

webassets - Asset management for Python

Introduction

webassets is a general, dependency-independent library for managing
the assets of your web application. It can merge and compress your CSS
and JavaScript files, supporting a wide variety of different filters,
and supports working with compilers like CoffeeScript or Sass.

Framework integration

For some web frameworks, webassets provides special
integration. If you are using one of the supported frameworks, go to
the respective page:

	With Django [https://django-assets.readthedocs.io/en/latest/]

	With Flask [https://flask-assets.readthedocs.io/en/latest/]

	With Pyramid [https://github.com/sontek/pyramid_webassets]

	Other or no framework

Detailed documentation

This documentation also includes some pages which are applicable regardless
of the framework used:

	The environment
	Registering bundles

	Configuration

	Filter configuration

	Bundles
	Nested bundles

	Building bundles

	Command Line Interface
	Build a custom command line client

	Included Commands

	Included Filters
	Javascript cross-compilers

	Javascript compressors

	CSS compressors

	JS/CSS compilers

	JavaScript templates

	Other

	URL Expiry (cache busting)
	For beginners

	What is the version of a file

	Expire using a querystring

	Expire using the filename

	About manifests

	Creating custom filters
	The very easy way

	The easy way

	More?

	CSS compilers

	Loaders

	Integration with other libraries
	Django [http://elsdoerfer.name/docs/django-assets/]

	Flask-Assets [http://elsdoerfer.name/docs/flask-assets/]

	Jinja2

	pyramid [https://github.com/sontek/pyramid_webassets]

	FAQ
	Is there a cache-busting feature?

	Relative URLs in my CSS code break if the merged asset is written to a different location than the source files. How do I fix this?

	I am using a CSS compiler and I need its filter to apply even in debug mode!

	Is Google App Engine supported?

	Upgrading
	In 0.10

	In 0.9

	In 0.8

	In 0.7

	In 0.6

	In 0.4

	In 0.2

	In 0.1

Using webassets in standalone mode

You don’t need to use one of the frameworks into which webassets can
integrate. Using the underlying facilities directly is almost as easy.

And depending on what libraries you use, there may still be some things
webassets can help you with, see Integration with other libraries.

Quick Start

First, create an environment instance:

from webassets import Environment
my_env = Environment(
 directory='../static/media',
 url='/media')

As you can see, the environment requires two arguments:

	the path in which your media files are located

	the url prefix under which the media directory is available. This prefix will be used when generating
output urls.

Next, you need to define your assets, in the form of so called bundles,
and register them with the environment. The easiest way to do it is directly
in code:

from webassets import Bundle
js = Bundle('common/jquery.js', 'site/base.js', 'site/widgets.js',
 filters='jsmin', output='gen/packed.js')
my_env.register('js_all', js)

However, if you prefer, you can of course just as well define your assets
in an external config file, and read them from there. webassets
includes a number of helper classes for some popular
formats like YAML.

Using the bundles

Now with your assets properly defined, you want to merge and minify
them, and include a link to the compressed result in your web page. How
you do this depends a bit on how your site is rendered.

>>> my_env['js_all'].urls()
('/media/gen/packed.js?9ae572c',)

This will always work. You can call your bundle’s urls() method, which
will automatically merge and compress the source files, and return the
url to the final output file. Or, in debug mode, it would return the urls
of each source file:

>>> my_env.debug = True
>>> my_env['js_all'].urls()
('/media/common/jquery.js',
 '/media/site/base.js',
 '/media/site/widgets.js',)

Take these urls, pass them to your templates, or otherwise ensure they’ll
be used on your website when linking to your Javascript and CSS files.

For some templating languages, webassets provides extensions to access
your bundles directly within the template. See Integration with other libraries for
more information.

Using the Command Line Interface

See Command Line Interface.

Further Reading

	The environment

	Bundles

	Command Line Interface

	Included Filters

	Creating custom filters

	CSS compilers

	Loaders

	Integration with other libraries

	Custom resolvers

	FAQ

The environment

The environment has two responsibilities: One, it acts as a registry for
bundles, meaning you only have to pass around a single object to access
all your bundles.

Also, it holds the configuration.

Registering bundles

Bundles can be registered with the environment:

my_bundle = Bundle(...)
environment.register('my_bundle', my_bundle)

A shortcut syntax is also available - you may simply call register()
with the arguments which you would pass to the Bundle constructor:

environment.register('my_bundle', 'file1.js', 'file2.js', output='packed.js')

The environment allows dictionary-style access to the registered bundles:

>>> len(environment)
1

>>> list(environment)
[<Bundle ...>]

>>> environment['my_bundle']
<Bundle ...>

Configuration

The environment supports the following configuration options:

	
Environment.directory

	The base directory to which all paths will be relative to,
unless load_path are given, in which case this will
only serve as the output directory.

In the url space, it is mapped to urls.

	
Environment.url

	The url prefix used to construct urls for files in
directory.

To define url spaces for other directories, see
url_mapping.

	
Environment.debug

	Enable/disable debug mode. Possible values are:

	False

	Production mode. Bundles will be merged and filters applied.

	True

	Enable debug mode. Bundles will output their individual source
files.

	“merge”

	Merge the source files, but do not apply filters.

	
Environment.auto_build

	Controls whether bundles should be automatically built, and
rebuilt, when required (if set to True), or whether they
must be built manually be the user, for example via a management
command.

This is a good setting to have enabled during debugging, and can
be very convenient for low-traffic sites in production as well.
However, there is a cost in checking whether the source files
have changed, so if you care about performance, or if your build
process takes very long, then you may want to disable this.

By default automatic building is enabled.

	
Environment.url_expire

	If you send your assets to the client using a
far future expires header (to minimize the 304 responses
your server has to send), you need to make sure that assets
will be reloaded by the browser when they change.

If this is set to True, then the Bundle URLs generated by
webassets will have their version (see Environment.versions)
appended as a querystring.

An alternative approach would be to use the %(version)s
placeholder in the bundle output file.

The default behavior (indicated by a None value) is to add
an expiry querystring if the bundle does not use a version
placeholder.

	
Environment.versions

	Defines what should be used as a Bundle version.

A bundle’s version is what is appended to URLs when the
url_expire option is enabled, and the version can be part
of a Bundle’s output filename by use of the %(version)s
placeholder.

Valid values are:

	timestamp

	The version is determined by looking at the mtime of a
bundle’s output file.

	hash (default)

	The version is a hash over the output file’s content.

	False, None

	Functionality that requires a version is disabled. This
includes the url_expire option, the auto_build
option, and support for the %(version)s placeholder.

Any custom version implementation.

	
Environment.manifest

	A manifest persists information about the versions bundles
are at.

The Manifest plays a role only if you insert the bundle version
in your output filenames, or append the version as a querystring
to the url (via the url_expire option). It serves two
purposes:

	Without a manifest, it may be impossible to determine the
version at runtime. In a deployed app, the media files may
be stored on a different server entirely, and be
inaccessible from the application code. The manifest,
if shipped with your application, is what still allows to
construct the proper URLs.

	Even if it were possible to determine the version at
runtime without a manifest, it may be a costly process,
and using a manifest may give you better performance. If
you use a hash-based version for example, this hash would
need to be recalculated every time a new process is
started.

Valid values are:

	"cache" (default)

	The cache is used to remember version information. This
is useful to avoid recalculating the version hash.

	"file:{path}"

	Stores version information in a file at {path}. If not
path is given, the manifest will be stored as
.webassets-manifest in Environment.directory.

	"json:{path}"

	Same as “file:{path}”, but uses JSON to store the information.

	False, None

	No manifest is used.

Any custom manifest implementation.

	
Environment.cache

	Controls the behavior of the cache. The cache will speed up rebuilding
of your bundles, by caching individual filter results. This can be
particularly useful while developing, if your bundles would otherwise take
a long time to rebuild.

Possible values are:

	False

	Do not use the cache.

	True (default)

	Cache using default location, a .webassets-cache folder inside
directory.

	custom path

	Use the given directory as the cache directory.

	
Environment.load_path

	An list of directories that will be searched for source files.

If this is set, source files will only be looked for in these
directories, and directory is used as a location for
output files only.

To modify this list, you should use append_path(), since
it makes it easy to add the corresponding url prefix to
url_mapping.

	
Environment.url_mapping

	A dictionary of directory -> url prefix mappings that will
be considered when generating urls, in addition to the pair of
directory and url, which is always active.

You should use append_path() to add directories to the
load path along with their respective url spaces, instead of
modifying this setting directly.

Filter configuration

In addition to the standard options listed above, you can set custom
configuration values using Environment.config. This is so that you can
configure filters through the environment:

environment.config['sass_bin'] = '/opt/sass/bin/sass')

This allows the Sass filter to find the sass
binary.

Note: Filters usually allow you to define these values as system
environment variables as well. That is, you could also define a
SASS_BIN environment variable to setup the filter.

Bundles

A bundle is simply a collection of files that you would like to group
together, with some properties attached to tell webassets
how to do its job. Such properties include the filters which should
be applied, or the location where the output file should be stored.

Note that all filenames and paths considered to be relative to the
directory setting of your environment, and
generated urls will be relative to the url setting.

Bundle('common/inheritance.js', 'portal/js/common.js',
 'portal/js/plot.js', 'portal/js/ticker.js',
 filters='jsmin',
 output='gen/packed.js')

A bundle takes any number of filenames, as well as the following keyword
arguments:

	filters -
One or multiple filters to apply. If no filters are specified, the
source files will merely be merged into the output file. Filters are
applied in the order in which they are given.

	merge - If True (the default), All source files will be merged
and the result stored at output. Otherwise, each file will be
processed separately.

	output - Name/path of the output file. A %(version)s placeholder is
supported here, which will be replaced with the version of the file. See
URL Expiry (cache busting).
If merge is True, this argument is required and you can also use
these placeholders:
- %(name)s Just the name of the source file, without path or extension (eg: ‘common’)
- %(path)s The path and name of the source file (eg: ‘portal/js/common’)
- %(ext)s The extension of source file (eg: ‘js’)

	depends - Additional files that will be watched to determine if the
bundle needs to be rebuilt. This is usually necessary if you are using
compilers that allow @import instructions. Commonly, one would use a
glob instruction here for simplicity:

Bundle(depends=('**/*.scss'))

Warning

Currently, using depends disables caching for a bundle.

Nested bundles

Bundles may also contain other bundles:

from webassets import Bundle

all_js = Bundle(
 # jQuery
 Bundle('common/libs/jquery/jquery.js',
 'common/libs/jquery/jquery.ajaxQueue.js',
 'common/libs/jquery/jquery.bgiframe.js',),
 # jQuery Tools
 Bundle('common/libs/jqtools/tools.tabs.js',
 'common/libs/jqtools/tools.tabs.history.js',
 'common/libs/jqtools/tools.tabs.slideshow.js'),
 # Our own stuff
 Bundle('common/inheritance.js', 'portal/js/common.js',
 'portal/js/plot.js', 'portal/js/ticker.js'),
 filters='jsmin',
 output='gen/packed.js')

Here, the use of nested Bundle objects to group the JavaScript files
together is purely aesthetical. You could just as well pass all files as
a flat list. However, there are some more serious application as well.
One of them is the use of CSS compilers.
Another would be dealing with pre-compressed files:

If you are using a JavaScript library like jQuery [http://jquery.com/],
you might find yourself with a file like jquery.min.js in your media
directory, i.e. it is already minified - no reason to do it again.

While I would recommend always using the raw source files, and letting
webassets do the compressing, if you do have minified files that you
need to merge together with uncompressed ones, you could do it like so:

register('js-all',
 'jquery.min.js',
 Bundle('uncompressed.js', filters='jsmin'))

Generally speaking, nested bundles allow you to apply different sets of
filters to different groups of files, but still everything together
into a single output file.

Some things to consider when nesting bundles:

	Duplicate filters are only applied once (the leaf filter is applied).

	If a bundle that is supposed to be processed to a file does not define
an output target, it simply serves as a container of its sub-bundles,
which in turn will be processed into their respective output files.
In this case it must not have any files of its own.

	A bundle with merge=False cannot contain nested bundles.

Building bundles

Once a bundle is defined, the thing you want to do is build it, and then
include a link to the final merged and compressed output file in your
site.

There are different approaches.

In Code

For starters, you can simply call the bundle’s urls() method:

>>> env['all_js'].urls()
('/media/gen/packed.js',)

Depending on the value of environment.debug. it will either return
a list of all the bundle’s source files, or the merged file pointed to
by the bundle’s output option - all relative to the
environment.url setting.

urls() will always ensure that the files behind the urls it returns
actually exist. That is, it will merge and compress the source files in
production mode when first called, and update the compressed assets when
it detects changes. This behavior can be customized using various
environment configuration values.

Call urls() once per request, and pass the resulting list of urls to
your template, and you’re good to go.

In templates

For some template languages, webassets
includes extensions which allow you to access the bundles you defined.
Further, they usually allow you to define bundles on-the-fly, so you can
reference your assets directly from within your templates, rather than
predefining them in code.

For example, there is a template tag for Jinja2,
which allows you do something like this:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css", "site/base.css", "site/widgets.css" %}
...

Management command

In some cases you might prefer to cause a manual build of your bundles
from the command line. See Command Line Interface for more information.

Command Line Interface

While it’s often convenient to have webassets automatically rebuild
your bundles on access, you sometimes may prefer to build manually,
for example for performance reasons in larger deployments.

webassets provides a command line interface which is supposed to help
you manage your bundles manually. However, due to the generic nature of
the webassets core library, it usually needs some help setting up.

You may want to check the integration page
to see if webassets already provides helpers to expose the command line
within your framework. If that is not the case, read on.

Build a custom command line client

In most cases, you can simply wrap around the webassets.script.main
function. For example, the command provided by Flask-Assets looks like
this:

class ManageAssets(flaskext.script.Command):
 def __init__(self, assets_env):
 self.env = assets_env

 def handle(self, app, prog, name, remaining_args):
 from webassets import script
 script.main(remaining_args, env=self.env)

In cases where this isn’t possible for some reason, or you need more
control, you can work directly with the
webassets.script.CommandLineEnvironment class, which implements all
the commands as simple methods.

import logging
from webassets.script import CommandLineEnvironment

Setup a logger
log = logging.getLogger('webassets')
log.addHandler(logging.StreamHandler())
log.setLevel(logging.DEBUG)

cmdenv = CommandLineEnvironment(assets_env, log)
cmdenv.invoke('build')

This would also work
cmdenv.build()

You are responsible for parsing the command line in any way you see fit
(using for example the optparse [https://docs.python.org/3/library/optparse.html#module-optparse] or argparse [https://docs.python.org/3/library/argparse.html#module-argparse] libraries,
or whatever your framework provides as a command line utility shell), and
then invoking the corresponding methods on your instance of
CommandLineEnvironment.

Included Commands

The following describes the commands that will be available to you through
the webassets CLI interface.

build

Builds all bundles, regardless of whether they are detected as having changed
or not.

watch

Start a daemon which monitors your bundle source files, and automatically
rebuilds bundles when a change is detected.

This can be useful during development, if building is not instantaneous, and
you are losing valuable time waiting for the build to finish while trying to
access your site.

clean

Will clear out the cache, which after a while can grow quite large.

Included Filters

The following filters are included in webassets, though some may
require the installation of an external library, or the availability of
external tools.

You can also write custom filters.

Javascript cross-compilers

	
class webassets.filter.babel.Babel(**kwargs)

	Processes ES6+ code into ES5 friendly code using Babel [https://babeljs.io/].

Requires the babel executable to be available externally.
To install it, you might be able to do:

$ npm install --global babel-cli

You probably also want some presets:

$ npm install --global babel-preset-es2015

Example python bundle:

es2015 = get_filter('babel', presets='es2015')
bundle = Bundle('**/*.js', filters=es2015)

Example YAML bundle:

es5-bundle:
 output: dist/es5.js
 config:
 BABEL_PRESETS: es2015
 filters: babel
 contents:
 - file1.js
 - file2.js

Supported configuration options:

	BABEL_BIN

	The path to the babel binary. If not set the filter will try to run
babel as if it’s in the system path.

	BABEL_PRESETS

	Passed straight through to babel --presets to specify which babel
presets to use

	BABEL_EXTRA_ARGS

	A list of manual arguments to be specified to the babel command

	BABEL_RUN_IN_DEBUG

	May be set to False to make babel not run in debug

Javascript compressors

rjsmin

	
class webassets.filter.rjsmin.RJSMin(**kwargs)

	Minifies Javascript by removing whitespace, comments, etc.

Uses the rJSmin library [http://opensource.perlig.de/rjsmin/],
which is included with webassets. However, if you have the external
package installed, it will be used instead. You may want to do this
to get access to the faster C-extension.

Supported configuration options:

	RJSMIN_KEEP_BANG_COMMENTS (boolean)

	Keep bang-comments (comments starting with an exclamation mark).

yui_js

Minify Javascript and CSS with
YUI Compressor [http://developer.yahoo.com/yui/compressor/].

YUI Compressor is an external tool written in Java, which needs to be
available. One way to get it is to install the
yuicompressor [http://pypi.python.org/pypi/yuicompressor] package:

pip install yuicompressor

No configuration is necessary in this case.

You can also get YUI compressor a different way and define
a YUI_COMPRESSOR_PATH setting that points to the .jar file.
Otherwise, an environment variable by the same name is tried. The
filter will also look for a JAVA_HOME environment variable to
run the .jar file, or will otherwise assume that java is
on the system path.

	
class webassets.filter.yui.YUIJS(**kwargs)

	

closure_js

Minify Javascript with Google Closure Compiler [https://code.google.com/p/closure-compiler/].

Google Closure Compiler is an external tool written in Java, which needs
to be available. One way to get it is to install the
closure [http://pypi.python.org/pypi/closure] package:

pip install closure

No configuration is necessary in this case.

