

walrus

[image: _images/walrus-logo-0.png]
Lightweight Python utilities for working with Redis [http://redis.io].

The purpose of walrus [https://github.com/coleifer/walrus] is to make
working with Redis in Python a little easier. Rather than ask you to learn a
new library, walrus subclasses and extends the popular redis-py client,
allowing it to be used as a drop-in replacement. In addition to all the
features in redis-py, walrus adds support for some newer commands,
including full support for streams and consumer groups.

walrus consists of:

	pythonic container classes for the Redis data-types.

	support for stream APIs, plus regular and blocking zpop variants.

	autocomplete

	bloom filter

	cache

	full-text search

	graph store

	rate limiting

	active-record models (secondary indexes, full-text search, composable query filters, etc)

	locks

	more? more!

My hope is that walrus saves you time developing your application by providing
useful Redis-specific components. If you have an idea for a new feature, please
don’t hesitate to tell me about it [https://github.com/coleifer/walrus/issues/new].

Table of contents

Contents:

	Installing and Testing
	Installing with git

	Running tests

	Getting Started
	Introducing walrus

	Containers
	Hashes

	Lists

	Sets

	Sorted Sets (ZSet)

	HyperLogLog

	Arrays

	BitField

	BloomFilter

	Autocomplete
	Overview

	Simple example

	Complete example

	Scoring

	ZRANGEBYLEX

	Cache
	Basic usage

	Simple Decorator

	Cached Property

	Cache Asynchronously

	Full-text Search
	Storing data

	Searching

	Graph
	An even simpler example

	Rate Limit
	Basic usage

	Decorator

	Streams
	Standalone streams

	Consumer groups

	TimeSeries

	Learning more

	Models
	Creating, Updating and Deleting

	Retrieving all records in a collection

	Sorting records

	Filtering records

	Container Fields

	Full-text search

	Need more power?

	API Documentation
	Container types

	High-level APIs

	Field types

	Alternative Backends (“tusks”)
	rlite

	Vedis

	Ledis

	Contributing
	Found a bug?

Indices and tables

	Index

	Module Index

	Search Page

Installing and Testing

Most users will want to simply install the latest version, hosted on PyPI:

pip install walrus

Installing with git

The project is hosted at https://github.com/coleifer/walrus and can be installed
using git:

git clone https://github.com/coleifer/walrus.git
cd walrus
python setup.py install

Note

On some systems you may need to use sudo python setup.py install to
install walrus system-wide.

Running tests

You can test your installation by running the test suite. Requires a running Redis server.

python tests.py

Getting Started

The purpose of walrus [https://github.com/coleifer/walrus] is to make working with Redis in Python a little easier by wrapping rich objects in Pythonic containers.

Let’s see how this works by using walrus in the Python interactive shell. Make sure you have redis [http://redis.io] installed and running locally.

Introducing walrus

To begin using walrus, we’ll start by importing it and creating a Database instance. The Database object is a thin wrapper over the redis-py [https://redis-py.readthedocs.io/] Redis class, so any methods available on Redis will also be available on the walrus Database object.

>>> from walrus import *
>>> db = Database(host='localhost', port=6379, db=0)

If you like fun names, you can also use Walrus instead:

>>> from walrus import *
>>> db = Walrus(host='localhost', port=6379, db=0)

Containers

At the most basic level, Redis acts like an in-memory Python dictionary:

>>> db['walrus'] = 'tusk'
>>> print db['walrus']
tusk

>>> db['not-here']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/charles/pypath/redis/client.py", line 817, in __getitem__
 raise KeyError(name)
KeyError: 'not-here'

>>> db.get('not-here') is None
True

Redis also supports several primitive data-types:

	Hash: dictionary

	List: linked list

	Set

	ZSet: a sorted set

	HyperLogLog: probabilistic data-structure for cardinality estimation.

	Array: like a Python list (custom data type implemented on top of Hash using lua scripts).

