

 Navigation

 	
 index

 	
 next |

 	Write the Docs

Write The Docs 2014

Notes from Write the Docs 2014, May 5-6, Portland, OR.

See also: http://write-the-docs-2013-notes.rtfd.org for last year’s notes.

	Monday
	Morning
	Welcome to Write the Docs

	Flow: A Permaculture Approach to Documentation Projects

	Communities Are Awesome

	The New Sheriff in Town: Bringing Documentation Out of Chaos

	Ignorance is Strength

	Did It In Minutes: The Art of Documenting Meeting Notes

	Hacking the English Language

	Afternoon
	Lighting Talks

	Documenting Domain Specific Knowledge

	Graphical Explanations

	Tuesday
	Morning
	Putting the (docs) Cart Before the (standards) Horse

	From docs to engineering and back again

	Don’t Write Documentation

	Make Music Not Noise

	Instrumentation as Living Documentation: Teaching Humans About Complex Systems

	We Strongly Recommend You Write Best Practices

	Wabi-Sabi Writing

	Strategies to fight documentation inertia

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

Monday

Morning

	Welcome to Write the Docs

	Flow: A Permaculture Approach to Documentation Projects

	Communities Are Awesome

	The New Sheriff in Town: Bringing Documentation Out of Chaos

	Ignorance is Strength

	Did It In Minutes: The Art of Documenting Meeting Notes

	Hacking the English Language

Afternoon

	Lighting Talks

	Documenting Domain Specific Knowledge

	Graphical Explanations

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Welcome to Write the Docs

	Authors:	Eric Holscher

	Time:	09:00 - 09:20

	Session:	

	Link:	

Write the Docs is a community conference; this means it isn’t about
profit, it’s about getting people in a room to communicate with each
other.

This is version 1.0; last year was version 0, we did one in Budapest,
sponsored by Prezi (it didn’t count for versioning). Budapest was
amazing, and there was a lightning talk involving bag pipes at 3pm in
someone’s office (apparently they were cool).

Oh yeah, we still don’t know what we’re doing.

Your job: make friends, learn something, have fun. You’re sitting at
round tables, so now you have friends. We get along with one another
by being welcoming, open, supportive, and positive. This is a
professional conference for many of you, but it’s also about building
a commmunity.

The agenda today is wide-ranging, and documentarian bound. There are
writers, project managers, and developers here, and we hope everyone
will be stretched in at least one direction.

This year there’s dedicated space for the “hallway track”, on the
second floor. It’s free space in the morning if you just want to get
away, and after lunch there will be a couple talks, and then
“unconference”.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Flow: A Permaculture Approach to Documentation Projects

	Authors:	
	
	Homer Christensen

	Time:	9:20 - 10:00

	Session:	http://docs.writethedocs.org/2014/na/talks/#r-n-homer-christensen-flow-a-permaculture-approach-to-documentation-projects

	Link:	

Technical writer and instructional designer, and a practicing permie.
[Lots of people konw what that is, but I have no clue.] Over the past
three years he’s replaced his lawn with a food forest, and
signle-sourced training and documentation materials for a long term
project with California Dept of Corrections.

Permaculture was first described by Bill Mollison and David Holmgren
in 1978 and 1988. Permaculture is a philosophy of “working with,
rather than against, nature”; “protracted and thoughtful observation”
of systems to see how they evolve. “The solutions are embarassingly
simple”.

Examples:

	Lawns

	Gardens

	Greening a desert near Sea of Galilea

	Christensen’s food forest

	City Repair: Portland based group reclaiming neighborhood public
intersections to build community

Principles:

	Work with the elements

	Diversity gives stability

	The problem is the solution

	Make the least change for th greatest effect

	No limit ot the richness of design

“Everything old is new again”

http://permacultureprinciples.com

Documentation is ripe for this: you want to develop a system that can
will be easily maintained and fruitful for those who come after you.

	Observe

	Design

	Evolve

Observation always comes first, and is about receiving information and
understanding the environment around you. You observe without
preconceived ideas, and with an open mind. If you feel like something
is missing, you observe some more.

When you’re observing a project, you also need to observe the
surrounding environemnt. What’s the corporate culture? What’s the
duration? What’s the desired outcome/yield? Who’s available, and what
are their skills, abilities and natural inclinations? How can things
in the environment (the land, the people, etc) be combined for the
most beneficial outcome?

Design is where most of the work actually takes place. What are the
zones of access? What’s the smallest change that will creat the
largest effect? And what direction are energies going in? It’s easier
to work with the flow than against it. In permaculture, the edge –
where the forest meets the plain, the plain meets the ocean – is
where the action is; there’s nutrient exchange, there’s biodiversity.
So when we think about applying these principles to projects and
documentation, think about where the edges are between different
people roles, etc. If you can increase the size of your edge, you can
increase the diversity on your project.

“The importance of collaborative porcesses is often ignored because of
the urgnecy of direct action.” – Telford

And the process has to evolve to continue to be successful. Observing
lessons learned, measuring and evaluting outcomes, etc. What are the
documentation opportunities?

