, x265 will emit VPS, SPS, and PPS headers with every
keyframe. This is intended for use when you do not have a container
to keep the stream headers for you and you want keyframes to be
random access points. Default disabled

	
--info, --no-info

	Emit an informational SEI with the stream headers which describes
the encoder version, build info, and encode parameters. This is very
helpful for debugging purposes but encoding version numbers and
build info could make your bitstreams diverge and interfere with
regression testing. Default enabled

	
--hrd, --no-hrd

	Enable the signalling of HRD parameters to the decoder. The HRD
parameters are carried by the Buffering Period SEI messages and
Picture Timing SEI messages providing timing information to the
decoder. Default disabled

	
--aud, --no-aud

	Emit an access unit delimiter NAL at the start of each slice access
unit. If option:–repeat-headers is not enabled (indicating the
user will be writing headers manually at the start of the stream)
the very first AUD will be skipped since it cannot be placed at the
start of the access unit, where it belongs. Default disabled

	
--hash <integer>

	Emit decoded picture hash SEI, so the decoder may validate the
reconstructed pictures and detect data loss. Also useful as a
debug feature to validate the encoder state. Default None

	MD5

	CRC

	Checksum

Debugging options

	
--recon, -r <filename>

	Output file containing reconstructed images in display order. If the
file extension is ”.y4m” the file will contain a YUV4MPEG2 stream
header and frame headers. Otherwise it will be a raw YUV file in the
encoder’s internal bit depth.

CLI ONLY

	
--recon-depth <integer>

	Bit-depth of output file. This value defaults to the internal bit
depth and currently cannot to be modified.

CLI ONLY

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	x265 documentation

Application Programming Interface

Introduction

x265 is written primarily in C++ and x86 assembly language but the
public facing programming interface is C for the widest possible
portability. This C interface is wholly defined within x265.h
in the source/ folder of our source tree. All of the functions and
variables and enumerations meant to be used by the end-user are present
in this header.

Where possible, x265 has tried to keep its public API as close as
possible to x264’s public API. So those familiar with using x264 through
its C interface will find x265 quite familiar.

This file is meant to be read in-order; the narrative follows linearly
through the various sections

Build Considerations

The choice of Main or Main10 profile encodes is made at compile time;
the internal pixel depth influences a great deal of variable sizes and
thus 8 and 10bit pixels are handled as different build options
(primarily to maintain the performance of the 8bit builds). libx265
exports a variable x265_max_bit_depth which indicates how the
library was compiled (it will contain a value of 8 or 10). Further,
x265_version_str is a pointer to a string indicating the version of
x265 which was compiled, and x265_build_info_str is a pointer to a
string identifying the compiler and build options.

x265 will accept input pixels of any depth between 8 and 16 bits
regardless of the depth of its internal pixels (8 or 10). It will shift
and mask input pixels as required to reach the internal depth. If
downshifting is being performed using our CLI application, the
--dither option may be enabled to reduce banding. This feature
is not available through the C interface.

Encoder

The primary object in x265 is the encoder object, and this is
represented in the public API as an opaque typedef x265_encoder.
Pointers of this type are passed to most encoder functions.

A single encoder generates a single output bitstream from a sequence of
raw input pictures. Thus if you need multiple output bitstreams you
must allocate multiple encoders. You may pass the same input pictures
to multiple encoders, the encode function does not modify the input
picture structures (the pictures are copied into the encoder as the
first step of encode).

Encoder allocation is a reentrant function, so multiple encoders may be
safely allocated in a single process. The encoder access functions are
not reentrant for a single encoder, so the recommended use case is to
allocate one client thread per encoder instance (one thread for all
encoder instances is possible, but some encoder access functions are
blocking and thus this would be less efficient).

Note

There is one caveat to having multiple encoders within a single
process. All of the encoders must use the same maximum CTU size
because many global variables are configured based on this size.
Encoder allocation will fail if a mis-matched CTU size is attempted.

An encoder is allocated by calling x265_encoder_open():

/* x265_encoder_open:
* create a new encoder handler, all parameters from x265_param are copied */
x265_encoder* x265_encoder_open(x265_param *);

The returned pointer is then passed to all of the functions pertaining
to this encode. A large amount of memory is allocated during this
function call, but the encoder will continue to allocate memory as the
first pictures are passed to the encoder; until its pool of picture
structures is large enough to handle all of the pictures it must keep
internally. The pool size is determined by the lookahead depth, the
number of frame threads, and the maximum number of references.

As indicated in the comment, x265_param is copied internally so the user
may release their copy after allocating the encoder. Changes made to
their copy of the param structure have no affect on the encoder after it
has been allocated.

Param

The x265_param structure describes everything the encoder needs to
know about the input pictures and the output bitstream and most
everything in between.

The recommended way to handle these param structures is to allocate them
from libx265 via:

/* x265_param_alloc:
 * Allocates an x265_param instance. The returned param structure is not
 * special in any way, but using this method together with x265_param_free()
 * and x265_param_parse() to set values by name allows the application to treat
 * x265_param as an opaque data struct for version safety */
x265_param *x265_param_alloc();

In this way, your application does not need to know the exact size of
the param structure (the build of x265 could potentially be a bit newer
than the copy of x265.h that your application compiled against).

