

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Web Pay 1.0 documentation

Web Pay

Webpay is an implementation of the WebPaymentProvider [https://wiki.mozilla.org/WebAPI/WebPaymentProvider] spec.
It hosts the payment flow inside navigator.mozPay() [https://wiki.mozilla.org/WebAPI/WebPayment] when
making app purchases or in-app payments on Firefox OS.

This guide can help you do a few things:

	Install and configure your own WebPay server for development.

	Understand the APIs WebPay consumes and generally how things work.

This is also available as a PDF [https://media.readthedocs.org/pdf/webpay/latest/webpay.pdf].

The section on using a hosted webpay has moved to the
payments section [http://marketplace.readthedocs.org/en/latest/topics/payments.html]
of the Marketplace documentaion .

Contents

	Developers
	Install With Docker

	Install Manually

	Setting Up the Tests

	Running Tests

	Building the Docs

	Overriding JS settings from Django settings

	Using JWTs for development

	Displaying statsd results

	Webpay API
	PIN

	Pin Check

	Pay

	Simulate

	Solitude API Client

	Localization Testing

	Services
	Error Legend

	Signature Check

	Exception Tester

	Flows

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Web Pay 1.0 documentation

Developers

Hello, developers! This will get you set up with a local WebPay server.
You can also use a hosted WebPay server.

Install With Docker

The easiest way to set up Webpay and all of its dependencies is
to install everything with Docker according to the
marketplace-env [https://github.com/mozilla/marketplace-env] instructions.

Install Manually

You need Python 2.7, and MySQL, and a few NodeJS commands
like stylus [http://learnboost.github.io/stylus/] for minifying JS/CSS.
Install system requirements with `homebrew`_ (Mac OS X):

brew tap homebrew/versions
brew install python mysql swig

To develop locally you also need:

	An instance of the Solitude [https://solitude.readthedocs.org/en/latest/index.html] payment API running.
If you run it with mock services (such as BANGO_MOCK=True)
then some things will still work.
You can configure webpay with SOLITUDE_URL pointing at your
localhost.

	Access to the Zamboni [https://github.com/mozilla/zamboni] db. For extra points this can be a read only slave.
You can configure zamboni with MARKETPLACE_URL pointing at your
localhost.

Let’s install webpay! Clone the source:

git clone git://github.com/mozilla/webpay.git

Install all Python dependencies. You probably want to do this
within a virtualenv [http://pypi.python.org/pypi/virtualenv]. If you use virtualenvwrapper [http://pypi.python.org/pypi/virtualenvwrapper] (recommended)
set yourself up with:

mkvirtualenv --python=python2.7 webpay

Install with:

pip install --no-deps -r requirements/dev.txt --find-links https://pyrepo.addons.mozilla.org/

Out of the box, webpay makes some assumptions in the settings file and should
not need a custom settings files. Some environment variables are configurable
from the environment, they are: ZAMBONI_URL, SOLITUDE_URL. See the
marketplace docs [http://marketplace.readthedocs.org/en/latest/topics/setup.html] for information on the environment variables and how
they affect the services.

You can now fire up a development server:

python manage.py runserver 0.0.0.0:8001

Try it out at http://localhost:8001/mozpay/ .
If you see a form error about a missing JWT then
you are successfully up and running.

If you can’t log in with Persona
check the value of SITE_URL in your local
settings. It must match the
URL bar of how you run your dev server exactly.

See this section for how to set up a B2G device to
talk to your brand new local development server.

Setting Up the Tests

You will need to install the python testing dependencies for python
or UI testing:

pip install -r requirements/test.txt

Running Tests

Webpay has integration tests that make HTTP requests to Django views
or test public functions and classes directly.
You can run the test suite like this:

python manage.py test

Building the Docs

To build these very docs that you are reading while developing locally,
do this from your webpay root:

pip install -r requirements/docs.txt
make -C docs/ html

Then open docs/_build/html/index.html in a browser.