You can also define a CLOSURE_COMPRESSOR_PATH setting that
points to the .jar file. Otherwise, an environment variable by
the same name is tried. The filter will also look for a JAVA_HOME
environment variable to run the .jar file, or will otherwise
assume that java is on the system path.

Supported configuration options:

	CLOSURE_COMPRESSOR_OPTIMIZATION

	Corresponds to Google Closure’s compilation level parameter [https://code.google.com/closure/compiler/docs/compilation_levels.html].

	CLOSURE_EXTRA_ARGS

	A list of further options to be passed to the Closure compiler.
There are a lot of them.

For options which take values you want to use two items in the list:

['--output_wrapper', 'foo: %output%']

uglifyjs

	
class webassets.filter.uglifyjs.UglifyJS(**kwargs)

	Minify Javascript using UglifyJS [https://github.com/mishoo/UglifyJS/].

The filter requires version 2 of UglifyJS.

UglifyJS is an external tool written for NodeJS; this filter assumes that
the uglifyjs executable is in the path. Otherwise, you may define
a UGLIFYJS_BIN setting.

Additional options may be passed to uglifyjs using the setting
UGLIFYJS_EXTRA_ARGS, which expects a list of strings.

jsmin

	
class webassets.filter.jsmin.JSMin(**kwargs)

	Minifies Javascript by removing whitespace, comments, etc.

This filter uses a Python port of Douglas Crockford’s JSMin [http://www.crockford.com/javascript/jsmin.html], which needs
to be installed separately.

There are actually multiple implementations available, for
example one by Baruch Even. Easiest to install via PyPI is
the one by Dave St. Germain:

$ pip install jsmin

The filter is tested with this jsmin package from PyPI,
but will work with any module that exposes a
JavascriptMinify object with a minify method.

If you want to avoid installing another dependency, use the
webassets.filter.rjsmin.RJSMin filter instead.

jspacker

	
class webassets.filter.jspacker.JSPacker(**kwargs)

	Reduces the size of Javascript using an inline compression
algorithm, i.e. the script will be unpacked on the client side
by the browser.

Based on Dean Edwards’ jspacker 2 [http://dean.edwards.name/packer/],
as ported by Florian Schulze.

slimit

	
class webassets.filter.slimit.Slimit(**kwargs)

	Minifies JS.

Requires the slimit package (https://github.com/rspivak/slimit),
which is a JavaScript minifier written in Python. It compiles JavaScript
into more compact code so that it downloads and runs faster.

It offers mangle and mangle_toplevel options through SLIMIT_MANGLE and SLIMIT_MANGLE_TOPLEVEL

CSS compressors

cssmin

	
class webassets.filter.cssmin.CSSMin(**kwargs)

	Minifies CSS.

Requires the cssmin package (http://github.com/zacharyvoase/cssmin),
which is a port of the YUI CSS compression algorithm.

cssutils

	
class webassets.filter.cssutils.CSSUtils(**kwargs)

	Minifies CSS by removing whitespace, comments etc., using the Python
cssutils [http://cthedot.de/cssutils/] library.

Note that since this works as a parser on the syntax level, so invalid
CSS input could potentially result in data loss.

yui_css

	
class webassets.filter.yui.YUICSS(**kwargs)

	

cleancss

	
class webassets.filter.cleancss.CleanCSS(**kwargs)

	Minify css using Clean-css [https://github.com/GoalSmashers/clean-css/].

Clean-css is an external tool written for NodeJS; this filter assumes that
the cleancss executable is in the path. Otherwise, you may define
a CLEANCSS_BIN setting.

Additional options may be passed to cleancss binary using the setting
CLEANCSS_EXTRA_ARGS, which expects a list of strings.

slimmer_css

	
class webassets.filter.slimmer.CSSSlimmer(**kwargs)

	Minifies CSS by removing whitespace, comments etc., using the Python
slimmer [http://pypi.python.org/pypi/slimmer/] library.

rcssmin

	
class webassets.filter.rcssmin.RCSSMin(**kwargs)

	Minifies CSS.

Requires the rcssmin package (https://github.com/ndparker/rcssmin).
Alike ‘cssmin’ it is a port of the YUI CSS compression algorithm but aiming
for speed instead of maximum compression.

Supported configuration options:
RCSSMIN_KEEP_BANG_COMMENTS (boolean)

Keep bang-comments (comments starting with an exclamation mark).

JS/CSS compilers

postcss

	
class webassets.filter.postcss.PostCSS(**kwargs)

	Processes CSS code using PostCSS [http://postcss.org/].

Requires the postcss executable to be available externally.
To install it, you might be able to do:

$ npm install --global postcss

You should also install the plugins you want to use:

$ npm install --global postcss-cssnext

You can configure postcss in postcss.config.js:

module.exports = {
 plugins: [
 require('postcss-cssnext')({
 // optional configuration for cssnext
 })
],
};

Supported configuration options:

	POSTCSS_BIN

	Path to the postcss executable used to compile source files. By
default, the filter will attempt to run postcss via the
system path.

	POSTCSS_EXTRA_ARGS

	Additional command-line options to be passed to postcss using this
setting, which expects a list of strings.

clevercss

	
class webassets.filter.clevercss.CleverCSS(**kwargs)

	Converts CleverCSS [http://sandbox.pocoo.org/clevercss/] markup
to real CSS.

If you want to combine it with other CSS filters, make sure this one
runs first.

less

	
class webassets.filter.less.Less(**kwargs)

	Converts less [http://lesscss.org/] markup to real CSS.

This depends on the NodeJS implementation of less, installable via npm.
To use the old Ruby-based version (implemented in the 1.x Ruby gem), see
Less.

Supported configuration options:

	LESS_BIN (binary)

	Path to the less executable used to compile source files. By default,
the filter will attempt to run lessc via the system path.

	LESS_LINE_NUMBERS (line_numbers)

	Outputs filename and line numbers. Can be either ‘comments’, which
will output the debug info within comments, ‘mediaquery’ that will
output the information within a fake media query which is compatible
with the SASSPath to the less executable used to compile source files.

	LESS_RUN_IN_DEBUG (run_in_debug)

	By default, the filter will compile in debug mode. Since the less
compiler is written in Javascript and capable of running in the
browser, you can set this to False to have your original less
source files served (see below).

	LESS_PATHS (paths)

	Add include paths for less command line.
It should be a list of paths relatives to Environment.directory or absolute paths.
Order matters as less will pick the first file found in path order.

	LESS_AS_OUTPUT (boolean)

	By default, this works as an “input filter”, meaning less is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Less file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Less filter is applied in one go. This can provide a speedup for
bigger projects.

Compiling less in the browser

less is an interesting case because it is written in Javascript and
capable of running in the browser. While for performance reason you
should prebuild your stylesheets in production, while developing you
may be interested in serving the original less files to the client,
and have less compile them in the browser.

To do so, you first need to make sure the less filter is not applied
when Environment.debug is True. You can do so via an
option:

env.config['less_run_in_debug'] = False

Second, in order for the less to identify the less source files as
needing to be compiled, they have to be referenced with a
rel="stylesheet/less" attribute. One way to do this is to use the
Bundle.extra dictionary, which works well with the template
tags that webassets provides for some template languages:

less_bundle = Bundle(
 '**/*.less',
 filters='less',
 extra={'rel': 'stylesheet/less' if env.debug else 'stylesheet'}
)

Then, for example in a Jinja2 template, you would write:

{% assets less_bundle %}
 <link rel="{{ EXTRA.rel }}" type="text/css" href="{{ ASSET_URL }}">
{% endassets %}

With this, the <link> tag will sport the correct rel value both
in development and in production.

Finally, you need to include the less compiler:

if env.debug:
 js_bundle.contents += 'http://lesscss.googlecode.com/files/less-1.3.0.min.js'

less_ruby

	
class webassets.filter.less_ruby.Less(**kwargs)

	Converts Less [http://lesscss.org/] markup to real CSS.

This uses the old Ruby implementation available in the 1.x versions of the
less gem. All 2.x versions of the gem are wrappers around the newer
NodeJS/Javascript implementation, which you are generally encouraged to
use, and which is available in webassets via the Less
filter.

This filter for the Ruby version is being kept around for
backwards-compatibility.

Supported configuration options:

	LESS_RUBY_PATH (binary)

	Path to the less executable used to compile source files. By default,
the filter will attempt to run lessc via the system path.

sass

	
class webassets.filter.sass.Sass(**kwargs)

	Converts Sass [http://sass-lang.com/] markup to real CSS.

Requires the Sass executable to be available externally. To install
it, you might be able to do:

$ sudo gem install sass

By default, this works as an “input filter”, meaning sass is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Sass file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Sass filter is applied in one go. This can provide a speedup for
bigger projects.

To use Sass as an output filter:

from webassets.filter import get_filter
sass = get_filter('sass', as_output=True)
Bundle(...., filters=(sass,))

However, if you want to use the output filter mode and still also
use the @import directive in your Sass files, you will need to
pass along the load_paths argument, which specifies the path
to which the imports are relative to (this is implemented by
changing the working directory before calling the sass
executable):

sass = get_filter('sass', as_output=True, load_paths='/tmp')

With as_output=True, the resulting concatenation of the Sass
files is piped to Sass via stdin (cat ... | sass --stdin ...)
and may cause applications to not compile if import statements are
given as relative paths.

For example, if a file foo/bar/baz.scss imports file
foo/bar/bat.scss (same directory) and the import is defined as
@import "bat"; then Sass will fail compiling because Sass
has naturally no information on where baz.scss is located on
disk (since the data was passed via stdin) in order for Sass to
resolve the location of bat.scss:

Traceback (most recent call last):
...
webassets.exceptions.FilterError: sass: subprocess had error: stderr=(sass):1: File to import not found or unreadable: bat. (Sass::SyntaxError)
 Load paths:
 /path/to/project-foo
 on line 1 of standard input
 Use --trace for backtrace.
, stdout=, returncode=65

To overcome this issue, the full path must be provided in the
import statement, @import "foo/bar/bat", then webassets
will pass the load_paths argument (e.g.,
/path/to/project-foo) to Sass via its -I flags so Sass can
resolve the full path to the file to be imported:
/path/to/project-foo/foo/bar/bat

Support configuration options:

	SASS_BIN

	The path to the Sass binary. If not set, the filter will
try to run sass as if it’s in the system path.

	SASS_STYLE

	The style for the output CSS. Can be one of expanded (default),
nested, compact or compressed.

	SASS_DEBUG_INFO

	If set to True, will cause Sass to output debug information
to be used by the FireSass Firebug plugin. Corresponds to the
--debug-info command line option of Sass.

Note that for this, Sass uses @media rules, which are
not removed by a CSS compressor. You will thus want to make
sure that this option is disabled in production.

By default, the value of this option will depend on the
environment DEBUG setting.

	SASS_LINE_COMMENTS

	Passes --line-comments flag to sass which emit comments in the
generated CSS indicating the corresponding source line.

Note that this option is disabled by Sass if --style compressed or
--debug-info options are provided.

Enabled by default. To disable, set empty environment variable
SASS_LINE_COMMENTS= or pass line_comments=False to this filter.

	SASS_AS_OUTPUT

	By default, this works as an “input filter”, meaning sass is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Sass file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Sass filter is applied in one go. This can provide a speedup for
bigger projects.

It will also allow you to share variables between files.

	SASS_SOURCE_MAP

	If provided, this will generate source maps in the output depending
on the type specified. By default this will use Sass’s auto.
Possible values are auto, file, inline, or none.

	SASS_LOAD_PATHS

	It should be a list of paths relatives to Environment.directory or absolute paths.
Order matters as sass will pick the first file found in path order.
These are fed into the -I flag of the sass command and
is used to control where sass imports code from.

	SASS_LIBS

	It should be a list of paths relatives to Environment.directory or absolute paths.
These are fed into the -r flag of the sass command and
is used to require ruby libraries before running sass.

scss

	
class webassets.filter.sass.SCSS(*a, **kw)

	Version of the sass filter that uses the SCSS syntax.

compass

	
class webassets.filter.compass.Compass(**kwargs)

	Converts Compass [http://compass-style.org/] .sass files to
CSS.

Requires at least version 0.10.

To compile a standard Compass project, you only need to have
to compile your main screen.sass, print.sass and ie.sass
files. All the partials that you include will be handled by Compass.

If you want to combine the filter with other CSS filters, make
sure this one runs first.

Supported configuration options:

	COMPASS_BIN

	The path to the Compass binary. If not set, the filter will
try to run compass as if it’s in the system path.

	COMPASS_PLUGINS

	Compass plugins to use. This is equivalent to the --require
command line option of the Compass. and expects a Python list
object of Ruby libraries to load.

	COMPASS_CONFIG

	An optional dictionary of Compass configuration options [http://compass-style.org/help/documentation/configuration-reference/].
The values are emitted as strings, and paths are relative to the
Environment’s directory by default; include a project_path
entry to override this.

The sourcemap option has a caveat. A file called _.css.map is
created by Compass in the tempdir (where _.scss is the original asset),
which is then moved into the output_path directory. Since the tempdir
is created one level down from the output path, the relative links in
the sourcemap should correctly map. This file, however, will not be
versioned, and thus this option should ideally only be used locally
for development and not in production with a caching service as the
_.css.map file will not be invalidated.

pyscss

	
class webassets.filter.pyscss.PyScss(**kwargs)

	Converts Scss [http://sass-lang.com/] markup to real CSS.

This uses PyScss [https://github.com/Kronuz/pyScss], a native
Python implementation of the Scss language. The PyScss module needs
to be installed. It’s API has been changing; currently, version
1.1.5 is known to be supported.

This is an alternative to using the sass or scss filters,
which are based on the original, external tools.

Note

The Sass syntax is not supported by PyScss. You need to use
the sass filter based on the original Ruby implementation
instead.

Supported configuration options:

	PYSCSS_DEBUG_INFO (debug_info)

	Include debug information in the output for use with FireSass.

If unset, the default value will depend on your
Environment.debug setting.

	PYSCSS_LOAD_PATHS (load_paths)

	Additional load paths that PyScss should use.

Warning

The filter currently does not automatically use
Environment.load_path for this.

	PYSCSS_STATIC_ROOT (static_root)

	The directory PyScss should look in when searching for include
files that you have referenced. Will use
Environment.directory by default.

	PYSCSS_STATIC_URL (static_url)

	The url PyScss should use when generating urls to files in
PYSCSS_STATIC_ROOT. Will use Environment.url by
default.

	PYSCSS_ASSETS_ROOT (assets_root)

	The directory PyScss should look in when searching for things
like images that you have referenced. Will use
PYSCSS_STATIC_ROOT by default.

	PYSCSS_ASSETS_URL (assets_url)

	The url PyScss should use when generating urls to files in
PYSCSS_ASSETS_ROOT. Will use PYSCSS_STATIC_URL by
default.

	PYSCSS_STYLE (style)

	The style of the output CSS. Can be one of nested (default),
compact, compressed, or expanded.

libsass

	
class webassets.filter.libsass.LibSass(**kwargs)

	Converts Sass [http://sass-lang.com/] markup to real CSS.

Requires the libsass package (https://pypi.python.org/pypi/libsass):

pip install libsass

libsass [http://dahlia.kr/libsass-python] is binding to C/C++
implementation of a Sass compiler Libsass [https://github.com/hcatlin/libsass]

Configuration options:

	LIBSASS_STYLE (style)

	an optional coding style of the compiled result. choose one of:
nested (default), expanded, compact, compressed

	LIBSASS_INCLUDES (includes)

	an optional list of paths to find @imported SASS/CSS source files

	LIBSASS_AS_OUTPUT

	use this filter as an “output filter”, meaning the source files
will first be concatenated, and then the Sass filter is applied.

See libsass documentation for full documentation about these configuration
options:

http://hongminhee.org/libsass-python/sass.html#sass.compile

Example:

Define a bundle for style.scss that contains @imports to files in
subfolders:

Bundle('style.scss', filters='libsass', output='style.css', depends='**/*.scss')

node-sass

	
class webassets.filter.node_sass.NodeSass(**kwargs)

	Converts Scss [http://sass-lang.com/] markup to real CSS.

This uses node-sass which is a wrapper around libsass.

This is an alternative to using the sass or scss filters,
which are based on the original, external tools.

Supported configuration options:

	NODE_SASS_DEBUG_INFO (debug_info)

	Include debug information in the output

If unset, the default value will depend on your
Environment.debug setting.

	NODE_SASS_LOAD_PATHS (load_paths)

	Additional load paths that node-sass should use.

	NODE_SASS_STYLE (style)

	The style of the output CSS. Can be one of nested (default),
compact, compressed, or expanded.

	NODE_SASS_CLI_ARGS (cli_args)

	Additional cli arguments

node-scss

	
class webassets.filter.node_sass.NodeSCSS(*a, **kw)

	Version of the node-sass filter that uses the SCSS syntax.

stylus

	
class webassets.filter.stylus.Stylus(**kwargs)

	Converts Stylus [http://learnboost.github.com/stylus/] markup to CSS.

Requires the Stylus executable to be available externally. You can install
it using the Node Package Manager [http://npmjs.org/]:

$ npm install -g stylus

Supported configuration options:

	STYLUS_BIN

	The path to the Stylus binary. If not set, assumes stylus is in the
system path.

	STYLUS_PLUGINS

	A Python list of Stylus plugins to use. Each plugin will be included
via Stylus’s command-line --use argument.

	STYLUS_EXTRA_ARGS

	A Python list of any additional command-line arguments.

	STYLUS_EXTRA_PATHS

	A Python list of any additional import paths.

coffeescript

	
class webassets.filter.coffeescript.CoffeeScript(**kwargs)

	Converts CoffeeScript [http://jashkenas.github.com/coffee-script/]
to real JavaScript.

