

 Navigation

 	
 index

 	
 modules |

 	WebAlerts 0.0.4dev documentation

WebAlerts: Notifications for Web

WebAlerts is a small Python framework that make notifications for new website
posts matching specified patterns.

Quickstart

The following is an example WebAlerts app:

from webalerts import App
app = App(config={
 'patterns': ['Samsung SSD (128|256)G'],
 'sites': {
 'clien': {
 'class': 'webalerts.sites.clien.Clien',
 'board_ids': ['sold'],
 'username': 'clienuser',
 'password': 'letmein',
 },
 },
 'notifications': {
 'email': {
 'class': 'webalerts.notifications.email.EmailNotification',
 'to_addrs': ['me@example.com'],
 },
 },
})
app.run()

It will check Clien [http://www.clien.net/] every 5 minutes and send emails to me@example.com on posts
about Samsung SSD 128G or 256G on the Sell board.

You can load the configurations from a YAML file. For example, the above
configurations can be written as the following YAML file:

patterns: [Samsung SSD (128|256)G]
sites:
 clien:
 class: webalerts.sites.clien.Clien
 board_ids: [sold]
 password: letmein
 username: clienuser
notifications:
 email:
 class: webalerts.notifications.email.EmailNotification
 to_addrs: [me@example.com]

Then the program can be simplified as follows:

from webalerts import App
app = App()
app.from_yaml('config.yaml')
app.run()

Configuration options

In essence, a WebAlert app is just a bunch of configurations. Below are
the options you can use. Options without a default value are required.

	patterns (default: None)

	List of regex patterns to match posts you want to be notified. Notifications
will be sent if any of the patterns matches the title or the content of a
post. If patterns is None, then it always matches any post.

	check_interval (default: 5)

	Number of minutes between each loop where websites are checked for new posts.
It should be an integer. The minimum value is 1.

	notify_interval (default: 5)

	Number of minutes between each loop where notifications are sent.
It should be an integer. The minimum vale is 1.

	sites

	List of website settings, keyed by name. Each website accepts a
different set of config options, although options like username and
password are common for most sites. See webalerts.sites for more
details. Below are general options for all sites:

	class

	Site class object or its fully qualified name.

	notifications (default: all notifications)

	Notification names that will be used for this site.

	patterns (default: global patterns value)

	List of regex patterns to match posts you want to be notified. See
the global patterns option for more.

	check_interval (default: global check_interval value)

	Number of minutes between each loop where websites are checked for new posts.
See the global check_interval option for more.

	notifications

	List of notification settings, keyed by name. See webalerts.notifications
for more details. Below are general options for all notifications options:

	class

	Notification class object or its fully qualified name.

	notify_interval (default: global notify_interval value)

	Number of minutes between each loop where notifications are sent. See
the global notify_interval option for more.

Logging

To enable debug logging with timestamps to standard out, put the following code
before running the app:

import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(name)s] [%(levelname)s] %(message)s')

For more details about configuring logging, see logging [http://docs.python.org/2.7/library/logging.html#module-logging] and
logging.config [http://docs.python.org/2.7/library/logging.config.html#module-logging.config].

Loggers are named after their module and class name, e.g.
App class has a logger named webalerts.app.App.

API reference

	
class webalerts.App(config=None)

	A WebAlerts app object is initialized with configuration values in the
provided config dictionary. For the list of config values, see
Configuration options.

	
from_yaml(name)

	Load config values from a YAML file.

	
run()

	Start the main loop of the app that periodically collects new posts
and feeds those posts to notification pipelines.

	
class webalerts.Post

	Represent a generic post, a user’s content published to a website.
String parameters containing non-ASCII characters must be unicode.

	Parameters:	
	url – URL of a post (required).

	title – Title of a post (required).

	content – text content of a post (required).

	content_html – HTML content of a post.

	author – Name of the original poster of a post.

	author_id – ID that uniquely identifies the original poster.

	published – datetime [http://docs.python.org/2.7/library/datetime.html#datetime.datetime] object containing the date
and time when a post was published.

	
content_html_safe

	A sanitized version of content_html.
Notifications should use this value instead of content_html.

webalerts.sites

This package contains site-specific implementations on how to interact with
the site.

	A site class should be implemented in the following way:

	
	The constructor accepts a config dictionary. Typical configuration values
include username and password for sites that require authentication.

	Implements get_new_posts(). It should return a list of
Post objects since the last time it is called sorted by
published time in ascending order, or an empty list if it is the first call.
It must handle exceptions expected in normal use and raise only
instances of SiteException or
ConfigurationError if necessary.

	
class webalerts.sites.clien.Clien(config)

	Implementation for Clien [http://www.clien.net/]. It accepts the following configuration options:
username, password, board_ids.

username and password are your Clien username and password.
Some boards in Clien require login to view posts.

board_ids is a list of identifiers of boards to watch. The identifier
of a board can be found in its URL after bo_table=. Currently boards in
special forms are not supported such as Photos.

As Clien does not provide public API, it works by parsing HTML markup of
pages returned by the web server. It may not work at any time as the
site owner has not explicitly granted scripted accesses to the site and
the markup of the site is subject to change.

	
class webalerts.sites.cgv.CGV(config)

	Implementation for CGV Cinemas [http://m.cgv.co.kr/]. Get notified and get the best seat!
Don’t forget setting patterns to None in configuration for this site,
if the global patterns is set.