Next you perform the initial rough cut configuration of the encoder by
chosing a performance preset and optional tune factor
x265_preset_names and x265_tune_names respectively hold the
string names of the presets and tune factors (see presets for more detail on presets and tune factors):

/* returns 0 on success, negative on failure (e.g. invalid preset/tune name). */
int x265_param_default_preset(x265_param *, const char *preset, const char *tune);

Now you may optionally specify a profile. x265_profile_names
contains the string names this function accepts:

/* (can be NULL, in which case the function will do nothing)
 * returns 0 on success, negative on failure (e.g. invalid profile name). */
int x265_param_apply_profile(x265_param *, const char *profile);

Finally you configure any remaining options by name using repeated calls to:

/* x265_param_parse:
 * set one parameter by name.
 * returns 0 on success, or returns one of the following errors.
 * note: BAD_VALUE occurs only if it can't even parse the value,
 * numerical range is not checked until x265_encoder_open().
 * value=NULL means "true" for boolean options, but is a BAD_VALUE for non-booleans. */
#define X265_PARAM_BAD_NAME (-1)
#define X265_PARAM_BAD_VALUE (-2)
int x265_param_parse(x265_param *p, const char *name, const char *value);

See string options for the list of options (and their
descriptions) which can be set by x265_param_parse().

After the encoder has been created, you may release the param structure:

/* x265_param_free:
 * Use x265_param_free() to release storage for an x265_param instance
 * allocated by x265_param_alloc() */
void x265_param_free(x265_param *);

Note

Using these methods to allocate and release the param structures
helps future-proof your code in many ways, but the x265 API is
versioned in such a way that we prevent linkage against a build of
x265 that does not match the version of the header you are compiling
against. This is function of the X265_BUILD macro.

x265_encoder_parameters() may be used to get a copy of the param
structure from the encoder after it has been opened, in order to see the
changes made to the parameters for auto-detection and other reasons:

/* x265_encoder_parameters:
 * copies the current internal set of parameters to the pointer provided
 * by the caller. useful when the calling application needs to know
 * how x265_encoder_open has changed the parameters.
 * note that the data accessible through pointers in the returned param struct
 * (e.g. filenames) should not be modified by the calling application. */
void x265_encoder_parameters(x265_encoder *, x265_param *);

Pictures

Raw pictures are passed to the encoder via the x265_picture structure.
Just like the param structure we recommend you allocate this structure
from the encoder to avoid potential size mismatches:

/* x265_picture_alloc:
 * Allocates an x265_picture instance. The returned picture structure is not
 * special in any way, but using this method together with x265_picture_free()
 * and x265_picture_init() allows some version safety. New picture fields will
 * always be added to the end of x265_picture */
x265_picture *x265_picture_alloc();

Regardless of whether you allocate your picture structure this way or
whether you simply declare it on the stack, your next step is to
initialize the structure via:

/***
 * Initialize an x265_picture structure to default values. It sets the pixel
 * depth and color space to the encoder's internal values and sets the slice
 * type to auto - so the lookahead will determine slice type.
 */
void x265_picture_init(x265_param *param, x265_picture *pic);

x265 does not perform any color space conversions, so the raw picture’s
color space (chroma sampling) must match the color space specified in
the param structure used to allocate the encoder. x265_picture_init
initializes this field to the internal color space and it is best to
leave it unmodified.

The picture bit depth is initialized to be the encoder’s internal bit
depth but this value should be changed to the actual depth of the pixels
being passed into the encoder. If the picture bit depth is more than 8,
the encoder assumes two bytes are used to represent each sample
(little-endian shorts).

The user is responsible for setting the plane pointers and plane strides
(in units of bytes, not pixels). The presentation time stamp (pts)
is optional, depending on whether you need accurate decode time stamps
(dts) on output.

If you wish to override the lookahead or rate control for a given
picture you may specify a slicetype other than X265_TYPE_AUTO, or a
forceQP value other than 0.

x265 does not modify the picture structure provided as input, so you may
reuse a single x265_picture for all pictures passed to a single
encoder, or even all pictures passed to multiple encoders.

Structures allocated from the library should eventually be released:

/* x265_picture_free:
 * Use x265_picture_free() to release storage for an x265_picture instance
 * allocated by x265_picture_alloc() */
void x265_picture_free(x265_picture *);

Analysis Buffers

Analysis information can be saved and reused to between encodes of the
same video sequence (generally for multiple bitrate encodes). The best
results are attained by saving the analysis information of the highest
bitrate encode and reuse it in lower bitrate encodes.

When saving or loading analysis data, buffers must be allocated for
every picture passed into the encoder using:

/* x265_alloc_analysis_data:
 * Allocate memory to hold analysis meta data, returns 1 on success else 0 */
int x265_alloc_analysis_data(x265_picture*);

Note that this is very different from the typical semantics of
x265_picture, which can be reused many times. The analysis buffers must
be re-allocated for every input picture.