Overriding JS settings from Django settings

JS settings are overridden from the webpay.settings.base.JS_SETTINGS dict.

Here’s an example to override a setting foo with the value True:

base.JS_SETTINGS['foo'] = True

Using JWTs for development

Each payment begins with a JWT (Json Web Token) so you’ll need to
start with a JWT if you want to see the complete payment flow.
The best way to get a valid JWT is to make a real
purchase using your local Marketplace or any app
that has a valid in-app payment key.
When you start a purchase from B2G check your B2G console. In stdout you
should see a link that you can copy and paste into a browser to use better dev
tools. Here is an example of what that looks like:

http://localhost:8001/mozpay/?req=eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9.eyJhdWQiOiAibG9jYWxob3N0IiwgImlzcyI6ICJtYXJrZXRwbGFjZSIsICJyZXF1ZXN0IjogeyJwcmljZSI6IFt7ImN1cnJlbmN5IjogIlVTRCIsICJhbW91bnQiOiAiMC45OSJ9XSwgIm5hbWUiOiAiTXkgYmFuZHMgbGF0ZXN0IGFsYnVtIiwgInByb2R1Y3RkYXRhIjogIm15X3Byb2R1Y3RfaWQ9MTIzNCIsICJkZXNjcmlwdGlvbiI6ICIzMjBrYnBzIE1QMyBkb3dubG9hZCwgRFJNIGZyZWUhIn0sICJleHAiOiAxMzUwOTQ3MjE3LCAiaWF0IjogMTM1MDk0MzYxNywgInR5cCI6ICJtb3ppbGxhL3BheW1lbnRzL3BheS92MSJ9.ZW-Y9-UroJk7-ZpDjebUU-uYOx4h7TfztO7JBi2d5z4

Displaying statsd results

You can configure your webpay/settings/local.py settings to
visualize the summary table generated by django-statsd counting the
number of keys logged and the time spent in views:

NOSE_PLUGINS = [
 'nosenicedots.NiceDots',
 'django_statsd.NoseStatsd',
]
NOSE_ARGS = [
 '--logging-clear-handlers',
 '--with-statsd',
]
STATSD_CLIENT = 'django_statsd.clients.nose'

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Web Pay 1.0 documentation

Webpay API

Webpay provides a REST API for clients to interact with the server.

All API’s use JSON for request and responses.

PIN

The PIN API lets you check, create and update the PIN through Webpay.

Note

This API Requires authentication through Persona prior to access.

	
GET /mozpay/v1/api/pin/

	Returns information about the PIN for the current user. Will not return
the actual PIN.

Response

Example:

{
 "pin": true,
 "pin_locked_out": null,
 "pin_is_locked_out": false,
 "pin_was_locked_out": false
}

	Status Codes:	
	200 – successfully completed.

	403 – not authenticated.

	Parameters:	
	pin (boolean) – if a PIN exists or not

	pin_locked_out (date time) – if a PIN is locked out, this is when it occured

	pin_is_locked_out (boolean) – if a PIN is locked out

	pin_was_locked_out (boolean) – if a PIN has been locked out

	
POST /mozpay/v1/api/pin/

	Creates a PIN for the current user.

Request

	Parameters:	
	pin (string) – 4 numbers in the range 0-9 as a string

Response

	Status Codes:	
	204 – successfully created.

	400 – invalid form data.

	403 – not authenticated.

	
PATCH /mozpay/v1/api/pin/

	Updates a PIN for the current user.

Request

	Parameters:	
	pin (string) – 4 numbers in the range 0-9 as a string

Response

	Status Codes:	
	204 – successfully updated.

	400 – invalid form data.

	403 – not authenticated.

Pin Check

	
POST /mozpay/v1/api/pin/check/

	Checks a posted PIN against a stored pin.

