

Welcome to WinAppDbg 1.6!

[image: Click for more screenshots]
The WinAppDbg python module allows developers to quickly code instrumentation scripts in Python under a Windows environment.

It uses ctypes to wrap many Win32 API [https://docs.microsoft.com/en-us/windows/win32/debug/debugging-reference] calls related to debugging, and provides a powerful abstraction layer to manipulate threads, libraries and processes, attach your script as a debugger, trace execution, hook API calls, handle events in your debugee and set breakpoints of different kinds (code, hardware and memory). Additionally it has no native code at all, making it easier to maintain or modify than other debuggers on Windows.

The intended audience are QA engineers and software security auditors wishing to test or fuzz Windows applications with quickly coded Python scripts. Several ready to use tools are shipped and can be used for this purposes.

Current features also include disassembling x86/x64 native code, debugging multiple processes simultaneously and produce a detailed log of application crashes, useful for fuzzing and automated testing.

Download

Some quick links for the impatient:

	Homepage [https://github.com/MarioVilas/winappdbg/]

	Source code [https://github.com/MarioVilas/winappdbg/releases/tag/winappdbg_v1.6]

	Documentation [http://winappdbg.readthedocs.io/en/latest/]

Tutorial

The easy way to learn to use WinAppDbg. If this is your first time, it’s the right place to start!

	Downloading and installing
	Latest version

	Older versions

	Dependencies

	Install

	Support

	Known issues

	License

	Command line tools
	Crash logger

	Process tools

	Miscellaneous

	Programming guide
	Instrumentation

	Debugging

	Helper classes and functions

	The Win32 API wrappers

	More examples

	Advanced topics

Related projects

Here is a list of software projects that use WinAppDbg in alphabetical order:

	Heappie! [https://exploiting.wordpress.com/2012/03/09/heappie-heap-spray-analysis-tool/] is a heap analysis tool geared towards exploit writing. It allows you to visualize the heap layout during the heap spray or heap massaging stage in your exploits. The original version uses vtrace [https://code.google.com/archive/p/vtrace-mirror/] but here’s a patch to use WinAppDbg [https://breakingcode.wordpress.com/2012/03/18/heappie-winappdbg/] instead. The patch also adds 64 bit support.

	PyPeElf [https://code.google.com/archive/p/pypeelf/] is an open source GUI executable file analyzer for Windows and Linux released under the BSD license.

	python-haystack [https://github.com/trolldbois/python-haystack/] is a heap analysis framework, focused on classic C structure matching. The basic functionality is to search in a process’ memory maps for a specific C Structures. The extended reverse engineering functionality aims at reversing structures from memory/heap analysis.

	SRS [https://5d4a.wordpress.com/2009/12/07/messing-around-with-register/] is a tool to spy on registry API calls made by the program of your choice.

	Tracer.py [https://brundlelab.wordpress.com/2012/08/19/small-and-cute-execution-tracer/] is a “small and cute” execution tracer, in the words of it’s author :) to aid in differential debugging.

	unpack.py [https://malwaremusings.com/scripts/unpack-py-script-using-winappdbg-to-automatically-unpack-malware/] is a script using WinAppDbg to automatically unpack malware, written by Karl Denton [https://www.linkedin.com/in/karldenton].

And this is a list of some alternatives to WinAppDbg in case it doesn’t suit your needs, also in alphabetical order:

	InfinityHook [https://github.com/everdox/InfinityHook] lets you hook system calls, context switches, page faults, DPCs and more. InfinityHook works along side Patchguard and VBS/Hyperguard to subtly hook various kernel events. It works in Windows 7 and above. Sadly it does not have a Python wrapper at the time of writing this but if you write one and combine this tool with WinAppDbg please let me know! :)

	ImmLib [http://debugger.immunityinc.com/] is a Python library to integrate your custom scripts into Immunity Debugger. It can only function inside the debugger, but it’s the best solution if you aim at writing plugins for that debugger instead of standalone tools.

	OllyPython [https://code.google.com/archive/ollypython/] is an OllyDbg plugin that integrates a Python debugger. Naturally it only works within OllyDbg and is not suitable for standalone projects.

	PyDbg [https://code.google.com/archive/paimei/] is another debugging library for Python that is part of the Paimei framework, but may work separately as well. It works on Windows and OSX. It predates WinAppDbg by quite some time but it’s also been unmaintained for long, and it only works in Python versions 2.4 and 2.5. A newer branch called PyDbg64 [https://github.com/gdbinit/pydbg64] implements 64 bit support for both platforms.

	PyDbgEng [https://sourceforge.net/projects/pydbgeng/] is a similar project to WinAppDbg, but it uses the Microsoft Debug Engine [https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/] as a back end while WinAppDbg uses only bare Win32 API calls. The advantage of this approach is the ability to support kernel debugging, which is not allowed by the Win32 API alone. The disadvantage is having to install the Windows SDK/WDK to the machine where you run your scripts (or at least the components needed for debugging). See also the Buggery [https://github.com/grugq/Buggery] project which is based on PyDbgEng.

	PyDbgExt [https://sourceforge.net/projects/pydbgext/] is the reverse of PyDbgEng: instead of instancing the Microsoft Debug Engine from a Python interpreter, it embeds a Python interpreter inside the Microsoft debugger WinDbg.

	pygdb [https://code.google.com/archive/pygdb/] is a simple wrapper on the GNU debugger that provides a GTK interface to it. Works in Linux and OSX.

	PyKd [https://archive.codeplex.com/?p=pykd] is like PyDbgEng and PyDbgExt combined into one - it can be both used from within the debugger and a standalone Python interpreter. Being a younger project it’s still in alpha state, but looks very promising!

	PyMem [https://github.com/srounet/Pymem] is a memory instrumentation library written in Python for Windows. It provides a subset of the functionality found in WinAppDbg, but if you’re developing a tool that only needs to manipulate a process memory you may find it convenient to support both backends and leave the choice to the user.

	python-ptrace [https://pypi.org/project/python-ptrace] is another debugger library for Python with the same goals as WinAppDbg. Here the approach used was to call the ptrace syscall, so naturally it works only on POSIX systems (BSD, Linux, maybe OSX). If Kenshoto’s vtrace is not an option you could try combining this with WinAppDbg to implement a multiplatform tool.

	PythonGdb [http://sourceware.org/gdb/wiki/PythonGdb] is an embedded Python interpreter for the GNU debugger. It’s already included in GDB 7.

	Radare [http://radare.nopcode.org] is a console based multiplatform disassembler, debugger and reverse engineering framework. Python is among the languages supported for plugins and scripting.

	Universal Hooker (uhooker) [https://www.coresecurity.com/corelabs-research/open-source-tools/uhooker] is a Python library to implement function hooks in other processes. While its functionality overlaps with some of WinAppDbg, the hooks implementation of uhooker is superior. Unfortunately the last update was in 2007. :(

	Vivisect [https://github.com/vivisect/vivisect] (previously known as Kenshoto’s vtrace debugger) is a full fledged multiplatform debugger written in Python, and a personal favorite of mine. I took a few ideas from it when designing WinAppDbg and, while I feel mine is more complete when it comes to Windows-specific features, this is what I’d definitely recommend for cross-platform projects.

See also the wonderful Python Arsenal for RE [http://pythonarsenal.com/] for another reference of security related Python tools.

Downloading and installing

This is what you need to know to download, install and begin to use WinAppDbg:

Latest version

The latest version is 1.6. The project’s download page [https://github.com/MarioVilas/winappdbg/releases/tag/winappdbg_v1.6] has this version. You can also get the bleeding-edge version from the Github repository [https://github.com/MarioVilas/winappdbg].

Older versions

Older versions are still available for download as well at the old Sourceforge site [http://winappdbg.sourceforge.net/dist/].

	Version 1.5
(20 Dec 2013)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.5.win32.msi]

	64-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.5.win-amd64.msi]

	Tutorial [http://winappdbg.sourceforge.net/dist/winappdbg-1.5-tutorial.pdf]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-1.5-reference.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.5.zip]

	Version 1.4
(10 Dec 2010)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.4.win32.exe]

	64-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.4.win-amd64.exe]

	Tutorial [http://winappdbg.sourceforge.net/dist/winappdbg-tutorial-1.4.pdf]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-reference-1.4.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.4.zip]

	Version 1.3
(12 Feb 2010)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.3.win32.exe]

	64-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.3.win-amd64.exe]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-1.3.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.3.zip]

	Version 1.2
(16 Jun 2009)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.2.win32.exe]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-1.2.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.2.zip]

	Version 1.1
(18 May 2009)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.1.win32.exe]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-1.1.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.1.zip]

	Version 1.0
(22 Apr 2009)

	
	32-bit installer [http://winappdbg.sourceforge.net/dist/winappdbg-1.0.win32.exe]

	Documentation [http://winappdbg.sourceforge.net/dist/winappdbg-1.0.pdf]

	Source code [http://winappdbg.sourceforge.net/dist/winappdbg-1.0.zip]

Dependencies

Naturally you need the Python interpreter [https://www.python.org/downloads/]. It’s recommended to use Python 2.7. You’ll have to install the 32 bit VM to debug 32 bit targets and the 64 bit VM for 64 bit targets. Both VMs can be installed on the same machine.

The following packages provide extra features and performance improvements, they are very recommended but not mandatory.

Disassembler

WinAppDbg itself doesn’t come with a disassembler, but all of the following are compatible. WinAppDbg will pick the most suitable one automatically when needed, but you can also decide which one to use.

	The diStorm [https://github.com/gdabah/distorm] disassembler by Gil Dabah.

	The Capstone [http://www.capstone-engine.org/] disassembler by Nguyen Anh Quynh.

	The BeaEngine [https://github.com/BeaEngine/beaengine] disassembler by BeatriX.

	The PyDasm [https://github.com/axcheron/pydasm] Python bindings to libdasm.

Debugging Symbols

WinAppDbg has the capability to download debugging symbols from the Microsoft Debugging Symbols server. For best results, install the Microsoft SDK [https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk].

Database storage

The SQL Alchemy [https://www.sqlalchemy.org/] ORM module gives WinAppDbg the ability to use a SQL database to store and find crash dumps. Most major database engines are supported.

Other goodies

Running WinAppDbg under Python interpreters other than CPython is considered experimental, but you may experience performance gains by using them. Also, in older versions of CPython (up until Python 2.5), with the Python specializing compiler Psyco [http://psyco.sourceforge.net/], WinAppDbg will experience a performance gain just by installing it, no additional steps are needed. You can download the sources and some old precompiled binaries from the official site [http://psyco.sourceforge.net/download.html] and newer but unofficial builds from Voidspace [http://www.voidspace.org.uk/python/modules.shtml#psyco].

Also PyReadline [https://pypi.org/project/pyreadline] is useful when using the console tools shipped with WinAppDbg, but they’ll work without it. Basically what it does is provide autocomplete and history for console applications.

Install

You can install directly from the sources package, extract it to any temporary folder and run the following command:

install.bat

You can also install WinAppDbg (stable versions only) from the Cheese Shop [https://pypi.org/project/winappdbg/] using any of the compatible package managers:

	PIP Installs Python [https://pip.pypa.io/en/stable/]

pip install winappdbg

	PyPM [https://code.activestate.com/pypm/search%3Awinappdbg/] (only when using ActivePython [https://www.activestate.com/products/activepython/])

	Easy Install (formerly from Setuptools [https://pypi.org/project/setuptools], now from Distribute [https://pypi.org/project/distribute/])

easy_install winappdbg

	Python Package Manager [https://sourceforge.net/projects/pythonpkgmgr/] (it’s a GUI installer)

Support

Minimim requirements:

	Windows XP

	Python 2.5

Recommended platform:

	Windows 7

	Python 2.7

It might work, but was not tested, under Windows 2000, Wine and ReactOS, and some bugs and missing features are to be expected in these platforms (mainly due to missing APIs).

Python 3 support was experimental up to WinAppDbg 1.4, and was dropped with WinAppDbg 1.5. There are currently no plans to support Python 3 in the near future - backwards compatibility would be broken and plenty of code would need to be refactored just to port it.

While there are still some issues that need ironing out, it may be worth trying out faster Python interpreters such as PyPy [https://bitbucket.org/pypy/pypy/downloads/] and IronPython [https://ironpython.net/download/].

If you find a bug or have a feature suggestion, don’t hesitate to open a new issue [https://github.com/MarioVilas/winappdbg/issues]. Both comments and complaints are welcome! :)

The following tables show which Python interpreters, operating systems and processor architectures are currently supported. Full means all features are fully functional. Partial means some features may be broken and/or untested. Untested means that though no testing was performed it should probably work. Experimental means it’s not expected to work and although it might, you can encounter many bugs.

Python interpreters

	Version

	Status

	Notes

	CPython 2.4 and earlier

	not supported

	Use an older version of WinAppDbg in this case.

	CPython 2.5 through 2.7

	full

	

	CPython 3.0 and newer

	not supported

	Planned for WinAppDbg 2.0.

	PyPy 1.4 and earlier

	not supported

	It doesn’t seem to be available for download any more…

	PyPy 1.5 and 1.6

	experimental

	The sqlite3 dll is missing, after you fix that
it should be the same as newer versions.

	PyPy 1.7 and newer

	experimental

	Some compatibility issues need fixing.

	IronPython 2.0 and newer

	experimental

	Some compatibility issues need fixing.

	Jython 2.5 and earlier

	not supported

	Support for ctypes is
incomplete [https://bugs.jython.org/issue2148]
in this platform.

Operating systems

	Version

	Status

	Notes

	Windows 2000 and older

	not supported

	Some required Win32 API functions didn’t exist yet.

	Windows XP

	full

	

	Windows Server 2003

	full

	

	Windows Server 2003 R2

	full

	

	Windows Vista

	full

	

	Windows 7

	full

	

	Windows Server 2008

	full

	

	Windows Server 2008 R2

	full

	

	Windows 8

	untested

	Probably similar to Windows 7.

	Windows Server 2012

	untested

	Probably similar to Windows Server 2008 R2.

	Windows 10

	untested

	Probably similar to Windows 7.

	ReactOS

	untested

	Probably similar to Windows 2000.

	Linux (using Wine 1.2)

	untested

	Reported to work on Ubuntu.

	Linux (using Wine 1.3)

	untested

	Reported to work on Ubuntu.

	Windows + Cygwin

	partial

	Some features may be missing.

	Windows Phone

	not supported

	Planned for WinAppDbg 2.0.

Architectures

	Version

	Status

	Notes

	Intel (32 bits)

	full

	

	Intel (64 bits)

	full

	

	ARM

	not supported

	Planned for WinAppDbg 2.0.

Known issues

	Python strings default encoding is ‘ascii’ since Python 2.5. While we did our best to prevent encoding errors when manipulating binary data, we recommend setting the default to ‘latin-1’ (ISO 8859-1) instead. You can do this by adding a sitecustomize.py [https://docs.python.org/2/faq/programming.html#what-does-unicodeerror-ascii-decoding-encoding-error-ordinal-not-in-range-128-mean] script to your Python installation.

	Step-on-branch mode stopped working since Windows Vista. This is due to a change in the Windows kernel. The next major version of WinAppDbg (2.0) will support this.

	Debugging 32 bit processes from a 64 bit Python VM does not work very well. Debugging 64 bit processes from a 32 bit Python VM does not work at all. This is in part because the Win32 API makes it difficult, but there’s also a design problem in WinAppDbg: most of the C struct definitions change from 32 to 64 bits and there’s currently no support for having both definitions at the same time. This will change with WinAppDbg 2.0 too.

	Setting hardware breakpoints in the main thread before the process has finished initializing does not work. This is not supported by the Windows API itself, and is not a limitation of WinAppDbg. Future versions of WinAppDbg will try to detect this error and warn about it.

License

This software is released under the BSD license [https://en.wikipedia.org/wiki/BSD_license], so as a user you are entitled to create derivative work and redistribute it if you wish. A makefile is provided to automatically generate the source distribution package and the Windows installer, and can also generate the documentation for all the modules using Epydoc [http://epydoc.sourceforge.net/]. The sources to this documentation are also provided and can be compiled with Sphinx [http://www.sphinx-doc.org/].

Command line tools

WinAppDbg comes with a collection of tools useful for common tasks when debugging or fuzzing a program. The most important tool, the Crash logger, attaches to any number of target processes and collects crash dump information in a SQL database. It can also apply heuristics to discard multiple occurrences of the same crash.

The source code of these tools can also be read for more examples on programming using WinAppDbg.

Crash logger

[image: _images/crash_logger1.png]

	crash_logger.py :

Attaches as a debugger or starts a new process for debugging. Whenever an interesting debug event occurs (i.e. a bug is found) it can save the info to a database (SQLite, MySQL, SQL Server, etc.) and/or log it through standard output.

A heuristic signature can be used to try to determine whether two crashes were caused by the same bug, in order to discard duplicates. It can also try to guess how exploitable would the found crashes be, using similar heuristics to those of !exploitable [https://archive.codeplex.com/?p=msecdbg].

Additional features allow attaching to system services, setting breakpoints at the target process(es), attaching to spawned child processes, restarting crashed processes, and running a custom command when a crash is found.

Settings are defined in a Unix-style configuration file. Here’s a template file you can use, where all options are explained.

	crash_report.py :

Shows the contents of the crashes database to standard output.

Process tools

These tools were inspired by the ptools suite by Nicolás Economou [https://twitter.com/nicoeconomou].

	pdebug.py :

Extremely simple command line debugger. It’s main feature is being written entirely in Python, so it’s easy to modify or write plugins for it.

	ptrace.py :

Traces execution of a process. It supports three methods: single stepping, single stepping on branches, and native syscall hooking.

	pinject.py :

Forces a process to load a DLL library of your choice.

	pfind.py :

Finds the given text, binary data, binary pattern or regular expression in a process memory space.

	plist.py :

Shows a list of all currently running processes.

	pmap.py :

Shows a map of a process memory space.

	pread.py :

Reads the memory contents of a process to standard output or any file of your choice.

	pwrite.py:

Writes to the memory of a process from the command line or any file of your choice.

	pkill.py :

Terminates a process or a batch of processes.

Miscellaneous

	SelectMyParent.py :

Allows you to create a new process specifying any other process as it’s parent, and inherit it’s handles. See the blog post by Didier Stevens [https://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-playing-with-the-windows-process-tree/] for the original C version.

	hexdump.py :

Shows an hexadecimal dump of the contents of a file.

Programming guide

This guide will show you through the most commonly used classes and methods of the WinAppDbg module, and provide some examples of use for each one. The goal is to give you a bird’s eye perspective on what the library can do and how, without having to read the source code.