If you want to combine it with other JavaScript filters, make sure this
one runs first.

Supported configuration options:

	COFFEE_NO_BARE

	Set to True to compile with the top-level function
wrapper (suppresses the –bare option to coffee, which
is used by default).

typescript

	
class webassets.filter.typescript.TypeScript(**kwargs)

	Compile TypeScript [http://www.typescriptlang.org] to JavaScript.

TypeScript is an external tool written for NodeJS.
This filter assumes that the tsc executable is in the path. Otherwise, you
may define the TYPESCRIPT_BIN setting.

To specify TypeScript compiler options, TYPESCRIPT_CONFIG may be defined.
E.g.: --removeComments true --target ES6.

requirejs

	
class webassets.filter.requirejs.RequireJSFilter(**kwargs)

	Optimizes AMD-style modularized JavaScript into a single asset
using RequireJS [http://requirejs.org/].

This depends on the NodeJS executable r.js; install via npm:

$ npm install -g requirejs

Details on configuring r.js can be found at
http://requirejs.org/docs/optimization.html#basics.

Supported configuration options:

executable (env: REQUIREJS_BIN)

Path to the RequireJS executable used to compile source
files. By default, the filter will attempt to run r.js via
the system path.

config (env: REQUIREJS_CONFIG)

The RequireJS options file. The path is taken to be relative
to the Environment.directory (by default is /static).

baseUrl (env: REQUIREJS_BASEURL)

The baseUrl parameter to r.js; this is the directory that
AMD modules will be loaded from. The path is taken relative
to the Environment.directory (by default is /static).
Typically, this is used in
conjunction with a baseUrl parameter set in the config
options file, where the baseUrl value in the config file is
used for client-side processing, and the value here is for
server-side processing.

optimize (env: REQUIREJS_OPTIMIZE)

The optimize parameter to r.js; controls whether or not
r.js minifies the output. By default, it is enabled, but can
be set to none to disable minification. The typical
scenario to disable minification is if you do some additional
processing of the JavaScript (such as removing
console.log() lines) before minification by the rjsmin
filter.

extras (env: REQUIREJS_EXTRAS)

Any other command-line parameters to be passed to r.js. The
string is expected to be in unix shell-style format, meaning
that quotes can be used to escape spaces, etc.

run_in_debug (env: REQUIREJS_RUN_IN_DEBUG)

Boolean which controls if the AMD requirejs is evaluated
client-side or server-side in debug mode. If set to a truthy
value (e.g. ‘yes’), then server-side compilation is done, even
in debug mode. The default is false.

Client-side AMD evaluation

AMD modules can be loaded client-side without any processing
done on the server-side. The advantage to this is that
debugging is easier because the browser can tell you which
source file is responsible for a particular line of code. The
disadvantage is that it means that each loaded AMD module is a
separate HTTP request. When running client-side, the client
needs access to the config – for this reason, when running
in client-side mode, the webassets environment must be
adjusted to include a reference to this
configuration. Typically, this is done by adding something
similar to the following during webassets initialization:

if env.debug and not env.config.get('requirejs_run_in_debug', True):
 env['requirejs'].contents += ('requirejs-browser-config.js',)

And the file requirejs-browser-config.js will look
something like:

require.config({baseUrl: '/static/script/'});

Set the run_in_debug option to control client-side or
server-side compilation in debug.

JavaScript templates

jst

	
class webassets.filter.jst.JST(**kwargs)

	This filter processes generic JavaScript templates. It will generate
JavaScript code that runs all files through a template compiler, and makes
the templates available as an object.

It was inspired by Jammit [http://documentcloud.github.com/underscore/#template].

For example, if you have a file named license.jst:

<div class="drivers-license">
 <h2>Name: <%= name %></h2>
 Hometown: <%= birthplace %>
</div>

Then, after applying this filter, you could use the template in JavaScript:

JST.license({name : "Moe", birthplace : "Brooklyn"});

The name of each template is derived from the filename. If your JST files
are spread over different directories, the path up to the common prefix
will be included. For example:

Bundle('templates/app1/license.jst', 'templates/app2/profile.jst',
 filters='jst')

will make the templates available as app1/license and app2/profile.

Note

The filter is “generic” in the sense that it does not actually compile
the templates, but wraps them in a JavaScript function call, and can
thus be used with any template language. webassets also has filters
for specific JavaScript template languages like
DustJS or
Handlebars, and those filters precompile
the templates on the server, which means a performance boost on the
client-side.

Unless configured otherwise, the filter will use the same micro-templating
language that Jammit [http://documentcloud.github.com/underscore/#template] uses, which is turn is the same one that is
available in underscore.js [http://documentcloud.github.com/underscore/#template]. The JavaScript code necessary to compile
such templates will implicitly be included in the filter output.

Supported configuration options:

	JST_COMPILER (template_function)

	A string that is inserted into the generated JavaScript code in place
of the function to be called that should do the compiling. Unless you
specify a custom function here, the filter will include the JavaScript
code of it’s own micro-templating language, which is the one used by
underscore.js [http://documentcloud.github.com/underscore/#template] and Jammit [http://documentcloud.github.com/underscore/#template].

If you assign a custom function, it is your responsibility to ensure
that it is available in your final JavaScript.

If this option is set to False, then the template strings will be
output directly, which is to say, JST.foo will be a string holding
the raw source of the foo template.

	JST_NAMESPACE (namespace)

	How the templates should be made available in JavaScript. Defaults to
window.JST, which gives you a global JST object.

	JST_BARE (bare)

	Whether everything generated by this filter should be wrapped inside
an anonymous function. Default to False.

Note

If you enable this option, the namespace must be a property
of the window object, or you won’t be able to access the
templates.

	JST_DIR_SEPARATOR (separator)

	The separator character to use for templates within directories.
Defaults to ‘/’

handlebars

	
class webassets.filter.handlebars.Handlebars(**kwargs)

	Compile Handlebars [http://handlebarsjs.com/] templates.

This filter assumes that the handlebars executable is in the path.
Otherwise, you may define a HANDLEBARS_BIN setting.

Note

Use this filter if you want to precompile Handlebars templates.
If compiling them in the browser is acceptable, you may use the
JST filter, which needs no external dependency.

Warning

Currently, this filter is not compatible with input filters. Any
filters that would run during the input-stage will simply be
ignored. Input filters tend to be other compiler-style filters,
so this is unlikely to be an issue.

dustjs

	
class webassets.filter.dust.DustJS(**kwargs)

	DustJS [http://akdubya.github.com/dustjs/] templates compilation
filter.

Takes a directory full .dust files and creates a single Javascript
object that registers to the dust global when loaded in the browser:

Bundle('js/templates/', filters='dustjs')

Note that in the above example, a directory is given as the bundle
contents, which is unusual, but required by this filter.

This uses the dusty compiler, which is a separate project from the
DustJS implementation. To install dusty together with LinkedIn’s
version of dustjs (the original does not support NodeJS > 0.4):

npm install dusty
rm -rf node_modules/dusty/node_modules/dust
git clone https://github.com/linkedin/dustjs node_modules/dust

Note

To generate the DustJS client-side Javascript, you can then do:

cd node_modules/dust
make dust
cp dist/dist-core...js your/static/assets/path

For compilation, set the DUSTY_PATH=.../node_modules/dusty/bin/dusty.
Optionally, set NODE_PATH=.../node.

Other

cssrewrite

	
class webassets.filter.cssrewrite.CSSRewrite(replace=False)

	Source filter that rewrites relative urls in CSS files.

CSS allows you to specify urls relative to the location of the CSS file.
However, you may want to store your compressed assets in a different place
than source files, or merge source files from different locations. This
would then break these relative CSS references, since the base URL changed.

This filter transparently rewrites CSS url() instructions in the source
files to make them relative to the location of the output path. It works as
a source filter, i.e. it is applied individually to each source file
before they are merged.

No configuration is necessary.

The filter also supports a manual mode:

get_filter('cssrewrite', replace={'old_directory':'/custom/path/'})

This will rewrite all urls that point to files within old_directory to
use /custom/path as a prefix instead.

You may plug in your own replace function:

get_filter('cssrewrite', replace=lambda url: re.sub(r'^/?images/', '/images/', url))
get_filter('cssrewrite', replace=lambda url: '/images/'+url[7:] if url.startswith('images/') else url)

datauri

	
class webassets.filter.datauri.CSSDataUri(**kwargs)

	Will replace CSS url() references to external files with internal
data: URIs [http://en.wikipedia.org/wiki/Data_URI_scheme].

The external file is now included inside your CSS, which minimizes HTTP
requests.

Note

Data Uris have clear disadvantages [http://stackoverflow.com/questions/5258057/images-in-css-or-html-as-data-base64],
so put some thought into if and how you would like to use them. Have
a look at some performance measurements [http://www.ravelrumba.com/blog/data-uris-for-css-images-more-tests-more-questions/].

The filter respects a DATAURI_MAX_SIZE option, which is the maximum
size (in bytes) of external files to include. The default limit is what
I think should be a reasonably conservative number, 2048 bytes.

cssprefixer

	
class webassets.filter.cssprefixer.CSSPrefixer(**kwargs)

	Uses CSSPrefixer [http://github.com/myfreeweb/cssprefixer/]
to add vendor prefixes to CSS files.

autoprefixer

	
class webassets.filter.autoprefixer.AutoprefixerFilter(**kwargs)

	Prefixes vendor-prefixes using autoprefixer
<https://github.com/ai/autoprefixer>, which uses the Can I Use?
<http://www.caniuse.com> database to know which prefixes need to be
inserted.

This depends on the autoprefixer <https://github.com/ai/autoprefixer>
command line tool being installed (use npm install autoprefixer).

Supported configuration options:

	AUTOPREFIXER_BIN

	Path to the autoprefixer executable used to compile source files. By
default, the filter will attempt to run autoprefixer via the
system path.

	AUTOPREFIXER_BROWSERS

	The browser expressions to use. This corresponds to the --browsers
<value> flag, see the –browsers documentation
<https://github.com/ai/autoprefixer#browsers>. By default, this flag
won’t be passed, and autoprefixer’s default will be used.

Example:

AUTOPREFIXER_BROWSERS = ['> 1%', 'last 2 versions', 'firefox 24', 'opera 12.1']

	AUTOPREFIXER_EXTRA_ARGS

	Additional options may be passed to autoprefixer using this
setting, which expects a list of strings.

jinja2

	
class webassets.filter.jinja2.Jinja2(**kwargs)

	Process a file through the Jinja2 templating engine.

Requires the jinja2 package (https://github.com/mitsuhiko/jinja2).

The Jinja2 context can be specified with the JINJA2_CONTEXT configuration
option or directly with context={…}. Example:

Bundle('input.css', filters=Jinja2(context={'foo': 'bar'}))

Additionally to enable template loading mechanics from your project you can provide
JINJA2_ENV or jinja2_env arg to make use of already created environment.

spritemapper

	
class webassets.filter.spritemapper.Spritemapper(**kwargs)

	Generate CSS spritemaps using
Spritemapper [http://yostudios.github.com/Spritemapper/], a Python
utility that merges multiple images into one and generates CSS positioning
for the corresponding slices. Installation is easy:

pip install spritemapper

Supported configuration options:

	SPRITEMAPPER_PADDING

	A tuple of integers indicating the number of pixels of padding to
place between sprites

	SPRITEMAPPER_ANNEAL_STEPS

	Affects the number of combinations to be attempted by the box packer
algorithm

Note: Since the spritemapper command-line utility expects source
and output files to be on the filesystem, this filter interfaces directly
with library internals instead. It has been tested to work with
Spritemapper version 1.0.

Creating custom filters

Creating custom filters can be easy, or very easy.

Before we get to that though, it is first necessary to understand that
there are two types of filters: input filters and output filters.
Output filters are applied after the complete content after all a bundle’s
contents have been merged together. Input filters, on the other hand, are
applied to each source file after it is read from the disk. In the case
of nested bundles, input filters will be passed down, with the input filters
of a parent bundle are applied before the output filter of a child bundle:

child_bundle = Bundle('file.css', filters='yui_css')
Bundle(child_bundle, filters='cssrewrite')

In this example, because cssrewrite acts as an input filter, what will
essentially happen is:

yui_css(cssrewrite(file.css))

To be even more specific, since a single filter can act as both an input
and an output filter, the call chain will actually look something like
this:

cssrewrite.output(yui_css.output((cssrewrite.input((yui_css.input(file.css)))))

The usual reason to use an input filter is that the filter’s
transformation depends on the source file’s filename. For example,
the cssrewrite filter needs to know the
location of the source file relative to the final output file, so it
can properly update relative references. Another example
are CSS converters like less, which
work relative to the input filename.

With that in mind…

The very easy way

In the simplest case, a filter is simply a function that takes two
arguments, an input stream and an output stream.

def noop(_in, out, **kw):
 out.write(_in.read())

That’s it! You can use this filter when defining your bundles:

bundle = Bundle('input.js', filters=(noop,))

If you are using Jinja2, you can also specify the callable inline,
provided that it is available in the context:

{% assets filters=(noop, 'jsmin') ... %}

It even works when using Django templates, although here, you are
of course more limited in terms of syntax; if you want to use multiple
filters, you need to combine them:

{% assets filters=my_filters ... %}

Just make sure that the context variable my_filters is set to
your function.

Note that you currently cannot write input filters in this way. Callables
always act as output filters.

The easy way

This works by subclassing webassets.filter.Filter. In doing so, you
need to write a bit more code, but you’ll be able to enjoy a few perks.

The noop filter from the previous example, written as a class, would
look something like this:

from webassets.filter import Filter

class NoopFilter(Filter):
 name = 'noop'

 def output(self, _in, out, **kwargs):
 out.write(_in.read())

 def input(self, _in, out, **kwargs):
 out.write(_in.read())

The output and input methods should look familiar. They’re basically
like the callable you are already familiar with, simply pulled inside a class.

Class-based filters have a name attribute, which you need to set if you
want to register your filter globally.

The input method will be called for every source file, the output
method will be applied once after a bundle’s contents have been concatenated.

Among the kwargs you currently receive are:

	source_path (only for input()): The filename behind the in
stream, though note that other input filters may already have transformed
it.

	output_path: The final output path that your filters work will
ultimatily end up in.

Note

Always make your filters accept arbitrary **kwargs. The API does allow
for additional values to be passed along in the future.

Registering

The name wouldn’t make much sense, if it couldn’t be used to reference
the filter. First, you need to register the class with the system though:

from webassets.filter import register_filter
register_filter(NoopFilter)

Or if you are using yaml then use the filters key for the environment:

directory: .
url: /
debug: True
updater: timestamp
filters:
 - my_custom_package.my_filter

After that, you can use the filter like you would any of the built-in ones:

{% assets filters='jsmin,noop' ... %}

Options

Class-based filters are used as instances, and as such, you can easily
define a __init__ method that takes arguments. However, you should
make all parameters optional, if possible, or your filter will not be
usable through a name reference.

There might be another thing to consider. If a filter is specified
multiple times, which sometimes can happen unsuspectingly when bundles
are nested within each other, it will only be applied a single time.
By default, all filters of the same class are considered the same. In
almost all cases, this will be just fine.

However, in case you want your filter to be applicable multiple times
with different options, you can implement the unique method and
return a hashable object that represents data unique to this instance:

class FooFilter(Filter):
 def __init__(self, *args, **kwargs):
 self.args, self.kwargs = args, kwargs
 def unique(self):
 return self.args, self.kwargs

This will cause two instances of this filter to be both applied, as long
as the arguments given differ. Two instances with the exact same arguments
will still be considered equal.

If you want each of your filter’s instances to be unique, you can simply do:

def unique(self):
 return id(self)

Useful helpers

The Filter base class provides some useful features.

setup()

It’s quite common that filters have dependencies - on other Python
libraries, external tools, etc. If you want to provide your filter
regardless of whether such dependencies are matched, and fail only
if the filter is actually used, implement a setup() method on
your filter class:

class FooFilter(Filter):
 def setup(self):
 import foolib
 self.foolib = foolib

 def apply(self, _in, out):
 self.foolib.convert(...)

options

Some filters will need to be configured. This can of course be done by
passing arguments into __init__ as explained above, but it restricts
you to configuring your filters in code, and can be tedious if necessary
every single time the filter is used.

In some cases, it makes more sense to have an option configured globally,
like the path to an external binary. A number of the built-in filters do
this, allowing you to both specify a config variable in the webassets
Environment instance, or as an OS environment variable.

class FooFilter(Filter):
 options = {
 'binary': 'FOO_BIN'
 }

If you define a an options attribute on your filter class, these
options will automatically be supported both by your filter’s __init__,
as well as via a configuration or environment variable. In the example
above, you may pass binary when creating a filter instance manually,
or define FOO_BIN in Environment.config, or as an OS environment
variable.

get_config()

In cases where the declarative approach of the options attribute is
not enough, you can implement custom options yourself using the
Filter.get_config() helper:

class FooFilter(Filter):
 def setup(self):
 self.bin = self.get_config('BINARY_PATH')

This will check first the configuration, then the environment for
BINARY_PATH, and raise an exception if nothing is found.

get_config() allows you to specify different names for the setting
and the environment variable:

self.get_config(setting='ASSETS_BINARY_PATH', env='BINARY_PATH')

It also supports disabling either of the two, causing only the other to
be checked for the given name:

self.get_config(setting='ASSETS_BINARY_PATH', env=False)

Finally, you can easily make a value optional using the require
parameter. Instead of raising an exception, get_config() then returns
None. For example:

self.java = self.get_config('JAVA_BIN', require=False) or 'java'

Abstract base classes

In some cases, you might want to have a common base class for multiple
filters. You can make the base class abstract by setting name to
None explicitly. However, this is currently only relevant for the
built-in filters, since your own filters will not be registered
automatically in any case.

More?