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Communities Are Awesome

	Authors:	Ali Spivak

	Time:	10:00 - 10:20

	Session:	http://docs.writethedocs.org/2014/na/talks/#ali-spivak-communities-are-awesome

	Link:	

Works for Mozilla, which some people may not be aware is a non-profit,
mission-driven company. Here today to talk about community. As a
non-profit, Mozilla relies on their “huge” network of volunteers –
their community – to actually make things happen. Ali is responsible
for the Mozilla Developer Network, the MDN. MDN is a wiki that the
community uses to document “everything that matters to web
developers”, as well as information about Mozilla products. That’s a
lot of of information to document, and MDN is really big. MDN has
about 2MM users per month, 35 languages, and 11K articles. Things
don’t stay the same for long, so there’s a lot of change to manage.
MDN has 5 paid writers, althogh they do a lot more than writing: every
one of them works with and for the community.

The community is critical to MDN’s success. The community writes,
edits, fixes typos, and translates content (user experience for the site,
as well as articles). MDN also holds doc sprints where they get a
group of writers together for a day or more, and everyone writes.

But more important than all this work, the community provides MDN with
an amazing amount of diversity and perspectives. People in San
Francisco may not think of low bandwidth as a topic to document, but
the community of writers, programmers, and users around the world help
push that forward as a topic that’s important.

It’s also interesting that MDN, for being so open, gets a very small
amount of spam and malicious edits. Part of that may be a result of
the fact that it’s somewhat of a niche site. But it also seems like
people treat the site with an amount of respect and responsibility to
the site and their peers.

So you have this community; how do you get them to do what you want?
You don’t. Their not minions. They’re a special herd of awesome cats.
They’re partners.

“The idea of commnunity may simple come down to supporting and
interacting positively with other individuals who share a vested
interest.”

So why do people spend their time doing something they’re not
compensated for, that’s not their “job”? It turns out that intrinsic
motivation is really important to lots of people: autonomy, gaining
mastery, and [something else I didn’t write down in time] provide
people with a lot of satisfaction, and volunteering on MDN helps them
achieve that.

You also see this in things like Burning Man, huge events that are
volunteer run. One of their principles is Participation. Everyone
is expected to participate to help make the event successful. Mozilla
has principles, as well, and they also emphasize transparency,
community, and engagement.

It turns out it matters less what the principles are, you just need to
have them, so that your community understands there’s something
bigger, that they’re not just minions.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

The New Sheriff in Town: Bringing Documentation Out of Chaos

	Authors:	Heidi Waterhouse

	Time:	10:20 - 10:40

	Session:	http://docs.writethedocs.org/2014/na/talks/#heidi-waterhouse-the-new-sheriff-in-town-bringing-documentation-out-of-chaos

	Link:	

Technical documentarian of almost 20 years, and here to talk about the
chaotic environment and how to bring some order out of it. By the time
people get to this point in their career, most people have specialized
in something; she’s specialized in coming into organizations as their
first documentarian.

So how does this work? Well first, you need a Star. And the only Star
you’re going to get is that you got a job: you convinced a hiring
manager that you could do the job, that you could handle their thorny
problems. And no one is going to give you anything else. So you have
to get over your imposter syndrome.

And then you set up shop. When you roll into town, people will show
you around. But you probably won’t remember any of that, so make your
own map/seating chart of people and documentation. So that when
someone says, “Hey, Janet knows about SQL, ask here,” you’re able to
approach Janet confidently. And there’s almost certainly existing
documentation, no matter how ill maintained. And while you’re waiting
on your laptop, provisioning, whatever, get to know the neighborhood:
read the docs of your competition, of others in your domain.
Understand the lay of the land.

Once you start writing, you have no time for frills. You need to draw
fast. Polish and precision (formatting, localization, etc) will happen
between emergencies. Deliver early, deliver often, or talk about why
you can’t deliver. Early/often delivery helps demonstrate why this
documentation thing is important. The polish and precision is
important, but it doesn’t matter if you don’t put out the fire first.

And now you’re going to save the townspeople: find the biggest pain
point you can address and take care of it. Maybe it’s just a PDF form
that customer support doesn’t know is possible. It helps others, gets
them on your side, and quiets your internal imposter syndrome. You
also need to give others a way to ask questions and communicate with
you. A bug tracker is a great way to handle this, and gives you a
punch list to work down on days when writing feels like too much.

You’ll also often find scorpions: documentation hoarded in
inaccessible tools, or a disorganized manner. The people who are
hoarding are vigilantes: they care about documentation, but they’re
operating outside the law, so you want to deputize them and bring them
into the “official” documentation project.