Configuration options:

	username

	CGV username.

	password

	CGV password.

	data

	List of tuples (movie_name, movie_format, theater_name,
time_range, date_range, seat_range).
You will be notified if any of the specified seats in the specified date
and time range for the specified movie, format, and theater is found.
All strings containing non-ASCII characters must be unicode.
Movie, format, and theater names should be exact matches.
It is recommended to find those in the official site [http://m.cgv.co.kr/].

time_range is a tuple of length 2, consisting of strings for times in
HH:MM format. Hour can be larger than 23, so '25:00' is a valid time
string. If you do not want to restrict times, set it to None.

date_range is a list of strings, either date in yyyymmdd format or
short weekday names such as ‘mon’, ‘fri’. 'weekdays' and
'weekends' are shortcuts for ['mon', 'tue', 'wed', 'thu', 'fri']
and ['sat', 'sun'] respectively. 'today' is the current date in
Korea Standard Time (UTC+9).

seat_range is a list of seat names such as ‘A1’ and ‘F18’.

The following is an example tuple: ('Gravity', 'IMAX3D', 'Wangsimni',
('18:00', '24:30'), ['1130', 'fri', 'weekends'], ['F16', 'F17', 'G16',
'G17'])

webalerts.notifications

This package contains notification implementations.

	A notification class should be implemented in the following way:

	
	The constructor accepts a config dictionary.

	Implements notify(). It should take a list of posts and do
what it is supposed to do, such as sending emails to users. It must handle
all exceptions expected in normal use and raise only instances of
NotificationException or
ConfigurationError if necessary.

	
class webalerts.notifications.email.EmailNotification(config)

	Send emails to users on matched posts.

Although you can specify any SMTP server to use to send emails, it is
not recommended to use your own mail server as many email services refuse
to receive emails from unknown sources. If you want to send emails using
your Gmail account, set host to 'smtp.gmail.com', port to 587,
secure to True.

Configuration options:

	to_addrs

	List of email addresses to which notifications are sent.

	from_addr (default: 'WebAlerts <webalerts@localhost>')

	“From” address of notification emails.

	host (default: None)

	Optional host parameter used to create a smtplib.SMTP [http://docs.python.org/2.7/library/smtplib.html#smtplib.SMTP]
instance.

	port (default: None)

	Optional port parameter used to create a smtplib.SMTP [http://docs.python.org/2.7/library/smtplib.html#smtplib.SMTP]
instance.

	secure (default: False)

	Whether the SMTP connection should be secure or not.

	username (default: None)

	SMTP username.

	password (default: None)

	SMTP password.

	style (default: see the source [https://github.com/clee704/WebAlerts/tree/master/webalerts/notifications/email.py])

	CSS styles to be placed in in <head>.

	template (default: see the source [https://github.com/clee704/WebAlerts/tree/master/webalerts/notifications/email.py])

	HTML template for each posts.

	layout (default: see the source [https://github.com/clee704/WebAlerts/tree/master/webalerts/notifications/email.py])

	HTML template for the whole email.

	
class webalerts.notifications.console.ConsoleNotification(config)

	Print the titles and URLs of the matched posts to the standard out.

It is intended to be used for debugging. There are no configuration values
for this notification.

webalerts.exceptions

	
exception webalerts.exceptions.ConfigurationError

	Bases: webalerts.exceptions.WebAlertsException

Raised when there is an error in configurations.

	
exception webalerts.exceptions.LoginError

	Bases: webalerts.exceptions.SiteException

Raised when website authentication fails.

	
exception webalerts.exceptions.NotificationException

	Bases: webalerts.exceptions.WebAlertsException

Raised when a notification-related error occurs, e.g. it fails to send
emails.

	
exception webalerts.exceptions.ParseError

	Bases: webalerts.exceptions.SiteException

Raised when it fails to parse the returned HTML.

	
exception webalerts.exceptions.SiteException

	Bases: webalerts.exceptions.WebAlertsException

Raised when a website-related error occurs, e.g. it fails to login or
there is a network problem.

	
exception webalerts.exceptions.WebAlertsException

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Root class of all exceptions defined in webalerts.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Choongmin Lee.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	WebAlerts 0.0.4dev documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 webalerts	

 	
 	
 webalerts.exceptions	

 	
 	
 webalerts.notifications	

 	
 	
 webalerts.notifications.console	

 	
 	
 webalerts.notifications.email	

 	
 	
 webalerts.sites	

 	
 	
 webalerts.sites.cgv	

 	
 	
 webalerts.sites.clien	

 Copyright 2013, Choongmin Lee.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	WebAlerts 0.0.4dev documentation

Index

 A
 | C
 | E
 | F
 | L
 | N
 | P
 | R
 | S
 | W

A

 	

 	App (class in webalerts)

C

 	

 	CGV (class in webalerts.sites.cgv)

 	Clien (class in webalerts.sites.clien)

 	ConfigurationError

 	

 	ConsoleNotification (class in webalerts.notifications.console)

 	content_html_safe (webalerts.Post attribute)

E

 	

 	EmailNotification (class in webalerts.notifications.email)

F

 	

 	from_yaml() (webalerts.App method)

L

 	

 	LoginError

N

 	

 	NotificationException

P

 	

 	ParseError

 	

 	Post (class in webalerts)

R

 	

 	run() (webalerts.App method)

S

 	

 	SiteException

W

 	

 	webalerts (module)

 	webalerts.exceptions (module)

 	webalerts.notifications (module)

 	webalerts.notifications.console (module)

 	webalerts.notifications.email (module)

 	

 	webalerts.sites (module)

 	webalerts.sites.cgv (module)

 	webalerts.sites.clien (module)

 	WebAlertsException

 Copyright 2013, Choongmin Lee.
 Created using Sphinx 1.2.3.

 _static/minus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		WebAlerts 0.0.4dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Choongmin Lee.
 Created using Sphinx 1.2.3.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