You can have a look inside the webassets.filter module source
code to see a large number of example filters.

Assets can be filtered through one or multiple filters, modifying their
contents (think minification, compression).

CSS compilers

CSS compilers intend to improve upon the default CSS syntax, allow you
to write your stylesheets in a syntax more powerful, or more easily
readable. Since browsers do not understand this new syntax, the CSS compiler
needs to translate its own syntax to original CSS.

webassets includes builtin filters for a number of popular
CSS compilers, which you can use like any other
filter. There is one problem though: While developing, you will probably
want to disable asset packaging, and instead work with the uncompressed
assets (i.e., you would disable the
environment.debug option). However,
you still need to apply the filter for your CSS compiler, since otherwise,
the Browser wouldn’t understand your stylesheets.

For this reason, such compiler filters run even when in debug mode:

less = Bundle('css/base.less', 'css/forms.less',
 filters='less,cssmin', output='screen.css')

The above code block behaves exactly like you would want it to: When
debugging, the less files are compiled to CSS, but the code is not minified.
In production, both filters are applied.

Sometimes, you need to merge together good old CSS code, and you have a
compiler that, unlike less, cannot process those. Then you can use a
child bundle:

sass = Bundle('*.sass', filters='sass', output='gen/sass.css')
all_css = Bundle('css/jquery.calendar.css', sass,
 filters='cssmin', output="gen/all.css")

In the above case, the sass filter is only applied to the Sass source
files, within a nested bundle (which needs it’s own output target!). The
minification is applied to all CSS content in the outer bundle.

Loaders

Using these helper classes, you can define your bundles or even
your complete environment in some external data source, rather than
constructing them in code.

	
class webassets.loaders.YAMLLoader(file_or_filename)

	Will load an environment or a set of bundles from
YAML [http://en.wikipedia.org/wiki/YAML] files.

	
load_bundles(environment=None)

	Load a list of Bundle instances defined in the YAML file.

Expects the following format:

bundle-name:
 filters: sass,cssutils
 output: cache/default.css
 contents:
 - css/jquery.ui.calendar.css
 - css/jquery.ui.slider.css
another-bundle:
 # ...

Bundles may reference each other:

js-all:
 contents:
 - jquery.js
 - jquery-ui # This is a bundle reference
jquery-ui:
 contents: jqueryui/*.js

If an environment argument is given, it’s bundles
may be referenced as well. Note that you may pass any
compatibly dict-like object.

Finally, you may also use nesting:

js-all:
 contents:
 - jquery.js
 # This is a nested bundle
 - contents: "*.coffee"
 filters: coffeescript

	
load_environment()

	Load an Environment instance defined in the YAML file.

Expects the following format:

directory: ../static
url: /media
debug: True
updater: timestamp
filters:
 - my_custom_package.my_filter
config:
 compass_bin: /opt/compass
 another_custom_config_value: foo

bundles:
 # ...

All values, including directory and url are optional. The
syntax for defining bundles is the same as for
load_bundles().

Sample usage:

from webassets.loaders import YAMLLoader
loader = YAMLLoader('asset.yml')
env = loader.load_environment()

env['some-bundle'].urls()

	
class webassets.loaders.PythonLoader(module_name)

	Basically just a simple helper to import a Python file and
retrieve the bundles defined there.

	
load_bundles()

	Load Bundle objects defined in the Python module.

Collects all bundles in the global namespace.

	
load_environment()

	Load an Environment defined in the Python module.

Expects as default a global name environment to be defined,
or overridden by passing a string module:environment to the
constructor.

Integration with other libraries

While the webassets core is designed to work with any WSGI application,
also included are some additional utilities for some popular frameworks
and libraries.

	Django [http://elsdoerfer.name/docs/django-assets/]

	Flask-Assets [http://elsdoerfer.name/docs/flask-assets/]

	Jinja2

	pyramid [https://github.com/sontek/pyramid_webassets]

Jinja2

A Jinja2 extension is available as webassets.ext.jinja2.AssetsExtension.
It will provide a {% assets %} tag which allows you to reference your
bundles from within a template to render its urls.

It also allows you to create bundles on-the-fly, thus making it possible
to define your assets entirely within your templates.

If you are using Jinja2 inside of Django, see
this page [http://elsdoerfer.name/docs/django-assets/jinja2.html].

Setting up the extension

from jinja2 import Environment as Jinja2Environment
from webassets import Environment as AssetsEnvironment
from webassets.ext.jinja2 import AssetsExtension

assets_env = AssetsEnvironment('./static/media', '/media')
jinja2_env = Jinja2Environment(extensions=[AssetsExtension])
jinja2_env.assets_environment = assets_env

After adding the extension to your Jinja 2 environment, you need to
make sure that it knows about your webassets.Environment instance.
This is done by setting the assets_environment attribute.

Using the tag

To output a bundle that has been registered with the environment, simply
pass its name to the tag:

{% assets "all_js", "ie_js" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
{% endassets %}

The tag will repeatedly output its content for each ASSET_URL of each
bundle. In the above case, that might be the output urls of the all_js
and ie_js bundles, or, in debug mode, urls referencing the source files
of both bundles.

If you pass something to the tag that isn’t a known bundle name, it will
be considered a filename. This allows you to define a bundle entirely
within your templates:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css", "site/base.css", "site/widgets.css" %}
...

Of course, this means you can combine the two approaches as well. The
following code snippet will merge together the given bundle and the contents
of the jquery.js file that was explicitly passed:

{% assets output="gen/packed.js", "common/jquery.js", "my-bundle" %}
...

Custom resolvers

The resolver is a pluggable object that webassets uses to find the
contents of a Bundle on the filesystem, as well as to
generate the correct urls to these files.

For example, the default resolver searches the
Environment.load_path, or looks within
Environment.directory. The webassets Django integration [https://github.com/miracle2k/django-assets]
will use Django’s staticfile finders to look for files.

For normal usage, you will not need to write your own resolver, or
indeed need to know how they work. However, if you want to integrate
webassets with another framework, or if your application is
complex enough that it requires custom file referencing, read on.

The API as webassets sees it

webassets expects to find the resolver via the
Environment.resolver property, and expects this object to
provide the following methods:

	
Resolver.resolve_source(ctx, item)

	Given item from a Bundle’s contents, this has to
return the final value to use, usually an absolute
filesystem path.

Note

It is also allowed to return urls and bundle instances
(or generally anything else the calling Bundle
instance may be able to handle). Indeed this is the
reason why the name of this method does not imply a
return type.

The incoming item is usually a relative path, but may also be
an absolute path, or a url. These you will commonly want to
return unmodified.

This method is also allowed to resolve item to multiple
values, in which case a list should be returned. This is
commonly used if item includes glob instructions
(wildcards).

Note

Instead of this, subclasses should consider implementing
search_for_source() instead.

	
Resolver.resolve_output_to_path(ctx, target, bundle)

	Given target, this has to return the absolute
filesystem path to which the output file of bundle
should be written.

target may be a relative or absolute path, and is
usually taking from the Bundle.output property.

If a version-placeholder is used (%(version)s, it is
still unresolved at this point.

	
Resolver.resolve_source_to_url(ctx, filepath, item)

	Given the absolute filesystem path in filepath, as
well as the original value from Bundle.contents which
resolved to this path, this must return the absolute url
through which the file is to be referenced.

Depending on the use case, either the filepath or the
item argument will be more helpful in generating the url.

This method should raise a ValueError if the url cannot
be determined.

	
Resolver.resolve_output_to_url(ctx, target)

	Given target, this has to return the url through
which the output file can be referenced.

target may be a relative or absolute path, and is
usually taking from the Bundle.output property.

This is different from resolve_source_to_url() in
that you do not passed along the result of
resolve_output_to_path(). This is because in many
use cases, the filesystem is not available at the point
where the output url is needed (the media server may on
a different machine).

Methods to overwrite

However, in practice, you will usually want to override the builtin
Resolver, and customize it’s behaviour where necessary. The
default resolver already splits what is is doing into multiple
methods; so that you can either override them, or
refer to them in your own implementation, as makes sense.

Instead of the official entrypoints above, you may instead prefer
to override the following methods of the default resolver class:

	
Resolver.search_for_source(ctx, item)

	Called by resolve_source() after determining that
item is a relative filesystem path.

You should always overwrite this method, and let
resolve_source() deal with absolute paths, urls and
other types of items that a bundle may contain.

	
Resolver.search_load_path(ctx, item)

	This is called by search_for_source() when a
Environment.load_path is set.

If you want to change how the load path is processed,
overwrite this method.

Helpers to use

The following methods of the default resolver class you may find
useful as helpers while implementing your subclass:

	
Resolver.consider_single_directory(directory, item)

	Searches for item within directory. Is able to
resolve glob instructions.

Subclasses can call this when they have narrowed done the
location of a bundle item to a single directory.

	
Resolver.glob(basedir, expr)

	Evaluates a glob expression.
Yields a sorted list of absolute filenames.

	
Resolver.query_url_mapping(ctx, filepath)

	Searches the environment-wide url mapping (based on the
urls assigned to each directory in the load path). Returns
the correct url for filepath.

Subclasses should be sure that they really want to call this
method, instead of simply falling back to super().

Example: A prefix resolver

The following is a simple resolver implementation that searches
for files in a different directory depending on the first
directory part.

from webassets.env import Resolver

class PrefixResolver(Resolver):

 def __init__(self, prefixmap):
 self.map = prefixmap

 def search_for_source(self, ctx, item):
 parts = item.split('/', 1)
 if len(parts) < 2:
 raise ValueError(
 '"%s" not valid; a static path requires a prefix.' % item)

 prefix, name = parts
 if not prefix in self.map:
 raise ValueError(('Prefix "%s" of static path "%s" is not '
 'registered') % (prefix, item))

 # For the rest, defer to base class method, which provides
 # support for things like globbing.
 return self.consider_single_directory(self.map[prefix], name)

Using it:

env = webassets.Environment(path, url)
env.resolver = PrefixResolver({
 'app1': '/var/www/app1/static',
 'app2': '/srv/deploy/media/app2',
})
bundle = Bundle(
 'app2/scripts/jquery.js',
 'app1/*.js',
)

Other implementations

	django-assets Resolver [https://github.com/miracle2k/django-assets/blob/master/django_assets/env.py]
(search for class DjangoResolver).

	Flask-Assets Resolver [https://github.com/miracle2k/flask-assets/blob/master/src/flask_assets.py]
(search for class FlaskResolver).

	pyramid_webassets Resolver [https://github.com/sontek/pyramid_webassets/blob/master/pyramid_webassets/__init__.py]
(search for class PyramidResolver).

FAQ

Is there a cache-busting feature?

Yes! See URL Expiry (cache busting).

Relative URLs in my CSS code break if the merged asset is written to a different location than the source files. How do I fix this?

Use the builtin cssrewrite filter which
will transparently fix url() instructions in CSS files on the fly.

I am using a CSS compiler and I need its filter to apply even in debug mode!

See CSS compilers for how this is best done.

Is Google App Engine supported?

Yes. Due to the way Google App Engine works (static files are stored on
separate servers), you need to build your assets locally, possibly using one
of the management commands provided for your preferred framework, and then
deploy them.

In production mode, you need to disable the Environment.auto_build setting.

For URL expiry functionality, you need to use a manifest that holds version
information. See URL Expiry (cache busting).

There is a barebone Google App Engine example in the
examples/appengine/ [https://github.com/miracle2k/webassets/blob/master/examples/appengine/]
folder.

The environment

The environment has two responsibilities: One, it acts as a registry for
bundles, meaning you only have to pass around a single object to access
all your bundles.

Also, it holds the configuration.

Registering bundles

Bundles can be registered with the environment:

my_bundle = Bundle(...)
environment.register('my_bundle', my_bundle)

A shortcut syntax is also available - you may simply call register()
with the arguments which you would pass to the Bundle constructor:

environment.register('my_bundle', 'file1.js', 'file2.js', output='packed.js')

The environment allows dictionary-style access to the registered bundles:

>>> len(environment)
1

>>> list(environment)
[<Bundle ...>]

>>> environment['my_bundle']
<Bundle ...>

Configuration

The environment supports the following configuration options:

	
Environment.directory

	The base directory to which all paths will be relative to,
unless load_path are given, in which case this will
only serve as the output directory.

In the url space, it is mapped to urls.

	
Environment.url

	The url prefix used to construct urls for files in
directory.

To define url spaces for other directories, see
url_mapping.

	
Environment.debug

	Enable/disable debug mode. Possible values are:

	False

	Production mode. Bundles will be merged and filters applied.

	True

	Enable debug mode. Bundles will output their individual source
files.

	“merge”

	Merge the source files, but do not apply filters.

	
Environment.auto_build

	Controls whether bundles should be automatically built, and
rebuilt, when required (if set to True), or whether they
must be built manually be the user, for example via a management
command.

This is a good setting to have enabled during debugging, and can
be very convenient for low-traffic sites in production as well.
However, there is a cost in checking whether the source files
have changed, so if you care about performance, or if your build
process takes very long, then you may want to disable this.

By default automatic building is enabled.

	
Environment.url_expire

	If you send your assets to the client using a
far future expires header (to minimize the 304 responses
your server has to send), you need to make sure that assets
will be reloaded by the browser when they change.

If this is set to True, then the Bundle URLs generated by
webassets will have their version (see Environment.versions)
appended as a querystring.

An alternative approach would be to use the %(version)s
placeholder in the bundle output file.

The default behavior (indicated by a None value) is to add
an expiry querystring if the bundle does not use a version
placeholder.

	
Environment.versions

	Defines what should be used as a Bundle version.

A bundle’s version is what is appended to URLs when the
url_expire option is enabled, and the version can be part
of a Bundle’s output filename by use of the %(version)s
placeholder.

Valid values are:

	timestamp

	The version is determined by looking at the mtime of a
bundle’s output file.

	hash (default)

	The version is a hash over the output file’s content.

	False, None

	Functionality that requires a version is disabled. This
includes the url_expire option, the auto_build
option, and support for the %(version)s placeholder.

Any custom version implementation.

	
Environment.manifest

	A manifest persists information about the versions bundles
are at.

The Manifest plays a role only if you insert the bundle version
in your output filenames, or append the version as a querystring
to the url (via the url_expire option). It serves two
purposes:

	Without a manifest, it may be impossible to determine the
version at runtime. In a deployed app, the media files may
be stored on a different server entirely, and be
inaccessible from the application code. The manifest,
if shipped with your application, is what still allows to
construct the proper URLs.

	Even if it were possible to determine the version at
runtime without a manifest, it may be a costly process,
and using a manifest may give you better performance. If
you use a hash-based version for example, this hash would
need to be recalculated every time a new process is
started.

Valid values are:

	"cache" (default)

	The cache is used to remember version information. This
is useful to avoid recalculating the version hash.

	"file:{path}"

	Stores version information in a file at {path}. If not
path is given, the manifest will be stored as
.webassets-manifest in Environment.directory.

	"json:{path}"

	Same as “file:{path}”, but uses JSON to store the information.

	False, None

	No manifest is used.

Any custom manifest implementation.

	
Environment.cache

	Controls the behavior of the cache. The cache will speed up rebuilding
of your bundles, by caching individual filter results. This can be
particularly useful while developing, if your bundles would otherwise take
a long time to rebuild.

Possible values are:

	False

	Do not use the cache.

	True (default)

	Cache using default location, a .webassets-cache folder inside
directory.

	custom path

	Use the given directory as the cache directory.

	
Environment.load_path

	An list of directories that will be searched for source files.

If this is set, source files will only be looked for in these
directories, and directory is used as a location for
output files only.

To modify this list, you should use append_path(), since
it makes it easy to add the corresponding url prefix to
url_mapping.

	
Environment.url_mapping

	A dictionary of directory -> url prefix mappings that will
be considered when generating urls, in addition to the pair of
directory and url, which is always active.

You should use append_path() to add directories to the
load path along with their respective url spaces, instead of
modifying this setting directly.

Filter configuration

In addition to the standard options listed above, you can set custom
configuration values using Environment.config. This is so that you can
configure filters through the environment:

environment.config['sass_bin'] = '/opt/sass/bin/sass')

This allows the Sass filter to find the sass
binary.

Note: Filters usually allow you to define these values as system
environment variables as well. That is, you could also define a
SASS_BIN environment variable to setup the filter.

Bundles

A bundle is simply a collection of files that you would like to group
together, with some properties attached to tell webassets
how to do its job. Such properties include the filters which should
be applied, or the location where the output file should be stored.

Note that all filenames and paths considered to be relative to the
directory setting of your environment, and
generated urls will be relative to the url setting.

Bundle('common/inheritance.js', 'portal/js/common.js',
 'portal/js/plot.js', 'portal/js/ticker.js',
 filters='jsmin',
 output='gen/packed.js')

A bundle takes any number of filenames, as well as the following keyword
arguments:

	filters -
One or multiple filters to apply. If no filters are specified, the
source files will merely be merged into the output file. Filters are
applied in the order in which they are given.

	merge - If True (the default), All source files will be merged
and the result stored at output. Otherwise, each file will be
processed separately.

	output - Name/path of the output file. A %(version)s placeholder is
supported here, which will be replaced with the version of the file. See
URL Expiry (cache busting).
If merge is True, this argument is required and you can also use
these placeholders:
- %(name)s Just the name of the source file, without path or extension (eg: ‘common’)
- %(path)s The path and name of the source file (eg: ‘portal/js/common’)
- %(ext)s The extension of source file (eg: ‘js’)

	depends - Additional files that will be watched to determine if the
bundle needs to be rebuilt. This is usually necessary if you are using
compilers that allow @import instructions. Commonly, one would use a
glob instruction here for simplicity:

Bundle(depends=('**/*.scss'))

Warning

Currently, using depends disables caching for a bundle.