Finally, it’s important to build infrastructure. Once the fires are
out, it’s important to provide some structure for continued success.
This means templates, release notes, etc; make sure that documentation
is part of the process for new code, new features, etc. That ensures
that it becomes part of the long term success of the organization.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Ignorance is Strength

	Authors:	Amalia Hawkins

	Time:	11:00 - 11:40

	Session:	http://docs.writethedocs.org/2014/na/talks/#amalia-hawkins-ignorance-is-strength-writing-documentation-by-learning-as-you-go

	Link:	

“Writing documentation by learning as you go.”

We usually think about ignorance as the enemy, something that we want
to overcome using documentation. But it’s when we have that struggle
ourselves, we’re in a good position to understand what users need to
know.

Hawkins graduated in May, and started working in August. In college,
she was the lead TA for an Intro to CS course, and worked on hiring
approximately 30 TAs for the course. What she discovered was that the
best TAs weren’t always they students who effortlessly got A’s; the
ones that had to work hard to get their B often understood the
struggles of incoming students better.

When Hawkins started working at Mongo in August, she was enthusiastic,
ignorant, and not much else, and there was > 1MM lines of code to
understand. A lack of internal documentation makes scaling the team
more difficult.

So after she figured out the problem in front of her (via a
conversation with the CTO), she wanted to share what she’d learned.
She talked to the documentation head, who suggested: write anything,
even if it’s wrong. Because even if it’s wrong, people now have
something to respond to and critique.

And people responded positively: “Wow, I didn’t know about that,
that’s helpful.” “I’m so glad someone wrote about this. Someone should
also write about X, Y, and Z.” So you need to find your allies, and
help spread the work around.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Did It In Minutes: The Art of Documenting Meeting Notes

	Authors:	Mo Nishiyama

	Time:	11:40 - 12:00

	Session:	http://docs.writethedocs.org/2014/na/talks/#mo-nishiyama-did-it-in-minutes-the-art-of-documenting-meeting-notes

	Link:	

See also: “Did It In a Minute”, Hall/Oates

Release notes and documentation are like the Corvette that everyone
wants to write/read. But meeting notes are the garbage truck: plebian,
under appreciated, and mind numbing. Meetings can be toxic and awful
places to be.

When Mo was assigned to talk meeting minutes, he realized that he’d
been viewing meeting minutes as regurgitation, when they’re really
about curation.

	Understand your audience: who’s at the meeting, but also who’s
not at the meeting? You’re not just writing for yourself.

	Once you understand your audience, you can create a shared need.
What does the audience commonly need to know.

	Chronology doens’t matter; what happens at the beginning of the
meeting doesn’t need to go a the top of the document.

	WTF: Write the Facts. You don’t need to record the “healthy
discussions” or “heated discourse”.

	Engage the Subject Matter Experts: engage and ask questions before
you make assumptions and publish incorrect interpretations.

	Make the action items clear: Who, What, When need to be defined.

	Use templates to save time: formatting, organization, etc. Helps
save time for the writer.

	Use easter eggs to combat TL;DR

And there are exceptions, of course.

School board meetings require chronology. Depositions require
regurgitation. And some organizations require style guide adherance,
etc.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Hacking the English Language

	Authors:	Nina Vyedin

	Time:	12:00 - 12:20

	Session:	http://docs.writethedocs.org/2014/na/talks/#nina-vyedin-hacking-the-english-language

	Link:	

Or, what can we learn about writing from our programmer friends.

When Vyedin was in college, she did really well on her first paper.
And when she went to write the second, she blocked at the blank page.
Now she works for Xamarin, and when you create a new app using their
tool, you get boilerplate and guidance about what to do next. What if
you didn’t have to start with a blank page when you’re starting a
document?

Don’t start with a blank page.

Create a template for each type of document you write, and put them in
the same place, so you never have to start with a blank page.

Make a spec

While mentoring a new writer through a document, Nina realized that
she and the new writer thought the document was answering different
questions. So you can write a simple spec for your doc, that keeps
everyone involved on the same page.

	What question is this document meant to answer?

	Who is the target audience?

	What’s the current state of the documentation on this topic?

	What’s the work plan?

Programmers also have design patterns: pre-established architectural
patterns for software. Documentarians have that, too, and you can use
those to make the work easier.

Writing for Clarity: Name your variables

Most programming texts contain a section on naming variables. Writing
needs this, too. There are things like the undefined “if”, a lack of
ownership (passive voice), vague terms (“view”, “component”, etc), or
ideas whose name changes over time, all of which make your writing
less clear. Be specific, and be precise.

Editing

Editing isn’t just about correcting spelling or punctuation. Editing
is the refactoring of writing. Editing should be about rearranging,
restructing, and clarifying what’s going on in a document. (Just make
sure you’re not changing the question.) You don’t have to be an expert
to be a good editor (although it helps); you just need to be willing to
ask questions.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Lighting Talks

Write Tighter, Revisited

	Author:	Marcia Johnston, @MarciaRJohnston,
http://howtowriteeverything.com/

Gave a talk last year, “Write Tighter”, and she wanted people to
remember one thing: see be-verbs. (Not beavers.) “be”, “was”, “has
been”, “will be”, “will have”, “been having”. Those are a flag that
your writing can be tightened up, made more concise, made more
engaging, and clarified.