	Instrumentation
	The System class
	Example #1: knowing on which platform we’re running

	Example #2: enumerating running processes

	Example #3: starting a new process

	The Process class
	Example #4: enumerating threads and DLL modules in a process

	Example #5: killing a process

	Example #6: reading the process memory

	Example #7: getting the command line for a process

	Example #8: getting the environment variables for a process

	Example #9: loading a DLL into the process

	Example #10: getting the process memory map

	Example #11: searching the process memory

	Example #12: searching the process memory using wildcards

	The Thread class
	Example #13: freeze all threads in a process

	Example #14: print a thread’s context

	Example #15: print a thread’s code disassembly

	The Module class
	Example #16: resolve an API function in a process

	The Window class
	Example #17: enumerate the top-level windows

	Example #18: minimize all top-level windows

	Example #19: traverse the windows tree

	Example #20: get windows by screen position

	Example #21: find windows by class and caption

	Example #22: kill a program using its window

	Back to the System class
	Example #23: exporting a Registry key

	Example #24: searching the Registry

	Example #25: listing system services

	Example #26: stopping and starting a system service

	Debugging
	The Debug class
	Example #1: starting a new process and waiting for it to finish

	Example #2: attaching to a process and waiting for it to finish

	Example #3: attaching to a process by filename

	Example #4: killing the debugged process when the debugger is closed

	The interactive debugger
	Example #5: running an interactive debugger session

	The Event class
	Example #6: handling debug events

	The Crash and CrashDAO classes
	Example #7: saving crash dumps

	The EventHandler class
	Example #8: tracing execution

	Example #9: intercepting API calls

	The EventSift class
	Example #10: sifting events per process

	Breakpoints, watches and hooks
	Example #11: setting a breakpoint

	Example #12: hooking a function

	Example #13: watching a variable

	Example #14: watching a buffer

	Labels
	Example #15: getting the label for a given memory address

	Example #16: resolving a label back into a memory address

	Helper classes and functions
	Console output with colors
	Example #1: printing text with colors

	Text output in tables
	Example #2: printing a text table

	Logging
	Example #3: logging debug events

	Hexadecimal input

	Hexadecimal output

	Dumping code, stack and registers
	Example #4: dumping code, stack and registers

	Pathname and filename handling
	Example #5: pathname and filename handling

	The Win32 API wrappers
	Example #1: finding a DLL in the search path

	Example #2: killing a process by attaching to it

	Example #3: enumerating heap blocks using the Toolhelp library

	Example #4: enumerating modules using the Toolhelp library

	Example #5: enumerating device drivers

	More examples
	Set a debugging timeout

	Dump the memory of a process

	Find alphanumeric addresses to jump to

	Show processes DEP settings

	Choose the disassembler you want to use

	Enumerate all named global atoms

	Advanced topics
	About the heuristic crash signatures

	A closer look at how labels work
	Labels syntax

	Generating labels

	Splitting labels

	Resolving labels

	A closer look at how breakpoints work
	Breakpoint types

	Conditional and automatic breakpoints

	One-shot breakpoints

	Batch operations on breakpoints

	Accessing the breakpoint objects

	Listing the breakpoints

Instrumentation

You can implement process instrumentation in your Python scripts by using the provided set of classes: System, Process, Thread, Module and Window. Each one acts as a snapshot of the processes, threads and DLL modules in the system.

A System object is a snapshot of all running processes. It contains Process objects, which in turn are snapshots of threads and modules, containing Thread and Module objects.

System objects also contain Window objects, representing the windows in the current desktop.

Note

You don’t need to be attached as a debugger for these classes to work.

The System class

The System class groups functionality that lets you instrument some global aspects of the machine where you installed WinAppDbg. It also behaves like a snapshot of the running processes. It can enumerate processes and perform operations on a batch of processes.

Example #1: knowing on which platform we’re running

Download

from winappdbg import System, version

Show the Windows version and the current architecture.
print "WinAppDbg %s" % version
print "Running on %s for the %s architecture." % (System.os, System.arch)
if System.wow64:
 print "Running in 32 bit emulation mode."
print "From this Python VM we can attach to %d-bit processes." % System.bits

Example #2: enumerating running processes

Download

from winappdbg import System

Create a system snaphot.
system = System()

Now we can enumerate the running processes.
for process in system:
 print "%d:\t%s" % (process.get_pid(), process.get_filename())

Example #3: starting a new process

Download

from winappdbg import System

import sys

Instance a System object.
system = System()

Get the target application.
command_line = system.argv_to_cmdline(sys.argv[1 :])

Start a new process.
process = system.start_process(command_line) # see the docs for more options

Show info on the new process.
print "Started process %d (%d bits)" % (process.get_pid(), process.get_bits())

The System class has many more features, so we’ll be coming back to it later on in the tutorial.

The Process class

The Process class lets you manipulate any process in the system. You can get a Process instance by enumerating a System snapshot, or instancing one directly by providing the process ID.

A Process object allows you to manipulate the process memory (read, write, allocate and free operations), create new threads in the process, and more. It also acts as a snapshot of it’s threads and DLL modules.

Example #4: enumerating threads and DLL modules in a process

Download

from winappdbg import Process, HexDump

def print_threads_and_modules(pid):

 # Instance a Process object.
 process = Process(pid)
 print "Process %d" % process.get_pid()

 # Now we can enumerate the threads in the process...
 print "Threads:"
 for thread in process.iter_threads():
 print "\t%d" % thread.get_tid()

 # ...and the modules in the process.
 print "Modules:"
 bits = process.get_bits()
 for module in process.iter_modules():
 print "\t%s\t%s" % (
 HexDump.address(module.get_base(), bits),
 module.get_filename()
)

Example #5: killing a process

Download

from winappdbg import Process

def process_kill(pid):

 # Instance a Process object.
 process = Process(pid)

 # Kill the process.
 process.kill()

Example #6: reading the process memory

Download

from winappdbg import Process

def process_read(pid, address, length):

 # Instance a Process object.
 process = Process(pid)

 # Read the process memory.
 data = process.read(address, length)

 # You can also change the process memory.
 # process.write(address, "example data")

 # Return a Python string with the memory contents.
 return data

Example #7: getting the command line for a process

Download

from winappdbg import Process

def show_command_line(pid):

 # Instance a Process object.
 process = Process(pid)

 # Print the process command line.
 print process.get_command_line()

 # The same thing could be done with the environment variables.
 #import pprint
 #pprint.pprint(process.get_environment())

Example #8: getting the environment variables for a process

Download

from winappdbg import Process

def show_environment(pid):

 # Instance a Process object.
 process = Process(pid)

 # Get its environment variables.
 environment = process.get_environment()

 # Print the environment variables.
 for variable, value in sorted(environment.items()):
 print "%s=%s" % (variable, value)

Example #9: loading a DLL into the process

Download

from winappdbg import Process

def load_dll(pid, filename):

 # Instance a Process object.
 process = Process(pid)

 # Load the DLL library in the process.
 process.inject_dll(filename)

Example #10: getting the process memory map

Download

from winappdbg import win32, Process, HexDump

def print_memory_map(pid):

 # Instance a Process object.
 process = Process(pid)

 # Find out if it's a 32 or 64 bit process.
 bits = process.get_bits()

 # Get the process memory map.
 memoryMap = process.get_memory_map()

 # Now you could do this...
 #
 # from winappdbg import CrashDump
 # print CrashDump.dump_memory_map(memoryMap),
 #
 # ...but let's do it the hard way:

 # For each memory block in the map...
 print "Address \tSize \tState \tAccess \tType"
 for mbi in memoryMap:

 # Address and size of memory block.
 BaseAddress = HexDump.address(mbi.BaseAddress, bits)
 RegionSize = HexDump.address(mbi.RegionSize, bits)

 # State (free or allocated).
 if mbi.State == win32.MEM_RESERVE:
 State = "Reserved "
 elif mbi.State == win32.MEM_COMMIT:
 State = "Commited "
 elif mbi.State == win32.MEM_FREE:
 State = "Free "
 else:
 State = "Unknown "

 # Page protection bits (R/W/X/G).
 if mbi.State != win32.MEM_COMMIT:
 Protect = " "
 else:
Protect = "0x%.08x" % mbi.Protect
 if mbi.Protect & win32.PAGE_NOACCESS:
 Protect = "--- "
 elif mbi.Protect & win32.PAGE_READONLY:
 Protect = "R-- "
 elif mbi.Protect & win32.PAGE_READWRITE:
 Protect = "RW- "
 elif mbi.Protect & win32.PAGE_WRITECOPY:
 Protect = "RC- "
 elif mbi.Protect & win32.PAGE_EXECUTE:
 Protect = "--X "
 elif mbi.Protect & win32.PAGE_EXECUTE_READ:
 Protect = "R-X "
 elif mbi.Protect & win32.PAGE_EXECUTE_READWRITE:
 Protect = "RWX "
 elif mbi.Protect & win32.PAGE_EXECUTE_WRITECOPY:
 Protect = "RCX "
 else:
 Protect = "??? "
 if mbi.Protect & win32.PAGE_GUARD:
 Protect += "G"
 else:
 Protect += "-"
 if mbi.Protect & win32.PAGE_NOCACHE:
 Protect += "N"
 else:
 Protect += "-"
 if mbi.Protect & win32.PAGE_WRITECOMBINE:
 Protect += "W"
 else:
 Protect += "-"
 Protect += " "

 # Type (file mapping, executable image, or private memory).
 if mbi.Type == win32.MEM_IMAGE:
 Type = "Image "
 elif mbi.Type == win32.MEM_MAPPED:
 Type = "Mapped "
 elif mbi.Type == win32.MEM_PRIVATE:
 Type = "Private "
 elif mbi.Type == 0:
 Type = "Free "
 else:
 Type = "Unknown "

 # Print the memory block information.
 fmt = "%s\t%s\t%s\t%s\t%s"
 print fmt % (BaseAddress, RegionSize, State, Protect, Type)

Example #11: searching the process memory

Download

from winappdbg import Process, HexDump

def memory_search(pid, bytes):

 # Instance a Process object.
 process = Process(pid)

 # Search for the string in the process memory.
 for address in process.search_bytes(bytes):

 # Print the memory address where it was found.
 print HexDump.address(address)

Example #12: searching the process memory using wildcards

Download

from winappdbg import Process, HexDump

def wildcard_search(pid, pattern):

 #
 # Hex patterns must be in this form:
 # "68 65 6c 6c 6f 20 77 6f 72 6c 64" # "hello world"
 #
 # Spaces are optional. Capitalization of hex digits doesn't matter.
 # This is exactly equivalent to the previous example:
 # "68656C6C6F20776F726C64" # "hello world"
 #
 # Wildcards are allowed, in the form of a "?" sign in any hex digit:
 # "5? 5? c3" # pop register / pop register / ret
 # "b8 ?? ?? ?? ??" # mov eax, immediate value
 #

 # Instance a Process object.
 process = Process(pid)

 # Search for the hexadecimal pattern in the process memory.
 for address, data in process.search_hexa(pattern):

 # Print a hex dump for each memory location found.
 print HexDump.hexblock(data, address = address)

The Thread class

A Thread object lets you manipulate any thread in any process in the system. You can get a Thread instance by enumerating a Process snapshot, or instancing one manually by providing the thread ID.

You can manipulate the thread context (read and write to it’s registers), perform typical debugger operations (getting stack traces, etc), suspend and resume execution, and more.

Example #13: freeze all threads in a process

Download

from winappdbg import Process, System

def freeze_threads(pid):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Process object.
 process = Process(pid)

 # This would also do the trick...
 #
 # process.suspend()
 #
 # ...but let's do it the hard way:

 # Lookup the threads in the process.
 process.scan_threads()

 # For each thread in the process...
 for thread in process.iter_threads():

 # Suspend the thread execution.
 thread.suspend()

def unfreeze_threads(pid):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Process object.
 process = Process(pid)

 # This would also do the trick...
 #
 # process.resume()
 #
 # ...but let's do it the hard way:

 # Lookup the threads in the process.
 process.scan_threads()

 # For each thread in the process...
 for thread in process.iter_threads():

 # Resume the thread execution.
 thread.resume()

Example #14: print a thread’s context

Download

from winappdbg import Thread, CrashDump, System

def print_thread_context(tid):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Thread object.
 thread = Thread(tid)

 # Suspend the thread execution.
 thread.suspend()

 # Get the thread context.
 try:
 context = thread.get_context()

 # Resume the thread execution.
 finally:
 thread.resume()

 # Display the thread context.
 print
 print CrashDump.dump_registers(context),

Example #15: print a thread’s code disassembly

Download

from winappdbg import Thread, CrashDump, System

def print_thread_disassembly(tid):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Thread object.
 thread = Thread(tid)

 # Suspend the thread execution.
 thread.suspend()

 # Get the thread's currently running code.
 try:
 eip = thread.get_pc()
 code = thread.disassemble_around(eip)

 # You can also do this:
 # code = thread.disassemble_around_pc()

 # Or even this:
 # process = thread.get_process()
 # code = process.disassemble_around(eip)

 # Resume the thread execution.
 finally:
 thread.resume()

 # Display the disassembled code.
 print
 print CrashDump.dump_code(code, eip),

The Module class

A Module object lets you manipulate any thread in any process in the system. You can get a Module instance by enumerating a Process snapshot. Module objects can be used to resolve the addresses of exported functions in the process address space.

Example #16: resolve an API function in a process

Download

from winappdbg import Process, System

def print_api_address(pid, modName, procName):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Process object.
 process = Process(pid)

 # Lookup it's modules.
 process.scan_modules()

 # Get the module.
 module = process.get_module_by_name(modName)
 if not module:
 print "Module not found: %s" % modName
 return

 # Resolve the requested API function address.
 address = module.resolve(procName)

 # Print the address.
 if address:
 print "%s!%s == 0x%.08x" % (modName, procName, address)
 else:
 print "Could not resolve %s in module %s" % (procName, modName)

The Window class

A Window object lets you manipulate any window in the current desktop. You can get a Window instance by querying a System object.

Example #17: enumerate the top-level windows

Download

from winappdbg import System, HexDump

Create a system snaphot.
system = System()

Now we can enumerate the top-level windows.
for window in system.get_windows():
 handle = HexDump.integer(window.get_handle())
 caption = window.get_text()
 if caption is not None:
 print "%s:\t%s" % (handle, caption)

Example #18: minimize all top-level windows

Download

from winappdbg import System

Create a system snaphot.
system = System()

Enumerate the top-level windows.
for window in system.get_top_level_windows():

 # Minimize the window.
 if window.is_visible() and not window.is_minimized():
 window.minimize()

 # You could also maximize, restore, show, hide, enable and disable.
 # For example:
 #
 # if window.is_maximized():
 # window.restore()
 #
 # if not window.is_visible():
 # window.show()
 #
 # if not window.is_disabled():
 # window.enable()
 #
 # ...and so on.

Example #19: traverse the windows tree

Download

from winappdbg import System, HexDump

def show_window_tree(window, indent = 0):

 # Show this window's handle and caption.
 # Use some ASCII art to show the layout. :)
 handle = HexDump.integer(window.get_handle())
 caption = window.get_text()
 line = ""
 if indent > 0:
 print "| " * indent
 line = "| " * (indent - 1) + "|---"
 else:
 print "|"
 if caption is not None:
 line += handle + ": " + caption
 else:
 line += handle
 print line

 # Recursively show the child windows.
 for child in window.get_children():
 show_window_tree(child, indent + 1)

def main():

 # Create a system snaphot.
 system = System()

 # Get the Desktop window.
 root = system.get_desktop_window()

 # Now show the window tree.
 show_window_tree(root)

 # You can also ge the tree as a Python dictionary:
 # tree = root.get_tree()
 # print tree

Example #20: get windows by screen position

Download

from winappdbg import System, HexDump
import sys

try:

 # Get the coordinates from the command line.
 x = int(sys.argv[1])
 y = int(sys.argv[2])

 # Get the window at the requested position.
 window = System.get_window_at(x, y)

 # Get the window coordinates.
 rect = window.get_screen_rect()
 position = (rect.left, rect.top, rect.right, rect.bottom)
 size = (rect.right - rect.left, rect.bottom - rect.top)

 # Print the window information.
 print "Handle: %s" % HexDump.integer(window.get_handle())
 print "Caption: %s" % window.text
 print "Class: %s" % window.classname
 print "Style: %s" % HexDump.integer(window.style)
 print "ExStyle: %s" % HexDump.integer(window.exstyle)
 print "Position: (%i, %i) - (%i, %i)" % position
 print "Size: (%i, %i)" % size

except WindowsError:
 print "No window at those coordinates!"

Example #21: find windows by class and caption

Download

from winappdbg import System, HexDump
import sys

def find_window():

 # If two arguments are given, the first is the classname
 # and the second is the caption text.
 if len(sys.argv) > 2:
 classname = sys.argv[1]
 caption = sys.argv[2]
 if not classname:
 classname = None
 if not caption:
 caption = None
 window = System.find_window(classname, caption)

 # If only one argument is given, try the caption text, then the classname.
 else:
 try:
 window = System.find_window(windowName = sys.argv[1])
 except WindowsError:
 window = System.find_window(className = sys.argv[1])

 return window

def show_window(window):

 # Get the window coordinates.
 rect = window.get_screen_rect()
 position = (rect.left, rect.top, rect.right, rect.bottom)
 size = (rect.right - rect.left, rect.bottom - rect.top)

 # Print the window information.
 print "Handle: %s" % HexDump.integer(window.get_handle())
 print "Caption: %s" % window.text
 print "Class: %s" % window.classname
 print "Style: %s" % HexDump.integer(window.style)
 print "ExStyle: %s" % HexDump.integer(window.exstyle)
 print "Position: (%i, %i) - (%i, %i)" % position
 print "Size: (%i, %i)" % size

def main():
 try:
 show_window(find_window())
 except WindowsError:
 print "No window found!"

Example #22: kill a program using its window

Download

def user_confirmed():
 print
 answer = raw_input("Are you sure you want to kill this program? (y/N):")
 answer = answer.strip().upper()
 return answer.startswith("Y")

def main():

 # Find the window.
 try:
 window = find_window()
 except WindowsError:
 print "No window found!"
 return

 # Show the window info to the user.
 show_window(window)

 # Ask the user for confirmation.
 if user_confirmed():

 # Kill the program.
 window.kill()

Back to the System class

As promised, we’re back on the System class to see more of its features. We’ll now see how to access the Windows Registry and work with system services.