Nested bundles

Bundles may also contain other bundles:

from webassets import Bundle

all_js = Bundle(
 # jQuery
 Bundle('common/libs/jquery/jquery.js',
 'common/libs/jquery/jquery.ajaxQueue.js',
 'common/libs/jquery/jquery.bgiframe.js',),
 # jQuery Tools
 Bundle('common/libs/jqtools/tools.tabs.js',
 'common/libs/jqtools/tools.tabs.history.js',
 'common/libs/jqtools/tools.tabs.slideshow.js'),
 # Our own stuff
 Bundle('common/inheritance.js', 'portal/js/common.js',
 'portal/js/plot.js', 'portal/js/ticker.js'),
 filters='jsmin',
 output='gen/packed.js')

Here, the use of nested Bundle objects to group the JavaScript files
together is purely aesthetical. You could just as well pass all files as
a flat list. However, there are some more serious application as well.
One of them is the use of CSS compilers.
Another would be dealing with pre-compressed files:

If you are using a JavaScript library like jQuery [http://jquery.com/],
you might find yourself with a file like jquery.min.js in your media
directory, i.e. it is already minified - no reason to do it again.

While I would recommend always using the raw source files, and letting
webassets do the compressing, if you do have minified files that you
need to merge together with uncompressed ones, you could do it like so:

register('js-all',
 'jquery.min.js',
 Bundle('uncompressed.js', filters='jsmin'))

Generally speaking, nested bundles allow you to apply different sets of
filters to different groups of files, but still everything together
into a single output file.

Some things to consider when nesting bundles:

	Duplicate filters are only applied once (the leaf filter is applied).

	If a bundle that is supposed to be processed to a file does not define
an output target, it simply serves as a container of its sub-bundles,
which in turn will be processed into their respective output files.
In this case it must not have any files of its own.

	A bundle with merge=False cannot contain nested bundles.

Building bundles

Once a bundle is defined, the thing you want to do is build it, and then
include a link to the final merged and compressed output file in your
site.

There are different approaches.

In Code

For starters, you can simply call the bundle’s urls() method:

>>> env['all_js'].urls()
('/media/gen/packed.js',)

Depending on the value of environment.debug. it will either return
a list of all the bundle’s source files, or the merged file pointed to
by the bundle’s output option - all relative to the
environment.url setting.

urls() will always ensure that the files behind the urls it returns
actually exist. That is, it will merge and compress the source files in
production mode when first called, and update the compressed assets when
it detects changes. This behavior can be customized using various
environment configuration values.

Call urls() once per request, and pass the resulting list of urls to
your template, and you’re good to go.

In templates

For some template languages, webassets
includes extensions which allow you to access the bundles you defined.
Further, they usually allow you to define bundles on-the-fly, so you can
reference your assets directly from within your templates, rather than
predefining them in code.

For example, there is a template tag for Jinja2,
which allows you do something like this:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css", "site/base.css", "site/widgets.css" %}
...

Management command

In some cases you might prefer to cause a manual build of your bundles
from the command line. See Command Line Interface for more information.

Command Line Interface

While it’s often convenient to have webassets automatically rebuild
your bundles on access, you sometimes may prefer to build manually,
for example for performance reasons in larger deployments.

webassets provides a command line interface which is supposed to help
you manage your bundles manually. However, due to the generic nature of
the webassets core library, it usually needs some help setting up.

You may want to check the integration page
to see if webassets already provides helpers to expose the command line
within your framework. If that is not the case, read on.

Build a custom command line client

In most cases, you can simply wrap around the webassets.script.main
function. For example, the command provided by Flask-Assets looks like
this:

class ManageAssets(flaskext.script.Command):
 def __init__(self, assets_env):
 self.env = assets_env

 def handle(self, app, prog, name, remaining_args):
 from webassets import script
 script.main(remaining_args, env=self.env)

In cases where this isn’t possible for some reason, or you need more
control, you can work directly with the
webassets.script.CommandLineEnvironment class, which implements all
the commands as simple methods.

import logging
from webassets.script import CommandLineEnvironment

Setup a logger
log = logging.getLogger('webassets')
log.addHandler(logging.StreamHandler())
log.setLevel(logging.DEBUG)

cmdenv = CommandLineEnvironment(assets_env, log)
cmdenv.invoke('build')

This would also work
cmdenv.build()

You are responsible for parsing the command line in any way you see fit
(using for example the optparse [https://docs.python.org/3/library/optparse.html#module-optparse] or argparse [https://docs.python.org/3/library/argparse.html#module-argparse] libraries,
or whatever your framework provides as a command line utility shell), and
then invoking the corresponding methods on your instance of
CommandLineEnvironment.

Included Commands

The following describes the commands that will be available to you through
the webassets CLI interface.

build

Builds all bundles, regardless of whether they are detected as having changed
or not.

watch

Start a daemon which monitors your bundle source files, and automatically
rebuilds bundles when a change is detected.

This can be useful during development, if building is not instantaneous, and
you are losing valuable time waiting for the build to finish while trying to
access your site.

clean

Will clear out the cache, which after a while can grow quite large.

Included Filters

The following filters are included in webassets, though some may
require the installation of an external library, or the availability of
external tools.

You can also write custom filters.

Javascript cross-compilers

	
class webassets.filter.babel.Babel(**kwargs)

	Processes ES6+ code into ES5 friendly code using Babel [https://babeljs.io/].

Requires the babel executable to be available externally.
To install it, you might be able to do:

$ npm install --global babel-cli

You probably also want some presets:

$ npm install --global babel-preset-es2015

Example python bundle:

es2015 = get_filter('babel', presets='es2015')
bundle = Bundle('**/*.js', filters=es2015)

Example YAML bundle:

es5-bundle:
 output: dist/es5.js
 config:
 BABEL_PRESETS: es2015
 filters: babel
 contents:
 - file1.js
 - file2.js

Supported configuration options:

	BABEL_BIN

	The path to the babel binary. If not set the filter will try to run
babel as if it’s in the system path.

	BABEL_PRESETS

	Passed straight through to babel --presets to specify which babel
presets to use

	BABEL_EXTRA_ARGS

	A list of manual arguments to be specified to the babel command

	BABEL_RUN_IN_DEBUG

	May be set to False to make babel not run in debug

Javascript compressors

rjsmin

	
class webassets.filter.rjsmin.RJSMin(**kwargs)

	Minifies Javascript by removing whitespace, comments, etc.

Uses the rJSmin library [http://opensource.perlig.de/rjsmin/],
which is included with webassets. However, if you have the external
package installed, it will be used instead. You may want to do this
to get access to the faster C-extension.

Supported configuration options:

	RJSMIN_KEEP_BANG_COMMENTS (boolean)

	Keep bang-comments (comments starting with an exclamation mark).

yui_js

Minify Javascript and CSS with
YUI Compressor [http://developer.yahoo.com/yui/compressor/].

YUI Compressor is an external tool written in Java, which needs to be
available. One way to get it is to install the
yuicompressor [http://pypi.python.org/pypi/yuicompressor] package:

pip install yuicompressor

No configuration is necessary in this case.

You can also get YUI compressor a different way and define
a YUI_COMPRESSOR_PATH setting that points to the .jar file.
Otherwise, an environment variable by the same name is tried. The
filter will also look for a JAVA_HOME environment variable to
run the .jar file, or will otherwise assume that java is
on the system path.

	
class webassets.filter.yui.YUIJS(**kwargs)

	

closure_js

Minify Javascript with Google Closure Compiler [https://code.google.com/p/closure-compiler/].

Google Closure Compiler is an external tool written in Java, which needs
to be available. One way to get it is to install the
closure [http://pypi.python.org/pypi/closure] package:

pip install closure

No configuration is necessary in this case.

You can also define a CLOSURE_COMPRESSOR_PATH setting that
points to the .jar file. Otherwise, an environment variable by
the same name is tried. The filter will also look for a JAVA_HOME
environment variable to run the .jar file, or will otherwise
assume that java is on the system path.

Supported configuration options:

	CLOSURE_COMPRESSOR_OPTIMIZATION

	Corresponds to Google Closure’s compilation level parameter [https://code.google.com/closure/compiler/docs/compilation_levels.html].

	CLOSURE_EXTRA_ARGS

	A list of further options to be passed to the Closure compiler.
There are a lot of them.

For options which take values you want to use two items in the list:

['--output_wrapper', 'foo: %output%']

uglifyjs

	
class webassets.filter.uglifyjs.UglifyJS(**kwargs)

	Minify Javascript using UglifyJS [https://github.com/mishoo/UglifyJS/].

The filter requires version 2 of UglifyJS.

UglifyJS is an external tool written for NodeJS; this filter assumes that
the uglifyjs executable is in the path. Otherwise, you may define
a UGLIFYJS_BIN setting.

Additional options may be passed to uglifyjs using the setting
UGLIFYJS_EXTRA_ARGS, which expects a list of strings.

jsmin

	
class webassets.filter.jsmin.JSMin(**kwargs)

	Minifies Javascript by removing whitespace, comments, etc.

This filter uses a Python port of Douglas Crockford’s JSMin [http://www.crockford.com/javascript/jsmin.html], which needs
to be installed separately.

There are actually multiple implementations available, for
example one by Baruch Even. Easiest to install via PyPI is
the one by Dave St. Germain:

$ pip install jsmin

The filter is tested with this jsmin package from PyPI,
but will work with any module that exposes a
JavascriptMinify object with a minify method.

If you want to avoid installing another dependency, use the
webassets.filter.rjsmin.RJSMin filter instead.

jspacker

	
class webassets.filter.jspacker.JSPacker(**kwargs)

	Reduces the size of Javascript using an inline compression
algorithm, i.e. the script will be unpacked on the client side
by the browser.

Based on Dean Edwards’ jspacker 2 [http://dean.edwards.name/packer/],
as ported by Florian Schulze.

slimit

	
class webassets.filter.slimit.Slimit(**kwargs)

	Minifies JS.

Requires the slimit package (https://github.com/rspivak/slimit),
which is a JavaScript minifier written in Python. It compiles JavaScript
into more compact code so that it downloads and runs faster.

It offers mangle and mangle_toplevel options through SLIMIT_MANGLE and SLIMIT_MANGLE_TOPLEVEL

CSS compressors

cssmin

	
class webassets.filter.cssmin.CSSMin(**kwargs)

	Minifies CSS.

Requires the cssmin package (http://github.com/zacharyvoase/cssmin),
which is a port of the YUI CSS compression algorithm.

cssutils

	
class webassets.filter.cssutils.CSSUtils(**kwargs)

	Minifies CSS by removing whitespace, comments etc., using the Python
cssutils [http://cthedot.de/cssutils/] library.

Note that since this works as a parser on the syntax level, so invalid
CSS input could potentially result in data loss.

yui_css

	
class webassets.filter.yui.YUICSS(**kwargs)

	

cleancss

	
class webassets.filter.cleancss.CleanCSS(**kwargs)

	Minify css using Clean-css [https://github.com/GoalSmashers/clean-css/].

Clean-css is an external tool written for NodeJS; this filter assumes that
the cleancss executable is in the path. Otherwise, you may define
a CLEANCSS_BIN setting.

Additional options may be passed to cleancss binary using the setting
CLEANCSS_EXTRA_ARGS, which expects a list of strings.

slimmer_css

	
class webassets.filter.slimmer.CSSSlimmer(**kwargs)

	Minifies CSS by removing whitespace, comments etc., using the Python
slimmer [http://pypi.python.org/pypi/slimmer/] library.

rcssmin

	
class webassets.filter.rcssmin.RCSSMin(**kwargs)

	Minifies CSS.

Requires the rcssmin package (https://github.com/ndparker/rcssmin).
Alike ‘cssmin’ it is a port of the YUI CSS compression algorithm but aiming
for speed instead of maximum compression.

Supported configuration options:
RCSSMIN_KEEP_BANG_COMMENTS (boolean)

Keep bang-comments (comments starting with an exclamation mark).

JS/CSS compilers

postcss

	
class webassets.filter.postcss.PostCSS(**kwargs)

	Processes CSS code using PostCSS [http://postcss.org/].

Requires the postcss executable to be available externally.
To install it, you might be able to do:

$ npm install --global postcss

You should also install the plugins you want to use:

$ npm install --global postcss-cssnext

You can configure postcss in postcss.config.js:

module.exports = {
 plugins: [
 require('postcss-cssnext')({
 // optional configuration for cssnext
 })
],
};

Supported configuration options:

	POSTCSS_BIN

	Path to the postcss executable used to compile source files. By
default, the filter will attempt to run postcss via the
system path.

	POSTCSS_EXTRA_ARGS

	Additional command-line options to be passed to postcss using this
setting, which expects a list of strings.

clevercss

	
class webassets.filter.clevercss.CleverCSS(**kwargs)

	Converts CleverCSS [http://sandbox.pocoo.org/clevercss/] markup
to real CSS.

If you want to combine it with other CSS filters, make sure this one
runs first.

less

	
class webassets.filter.less.Less(**kwargs)

	Converts less [http://lesscss.org/] markup to real CSS.

This depends on the NodeJS implementation of less, installable via npm.
To use the old Ruby-based version (implemented in the 1.x Ruby gem), see
Less.

Supported configuration options:

	LESS_BIN (binary)

	Path to the less executable used to compile source files. By default,
the filter will attempt to run lessc via the system path.

	LESS_LINE_NUMBERS (line_numbers)

	Outputs filename and line numbers. Can be either ‘comments’, which
will output the debug info within comments, ‘mediaquery’ that will
output the information within a fake media query which is compatible
with the SASSPath to the less executable used to compile source files.

	LESS_RUN_IN_DEBUG (run_in_debug)

	By default, the filter will compile in debug mode. Since the less
compiler is written in Javascript and capable of running in the
browser, you can set this to False to have your original less
source files served (see below).

	LESS_PATHS (paths)

	Add include paths for less command line.
It should be a list of paths relatives to Environment.directory or absolute paths.
Order matters as less will pick the first file found in path order.

	LESS_AS_OUTPUT (boolean)

	By default, this works as an “input filter”, meaning less is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Less file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Less filter is applied in one go. This can provide a speedup for
bigger projects.

Compiling less in the browser

less is an interesting case because it is written in Javascript and
capable of running in the browser. While for performance reason you
should prebuild your stylesheets in production, while developing you
may be interested in serving the original less files to the client,
and have less compile them in the browser.

To do so, you first need to make sure the less filter is not applied
when Environment.debug is True. You can do so via an
option:

env.config['less_run_in_debug'] = False

Second, in order for the less to identify the less source files as
needing to be compiled, they have to be referenced with a
rel="stylesheet/less" attribute. One way to do this is to use the
Bundle.extra dictionary, which works well with the template
tags that webassets provides for some template languages:

less_bundle = Bundle(
 '**/*.less',
 filters='less',
 extra={'rel': 'stylesheet/less' if env.debug else 'stylesheet'}
)

Then, for example in a Jinja2 template, you would write:

{% assets less_bundle %}
 <link rel="{{ EXTRA.rel }}" type="text/css" href="{{ ASSET_URL }}">
{% endassets %}

With this, the <link> tag will sport the correct rel value both
in development and in production.

Finally, you need to include the less compiler:

if env.debug:
 js_bundle.contents += 'http://lesscss.googlecode.com/files/less-1.3.0.min.js'

less_ruby

	
class webassets.filter.less_ruby.Less(**kwargs)

	Converts Less [http://lesscss.org/] markup to real CSS.

This uses the old Ruby implementation available in the 1.x versions of the
less gem. All 2.x versions of the gem are wrappers around the newer
NodeJS/Javascript implementation, which you are generally encouraged to
use, and which is available in webassets via the Less
filter.

This filter for the Ruby version is being kept around for
backwards-compatibility.

Supported configuration options:

	LESS_RUBY_PATH (binary)

	Path to the less executable used to compile source files. By default,
the filter will attempt to run lessc via the system path.

sass

	
class webassets.filter.sass.Sass(**kwargs)

	Converts Sass [http://sass-lang.com/] markup to real CSS.

Requires the Sass executable to be available externally. To install
it, you might be able to do:

$ sudo gem install sass

By default, this works as an “input filter”, meaning sass is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Sass file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Sass filter is applied in one go. This can provide a speedup for
bigger projects.

To use Sass as an output filter:

from webassets.filter import get_filter
sass = get_filter('sass', as_output=True)
Bundle(...., filters=(sass,))

However, if you want to use the output filter mode and still also
use the @import directive in your Sass files, you will need to
pass along the load_paths argument, which specifies the path
to which the imports are relative to (this is implemented by
changing the working directory before calling the sass
executable):

sass = get_filter('sass', as_output=True, load_paths='/tmp')

With as_output=True, the resulting concatenation of the Sass
files is piped to Sass via stdin (cat ... | sass --stdin ...)
and may cause applications to not compile if import statements are
given as relative paths.

For example, if a file foo/bar/baz.scss imports file
foo/bar/bat.scss (same directory) and the import is defined as
@import "bat"; then Sass will fail compiling because Sass
has naturally no information on where baz.scss is located on
disk (since the data was passed via stdin) in order for Sass to
resolve the location of bat.scss:

Traceback (most recent call last):
...
webassets.exceptions.FilterError: sass: subprocess had error: stderr=(sass):1: File to import not found or unreadable: bat. (Sass::SyntaxError)
 Load paths:
 /path/to/project-foo
 on line 1 of standard input
 Use --trace for backtrace.
, stdout=, returncode=65

To overcome this issue, the full path must be provided in the
import statement, @import "foo/bar/bat", then webassets
will pass the load_paths argument (e.g.,
/path/to/project-foo) to Sass via its -I flags so Sass can
resolve the full path to the file to be imported:
/path/to/project-foo/foo/bar/bat

Support configuration options:

	SASS_BIN

	The path to the Sass binary. If not set, the filter will
try to run sass as if it’s in the system path.