Analysis buffers passed to the encoder are owned by the encoder until
they pass the buffers back via an output x265_picture. The user is
responsible for releasing the buffers when they are finished with them
via:

/* x265_free_analysis_data:
 * Use x265_free_analysis_data to release storage of members allocated by
 * x265_alloc_analysis_data */
void x265_free_analysis_data(x265_picture*);

Encode Process

The output of the encoder is a series of NAL packets, which are always
returned concatenated in consecutive memory. HEVC streams have SPS and
PPS and VPS headers which describe how the following packets are to be
decoded. If you specified --repeat-headers then those headers
will be output with every keyframe. Otherwise you must explicitly query
those headers using:

/* x265_encoder_headers:
 * return the SPS and PPS that will be used for the whole stream.
 * *pi_nal is the number of NAL units outputted in pp_nal.
 * returns negative on error, total byte size of payload data on success
 * the payloads of all output NALs are guaranteed to be sequential in memory. */
int x265_encoder_headers(x265_encoder *, x265_nal **pp_nal, uint32_t *pi_nal);

Now we get to the main encode loop. Raw input pictures are passed to the
encoder in display order via:

/* x265_encoder_encode:
 * encode one picture.
 * *pi_nal is the number of NAL units outputted in pp_nal.
 * returns negative on error, zero if no NAL units returned.
 * the payloads of all output NALs are guaranteed to be sequential in memory. */
int x265_encoder_encode(x265_encoder *encoder, x265_nal **pp_nal, uint32_t *pi_nal, x265_picture *pic_in, x265_picture *pic_out);

These pictures are queued up until the lookahead is full, and then the
frame encoders in turn are filled, and then finally you begin receiving
a output NALs (corresponding to a single output picture) with each input
picture you pass into the encoder.

Once the pipeline is completely full, x265_encoder_encode() will
block until the next output picture is complete.

Note

Optionally, if the pointer of a second x265_picture structure is
provided, the encoder will fill it with data pertaining to the
output picture corresponding to the output NALs, including the
recontructed image, POC and decode timestamp. These pictures will be
in encode (or decode) order.

When the last of the raw input pictures has been sent to the encoder,
x265_encoder_encode() must still be called repeatedly with a
pic_in argument of 0, indicating a pipeline flush, until the function
returns a value less than or equal to 0 (indicating the output bitstream
is complete).

At any time during this process, the application may query running
statistics from the encoder:

/* x265_encoder_get_stats:
 * returns encoder statistics */
void x265_encoder_get_stats(x265_encoder *encoder, x265_stats *, uint32_t statsSizeBytes);

Cleanup

At the end of the encode, the application will want to trigger logging
of the final encode statistics, if --csv had been specified:

/* x265_encoder_log:
 * write a line to the configured CSV file. If a CSV filename was not
 * configured, or file open failed, or the log level indicated frame level
 * logging, this function will perform no write. */
void x265_encoder_log(x265_encoder *encoder, int argc, char **argv);

Finally, the encoder must be closed in order to free all of its
resources. An encoder that has been flushed cannot be restarted and
reused. Once x265_encoder_close() has been called, the encoder
handle must be discarded:

/* x265_encoder_close:
 * close an encoder handler */
void x265_encoder_close(x265_encoder *);

When the application has completed all encodes, it should call
x265_cleanup() to free process global resources like the thread pool;
particularly if a memory-leak detection tool is being used:

/***
 * Release library static allocations
 */
void x265_cleanup(void);

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	x265 documentation

Threading

Thread Pool

x265 creates a pool of worker threads and shares this thread pool
with all encoders within the same process (it is process global, aka a
singleton). The number of threads within the thread pool is determined
by the encoder which first allocates the pool, which by definition is
the first encoder created within each process.

--threads specifies the number of threads the encoder will
try to allocate for its thread pool. If the thread pool was already
allocated this parameter is ignored. By default x265 allocates one
thread per (hyperthreaded) CPU core in your system.

Work distribution is job based. Idle worker threads ask their parent
pool object for jobs to perform. When no jobs are available, idle
worker threads block and consume no CPU cycles.

Objects which desire to distribute work to worker threads are known as
job providers (and they derive from the JobProvider class). When job
providers have work they enqueue themselves into the pool’s provider
list (and dequeue themselves when they no longer have work). The thread
pool has a method to poke awake a blocked idle thread, and job
providers are recommended to call this method when they make new jobs
available.

Worker jobs are not allowed to block except when abosultely necessary
for data locking. If a job becomes blocked, the worker thread is
expected to drop that job and go back to the pool and find more work.

Note

x265_cleanup() frees the process-global thread pool, allowing
it to be reallocated if necessary, but only if no encoders are
allocated at the time it is called.

Wavefront Parallel Processing

New with HEVC, Wavefront Parallel Processing allows each row of CTUs to
be encoded in parallel, so long as each row stays at least two CTUs
behind the row above it, to ensure the intra references and other data
of the blocks above and above-right are available. WPP has almost no
effect on the analysis and compression of each CTU and so it has a very
small impact on compression efficiency relative to slices or tiles. The
compression loss from WPP has been found to be less than 1% in most of
our tests.

WPP has three effects which can impact efficiency. The first is the row
starts must be signaled in the slice header, the second is each row must
be padded to an even byte in length, and the third is the state of the
entropy coder is transferred from the second CTU of each row to the
first CTU of the row below it. In some conditions this transfer of
state actually improves compression since the above-right state may have
better locality than the end of the previous row.

Parabola Research have published an excellent HEVC
animation [http://www.parabolaresearch.com/blog/2013-12-01-hevc-wavefront-animation.html]
which visualizes WPP very well. It even correctly visualizes some of
WPPs key drawbacks, such as:

	the low thread utilization at the start and end of each frame

	a difficult block may stall the wave-front and it takes a while for
the wave-front to recover.

	64x64 CTUs are big! there are much fewer rows than with H.264 and
similar codecs

Because of these stall issues you rarely get the full parallelisation
benefit one would expect from row threading. 30% to 50% of the
theoretical perfect threading is typical.