Example #23: exporting a Registry key

Download

import struct

from winappdbg import System, win32

#RegistryEditorVersion = "REGEDIT4" # for Windows 95
RegistryEditorVersion = "Windows Registry Editor Version 5.00"

Helper function to serialize data to hexadecimal format.
def reg_hexa(value, type):
 return "hex(%x):%s" % (type, ",".join(["%.2x" % ord(x) for x in value]))

Registry export function.
def reg_export(reg_path, filename):

 # Queue of registry keys to visit.
 queue = []

 # Get the registry key the user requested.
 key = System.registry[reg_path]

 # Add it to the queue.
 queue.append(key)

 # Open the output file.
 with open(filename, "wb") as output:

 # Write the file format header.
 output.write("%s\r\n" % RegistryEditorVersion)

 # For each registry key in the queue...
 while queue:
 key = queue.pop()

 # Write the key path.
 output.write("\r\n[%s]\r\n" % key.path)

 # If there's a default value, write it.
 default = str(key)
 if default:
 output.write("@=\"%s\"\r\n" % default)

 # For each value in the key...
 for name, value in key.iteritems():

 # Skip the default value since we already wrote it.
 if not name:
 continue

 # Serialize the name.
 s_name = "\"%s\"" % name

 # Serialize the value.
 t_value = key.get_value_type(name)
 if t_value == win32.REG_SZ and type(value) == str:
 s_value = "\"%s\"" % value.replace("\"", "\\\"")
 elif t_value == win32.REG_DWORD:
 s_value = "dword:%.8X" % value
 else:
 if t_value == win32.REG_QWORD:
 value = struct.pack("<Q", value)
 elif t_value == win32.REG_DWORD:
 value = struct.pack("<L", value)
 elif t_value == win32.REG_DWORD_BIG_ENDIAN:
 value = struct.pack(">L", value)
 elif t_value == win32.REG_MULTI_SZ:
 if not value:
 value = ""
 elif type(value) == str:
 value = "\0".join(value)
 else:
 value = u"\0".join(value)
 if type(value) == str:
 s_value = reg_hexa(value, t_value)
 else:
 s_value = reg_hexa(value.encode("UTF-16"), t_value)

 # Write the name and value.
 output.write("%s=%s\r\n" % (s_name, s_value))

Example #24: searching the Registry

Download

from winappdbg import System, Color

def reg_search(search):

 # Show the user what we're searching for.
 print "Searching for: %r" % search

 # For each Registry key...
 for path in System.registry.iterkeys():

 # Try to open the key. On error skip it.
 try:
 key = System.registry[path]
 except Exception:
 continue

 # Get the default value. On error skip it.
 try:
 default = str(key)
 except KeyError:
 default = ""
 except Exception:
 continue

 # Does the default value match?
 if search in default:
 text = "%s\\@: %s" % (path, default)
 highlight(search, text)

 # Does the key match?
 elif search in path[path.rfind("\\") :]:
 highlight(search, path)

 # For each Registry value...
 for name in key.iterkeys():

 # Try to get the value. On error ignore it.
 try:
 value = key[name]
 except Exception:
 value = ""

 # Registry values can be of many data types.
 # For this search we need to force all values to be strings.
 if type(value) not in (str, unicode):
 value = str(value)

 # Do the name or value match?
 if search in name or search in value:
 text = "%s\\%s: %r" % (path, name, value)
 highlight(search, text)

Helper function to print text with a highlighted search string.
def highlight(search, text):
 if can_highlight:
 try:
 Color.default()
 p = 0
 t = len(text)
 s = len(search)
 while p < t:
 q = text.find(search)
 if q < p:
 q = t
 sys.stdout.write(text[p : q])
 Color.red()
 Color.light()
 sys.stdout.write(text[q : q + s])
 Color.default()
 sys.stdout.write("\r\n")
 p = q + s
 finally:
 Color.default()
 else:
 print text

Determine if the output is a console or a file.
Trying to use colors fails if the output is not the console.
can_highlight = Color.can_use_colors()

Example #25: listing system services

Download

from winappdbg import System, win32

def show_services():

 # Get the list of services.
 services = System.get_services()

 # You could get only the running services instead.
 # services = System.get_active_services()

 # For each service descriptor...
 for descriptor in services:

 # Print the service information, the easy way.
 # print str(descriptor)

 # You can also do it the hard way, accessing its members.
 print "Service name: %s" % descriptor.ServiceName
 print "Display name: %s" % descriptor.DisplayName
 if descriptor.ServiceType & win32.SERVICE_INTERACTIVE_PROCESS:
 print "Service type: Win32 GUI"
 elif descriptor.ServiceType & win32.SERVICE_WIN32:
 print "Service type: Win32"
 elif descriptor.ServiceType & win32.SERVICE_DRIVER:
 print "Service type: Driver"
 if descriptor.CurrentState == win32.SERVICE_CONTINUE_PENDING:
 print "Current status: RESTARTING..."
 elif descriptor.CurrentState == win32.SERVICE_PAUSE_PENDING:
 print "Current status: PAUSING..."
 elif descriptor.CurrentState == win32.SERVICE_PAUSED:
 print "Current status: PAUSED"
 elif descriptor.CurrentState == win32.SERVICE_RUNNING:
 print "Current status: RUNNING"
 elif descriptor.CurrentState == win32.SERVICE_START_PENDING:
 print "Current status: STARTING..."
 elif descriptor.CurrentState == win32.SERVICE_STOP_PENDING:
 print "Current status: STOPPING..."
 elif descriptor.CurrentState == win32.SERVICE_STOPPED:
 print "Current status: STOPPED"
 print

When invoked from the command line,
call the show_services() function.

Example #26: stopping and starting a system service

Download

from time import sleep

from winappdbg import System, win32

Function that restarts a service.
Requires UAC elevation in Windows Vista and above.
def restart_service(service):
 try:

 # Get the display name.
 try:
 display_name = System.get_service_display_name(service)
 except WindowsError:
 display_name = service

 # Get the service descriptor.
 descriptor = System.get_service(service)

 # Is the service running?
 if descriptor.CurrentState != win32.SERVICE_STOPPED:

 # Tell the service to stop.
 print "Stopping service \"%s\"..." % display_name
 System.stop_service(service)

 # Wait for the service to stop.
 wait_for_service(service, win32.SERVICE_STOP_PENDING)
 print "Service stopped successfully."

 # Tell the service to start.
 print "Starting service \"%s\"..." % display_name
 System.start_service(service)

 # Wait for the service to start.
 wait_for_service(service, win32.SERVICE_START_PENDING)
 print "Service started successfully."

 # Show the new process ID.
 # This feature requires Windows XP and above.
 descriptor = System.get_service(service)
 try:
 print "New process ID is: %d" % descriptor.ProcessId
 except AttributeError:
 pass

 # On error, show an error message.
 except WindowsError, e:
 if e.winerror == win32.ERROR_ACCESS_DENIED:
 print "Access denied! Is this an UAC elevated prompt?"
 else:
 print str(e)

Helper function to wait for the service to change its state.
def wait_for_service(service, wait_state, timeout = 20):
 descriptor = System.get_service(service)
 while descriptor.CurrentState == wait_state:
 timeout -= 1
 if timeout <= 0:
 raise RuntimeError("Error: timed out.")
 sleep(0.5)
 descriptor = System.get_service(service)

Debugging

Debugging operations are performed by the Debug class. You can receive notification of debugging events by passing a custom event handler to the Debug object when creating it - each event is represented by an Event object. Custom event handlers can also be subclasses of the EventHandler class.

Debug objects can also set breakpoints, watches and hooks and support the use of labels.

The Debug class

A Debug object provides methods to launch new processes, attach to and detach from existing processes, and manage breakpoints. It also contains a System snapshot to instrument debugged processes - this snapshot is updated automatically for processes being debugged.

When you’re finished using the Debug object, you must either call its stop() method from a finally block, or put the Debug object inside a with statement.

Note

In previous examples we have used a System.request_debug_privileges() call to get debug privileges. When using the Debug class we don’t need to do that - it’s taken care of automatically in the constructor.

Example #1: starting a new process and waiting for it to finish

Download

from winappdbg import Debug

import sys

Instance a Debug object.
debug = Debug()
try:

 # Start a new process for debugging.
 debug.execv(sys.argv[1 :])

 # Wait for the debugee to finish.
 debug.loop()

Stop the debugger.
finally:
 debug.stop()

Example #2: attaching to a process and waiting for it to finish

Download

from winappdbg import Debug

import sys

Get the process ID from the command line.
pid = int(sys.argv[1])

Instance a Debug object.
debug = Debug()
try:

 # Attach to a running process.
 debug.attach(pid)

 # Wait for the debugee to finish.
 debug.loop()

Stop the debugger.
finally:
 debug.stop()

Example #3: attaching to a process by filename

Download

from winappdbg import Debug

import sys

Get the process filename from the command line.
filename = sys.argv[1]

Instance a Debug object.
debug = Debug()
try:

 # Lookup the currently running processes.
 debug.system.scan_processes()

 # For all processes that match the requested filename...
 for (process, name) in debug.system.find_processes_by_filename(filename):
 print process.get_pid(), name

 # Attach to the process.
 debug.attach(process.get_pid())

 # Wait for all the debugees to finish.
 debug.loop()

Stop the debugger.
finally:
 debug.stop()

Example #4: killing the debugged process when the debugger is closed

Download

from winappdbg import Debug

import sys

Instance a Debug object, set the kill on exit property to True.
debug = Debug(bKillOnExit = True)

The user can stop debugging with Control-C.
try:
 print "Hit Control-C to stop debugging..."

 # Start a new process for debugging.
 debug.execv(sys.argv[1 :])

 # Wait for the debugee to finish.
 debug.loop()

If the user presses Control-C...
except KeyboardInterrupt:
 print "Interrupted by user."

 # Stop debugging. This kills all debugged processes.
 debug.stop()

The interactive debugger

The Debug class also contains an implementation of a simple console debugger. It can come in handy when testing your scripts, or to manually handle unexpected situations.

Example #5: running an interactive debugger session

Download

from winappdbg import Debug

def simple_debugger(argv):

 # Instance a Debug object.
 debug = Debug()
 try:

 # Start a new process for debugging.
 debug.execv(argv)

 # Launch the interactive debugger.
 debug.interactive()

 # Stop the debugger.
 finally:
 debug.stop()

The Event class

So far we have seen how to attach to or start processes. But a debugger also needs to react to events that happen in the debugee, and this is done by passing a callback function as the eventHandler parameter when instancing the Debug object. This callback, when called, will receive as parameter an Event object which describes the event and contains a reference to the Debug object itself.

Every Event object has the following set of common methods to get information from them:

	Method

	Description

	get_event_name

	Returns the name of the event.

	get_event_description

	Returns a user-friendly description of the event.

	get_event_code

	Returns the event code constant, as defined by the Win32 API.

	get_pid

	Returns the ID of the process where the event occurred.

	get_tid

	Returns the ID of the thread where the event occurred.

	get_process

	Returns the Process object.

	get_thread

	Returns the Thread object.

Then depending on the event type, you can get more information that’s specific to each type.

	Method

	Applicable events

	Description

	get_filename

	Process creation and destruction,
DLL library load and unload.

	Returns the filename of the EXE or DLL.

	get_exit_code

	Process and thread destruction.

	Returns the exit code of the process or thread.

	get_exception_name

	Exceptions.

	Returns the Win32 API constant name for the exception code.

	get_exception_code

	Exceptions.

	Returns the Win32 API constant value for the exception code.

	get_exception_address

	Exceptions.

	Returns the memory address where the exception has occurred. For exceptions not involving memory operations, the current execution pointer is returned.

	is_system_defined_exception

	Exceptions.

	Returns True if the exception was caused by the operating system rather than the application code.
Most notably, one such exception is always raised when attaching to a process, and then running a process from the debugger (right after process initialization is complete).

	is_first_chance

	Exceptions.

	If True, the exception hasn’t been passed yet to the exception handlers of the debuggee. If False, the exception was passed to the exception handlers but none of them could handle it.

	is_nested

	Exceptions.

	If True, the exception was raised when handing at least one more exception.
Many exceptions can be nested that way. Call get_nexted_exceptions to get a list of those nested exceptions.

	get_fault_address

	Exceptions caused by invalid memory access.

	Returns the memory address where the invalid access has occurred.

Example #6: handling debug events

Download

from winappdbg import Debug, HexDump, win32

def my_event_handler(event):

 # Get the process ID where the event occured.
 pid = event.get_pid()

 # Get the thread ID where the event occured.
 tid = event.get_tid()

 # Find out if it's a 32 or 64 bit process.
 bits = event.get_process().get_bits()

 # Get the value of EIP at the thread.
 address = event.get_thread().get_pc()

 # Get the event name.
 name = event.get_event_name()

 # Get the event code.
 code = event.get_event_code()

 # If the event is an exception...
 if code == win32.EXCEPTION_DEBUG_EVENT:

 # Get the exception user-friendly description.
 name = event.get_exception_description()

 # Get the exception code.
 code = event.get_exception_code()

 # Get the address where the exception occurred.
 try:
 address = event.get_fault_address()
 except NotImplementedError:
 address = event.get_exception_address()

 # If the event is a process creation or destruction,
 # or a DLL being loaded or unloaded...
 elif code in (win32.CREATE_PROCESS_DEBUG_EVENT,
 win32.EXIT_PROCESS_DEBUG_EVENT,
 win32.LOAD_DLL_DEBUG_EVENT,
 win32.UNLOAD_DLL_DEBUG_EVENT):

 # Get the filename.
 filename = event.get_filename()
 if filename:
 name = "%s [%s]" % (name, filename)

 # Show a descriptive message to the user.
 print "-" * 79
 format_string = "%s (0x%s) at address 0x%s, process %d, thread %d"
 message = format_string % (name,
 HexDump.integer(code, bits),
 HexDump.address(address, bits),
 pid,
 tid)
 print message

def simple_debugger(argv):

 # Instance a Debug object, passing it the event handler callback.
 debug = Debug(my_event_handler, bKillOnExit = True)
 try:

 # Start a new process for debugging.
 debug.execv(argv)

 # Wait for the debugee to finish.
 debug.loop()

 # Stop the debugger.
 finally:
 debug.stop()

The Crash and CrashDAO classes

Crashes are exceptions a program can’t recover from (also known as second-chance exceptions or last chance exceptions). A crash dump is a collection of information from a crash in a program that can (hopefully!) help you reproduce or fix the bug that caused it in the first place.

WinAppDbg provides the Crash class to generate and manipulate crash dumps. When instancing a Crash object only the most basic information is collected, you have to call the fetch_extra_data method to collect more data. This lets you control which information to gather and when - for example you may be interested in gathering more information only under certain conditions, or for certain kinds of exceptions.

Crash objects also support heuristic signatures that can be used to try to determine whether two crashes were caused by the same bug, in order to discard duplicates. It can also try to guess how exploitable would the found crashes be, using similar heuristics to those of !exploitable [https://archive.codeplex.com/?p=msecdbg].

Now, the next step would be storing the crash dump somewhere for later examination. The most crude way to do this is using the standard pickle [https://docs.python.org/2/library/pickle.html] module, or similar modules like cerealizer [https://pypi.org/project/Cerealizer/]. This is easy and guaranteed to work, but not very comfortable! Crash dumps stored that way are hard to read outside Python.

A more flexible way to store crash dumps is using the CrashDAO class. It uses SQLAlchemy [https://www.sqlalchemy.org/] to connect to any supported SQL database, create the required tables if needed, and store multiple crash dumps in it. This is the preferred method, since it’s easier to access and manipulate the information outside Python, and you can store crashes from multiple machines into the same database.

Old versions of WinAppDbg (1.4 and older) supported DBM databases through the CrashContainer class, SQLite databases with the CrashTable class, and SQL Server databases with the CrashTableMSSQL class. They are now deprecated and, while still present for backwards compatibility (for the time being) its use is not recommended.

Example #7: saving crash dumps

Download

from winappdbg import win32, Debug, HexDump, Crash

try:
 from winappdbg import CrashDAO
except ImportError:
 raise ImportError("Error: SQLAlchemy is not installed!")

def my_event_handler(event):

 # Get the event name.
 name = event.get_event_name()

 # Get the event code.
 code = event.get_event_code()

 # Get the process ID where the event occured.
 pid = event.get_pid()

 # Get the thread ID where the event occured.
 tid = event.get_tid()

 # Get the value of EIP at the thread.
 pc = event.get_thread().get_pc()

 # Show something to the user.
 bits = event.get_process().get_bits()
 format_string = "%s (%s) at address %s, process %d, thread %d"
 message = format_string % (name,
 HexDump.integer(code, bits),
 HexDump.address(pc, bits),
 pid,
 tid)
 print message

 # If the event is a crash...
 if code == win32.EXCEPTION_DEBUG_EVENT and event.is_last_chance():
 print "Crash detected, storing crash dump in database..."

 # Generate a minimal crash dump.
 crash = Crash(event)

 # You can turn it into a full crash dump (recommended).
 # crash.fetch_extra_data(event, takeMemorySnapshot = 0) # no memory dump
 # crash.fetch_extra_data(event, takeMemorySnapshot = 1) # small memory dump
 crash.fetch_extra_data(event, takeMemorySnapshot = 2) # full memory dump

 # Connect to the database. You can use any URL supported by SQLAlchemy.
 # For more details see the reference documentation.
 dao = CrashDAO("sqlite:///crashes.sqlite")
 #dao = CrashDAO("mysql+MySQLdb://root:toor@localhost/crashes")

 # Store the crash dump in the database.
 dao.add(crash)

 # If you do this instead, heuristics are used to detect duplicated
 # crashes so they aren't added to the database.
 # dao.add(crash, allow_duplicates = False)

 # You can also launch the interactive debugger from here. Try it! :)
 # event.debug.interactive()

 # Kill the process.
 event.get_process().kill()

def simple_debugger(argv):

 # Instance a Debug object, passing it the event handler callback.
 debug = Debug(my_event_handler, bKillOnExit = True)
 try:

 # Start a new process for debugging.
 debug.execv(argv)

 # Wait for the debugee to finish.
 debug.loop()

 # Stop the debugger.
 finally:
 debug.stop()

The EventHandler class

Using a callback function is not very flexible when your code is too large. For that reason, the EventHandler class is provided.

Instead of a function, you can define a subclass of EventHandler where each method of your class should match an event - for example, to receive notification on new DLL libraries being loaded, define the load_dll method in your class. If you don’t want to receive notifications on a specific event, simply don’t define the method in your class.

These are the most important event notification methods:

	Notification name

	What does it mean?

	When is it received?

	create_process

	The debugger has attached to a new process.

	When attaching to a process, when starting a new process for debugging, or when the debugee starts a new process and the bFollow flag was set to True.

	exit_process

	A debugee process has finished executing.

	When a process terminates by itself or when the Process.kill method is called.

	create_thread

	A debugee process has started a new thread.

	When the process creates a new thread or when the Process.start_thread method is called.

	exit_thread

	A thread in a debugee process has finished executing.

	When a thread terminates by itself or when the Thread.kill method is called.

	load_dll

	A module in a debugee process was loaded.

	When a process loads a DLL module by itself or when the Process.inject_dll method is called.

	unload_dll

	A module in a debugee process was unloaded.

	When a process unloads a DLL module by itself.

	exception

	An exception was raised by the debugee.

	When a hardware fault is triggered or when the process calls RaiseException() [http://msdn.microsoft.com/en-us/library/ms680552(VS.85).aspx].

	output_string

	The debuggee has sent a debug string.

	When the process calls OutputDebugString() [http://msdn.microsoft.com/en-us/library/windows/desktop/aa363362(v=vs.85).aspx].

The event handler can also receive notifications for specific exceptions as a different event. When you define the method for that exception, it takes precedence over the more generic exception method.

These are the most important exception notification methods:

	Notification name

	What does it mean?

	When is it received

	access_violation

	An access violation exception was raised by the debugee.

	When the debuggee tries to access invalid memory.

	ms_vc_exception

	A C++ exception was raised by the debugee.

	When the debuggee calls RaiseException() with a custom exception code. This is what the implementation of throw() of the Visual Studio runtime does.

	breakpoint

	A breakpoint exception was raised by the debugee.

	When a hardware fault is triggered by the int3 opcode [https://en.wikipedia.org/wiki/INT_(x86_instruction)#INT3], when the process calls DebugBreak() [http://msdn.microsoft.com/en-us/library/ms679297(VS.85).aspx], or when a code breakpoint set by your program is triggered.

	single_step

	A single step exception was raised by the debugee.

	When a hardware fault is triggered by the trap flag [http://maven.smith.edu/~thiebaut/ArtOfAssembly/CH17/CH17-2.html#HEADING2-10] or the icebp opcode [http://www.rcollins.org/secrets/opcodes/ICEBP.html], or when a hardware breakpoint set by your program is triggered.

	guard_page

	A guard page exception was raised by the debugee.

	When a guard page [https://docs.microsoft.com/es-es/windows/win32/memory/creating-guard-pages] is hit or when a page breakpoint set by your program is triggered.