	SASS_STYLE

	The style for the output CSS. Can be one of expanded (default),
nested, compact or compressed.

	SASS_DEBUG_INFO

	If set to True, will cause Sass to output debug information
to be used by the FireSass Firebug plugin. Corresponds to the
--debug-info command line option of Sass.

Note that for this, Sass uses @media rules, which are
not removed by a CSS compressor. You will thus want to make
sure that this option is disabled in production.

By default, the value of this option will depend on the
environment DEBUG setting.

	SASS_LINE_COMMENTS

	Passes --line-comments flag to sass which emit comments in the
generated CSS indicating the corresponding source line.

Note that this option is disabled by Sass if --style compressed or
--debug-info options are provided.

Enabled by default. To disable, set empty environment variable
SASS_LINE_COMMENTS= or pass line_comments=False to this filter.

	SASS_AS_OUTPUT

	By default, this works as an “input filter”, meaning sass is
called for each source file in the bundle. This is because the
path of the source file is required so that @import directives
within the Sass file can be correctly resolved.

However, it is possible to use this filter as an “output filter”,
meaning the source files will first be concatenated, and then the
Sass filter is applied in one go. This can provide a speedup for
bigger projects.

It will also allow you to share variables between files.

	SASS_SOURCE_MAP

	If provided, this will generate source maps in the output depending
on the type specified. By default this will use Sass’s auto.
Possible values are auto, file, inline, or none.

	SASS_LOAD_PATHS

	It should be a list of paths relatives to Environment.directory or absolute paths.
Order matters as sass will pick the first file found in path order.
These are fed into the -I flag of the sass command and
is used to control where sass imports code from.

	SASS_LIBS

	It should be a list of paths relatives to Environment.directory or absolute paths.
These are fed into the -r flag of the sass command and
is used to require ruby libraries before running sass.

scss

	
class webassets.filter.sass.SCSS(*a, **kw)

	Version of the sass filter that uses the SCSS syntax.

compass

	
class webassets.filter.compass.Compass(**kwargs)

	Converts Compass [http://compass-style.org/] .sass files to
CSS.

Requires at least version 0.10.

To compile a standard Compass project, you only need to have
to compile your main screen.sass, print.sass and ie.sass
files. All the partials that you include will be handled by Compass.

If you want to combine the filter with other CSS filters, make
sure this one runs first.

Supported configuration options:

	COMPASS_BIN

	The path to the Compass binary. If not set, the filter will
try to run compass as if it’s in the system path.

	COMPASS_PLUGINS

	Compass plugins to use. This is equivalent to the --require
command line option of the Compass. and expects a Python list
object of Ruby libraries to load.

	COMPASS_CONFIG

	An optional dictionary of Compass configuration options [http://compass-style.org/help/documentation/configuration-reference/].
The values are emitted as strings, and paths are relative to the
Environment’s directory by default; include a project_path
entry to override this.

The sourcemap option has a caveat. A file called _.css.map is
created by Compass in the tempdir (where _.scss is the original asset),
which is then moved into the output_path directory. Since the tempdir
is created one level down from the output path, the relative links in
the sourcemap should correctly map. This file, however, will not be
versioned, and thus this option should ideally only be used locally
for development and not in production with a caching service as the
_.css.map file will not be invalidated.

pyscss

	
class webassets.filter.pyscss.PyScss(**kwargs)

	Converts Scss [http://sass-lang.com/] markup to real CSS.

This uses PyScss [https://github.com/Kronuz/pyScss], a native
Python implementation of the Scss language. The PyScss module needs
to be installed. It’s API has been changing; currently, version
1.1.5 is known to be supported.

This is an alternative to using the sass or scss filters,
which are based on the original, external tools.

Note

The Sass syntax is not supported by PyScss. You need to use
the sass filter based on the original Ruby implementation
instead.

Supported configuration options:

	PYSCSS_DEBUG_INFO (debug_info)

	Include debug information in the output for use with FireSass.

If unset, the default value will depend on your
Environment.debug setting.

	PYSCSS_LOAD_PATHS (load_paths)

	Additional load paths that PyScss should use.

Warning

The filter currently does not automatically use
Environment.load_path for this.

	PYSCSS_STATIC_ROOT (static_root)

	The directory PyScss should look in when searching for include
files that you have referenced. Will use
Environment.directory by default.

	PYSCSS_STATIC_URL (static_url)

	The url PyScss should use when generating urls to files in
PYSCSS_STATIC_ROOT. Will use Environment.url by
default.

	PYSCSS_ASSETS_ROOT (assets_root)

	The directory PyScss should look in when searching for things
like images that you have referenced. Will use
PYSCSS_STATIC_ROOT by default.

	PYSCSS_ASSETS_URL (assets_url)

	The url PyScss should use when generating urls to files in
PYSCSS_ASSETS_ROOT. Will use PYSCSS_STATIC_URL by
default.

	PYSCSS_STYLE (style)

	The style of the output CSS. Can be one of nested (default),
compact, compressed, or expanded.

libsass

	
class webassets.filter.libsass.LibSass(**kwargs)

	Converts Sass [http://sass-lang.com/] markup to real CSS.

Requires the libsass package (https://pypi.python.org/pypi/libsass):

pip install libsass

libsass [http://dahlia.kr/libsass-python] is binding to C/C++
implementation of a Sass compiler Libsass [https://github.com/hcatlin/libsass]

Configuration options:

	LIBSASS_STYLE (style)

	an optional coding style of the compiled result. choose one of:
nested (default), expanded, compact, compressed

	LIBSASS_INCLUDES (includes)

	an optional list of paths to find @imported SASS/CSS source files

	LIBSASS_AS_OUTPUT

	use this filter as an “output filter”, meaning the source files
will first be concatenated, and then the Sass filter is applied.

See libsass documentation for full documentation about these configuration
options:

http://hongminhee.org/libsass-python/sass.html#sass.compile

Example:

Define a bundle for style.scss that contains @imports to files in
subfolders:

Bundle('style.scss', filters='libsass', output='style.css', depends='**/*.scss')

node-sass

	
class webassets.filter.node_sass.NodeSass(**kwargs)

	Converts Scss [http://sass-lang.com/] markup to real CSS.

This uses node-sass which is a wrapper around libsass.

This is an alternative to using the sass or scss filters,
which are based on the original, external tools.

Supported configuration options:

	NODE_SASS_DEBUG_INFO (debug_info)

	Include debug information in the output

If unset, the default value will depend on your
Environment.debug setting.

	NODE_SASS_LOAD_PATHS (load_paths)

	Additional load paths that node-sass should use.

	NODE_SASS_STYLE (style)

	The style of the output CSS. Can be one of nested (default),
compact, compressed, or expanded.

	NODE_SASS_CLI_ARGS (cli_args)

	Additional cli arguments

node-scss

	
class webassets.filter.node_sass.NodeSCSS(*a, **kw)

	Version of the node-sass filter that uses the SCSS syntax.

stylus

	
class webassets.filter.stylus.Stylus(**kwargs)

	Converts Stylus [http://learnboost.github.com/stylus/] markup to CSS.

Requires the Stylus executable to be available externally. You can install
it using the Node Package Manager [http://npmjs.org/]:

$ npm install -g stylus

Supported configuration options:

	STYLUS_BIN

	The path to the Stylus binary. If not set, assumes stylus is in the
system path.

	STYLUS_PLUGINS

	A Python list of Stylus plugins to use. Each plugin will be included
via Stylus’s command-line --use argument.

	STYLUS_EXTRA_ARGS

	A Python list of any additional command-line arguments.

	STYLUS_EXTRA_PATHS

	A Python list of any additional import paths.

coffeescript

	
class webassets.filter.coffeescript.CoffeeScript(**kwargs)

	Converts CoffeeScript [http://jashkenas.github.com/coffee-script/]
to real JavaScript.

If you want to combine it with other JavaScript filters, make sure this
one runs first.

Supported configuration options:

	COFFEE_NO_BARE

	Set to True to compile with the top-level function
wrapper (suppresses the –bare option to coffee, which
is used by default).

typescript

	
class webassets.filter.typescript.TypeScript(**kwargs)

	Compile TypeScript [http://www.typescriptlang.org] to JavaScript.

TypeScript is an external tool written for NodeJS.
This filter assumes that the tsc executable is in the path. Otherwise, you
may define the TYPESCRIPT_BIN setting.

To specify TypeScript compiler options, TYPESCRIPT_CONFIG may be defined.
E.g.: --removeComments true --target ES6.

requirejs

	
class webassets.filter.requirejs.RequireJSFilter(**kwargs)

	Optimizes AMD-style modularized JavaScript into a single asset
using RequireJS [http://requirejs.org/].

This depends on the NodeJS executable r.js; install via npm:

$ npm install -g requirejs

Details on configuring r.js can be found at
http://requirejs.org/docs/optimization.html#basics.

Supported configuration options:

executable (env: REQUIREJS_BIN)

Path to the RequireJS executable used to compile source
files. By default, the filter will attempt to run r.js via
the system path.

config (env: REQUIREJS_CONFIG)

The RequireJS options file. The path is taken to be relative
to the Environment.directory (by default is /static).

baseUrl (env: REQUIREJS_BASEURL)

The baseUrl parameter to r.js; this is the directory that
AMD modules will be loaded from. The path is taken relative
to the Environment.directory (by default is /static).
Typically, this is used in
conjunction with a baseUrl parameter set in the config
options file, where the baseUrl value in the config file is
used for client-side processing, and the value here is for
server-side processing.

optimize (env: REQUIREJS_OPTIMIZE)

The optimize parameter to r.js; controls whether or not
r.js minifies the output. By default, it is enabled, but can
be set to none to disable minification. The typical
scenario to disable minification is if you do some additional
processing of the JavaScript (such as removing
console.log() lines) before minification by the rjsmin
filter.

extras (env: REQUIREJS_EXTRAS)

Any other command-line parameters to be passed to r.js. The
string is expected to be in unix shell-style format, meaning
that quotes can be used to escape spaces, etc.

run_in_debug (env: REQUIREJS_RUN_IN_DEBUG)

Boolean which controls if the AMD requirejs is evaluated
client-side or server-side in debug mode. If set to a truthy
value (e.g. ‘yes’), then server-side compilation is done, even
in debug mode. The default is false.

Client-side AMD evaluation

AMD modules can be loaded client-side without any processing
done on the server-side. The advantage to this is that
debugging is easier because the browser can tell you which
source file is responsible for a particular line of code. The
disadvantage is that it means that each loaded AMD module is a
separate HTTP request. When running client-side, the client
needs access to the config – for this reason, when running
in client-side mode, the webassets environment must be
adjusted to include a reference to this
configuration. Typically, this is done by adding something
similar to the following during webassets initialization:

if env.debug and not env.config.get('requirejs_run_in_debug', True):
 env['requirejs'].contents += ('requirejs-browser-config.js',)

And the file requirejs-browser-config.js will look
something like:

require.config({baseUrl: '/static/script/'});

Set the run_in_debug option to control client-side or
server-side compilation in debug.

JavaScript templates

jst

	
class webassets.filter.jst.JST(**kwargs)

	This filter processes generic JavaScript templates. It will generate
JavaScript code that runs all files through a template compiler, and makes
the templates available as an object.

It was inspired by Jammit [http://documentcloud.github.com/underscore/#template].

For example, if you have a file named license.jst:

<div class="drivers-license">
 <h2>Name: <%= name %></h2>
 Hometown: <%= birthplace %>
</div>

Then, after applying this filter, you could use the template in JavaScript:

JST.license({name : "Moe", birthplace : "Brooklyn"});

The name of each template is derived from the filename. If your JST files
are spread over different directories, the path up to the common prefix
will be included. For example:

Bundle('templates/app1/license.jst', 'templates/app2/profile.jst',
 filters='jst')

will make the templates available as app1/license and app2/profile.

Note

The filter is “generic” in the sense that it does not actually compile
the templates, but wraps them in a JavaScript function call, and can
thus be used with any template language. webassets also has filters
for specific JavaScript template languages like
DustJS or
Handlebars, and those filters precompile
the templates on the server, which means a performance boost on the
client-side.

Unless configured otherwise, the filter will use the same micro-templating
language that Jammit [http://documentcloud.github.com/underscore/#template] uses, which is turn is the same one that is
available in underscore.js [http://documentcloud.github.com/underscore/#template]. The JavaScript code necessary to compile
such templates will implicitly be included in the filter output.

Supported configuration options:

	JST_COMPILER (template_function)

	A string that is inserted into the generated JavaScript code in place
of the function to be called that should do the compiling. Unless you
specify a custom function here, the filter will include the JavaScript
code of it’s own micro-templating language, which is the one used by
underscore.js [http://documentcloud.github.com/underscore/#template] and Jammit [http://documentcloud.github.com/underscore/#template].

If you assign a custom function, it is your responsibility to ensure
that it is available in your final JavaScript.

If this option is set to False, then the template strings will be
output directly, which is to say, JST.foo will be a string holding
the raw source of the foo template.

	JST_NAMESPACE (namespace)

	How the templates should be made available in JavaScript. Defaults to
window.JST, which gives you a global JST object.

	JST_BARE (bare)

	Whether everything generated by this filter should be wrapped inside
an anonymous function. Default to False.

Note

If you enable this option, the namespace must be a property
of the window object, or you won’t be able to access the
templates.

	JST_DIR_SEPARATOR (separator)

	The separator character to use for templates within directories.
Defaults to ‘/’

handlebars

	
class webassets.filter.handlebars.Handlebars(**kwargs)

	Compile Handlebars [http://handlebarsjs.com/] templates.

This filter assumes that the handlebars executable is in the path.
Otherwise, you may define a HANDLEBARS_BIN setting.

Note

Use this filter if you want to precompile Handlebars templates.
If compiling them in the browser is acceptable, you may use the
JST filter, which needs no external dependency.

Warning

Currently, this filter is not compatible with input filters. Any
filters that would run during the input-stage will simply be
ignored. Input filters tend to be other compiler-style filters,
so this is unlikely to be an issue.

dustjs

	
class webassets.filter.dust.DustJS(**kwargs)

	DustJS [http://akdubya.github.com/dustjs/] templates compilation
filter.

Takes a directory full .dust files and creates a single Javascript
object that registers to the dust global when loaded in the browser:

Bundle('js/templates/', filters='dustjs')

Note that in the above example, a directory is given as the bundle
contents, which is unusual, but required by this filter.

This uses the dusty compiler, which is a separate project from the
DustJS implementation. To install dusty together with LinkedIn’s
version of dustjs (the original does not support NodeJS > 0.4):

npm install dusty
rm -rf node_modules/dusty/node_modules/dust
git clone https://github.com/linkedin/dustjs node_modules/dust

Note

To generate the DustJS client-side Javascript, you can then do:

cd node_modules/dust
make dust
cp dist/dist-core...js your/static/assets/path

For compilation, set the DUSTY_PATH=.../node_modules/dusty/bin/dusty.
Optionally, set NODE_PATH=.../node.

Other

cssrewrite

	
class webassets.filter.cssrewrite.CSSRewrite(replace=False)

	Source filter that rewrites relative urls in CSS files.

CSS allows you to specify urls relative to the location of the CSS file.
However, you may want to store your compressed assets in a different place
than source files, or merge source files from different locations. This
would then break these relative CSS references, since the base URL changed.

This filter transparently rewrites CSS url() instructions in the source
files to make them relative to the location of the output path. It works as
a source filter, i.e. it is applied individually to each source file
before they are merged.

No configuration is necessary.

The filter also supports a manual mode:

get_filter('cssrewrite', replace={'old_directory':'/custom/path/'})

This will rewrite all urls that point to files within old_directory to
use /custom/path as a prefix instead.

You may plug in your own replace function:

get_filter('cssrewrite', replace=lambda url: re.sub(r'^/?images/', '/images/', url))
get_filter('cssrewrite', replace=lambda url: '/images/'+url[7:] if url.startswith('images/') else url)

datauri

	
class webassets.filter.datauri.CSSDataUri(**kwargs)

	Will replace CSS url() references to external files with internal
data: URIs [http://en.wikipedia.org/wiki/Data_URI_scheme].

The external file is now included inside your CSS, which minimizes HTTP
requests.

Note

Data Uris have clear disadvantages [http://stackoverflow.com/questions/5258057/images-in-css-or-html-as-data-base64],
so put some thought into if and how you would like to use them. Have
a look at some performance measurements [http://www.ravelrumba.com/blog/data-uris-for-css-images-more-tests-more-questions/].

The filter respects a DATAURI_MAX_SIZE option, which is the maximum
size (in bytes) of external files to include. The default limit is what
I think should be a reasonably conservative number, 2048 bytes.

cssprefixer

	
class webassets.filter.cssprefixer.CSSPrefixer(**kwargs)

	Uses CSSPrefixer [http://github.com/myfreeweb/cssprefixer/]
to add vendor prefixes to CSS files.

autoprefixer

	
class webassets.filter.autoprefixer.AutoprefixerFilter(**kwargs)

	Prefixes vendor-prefixes using autoprefixer
<https://github.com/ai/autoprefixer>, which uses the Can I Use?
<http://www.caniuse.com> database to know which prefixes need to be
inserted.

This depends on the autoprefixer <https://github.com/ai/autoprefixer>
command line tool being installed (use npm install autoprefixer).

Supported configuration options:

	AUTOPREFIXER_BIN

	Path to the autoprefixer executable used to compile source files. By
default, the filter will attempt to run autoprefixer via the
system path.

	AUTOPREFIXER_BROWSERS

	The browser expressions to use. This corresponds to the --browsers
<value> flag, see the –browsers documentation
<https://github.com/ai/autoprefixer#browsers>. By default, this flag
won’t be passed, and autoprefixer’s default will be used.