	BitField: a bitmap that supports random access.

	BloomFilter: probabilistic data-structure for testing set membership.

	For stream types (Stream: and ConsumerGroup) see
the streams documentation.

Let’s see how to use these types.

Hashes

The Hash acts like a Python dict.

>>> h = db.Hash('charlie')
>>> h.update(name='Charlie', favorite_cat='Huey')
<Hash "charlie": {'name': 'Charlie', 'favorite_cat': 'Huey'}>

We can use common Python interfaces like iteration, len, contains, etc.

>>> print h['name']
Charlie

>>> for key, value in h:
... print key, '=>', value
name => Charlie
favorite_cat => Huey

>>> del h['favorite_cat']
>>> h['age'] = 31
>>> print h
<Hash "charlie": {'age': '31', 'name': 'Charlie'}>

>>> 'name' in h
True
>>> len(h)
2

Lists

The List acts like a Python list.

>>> l = db.List('names')
>>> l.extend(['charlie', 'huey', 'mickey', 'zaizee'])
4L
>>> print l[:2]
['charlie', 'huey']
>>> print l[-2:]
['mickey', 'zaizee']
>>> l.pop()
'zaizee'
>>> l.prepend('scout')
4L
>>> len(l)
4

Sets

The Set acts like a Python set.

>>> s1 = db.Set('s1')
>>> s2 = db.Set('s2')
>>> s1.add(*range(5))
5
>>> s2.add(*range(3, 8))
5

>>> s1 | s2
{'0', '1', '2', '3', '4', '5', '6', '7'}
>>> s1 & s2
{'3', '4'}
>>> s1 - s2
{'0', '1', '2'}

>>> s1 -= s2
>>> s1.members()
{'0', '1', '2'}

>>> len(s1)
3

Sorted Sets (ZSet)

The ZSet acts a bit like a sorted dictionary, where the values are the scores used for sorting the keys.

>>> z1 = db.ZSet('z1')
>>> z1.add('charlie', 31, 'huey', 3, 'mickey', 6, 'zaizee', 2.5)
4
>>> z1['huey'] = 3.5

Sorted sets provide a number of complex slicing and indexing options when retrieving values. You can slice by key or rank, and optionally include scores in the return value.

>>> z1[:'mickey'] # Who is younger than Mickey?
['zaizee', 'huey']

>>> z1[-2:] # Who are the two oldest people?
['mickey', 'charlie']

>>> z1[-2:, True] # Who are the two oldest, and what are their ages?
[('mickey', 6.0), ('charlie', 31.0)]

There are quite a few methods for working with sorted sets, so if you’re curious then check out the ZSet API documentation.

HyperLogLog

The HyperLogLog provides an estimation of the number of distinct elements in a collection.

>>> hl = db.HyperLogLog('hl')
>>> hl.add(*range(100))
>>> len(hl)
100
>>> hl.add(*range(1, 100, 2))
>>> hl.add(*range(1, 100, 3))
>>> len(hl)
102

Arrays

The Array type is implemented using lua scripts [https://github.com/andymccurdy/redis-py#lua-scripting]. Unlike List which is implemented as a linked-list, the Array is built on top of a Redis hash and has better run-times for certain operations (indexing, for instance). Like List, Array acts like a Python list.

>>> a = db.Array('arr')
>>> a.extend(['foo', 'bar', 'baz', 'nugget'])
>>> a[-1] = 'nize'
>>> list(a)
['foo', 'bar', 'baz', 'nize']
>>> a.pop(2)
'baz'

BitField

The BitField type acts as a bitmap that supports random access
read, write and increment operations. Operations use a format string (e.g. “u8”
for unsigned 8bit integer 0-255, “i4” for signed integer -8-7).