But why?

It’s cheaper! Translations cost $0.25/word/language, so getting rid of
“be-verbs” means you pay less. And you will be translating if you’re
remotely successful.

And it makes your writing more readable.

Test the Docs

	Author:	Dirk Myers

Partnering with other startups to use their SDK to develop
applications to spec. This lets them effectively pilot the new user
experience. What they’ve found is that the bugs filed aren’t at all
what they expected. You know about prolems in your product that you
think users will report, but they don’t. They want to know what’s
next. So now they write the docs first. They write a doc, show it
to customers, and ask what they’d do next, what questions they have,
etc. And this is leading to increased customer happiness with
documentation and reduced support costs.

Open Source Documentation, The Hard Way

	Author:	Anne Gentle, http://justclickwrite.com/

“I’m a unicorn: an extroverted technical writer.”

Half of the Open Stack documentation was written by 3 writers. Six
months later, another half was written by 7 writers. That was a lot of
work. But there were 130 documentation contributors overall. And when
there are 910 overall Open Stack contributors, you have to wonder: am
I getting the right contributors?

Ran a book sprint to write a 200 page book in a week. Flew in
contributors who’d been operating Open Stack at scale for six months
or more, and wrote the guide to Open Stack. And then O’Reilly asked
if they could publish it (now 300 pages), since they were having
trouble finding qualified authors. And now they’ve produced an Open
Stack security guide, as well.

Applying developer techniques to documentation.

Write, Measure, Repeat

	Author:	Dan Stevens

New to Atlassian, working on BitBucket. And they’re trying to change
how they think about information solutions. One thing he doesn’t think
Atlassian does very well is measure results for documentation. So they
asked themselves, “How do we measure success with documentation? And
how do we make that repeatable?” Beyond just writing something
technically accurate, what are we trying to achieve?

“In the documentation, can we lead them from the software, to the
docs, and back, to acheive a specific feature adoption?”

So now they’re rewriting tutorials, and measuring how many people are
entering documentation, and then acheiving some business goal. [NB:
Conversions.]

Measuring conversion lets you talk about documentation as more than
just a cost center.

EPUB in a Nutshell

	Author:	Chuck, @chuckdude

[Former O’Reilly editor]

EPUB is a website, packed in a folder, with some XML files. To “do”
EPUB, you need to be comfortable with HTML, CSS, and some light XML.
What EPUB? It’s portable, searchable, bookmarkable; you can copy and
paste. PDF – the “pretty dead format” – is the bane of a lot of
documentarian’s experiences. It’s great for presentation and dead
trees, not for sharing.

How do you learn EPUB? Look at the source. Just unzip any EPUB
file.

[Demo of what an EPUB contains.]

EPUB is pretty simple, and it’s incredibly powerful.

EPUB is managed by the IDPF (International Documentation Publishing
Forum).

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Documenting Domain Specific Knowledge

	Authors:	Alex Gaynor

	Time:	13:50 - 14:10

	Session:	http://docs.writethedocs.org/2014/na/talks/#alex-gaynor-documenting-domain-specific-knowledge

	Link:	https://speakerdeck.com/alex/documenting-domain-specific-knowledge

Alex got his start writing software working on the Django project, a
project with a very strong culture of documentation. So what do users
come to the documentation looking for? Some users just want the
details. Alex isn’t concerned with them: they usually have lots of
context to understand what’s being written, and they’re primarily
concerned with the completeness of the documentation. But what about
the people who come to the documentation who don’t know about the
request/response cycle, or about how the web works? It’s not clear how
well the tutorial really works for them (probably not very well).

Alex has been working on a Python cryptography library, and most users
just want the documentation to tell them what to do, without gaining
actual deep knowledge.

Can you document around a usability problem? Perhaps. What you can’t
document around is their assumptions: if you don’t shock them out of
their assumptions, and your software doesn’t conform to those
assumptions, you’ll just create frustration.

So documentation and design are a partnership.

Pick an audience. That’s the audience you’ll write software for.
“People who use my software” is not an audience; an audience is a set
of knowledge and background. Sometimes you’ll need to write
documentation multiple times for multiple audiences. You’ll need to
partition documentation between those audiences (this can be
challenging; one model is the software layer model, which is a good
way to separate users from experts).

Being able to write documentation that you can read top to bottom –
“straight line documentation” – is incredibly valuable. Writing in a
reference style, with lots of links, is difficult to digest. Those
links should be optional for most users.

You should also eliminate assumptions you make as you’re writing
documentation. Remove jargon, wherever possible, and when it’s not
possible, the explanation should be front and center. Warnings about
using your tool the right way should not be buried in a link.
And of course, the design of your code should back up your
documentation, and provide sane defaults.

Your documentation should also enable use cases. Most people approach
documentation trying to solve a specific problem. Figure out what
those are, and write your documentation for them.