Example:

AUTOPREFIXER_BROWSERS = ['> 1%', 'last 2 versions', 'firefox 24', 'opera 12.1']

	AUTOPREFIXER_EXTRA_ARGS

	Additional options may be passed to autoprefixer using this
setting, which expects a list of strings.

jinja2

	
class webassets.filter.jinja2.Jinja2(**kwargs)

	Process a file through the Jinja2 templating engine.

Requires the jinja2 package (https://github.com/mitsuhiko/jinja2).

The Jinja2 context can be specified with the JINJA2_CONTEXT configuration
option or directly with context={…}. Example:

Bundle('input.css', filters=Jinja2(context={'foo': 'bar'}))

Additionally to enable template loading mechanics from your project you can provide
JINJA2_ENV or jinja2_env arg to make use of already created environment.

spritemapper

	
class webassets.filter.spritemapper.Spritemapper(**kwargs)

	Generate CSS spritemaps using
Spritemapper [http://yostudios.github.com/Spritemapper/], a Python
utility that merges multiple images into one and generates CSS positioning
for the corresponding slices. Installation is easy:

pip install spritemapper

Supported configuration options:

	SPRITEMAPPER_PADDING

	A tuple of integers indicating the number of pixels of padding to
place between sprites

	SPRITEMAPPER_ANNEAL_STEPS

	Affects the number of combinations to be attempted by the box packer
algorithm

Note: Since the spritemapper command-line utility expects source
and output files to be on the filesystem, this filter interfaces directly
with library internals instead. It has been tested to work with
Spritemapper version 1.0.

URL Expiry (cache busting)

For beginners

You are using webassets because you care about the performance of your
site. For the same reason, you have configured your web server to send out
your media files with a so called far future expires header: Your web server
sets the Expires header to some date many years in the future. Your user’s
browser will never spend any time trying to retrieve an updated version.

Note

Of course, the user’s browser will already use the Etag and
Last-Modified/If-Modified-Since to avoid downloading content it has
already cached, and if your web server isn’t misconfigured entirely, this
will work. The point of far future expires is to get rid of even
those requests which would return only a 304 Not Modified response.

What if you actually deploy an update to your site? Now you need to convince
the browser to download new versions of your assets after all, but you have
just told it not to bother to check for new versions. You work around this by
modifying the URL with which the asset is included. There are two distinct
ways to so:

	Append a version identifier as a querystring:

http://www.example.org/media/print.css?acefe50

	Add a version identifier to the actual filename:

http://www.example.org/media/print.acefe50.css

How webassets helps you do this is explained in the sections below.

Note

Even if you are not using far future expires headers, you might still find
webassets expiry features useful to navigate around any funny browser
caching behaviour that might require a Shift-reload.

What is the version of a file

To expire an URL, it is modified with a version identifier. What is this
identifier? By default, webassets will create an MD5-hash of the file
contents, and use the first few characters as the file version. webassets
also allows you to use the last modified timestamp of the file. You can
configure this via the versions option:

env = Environment(...)
env.versions = 'hash' # the default
env.versions = 'hash:32' # use the full md5 hash
env.versions = 'timestamp' # use the last modified timestamp

It is generally recommended that you use a hash as the version, since it will
remain the same as long as the content does not change, regardless of any
filesystem metadata, which can change for any number of reasons.

Expire using a querystring

webassets will automatically add the version as a querystring to the urls
it generates, by virtue of the url_expire option defaulting to True.
If you want to be explicit:

env = Environment(...)
env.url_expire = True

There is nothing else you need to do here. The URLs that are generated might
look like this:

/media/print.css?acefe50

However, while the default, expiring with a querystring is not be the best
option:

Expire using the filename

Adding the version as a querystring has two problems. First, it may not always
be a browser that implements caching through which we need to bust. It is said
that certain (possibly older) proxies do ignore the querystring with respect
to their caching behavior.

Second, in certain more complex deployment scenarios, where you have multiple
frontend and/or multiple backend servers, an upgrade is anything but
instantaneous. You need to be able to serve both the old and the new version
of your assets at the same time. See for example how this affects you when
using Google App Engine [http://bjk5.com/post/4918954974/js-css-packaging-to-minimize-requests-and-randomly-evil].

To expire using the filename, you add a %(version)s placeholder to your
bundle output target:

bundle = Bundle(..., output='screen.%(version)s.css')

The URLs that are generated might look like this:

/media/screen.acefe50.css

Note

webassets will use this modified filename for the actual output files
it writes to disk, as opposed to just modifying the URL it generates. You
do not have to configure your web server to do any rewriting.

About manifests

Note

This is mostly an advanced feature, and you might not have to bother with
it at all.

webassets supports Environment-wide manifests. A manifest remembers the
current version of every bundle. What is this good for?

	Speed. Calculating a hash can be expensive. Even if you are using
timestamp-based versions, that still means a stat-request to your disk.

Note

Note that even without a manifest, webassets will cache the version
in memory. It will only need to be calculated once per process. However,
if you have many bundles, and a very busy site, a manifest will allow
you to both skip calculating the version (e.g. creating a hash), as well
as read the versions of all bundles into memory at once.

Note

If you are using automatic building, all of this is mostly not true. In
order to determine whether a rebuild is required, webassets will need
to check the timestamps of all files involved in any case. It goes
without saying that using automatic building on a production site is a
convenience feature for small sites, and at odds with counting paper
clips in the form of filesystem stat calls.

	Making it possible to know the version in the first place.

Depending on your configuration and deployment, consider that it might not
actually be possible for webassets to know what the version is.

If you are using a hash-based version, and your bundle’s output target has
a placeholder, there is no way to know what the version is, unless is
has been written to a manifest during the build process.

The timestamp-based versioning mechanism can actually look at the source
files to determine the version. But, in more complex deployments, the source
files might not actually be available to read - they might be on a
completely different server altogether.

A manifest allows version information to be persisted.

In practice, by default the version information will be written to the cache.
You can explicitly request this behaviour be setting the manifest option:

env = Environment(...)
env.manifest = 'cache'

In a simple setup, where you are separately building on your local machine
during development, and building on the web server for production (maybe via
the automatic building feature, enabled by default), this is exactly would
you want. Don’t worry about it.

There is a specific deployment scenario where you want to prebuild your bundles
locally, and for either of the two reasons above want to include the version
data pre-made when you deploy your app to the web server. In such a case, it
is not helpful to have the versions stored in the cache. Instead, webassets
provides a manifest type that writes all information to a single file:

env = Environment(...)
env.manifest = 'file'
env.manifest = 'file:/tmp/manifest.to-be-deployed' # explicit filename

You can then just copy this one file to the web server, and webassets
will know all about the versions without having to consult the media files.

Note

The file is a pickled dict.

Creating custom filters

Creating custom filters can be easy, or very easy.

Before we get to that though, it is first necessary to understand that
there are two types of filters: input filters and output filters.
Output filters are applied after the complete content after all a bundle’s
contents have been merged together. Input filters, on the other hand, are
applied to each source file after it is read from the disk. In the case
of nested bundles, input filters will be passed down, with the input filters
of a parent bundle are applied before the output filter of a child bundle:

child_bundle = Bundle('file.css', filters='yui_css')
Bundle(child_bundle, filters='cssrewrite')

In this example, because cssrewrite acts as an input filter, what will
essentially happen is:

yui_css(cssrewrite(file.css))

To be even more specific, since a single filter can act as both an input
and an output filter, the call chain will actually look something like
this:

cssrewrite.output(yui_css.output((cssrewrite.input((yui_css.input(file.css)))))

The usual reason to use an input filter is that the filter’s
transformation depends on the source file’s filename. For example,
the cssrewrite filter needs to know the
location of the source file relative to the final output file, so it
can properly update relative references. Another example
are CSS converters like less, which
work relative to the input filename.

With that in mind…

The very easy way

In the simplest case, a filter is simply a function that takes two
arguments, an input stream and an output stream.

def noop(_in, out, **kw):
 out.write(_in.read())

That’s it! You can use this filter when defining your bundles:

bundle = Bundle('input.js', filters=(noop,))

If you are using Jinja2, you can also specify the callable inline,
provided that it is available in the context:

{% assets filters=(noop, 'jsmin') ... %}

It even works when using Django templates, although here, you are
of course more limited in terms of syntax; if you want to use multiple
filters, you need to combine them:

{% assets filters=my_filters ... %}

Just make sure that the context variable my_filters is set to
your function.

Note that you currently cannot write input filters in this way. Callables
always act as output filters.

The easy way

This works by subclassing webassets.filter.Filter. In doing so, you
need to write a bit more code, but you’ll be able to enjoy a few perks.

The noop filter from the previous example, written as a class, would
look something like this:

from webassets.filter import Filter

class NoopFilter(Filter):
 name = 'noop'

 def output(self, _in, out, **kwargs):
 out.write(_in.read())

 def input(self, _in, out, **kwargs):
 out.write(_in.read())

The output and input methods should look familiar. They’re basically
like the callable you are already familiar with, simply pulled inside a class.

Class-based filters have a name attribute, which you need to set if you
want to register your filter globally.

The input method will be called for every source file, the output
method will be applied once after a bundle’s contents have been concatenated.

Among the kwargs you currently receive are:

	source_path (only for input()): The filename behind the in
stream, though note that other input filters may already have transformed
it.

	output_path: The final output path that your filters work will
ultimatily end up in.

Note

Always make your filters accept arbitrary **kwargs. The API does allow
for additional values to be passed along in the future.

Registering

The name wouldn’t make much sense, if it couldn’t be used to reference
the filter. First, you need to register the class with the system though:

from webassets.filter import register_filter
register_filter(NoopFilter)

Or if you are using yaml then use the filters key for the environment:

directory: .
url: /
debug: True
updater: timestamp
filters:
 - my_custom_package.my_filter

After that, you can use the filter like you would any of the built-in ones:

{% assets filters='jsmin,noop' ... %}

Options

Class-based filters are used as instances, and as such, you can easily
define a __init__ method that takes arguments. However, you should
make all parameters optional, if possible, or your filter will not be
usable through a name reference.

There might be another thing to consider. If a filter is specified
multiple times, which sometimes can happen unsuspectingly when bundles
are nested within each other, it will only be applied a single time.
By default, all filters of the same class are considered the same. In
almost all cases, this will be just fine.

However, in case you want your filter to be applicable multiple times
with different options, you can implement the unique method and
return a hashable object that represents data unique to this instance:

class FooFilter(Filter):
 def __init__(self, *args, **kwargs):
 self.args, self.kwargs = args, kwargs
 def unique(self):
 return self.args, self.kwargs

This will cause two instances of this filter to be both applied, as long
as the arguments given differ. Two instances with the exact same arguments
will still be considered equal.

If you want each of your filter’s instances to be unique, you can simply do:

def unique(self):
 return id(self)

Useful helpers

The Filter base class provides some useful features.

setup()

It’s quite common that filters have dependencies - on other Python
libraries, external tools, etc. If you want to provide your filter
regardless of whether such dependencies are matched, and fail only
if the filter is actually used, implement a setup() method on
your filter class:

class FooFilter(Filter):
 def setup(self):
 import foolib
 self.foolib = foolib

 def apply(self, _in, out):
 self.foolib.convert(...)

options

Some filters will need to be configured. This can of course be done by
passing arguments into __init__ as explained above, but it restricts
you to configuring your filters in code, and can be tedious if necessary
every single time the filter is used.

In some cases, it makes more sense to have an option configured globally,
like the path to an external binary. A number of the built-in filters do
this, allowing you to both specify a config variable in the webassets
Environment instance, or as an OS environment variable.

class FooFilter(Filter):
 options = {
 'binary': 'FOO_BIN'
 }

If you define a an options attribute on your filter class, these
options will automatically be supported both by your filter’s __init__,
as well as via a configuration or environment variable. In the example
above, you may pass binary when creating a filter instance manually,
or define FOO_BIN in Environment.config, or as an OS environment
variable.

get_config()

In cases where the declarative approach of the options attribute is
not enough, you can implement custom options yourself using the
Filter.get_config() helper:

class FooFilter(Filter):
 def setup(self):
 self.bin = self.get_config('BINARY_PATH')

This will check first the configuration, then the environment for
BINARY_PATH, and raise an exception if nothing is found.

get_config() allows you to specify different names for the setting
and the environment variable:

self.get_config(setting='ASSETS_BINARY_PATH', env='BINARY_PATH')

It also supports disabling either of the two, causing only the other to
be checked for the given name:

self.get_config(setting='ASSETS_BINARY_PATH', env=False)

Finally, you can easily make a value optional using the require
parameter. Instead of raising an exception, get_config() then returns
None. For example:

self.java = self.get_config('JAVA_BIN', require=False) or 'java'

Abstract base classes

In some cases, you might want to have a common base class for multiple
filters. You can make the base class abstract by setting name to
None explicitly. However, this is currently only relevant for the
built-in filters, since your own filters will not be registered
automatically in any case.

More?

You can have a look inside the webassets.filter module source
code to see a large number of example filters.

Assets can be filtered through one or multiple filters, modifying their
contents (think minification, compression).

CSS compilers

CSS compilers intend to improve upon the default CSS syntax, allow you
to write your stylesheets in a syntax more powerful, or more easily
readable. Since browsers do not understand this new syntax, the CSS compiler
needs to translate its own syntax to original CSS.

webassets includes builtin filters for a number of popular
CSS compilers, which you can use like any other
filter. There is one problem though: While developing, you will probably
want to disable asset packaging, and instead work with the uncompressed
assets (i.e., you would disable the
environment.debug option). However,
you still need to apply the filter for your CSS compiler, since otherwise,
the Browser wouldn’t understand your stylesheets.

For this reason, such compiler filters run even when in debug mode:

less = Bundle('css/base.less', 'css/forms.less',
 filters='less,cssmin', output='screen.css')

The above code block behaves exactly like you would want it to: When
debugging, the less files are compiled to CSS, but the code is not minified.
In production, both filters are applied.

Sometimes, you need to merge together good old CSS code, and you have a
compiler that, unlike less, cannot process those. Then you can use a
child bundle:

sass = Bundle('*.sass', filters='sass', output='gen/sass.css')
all_css = Bundle('css/jquery.calendar.css', sass,
 filters='cssmin', output="gen/all.css")

In the above case, the sass filter is only applied to the Sass source
files, within a nested bundle (which needs it’s own output target!). The
minification is applied to all CSS content in the outer bundle.

Loaders

Using these helper classes, you can define your bundles or even
your complete environment in some external data source, rather than
constructing them in code.

	
class webassets.loaders.YAMLLoader(file_or_filename)

	Will load an environment or a set of bundles from
YAML [http://en.wikipedia.org/wiki/YAML] files.

	
load_bundles(environment=None)

	Load a list of Bundle instances defined in the YAML file.

Expects the following format:

bundle-name:
 filters: sass,cssutils
 output: cache/default.css
 contents:
 - css/jquery.ui.calendar.css
 - css/jquery.ui.slider.css
another-bundle:
 # ...

Bundles may reference each other:

js-all:
 contents:
 - jquery.js
 - jquery-ui # This is a bundle reference
jquery-ui:
 contents: jqueryui/*.js

If an environment argument is given, it’s bundles
may be referenced as well. Note that you may pass any
compatibly dict-like object.

Finally, you may also use nesting:

js-all:
 contents:
 - jquery.js
 # This is a nested bundle
 - contents: "*.coffee"
 filters: coffeescript

	
load_environment()

	Load an Environment instance defined in the YAML file.

Expects the following format:

directory: ../static
url: /media
debug: True
updater: timestamp
filters:
 - my_custom_package.my_filter
config:
 compass_bin: /opt/compass
 another_custom_config_value: foo

bundles:
 # ...

All values, including directory and url are optional. The
syntax for defining bundles is the same as for
load_bundles().

Sample usage:

from webassets.loaders import YAMLLoader
loader = YAMLLoader('asset.yml')
env = loader.load_environment()

env['some-bundle'].urls()

	
class webassets.loaders.PythonLoader(module_name)

	Basically just a simple helper to import a Python file and
retrieve the bundles defined there.

	
load_bundles()

	Load Bundle objects defined in the Python module.

Collects all bundles in the global namespace.

	
load_environment()

	Load an Environment defined in the Python module.

Expects as default a global name environment to be defined,
or overridden by passing a string module:environment to the
constructor.

Integration with other libraries

While the webassets core is designed to work with any WSGI application,
also included are some additional utilities for some popular frameworks
and libraries.

	Django [http://elsdoerfer.name/docs/django-assets/]

	Flask-Assets [http://elsdoerfer.name/docs/flask-assets/]

	Jinja2

	pyramid [https://github.com/sontek/pyramid_webassets]

Jinja2

A Jinja2 extension is available as webassets.ext.jinja2.AssetsExtension.
It will provide a {% assets %} tag which allows you to reference your
bundles from within a template to render its urls.

It also allows you to create bundles on-the-fly, thus making it possible
to define your assets entirely within your templates.

If you are using Jinja2 inside of Django, see
this page [http://elsdoerfer.name/docs/django-assets/jinja2.html].

Setting up the extension

from jinja2 import Environment as Jinja2Environment
from webassets import Environment as AssetsEnvironment
from webassets.ext.jinja2 import AssetsExtension

assets_env = AssetsEnvironment('./static/media', '/media')
jinja2_env = Jinja2Environment(extensions=[AssetsExtension])
jinja2_env.assets_environment = assets_env

After adding the extension to your Jinja 2 environment, you need to
make sure that it knows about your webassets.Environment instance.
This is done by setting the assets_environment attribute.

Using the tag

To output a bundle that has been registered with the environment, simply
pass its name to the tag:

{% assets "all_js", "ie_js" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
{% endassets %}

The tag will repeatedly output its content for each ASSET_URL of each
bundle. In the above case, that might be the output urls of the all_js
and ie_js bundles, or, in debug mode, urls referencing the source files
of both bundles.