In x265 WPP is enabled by default since it not only improves performance
at encode but it also makes it possible for the decoder to be threaded.

If WPP is disabled by --no-wpp the frame will be encoded in
scan order and the entropy overheads will be avoided. If frame
threading is not disabled, the encoder will change the default frame
thread count to be higher than if WPP was enabled. The exact formulas
are described in the next section.

Parallel Mode Analysis

When --pmode is enabled, each CU (at all depths from 64x64 to
8x8) will distribute its analysis work to the thread pool. Each analysis
job will measure the cost of one prediction for the CU: merge, skip,
intra, inter (2Nx2N, Nx2N, 2NxN, and AMP). At slower presets, the amount
of increased parallelism is often enough to be able to reduce frame
parallelism while achieving the same overall CPU utilization. Reducing
frame threads is often beneficial to ABR and VBV rate control.

Parallel Motion Estimation

When --pme is enabled all of the analysis functions which
perform motion searches to reference frames will distribute those motion
searches as jobs for worker threads (if more than two motion searches
are required).

Frame Threading

Frame threading is the act of encoding multiple frames at the same time.
It is a challenge because each frame will generally use one or more of
the previously encoded frames as motion references and those frames may
still be in the process of being encoded themselves.

Previous encoders such as x264 worked around this problem by limiting
the motion search region within these reference frames to just one
macroblock row below the coincident row being encoded. Thus a frame
could be encoded at the same time as its reference frames so long as it
stayed one row behind the encode progress of its references (glossing
over a few details).

x265 has the same frame threading mechanism, but we generally have much
less frame parallelism to exploit than x264 because of the size of our
CTU rows. For instance, with 1080p video x264 has 68 16x16 macroblock
rows available each frame while x265 only has 17 64x64 CTU rows.

The second extenuating circumstance is the loop filters. The pixels used
for motion reference must be processed by the loop filters and the loop
filters cannot run until a full row has been encoded, and it must run a
full row behind the encode process so that the pixels below the row
being filtered are available. When you add up all the row lags each
frame ends up being 3 CTU rows behind its reference frames (the
equivalent of 12 macroblock rows for x264)

The third extenuating circumstance is that when a frame being encoded
becomes blocked by a reference frame row being available, that frame’s
wave-front becomes completely stalled and when the row becomes available
again it can take quite some time for the wave to be restarted, if it
ever does. This makes WPP many times less effective when frame
parallelism is in use.

--merange can have a negative impact on frame parallelism. If
the range is too large, more rows of CTU lag must be added to ensure
those pixels are available in the reference frames.

Note

Even though the merange is used to determine the amount of reference
pixels that must be available in the reference frames, the actual
motion search is not necessarily centered around the coincident
block. The motion search is actually centered around the motion
predictor, but the available pixel area (mvmin, mvmax) is determined
by merange and the interpolation filter half-heights.

When frame threading is disabled, the entirety of all reference frames
are always fully available (by definition) and thus the available pixel
area is not restricted at all, and this can sometimes improve
compression efficiency. Because of this, the output of encodes with
frame parallelism disabled will not match the output of encodes with
frame parallelism enabled; but when enabled the number of frame threads
should have no effect on the output bitstream except when using ABR or
VBV rate control or noise reduction.

When --nr is enabled, the outputs of each number of frame threads
will be deterministic but none of them will match becaue each frame
encoder maintains a cumulative noise reduction state.

VBV introduces non-determinism in the encoder, at this point in time,
regardless of the amount of frame parallelism.

By default frame parallelism and WPP are enabled together. The number of
frame threads used is auto-detected from the (hyperthreaded) CPU core
count, but may be manually specified via --frame-threads

	Cores
	Frames

	> 32
	6

	>= 16
	5

	>= 8
	3

	>= 4
	2

If WPP is disabled, then the frame thread count defaults to min(cpuCount, ctuRows / 2)

Over-allocating frame threads can be very counter-productive. They
each allocate a large amount of memory and because of the limited number
of CTU rows and the reference lag, you generally get limited benefit
from adding frame encoders beyond the auto-detected count, and often
the extra frame encoders reduce performance.

Given these considerations, you can understand why the faster presets
lower the max CTU size to 32x32 (making twice as many CTU rows available
for WPP and for finer grained frame parallelism) and reduce
--merange

Each frame encoder runs in its own thread (allocated separately from the
worker pool). This frame thread has some pre-processing responsibilities
and some post-processing responsibilities for each frame, but it spends
the bulk of its time managing the wave-front processing by making CTU
rows available to the worker threads when their dependencies are
resolved. The frame encoder threads spend nearly all of their time
blocked in one of 4 possible locations:

	blocked, waiting for a frame to process

	blocked on a reference frame, waiting for a CTU row of reconstructed
and loop-filtered reference pixels to become available

	blocked waiting for wave-front completion

	blocked waiting for the main thread to consume an encoded frame

Lookahead

The lookahead module of x265 (the lowres pre-encode which determines
scene cuts and slice types) uses the thread pool to distribute the
lowres cost analysis to worker threads. It follows the same wave-front
pattern as the main encoder except it works in reverse-scan order.

The function slicetypeDecide() itself may also be performed by a worker
thread if your system has enough CPU cores to make this a beneficial
trade-off, else it runs within the context of the thread which calls the
x265_encoder_encode().