Composition is great for building software, but it can be problematic
for documentation, where users might not know how to connect the dots.
Connecting the dots is your job as an author. You can test whether
you’ve succeeded by testing your documentation with real users. When
they reach for Google, that’s a documentation bug.

Nothing of consequence should depend on something the users doesn’t
know they don’t know. Your software (and documentation) can guide
them: make recommendations, not defaults, so that users are aware when
they’re making a choice, and learn more about what they might not
know.

A tutorial should give users multiple, easy wins, preferrably with
less than 30 minutes of work. Give them points to stop and rest and
celebrate their progress.

Your users will never care about your domain the way you do.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Monday

Graphical Explanations

	Authors:	Geoffrey Grosenbach

	Time:	14:10 - 14:30

	Session:	http://docs.writethedocs.org/2014/na/talks/#geoffrey-grosenbach-graphical-explanations

	Link:	

Formerly ran PeepCode, now at PluralSight.

In the late 1980’s, the founder of the TED Conferences wrote a book,
Inforation Anxiety, about how just getting access to information
wasn’t enough. People would be willing to pay for curation and
filtering. And he actually wrote the book in such a way that you could
read it at different levels: you could read the TOC and get something,
flip through it and get something more, or really read it and gain
deep knowledge.

Can we apply that to documentation? Give people the ability to skim
for a graphical representation if they don’t have time to read it all,
or really dive deep if they have time.

What are some easy ways to do this?

	Type

It’s the way we communicate, and it’s everywhere, so learn to use
it well.

	Color

(pygments is a great way to handle this formatting, depending on
your tool chain.)

	Icons

SymbolSet / Symbolicons

	Explanatory tools

	Before/After

	Video

	Icons to indicate “warnings” or “best paths”

	Good/Better/Best

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

Tuesday

Morning

	Putting the (docs) Cart Before the (standards) Horse

	From docs to engineering and back again

	Don’t Write Documentation

	Make Music Not Noise

	Instrumentation as Living Documentation: Teaching Humans About Complex Systems

	We Strongly Recommend You Write Best Practices

	Wabi-Sabi Writing

	Strategies to fight documentation inertia

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Write the Docs

 	Tuesday

Putting the (docs) Cart Before the (standards) Horse

	Authors:	Drew Jaynes

	Time:	9:00 - 9:20

	Session:	http://docs.writethedocs.org/2014/na/talks/#drew-jaynes-putting-the-docs-cart-before-the-standards-horse

	Link:	

WordPress took 10 years of inline documentation in the code and
developed a standard from that. Historically there was very little
attention given to inline documentation. The phpDoc spec was followed
loosely, but the Codex (wiki) was still seen as the main entry point
for documentation.

The Codex is a 2300+ page wiki of manually curated content. Before
every release, the documentation team would get together and make a
list of pages that needed to be updated. As the rate of WordPress
releases increased, the pressure on the Codex/Documentation team
increased, to the point where it felt unsustainable.

About 8 months ago, the Codex team wanted to document all the hooks in
WordPress core. Rather than trying to fit the WordPress hook
architecture into an existing standard, like phpDoc or [something
else], the team decided to survey existing practices in the code, and
developed Hook Docs.

Some background: In June 2013 WordPress Core went through some
evolution, and began recognizing teams of contributors. The Docs Team
came out of that, which gave the team its own blog, home [http://make.wordpress.org/docs/], etc. The
team held an informal summit at the Open Help Conference, where they
reviewed the Codex Survey conducted previously, and developed a
roadmap.

One of the primary goals of the roadmap was eliminating the Codex.
That goal spurred development of Hook Docs.

Eight months in, with the release of WordPress 3.9, all the hooks
(2200+) in WordPress Core have been documented. This is an increase
from 66k to 99k lines of documentation in the codebase. There were 40
new contributors over 3 releases, and version 1.0 of the code
reference is now live, and derived from the source code.

Developing a standard was obviously beneficial to the WordPress, even
if the project arrived there slightly later than other projects. (And
the Codex will become a giant 301 redirect.) The development of the
internal standard – even though it diverges from some other PHP
practices – is leading toward longer term consistency for the
project.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

From docs to engineering and back again

	Authors:	Susan Salituro

	Time:	9:20 - 9:40

	Session:	http://docs.writethedocs.org/2014/na/talks/#susan-salituro-from-docs-to-engineering-and-back-again

	Link:	

Currently a software infrastructure engineer at Pixar, but over the
course of her career she’s gone back and forth between engineering and
writing. Last year’s WTD inspired her; finally, a group of people who
care about the things she cares about: communicating with others more
effectively.

As a self described introvert, Susan didn’t realize until after she’d
submitted her talk that she was effectively committing to telling her
professional autobiography in front of 300 people. At Pixar they say
“the story is king”. So what’s the story?

Entering college, Susan loved astronomy, and wanted to be a
astrophysicist. But eventually left the program, because she wasn’t
sure she could complete the degree. But she did enjoy math, so she
became a math major. And then added an English major to that. And as
she considered what career she might pursue, she took the single
technical writing course offered by her university. It was more geared
toward graduate students trying to write their thesis and
dissertations (don’t use passive voice, etc), but suddenly she
understood that there was a way for her to combine both of her
interests.