If you pass something to the tag that isn’t a known bundle name, it will
be considered a filename. This allows you to define a bundle entirely
within your templates:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css", "site/base.css", "site/widgets.css" %}
...

Of course, this means you can combine the two approaches as well. The
following code snippet will merge together the given bundle and the contents
of the jquery.js file that was explicitly passed:

{% assets output="gen/packed.js", "common/jquery.js", "my-bundle" %}
...

FAQ

Is there a cache-busting feature?

Yes! See URL Expiry (cache busting).

Relative URLs in my CSS code break if the merged asset is written to a different location than the source files. How do I fix this?

Use the builtin cssrewrite filter which
will transparently fix url() instructions in CSS files on the fly.

I am using a CSS compiler and I need its filter to apply even in debug mode!

See CSS compilers for how this is best done.

Is Google App Engine supported?

Yes. Due to the way Google App Engine works (static files are stored on
separate servers), you need to build your assets locally, possibly using one
of the management commands provided for your preferred framework, and then
deploy them.

In production mode, you need to disable the Environment.auto_build setting.

For URL expiry functionality, you need to use a manifest that holds version
information. See URL Expiry (cache busting).

There is a barebone Google App Engine example in the
examples/appengine/ [https://github.com/miracle2k/webassets/blob/master/examples/appengine/]
folder.

Upgrading

When upgrading from an older version, you might encounter some backwards
incompatibility. The webassets API is not stable yet.

In 0.10

	The Resolver API has changed. Rather than being bound to an
environment via the constructor, the individual methods now receive
a ``ctx` object, which allows access to the environment’s settings.

See the page on implementing resolvers.

	The Bundle.build() and Bundle.url() methods no longer accept
an environment argument. To work with a Bundle that is not attached to
an environment already, use the following syntax instead:

with bundle.bind(env):
 bundle.build()

	Filters can no longer access a self.env attribute. It has been renamed
to self.ctx, which provides a compatible object.

In 0.9

	Python 2.5 is no longer supported.

	The API of the BaseCache.get() method has changed. It no longer receives
a python keyword argument. This only affects you if you have
implemented a custom cache class.

In 0.8

	django-assets is no longer included!
You need to install it’s package separately. See the current
development version [https://github.com/miracle2k/django-assets].

Warning

When upgrading, you need to take extra care to rid yourself of the old
version of webassets before installing the separate django-assets
package. This is to avoid that Python still finds the old django_assets
module that used to be included with webassets.

In some cases, even pip uninstall webassets is not enough, and old
*.pyc files are kept around. I recommend that you delete your old
webassets install manually from the filesystem. To find out where it is
stored, open a Python shell and do:

>>> import webassets
>>> webassets
<module 'webassets' from '/usr/local/lib/python2.7/dist-packages/webassets/src/webassets/__init__.pyc'>

	Some filters now run in debug mode. Specifically, there are two things that
deserve mention:

	cssrewrite now runs when debug="merge". This is always what is
wanted; it was essentially a bug that this didn’t happen before.

	All kinds of compiler-style filters (Sass, less, Coffeescript, JST
templates etc). all now run in debug mode. The presence of such a filter
causes bundles to be merged even while debug=True.

In practice, if you’ve been using custom bundle debug values to get
such compilers to run, this will continue to work. Though it can now be
simplified. Code like this:

Bundle(
 Bundle('*.coffee', filters='coffeescript', debug=False)
 filters='jsmin')

can be replaced with:

Bundle('*.coffee', filters='coffeescript,jsmin')

which has the same effect, which is that during debugging, Coffeescript
will be compiled, but not minimized. This also allows you to define bundles
that use compilers from within the templates tags, because nesting is no
longer necessary.

However, if you need to combine Coffeescript files (or other files needing
compiling) with regular CSS or JS files, nesting is still required:

Bundle('*.js'
 Bundle('*.coffee', filters='coffeescript'),
 filters='jsmin')

If for some reason you do not want these compilers to run, you may still
use a manual debug value to override the behavior. A case where this
is useful is the less filter, which can be compiled in the browser:

Bundle('*.less', filters='less', debug=True)

Here, as long as the environment is in debug mode, the bundle will output
the source urls, despite the less filter normally forcing a merge.

As part of this new feature, the handling of nested bundle debug values
has changed such that in rare cases you may see a different outcome. In
the unlikely case that you are using these a lot, the rule is simple: The
debug level can only ever be decreased. Child bundles cannot cannot do
“more debugging” than their parent, and if Environment.debug=False,
all bundle debug values are effectively ignored.

	The internal class names of filters have been renamed. For example,
JSMinFilter is now simply JSMin. This only affects you if you
reference these classes directly, rather than using their id (such as
jsmin), which should be rare.

	Removed the previously deprecated rebuild alias for the build command.

	Subtly changed how the auto_build setting affects the
Bundle.build() method: It doesn’t anymore. Instead, the setting now
only works on the level of Bundle.urls(). The new behaviour is more
consistent, makes more sense, and simplifies the code.

The main backwards-incompatiblity caused by this is that when
environment.auto_build=False, and you are calling bundle.build()
without specifying an explicit force argument, it used to be the case
that force=True was assumed, i.e. the bundle was built without looking
at the timestamps to see if a rebuild is necessary. Now, the timestamps will
be checked, unless force=True is explicitly given.

In case you don’t want to pass force=True, you can instead also set
the Environment.updater property to False; without an updater
to check timestamps, every build() call will act as if force=True.

Note: This only affects you if you work with the Bundle.build()
and Bundle.url() methods directly. The behavior of the command line
interface, or the template tags is not affected.

	The implementation of the CommandLineEnvironment has changed, and
each command is now a separate class. If you have been subclassing
CommandLineEnvironment to override individual command methods like
CommandLineEnvironment.build(), you need to update your code.

	The JavaMixin helper class to implement Java-based filters has been
removed, and in it’s stead there is now a JavaTool base class that
can be used.

	The code to resolve bundle contents has been refactored. As a result, the
behavior of the semi-internal method Bundle.resolve_contents() has
changed slightly; in addition, the
Environment._normalize_source_path() method used mainly by
extensions like Flask-Assets has been removed. Instead, extensions now
need to implement a custom Resolver. The
Environment.absurl method has also disappeared, and replacing it
can now be done via a custom Resolver` class.

	Environment.directory now always returns an absolute path; if a
relative path is stored, it is based off on the current working directory.
This spares a lot of calls to os.abspath throughout the code. If you
need the original value you can always use
environment.config['directory'].

	If the JST_COMPILER option of the jst filter is set to False
(as opposed to the default value, None), the templates will now be
output as raw strings. Before, False behaved like None and used
the builtin compiler.

	The API of the concat() filter method has changed. Instead of a
list of hunks, it is now given a list of 2-tuples of
(hunk, info_dict).

	The internal JSTTemplateFilter base class has changed API.
- concat filter
- jst handlebar filters have changed, use concat, base class has changed

In 0.7

There are some significant backwards incompatible changes in this release.

	The Environment.updater property (corresponds to the
ASSETS_UPDATER setting) can no longer be set to False or
"never" in order to disable the automatic rebuilding. Instead, this
now needs to be done using Environment.auto_build, or the corresponding
ASSETS_AUTO_BUILD setting.

	The Environment.expire (ASSETS_EXPIRE) option as been renamed to
Environment.url_expire (ASSETS_URL_EXPIRE), and the default value
is now True.

	To disable automatic building, set the new Environment.auto_build
(ASSETS_AUTO_BUILD) option to False. Before, this was done via
the Environment.updater, which is now deprecated.

Other changes:

	If Environment.auto_build is disabled, the API of Bundle.build()
now assumes a default value of True for the force argument.
This should not cause any problems, since it is the only call signature
that really makes sense in this case.

	The former less filter, based on the old Ruby version of lessCSS
(still available as the 1.x Ruby gems, but no longer developed) has been
renamed less_ruby, and less now uses the new NodeJS/Javascript
implementation, which a while ago superseded the Ruby one.

	The rebuild command (of the command line mode) has been renamed to
build.

	The command line interface now requires the external dependency
argparse on Python versions 2.6 and before. argparse is included
with Python starting with version 2.7.

	PythonLoader.load_bundles() now returns a dict with the bundle names
as keys, rather than a list.

	Filters now receive new keyword arguments. The API now officially requires
filters to accept arbitrary **kwargs for compatibility with future
versions. While the documentation has always suggested **kwargs be used,
not all builtin filters followed this rule. Your custom filters may need
updating as well.

	Filter classes now longer get an auto-generated name. If you have a custom
filter and have not explicitly given it a name, you need to do this now if
you want to register the filter globally.

	django_assets no longer tries to load a global assets.py module (it
will still find bundles defined in application-level assets.py files). If
you want to define bundles in other modules, you now need to list those
explicitly in the ASSETS_MODULES setting.

In 0.6

	The Environment.updater class no longer support custom callables.
Instead, you need to subclass BaseUpdater. Nobody is likely to use
this feature though.

	The cache is no longer debug-mode only. If you enable
Environment.cache (ASSETS_CACHE in django-assets),
the cache will be enabled regardless of the
Environment.debug/ASSETS_DEBUG option. If you want the old
behavior, you can easily configure it manually.

	The Bundle.build method no longer takes the no_filters
argument. This was always intended for internal use and its existence
not advertised, so its removal shouldn’t cause too many problems.

	The Bundle.build method now returns a list of FileHunk objects,
rather than a single one. It now works for container bundles (bundles
which only have other bundles for children, not files), rather than
raising an exception.

	The rebuild command now ignores a debug=False setting, and
forces a build in production mode instead.

In 0.4

	Within django_assets. the semantics of the debug setting have
changed again. It once again allows you to specifically enable debug mode
for the assets handling, irrespective of Django’s own DEBUG setting.

	RegistryError is now RegisterError.

	The ASSETS_AUTO_CREATE option no longer exists. Instead, automatic
creation of bundle output files is now bound to the ASSETS_UPDATER
setting. If it is False, i.e. automatic updating is disabled, then
assets won’t be automatically created either.

In 0.2

	The filter API has changed. Rather than defining an apply method and
optionally an is_source_filter attribute, those now have been replaced
by input() and output() methods. As a result, a single filter can
now act as both an input and an output filter.

In 0.1

	The semantics of the ASSETS_DEBUG setting have changed. In 0.1,
setting this to True meant enable the django-assets debugging mode.
However, django-assets now follows the default Django DEBUG
setting, and ASSETS_DEBUG should be understood as meaning how to
behave when in debug mode. See ASSETS_DEBUG
for more information.

	ASSETS_AUTO_CREATE now causes an error to be thrown if due it it
being disabled a file cannot be created. Previously, it caused
the source files to be linked directly (as if debug mode were active).

This was done due to Explicit is better than implicit, and for
security considerations; people might trusting their comments to be
removed. If it turns out to be necessary, the functionality to fall
back to source could be added again in a future version through a
separate setting.

	The YUI Javascript filter can no longer be referenced via yui.
Instead, you need to explicitly specify which filter you want to use,
yui_js or yui_css.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 webassets	

 	
 	
 webassets.filter	

 	
 	
 webassets.filter.closure	

 	
 	
 webassets.filter.yui	

Index

 A
 | B
 | C
 | D
 | G
 | H
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	auto_build (webassets.env.Environment attribute)

 	
 	AutoprefixerFilter (class in webassets.filter.autoprefixer)

B

 	
 	Babel (class in webassets.filter.babel)

C

 	
 	cache (webassets.env.Environment attribute)

 	CleanCSS (class in webassets.filter.cleancss)

 	CleverCSS (class in webassets.filter.clevercss)

 	CoffeeScript (class in webassets.filter.coffeescript)

 	Compass (class in webassets.filter.compass)

 	consider_single_directory() (webassets.env.Resolver method)

 	
 	CSSDataUri (class in webassets.filter.datauri)

 	CSSMin (class in webassets.filter.cssmin)

 	CSSPrefixer (class in webassets.filter.cssprefixer)

 	CSSRewrite (class in webassets.filter.cssrewrite)

 	CSSSlimmer (class in webassets.filter.slimmer)

 	CSSUtils (class in webassets.filter.cssutils)

D

 	
 	debug (webassets.env.Environment attribute)

 	
 	directory (webassets.env.Environment attribute)

 	DustJS (class in webassets.filter.dust)

G

 	
 	glob() (webassets.env.Resolver method)

H

 	
 	Handlebars (class in webassets.filter.handlebars)

J

 	
 	Jinja2 (class in webassets.filter.jinja2)

 	JSMin (class in webassets.filter.jsmin)

 	
 	JSPacker (class in webassets.filter.jspacker)

 	JST (class in webassets.filter.jst)

L

 	
 	Less (class in webassets.filter.less)

 	(class in webassets.filter.less_ruby)

 	LibSass (class in webassets.filter.libsass)

 	load_bundles() (webassets.loaders.PythonLoader method)

 	(webassets.loaders.YAMLLoader method)

 	
 	load_environment() (webassets.loaders.PythonLoader method)

 	(webassets.loaders.YAMLLoader method)

 	load_path (webassets.env.Environment attribute)

M

 	
 	manifest (webassets.env.Environment attribute)

N

 	
 	NodeSass (class in webassets.filter.node_sass)

 	
 	NodeSCSS (class in webassets.filter.node_sass)

P

 	
 	PostCSS (class in webassets.filter.postcss)

 	
 	PyScss (class in webassets.filter.pyscss)

 	PythonLoader (class in webassets.loaders)

Q

 	
 	query_url_mapping() (webassets.env.Resolver method)

R

 	
 	RCSSMin (class in webassets.filter.rcssmin)

 	RequireJSFilter (class in webassets.filter.requirejs)

 	resolve_output_to_path() (webassets.env.Resolver method)

 	
 	resolve_output_to_url() (webassets.env.Resolver method)

 	resolve_source() (webassets.env.Resolver method)

 	resolve_source_to_url() (webassets.env.Resolver method)

 	RJSMin (class in webassets.filter.rjsmin)

S

 	
 	Sass (class in webassets.filter.sass)

 	SCSS (class in webassets.filter.sass)

 	search_for_source() (webassets.env.Resolver method)

 	
 	search_load_path() (webassets.env.Resolver method)

 	Slimit (class in webassets.filter.slimit)

 	Spritemapper (class in webassets.filter.spritemapper)

 	Stylus (class in webassets.filter.stylus)

T

 	
 	TypeScript (class in webassets.filter.typescript)

U

 	
 	UglifyJS (class in webassets.filter.uglifyjs)

 	url (webassets.env.Environment attribute)

 	
 	url_expire (webassets.env.Environment attribute)

 	url_mapping (webassets.env.Environment attribute)

V

 	
 	versions (webassets.env.Environment attribute)

W

 	
 	webassets.filter (module), [1]

 	
 	webassets.filter.closure (module)

 	webassets.filter.yui (module)

Y

 	
 	YAMLLoader (class in webassets.loaders)

 	
 	YUICSS (class in webassets.filter.yui)

 	YUIJS (class in webassets.filter.yui)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 webassets - Asset management for Python

 		
 Other or no framework

 		
 Quick Start

 		
 Using the bundles

 		
 Using the Command Line Interface

 		
 Further Reading

 		
 The environment

 		
 Bundles

 		
 Command Line Interface

 		
 Included Filters

 		
 Creating custom filters

 		
 CSS compilers

 		
 Loaders

 		
 Integration with other libraries

 		
 Custom resolvers

 		
 FAQ

 		
 The environment

 		
 Registering bundles

 		
 Configuration

 		
 Filter configuration

 		
 Bundles

 		
 Nested bundles

 		
 Building bundles

 		
 In Code

 		
 In templates

 		
 Management command

 		
 Command Line Interface

 		
 Build a custom command line client

 		
 Included Commands

 		
 build

 		
 watch

 		
 clean

 		
 Included Filters

 		
 Javascript cross-compilers

 		
 Javascript compressors

 		
 rjsmin

 		
 yui_js

 		
 closure_js

 		
 uglifyjs

 		
 jsmin

 		
 jspacker

 		
 slimit

 		
 CSS compressors

 		
 cssmin

 		
 cssutils

 		
 yui_css

 		
 cleancss

 		
 slimmer_css

 		
 rcssmin

 		
 JS/CSS compilers

 		
 postcss

 		
 clevercss

 		
 less

 		
 less_ruby

 		
 sass

 		
 scss

 		
 compass

 		
 pyscss

 		
 libsass

 		
 node-sass

 		
 node-scss

 		
 stylus

 		
 coffeescript

 		
 typescript

 		
 requirejs

 		
 JavaScript templates

 		
 jst

 		
 handlebars

 		
 dustjs

 		
 Other

 		
 cssrewrite

 		
 datauri

 		
 cssprefixer

 		
 autoprefixer

 		
 jinja2

 		
 spritemapper

 		
 URL Expiry (cache busting)

 		
 For beginners

 		
 What is the version of a file

 		
 Expire using a querystring

 		
 Expire using the filename

 		
 About manifests

 		
 Creating custom filters

 		
 The very easy way

 		
 The easy way

 		
 Registering

 		
 Options

 		
 Useful helpers

 		
 Abstract base classes

 		
 More?

 		
 CSS compilers

 		
 Loaders

 		
 Integration with other libraries

 		
 Jinja2

 		
 Setting up the extension

 		
 Using the tag

 		
 FAQ

 		
 Is there a cache-busting feature?

 		
 Relative URLs in my CSS code break if the merged asset is written to a different location than the source files. How do I fix this?

 		
 I am using a CSS compiler and I need its filter to apply even in debug mode!

 		
 Is Google App Engine supported?

 		
 Upgrading

 		
 In 0.10

 		
 In 0.9

 		
 In 0.8

 		
 In 0.7

 		
 In 0.6

 		
 In 0.4

 		
 In 0.2

 		
 In 0.1

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