Request

	Parameters:	
	pin (string) – 4 numbers in the range 0-9 as a string

Response

Example:

{
 "pin": true,
 "pin_locked_out": null,
 "pin_is_locked_out": null,
 "pin_was_locked_out": null
}

	Status Codes:	
	200 – successfully completed.

	400 – incorrect PIN.

	403 – not authenticated.

	404 – no user exists.

The response is the same as for the PIN API.

Pay

The Pay API lets you start a purchase.

	
POST /mozpay/v1/api/pay/

	Start a purchase.

Request

	Parameters:	
	req (str) – the JWT request for starting a payment

	mnc (str) – the MNC (mobile network code) for the device (optional)

	mcc (str) – The MCC (mobile country code) for the device (optional)

Response

	Parameters:	
	status (str) – “ok” if successful

	simulation (dict) – Indicates the type of simulated payment. If this is a normal payment,
not a simulation, it will be False. Otherwise it will be
one of the valid simulation results [https://developer.mozilla.org/en-US/Marketplace/Monetization/In-app_payments_section/mozPay_iap#Simulating_payments] such as {"result": "postback"}.

{
 "status": "ok",
 "simulation": {"result": "postback"}
}

	Status Codes:	
	200 – successful.

	400 – invalid form data.

	
GET /mozpay/v1/api/pay/

	Get information about your purchase.

Response

{
 "provider": "bango",
 "pay_url": "https://url.to-start.the/transaction"
}

	Status Codes:	
	200 – successfully completed.

	400 – trans_id is not set in the session.

	404 – transaction could not be found.

Simulate

If a simulated payment is pending in the current session,
as indicated by the Pay API,
you can use this API to execute the simulated payment.
This sends a server notice to the app that initiated the purchase so it can
fulfill the simulated purchase.

	
POST /mozpay/v1/api/simulate/

	Execute a pending simulated payment.

Request

(no parameters)

Response

(no parameters)

	Status Codes:	
	204 – successful.

	400 – invalid request.

	403 – no pending simulation in the current session or invalid user
permissions.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Web Pay 1.0 documentation

Solitude API Client

	
lib.solitude.api.client

	An instantiated SolitudeAPI object using settings.SOLITUDE_URL

	
class lib.solitude.api.BangoProvider(slumber)

	Bango payment provider

	
class lib.solitude.api.BokuProvider(*args, **kw)

	The Boku payment provider.

	
exception TransactionError

	Error relating to a Boku transaction.

	
exception lib.solitude.api.BuyerNotConfigured

	The buyer has not yet been configured for the payment.

	
class lib.solitude.api.PayProvider(slumber)

	Abstract payment provider

This encapsulates some API logic specific to payment providers
such as configuring a new payment, creating products, etc.

	
create_product(generic_product, provider_seller, external_id, product_name)

	Creates and returns a provider-specific product object from Solitude.

	
create_transaction(generic_buyer, generic_seller, generic_product, provider_product, provider_seller_uuid, product_name, transaction_uuid, prices, user_uuid, application_size, source, icon_url, mcc=None, mnc=None)

	Create a provider specific transaction and a generic Solitude
transaction.

Return the provider a tuple of:

(transaction ID, payment start URL)

	
get_notification_data(request)

	Given a provider-specific GET/POST request, return a dict of
notification data that can be used for verification.

For example, a provider might notify Webpay of a successful
transaction. That request might include a signature that can
be used to verify authenticity.

	
get_product(generic_seller, generic_product)

	Returns the provider specific product object from Solitude.

	
get_seller(generic_seller, provider_seller_uuid)

	Returns a provider-specific seller object from Solitude.

	
transaction_from_notice(parsed_qs)

	Get the Solitude transaction ID from the query string on a notification
URL.

	
verify_notification(data)

	Verify provider notification using params from get_notification_data().

This will raise an exception on any kind of verification error.
This will also raise an exception if the transaction has already
been processed.