In addition to all this, the EventHandler class provides a simple method for API hooking: the apiHooks class property. This property is a dictionary of tuples, specifying which API calls to hook on what DLL libraries, and what parameters does each call take (using ctypes definitions). That’s it! The EventHandler class will automatically hooks this APIs for you when the corresponding library is loaded, and a method of your subclass will be called when entering and leaving the API function.

Note

One thing to be careful with when hooking API functions: all pointers should be declared as having the void type. Otherwise ctypes gets too “helpful” and tries to access the memory pointed to by them… and crashes, since those pointers only work in the debugged process.

Example #8: tracing execution

Download

from winappdbg import Debug, EventHandler, HexDump

class MyEventHandler(EventHandler):

 # Create process events go here.
 def create_process(self, event):

 # Start tracing the main thread.
 event.debug.start_tracing(event.get_tid())

 # Create thread events go here.
 def create_thread(self, event):

 # Start tracing the new thread.
 event.debug.start_tracing(event.get_tid())

 # Single step events go here.
 def single_step(self, event):

 # Show the user where we're running.
 thread = event.get_thread()
 pc = thread.get_pc()
 code = thread.disassemble(pc, 0x10) [0]
 bits = event.get_process().get_bits()
 print "%s: %s" % (HexDump.address(code[0], bits), code[2].lower())

def simple_debugger(argv):

 # Instance a Debug object using the "with" statement.
 # Note how we don't need to call "debug.stop()" anymore.
 with Debug(MyEventHandler(), bKillOnExit = True) as debug:

 # Start a new process for debugging.
 debug.execv(argv)

 # Wait for the debugee to finish.
 debug.loop()

Example #9: intercepting API calls

Download

from winappdbg.win32 import * # NOQA

class MyEventHandler(EventHandler):

 # Here we set which API calls we want to intercept.
 apiHooks = {

 # Hooks for the kernel32 library.
 'kernel32.dll' : [

 # Function Parameters
 ('CreateFileA' , (PVOID, DWORD, DWORD, PVOID, DWORD, DWORD, HANDLE)),
 ('CreateFileW' , (PVOID, DWORD, DWORD, PVOID, DWORD, DWORD, HANDLE)),

],

 # Hooks for the advapi32 library.
 'advapi32.dll' : [

 # Function Parameters
 ('RegCreateKeyExA' , (HKEY, PVOID, DWORD, PVOID, DWORD, REGSAM, PVOID, PVOID, PVOID)),
 ('RegCreateKeyExW' , (HKEY, PVOID, DWORD, PVOID, DWORD, REGSAM, PVOID, PVOID, PVOID)),

],
 }

 # Now we can simply define a method for each hooked API.
 # Methods beginning with "pre_" are called when entering the API,
 # and methods beginning with "post_" when returning from the API.

 def pre_CreateFileA(self, event, ra, lpFileName, dwDesiredAccess,
 dwShareMode, lpSecurityAttributes, dwCreationDisposition,
 dwFlagsAndAttributes, hTemplateFile):

 self.__print_opening_ansi(event, "file", lpFileName)

 def pre_CreateFileW(self, event, ra, lpFileName, dwDesiredAccess,
 dwShareMode, lpSecurityAttributes, dwCreationDisposition,
 dwFlagsAndAttributes, hTemplateFile):

 self.__print_opening_unicode(event, "file", lpFileName)

 def pre_RegCreateKeyExA(self, event, ra, hKey, lpSubKey, Reserved,
 lpClass, dwOptions, samDesired,
 lpSecurityAttributes, phkResult,
 lpdwDisposition):

 self.__print_opening_ansi(event, "key", lpSubKey)

 def pre_RegCreateKeyExW(self, event, ra, hKey, lpSubKey, Reserved,
 lpClass, dwOptions, samDesired,
 lpSecurityAttributes, phkResult,
 lpdwDisposition):

 self.__print_opening_unicode(event, "key", lpSubKey)

 def post_CreateFileA(self, event, retval):
 self.__print_success(event, retval)

 def post_CreateFileW(self, event, retval):
 self.__print_success(event, retval)

 def post_RegCreateKeyExA(self, event, retval):
 self.__print_reg_success(event, retval)

 def post_RegCreateKeyExW(self, event, retval):
 self.__print_reg_success(event, retval)

 # Some helper private methods...

 def __print_opening_ansi(self, event, tag, pointer):
 string = event.get_process().peek_string(pointer)
 tid = event.get_tid()
 print "%d: Opening %s: %s" % (tid, tag, string)

 def __print_opening_unicode(self, event, tag, pointer):
 string = event.get_process().peek_string(pointer, fUnicode = True)
 tid = event.get_tid()
 print "%d: Opening %s: %s" % (tid, tag, string)

 def __print_success(self, event, retval):
 tid = event.get_tid()
 if retval:
 print "%d: Success: %x" % (tid, retval)
 else:
 print "%d: Failed!" % tid

 def __print_reg_success(self, event, retval):
 tid = event.get_tid()
 if retval:
 print "%d: Failed! Error code: %x" % (tid, retval)
 else:
 print "%d: Success!" % tid

The EventSift class

If you’re debugging more than one process at a time, keeping track of everything can be trickier. For that reason there’s also a class called EventSift. You can wrap your EventHandler class with it to create a new EventHandler instance for each debugged process.

That way, your EventHandler can be written as if only a single process was being debugged, but you can attach to as many processes as you want. Each EventHandler will only “see” its own debugee.

Example #10: sifting events per process

Download

This class was written assuming only one process is attached.
If you used it directly it would break when attaching to another
process, or when a child process is spawned.
class MyEventHandler (EventHandler):

 def create_process(self, event):
 self.first = True
 self.name = event.get_process().get_filename()
 print "Attached to %s" % self.name

 def breakpoint(self, event):
 if self.first:
 self.first = False
 print "First breakpoint reached at %s" % self.name

 def exit_process(self, event):
 print "Detached from %s" % self.name

Now when debugging we use the EventForwarder to be able to work with
multiple processes while keeping our code simple. :)
def simple_debugger():

 handler = EventSift(MyEventHandler)
 #handler = MyEventHandler() # try uncommenting this line...
 with Debug(handler) as debug:
 debug.execl("calc.exe")
 debug.execl("notepad.exe")
 debug.execl("charmap.exe")
 debug.loop()

Breakpoints, watches and hooks

A Debug object provides a small set of methods to set breakpoints, watches and hooks. These methods in turn use an underlying, more sophisticated interface that is described at the wiki page HowBreakpointsWork.

The break_at method sets a code breakpoint at the given address. Every time the code is run by any thread, a callback function is called. This is useful to know when certain parts of the debugee’s code are being run (for example, set it at the beginning of a function to see how many times it’s called).

The hook_function method sets a code breakpoint at the beginning of a function and allows you to set two callbacks - one when entering the function and another when returning from it. It works pretty much like the apiHooks property of the EventHandler class, only it doesn’t need the function to be exported by a DLL library. It’s useful for intercepting calls to internal functions of the debugee, if you know where they are.

The watch_variable method sets a hardware breakpoint at the given address. Every time a read or write access is made to that address, a callback function is called. It’s useful for tracking accesses to a variable (for example, a member of a C++ object in the heap). It works only on specific threads, to monitor the variable on the entire process you must set a watch for each thread.

Finally, the watch_buffer method sets a page breakpoint at the given address range. Every time a read or write access is made to that part of the memory a callback function is called. It’s similar to watch_variable but it works for the entire process, not just a single thread, and it allows any range to be specified (watch_variable only works for small address ranges, from 1 to 8 bytes).

Debug objects also allow stalking. Stalking basically means to set one-shot breakpoints - that is, breakpoints that are automatically disabled after they’re hit for the first time. The term was originally coined by Pedram Amini for his Process Stalker [http://www.openrce.org/downloads/details/171] tool, and this technique is key to differential debugging [https://www.zynamics.com/binnavi.html].

The stalking methods and their equivalents are the following:

	Stalking method

	Equivalent to

	stalk_at

	break_at

	stalk_function

	hook_function

	stalk_variable

	watch_variable

	stalk_buffer

	watch_buffer

Example #11: setting a breakpoint

Download

This function will be called when our breakpoint is hit.
def action_callback(event):
 process = event.get_process()
 thread = event.get_thread()

 # Get the address of the top of the stack.
 stack = thread.get_sp()

 # Get the return address of the call.
 address = process.read_pointer(stack)

 # Get the process and thread IDs.
 pid = event.get_pid()
 tid = event.get_tid()

 # Show a message to the user.
 message = "kernel32!CreateFileW called from %s by thread %d at process %d"
 print message % (HexDump.address(address, process.get_bits()), tid, pid)

class MyEventHandler(EventHandler):

 def load_dll(self, event):

 # Get the new module object.
 module = event.get_module()

 # If it's kernel32.dll...
 if module.match_name("kernel32.dll"):

 # Get the process ID.
 pid = event.get_pid()

 # Get the address of CreateFile.
 address = module.resolve("CreateFileW")

 # Set a breakpoint at CreateFile.
 event.debug.break_at(pid, address, action_callback)

 # If you use stalk_at instead of break_at,
 # the message will only be shown once.
 #
 # event.debug.stalk_at(pid, address, action_callback)

Example #12: hooking a function

Download

from winappdbg.win32 import PVOID

This function will be called when the hooked function is entered.
def wsprintf(event, ra, lpOut, lpFmt):

 # Get the format string.
 process = event.get_process()
 lpFmt = process.peek_string(lpFmt, fUnicode = True)

 # Get the vararg parameters.
 count = lpFmt.replace('%%', '%').count('%')
 thread = event.get_thread()
 if process.get_bits() == 32:
 parameters = thread.read_stack_dwords(count, offset = 3)
 else:
 parameters = thread.read_stack_qwords(count, offset = 3)

 # Show a message to the user.
 showparams = ", ".join([hex(x) for x in parameters])
 print "wsprintf(%r, %s);" % (lpFmt, showparams)

class MyEventHandler(EventHandler):

 def load_dll(self, event):

 # Get the new module object.
 module = event.get_module()

 # If it's user32...
 if module.match_name("user32.dll"):

 # Get the process ID.
 pid = event.get_pid()

 # Get the address of wsprintf.
 address = module.resolve("wsprintfW")

 # This is an approximated signature of the wsprintf function.
 # Pointers must be void so ctypes doesn't try to read from them.
 # Varargs are obviously not included.
 signature = (PVOID, PVOID)

 # Hook the wsprintf function.
 event.debug.hook_function(pid, address, wsprintf, signature = signature)

 # Use stalk_function instead of hook_function
 # to be notified only the first time the function is called.
 #
 # event.debug.stalk_function(pid, address, wsprintf, signature = signature)

Example #13: watching a variable

Download

This function will be called when the breakpoint is hit.
def entering(event):

 # Get the thread object.
 thread = event.get_thread()

 # Get the thread ID.
 tid = thread.get_tid()

 # Get the return address location (the top of the stack).
 stack_top = thread.get_sp()

 # Get the return address and the parameters from the stack.
 bits = event.get_process().get_bits()
 if bits == 32:
 return_address, hModule, lpProcName = thread.read_stack_dwords(3)
 else:
 return_address = thread.read_stack_qwords(1)
 registers = thread.get_context()
 hModule = registers['Rcx']
 lpProcName = registers['Rdx']

 # Get the string from the process memory.
 procedure_name = event.get_process().peek_string(lpProcName)

 # Show a message to the user.
 message = "%s: GetProcAddress(%s, %r);"
 print message % (
 HexDump.address(return_address, bits),
 HexDump.address(hModule, bits),
 procedure_name
)

 # Watch the DWORD at the top of the stack.
 try:
 event.debug.stalk_variable(tid, stack_top, 4, returning)
 #event.debug.watch_variable(tid, stack_top, 4, returning)

 # If no more slots are available, set a code breakpoint at the return address.
 except RuntimeError:
 event.debug.stalk_at(event.get_pid(), return_address, returning_2)

This function will be called when the variable is accessed.
def returning(event):

 # Get the address of the watched variable.
 variable_address = event.breakpoint.get_address()

 # Stop watching the variable.
 event.debug.dont_stalk_variable(event.get_tid(), variable_address)
 #event.debug.dont_watch_variable(event.get_tid(), variable_address)

 # Get the return address (in the stack).
 return_address = event.get_process().read_uint(variable_address)

 # Get the return value (in the registers).
 registers = event.get_thread().get_context()
 if event.get_process().get_bits() == 32:
 return_value = registers['Eax']
 else:
 return_value = registers['Rax']

 # Show a message to the user.
 message = "%.08x: GetProcAddress() returned 0x%.08x"
 print message % (return_address, return_value)

This function will be called if we ran out of hardware breakpoints,
and we ended up setting a code breakpoint at the return address.
def returning_2(event):

 # Get the return address from the breakpoint.
 return_address = event.breakpoint.get_address()

 # Remove the code breakpoint.
 event.debug.dont_stalk_at(event.get_pid(), return_address)

 # Get the return value (in the registers).
 registers = event.get_thread().get_context()
 if event.get_process().get_bits() == 32:
 return_value = registers['Eax']
 else:
 return_value = registers['Rax']

 # Show a message to the user.
 message = "%.08x: GetProcAddress() returned 0x%.08x"
 print message % (return_address, return_value)

This event handler sets a breakpoint at kernel32!GetProcAddress.
class MyEventHandler(EventHandler):

 def load_dll(self, event):

 # Get the new module object.
 module = event.get_module()

 # If it's kernel32...
 if module.match_name("kernel32.dll"):

 # Get the process ID.
 pid = event.get_pid()

 # Get the address of GetProcAddress.
 address = module.resolve("GetProcAddress")

 # Set a breakpoint at the entry of the GetProcAddress function.
 event.debug.break_at(pid, address, entering)

Example #14: watching a buffer

Download

class MyHook (object):

 # Keep record of the buffers we watch.
 def __init__(self):
 self.__watched = dict()
 self.__previous = None

 # This function will be called when entering the hooked function.
 def entering(self, event, ra, hFile, lpBuffer, nNumberOfBytesToRead, lpNumberOfBytesRead, lpOverlapped):

 # Ignore calls using a NULL pointer.
 if not lpBuffer:
 return

 # Show a message to the user.
 print "\nReadFile:\n\tHandle %x\n\tExpected bytes: %d" % (hFile, nNumberOfBytesToRead)

 # Stop watching the previous buffer.
 if self.__previous:
 event.debug.dont_watch_buffer(self.__previous)
 self.__previous = None

 # Remember the location of the buffer and its size.
 self.__watched[event.get_tid()] = (lpBuffer, lpNumberOfBytesRead)

 # This function will be called when leaving the hooked function.
 def leaving(self, event, return_value):

 # If the function call failed ignore it.
 if return_value == 0:
 print "\nReadFile:\n\tStatus: FAIL"
 return

 # Get the buffer location and size.
 tid = event.get_tid()
 process = event.get_process()
 (lpBuffer, lpNumberOfBytesRead) = self.__watched[tid]
 del self.__watched[tid]

 # Watch the buffer for access.
 pid = event.get_pid()
 address = lpBuffer
 size = process.read_dword(lpNumberOfBytesRead)
 action = self.accessed
 self.__previous = event.debug.watch_buffer(pid, address, size, action)

 # Use stalk_buffer instead of watch_buffer to be notified
 # only of the first access to the buffer.
 #
 # self.__previous = event.debug.stalk_buffer(pid, address, size, action)

 # Show a message to the user.
 print "\nReadFile:\n\tStatus: SUCCESS\n\tRead bytes: %d" % size

 # This function will be called every time the procedure name buffer is accessed.
 def accessed(self, event):

 # Show the user where we're running.
 thread = event.get_thread()
 pc = thread.get_pc()
 code = thread.disassemble(pc, 0x10) [0]
 print "%s: %s" % (
 HexDump.address(code[0], thread.get_bits()),
 code[2].lower()
)

class MyEventHandler(EventHandler):

 # Called on guard page exceptions NOT raised by our breakpoints.
 def guard_page(self, event):
 print event.get_exception_name()

 # Called on DLL load events.
 def load_dll(self, event):

 # Get the new module object.
 module = event.get_module()

 # If it's kernel32...
 if module.match_name("kernel32.dll"):

 # Get the process ID.
 pid = event.get_pid()

 # Get the address of the function to hook.
 address = module.resolve("ReadFile")

 # This is an approximated signature of the function.
 # Pointers must be void so ctypes doesn't try to read from them.
 signature = (win32.HANDLE, win32.PVOID, win32.DWORD, win32.PVOID, win32.PVOID)

 # Hook the function.
 hook = MyHook()
 event.debug.hook_function(pid, address, hook.entering, hook.leaving, signature = signature)

Labels

Labels are used to represent memory locations in a more user-friendly way than simply using their addresses. This is useful to provide a better user interface, both for input and output. Also, labels can be useful when DLL libraries in a debugee are relocated on each run - memory addresses change every time, but labels don’t.

For example, the label “kernel32!CreateFileA” always points to the CreateFileA function of the kernel32.dll library. The actual memory address, on the other hand, may change across Windows versions.

In addition to exported functions, debugging symbols are used whenever possible.

A complete explanation on how labels work can be found at the Advanced Topics section of this document.

Example #15: getting the label for a given memory address

Download

from winappdbg import System, Process

def print_label(pid, address):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Process object.
 process = Process(pid)

 # Lookup it's modules.
 process.scan_modules()

 # Resolve the requested label address.
 label = process.get_label_at_address(address)

 # Print the label.
 print "%s == 0x%.08x" % (label, address)

Example #16: resolving a label back into a memory address

Download

from winappdbg import System, Process

def print_label_address(pid, label):

 # Request debug privileges.
 System.request_debug_privileges()

 # Instance a Process object.
 process = Process(pid)

 # Lookup it's modules.
 process.scan_modules()

 # Resolve the requested label address.
 address = process.resolve_label(label)

 # Print the address.
 print "%s == 0x%.08x" % (label, address)

Helper classes and functions

WinAppDbg provides some helper classes and functions, mostly related to input and output, that can come in handy when reading input from users or writing debugging data.

Console output with colors

The functions from the Color static class allow your scripts to write colored text to the console.

Typically you’ll make a call to the can_use_colors function to determine if it’s possible to write text with colors. This is necessary because color output only works with a real console - if the user has redirected the output to a file or a pipe, trying to use colors will cause an exception to be raised.

The following functions set the console text color:

	black

	white

	red

	green

	blue

	cyan

	magenta

	yellow

You can also combine the colors with the brightness settings using the light and dark functions, to get more variations on colors:

Color.red()
Color.light()
print "This is printed in light red."
Color.dark()
print "This is printed in dark red."
Color.blue()
print "This is printed in dark blue."
Color.light()
print "This is printed in light blue."

The following functions set the console background color:

	bk_black

	bk_white

	bk_red

	bk_green

	bk_blue

	bk_cyan

	bk_magenta

	bk_yellow

The matching bk_light and bk_dark functions control the brightness of the background, and they work just like light and dark.

If you want to go back to the default text color, just call the default function. There’s also a bk_default function for the background color, and a reset method that reverts to the default for both at the same time.