Over the next eleven years, Susan pursued technical writing, and got a
lot out of it. There was a sense of community around technical
writing, and a sense of passion shared by the community that was
appealing. As a technical writer, there was also a continued sense of
learning and beginner’s mind: your job is to communicate about your
product to people who haven’t experienced it yet. And finally, there
was a lot of flexibility: it’s a portable skill that Susan has been
able to practice around North America.

But it felt like something was missing: Susan started exploring ways
to grow her career. She started seeing technical writers applying
their skills to UI design, information architecture, and programming.
She visited customer sites with a UI designer, and had the opportunity
to see customers actually using her help, which was sort of
revelatory. “How can I help the UI team make the application so
intuitive that my help content isn’t needed?” And she started learning
about how software is put together, taking a class in Visual Basic so
she could prototype interfaces, and a class in Java Doc, which exposed
her to the a world she didn’t know existed.

While working at Palm Source, a manager took a chance on her and she
was able to dive into documenting the API of one of PalmOS’s
components. After moving on to Pixar, she was working on a
documentation project that used DITA, an XML based documentation
system. To do this effectively, she had to really expand her skills:
XSLT, Python to drive it, Make to automate those. She was a
programmer.

“You can’t go around writing software without attracting attention.”

Susan attracted the attention of the software release engineering
team’s manager. And this was like drinking from the firehose: there
was so much information being thrown at her, she could barely keep up.

And the community was still there, but instead of coming in the form
of professional organizations, it came from the company internally.
There wasn’t as much flexibility as there was with technical writing;
you were almost always on call. But it was really difficult.

Susan moved from Pixar to a smaller company, into an information
architecture role. This allowed her to combine her technical writing
and programming skills. Unfortunately the company went bankrupt, and
Susan returned to California, to Pixar. At Pixar she became a Software
Infrastructure Engineer in documentation, further blending her
techincal writing and software engineering. Her mandate was to find
solutions for documentation problems, addressings both tools and
process issues. But the focus still shifted to product life cycle, as
opposed to writing.

This isn’t the end of the road. There’s still more to learn – for
both Susan and you [in the audience]. Find a community, take a risk,
make a choice.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

Don’t Write Documentation

	Authors:	James Pearson

	Time:	9:40 - 10:00

	Session:	http://docs.writethedocs.org/2014/na/talks/#james-pearson-don-t-write-documentation

	Link:	http://changedmy.name/talk–dont-write-documentation/

As you may have guessed by the title, James is not a writer. But the
scraggly beard and EFF sweatshirt indicate that he is a sysadmin
[for iFixIt], and as such documentation is just about making sure you
don’t miss any steps. iFixIt is a wiki-based platform that lets any
user write documentation and step-by-step guides to repair anything.

So why shouldn’t you write documentation? Because good
documentation’s worst enemy is bad documentation. The programmers who
James hangs out with hate documentation; they assume that it’s
going to be wrong, so they don’t even try to read it. For example, the
image processing library they were using to annotate images had many,
many bugs. Upgrading fixed some and introduced others. The take away
was that that library is crap. But the take away when we see bad
documentation, is that all documentation is bad. We don’t treat
documentation like software (where we might think this particular
piece of software is crap): we’re numb to documentation.

See also: broken window syndrome. When you see bad documentation, it
tells you that lax standards are acceptable for this project or
product.

So what sort of documentation is awful?

Autogenerated documentation can be awful.

The Perl “Camel” book is a joy to read, and it instructs us on the
Three Virtues of a Programmer.

	Laziness

	Impatience

	Hubris

Laziness is the one that causes pain. Tools like Javadoc are often
abused: just because your tool can extract documentation doesn’t mean
that the documentation is going to appropriately communicate content
to other users.

Poka-Yoke – “mistake proofing”.

A Toyota engineer realized that people will always make mistakes
(because we’re human), but mistakes don’t have to become defects.
Poka-yoke refers to designing a tool or product in a way that prevents
mistakes from becoming defects. (See http://pokayoke.wikispaces.com/
for examples.) The solution to many defects is not documentation, but
changing the product or software.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

Make Music Not Noise

	Authors:	Christopher Kelleher

	Time:	10:00 - 10:20

	Session:	http://docs.writethedocs.org/2014/na/talks/#christopher-kelleher-make-music-not-noise

	Link:	

Making sound is not the same as making sense.

Information is not the same as communication.

And the standards of music can guide us torward communication.

So what is noise? We usually think of it as “what I don’t like to
hear”. But more formally, it’s “sound without structure”. The
structure is patterns and frameworks, and the search for structure
appears to be hard-wired into our brains. Listening to unfamiliar
music in an MRI, we see both the most ancient and most modern parts of
the brain lighting up as the subject begins identifying patterns and
structure. Even infants respond to pitch and harmony: sound with
structure.