SAO

The Sample Adaptive Offset loopfilter has a large effect on encode
performance because of the peculiar way it must be analyzed and coded.

SAO flags and data are encoded at the CTU level before the CTU itself is
coded, but SAO analysis (deciding whether to enable SAO and with what
parameters) cannot be performed until that CTU is completely analyzed
(reconstructed pixels are available) as well as the CTUs to the right
and below. So in effect the encoder must perform SAO analysis in a
wavefront at least a full row behind the CTU compression wavefront.

This extra latency forces the encoder to save the encode data of every
CTU until the entire frame has been analyzed, at which point a function
can code the final slice bitstream with the decided SAO flags and data
interleaved between each CTU. This second pass over the CTUs can be
expensive, particularly at large resolutions and high bitrates.

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	x265 documentation

Preset Options

Presets

x265 has a number of predefined --preset options that make
trade-offs between encode speed (encoded frames per second) and
compression efficiency (quality per bit in the bitstream). The default
preset is medium, it does a reasonably good job of finding the best
possible quality without spending enormous CPU cycles looking for the
absolute most efficient way to achieve that quality. As you go higher
than medium, the encoder takes shortcuts to improve performance at the
expense of quality and compression efficiency. As you go lower than
medium, the encoder tries harder and harder to achieve the best quailty
per bit compression ratio.

The presets adjust encoder parameters to affect these trade-offs.

	
	ultrafast
	superfast
	veryfast
	faster
	fast
	medium
	slow
	slower
	veryslow
	placebo

	ctu
	32
	32
	32
	64
	64
	64
	64
	64
	64
	64

	bframes
	4
	4
	4
	4
	4
	4
	4
	8
	8
	8

	b-adapt
	0
	0
	0
	0
	2
	2
	2
	2
	2
	2

	rc-lookahead
	10
	10
	15
	15
	15
	20
	25
	30
	40
	60

	scenecut
	0
	40
	40
	40
	40
	40
	40
	40
	40
	40

	refs
	1
	1
	1
	1
	3
	3
	3
	3
	5
	5

	me
	dia
	hex
	hex
	hex
	hex
	hex
	star
	star
	star
	star

	merange
	25
	44
	57
	57
	57
	57
	57
	57
	57
	92

	subme
	0
	1
	1
	2
	2
	2
	3
	3
	4
	5

	rect
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1

	amp
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

	max-merge
	2
	2
	2
	2
	2
	2
	3
	3
	4
	5

	early-skip
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0

	fast-intra
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	b-intra
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

	sao
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1

	signhide
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1

	weightp
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1

	weightb
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

	aq-mode
	0
	0
	2
	2
	2
	2
	2
	2
	2
	2

	cuTree
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1

	rdLevel
	2
	2
	2
	2
	2
	3
	4
	6
	6
	6

	lft
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1

	tu-intra
	1
	1
	1
	1
	1
	1
	1
	2
	3
	4

	tu-inter
	1
	1
	1
	1
	1
	1
	1
	2
	3
	4

Placebo mode enables transform-skip prediction evaluation.

Tuning

There are a few --tune options available, which are applied
after the preset.

Note

The psnr and ssim tune options disable all optimizations that
sacrafice metric scores for perceived visual quality (also known as
psycho-visual optimizations). By default x265 always tunes for
highest perceived visual quality but if one intends to measure an
encode using PSNR or SSIM for the purpose of benchmarking, we highly
recommend you configure x265 to tune for that particular metric.

	–tune
	effect

	psnr
	disables adaptive quant, psy-rd, and cutree

	ssim
	enables adaptive quant auto-mode, disables psy-rd

	fastdecode
	no loop filters, no weighted pred, no intra in B

	zerolatency
	no lookahead, no B frames, no cutree

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	x265 documentation

Lossless

Lossless Encoding

x265 can encode HEVC bitstreams that are entirely lossless (the
reconstructed images are bit-exact to the source images) by using the
--lossless option. Lossless operation is theoretically
simple. Rate control, by definition, is disabled and the encoder
disables all quality metrics since they would only waste CPU cycles.
Instead, x265 reports only a compression factor at the end of the
encode.

In HEVC, lossless coding means bypassing both the DCT transforms and
bypassing quantization (often referred to as transquant bypass). Normal
predictions are still allowed, so the encoder will find optimal inter or
intra predictions and then losslessly code the residual (with transquant
bypass).

All --preset options are capable of generating lossless video
streams, but in general the slower the preset the better the compression
ratio (and the slower the encode). Here are some examples:

./x265 ../test-720p.y4m o.bin --preset ultrafast --lossless
... <snip> ...
encoded 721 frames in 238.38s (3.02 fps), 57457.94 kb/s

./x265 ../test-720p.y4m o.bin --preset faster --lossless
... <snip> ...
x265 [info]: lossless compression ratio 3.11::1
encoded 721 frames in 258.46s (2.79 fps), 56787.65 kb/s

./x265 ../test-720p.y4m o.bin --preset slow --lossless
... <snip> ...
x265 [info]: lossless compression ratio 3.36::1
encoded 721 frames in 576.73s (1.25 fps), 52668.25 kb/s

./x265 ../test-720p.y4m o.bin --preset veryslow --lossless
x265 [info]: lossless compression ratio 3.76::1
encoded 721 frames in 6298.22s (0.11 fps), 47008.65 kb/s

Note

In HEVC, only QP=4 is truly lossless quantization, and thus when
encoding losslesly x265 uses QP=4 internally in its RDO decisions.