Example #1: printing text with colors

Download

from winappdbg import Color

Can we use colors?
if Color.can_use_colors():

 # Let's be polite: put everything in a try/except block
 # so we can reset the console colors before quitting.
 try:

 # Set black background.
 Color.bk_black()

 # For each color...
 for color in ("red", "green", "blue", "cyan", "magenta", "yellow", "white"):

 # Set the color.
 function = getattr(Color, color)
 function()

 # For each intensity...
 for intensity in ("light", "dark"):

 # Set the intensity.
 function = getattr(Color, intensity)
 function()

 # Print a message.
 print "This is %s %s text on black background." % (intensity, color)

 # Set black text.
 Color.black()

 # For each color...
 for color in ("red", "green", "blue", "cyan", "magenta", "yellow", "white"):

 # Set the background color.
 function = getattr(Color, "bk_" + color)
 function()

 # For each intensity...
 for intensity in ("light", "dark"):

 # Set the background intensity.
 function = getattr(Color, "bk_" + intensity)
 function()

 # Print a message.
 print "This is black text on %s %s background." % (intensity, color)

 # Reset the console colors and quit.
 finally:
 Color.reset()

No colors available!
else:
 print "Can't use colors! Are you redirecting the output to a file?"

Text output in tables

The Table class lets you build text tables. Each row is added using the addRow method, and the number of columns is automatically inferred. Text justification for each column is defined using the justify method.

The show method prints the output. If you prefer to get the text table in a string, you can call the getOutput method instead. Also, the getWidth method tells you the width in characters of the whole table, so you know if it fits in the screen before printing it.

Example #2: printing a text table

Download

from winappdbg import Table

Instance a Table object.
table = Table()

Add a few rows.
table.addRow("Right justified column text", "Left justified column text")
table.addRow("---------------------------", "--------------------------")
table.addRow("example", "text")
table.addRow("jabberwocky", "snark")
table.addRow("Trillian", "Zaphod", "Arthur Dent") # one extra!
table.addRow("Dalek", "Cyberman")

By default all columns are left justified. Let's change that.
table.justify(0, 1) # column 0 is now right justified

Let's find out how wide the table is.
print "Table width: %d" % table.getWidth()

Let's find out how many bytes would it be if written to a file.
print "Text size in characters: %d" % len(table.getOutput())

Show the table contents on screen.
print
table.show(),

Logging

The Logger class implements a simple text logger that can send its output to standard output and/or to a file. There are many libraries in Python that can do this, but this one has the advantage of being integrated with WinAppDbg objects.

If you want to integrate other logging facilities to your scripts you can also use the functions from the static class DebugLog, which contains all the WinAppDbg-related implementation of Logger.

Example #3: logging debug events

Download

from ntpath import basename, splitext

from winappdbg import Debug, Logger

def main(argv):

 # The log file name will be based on the target executable file name.
 logfile = basename(argv[0])
 logfile = splitext(logfile)[0] + ".log"

 # Instance a global Logger object.
 global logger
 logger = Logger(logfile)

 # Launch the debugger.
 try:
 simple_debugger(argv)

 # On error log the exception and quit.
 except:
 logger.log_exc()

def my_event_handler(event):

 # Get the Logger object.
 global logger

 # Log the event.
 logger.log_event(event)

def simple_debugger(argv):

 # Instance a Debug object, passing it the event handler callback.
 debug = Debug(my_event_handler, bKillOnExit = True)
 try:

 # Start a new process for debugging.
 debug.execv(argv)

 # Wait for the debugee to finish.
 debug.loop()

 # Stop the debugger.
 finally:
 debug.stop()

Hexadecimal input

The static class HexInput contains a collection of functions to parse input data in various formats.

	Function

	Description

	integer

	Convert a string to an integer. Supports decimal, hexadecimal (0x prefix), octal (0o prefix) and binary (0b prefix).
If no prefix is given, this method still does its best to tell if it’s hexadecimal or not. If all fails, the number is assumed to be decimal.

	address

	Read an hexadecimal value from a string. Unlike integer no attempt is made to detect other formats.
This function was conceived for parsing memory addresses, hence the name.

	hexadecimal

	Convert a strip of hexadecimal numbers (like OllyDbg’s memory view) into binary data.

	pattern

	Similar to hexadecimal, but it also accepts question marks as wildcards for unknown values in fixed positions.
The return value is a regular expression that can perform a search for the given byte pattern.

	is_pattern

	Determine if the given argument is a valid hexadecimal pattern to be used with pattern.

	integer_list_file

	Read a list of integers from a file, assuming a specific file format.

	string_list_file

	Read a list of strings from a file, assuming a specific file format.

	mixed_list_file

	Read a list of integers and strings from a file, assuming a specific file format.

Hexadecimal output

Two static classes contain all the functions related to hexadecimal output: HexOutput and HexDump. The first matches the input functions from HexInput, while the second is meant for showing data to the user rather than being parsed by a script.

The following functions are common to both:

	Function

	Description

	integer

	Numeric value output, in decimal format.
The default size depends on the current architecture, but you can override it using the bits parameter.

	address

	Memory address output, in hexadecimal format.
The default size depends on the current architecture, but you can override it using the bits parameter.

	hexadecimal

	Output binary data as a strip of hexadecimal numbers (like OllyDbg’s memory view).
Currently both implementations are identical.

The HexOutput class also has file output functions to match those in HexInput:

	Function

	Description

	integer_list_file

	Write a list of integers into a file, assuming a specific file format.

	string_list_file

	Write a list of strings into a file, assuming a specific file format.

	mixed_list_file

	Write a list of integers and strings into a file, assuming a specific file format.

The HexDump class has additional methods for showing hex dumps and binary data to the user in a printable manner:

	Function

	Description

	hexblock

	Dump a block of hexadecimal numbers from binary data. Also show a printable text version of the data.
The output mimics that of the WinDBG debugger.

	hexline

	Dump a line of hexadecimal numbers from binary data.
This is useful for printing bytes in a console one line at a time.

	hexa_word

	Convert binary data to a string of hexadecimal WORDs.

	hexa_dword

	Convert binary data to a string of hexadecimal DWORDs.

	hexa_qword

	Convert binary data to a string of hexadecimal QWORDs.

	hexblock_byte

	Dump a block of hexadecimal BYTEs from binary data.

	hexblock_word

	Dump a block of hexadecimal WORDs from binary data.

	hexblock_dword

	Dump a block of hexadecimal DWORDs from binary data.

	hexblock_qword

	Dump a block of hexadecimal QWORDs from binary data.

	hexblock_cb

	Dump a block of binary data using a callback function to convert each line of text.
This allows you to customize the output.

Dumping code, stack and registers

The CrashDump static class has functions typically used from the event handlers to show debug data like the disassembler output, the register contents or the stack trace. Crash dump objects use this class for text output, and pretty many examples in the Debugging section of the tutorial use functions from here too.

All functions return a string with the text to print. Here are the most commonly used ones:

	Function

	Description

	dump_code

	Dump a disassembly. Optionally mark where the program counter is.

	dump_registers

	Dump the x86 processor register values.
The output mimics that of the WinDBG debugger.

	dump_stack_trace

	Dump a stack trace using only memory addresses.

	dump_stack_trace_with_labels

	Dump a stack trace using labels instead of memory addresses when possible.

Example #4: dumping code, stack and registers

Download

from winappdbg import HexDump, CrashDump, System

def print_state(process_name):

 # Request debug privileges.
 System.request_debug_privileges()

 # Find the first process that matches the requested name.
 system = System()
 process, filename = system.find_processes_by_filename(process_name)[0]

 # Suspend the process execution.
 process.suspend()
 try:

 # For each thread in the process...
 for thread in process.iter_threads():

 # Get the thread state.
 tid = thread.get_tid()
 eip = thread.get_pc()
 code = thread.disassemble_around(eip)
 context = thread.get_context()

 # Display the thread state.
 print
 print "-" * 79
 print "Thread: %s" % HexDump.integer(tid)
 print
 print CrashDump.dump_registers(context)
 print CrashDump.dump_code(code, eip),
 print "-" * 79

 # Resume the process execution.
 finally:
 process.resume()

Pathname and filename handling

The PathOperations static class provides functions to manipulate pathnames and filenames. It’s somewhat similar to the standard os.path module - except that it works by using only the Win32 API instead of manually parsing the filenames, which provides better compatibility with Windows (UNC path support, for example).

	Function

	Description

	path_is_relative

	Returns True if the path is relative.

	path_is_absolute

	Returns True if the path is absolute.

	make_relative

	Converts an absolute to a relative path.

	make_absolute

	Converts a relative to an absolute path.

	split_filename

	Split the file from the directory where it resides.

	split_extension

	Split the file name from the file extension.

	split_path

	Split each component of a path.

	join_path

	Join back the components of a path.

	native_to_win32_pathname

	Converts an NT Native path to a standard Win32 path.

Example #5: pathname and filename handling

Download

import sys

from winappdbg import PathOperations

Get the command line argument.
path = sys.argv[1]
print "Path: %s" % path

If it's a relative path...
if PathOperations.path_is_relative(path):
 print "Path is relative."

 # Convert to absolute.
 absolute = PathOperations.make_absolute(path)
 print "Absolute path: %s" % absolute

If it's an absolute path...
elif PathOperations.path_is_absolute(path):
 print "Path is absolute."

 # Convert to relative.
 relative = PathOperations.make_relative(path)
 print "Relative path: %s" % relative

If it's neither...
else:
 print "Path is invalid."

The Win32 API wrappers

The win32 submodule provides a collection of useful API wrappers for most operations needed by a debugger. This will allow you to perform any task that the abstraction layer for some reason can’t deal with, or won’t deal with in the way you need. In most cases you won’t need to resort to this, but it’s important to know it’s there.

Except in some rare cases, the rationale to port the API calls to Python was:

	Take Python basic types as input, return Python basic types as output.

	Functions that in C take an output pointer and a size as input, in Python take neither and return the output data directly (the wrapper takes care of allocating the memory buffers).

	Functions that in C have to be called twice (first to get the buffer size, then to get the data) in Python only have to be called once (returns the data directly).

	Functions in C with more than one output pointer return tuples of data in Python.

	Functions in C that return an error condition, raise a Python exception (WindowsError) on error and return the data on success.

	Default parameter values were added when possible. The default for all optional pointers is NULL. The default flags are usually the ones that provide all possible access (for example, the default flags value for GetThreadContext is CONTEXT_ALL)

	For APIs with ANSI and Widechar versions, both versions are wrapped. If at least one parameter is a Unicode string en Widechar version is called (and all string parameters are converted to Unicode), otherwise the ANSI version is called. Either ANSI or Widechar versions can be used explicitly (for example, CreateFile can be called as CreateFileA or CreateFileW).

All handles returned by API calls are wrapped around the Handle class. This allows you to use the with statement to ensure proper cleanup, and causes handles to be closed automatically when they go out of scope, thus preventing handle leaks.

Example #1: finding a DLL in the search path

Download

import sys

from winappdbg import win32

try:
 fullpath, basename = win32.SearchPath(None, sys.argv[1], '.dll')
except WindowsError, e:
 if e.winerror != win32.ERROR_FILE_NOT_FOUND:
 raise
 fullpath, basename = win32.SearchPath(None, sys.argv[1], '.exe')

print "Full path: %s" % fullpath
print "Base name: %s" % basename

Example #2: killing a process by attaching to it

Download

import sys
import thread

from winappdbg import win32

def processKiller(dwProcessId):

 # Attach to the process.
 win32.DebugActiveProcess(dwProcessId)

 # Quit the current thread.
 thread.exit()

Example #3: enumerating heap blocks using the Toolhelp library

Download

from winappdbg.win32 import * # NOQA

def print_heap_blocks(pid):

 # Determine if we have 32 bit or 64 bit pointers.
 if sizeof(SIZE_T) == sizeof(DWORD):
 fmt = "%.8x\t%.8x\t%.8x"
 hdr = "%-8s\t%-8s\t%-8s"
 else:
 fmt = "%.16x\t%.16x\t%.16x"
 hdr = "%-16s\t%-16s\t%-16s"

 # Print a banner.
 print "Heaps for process %d:" % pid
 print hdr % ("Heap ID", "Address", "Size")

 # Create a snapshot of the process, only take the heap list.
 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPHEAPLIST, pid)

 # Enumerate the heaps.
 heap = Heap32ListFirst(hSnapshot)
 while heap is not None:

 # For each heap, enumerate the entries.
 entry = Heap32First(heap.th32ProcessID, heap.th32HeapID)
 while entry is not None:

 # Print the heap id and the entry address and size.
 print fmt % (entry.th32HeapID, entry.dwAddress, entry.dwBlockSize)

 # Next entry in the heap.
 entry = Heap32Next(entry)

 # Next heap in the list.
 heap = Heap32ListNext(hSnapshot)

 # No need to call CloseHandle, the handle is closed automatically when it goes out of scope.
 return

Example #4: enumerating modules using the Toolhelp library

Download

from winappdbg.win32 import * # NOQA

def print_modules(pid):

 # Determine if we have 32 bit or 64 bit pointers.
 if sizeof(SIZE_T) == sizeof(DWORD):
 fmt = "%.8x %.8x %s"
 hdr = "%-8s %-8s %s"
 else:
 fmt = "%.16x %.16x %s"
 hdr = "%-16s %-16s %s"

 # Print a banner.
 print "Modules for process %d:" % pid
 print
 print hdr % ("Address", "Size", "Path")

 # Create a snapshot of the process, only take the heap list.
 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid)

 # Enumerate the modules.
 module = Module32First(hSnapshot)
 while module is not None:

 # Print the module address, size and pathname.
 print fmt % (module.modBaseAddr,
 module.modBaseSize,
 module.szExePath)

 # Next module in the process.
 module = Module32Next(hSnapshot)

 # No need to call CloseHandle, the handle is closed automatically when it goes out of scope.
 return

Example #5: enumerating device drivers

Download

from winappdbg.win32 import * # NOQA

def print_drivers(fFullPath = False):

 # Determine if we have 32 bit or 64 bit pointers.
 if sizeof(SIZE_T) == sizeof(DWORD):
 fmt = "%.08x\t%s"
 hdr = "%-8s\t%s"
 else:
 fmt = "%.016x\t%s"
 hdr = "%-16s\t%s"

 # Get the list of loaded device drivers.
 ImageBaseList = EnumDeviceDrivers()
 print "Device drivers found: %d" % len(ImageBaseList)
 print
 print hdr % ("Image base", "File name")

 # For each device driver...
 for ImageBase in ImageBaseList:

 # Get the device driver filename.
 if fFullPath:
 DriverName = GetDeviceDriverFileName(ImageBase)
 else:
 DriverName = GetDeviceDriverBaseName(ImageBase)

 # Print the device driver image base and filename.
 print fmt % (ImageBase, DriverName)

More examples

Set a debugging timeout

Sometimes you’ll want to set a maximum time to debug your target, especially when fuzzing or analyzing malware. This is an example on how to code a custom debugging loop with a timeout. It launches the Windows Calculator and stops when the target process is closed or after a 5 seconds timeout.

Download

from winappdbg import * # NOQA
from time import time

Using the Debug object in a "with" context ensures proper cleanup.
with Debug(bKillOnExit = True) as dbg:

 # Run the Windows Calculator (calc.exe).
 dbg.execl('calc.exe')

 # For the extra paranoid: this makes sure calc.exe dies
 # even if our own process is killed from the Task Manager.
 System.set_kill_on_exit_mode(True)

 # The execution time limit is 5 seconds.
 maxTime = time() + 5

 # Loop while calc.exe is alive and the time limit wasn't reached.
 while dbg and time() < maxTime:
 try:

 # Get the next debug event.
 dbg.wait(1000) # 1 second accuracy

 # Show the current time on screen.
 print time()

 # If wait() times out just try again.
 # On any other error stop debugging.
 except WindowsError, e:
 if e.winerror in (win32.ERROR_SEM_TIMEOUT,
 win32.WAIT_TIMEOUT):
 continue
 raise

 # Dispatch the event and continue execution.
 try:
 dbg.dispatch()
 finally:
 dbg.cont()

Dump the memory of a process

This is an example on how to dump the memory map and contents of a process into an SQLite database. A table is created where each row is a memory region, and the columns are the properties of that region (address, size, mapped filename, etc.) and it’s data. The data is compressed using zlib to reduce the database size, but simply commenting out line 160 stores the data in uncompressed form.

Download

import sys
import zlib
import ntpath
import winappdbg
from winappdbg import win32

try:
 import sqlite3 as sqlite
except ImportError:
 from pysqlite2 import dbapi2 as sqlite

Create a snaphot of running processes.
system = winappdbg.System()
system.request_debug_privileges()
system.scan_processes()

Get all processes that match the requested filenames.
for filename in sys.argv[1:]:
 print "Looking for: %s" % filename
 for process, pathname in system.find_processes_by_filename(filename):
 pid = process.get_pid()
 bits = process.get_bits()
 print "Dumping memory for process ID %d (%d bits)" % (pid, bits)

 # Parse the database filename.
 dbfile = '%d.db' % pid
 if ntpath.exists(dbfile):
 counter = 1
 while 1:
 dbfile = '%d_%.3d.db' % (pid, counter)
 if not ntpath.exists(dbfile):
 break
 counter += 1
 del counter
 print "Creating database %s" % dbfile

 # Connect to the database and get a cursor.
 database = sqlite.connect(dbfile)
 cursor = database.cursor()

 # Create the table for the memory map.
 cursor.execute("""
 CREATE TABLE MemoryMap (
 Address INTEGER PRIMARY KEY,
 Size INTEGER,
 State STRING,
 Access STRING,
 Type STRING,
 File STRING,
 Data BINARY
)
 """)

 # Get a memory map of the process.
 memoryMap = process.get_memory_map()
 mappedFilenames = process.get_mapped_filenames(memoryMap)

 # For each memory block in the map...
 for mbi in memoryMap:

 # Address and size of memory block.
 BaseAddress = mbi.BaseAddress
 RegionSize = mbi.RegionSize

 # State (free or allocated).
 if mbi.State == win32.MEM_RESERVE:
 State = "Reserved"
 elif mbi.State == win32.MEM_COMMIT:
 State = "Commited"
 elif mbi.State == win32.MEM_FREE:
 State = "Free"
 else:
 State = "Unknown"

 # Page protection bits (R/W/X/G).
 if mbi.State != win32.MEM_COMMIT:
 Protect = ""
 else:
 if mbi.Protect & win32.PAGE_NOACCESS:
 Protect = "--- "
 elif mbi.Protect & win32.PAGE_READONLY:
 Protect = "R-- "
 elif mbi.Protect & win32.PAGE_READWRITE:
 Protect = "RW- "
 elif mbi.Protect & win32.PAGE_WRITECOPY:
 Protect = "RC- "
 elif mbi.Protect & win32.PAGE_EXECUTE:
 Protect = "--X "
 elif mbi.Protect & win32.PAGE_EXECUTE_READ:
 Protect = "R-X "
 elif mbi.Protect & win32.PAGE_EXECUTE_READWRITE:
 Protect = "RWX "
 elif mbi.Protect & win32.PAGE_EXECUTE_WRITECOPY:
 Protect = "RCX "
 else:
 Protect = "??? "
 if mbi.Protect & win32.PAGE_GUARD:
 Protect += "G"
 else:
 Protect += "-"
 if mbi.Protect & win32.PAGE_NOCACHE:
 Protect += "N"
 else:
 Protect += "-"
 if mbi.Protect & win32.PAGE_WRITECOMBINE:
 Protect += "W"
 else:
 Protect += "-"

 # Type (file mapping, executable image, or private memory).
 if mbi.Type == win32.MEM_IMAGE:
 Type = "Image"
 elif mbi.Type == win32.MEM_MAPPED:
 Type = "Mapped"
 elif mbi.Type == win32.MEM_PRIVATE:
 Type = "Private"
 elif mbi.Type == 0:
 Type = ""
 else:
 Type = "Unknown"

 # Mapped file name, if any.
 FileName = mappedFilenames.get(BaseAddress, None)

 # Read the data contained in the memory block, if any.
 Data = None
 if mbi.has_content():
 print 'Reading %s-%s' % (
 winappdbg.HexDump.address(BaseAddress, bits),
 winappdbg.HexDump.address(BaseAddress + RegionSize, bits)
)
 Data = process.read(BaseAddress, RegionSize)
 Data = zlib.compress(Data, zlib.Z_BEST_COMPRESSION)
 Data = sqlite.Binary(Data)

 # Output a row in the table.
 cursor.execute(
 'INSERT INTO MemoryMap VALUES (?, ?, ?, ?, ?, ?, ?)',
 (BaseAddress, RegionSize, State, Protect, Type, FileName, Data)
)

 # Commit the changes, close the cursor and the database.
 database.commit()
 cursor.close()
 database.close()
 print "Ok."
print "Done."