And while we reject “noise” as “not songs” almost instinctively, we
don’t have the same hard-wired detection for poor documentation.

Most noise is inadvertant, but sometimes it’s intentional. [Shows the
iTunes TOS.] It’s tempting to think that the TOS is a failed document,
because it’s so long and inscrutable. But it’s not, because it’s not
an attempt to communicate: its goal is to beat you into submission an
acquiesence.

By neglect, we have the expectation that documentation is supposed to
hurt. But we can do better. Music-like satisfaction is achievable and
desirable. And we can get there.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

Instrumentation as Living Documentation: Teaching Humans About Complex Systems

	Authors:	Brian Troutwine

	Time:	10:40 - 11:20

	Session:	

	Link:	

Troutwine is a software engineer: he writes software that talks to
other software, not necessarily end users. These are real time,
distributed systems, and he currently writes this software for Ad
Roll. That might seem like an odd fit, but advertising is changing
from large accounts that spend $10,000 per month on print advertising
to small, real-time bidding on ad slots (ie, $10/month on advertising
for fork bracelets on Etsy). The problem is a low latency, firm
real-time system, with non-smooth traffic patterns. This is considered
a Complex System.

Complex systems have non-linear feedback that are tightly coupled to
external systems. They’re difficult to model and understand. They
often try to solve “wicked problems” [as described by C. West
Churchman]. Complex systems fail in catastrophic ways, and when they
do, they often create problems worse than those they set out to solve.

It turns out that just because we make something doesn’t mean we
understand it (see Carlos Bueno, “Mature Optimization Handbook”). The
key challenge is actually maintaining and increasing our understanding
of the problem and the solution. So we write documentation. (Which
is troublesome, since communicating about these complex systems are
difficult to communicate about.)

Miscommunications are accidents in the making: the Challenger disaster
happened because there was miscommunication about the temperature
constraints on the O ring. If you don’t know how a system should
behave, you can’t say how it shouldn’t or isn’t behaving. And the
documentation doesn’t keep up with with the system.

Eric Schlosser, “Command and Control”

So if complex systems are so difficult to build and maintain and
document, what can we do?

Instrumentation reflects the reality of the system as it is, not as
we believe or expect it to be. Exploration guided by instrumentation,
done honestly, guides us to a better understanding of the system.

[Instrumentation case studies.]

And it’s possible to have too little information from instrumentation,
or even too much (3 Mile Island example). Too much information hinders
interpretation. Instrumentation isn’t a panacea. It’s also software
itself, so it’s susceptible to bugs, as well!

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

We Strongly Recommend You Write Best Practices

	Authors:	Lauren Rother

	Time:	11:20 - 11:40

	Session:	http://docs.writethedocs.org/2014/na/talks/#lauren-rother-we-strongly-recommend-you-write-best-practices

	Link:	

Works on Puppet Forge at Puppet Labs; Forge is a tool for hosting user
contributed modules and discovery. As the Forge has grown, users have
been asking for Puppet endorsed best practices and practices.
Documentation at Puppet Labs is embedded with engineering, so the
content is developed jointly with engineers who are writing Puppet
modules.

Puppet users have different needs, workflows, and most importantly,
different levels of experiences. The experiment was the “Beginner’s
Guide to Modules”, targeting novice users. They’ve chosen to target
different levels of user experience as the primary differentiator.

In the first version, they dumped everything they thought users might
ask or wnat to know into a document, then organized it into what felt
like logical sections using a textbook-like approach. The problem was
that it was overwhelming. The large paragraphs of text felt like they
were difficult to enter into and really understand. The solution was
to provide Orientation: introductory sentences that describe what
you’re about to read, and sign-posts along the way to orient yourself.
(“Hrm, I was supposed to know how to scope a module after reading this
section; did I actually learn that?”).

They’d initially rejected this as overly-verbose and excessive text,
but what they discovered was that it makes the document more
accessible. This is true for novices – who get some context as they
read – as well as more experienced users – who can use the signposts
as a way to jump over content they’re already familiar with. [NB: This
means it’s really important that the signposts are accurate.]

But even with smaller paragraphs, introductory sentences, and
sub-headings, it was difficult to locate distinct items. It was better
for the intial read, but still challenging when you returned to the
document and wanted to pick up where you left off. It was readable,
but not usable.

Thinking about the problem, Lauren realized that they were writing a
treatise, not a guidebook: something you read as a challenge, not
something that you return to again and again.

Best practices are often really a step by step guide, just like NKOTB
told us.

The final iteration has a table of contents, headings, introductory
sentences, steps (which makes it easy to write the TOC), and
examples. Interestingly, the process of putting the guide into
steps made it easier to add more examples, which give context and
background that words can not.

