

 Navigation

 	
 index

 	
 next |

 	webkitpony 0.1 documentation

Welcome to webkitpony’s documentation!

“building webapp-like desktop applications in python”

webkitpony is a micro framework to build dektop applications with web technologies on the basis of
the python binding of the webkit rendering engine (http://code.google.com/p/pywebkitgtk/).

The project is hosted on github: https://github.com/tonimichel/webkitpony

[image: _images/pony.png]
Artwork by IYOMI [http://iyomi.de]

Motivation

Building desktop applications with standard toolkits like GTK works fine - but tweaking the UI
beyond the boundaries of window managers is exhausting. In contrast, building a web ui with HTML,
Javascript and CSS is quite flexible. Acctually, the motivation behind webkitpony was to stay in a
djangonaut-familiar environment when it comes to build desktop applications. As the basic technology
(the webkit rendering engine) was given - it was about playing around and creating a simple-to-use django-like
development process. The result was webkitpony.

At schnapptack [http://schnapptack.de], we use this approach for building desktop applications or solutions that
explicitely need a non-browser client. Often we also combine having native logic and remote logic from a web application.

Goal

The goal of webkitpony is to provide an alternative to standard desktop application development approaches.
It especially targets on developers familiar with django. However, the framework is so simple, that even non-django
programmers will get the point fastly.

Understanding webkitpony

	Understanding webkitpony
	Project structure

	HTML - Python Interaction

	A full example

	Passing data from HTML to Python

	The webview object

	The webkitpony.js

	The settings module

Getting started

	Install webkitpony

	Tutorial

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	webkitpony 0.1 documentation

Understanding webkitpony

Project structure

A webḱitpony project follows a certain structure. The following figure shows
the example project _ponyfarm_:

[image: _images/project_structure.png]
Let’s start with a brief overview:

	urls.py: contains a list of tuples, each matching a regular expression (representing a url) to a view function.

	views.py: contains the view functions referenced in the urls.py module.

	settings.py: contains your project’s settings like e.g. whether to enable the webkit inspector or not.

	ride.py: the starting point for riding your pony: python ride.py.

	templates: contains your templates with jinja2 template syntax available.

	static: contains the static files of your project like css and javascript.

Those who are familiar with django might already have become an idea of the webkitpony principle.

HTML - Python Interaction

To understand webkitpony, it is important to understand the communication between the web ui and the python code:

[image: _images/interaction.png]
On the left-hand side we have the webkit (represented as a webview object), which we’ll call UI. On the right-hand
side we have the python application.

Whenever a link is clicked, the url of that link, namely the href
attribute is sent to the webkitpony url dispatcher, which looks up the url patterns
and triggers the view, passing the webview and url parameters if specified.

A full example

As we saw in the figure before, the html contains a button “calculate”. Note that all links are prefixed with ‘action:’
which is used to distinguish between referencing urls and files.

<body>
 Calculate
</body>

The urls.py module defines a variable urlpatterns. It consists of tuples matching urls to callback functions,
which we call views. Each tuple is a regular expression (describing a url) and a view (being invoked if the regex matches).
In case a regex contains a grouped expression, its value is passed as parameter to the view function.

urlpatterns = (
 (r'^calculate/(?P<id>[0-9]+)/$', views.calculate)
)

The views.py module defines the view function previously registered on the calculate url. The first paramter is always
the webview object representing the webkit. Further parameters depend on the pattern. In this example id is passed.

def calculate(webview, id):
 # do some stuff
 return webview.render('myapplication/myview.html', {
 'this': 'is',
 'the': 'template context'
 })

})

As you might notice, this principle is similar to django except, that the view takes a webview object instead of request
and returns webview.render instead of a HttpResponse. Again the webview.render is comparable to django.shortcuts.render.
It takes a template and a template context. The templates themselfs build upon jinja2 [http://jinja.pocoo.org/].