Near-lossless Encoding

Near-lossless conditions are a quite a bit more interesting. Normal ABR
rate control will allow one to scale the bitrate up to the point where
quantization is entirely bypassed (QP <= 4), but even at this point
there is a lot of SSIM left on the table because of the DCT transforms,
which are not lossless:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim
encoded 721 frames in 326.62s (2.21 fps), 39750.56 kb/s, SSIM Mean Y: 0.9990703 (30.317 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim
encoded 721 frames in 349.27s (2.06 fps), 44326.84 kb/s, SSIM Mean Y: 0.9994134 (32.316 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim
encoded 721 frames in 360.04s (2.00 fps), 45394.50 kb/s, SSIM Mean Y: 0.9994823 (32.859 dB)

For the encoder to get over this quality plateau, one must enable
lossless coding at the CU level with --cu-lossless. It tells
the encoder to evaluate trans-quant bypass as a coding option for each
CU, and to pick the option with the best rate-distortion
characteristics.

The --cu-lossless option is very expensive, computationally,
and it only has a positive effect when the QP is extremely low, allowing
RDO to spend a large amount of bits to make small improvements to
quality. So this option should only be enabled when you are encoding
near-lossless bitstreams:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim --cu-lossless
encoded 721 frames in 500.51s (1.44 fps), 40017.10 kb/s, SSIM Mean Y: 0.9997790 (36.557 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim --cu-lossless
encoded 721 frames in 524.60s (1.37 fps), 46083.37 kb/s, SSIM Mean Y: 0.9999432 (42.456 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim --cu-lossless
encoded 721 frames in 523.63s (1.38 fps), 46552.92 kb/s, SSIM Mean Y: 0.9999489 (42.917 dB)

Note

It is not unusual for bitrate to drop as you increase lossless coding.
Having “perfectly coded” reference blocks reduces residual in later
frames. It is quite possible for a near-lossless encode to spend
more bits than a lossless encode.

Enabling psycho-visual rate distortion will improve lossless coding.
--psy-rd influences the RDO decisions in favor of energy
(detail) preservation over bit cost and results in more blocks being
losslessly coded. Our psy-rd feature is not yet assembly optimized, so
this makes the encodes run even slower:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 581.83s (1.24 fps), 40112.15 kb/s, SSIM Mean Y: 0.9998632 (38.638 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 587.54s (1.23 fps), 46284.55 kb/s, SSIM Mean Y: 0.9999663 (44.721 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 592.93s (1.22 fps), 46839.51 kb/s, SSIM Mean Y: 0.9999707 (45.334 dB)

--cu-lossless will also be more effective at slower
presets which perform RDO at more levels and thus may find smaller
blocks that would benefit from lossless coding:

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 40000 --ssim --cu-lossless
encoded 721 frames in 12969.25s (0.06 fps), 37331.96 kb/s, SSIM Mean Y: 0.9998108 (37.231 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 50000 --ssim --cu-lossless
encoded 721 frames in 46217.84s (0.05 fps), 42976.28 kb/s, SSIM Mean Y: 0.9999482 (42.856 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 60000 --ssim --cu-lossless
encoded 721 frames in 13738.17s (0.05 fps), 43864.21 kb/s, SSIM Mean Y: 0.9999633 (44.348 dB)

And with psy-rd and a slow preset together, very high SSIMs are
possible:

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 40000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 11675.81s (0.06 fps), 37819.45 kb/s, SSIM Mean Y: 0.9999181 (40.867 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 50000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 12414.56s (0.06 fps), 42815.75 kb/s, SSIM Mean Y: 0.9999758 (46.168 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 60000 --ssim --cu-lossless --psy-rd 1.0
encoded 721 frames in 11684.89s (0.06 fps), 43324.48 kb/s, SSIM Mean Y: 0.9999793 (46.835 dB)

It’s important to note in the end that it is easier (less work) for the
encoder to encode the video losslessly than it is to encode it
near-losslessly. If the encoder knows up front the encode must be
lossless, it does not need to evaluate any lossy coding methods. The
encoder only needs to find the most efficient prediction for each block
and then entropy code the residual.

It is not feasible for --cu-lossless to turn itself on when
the encoder determines it is encoding a near-lossless bitstream (ie:
when rate control nearly disables all quantization) because the feature
requires a flag to be enabled in the stream headers. At the time the
stream headers are being coded we do not know whether
--cu-lossless would be a help or a hinder. If very few or no
blocks end up being coded as lossless, then having the feature enabled
is a net loss in compression efficiency because it adds a flag that must
be coded for every CU. So ignoring even the performance aspects of the
feature, it can be a compression loss if enabled without being used. So
it is up to the user to only enable this feature when they are coding at
near-lossless quality.

Transform Skip

A somewhat related feature, --tskip tells the encoder to
evaluate transform-skip (bypass DCT but with quantization still enabled)
when coding small 4x4 transform blocks. This feature is intended to
improve the coding efficiency of screen content (aka: text on a screen)
and is not really intended for lossless coding. This feature should
only be enabled if the content has a lot of very sharp edges in it, and
is mostly unrelated to lossless coding.