>>> bf = db.bit_field('bf')
>>> resp = (bf
... .set('u8', 8, 255)
... .get('u8', 0) # 00000000
... .get('u4', 8) # 1111
... .get('u4', 12) # 1111
... .get('u4', 13) # 111? -> 1110
... .execute())
...
[0, 0, 15, 15, 14]

>>> resp = (bf
... .set('u8', 4, 1) # 00ff -> 001f (returns old val, 0x0f).
... .get('u16', 0) # 001f (00011111)
... .set('u16', 0, 0)) # 001f -> 0000
...
>>> for item in resp: # bitfield responses are iterable!
... print(item)
...
15
31
31

>>> resp = (bf
... .incrby('u8', 8, 254) # 0000 0000 1111 1110
... .get('u16', 0)
... .incrby('u8', 8, 2, 'FAIL') # increment 254 -> 256? overflow!
... .incrby('u8', 8, 1) # increment 254 -> 255. success!
... .incrby('u8', 8, 1) # 255->256? overflow, will fail.
... .get('u16', 0))
...
>>> resp.execute()
[254, 254, None, 255, None, 255]

BitField also supports slice notation, using bit-offsets. The
return values are always unsigned integers:

>>> bf.set('u8', 0, 166).execute() # 10100110
166

>>> bf[:8] # Read first 8 bits as unsigned byte.
166

>>> bf[:4] # 1010
10
>>> bf[4:8] # 0110
6
>>> bf[2:6] # 1001
9
>>> bf[6:10] # 10?? -> 1000
8
>>> bf[8:16] # ???????? -> 00000000
0

>>> bf[:8] = 89 # 01011001
>>> bf[:8]
89

>>> bf[:8] = 255 # 1111 1111
>>> bf[:4] # 1111
15
>>> del bf[2:6] # 1111 1111 -> 1100 0011
>>> bf[:8] # 1100 0011
195

BloomFilter

A BloomFilter is a probabilistic data-structure used for answering
the question: “is X a member of set S?” The bloom-filter may return a false
positive, but it is impossible to receive a false negative (in other words, if
the bloom-filter contains a value, it will never erroneously report that it
does not contain such a value). The accuracy of the bloom-filter and the
likelihood of a false positive can be reduced by increasing the size of the
bloom-filter buffer. The default size is 64KB (or 524,288 bits).

>>> bf = db.bloom_filter('bf') # Create a bloom-filter, stored in key "bf".

>>> data = ('foo', 'bar', 'baz', 'nugget', 'this is a test', 'testing')
>>> for item in data:
... bf.add(item) # Add the above items to the bloom-filter.
...

>>> for item in data:
... assert item in bf # Verify that all items are present.
...

>>> for item in data:
... assert item.upper() not in bf # FOO, BAR, etc, are *not* present.
... assert item.title() not in bf # Foo, Bar, etc, are *not* present.
...

BloomFilter implements only two methods:

	add() - to add an item to the bloom-filter.

	contains() - test whether an item exists in the filter.

Note

Items cannot be removed from a bloom-filter.

Warning

Once a BloomFilter has been created and items have been added,
you must not modify the size of the buffer.

Autocomplete

Provide suggestions based on partial string search. Walrus’ autocomplete library is based on the implementation from redis-completion [https://github.com/coleifer/redis-completion].

Note

The walrus implementation of autocomplete relies on the HSCAN command and therefore requires Redis >= 2.8.0.

Overview

The Autocomplete engine works by storing substrings and mapping them to user-defined data.

Features

	Perform searches using partial words or phrases.

	Store rich metadata along with substrings.

	Boosting.

Simple example

Walrus Autocomplete can be used to index words and phrases, and then make suggestions based on user searches.

To begin, call Database.autocomplete() to create an instance of the autocomplete index.

>>> database = Database()
>>> ac = database.autocomplete()

Phrases can be stored by calling Autocomplete.store():

>>> phrases = [
... 'the walrus and the carpenter',
... 'walrus tusks',
... 'the eye of the walrus']

>>> for phrase in phrases:
... ac.store(phrase)

To search for results, use Autocomplete.search().