Returns the Solitude transaction UUID.

	
class lib.solitude.api.ProviderHelper(name, slumber=None)

	A common interface to all payment providers.

	
create_product(external_id, product_name, generic_seller, provider_seller_uuid, generic_product=None)

	Creates a generic product and provider product on the fly.

This is for scenarios like adhoc in-app payments where the
system might be selling a product for the first time.

	
server_notification(request)

	Handles the server to server notification that is sent after
a transaction is completed.

Returns the Solitude transaction UUID.

	
start_transaction(transaction_uuid, generic_seller_uuid, provider_seller_uuid, product_id, product_name, prices, icon_url, user_uuid, application_size, source='unknown', mcc=None, mnc=None)

	Start a payment provider transaction to begin the purchase flow.

	
classmethod supported_providers(mcc=None, mnc=None)

	Given the user’s mobile network (when available) return a list of
all suitable provider helper objects in order of preference.

Keyword arguments:

	mcc

	The user’s mobile carrier code, if known.

	mnc

	The user’s mobile network code, if known.

	
class lib.solitude.api.ReferenceProvider(slumber)

	A reference payment provider

Our current reference implementation is known as Zippy.

This is our ideal API. If possible, other payment providers
should follow this API.

If this provider is fully compliant it probably shouldn’t need
to override any of the inherited methods.

	
exception lib.solitude.api.SellerNotConfigured

	The seller has not yet been configued for the payment.

	
class lib.solitude.api.SolitudeAPI(*args, **kw)

	A Solitude facade that works with a payment provider or the
generic Solitude API.

	Parameters:	url – URL of the solitude endpoint.

	
change_pin(uuid, pin, etag='', pin_confirmed=False, clear_was_locked=False)

	Changes the pin of a buyer, for use with buyers who exist without
pins.

	Parameters:	
	integer (buyer_id) – ID of the buyer you’d like to change the PIN
for.

	pin – PIN the user would like to change to.

	pin_confirmed – Boolean to set if the PIN was already confirmed
in the UI.

	clear_was_locked – Boolean to clear the pin_was_locked_out state
if the PIN was changed by the user.

	Return type:	dictionary

	
confirm_pin(uuid, pin)

	Confirms the buyer’s pin, marking it at confirmed in solitude

	Parameters:	
	uuid – String to identify the buyer by.

	pin – PIN to confirm

	Return type:	boolean

	
create_buyer(uuid, email, pin=None, pin_confirmed=False)

	Creates a buyer with an optional PIN in solitude.

	Parameters:	
	uuid – String to identify the buyer by.

	pin – Optional PIN that will be hashed.

	pin_confirmed – Optional boolean to set if the PIN was already
confirmed in the UI.

	Return type:	dictionary

	
get_active_product(public_id)

	Retrieves a an active seller product by its public_id.

	Parameters:	public_id – Product public_id.

	Return type:	dictionary

	
get_buyer(uuid, use_etags=True)

	Retrieves a buyer by their uuid.

	Parameters:	uuid – String to identify the buyer by.

	Return type:	dictionary

	
reset_confirm_pin(uuid, pin)

	Confirms the buyer’s pin, marking it at confirmed in solitude

	Parameters:	
	uuid – String to identify the buyer by.

	pin – PIN to confirm

	Return type:	boolean

	
set_new_pin(uuid, new_pin, etag='')

	Sets the new_pin for use with a buyer that is resetting their pin.

	Parameters:	
	integer (buyer_id) – ID of the buyer you’d like to change the PIN
for.

	pin – PIN the user would like to change to.

	Return type:	dictionary

	
update_buyer(uuid, etag='', **kwargs)

	Updates a buyer identified by their uuid.

	Parameters:	uuid – String to identify the buyer by.

	Return type:	dictionary

	
verify_pin(uuid, pin)

	Checks the buyer’s PIN against what is stored in solitude.