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	x265 documentation

Index

 Symbols
 | C

Symbols

 	

 	
 --amp, --no-amp

 	

 	command line option

 	
 --analysis-file <filename>

 	

 	command line option

 	
 --analysis-mode <string|int>

 	

 	command line option

 	
 --aq-mode <0|1|2>

 	

 	command line option

 	
 --aq-strength <float>

 	

 	command line option

 	
 --asm <integer:false:string>, --no-asm

 	

 	command line option

 	
 --aud, --no-aud

 	

 	command line option

 	
 --b-adapt <integer>

 	

 	command line option

 	
 --b-intra, --no-b-intra

 	

 	command line option

 	
 --b-pyramid, --no-b-pyramid

 	

 	command line option

 	
 --bframe-bias <integer>

 	

 	command line option

 	
 --bframes, -b <0..16>

 	

 	command line option

 	
 --bitrate <integer>

 	

 	command line option

 	
 --cbqpoffs <integer>

 	

 	command line option

 	
 --chromalocs <0..5>

 	

 	command line option

 	
 --colormatrix <integer|string>

 	

 	command line option

 	
 --colorprim <integer|string>

 	

 	command line option

 	
 --constrained-intra, --no-constrained-intra

 	

 	command line option

 	
 --crf <0..51.0>

 	

 	command line option

 	
 --crf-max <0..51.0>

 	

 	command line option

 	
 --crf-min <0..51.0>

 	

 	command line option

 	
 --crop-rect <left,top,right,bottom>

 	

 	command line option

 	
 --crqpoffs <integer>

 	

 	command line option

 	
 --csv <filename>

 	

 	command line option

 	
 --ctu, -s <64|32|16>

 	

 	command line option

 	
 --cu-lossless, --no-cu-lossless

 	

 	command line option

 	
 --cu-stats, --no-cu-stats

 	

 	command line option

 	
 --cutree, --no-cutree

 	

 	command line option

 	
 --dither

 	

 	command line option

 	
 --early-skip, --no-early-skip

 	

 	command line option

 	
 --fast-cbf, --no-fast-cbf

 	

 	command line option

 	
 --fast-intra, --no-fast-intra

 	

 	command line option

 	
 --fps <integer|float|numerator/denominator>

 	

 	command line option

 	
 --frame-threads, -F <integer>

 	

 	command line option

 	
 --frames, -f <integer>

 	

 	command line option

 	
 --hash <integer>

 	

 	command line option

 	
 --help, -h

 	

 	command line option

 	
 --high-tier, --no-high-tier

 	

 	command line option

 	
 --hrd, --no-hrd

 	

 	command line option

 	
 --info, --no-info

 	

 	command line option

 	
 --input <filename>

 	

 	command line option

 	
 --input-csp <integer|string>

 	

 	command line option

 	
 --input-depth <integer>

 	

 	command line option

 	
 --input-res <wxh>

 	

 	command line option

 	
 --interlaceMode <false|tff|bff>, --no-interlaceMode

 	

 	command line option

 	
 --ipratio <float>

 	

 	command line option

 	
 --keyint, -I <integer>

 	

 	command line option

 	
 --lambda-file <filename>

 	

 	command line option

 	
 --level-idc <integer|float>

 	

 	command line option

 	
 --lft, --no-lft

 	

 	command line option

 	
 --log-level <integer|string>

 	

 	command line option

 	
 --lossless, --no-lossless

 	

 	command line option

 	
 --max-merge <1..5>

 	

 	command line option

 	
 --me <integer|string>

 	

 	command line option

 	
 --merange <integer>

 	

 	command line option

 	

 	
 --min-keyint, -i <integer>

 	

 	command line option

 	
 --no-progress

 	

 	command line option

 	
 --nr <integer>

 	

 	command line option

 	
 --open-gop, --no-open-gop

 	

 	command line option

 	
 --output, -o <filename>

 	

 	command line option

 	
 --overscan <show|crop>

 	

 	command line option

 	
 --pass <integer>

 	

 	command line option

 	
 --pbratio <float>

 	

 	command line option

 	
 --pme, --no-pme

 	

 	command line option

 	
 --pmode, --no-pmode

 	

 	command line option

 	
 --preset, -p <integer|string>

 	

 	command line option

 	
 --profile <string>

 	

 	command line option

 	
 --psnr, --no-psnr

 	

 	command line option

 	
 --psy-rd <float>

 	

 	command line option

 	
 --psy-rdoq <float>

 	

 	command line option

 	
 --qp, -q <integer>

 	

 	command line option

 	
 --qpfile <filename>

 	

 	command line option

 	
 --range <full|limited>

 	

 	command line option

 	
 --rc-lookahead <integer>

 	

 	command line option

 	
 --rd <0..6>

 	

 	command line option

 	
 --rdpenalty <0..2>

 	

 	command line option

 	
 --recon, -r <filename>

 	

 	command line option

 	
 --recon-depth <integer>

 	

 	command line option

 	
 --rect, --no-rect

 	

 	command line option

 	
 --ref <1..16>

 	

 	command line option

 	
 --repeat-headers, --no-repeat-headers

 	

 	command line option

 	
 --sao, --no-sao

 	

 	command line option

 	
 --sao-non-deblock, --no-sao-non-deblock

 	

 	command line option

 	
 --sar <integer|w:h>

 	

 	command line option

 	
 --scaling-list <filename>

 	

 	command line option

 	
 --scenecut <integer>, --no-scenecut

 	

 	command line option

 	
 --seek <integer>

 	

 	command line option

 	
 --signhide, --no-signhide

 	