>>> ac.search('wal')
['the walrus and the carpenter',
 'walrus tusks',
 'the eye of the walrus']

>>> ac.search('wal car')
['the walrus and the carpenter']

To boost a result, we can specify one or more boosts when searching:

>>> ac.search('wal', boosts={'walrus tusks': 2})
['walrus tusks',
 'the walrus and the carpenter',
 'the eye of the walrus']

To remove a phrase from the index, use Autocomplete.remove():

>>> ac.remove('walrus tusks')

We can also check for the existence of a phrase in the index using Autocomplete.exists():

>>> ac.exists('the walrus and the carpenter')
True

>>> ac.exists('walrus tusks')
False

Complete example

While walrus can work with just simple words and phrases, the Autocomplete index was really developed to be able to provide meaningful typeahead suggestions for sites containing rich content. To this end, the autocomplete search allows you to store arbitrary metadata in the index, which will then be returned when a search is performed.

>>> database = Database()
>>> ac = database.autocomplete()

Suppose we have a blog site and wish to add search for the entries. We’ll use the blog entry’s title for the search, and return, along with title, a thumbnail image and a link to the entry’s detail page. That way when we display results we have all the information we need to display a nice-looking link:

>>> for blog_entry in Entry.select():
... metadata = {
... 'image': blog_entry.get_primary_thumbnail(),
... 'title': blog_entry.title,
... 'url': url_for('entry_detail', entry_id=blog_entry.id)}
...
... ac.store(
... obj_id=blog_entry.id,
... title=blog_entry.title,
... data=metadata,
... obj_type='entry')

When we search we receive the metadata that was stored in the index:

>>> ac.search('walrus')
[{'image': '/images/walrus-logo.jpg',
 'title': 'Walrus: Lightweight Python utilities for working with Redis',
 'url': '/blog/walrus-lightweight-python-utilities-for-working-with-redis/'},
 {'image': '/images/walrus-tusk.jpg',
 'title': 'Building Autocomplete with Walrus',
 'url': '/blog/building-autocomplete-with-redis/'}]

Whenever an entry is created or updated, we will want to update the index. By keying off the entry’s primary key and object type (‘entry’), walrus will handle this correctly:

def save_entry(entry):
 entry.save_to_db() # Save entry to relational database, etc.

 ac.store(
 obj_id=entry.id,
 title=entry.title,
 data={
 'image': entry.get_primary_thumbnail(),
 'title': entry.title,
 'url': url_for('entry_detail', entry_id=entry.id)},
 obj_type='entry')

Suppose we have a very popular blog entry that is frequently searched for. We can boost that entry’s score by calling boost_object():

>>> popular_entry = Entry.get(Entry.title == 'Some popular entry')
>>> ac.boost_object(
... obj_id=popular_entry.id,
... obj_type='entry',
... multiplier=2.0)

To perform boosts on a one-off basis while searching, we can specify a dictionary mapping object IDs or types to a particular multiplier:

>>> ac.search(
... 'some phrase',
... boosts={popular_entry.id: 2.0, unpopular_entry.id, 0.5})
...
[list of matching entry's metadata]

To remove an entry from the index, we just need to specify the object’s id and type:

def delete_entry(entry):
 entry.delete_from_db() # Remove from relational database, etc.

 ac.remove(
 obj_id=entry.id,
 obj_type='entry')

We can also check whether an entry exists in the index:

>>> entry = Entry.get(Entry.title == 'Building Autocomplete with Walrus')
>>> ac.exists(entry.id, 'entry')
True

Scoring

Walrus implements a scoring algorithm that considers the words and also their position relative to the entire phrase. Let’s look at some simple searches. We’ll index the following strings:

	"aa bb"

	"aa cc"

	"bb cc"

	"bb aa cc"