There’s still room for improvement: the beginner’s guide works well
and provides a good overview, but it’s very high level. It glosses
over questions that will come up very quickly as users get up to speed
on Puppet modules.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

Wabi-Sabi Writing

	Authors:	Scot Marvin

	Time:	11:40 - 12:00

	Session:	http://docs.writethedocs.org/2014/na/talks/#scot-marvin-wabi-sabi-writing

	Link:	

So what is Wabi-Sabi? It turns out that the only people really talking
about it are westeners. It comes from Japanese Zen Buddhism, where
there’s an appreciation for syntactic ambiguity, something we don’t
have much of in the west.

The tenets go something like this:

	Beauty in the impermanent

	Beauty in the imperfect

	Beauty in the incomplete

Now as strict Helenists, this idea of imperanence and imperfection
doesn’t always sit well. But when have we written software that was
even complete, let along perfect?

Wabi-sabi is sometimes described as rustic or primitive, but that
doesn’t mean it’s the same as Luddism.

And just because it embraces imperfection doesn’t mean that it’s
complacent. You still iterate, you still work on your product, but you
don’t expect that an iteration will be perfect.

Agile is also about incremental betterment.

	Less Faulkner, more Hemingway; or, clear writing.

Faulkner and Hemingway represent two extremes of 20th century
American writing. You can lose yourself in Faulkner’s sentences,
but it makes for a poor paradigm for technical writing and
documentation. Hemingway is the king of the short sentence, and
that’s something to aim for in technical writing.

	Less Coltrane, more Davis; or, tranquil writing.

Coltrane was known for his controlled chaos: he put so many notes
into a measure, it was sometimes known as “sheets of sound”. Davis,
on the other hand, was the king of calm and cool, demonstrating
economical restraint in his compositions. When readers come to
documentation, it’s unfortunately usually as a last resort. They
need calm and cool, not controlled chaos.

	Less Versailles, more Ryoan-ji; or, simple writing

Marvin talks about loving things that are like the Gardens of
Versailles: magnificent, elaborate, and intricate. But most of our
readers usually want something closer to a zen sand garden.

	“Done is beautiful.”

We can’t complete anything, but we can get something done. And
done is always beautiful.

Embrace the crack and crevices of your work.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Write the Docs

 	Tuesday

Strategies to fight documentation inertia

	Authors:	Britta Gufstafson

	Time:	12:00 - 12:20

	Session:	http://docs.writethedocs.org/2014/na/talks/#britta-gustafson-strategies-to-fight-documentation-inertia

	Link:	

Worked on reviving volunteer documentation wiki with a little social
engineering and friendliness. The wiki for years had an outdated
tagline, and didn’t link to the great content that was actually there.
Now it contains explicit call-outs to getting started, beginner
information, and entry points that people coming to the community may
be interested in.

Britta joined Cydia as a community manager, and tried to push
engineers towards updating the wiki. After getting involved in Open
Hatch, she realized that she actually did have something to
contribute to the wiki and to the documentation.

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Write the Docs

Index

 Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/file.png

_static/down-pressed.png

tuesday/jayne.html

 Navigation

 		
 index

 		
 previous |

 		Write the Docs »

 		Tuesday »

Putting the (docs) Cart Before the (standards) Horse

		Authors:		Drew Jayne

		Time:		9:00 - 9:20

		Session:		http://docs.writethedocs.org/2014/na/talks/#drew-jaynes-putting-the-docs-cart-before-the-standards-horse

		Link:		

WordPress took 10 years of inline documentation in the code and
developed a standard from that. Historically there was very little
attention given to inline documentation. The phpDoc spec was followed
loosely, but the Codex (wiki) was still seen as the main entry point
for documentation.

The Codex is a 2300+ page wiki of manually curated content. Before
every release, the documentation team would get together and make a
list of pages that needed to be updated. As the rate of WordPress
releases increased, the pressure on the Codex/Documentation team
increased, to the point where it felt unsustainable.

About 8 months ago, the Codex team wanted to document all the hooks in
WordPress core. Rather than trying to fit the WordPress hook
architecture into an existing standard, like phpDoc or [something
else], the team decided to survey existing practices in the code, and
developed Hook Docs.

Some background: In June 2013 WordPress Core went through some
evolution, and began recognizing teams of contributors. The Docs Team
came out of that, which gave the team its own blog, home [http://make.wordpress.org/docs/], etc. The
team held an informal summit at the Open Help Conference, where they
reviewed the Codex Survey conducted previously, and developed a
roadmap.

One of the primary goals of the roadmap was eliminating the Codex.
That goal spurred development of Hook Docs.

Eight months in, with the release of WordPress 3.9, all the hooks
(2200+) in WordPress Core have been documented. This is an increase
from 66k to 99k lines of documentation in the codebase. There were 40
new contributors over 3 releases, and version 1.0 of the code
reference is now live, and derived from the source code.

Developing a standard was obviously beneficial to the WordPress, even
if the project arrived there slightly later than other projects. (And
the Codex will become a giant 301 redirect.) The development of the
internal standard – even though it diverges from some other PHP
practices – is leading toward longer term consistency for the
project.

 © Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Write the Docs »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Nathan Yergler.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