Find alphanumeric addresses to jump to

This example will find all memory addresses in a target process that are executable and whose address consists of alphanumeric characters only. This is useful when exploiting a stack buffer overflow and the input string is limited to alphanumeric characters only.

Note that in 64 bit processors most memory addresses are not alphanumeric, so this example is meaningful for 32 bits only.

Download

 # Note:
 # This simple approach seems fast enough. But if there's ever a need to
 # optimize this for 32 bits Windows this is how it could be done: since
 # the system allocation granularity is 64k, it should be possible to
 # precalculate the lower 16 bits of all possible alphanumeric addresses,
 # then only test the higher 16 bits of the address for each memory region.

from struct import pack
from winappdbg import System, Process, HexDump

Iterator of alphanumeric executable addresses.
def iterate_alnum_jump_addresses(process):

 # Determine the size of a pointer in the current architecture.
 if System.bits == 32:
 fmt = 'L'
 elif System.bits == 64:
 fmt = 'Q'
 print "Warning! 64 bit addresses are not likely to be alphanumeric!"
 else:
 raise NotImplementedError

 # Get an iterator for the target process memory.
 iterator = process.generate_memory_snapshot()

 # Iterate the memory regions of the target process.
 for mbi in iterator:

 # Discard non executable memory.
 if not mbi.is_executable():
 continue

 # Get the module that owns this memory region, if any.
 address = mbi.BaseAddress
 module = process.get_module_at_address(address)

 # Yield each alphanumeric address in this memory region.
 max_address = address + mbi.RegionSize
 while address < max_address:
 packed = pack(fmt, address)
 if packed.isalnum():
 yield address, packed, module
 address = address + 1

Iterate and print alphanumeric executable addresses.
def print_alnum_jump_addresses(pid):

 # Request debug privileges so we can inspect the memory of services too.
 System.request_debug_privileges()

 # Suspend the process so there are no malloc's and free's while iterating.
 process = Process(pid)
 process.suspend()
 try:

 # For each executable alphanumeric address...
 for address, packed, module in iterate_alnum_jump_addresses(process):

 # Format the address for printing.
 numeric = HexDump.address(address, process.get_bits())
 ascii = repr(packed)

 # Format the module name for printing.
 if module:
 modname = module.get_name()
 else:
 modname = ""

 # Try to disassemble the code at this location.
 try:
 code = process.disassemble(address, 16)[0][2]
 except NotImplementedError:
 code = ""

 # Print it.
 print numeric, ascii, modname, code

 # Resume the process when we're done.
 # This is inside a "finally" block, so if the program is interrupted
 # for any reason we don't leave the process suspended.
 finally:
 process.resume()

Show processes DEP settings

Beginning with Windows XP SP3, it’s possible to query a process and find out its Data Execution Prevention (DEP) settings. It may have DEP enabled or disabled, DEP-ATL thunking emulation enabled or disabled, and these settings may be changeable on runtime or permanent for the lifetime of the process.

This example shows all 32 bits processes the current user has permission to access and shows their DEP settings.

Download

from winappdbg import System, Table
from winappdbg.win32 import PROCESS_DEP_ENABLE, \
 PROCESS_DEP_DISABLE_ATL_THUNK_EMULATION, \
 ERROR_ACCESS_DENIED

Prepare the table.
header = (" PID ", "DEP ", "DEP-ATL ", "Permanent ", "Filename ")
separator = [" " * len(x) for x in header]
table = Table()
table.addRow(*header)
table.addRow(*separator)

Request debug privileges.
System.request_debug_privileges()

Scan for running processes.
system = System()
try:
 system.scan_processes()
 #system.scan_process_filenames()
except WindowsError:
 system.scan_processes_fast()

For each running process...
for process in system.iter_processes():
 try:

 # Get the process ID.
 pid = process.get_pid()

 # Skip "special" process IDs.
 if pid in (0, 4, 8):
 continue

 # Skip 64 bit processes.
 if process.get_bits() != 32:
 continue

 # Get the DEP policy flags.
 flags, permanent = process.get_dep_policy()

 # Determine if DEP is enabled.
 if flags & PROCESS_DEP_ENABLE:
 dep = " X"
 else:
 dep = ""

 # Determine if DEP-ATL thunk emulation is enabled.
 if flags & PROCESS_DEP_DISABLE_ATL_THUNK_EMULATION:
 atl = ""
 else:
 atl = " X"

 # Determine if the current DEP flag is permanent.
 if permanent:
 perm = " X"
 else:
 perm = ""

 # Skip processes we don't have permission to access.
 except WindowsError, e:
 if e.winerror == ERROR_ACCESS_DENIED:
 continue
 raise

 # Get the filename.
 filename = process.get_filename()

 # Add the process to the table.
 table.addRow(pid, dep, atl, perm, filename)

Print the table.
table.show()

Choose the disassembler you want to use

WinAppDbg supports several disassembler engines. When more than one compatible engine is installed a default one is picked. However, you can manually select which one you want to use.

This example shows you how to list the supported disassembler engines for the desired architecture and pick one.

Download

from sys import argv

from winappdbg import Disassembler, HexInput, CrashDump

If there are no command line arguments...
if len(argv) == 1:

 # Show the help message.
 print "Usage:"
 print " %s <file> [offset] [size] [arch] [engine]" % argv[0]

 # Show the available disassembler engines.
 print
 print "Supported disassembler engines:"
 print "-------------------------------"
 available = Disassembler.get_available_engines()
 for engine in Disassembler.get_all_engines():
 print
 print "Name: %s" % engine.name
 print "Description: %s" % engine.desc
 print "Available: %s" % ("YES" if engine in available else "NO")
 print "Supported architectures: %s" % ", ".join(engine.supported)

If there are command line arguments...
else:

 # Get the arguments from the command line.
 filename = argv[1]
 try:
 offset = HexInput.address(argv[2])
 except IndexError:
 offset = 0
 try:
 size = HexInput.integer(argv[3])
 except IndexError:
 size = 0
 try:
 arch = argv[4]
 except IndexError:
 arch = None
 try:
 engine = argv[5]
 except IndexError:
 engine = None

 # Load the requested disassembler engine.
 disasm = Disassembler(arch, engine)

 # Load the binary code.
 with open(filename, 'rb') as fd:
 fd.seek(offset)
 if size:
 code = fd.read(size)
 else:
 code = fd.read()

 # Disassemble the code.
 disassembly = disasm.decode(offset, code)

 # Show the disassembly.
 print CrashDump.dump_code(disassembly, offset)

Enumerate all named global atoms

Global atoms are WORD numeric values that can be associated to arbitrary strings. They are used primarily for IPC purposes on Windows XP (Vista and 7 don’t seem to be using them anymore). This example shows how to retrieve the string from any atom value.

Download

from winappdbg.win32 import GlobalGetAtomName, MAXINTATOM

print all valid named global atoms to standard output.
def print_atoms():
 for x in xrange(0, MAXINTATOM):
 try:
 n = GlobalGetAtomName(x)
 if n == "#%d" % x: # comment out to print
 continue # valid numeric atoms
 print "Atom %4x: %r" % (x, n)
 except WindowsError:
 pass

Advanced topics

This section contains some more detailed explanations on the internal workings of WinAppDbg and how to perform more complex tasks with it.

	About the heuristic crash signatures

	A closer look at how labels work
	Labels syntax

	Generating labels

	Splitting labels
	Strict syntax mode

	Fuzzy syntax mode

	Resolving labels

	A closer look at how breakpoints work
	Breakpoint types
	Code breakpoints

	Page breakpoints

	Hardware breakpoints

	Conditional and automatic breakpoints
	The condition parameter

	The action parameter

	One-shot breakpoints

	Batch operations on breakpoints

	Accessing the breakpoint objects

	Listing the breakpoints

About the heuristic crash signatures

The signature is currently implemented as a tuple of some elements that can uniquely identify a crash, at least to some practical extent, so crashes generated by the same bug will not be included more than once. It’s supposed to be opaque to the user of the class, so it can easily be changed to reflect different heuristics without breaking existing code.

The goal is to detect seemingly duplicated crashes in a large set of them. This typically happens when fuzzing an application with little or no robustness, or when fuzzing a robust application with a very large fuzzing farm - the amount of crashes quickly becomes hard to manage. Depending on how many crashes are generated and how valuable each crash is, you may want to simply use this for classification, or to directly filter out potential duplicates before sending them to the database.

This simple implementation should suit most users needs, however if your project requires something more elaborated, just derive from the Crash class and reimplement the signature() method with your own custom algorithm.

These are the elements included in the signature:

	Processor architecture:

For different platforms the locations in the code would change. So if the locations are the same, it may be just a coincidence rather than the same crash.

But most importantly, even if it were the same crash we’d like to know we can trigger it in multiple platforms.

	Event code and exception code:

Wouldn’t make sense not to include them. :)

	Program counter (EIP/RIP):

The same fault in different places of the code are most likely different bugs. However, different faults in the same place are not necessarily the same bug, so we can’t rely on this alone.

To avoid problems with ASLR in Vista and above and DLL relocations in XP and below, a label is used instead of a memory address whenever possible.

	Stack trace (EIP/RIP values only):

This heuristic is actually meant to detect different ways of triggering the same bug, rather than different bugs. But it’s also useful to detect heap overflows, since all of them will be triggered at the same set of EIPs (where the heap routines are located) but coming from different parent functions.

To avoid problems with ASLR in Vista and above and DLL relocations in XP and below, a label is used instead of a memory address whenever possible.

	Debug string:

Different debug strings mean most likely different bugs. There’s a catch: if the debug string is generated from something else (like the value of some variable we don’t care about), this heuristic may fail and give us more crashes than we really wanted. This is the case for strings generated by heaps in debug mode, as they often include the heap chunk addresses. If this becomes a problem you can filter out the unwanted debug string events before storing them in the database.

These are the elements NOT included in the signature:

	Exception address:

Most exceptions caught are page faults, and in that case we’re more interested in the program counter, since a page fault is generally triggered by corrupting a pointer, and the corrupted value itself isn’t really useful to uniquely identifying the crash it produces.

	First chance or second chance:

Generally second chance exceptions are exactly the same as first chance exceptions, they simply mean the application didn’t handle them. Depending on the application you’re debugging you could be interested in logging either first chance or second chance exceptions only, but rarely both.

	Process and thread IDs:

One might say, two processes could crash at the same address because of different bugs. But the problem is, the process and thread IDs are dependent on a particular execution of the target application, and we want to be able to compare crashes from multiple executions. And the chances of collision are still slow thanks to all the other elements that factor in the signature.

	Stack contents and register values:

Both are most likely to contain garbage we’re not interested in (for the signature, that is) plus many values are dependent on a particular execution of the application.

By ignoring this we might be missing different ways to trigger the same bug, though. But the main goal of the signature is to eliminate noise when fuzzing an application that crashes too often, so false positives are not much of an issue. In a scenario when a crash is rare we wouldn’t want filtering by signature at all.

	Operating system version:

Doesn’t tell if it’s the same crash or not, unless we’re fuzzing the OS itself - and in that case we’d be more interested in the names and versions of the binary files.

A closer look at how labels work

Labels are an approximated way of referencing memory locations across different executions of the same process, or different processes
with common modules. They are not meant to be perfectly unique, and some errors may occur when multiple modules with the same name are loaded, or when module filenames can’t be retrieved.

The following examples assume there is a running process called “calc.exe” and the current user has enough privileges to debug it. The resolved addresses may vary in your system.

Labels syntax

This is the syntax of labels:

[image: _images/labels-syntax.png]

Where all components are optional and blank spaces are ignored.

	The module is a module name as returned by Module.get_name().

	The function is a string with an exported function name.

	The ordinal is an integer with an exported function ordinal.

	The offset is an integer number. It may be an offset from the module base address, or the function address. If not specified, the default is 0.

If debugging symbols are available, they are used automatically in addition to exported functions. To get the debugging symbols you need to first install the Microsoft Debugging Tools [https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/], and then either install the debugging symbols for your version of Windows or set up your system to connect to the Microsoft Symbol Server [https://docs.microsoft.com/es-es/windows/win32/dxtecharts/debugging-with-symbols#using-the-microsoft-symbol-server].

Integer numbers in labels may be expressed in any format supported by HexInput.integer(), but by default they are in hexadecimal format (for example 0x1234).

If only the module or the function are specified, but not both, the exclamation mark (!) may be omitted in fuzzy mode (explained later in this document). However, resolving the label may be a little slower, as all module names have to be checked to resolve the ambiguity.

Generating labels

To create a new label, use the parse_label static method of the Process class:

>>> import winappdbg
>>> winappdbg.Process.parse_label() # no arguments
'0x0'
>>> winappdbg.Process.parse_label(None, None, None) # empty label
'0x0'
>>> winappdbg.Process.parse_label(None, None, 512) # offset or address
'0x200'
>>> winappdbg.Process.parse_label("kernel32") # module base
'kernel32!'
>>> winappdbg.Process.parse_label("kernel32", "CreateFileA") # exported function...
'kernel32!CreateFileA'
>>> winappdbg.Process.parse_label("kernel32", 16) # ...by ordinal
'kernel32!#0x10'
>>> winappdbg.Process.parse_label("kernel32", None, 512) # module base + offset
'kernel32!0x200'
>>> winappdbg.Process.parse_label(None, "CreateFileA") # function in any module...
'!CreateFileA'
>>> winappdbg.Process.parse_label(None, 16) # ...by ordinal
'!#0x10'
>>> winappdbg.Process.parse_label(None, "CreateFileA", 512) # ...plus an offset...
'!CreateFileA+0x200'
>>> winappdbg.Process.parse_label(None, 16, 512) # ...by ordinal
'!#0x10+0x200'
>>> winappdbg.Process.parse_label("kernel32", "CreateFileA", 512) # full label...
'kernel32!CreateFileA+0x200'
>>> winappdbg.Process.parse_label("kernel32", 16, 512) # ...by ordinal
'kernel32!#0x10+0x200'

The get_label_at_address method automatically guesses a good label for any given address in the process.

>>> import winappdbg
>>> aSystem = winappdbg.System()
>>> aSystem.request_debug_privileges()
True
>>> aSystem.scan()
>>> aProcess = aSystem.find_processes_by_filename("calc.exe")[0][0]
>>> aProcess.get_label_at_address(0x7c801a28) # address within kernel32.dll
'kernel32+0x1a28!'

Splitting labels

To split labels back to their original module, function and offset components there are two modes. The strict mode allows only labels that have been generated with parse_label. The fuzzy mode has a more flexible syntax, and supports some notation abuses that can only be resolved by a live Process instance.

The split_label method will automatically use the strict mode when called as a static method, and the fuzzy mode when called as an instance method:

winappdbg.Process.split_method("kernel32!CreateFileA") # static method, using the strict mode
aProcessInstance.split_method("CreateFileA") # instance method, using the fuzzy mode

The sanitize_label method takes a fuzzy syntax label and converts it to strict syntax. This is useful when reading labels from user input and storing them for later use, when the process is no longer being debugged.

Strict syntax mode

To explicitly use the strict syntax mode, call the split_label_strict method:

>>> import winappdbg
>>> winappdbg.Process.split_label_strict(None) # empty label
(None, None, None)
>>> winappdbg.Process.split_label_strict('') # empty label
(None, None, None)
>>> winappdbg.Process.split_label_strict('0x0') # NULL pointer
(None, None, None)
>>> winappdbg.Process.split_label_strict('0x200') # any memory address
(None, None, 512)
>>> winappdbg.Process.split_label_strict('0x200 ! ') # meaningless ! is ignored
(None, None, 512)
>>> winappdbg.Process.split_label_strict(' ! 0x200') # meaningless ! is ignored
(None, None, 512)
>>> winappdbg.Process.split_label_strict('kernel32 ! ') # module base
('kernel32', None, None)
>>> winappdbg.Process.split_label_strict('kernel32 ! CreateFileA') # exported function...
('kernel32', 'CreateFileA', None)
>>> winappdbg.Process.split_label_strict('kernel32 ! # 0x10') # ...by ordinal
('kernel32', 16, None)
>>> winappdbg.Process.split_label_strict('kernel32 ! 0x200') # base address + offset...
('kernel32', None, 512)
>>> winappdbg.Process.split_label_strict('kernel32 + 0x200 ! ') # ...alternative syntax
('kernel32', None, 512)
>>> winappdbg.Process.split_label_strict(' ! CreateFileA') # function in any module...
(None, 'CreateFileA', None)
>>> winappdbg.Process.split_label_strict(' ! # 0x10') # ...by ordinal
(None, 16, None)
>>> winappdbg.Process.split_label_strict(' ! CreateFileA + 0x200') # ...plus an offset...
(None, 'CreateFileA', 512)
>>> winappdbg.Process.split_label_strict(' ! # 0x10 + 0x200') # ...by ordinal
(None, 16, 512)
>>> winappdbg.Process.split_label_strict('kernel32 ! CreateFileA + 0x200') # full label...
('kernel32', 'CreateFileA', 512)
>>> winappdbg.Process.split_label_strict('kernel32 ! # 0x10 + 0x200') # ...by ordinal
('kernel32', 16, 512)

Fuzzy syntax mode

To explicitly use the fuzzy syntax mode, call the split_label_fuzzy method:

>>> import winappdbg
>>> aSystem = winappdbg.System()
>>> aSystem.request_debug_privileges()
True
>>> aSystem.scan()
>>> aProcess = aSystem.find_processes_by_filename("calc.exe")[0][0]
>>> aProcess.split_label_fuzzy("kernel32") # allows no ! sign
('kernel32', None, None)
>>> aProcess.split_label_fuzzy("kernel32.dll") # strips the default extension
('kernel32', None, None)
>>> aProcess.split_label_fuzzy("CreateFileA") # can tell a module from a function name
(None, 'CreateFileA', None)
>>> aProcess.split_label_strict("0x7c800000") # strict mode can't tell base address from offset
(None, None, 2088763392)
>>> aProcess.split_label_fuzzy("0x7c800000") # fuzzy mode can tell base address from offset
('kernel32', None, None)
>>> aProcess.split_label_fuzzy("0x7c800000 + 6696") # base address + offset
('kernel32', None, 6696)
>>> aProcess.split_label_fuzzy("0x7c801a28") # any memory address
('kernel32', None, 6696)
>>> aProcess.split_label_fuzzy("0x200") # address outside of any loaded module
(None, None, 512)

Resolving labels

The resolve_label method allows you to get the actual memory address the label points at the given process. If the module is not loaded or the function is not exported, the method fails with an exception.