	"cc aa bb"

>>> phrases = ['aa bb', 'aa cc', 'bb cc', 'bb aa cc', 'cc aa bb']
>>> for phrase in phrases:
... ac.store(phrase)

Note how when we search for aa that the results with aa towards the front of the string score higher:

>>> ac.search('aa')
['aa bb',
 'aa cc',
 'bb aa cc',
 'cc aa bb']

This is even more clear when we search for bb and cc:

>>> ac.search('bb')
['bb aa cc',
 'bb cc',
 'aa bb',
 'cc aa bb']

>>> ac.search('cc')
['cc aa bb',
 'aa cc',
 'bb cc',
 'bb aa cc']

As you can see, results are scored by the proximity of the match to the front of the string, then alphabetically.

Boosting

To modify the score of certain words or phrases, we can apply boosts when searching. Boosts consist of a dictionary mapping identifiers to multipliers. Multipliers greater than 1 will move results to the top, while multipliers between 0 and 1 will push results to the bottom.

In this example, we’ll take the 3rd result, bb cc and bring it to the top:

>>> ac.search('cc', boosts={'bb cc': 2})
['bb cc',
 'cc aa bb',
 'aa cc',
 'bb aa cc']

In this example, we’ll take the best result, cc aa bb, and push it back a spot:

>>> ac.search('cc', boosts={'cc aa bb': .75})
['aa cc',
 'cc aa bb',
 'bb cc',
 'bb aa cc']

Persisting boosts

While boosts can be specified on a one-off basis while searching, we can also permanently store boosts that will be applied to all searches. To store a boost for a particular object or object type, call the boost_object() method:

>>> ac.boost_object(obj_id='bb cc', multiplier=2.0)
>>> ac.boost_object(obj_id='cc aa bb', multiplier=.75)

Now we can search and our boosts will automatically be in effect:

>>> ac.search('cc')
['bb cc',
 'aa cc',
 'cc aa bb',
 'bb aa cc']

ZRANGEBYLEX

Because I wanted to implement a slightly more complex scoring algorithm, I chose not to use the ZRANGEBYLEX command while implementing autocomplete. For very simple use-cases, though, ZRANGEBYLEX will certainly offer better performance. Depending on your application’s needs, you may be able to get by just storing your words in a sorted set and calling ZRANGEBYLEX on that set.

Cache

Walrus provides a simple Cache implementation that makes use of Redis’ key expiration feature. The cache can be used to set or retrieve values, and also provides a decorator (Cache.cached()) for wrapping function or methods.

Basic usage

You can get(), set() and delete() objects directly from the cache.

>>> from walrus import *
>>> db = Database()
>>> cache = db.cache()

>>> cache.set('foo', 'bar', 10) # Set foo=bar, expiring in 10s.
>>> cache.get('foo')
'bar'

>>> time.sleep(10)
>>> cache.get('foo') is None
True

Simple Decorator

The Cache.cached() decorator will memoize the return values from the wrapped function for the given arguments. One way to visualize this is by creating a function that returns the current time and wrap it with the decorator. The decorated function will run the first time it is called and the return value is stored in the cache. Subsequent calls will not execute the function, but will instead return the cached value from the previous call, until the cached value expires.

>>> @cache.cached(timeout=10)
... def get_time():
... return datetime.datetime.now()

>>> print get_time() # First call, return value cached.
2015-01-07 18:26:42.730638

>>> print get_time() # Hits the cache.
2015-01-07 18:26:42.730638

>>> time.sleep(10) # Wait for cache to expire then call again.
>>> print get_time()
2015-01-07 18:26:53.529011

If a decorated function accepts arguments, then values will be cached based on the arguments specified. In the example below we’ll pass a garbage argument to the get_time function to show how the cache varies for different arguments:

>>> @cache.cached(timeout=60)
... def get_time(seed=None):
... return datetime.datetime.now()