Passing data from HTML to Python

Sometimes we want to send some form data from the UI to our python-side application.
As we are not in the web, we do not have POST or GET. So, we need a way to pass data from html to the application.
For this purpose webkitpony provides a Javascript connector enabling an Ajax-like JSON communicaton between javascript and python code.
Consider the following example:

<body>

 <form id="myform">
 <input type="text" value="" name="first_name">
 <input type="submit" value="save">
 </form>

 <script>
 var form = $('#myform')

 form.submit(function() {
 var data = {}

 form.find('input[type="text"]').each(function() {
 var field = $(this)
 data[field.attr('name')] = field.val()
 })

 webkitpony.send('/calculate/1/', {data: data}, function(response) {
 console.log('We sent ' + data + ' and received ' + response)
 })

 return false
 })
 </script>
</body>

To send the form to the application we bind a submit event, construct our json-serializable data object and
invoke webkitpony.send(url, data, callback). Similarily to a non-javascript link click, the url is routed through
our project’s urls.py invoking the matching view function:

def calculate(webview, id):
 result = backend.perform_calculation(webview.DATA)
 return webview.json_response({'result': result})

The view function unpacks the data from the webview object (similiarily to request.POST).
Instead of returning webview.render webview.json_response(result) is returned which does not
re-rendered the webview. Instead json is passed back to webkitpony.send which finally executes the callback function.

Of course, we can also use webkitpony.send for links:

<body>

 Calculate

 <script>
 $('#mylink').click(function() {
 webkitpony.send('/calculate/1/', {data: 'some data'}, function(response) {
 console.log('We sent ' + data + ' and received ' + response)
 })
 return false
 })
 </script>
</body>

This might be useful to build Javascript applications without “reload”.

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	webkitpony 0.1 documentation

The webview object

The webview object is comparable with the request and response objects of a django request/response cycle and is always
passed as first parameter to any view. The public interface provides the following methods and attributes:

webview.render(template, context)

Renders the webview.
Parameter template is a string specifying the path to your template relative to your project’s template dir.
Parameter context is a dictionary applied as template context. Templates build upon jinja2.

webview.json_response(data)

Usefull in combination with the client-side webkitpony.send(url, data, callback) from webkitpony.js.
Takes a single parameter data which must be a json-serializable data structure, e.g. a dict. Triggers the callback
method of the foregoing webkitpony.send passing data as response.

webview.data

Comparable with request.POST. Provides the python deserialized dictionary of the foregoing webkitpony.send code.

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	webkitpony 0.1 documentation

The webkitpony.js

The webkitpony.js contains Javascript utils to enable the communication between the UI and the python-side
of your application. At the moment webkitpony.js requires jQuery, which is inlcuded in the download package.

For now webkitpony.js provides a single method:

webkitpony.send(url, data, callback)

Parameter url is the url being processed by the pony’s url dispatcher. data is a json-serializable object
which is sent to the application being available in our views via webview.DATA. callback is a simple function
taking a single parameter response. response contains the data sent back by the application.

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	webkitpony 0.1 documentation

The settings module

settings.DEBUG

Boolean indicating whether debug or development mode is enabled. If so, the webkit dom inspector and
Javascript console as well as the right click context menu of webkit is availbale.

settings.WITDH

The default width when the pony is started.

settings.HEIGHT

The default height when the pony is started.

settings.RESIZABLE

Boolean indicating whether the window is resizable or not.

settings.URLCONF

Specifies the project’s urlconf module.

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	webkitpony 0.1 documentation

Install webkitpony

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	webkitpony 0.1 documentation

Tutorial

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	webkitpony 0.1 documentation

Index

 Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

 _images/project_structure.png
v [l Ponyhof
> |l static
3 templates
~| _init_py
settings.py
uipy
urls.py

views.py

_images/interaction.png
Ul (webkit)

ction:calculate/

1/

Application

urls.py

views.py

_static/up.png

_images/pony.png
webkitpony

_static/plus.png

_static/ajax-loader.gif

passing_data.html

 Navigation

 		
 index

 		webkitpony 0.1 documentation »

 © Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		webkitpony 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/up-pressed.png

interaction.html

 Navigation

 		
 index

 		webkitpony 0.1 documentation »

 © Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

example.html

 Navigation

 		
 index

 		webkitpony 0.1 documentation »

 © Copyright 2013, Toni Michel.
 Created using Sphinx 1.2.2.

_static/down.png

_static/file.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