>>> import winappdbg
>>> aSystem = winappdbg.System()
>>> aSystem.request_debug_privileges()
True
>>> aSystem.scan()
>>> aProcess = aSystem.find_processes_by_filename("calc.exe")[0][0]
>>> aProcess.resolve_label("kernel32") # module base
2088763392
>>> aProcess.resolve_label("KERNEL32") # module names are case insensitive
2088763392
>>> aProcess.resolve_label("kernel32.dll")
2088763392
>>> aProcess.resolve_label("kernel32 + 0x200") # module + offset
2088763904
>>> aProcess.resolve_label("kernel32 ! CreateFileA")
2088770088
>>> aProcess.resolve_label("CreateFileA") # all loaded modules are searched
2088770088
>>> aProcess.resolve_label(" # 16") # function ordinal
2090010350
>>> aProcess.resolve_label(" # 0x10") # function ordinal in hexa
2090010350
>>> aProcess.resolve_label("kernel32 ! CreateFileA + 0x200")
2088770600
>>> aProcess.resolve_label("CreateFileA + 0x200")
2088770600
>>> aProcess.resolve_label("0x7c800000") # module base address
2088763392
>>> aProcess.resolve_label("0x7c800000 ! CreateFileA")
2088770088

A closer look at how breakpoints work

This wiki page aims at giving a more detailed explanation on how breakpoints really work, behind the simplified break_at, stalk_at, watch_variable and watch_buffer interface provided by the Debug objects. With this you can fine-tune the use of breakpoints in your programs.

Breakpoint types

Debug objects support three kinds of breakpoints: code breakpoints, page breakpoints and hardware breakpoints. Each kind of breakpoint causes an exception to be raised in the debugee. These exceptions are caught and handled automatically by the debugger.

Breakpoints have to be defined first and enabled later. The rationale behind this is that you can define as many breakpoints as you want, and then switch them on and off as you need to without having to delete them. This leads to a more efficient use of resources, and is consistent with what one expects of debuggers.

Code breakpoints are defined by the define_code_breakpoint method, enabled by the enable_code_breakpoint method. You can guess what are the methods to disable and erase code breakpoints. :)

Similarly, page breakpoints are defined by define_page_breakpoint, hardware breakpoints are defined by define_hardware_breakpoint, and so on.

Code breakpoints

Code breakpoints are implemented by inserting an int3 instruction [https://en.wikipedia.org/wiki/INT_(x86_instruction)#INT3] (xCC) at the address specified. When a thread tries to execute this instruction, a breakpoint exception is generated. It’s global to the process because it overwrites the code to break at.

When hit, code breakpoints trigger a breakpoint event at your event handler.

Let’s look at the signature of define_code_breakpoint:

 def define_code_breakpoint(self, dwProcessId, address, condition = True,
 action = None):

Where dwProcessId is the Id of the process where we want to set the breakpoint and address is the location of the breakpoint in the process memory. The other two parameters are optional and will be explained later.

Page breakpoints

Page breakpoints are implemented by changing the access permissions [https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex] of a given memory page. This causes a guard page exception to be generated when the given page is accessed anywhere in the code of the process.

When hit, page breakpoints trigger a guard_page event at your event handler.

Let’s see the signature of define_page_breakpoint:

 def define_page_breakpoint(self, dwProcessId, address, pages = 1,
 condition = True,
 action = None):

Where dwProcessId is the same. But now address needs to be page-aligned and pages is the number of pages covered by the breakpoint. This is because VirtualProtectEx() [https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex] works only with entire pages, you can’t change the access permissions on individual bytes.

Hardware breakpoints

Hardware breakpoints are implemented by writing to the debug registers [https://en.wikipedia.org/wiki/Debug_register] (DR0-DR7) of a given thread, causing a single step exception to be generated when the given address is accessed anywhere in the code for that thread only. It’s important to remember the debug registers have different values for each thread, so this can’t be done global to the process (you can set the same breakpoint in all the threads, though).

When hit, hardware breakpoints trigger a single_step event at your event handler.

The signature of define_hardware_breakpoint is this:

 def define_hardware_breakpoint(self, dwThreadId, address,
 triggerFlag = BP_BREAK_ON_ACCESS,
 sizeFlag = BP_WATCH_DWORD,
 condition = True,
 action = None):

Seems a little more complicated than the others. :)

The first difference we see is the dwProcessId parameter has been replaced by dwThreadId. This is because hardware breakpoints are only applicable to single threads, not to the entire process.

The address is any address in the process memory, even if it’s unmapped. This can be useful to set breakpoints on DLL libraries before they are loaded (as long as they don’t get relocated [https://en.wikipedia.org/wiki/Portable_Executable#Relocations]).

The triggerFlag parameter is used to specify exactly what event will trigger this breakpoint. There are four constants available:

	Constant

	Meaning

	Debug.BP_BREAK_ON_EXECUTION

	Break when executing on address.

	Debug.BP_BREAK_ON_WRITE

	Break when writing to address.

	Debug.BP_BREAK_ON_ACCESS

	Break when reading or writing to address.

	Debug.BP_BREAK_ON_IO_ACCESS

	(Not currently used by today’s hardware.)

The sizeFlag parameter says how large is the memory region to watch. There are again four constants:

	Constant

	Meaning

	Debug.BP_WATCH_BYTE

	Applies to 1 byte from address.

	Debug.BP_WATCH_WORD

	Applies to 2 bytes (a word) from address.

	Debug.BP_WATCH_DWORD

	Applies to 4 bytes (a double word) from address.

	Debug.BP_WATCH_QWORD

	Applies to 8 bytes (a quad word) from address.

Since x86 processors only have enough room for four hardware breakpoints in the debug registers, you can only enable four of them at a time for a single thread. You can define as many as you want, though, provided you only keep a maximum of four enabled breakpoints per thread at any time.

Conditional and automatic breakpoints

We have seen above that all the methods to define breakpoins have the optional parameters condition and action. But what do they mean?

The condition parameter

The condition parameter determines if the breakpoint is conditional or unconditional.

If it’s set to True (the default value) the breakpoint is unconditional. Unconditional breakpoints always call the corresponding method of the event handler.

And if it’s set to a function (or any other callable Python object), the breakpoint is conditional. Conditional breakpoints, when hit, call the condition callback. If this callback returns True the event handler method is also called, otherwise it isn’t. This allows you to set breakpoints that will only trigger an event under specific conditions (for example, only stop the execution when EAX equals 0x100, ignore it otherwise).

condition callback
def eax_is_100(event):

 aThread = event.get_thread()
 Eax = aThread.get_context()['Eax']

 if Eax == 0x100:

 # We are interested on this!
 return True

 # False alarm, ignore it...
 return False

Will only break when eax is 100 in that process at that address
def break_when_eax_is_100(debug, pid, address):
 debug.define_code_breakpoint(pid, address, condition = eax_is_100)
 debug.enable_code_breakpoint(pid, address)

The action parameter

The action parameter allows you to set another callback. When not used, the breakpoint is interactive, meaning when it’s hit (and it’s condition callback returns True) the event handler method is called. But when it’s used, the breakpoint is automatic, and that means this callback is called instead of the event handler method.

Automatic breakpoints are useful for setting tasks to be done “behind the back” of the event handler, so they don’t have to be treated as special cases by your event handler routines.

action callback
def change_eax_value(event):

 # Get the thread that hit the breakpoint
 aThread = event.get_process()

 # Set a new value for the EAX register
 aThread.set_register('Eax', 0xBAADF00D)

Will automatically change the return value of the function
def auto_change_return_value(debug, pid, address):
 # 'address' must be the location of the 'ret' instruction
 debug.define_code_breakpoint(pid, address, action = change_eax_value)
 debug.enable_code_breakpoint(pid, address)

Breakpoints can be both conditional and automatic. Here is another example reusing the code above:

Will automatically change the return value of the function,
but only when the original value was 0x100
def conditionally_change_return_value(debug, pid, address):
 # 'address' must be the location of the 'ret' instruction
 debug.define_code_breakpoint(pid, address, condition = eax_is_100,
 action = change_eax_value)
 debug.enable_code_breakpoint(pid, address)

One-shot breakpoints

Breakpoints of all types can also be one-shot. This means they’re automatically disabled after being hit. This is useful for one time events, for example a debugger might want to set a one-shot breakpoint at the next instruction for tracing. You could also set one-shot breakpoints to do code coverage, where multiple executions of the same code are not relevant.

Note that one-shot breakpoints are only disabled, not deleted, so you can enable them again. Any disabled breakpoint can be enabled again, as a normal breakpoint or as one-shot, independently of how it’s been used before.

To set one-shot breakpoints, after defining them use one of the enable_one_shot_code_breakpoint, enable_one_shot_page_breakpoint or enable_one_shot_hardware_breakpoint methods to enable it.

Will automatically change the return value of the function,
but only when the original value was 0x100,
and only the next time the function is called
def conditionally_change_return_value(debug, pid, address):
 # 'address' must be the location of the 'ret' instruction
 debug.define_code_breakpoint(pid, address, condition = eax_is_100,
 action = change_eax_value)
 debug.enable_one_shot_code_breakpoint(pid, address)

Batch operations on breakpoints

The following methods are provided for working on all breakpoints at once:

	Method

	Description

	enable_all_breakpoints

	Enables all disabled breakpoints in all processes.

	enable_one_shot_all_breakpoints

	Enables for one shot all disabled breakpoints in all processes.

	disable_all_breakpoints

	Disables all breakpoints in all processes.

	erase_all_breakpoints

	Erases all breakpoints in all processes.

These methods work with all breakpoints of a single process:

	Method

	Description

	enable_process_breakpoints

	Enables all disabled breakpoints for the given process.

	enable_one_shot_process_breakpoints

	Enables for one shot all disabled breakpoints for the given process.

	disable_process_breakpoints

	Disables all breakpoints for the given process.

	erase_process_breakpoints

	Erases all breakpoints for the given process.

Accessing the breakpoint objects

For even more fine-tuning you might also want to access the Breakpoint objects directly. The get_code_breakpoint method retrieves a code breakpoint in a process, get_page_breakpoint works for page breakpoints in a process, and get_hardware_breakpoint gets the hardware breakpoint in a thread.

While it’s always safe to request information from a Breakpoint object, it may not be so when modifying it, so be careful what methods you call. The following methods are safe to call:

	Method

	Description

	is_disabled

	If True, breakpoint is disabled.

	is_running

	If True, breakpoint was recently hit.

	is_here

	Returns True if the breakpoint is within the given address range.

	get_address

	Returns the breakpoint location.

	get_size

	Returns the breakpoint size in bytes.

	is_conditional

	If True, the breakpoint is conditional.

	get_condition

	Returns the breakpoint condition parameter.

	set_condition

	Changes the breakpoint condition parameter.

	is_automatic

	If True, the breakpoint is automatic.

	get_action

	Returns the breakpoint action parameter.

	set_action

	Changes the breakpoint action parameter.

	get_slot

	(For hardware breakpoints only) Returns the debug register number used by this breakpoint, or None if the breakpoint is disabled or running.

	get_trigger

	(For hardware breakpoints only) Returns the trigger parameter.

	get_watch

	(For hardware breakpoints only) Returns the watch parameter.

	get_size_in_pages

	(For page breakpoints only) Get the number of pages covered by the breakpoint.

	align_address_to_page_start

	(Static, for page breakpoints only) Align the given address to the start of the page it occupies.

	align_address_to_page_end

	(Static, for page breakpoints only) Align the given address to the end of the page it occupies.

	get_buffer_size_in_pages

	(Static, for page breakpoints only) Get the number of pages in use by the given buffer.

Listing the breakpoints

Debug objects also allow you to retrieve lists of defined breakpoints, filtered by different criteria. This listing methods return lists of tuples, and inside this tuples are the Breakpoint objects described earlier.

The following table describes the listing methods and what they return, where pid is a process ID, tid is a thread ID and bp is a Breakpoint object.

	Method

	Description

	get_all_code_breakpoints

	Returns all code breakpoints as a list of tuples (pid, bp).

	get_all_page_breakpoints

	Returns all page breakpoints as a list of tuples (pid, bp).

	get_all_hardware_breakpoints

	Returns all hardware breakpoints as a list of tuples (tid, bp).

	get_process_code_breakpoints

	Returns all code breakpoints for the given process.

	get_process_page_breakpoints

	Returns all page breakpoints for the given process.

	get_thread_hardware_breakpoints

	Returns all hardware breakpoints for the given thread.

	get_process_hardware_breakpoints

	Returns all hardware breakpoints for each thread in the given process as a list of tuples (tid, bp).

Building your own distribution packages

WinAppDbg is released under the BSD license, so as a user you are entitled to create derivative work and redistribute it if you wish. A batch script is provided to automatically generate the source distribution package and the Windows installer, and can also generate the documentation for all the modules using Epydoc and Sphinx.

Prerequisites

The distribution building requires Python 2.7 as a minimum version. It works both with 32 and 64 bits. Older versions of Python will fail. The 32 bits interpreter is expected to be installed at %SystemDrive%Python27 and the 64 bits version at %SystemDrive%Python27-x64. If both are found the 64 bits version is used.

This documentation was generated using Sphinx [http://sphinx-doc.org/]. The reStructuredText sources are provided with the source code downloads only.

The Epydoc [http://epydoc.sourceforge.net/] package is required to autogenerate the reference documentation. GraphViz [http://www.graphviz.org/] is used by Epydoc to generate UML graphs for the documentation.

A Latex compiler is used to generate the documentation in PDF format. We’re currently using MikTex 2.7 [https://miktex.org/] on Windows.

The HTML help can be compiled to a .CHM file using Microsoft HTML Help Workshop [http://www.microsoft.com/en-us/download/details.aspx?id=21138].

The Make utility is used to run makefiles, and the Tar, GZip and BZip2 utilities are required to compress .tar.gz and .tar.bz2 files. We’re using Cygwin [http://www.cygwin.com/] because the packages from GnuWin32 suffer from really nasty bugs (most notably the Tar command tries to call fork() on Windows…).

All of these tools must be present in the PATH environment variable.

The decorator [https://pypi.org/project/decorator] module is also recommended since it integrates better than the built-in decorators with the autodoc tools we’re using. You can install it with easy_install or download it from the Python Package Index [https://pypi.org/project/decorator].

	Download Sphinx [https://pypi.org/project/Sphinx]

	Download Pygments [https://pypi.org/project/Pygments]

	Download Epydoc [https://sourceforge.net/projects/epydoc/files/]

	Download GraphViz [http://www.graphviz.org/download/]

	Download MikTex 2.7 [https://miktex.org/2.7/setup]

	Download HTML Help Workshop [http://www.microsoft.com/en-us/download/details.aspx?id=21138]

	Download Cygwin [http://cygwin.com/]

	Download Decorator [https://pypi.org/project/decorator]

Installation

Both the source code and Windows installer packages are generated with Distutils, which is already shipped with your Python distribution. The setup.py file is the installer script that contains the package metadata and the list of files to include.

You can find more information on Distutils installer scripts here [https://docs.python.org/2/distutils/setupscript.html].

An install batch file (install.bat) is provided for convenience when installing WinAppDbg in multiple versions of Python coexisting in the same machine.

Building the packages

A batch file (distro.bat) is provided to build the packages. These are the commands it supports:

Building the project

	distro all

Generates the all documentation and builds all the packages.

	distro clean

Removes all files and directories created by the other make commands.

Building each component

	distro source

Builds only the source code packages in zip and tar.bz2 format.

	distro wininst

Builds only the Windows installer packages (that is, the exe and msi files) for all supported platforms and architectures.

	distro autodoc

Generates only the reference documentation using Epydoc.

	distro manuals

Generates only the manuals using Sphinx.

Directory structure

This is the directory structure expected for the makefile and the install script to work.

Input directories

	/doc

This folder contains the reStructured text for the manuals. It’s included only in the source distribution package.

	/examples

This folder contains the example scripts shipped with WinAppDbg. They’re the same examples found in the project wiki pages. It’s included only in the source distribution package.

	/tools

This folder contains the utility scripts shipped with WinAppDbg. It’s included in both the source distribution package and the Windows installer.

	/winappdbg

This folder contains the WinAppDbg source code itself. It’s included in both the source distribution package and the Windows installer.

Output directories

	/build

Temporary folder created when building the source distribution and Windows installer. You can safely delete this.

	/dist

This is where the source distribution and the Windows installer files are stored.

	/doc/build

This folder contains the compiled manuals in HTML and PDF formats.

	/html

This is where the reference documentation files are stored, in HTML format. If you compile this documentation into a .CHM file it’ll also be stored here.

	/pdf

This is where the reference documentation files are stored, in PDF and PostScript format.

Screenshots

	Support for 32 and 64 bits.

	[image: _images/platform.png]

	The command line debugger in action.

	[image: _images/pdebug.png]

	The crash logger tool, reporting a stack buffer overflow.

	[image: _images/crash_logger_2.png]

	The crash logger tool, showing the exploitability rating.

	[image: _images/crash_logger.png]

	Using API hooks to monitor a process activity.

	[image: _images/api_hooks.png]

	Tracing execution flow.

	[image: _images/ptrace.png]

	Showing the memory map.

	[image: _images/pmap.png]

	Dumping the memory of a process.

	[image: _images/memory_dump.png]

	Listing proceses, services and windows.

	[image: _images/plist.png]

	Finding alphanumeric jump addresses.

	[image: _images/find_alnum.png]

	Showing the DEP settings of all processes.

	[image: _images/dep.png]

	Multiple disassembler engines are supported.

	[image: _images/disasm.png]

	Searching the Windows Registry.

	[image: _images/registry_search.png]

	Helper functions for input/output.

	[image: _images/color.png]

 _images/color.png
is Tight magenta text on black background.
is dark magenta text on black background
is Tight yellow text on black background.
is dark yellow text on black background
is 1ight white text on black background.
s dark white text on black background
black text on light red background
black text

on light magenta background.
black text on dark magenta background.
black text on light yellow background.
black text on dark yellow background.
black text on light white background.

on dark white background.

' | o

_images/crash_logger.png
—|al x

[16:29:23.0207] pid 149664 tid 149356: Unloaded a module at 76810000
[16:29:23.0207] pid 149664 tid 149356: unloaded a module at 76C30000
[1?;%263360209] pid 149664 tid 149356: Loaded C:\Windows\syswow64\kernel32.d11
It

[16:29:23.0210] pid 149664 tid 149356: Loaded C:\Windows\syswow64\KERNELBASE.d1]|
at 74A20000

;%2;386%3.0213] pid 149664 tid 149356: Loaded C:\Windows\syswow64\msvcrt.d11l at
[16:29:23.0220] pid 149664 tid 149356: Access violation (first chance) at crashe]
rlstart+0x40d
[16:29:23.0944] pid 149664 tid 149356: Access violation (second chance) at crash|
ler |start+0x40d

Security risk level: Exploitable
Stack pointer corruption is considered exploitable.