	Parameters:	
	uuid – String to identify the buyer by.

	pin – PIN to check

	Return type:	dictionary

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Web Pay 1.0 documentation

Localization Testing

We are using a fake translation script that is mentioned on Ned Batchelder’s
blog called poxx.py [http://nedbatchelder.com/blog/201012/faked_translations_poxxpy.html]. The specific version we are using was lifted from
Fjord [https://github.com/mozilla/fjord].

What it does it is makes a translation for locale xx that turns all the
strings into looking like something the Swedish Chef [http://en.wikipedia.org/wiki/Swedish_Chef] would say. There are
some basic requirements for using it. You’ll need to install polib [https://crate.io/packages/polib/] like so:

pip install polib

As well as gettext [http://www.gnu.org/software/gettext/] for OSX:

brew install gettext
brew link gettext

Or Ubuntu:

apt-get install gettext gettext-tools

Once you have the requirements you can run the script with the command:

./bin/test_locales.sh

You’ll need to tweak your webpay/settings/local.py with the setting:

LANGUAGE_CODE = 'xx'

Then you should be able to ./manage.py runserver like normal and see
everything translated. It should be very notable if the string is not
translated. After updating your code/templates with your new translations you
just simply run locale_test.sh again and it will regenerate the xx
locale for you!

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Web Pay 1.0 documentation

Services

Here are some web API services offered by WebPay.
The production API domain is: https://marketplace.firefox.com/

Error Legend

When a user experiences a payment error triggered by your app, they see a
message to help them figure out what to do. The error does not help you figure
out what to do as the app developer. Instead the error contains a readable
code at the bottom to indicate the cause of the error.
You can use the legend API to get detailed info in your locale about
what each error code means.

	
GET /mozpay/services/error_legend

	Request

	Parameters:	
	locale – An optional language code for which to localize the legend.
Example: en-us or pl. Take a look at our
PROD_LANGUAGES [https://github.com/mozilla/webpay/blob/master/webpay/settings/base.py#L113]
setting for all possible codes.

Response

Example:

{
 "locale": "en-us",
 "errors": null,
 "legend": {
 "SOME_ERROR_CODE": "Detailed error explanation.",
 ...
 }
}

	Status Codes:	
	200 – success.

	400 – request was invalid.

Signature Check

This API lets you validate an innocuous JWT with your issuer key and secret.
This is used by the Firefox Marketplace as a system check to make sure all keys
and secrets are configured correctly. It will return an error if the JWT issuer
is unknown or if the signature is invalid. It’s nicer to find this out from a
system check rather than when a user is trying to purchase one of your products.
Any app that is registered to
sell products via Firefox Marketplace [https://marketplace.firefox.com/developers/docs/payments] can use this API.
For example, the Firefox Marketplace has a complimentary
signature check API [http://firefox-marketplace-api.readthedocs.org/en/latest/topics/payment.html#signature-check] that can be used to generate a JWT for verification.

	
POST /mozpay/services/sig_check

	Request

	Parameters:	
	sig_check_jwt (string) – a JWT issued by an app set up for payments. The typ must be correct.
Example:

{"iss": "YOUR_APP_ID",
 "aud": "marketplace.firefox.com",
 "typ": "mozilla/payments/sigcheck/v1",
 "iat": timestamp(),
 "exp": timestamp(),
 "request": {}}

Response

Example of a valid response:

{
 "result": "ok",
 "errors": {}
}

Example of an invalid response:

{
 "result": "error",
 "errors": {"sig_check_jwt": ["INVALID_JWT_OR_UNKNOWN_ISSUER"]}
}

	Parameters:	
	result (string) – either ok or error

	errors (object) – a map of validation errors that occurred for each input field

	Status Codes:	
	200 – the JWT is valid.

	400 – the JWT is invalid.

Exception Tester

You can use this endpoint to test how the application handles exceptions.
When you make a GET request it will trigger an exception.

	
GET /mozpay/services/exception/

	Response

	Status Codes:	
	500 – internal error.