>>> print get_time()
2015-01-07 18:30:53.831977

>>> print get_time()
2015-01-07 18:30:53.831977

>>> print get_time('foo')
2015-01-07 18:30:56.614064

>>> print get_time('foo')
2015-01-07 18:30:56.614064

>>> print get_time('bar')
2015-01-07 18:31:01.497050

>>> print get_time('foo')
2015-01-07 18:30:56.614064

To clear the cache, you can call the special bust() method on the decorated function:

>>> get_time.bust('foo')
>>> print get_time('foo')
2015-01-07 18:31:15.326435

Cached Property

Python supports dynamic instance attributes through the property decorator. A property looks like a normal instance attribute, but it’s value is calculated at run-time. Walrus comes with a special decorator designed for implementing cached properties. Here is how you might use cached_property():

>>> class Clock(object):
... @cache.cached_property()
... def now(self):
... return datetime.datetime.now()

>>> print clock.now
2015-01-12 21:10:34.335755

>>> print clock.now
2015-01-12 21:10:34.335755

Cache Asynchronously

If you have a function that runs slowly and would like to be able to perform other operations while waiting for the return value, you might try the asynchronous cache decorator, cache_async().

The cache_async() decorator will run the decorated function in a separate thread. The function therefore will return immediately, even though your code may be processing in the background. Calls to the decorated function will return a method on a synchronized queue object. When the value is calculated (or returned from the cache), it will be placed in the queue and you can retrieve it.

Let’s see how this works. We’ll add a call to time.sleep in the decorated function to simulate a function that takes a while to run, and we’ll also print a message indicating that we’re inside the function body.

>>> import time
>>> @cache.cache_async()
... def get_now(seed=None):
... print 'About to sleep for 5 seconds.'
... time.sleep(5)
... return datetime.datetime.now()

The first time we call our function we will see the message indicating our function is sleeping, but the function will return immediately! The return value can be used to get the actual return value of the decorated function:

>>> result = get_now()
About to sleep for 5 seconds.
>>> result
<function _get_value at 0x7fe3a4685de8>

If we attempt to check the result immediately, there will be no value because the function is still sleeping. In this case a queue Empty exception is raised:

>>> result(block=False)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/Queue.py", line 165, in get
 raise Empty
Queue.Empty

We can force our code to block until the result is ready, though:

>>> print result(block=True)
2015-01-12 21:28:25.266448

Now that the result has been calculated and cached, a subsequent call to get_now() will not execute the function body. We can tell because the function does not print About to sleep for 5 seconds.

>>> result = get_now()
>>> print result()
2015-01-12 21:28:25.266448

The result function can be called any number of times. It will always return the same value:

>>> print result()
2015-01-12 21:28:25.266448

Another trick is passing a timeout to the result function. Let’s see what happens when we call get_now() using a different seed, then specify a timeout to block for the return value. Since we hard-coded a delay of 5 seconds, let’s see what happens when we specify a timeout of 4 seconds:

>>> print get_now('foo')(timeout=4)
About to sleep for 5 seconds.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/charles/pypath/walrus/cache.py", line 160, in _get_value
 result = q.get(block=block, timeout=timeout)
 File "/usr/lib/python2.7/Queue.py", line 176, in get
 raise Empty
Queue.Empty

Now let’s try with a timeout of 6 seconds (being sure to use a different seed so we trigger the 5 second delay):

>>> print get_now('bar')(timeout=6)
About to sleep for 5 seconds.
2015-01-12 21:46:49.060883

Since the function returns a value within the given timeout, the value is returned.

Full-text Search

Walrus comes with a standalone full-text search index that supports:

	Storing documents along with arbitrary metadata.

	Complex search using boolean/set operations and parentheses.

	Stop-word removal.

	Porter-stemming.

	Optional double-metaphone for phonetic search.