Command Tine: crasher.exe 7 AAA/
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Environment:
TMP=C:\Users\Mario\AppData\Local\Temp
SHIM_MCCOMPAT=0x810000001
COMPUTERNAME=MARTO-PC
USERDOMAIN=Mario-PC
VS100COMNTOOLS=C: \Program Files (x86)\Microsoft Vvisual Studio 10.0\Common7\Toc

_images/api_hooks.png
& Command Prompt - python 09_api hookpy cale ..

: Opening \\.\NvAdminDevice
Opening file: \\.\NvAdminDevice
Success: 64
Success: 64
Opening file: C:\ProgramData\NVIDIA Corporation\Drs\nvdrssel.bin
Success: 64
Opening file: C:\ProgramData\NVIDIA Corporation\Drs\nvdrsdbl.bin

[=a] x

Success: 68
Opening file: c:\windows\syswow64\aurora.dl
Success: FRFFFFFf

: Opening file: c:\windows\syswow64\petromod_nvidia_profile_identifier.og]|

: Success: fFFFFFFf
Opening file: \\.\NvAdminDevice
Opening file: \\.\NvAdminDevice
Success: 64
Success: 64
Opening file: C:\Windows\Fonts\staticcache.dat
Success: f8
Opening key:
Success!
Opening key: Software\Microsoft\Calc
Success!
Opening key: Software\Microsoft\Calc
Success !

software\Microsoft\calc

_images/crash_logger1.png
Bt

£

R S

§
H

7

sssusnes
ey
spsuzies
o
e
.

serssns

ey
e

s

_images/crash_logger_2.png
@ Command Promy

USERPROFILE=C:\Users\Mario
0S=Windows_NT
PUBLIC=C:\Users\Public
ExitCode=00000000

Registers:

0000000 ebx=41414141 ec:
040153d esp=4141413d eb
023 s5=002b ds=002b e

lcode disassembly:

00401520 | 0000 | add [eax], a
0040152F | 0000 | add [eax], a
00401531 | 8d65F8 | lea esp, [ebp-0x8
00401534 | 83400 | add esp, 0x0
00401537 | 59 | pop ecx
00401538 | 5b | pop ebx
00401539 | c9 | leave
0040153A | 8d61fc | lea esp, [ecx-0x4.

* 00401530 | 3 | ret
0040153E | 90 | nop
0040153F | 90 | nop
00401520 | 55 | push ebp
00401541 | 89e5 | mov ebp, esp
00401543 | 53 | push_ebx
00401544 | 9c | pushf
00401545 | 9c | pushf
00401546 | 58 | pop eax
00401547 | 89c2 | mov edx, eax
00401549 | 35 | db 0x35
0040154A | 0000 | add [eax], @
0040154C | 20 | db 0x20

jremory map:
Address size

00000000 00010000
00010000 00010000
00020000 00010000
00030000 00010000
00040000 00001000
00041000 0000F000
00050000 00039000
00089000 00003000
0008C000 00004000
00090000 001FD000
00280000 00001000
0028E000 00002000
00290000 00004000
0000C000
00001000
0000F000
00067000
00009000
00001000
0001F000
00070000
00003000
00000000

Access

Commited
Commited
Free

Commited
Free

Reserved
Commited
Commited
Reserved
Commited
Commited
Commited
Free

Commited
Free

Commited
Free

Commited
Reserved
Free

Commited
Reserved

RW-

00321000
00340000
00380000
00383000

Type

Mapped
Mapped

Image

Private
Private
Private
Private
Private
Private
Mapped

Private
Mapped

Private
Private

Private
Private

1414141 edx=baad0041 esi=00000000_ edi=00000000
1414141 iopl1=0
02b fs=0053 gs=002b

no up ei pl nz na po nc
«f1=00010202

File

C:\Windows\System32\apisetschema.d11

C:\Windows\System32\locale.nls

_images/dep.png
[(=a—x

IC: \Users \Mario\Desk top\winappdbg\examples\miscel laneous>python 04_dep.py

PID DEP DEP-ATL Permanent Filename
159660 X x chrome. exe
4120 X x nusb3mon. exe
4120 X x psi_tray.exe
157236 X X chrome. exe
150412 X x python. exe
1108 X X DLG. exe
158660 X x chrome. exe
4200 X X VCDDaemon. exe
25796 X X TrueCrypt. exe
141520 X X komodo. exe
158168 X x wget. exe
159036 X x chrome. exe
158532 X X chrome . exe
158088 X X chrome . exe
158616 X X chrome . exe
159336 X X chrome . exe
158196 X X chrome. exe
4576 X X BluetoothHeadsetProxy.exe
143016 X x chrome. exe
lc : \Users\Mario\Desktop\winappdbg\examples\miscellaneous>

nav.xhtml

 Table of Contents

 		
 Welcome to WinAppDbg 1.6!

 		
 Downloading and installing

 		
 Latest version

 		
 Older versions

 		
 Dependencies

 		
 Disassembler

 		
 Debugging Symbols

 		
 Database storage

 		
 Other goodies

 		
 Install

 		
 Support

 		
 Python interpreters

 		
 Operating systems

 		
 Architectures

 		
 Known issues

 		
 License

 		
 Command line tools

 		
 Crash logger

 		
 Process tools

 		
 Miscellaneous

 		
 Programming guide

 		
 Instrumentation

 		
 The System class

 		
 The Process class

 		
 The Thread class

 		
 The Module class

 		
 The Window class

 		
 Back to the System class

 		
 Debugging

 		
 The Debug class

 		
 The interactive debugger

 		
 The Event class

 		
 The Crash and CrashDAO classes

 		
 The EventHandler class

 		
 The EventSift class

 		
 Breakpoints, watches and hooks

 		
 Labels

 		
 Helper classes and functions

 		
 Console output with colors

 		
 Text output in tables

 		
 Logging

 		
 Hexadecimal input

 		
 Hexadecimal output

 		
 Dumping code, stack and registers

 		
 Pathname and filename handling

 		
 The Win32 API wrappers

 		
 Example #1: finding a DLL in the search path

 		
 Example #2: killing a process by attaching to it

 		
 Example #3: enumerating heap blocks using the Toolhelp library

 		
 Example #4: enumerating modules using the Toolhelp library

 		
 Example #5: enumerating device drivers

 		
 More examples

 		
 Set a debugging timeout

 		
 Dump the memory of a process

 		
 Find alphanumeric addresses to jump to

 		
 Show processes DEP settings

 		
 Choose the disassembler you want to use

 		
 Enumerate all named global atoms

 		
 Advanced topics

 		
 About the heuristic crash signatures

 		
 A closer look at how labels work

 		
 A closer look at how breakpoints work

_images/labels-syntax.png
module + offset
module ! function + offset

_images/memory_dump.png
&8 Command Prompt

Looking for: explorer.exe
pumping memory for process ID 3776 (64 bits)
creating database 3776 _001.db

[Reading 0000000000010000-0000000000020000
[Reading 0000000000020000-0000000000022000
[Reading 0000000000030000-0000000000034000
[Reading 0000000000040000-0000000000042000
[Reading 0000000000050000-0000000000051000
[Reading 0000000000060000-000000000006D000
[Reading 0000000000070000-0000000000073000
[Reading 0000000000080000-0000000000081000
[Reading 00000000000FA000-0000000000110000
[Reading 0000000000110000-0000000000177000
[Reading 0000000000180000-0000000000181000
[Reading 0000000000190000-0000000000192000
[Reading 00000000001D0000-00000000001D1000
[Reading 00000000001E0000-00000000001E2000
[Reading 00000000001F0000-0000000000200000
[Reading 0000000000200000-0000000000201000
[Reading 0000000000210000-0000000000212000
[Reading 0000000000220000-0000000000221000
[Reading 0000000000230000-0000000000232000
[Reading 0000000000240000-0000000000241000
[Reading 0000000000250000-0000000000251000
[Reading 0000000000260000-0000000000270000

_images/disasm.png
ommand Prompt

[C: \Users \Mario\Desk top\winappdbg\examples\miscel laneous>python 05_disasm.py
Usage:
05_disasm.py <file> [offset] [sizel [arch] [enginel

supported disassembler engines:

Name: diStorm
Description: distorm disassembler by Gil Dabah
Ssupported architectures: 1386, amd64

Name: BeaEngine
Description: Beakngine disassembler by Beatrix
Supported architectures: 1386, amd64

[Name: capstone
Description: Capstone disassembler by Nguyen Anh Quynh
Supported architectures: arm, arm64, 1386, amd64, thumb

Name: Libdisassemble
pescription: Immunity libdisassemble
supported architectures: 1386

Name: PyDasm
Description: PyDasm: Python bindings to Tibdasm
supported architectures: 1386

lc: \Users\Mario\Desktop\winappdbg\examples\miscellaneous>a

_images/find_alnum.png
Calculator

View Edit Help

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

He Mod [A c || mr || ms [me || m
) pec
B ||| |l c| =
— oat
- 3 93 7
@8 Command Prompt - python 03_find_alnum.py 169384 . w[rrl ¢ [7180
EAX, EAX
BYTE [EAX+0x5e], Ox5f D

EAX
ESI
EDI

ST,
EST,
DB Oxfe
AND DH, [ESI+EAX+0x66]
JZ comct132!TaskDialogIndirect+0x7f01
PUSH ES
WP SI, Ox
MP EST,
DB Oxfe
DAA
INZ comct132!TaskDialogIndirect+0x7e98
XCHG EDI, EAX
LEA EAX, [EDX+0x2]
INC

[Ecx],
'xvlq' ADD [EDI],
79 'yviq VZX ESI,

_images/plist.png
@ Command Prompt

PID.
Filename
Windows

PID.
Filename:
windows :

PID.
Filename
Windows

3752
dwm. exe
DWM Notification Window

3772
sidebar.exe

None

Calendar

Clock

Default IME

GDI+ Window

MSCTFIME UT
SidebarBroadcastwatcher
Weather

3776
explorer.exe
None

Battery Meter
BluetoothNotificationAreaIconWwindowClass
DDE Server Window

Default IME

Jump List

MCI command handlin

_images/pmap.png
&8 Command Prompt
77103000 0000D000 Free

77110000 00001000 Commited --- Image C:\Windows\System32\psapi.

77111000 00001000 Commited R-X --- Image C:\Windows\System32\psapi.dll
77112000 00001000 Commited R-- --- Image C:\Windows\System32\psapi.dll
77113000 00001000 Commited RW- --- Image C:\Windows\System32\psapi.dll
77114000 00003000 Commited --- Image C:\Windows\System32\psapi.dll

77117000 07EC9000 Free

7EFEO000 00005000 Commited R-- --- Mapped

7EFE5000 000FBO00 Reserved Mapped

7FOEO000 00F00000 Reserved Private
00001000 Commited R-- --- Private
0000F000 Reserved Private
7FF40000 Free

[FFF30000 00001000 Commited - Image C:\Windows\explorer.exe
FFF31000 000B8000 Commited Image C:\Windows\explorer.exe
FFFEQ000 0002F000 Commited - Image C:\Windows\explorer.exe

407,830,528 bytes of readable memory
126,586,880 bytes of writeable memory
7,843,840 bytes of executable memory
181,628,928 bytes of private memory
139,386,880 bytes of mapped memory
190,337,024 bytes of image memory
511,352,832 bytes of total memory

_images/pdebug.png
by Mario vilas (mvilas at gmail.com)

spawned process (147664)

Started process 147664 at 0x00401130

Started thread 152112 at crasher!start

| oaded module (00400000) C:\Users\Mario\Desktop\winappdbg\tools\crasher.exe
Loaded module (77120000) ntd11.d11

Unloaded module (76810000)

Unloaded module (75860000)

Unloaded module (76810000)

UnToaded module_(76C30000)

Loaded module (75860000) Windows\syswow64\kerne132.d11
Loaded module (74A20000) Windows \syswow64 \KERNELBASE . d11
Loaded module (75270000) Windows\syswow64\msvcrt.d11

Breakpoint (80000003) at address 771COFAB (first chance)

d590000 edx=0008e3c8 esi=fffffffe_ edi=00000000
71cOfac_esp=0028fb08 ebp=0028b34 iop1=0 no up ei pl zr na pe nc
023 ss=002b ds=002b es=002b fs=0053 gs=002b «f1=00000246

[ntd11!LdrVeri fyImageMatchesChecksums0x96d

771COFAC: 8975Fc mov [ebp-Oxd1, esi

147664:152112> g

Access violation (C0000005) at address 0040153D (first chance)

ax=00000000 ebx=41414141 ecx=41414141 edx=baad0041 esi=00000000_ edi=00000000
040153d esp=4141413d ebp=41414141 iop1=0 no up ei pl nz na po nc
023 95=002h ds=002b 06002 fs=0033 gs=002b «f1=00010202

crasher ! start+0x40d

0040153D: c3_ret

147664:152112> g

Access violation (C0000005) at address 0040153D (second chance)

ax=00000000 ebx=41414141 ecx=41414141 edx=baad0041 esi=00000000_ edi=00000000
040153d esp=4141413d ebp=41414141 iop1=0 no up ei pl nz na po nc
023 95=002h ds=002b 06002 fs=0033 gs=002b «f1=00010202

crasher ! start+0x40d

0040153D: c3_ret

147664:152112> .exploitable

Exploitable
StackPointerCorruption
Stack pointer corruption is considered exploitable.

_images/platform.png
mand Prompt

jc: \Users\Mario\Desktop\winappdbg\examples\instrumentation>python 01_platform.py
WinAppbbg Version 1.5 (beta 6)

Running on windows 7 (64 bits) for the amd64 architecture.
Running in 32 bit emulation mode.

From this Python WM we can attach to 32-bit processes.

Ic: \Users\Mario\Desktop\winappdbg\examples\instrumentation>\python27-x64\python 0
1 platform. py

lWwinAppDbg Version 1.5 (beta 6)
Running on windows 7 (64 bits) for the amd64 architecture.
From this Python WM we can attach to 64-bit processes.

jC: \Users\Mario\Desktop\winappdbg\examples\instrumentation>

_images/ptrace.png
mmand Prompt - python ptrace.py calc

77153021: 895510 mov [ebp+0x10], edx
77153024: 8b4204 mov eax, [edx:+Ox4]

77153027: 89856cFFFFf mov [ebp-0x941, eax

7715302D: 3bd0 cmp edx, eax

7715302F: 0F84e1c20000 jz ntd1i!rtlinitializegenerictable+0x39
77153035: 8b734c mov esi, [ebx+Oxdc

77153038: 85f6 test esi, esi

77153D3A: 078498210400 jz ntd11irtigetprocessheaps+0x97
77153040: 8b40F8 mov eax, [eax-0x8]

77153043: 8945b4 mov [ebp-Oxdcl, eax

77153046: 8b734c mov esi, [ebx+Oxdc

77153049: 85f0 test eax, esi

7715304B: 7406 jz ntd11irtlimagentheader+Oxbcf

7715304D: 334350 Xor eax, [ebx+0x50]

77153050: 8945b4 mov [ebp-Oxdcl, eax

77153053: 0fb7c0 movzx eax, ax

77153036: 0fb7c0 movzx eax, ax

77153059: 8b55d4 mov edx, [ebp-Ox2c]

7715305C: 2bd0 sub edx, eax

77153D5€: 85d2 test edx, edx

77153060: 0F8fdb780000 jg ntd11irt1formatcurrentuserkeypath+0xde0
77153066: 8b5510 mov edx, [ebp+0x10

77153069: 8b02 mov eax, [edx.

77153068: 83808 sub eax, 0x8

_images/registry_search.png
& Command Prompt - python 24_re

[Pub1icKeyToken=b03f5f7f11d50a3a

HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1b4f495a-280a-3ba4-8db0-9c9b735e98ce}\: 'Mic]|
rosoft.Visualstudio. TeamFoundation.VersionControl.SccPcwp luginPackage, Microsoft]
_Visualstudio.TeamFoundation.VersionControl, Version=10.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"

HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1b4f495a-280a-3ba4-8db0-9c9b735e98ce}\Class:
'Microsoft.visualstudio. TeamFoundation.VersionControl.SccPcwpluginPackage
HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1b4f495a-280a-3ba4-8db0-9c9b735e98ce}\Assemb
ly: 'Microsoft.visualStudio. TeamFoundation.VersionControl, Version=10.0.0.0, Cul
fture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1b4f495a-280a-3ba4-8db0-9c9b735e98ce}\satel]|
iteD11\Path: 'C:\\Program Files (x86)\\Microsoft Visual Studio 10.0\\Common7\\ID|
E\\PrivateAssembTies\\'

HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1b4f495a-280a-3ba4-8db0-9c9b735e98ce}\satel]|
iteD11\D11Name: ‘Microsoft.visualstudio.TeamFoundation.versionControlur.d11"
HKEY_USERS\S-1-5-18\Software\Microsoft
\Visualstudio\10.0_Config\Packages\{1B437D20-F8FE-11D2-A6AE-00104BCC7269}\InProc|
server32: " \Program Files (x86)\\Microsoft Vvisual Studio 10.0\\Common7\\Packa
ges\\htmled.d11"

_images/screenshot.png
by Mario Vilas (mvilas at gmail.com)

[spawned process (147664)

Started process 147664 at 0x00401130

Started thread 152112 at crasher!start

| oaded module (00400000) C:\Users\Mario\Desktop\winappdbg\tools\crasher.exe
Loaded module (77120000) ntd11.d11

Unloaded module (76810000)

Unloaded module (75860000)

Unloaded module (76810000)

Unloaded module_(76C30000)

Loaded module (75860000) C:\windows\syswow64\kernel32.d11
Loaded module (74A20000) C:\Windows\syswow64\KERNELBASE.d11
Loaded module (75270000) C:\Windows\syswowb4\msvcrt.d11l

Breakpoint (80000003) at address 771COFAB (first chance)

0900000 ¢bx=00000000 ecx=0d390000 edx=0008e3cs esi=FFFFTfre edi=00000000
71cOfac_esp=0028fb08 ebp=0028fb34 iop1=0 no up ei pl zr na pe nc
02b ds=002b es=002b fs=0053 gs=002b f1=00000246
fyImageMatchesChecksum+0x96d:
[771c0FAC: 8975Fc mov [ebp-0x4], esi

[147664:152112> g

Access violation (C0000005) at address 0040153D (first chance)

0000000 ebx=41414141 ecx=41414141 edx=baad0041 esi=00000000_edi=00000000
040153d esp=4141413d ebp=41414141 iop1=0 no up ei pl nz na po nc
023 s5=002b ds=002b es=002b fs=0053 gs=002b ef1=00010202

crasher Istart+0x40d

0040153D: c3_ret

147664:152112> g

Access violation (C0000005) at address 0040153D (second chance)

eax=00000000 ebx=41414141 ecx=41414141 edx=baad0041 esi=00000000_ edi=00000000
040153d esp=4141413d ebp=41414141 iop1=0 no up ei pl nz na po nc
02b fs= 0053 gs5=002b ef1=00010202
crasher !start+0x40d
0040153D: _c3_ret
147664:152112> .exploitable

StackPointerCorruption
Stack pointer corruption is considered exploitable.

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/crash_logger.png
Bt

£

R S

§
H

7

sssusnes
ey
spsuzies
o
e
.

serssns

ey
e

s

_static/file.png

_static/labels-syntax.png
module + offset
module ! function + offset

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