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Web Pay 1.0 documentation

Flows

This document lists some diagrams detailing the flows through webpay.

[image: The PIN flow through webpay.]

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Web Pay 1.0 documentation

 HTTP Routing Table

 /mozpay

 			

 		
 /mozpay	

 	
 	
 GET /mozpay/services/error_legend	

 	
 	
 GET /mozpay/services/exception/	

 	
 	
 POST /mozpay/services/sig_check	

 	
 	
 GET /mozpay/v1/api/pay/	

 	
 	
 POST /mozpay/v1/api/pay/	

 	
 	
 GET /mozpay/v1/api/pin/	

 	
 	
 PATCH /mozpay/v1/api/pin/	

 	
 	
 POST /mozpay/v1/api/pin/	

 	
 	
 POST /mozpay/v1/api/pin/check/	

 	
 	
 POST /mozpay/v1/api/simulate/	

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Web Pay 1.0 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lib	

 	
 	
 lib.solitude.api	

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Web Pay 1.0 documentation

Index

 B
 | C
 | G
 | L
 | P
 | R
 | S
 | T
 | U
 | V

B

 	

 	BangoProvider (class in lib.solitude.api)

 	BokuProvider (class in lib.solitude.api)

 	

 	BokuProvider.TransactionError

 	BuyerNotConfigured

C

 	

 	change_pin() (lib.solitude.api.SolitudeAPI method)

 	client (in module lib.solitude.api)

 	confirm_pin() (lib.solitude.api.SolitudeAPI method)

 	

 	create_buyer() (lib.solitude.api.SolitudeAPI method)

 	create_product() (lib.solitude.api.PayProvider method)

 	

 	(lib.solitude.api.ProviderHelper method)

 	create_transaction() (lib.solitude.api.PayProvider method)

G

 	

 	get_active_product() (lib.solitude.api.SolitudeAPI method)

 	get_buyer() (lib.solitude.api.SolitudeAPI method)

 	get_notification_data() (lib.solitude.api.PayProvider method)

 	

 	get_product() (lib.solitude.api.PayProvider method)

 	get_seller() (lib.solitude.api.PayProvider method)

L

 	

 	lib.solitude.api (module)

P

 	

 	PayProvider (class in lib.solitude.api)

 	

 	ProviderHelper (class in lib.solitude.api)

R

 	

 	ReferenceProvider (class in lib.solitude.api)

 	

 	reset_confirm_pin() (lib.solitude.api.SolitudeAPI method)

S

 	

 	SellerNotConfigured

 	server_notification() (lib.solitude.api.ProviderHelper method)

 	set_new_pin() (lib.solitude.api.SolitudeAPI method)

 	

 	SolitudeAPI (class in lib.solitude.api)

 	start_transaction() (lib.solitude.api.ProviderHelper method)

 	supported_providers() (lib.solitude.api.ProviderHelper class method)

T

 	

 	transaction_from_notice() (lib.solitude.api.PayProvider method)

U

 	

 	update_buyer() (lib.solitude.api.SolitudeAPI method)

V

 	

 	verify_notification() (lib.solitude.api.PayProvider method)

 	

 	verify_pin() (lib.solitude.api.SolitudeAPI method)

 Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/ajax-loader.gif

_images/pin-flow.png
(

user Ciks
Resat P

Loboy Page

Yos

" ,EH

le—— postiogn

No — Porsona Fiow

Gontim P
Creaton

wantor
ves < Is PINIocked? > o | ENrPIN | pin success —| Transacion
(e
wans
e ves 00 many taures
minutes e Toomany anres | piy i ocked
Rosot Pn Parsona Flow set P Gontim
Stant (Forcaa Aun) | ResatP ResotPin
L

Payment
Provder Fow

Webpay High Level Flow v0.1
Created on Tue Oct 22 2013
Modified on Tue May 06 2014
Edited by Kumar Molillan

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Web Pay 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Mozilla.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/file.png