 	command line option

 	
 --slow-firstpass, --no-slow-firstpass

 	

 	command line option

 	
 --ssim, --no-ssim

 	

 	command line option

 	
 --strong-intra-smoothing, --no-strong-intra-smoothing

 	

 	command line option

 	
 --subme, -m <0..7>

 	

 	command line option

 	
 --temporal-mvp, --no-temporal-mvp

 	

 	command line option

 	
 --threads <integer>

 	

 	command line option

 	
 --transfer <integer|string>

 	

 	command line option

 	
 --tskip, --no-tskip

 	

 	command line option

 	
 --tskip-fast, --no-tskip-fast

 	

 	command line option

 	
 --tu-inter-depth <1..4>

 	

 	command line option

 	
 --tu-intra-depth <1..4>

 	

 	command line option

 	
 --tune, -t <string>

 	

 	command line option

 	
 --vbv-bufsize <integer>

 	

 	command line option

 	
 --vbv-init <float>

 	

 	command line option

 	
 --vbv-maxrate <integer>

 	

 	command line option

 	
 --version, -V

 	

 	command line option

 	
 --videoformat <integer|string>

 	

 	command line option

 	
 --weightb, --no-weightb

 	

 	command line option

 	
 --weightp, -w, --no-weightp

 	

 	command line option

 	
 --wpp, --no-wpp

 	

 	command line option

 	
 --y4m

 	

 	command line option

C

 	

 	
 command line option

 	

 	--amp, --no-amp

 	--analysis-file <filename>

 	--analysis-mode <string|int>

 	--aq-mode <0|1|2>

 	--aq-strength <float>

 	--asm <integer:false:string>, --no-asm

 	--aud, --no-aud

 	--b-adapt <integer>

 	--b-intra, --no-b-intra

 	--b-pyramid, --no-b-pyramid

 	--bframe-bias <integer>

 	--bframes, -b <0..16>

 	--bitrate <integer>

 	--cbqpoffs <integer>

 	--chromalocs <0..5>

 	--colormatrix <integer|string>

 	--colorprim <integer|string>

 	--constrained-intra, --no-constrained-intra

 	--crf <0..51.0>

 	--crf-max <0..51.0>

 	--crf-min <0..51.0>

 	--crop-rect <left,top,right,bottom>

 	--crqpoffs <integer>

 	--csv <filename>

 	--ctu, -s <64|32|16>

 	--cu-lossless, --no-cu-lossless

 	--cu-stats, --no-cu-stats

 	--cutree, --no-cutree

 	--dither

 	--early-skip, --no-early-skip

 	--fast-cbf, --no-fast-cbf

 	--fast-intra, --no-fast-intra

 	--fps <integer|float|numerator/denominator>

 	--frame-threads, -F <integer>

 	--frames, -f <integer>

 	--hash <integer>

 	--help, -h

 	--high-tier, --no-high-tier

 	--hrd, --no-hrd

 	--info, --no-info

 	--input <filename>

 	--input-csp <integer|string>

 	--input-depth <integer>

 	--input-res <wxh>

 	--interlaceMode <false|tff|bff>, --no-interlaceMode

 	--ipratio <float>

 	--keyint, -I <integer>

 	--lambda-file <filename>

 	--level-idc <integer|float>

 	--lft, --no-lft

 	--log-level <integer|string>

 	--lossless, --no-lossless

 	--max-merge <1..5>

 	--me <integer|string>

 	--merange <integer>

 	--min-keyint, -i <integer>

 	--no-progress

 	--nr <integer>

 	--open-gop, --no-open-gop

 	--output, -o <filename>

 	--overscan <show|crop>

 	--pass <integer>

 	--pbratio <float>

 	--pme, --no-pme

 	--pmode, --no-pmode

 	--preset, -p <integer|string>

 	--profile <string>

 	--psnr, --no-psnr

 	--psy-rd <float>

 	--psy-rdoq <float>

 	--qp, -q <integer>

 	--qpfile <filename>

 	--range <full|limited>

 	--rc-lookahead <integer>

 	--rd <0..6>

 	--rdpenalty <0..2>

 	--recon, -r <filename>

 	--recon-depth <integer>

 	--rect, --no-rect

 	--ref <1..16>

 	--repeat-headers, --no-repeat-headers

 	--sao, --no-sao

 	--sao-non-deblock, --no-sao-non-deblock

 	--sar <integer|w:h>

 	--scaling-list <filename>

 	--scenecut <integer>, --no-scenecut

 	--seek <integer>

 	--signhide, --no-signhide

 	--slow-firstpass, --no-slow-firstpass

 	--ssim, --no-ssim

 	--strong-intra-smoothing, --no-strong-intra-smoothing

 	--subme, -m <0..7>

 	--temporal-mvp, --no-temporal-mvp

 	--threads <integer>

 	--transfer <integer|string>

 	--tskip, --no-tskip

 	--tskip-fast, --no-tskip-fast

 	--tu-inter-depth <1..4>

 	--tu-intra-depth <1..4>

 	--tune, -t <string>

 	--vbv-bufsize <integer>

 	--vbv-init <float>

 	--vbv-maxrate <integer>

 	--version, -V

 	--videoformat <integer|string>

 	--weightb, --no-weightb

 	--weightp, -w, --no-weightp

 	--wpp, --no-wpp

 	--y4m

 Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		x265 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014 MulticoreWare Inc.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