To create a full-text index, use:

	Database.Index()

	Index

Example:

from walrus import Database

db = Database()
search_index = db.Index('app-search')

Phonetic search.
phonetic_index = db.Index('phonetic-search', metaphone=True)

Storing data

Use the Index.add() method to add documents to the search index:

Specify the document's unique ID and the content to be indexed.
search_index.add('doc-1', 'this is the content of document 1')

Besides the document ID and content, we can also store metadata, which is
not searchable, but is returned along with the document content when a
search is performed.
search_index.add('doc-2', 'another document', title='Another', status='1')

To update a document, use either the Index.update() or
Index.replace() methods. The former will update existing metadata
while the latter clears any pre-existing metadata before saving.

Update doc-1's content and metadata.
search_index.update('doc-1', 'this is the new content', title='Doc 1')

Overwrite doc-2...the "status" metadata value set earlier will be lost.
search_index.replace('doc-2', 'another document', title='Another doc')

To remove a document use Index.remove():

search_index.remove('doc-1') # Removed from index and removed metadata.

Searching

Use the Index.search() method to perform searches. The search query
can include set operations (e.g. AND, OR) and use parentheses to indicate
operation precedence.

for document in search_index.search('python AND flask'):
 # Print the "title" that was stored as metadata. The "content" field
 # contains the original content of the document as it was indexed.
 print(document['title'], document['content'])

Phonetic search, using metaphone, is tolerant of typos:

for document in phonetic_index.search('flasck AND pythonn'):
 print(document['title'], document['content'])

For more information, see the Index API documentation.

Graph

The walrus graph module provides a lightweight hexastore [http://redis.io/topics/indexes#representing-and-querying-graphs-using-an-hexastore] implementation. The Graph class uses Redis ZSet objects to store collections of subject - predicate - object triples. These relationships can then be queried in a very flexible manner.

Note

The hexastore logic is expecting UTF-8 encoded values. If you are using Python 2.X unicode text, you are responsible for encoding prior to storing/querying with those values.

For example, we might store things like:

	charlie – friends – huey

	charlie – lives – Kansas

	huey – lives – Kansas

We might wish to ask questions of our data-store like “which of charlie’s friends live in Kansas?” To do this, we will store every permutation of the S-P-O triples, then we can efficiently query using the parts of the relationship we know beforehand.

	query the “object” portion of the “charlie – friends” subject/predicate.

	for each object returned, turn it into the subject of a second query whose predicate is “lives” and whose object is “Kansas”.

So we would return the subjects that satisfy the following expression:

("charlie -- friends") -- lives -- Kansas

Let’s go through this simple example to illustrate how the Graph class works.

from walrus import Database

Begin by instantiating a `Graph` object.
db = Database()
graph = db.graph('people')

Store my friends.
"charlie" is subject, "friends" is predicate, "huey" is object.
graph.store('charlie', 'friends', 'huey')

Can also store multiple relationships at once.
graph.store_many(
 ('charlie', 'friends', 'zaizee'),
 ('charlie', 'friends', 'nuggie'))

Store where people live.
graph.store_many(
 ('huey', 'lives', 'Kansas'),
 ('zaizee', 'lives', 'Missouri'),
 ('nuggie', 'lives', 'Kansas'),
 ('mickey', 'lives', 'Kansas'))

We are now ready to search. We'll use a variable (X) to indicate
the value we're interested in.
X = graph.v.X # Create a variable placeholder.

In the first clause we indicate we are searching for my friends.
In the second clause, we only want those friends who also live
in Kansas.
results = graph.search(
 {'s': 'charlie', 'p': 'friends', 'o': X},
 {'s': X, 'p': 'lives', 'o': 'Kansas'})

print results

Prints: {'X': {'huey', 'nuggie'}}

In the above example, the result value is a dictionary of variable values that satisfy the search expressions. The search() method is quite powerful!

An even simpler example

Let’s say we wish only to retrieve a list of Charlie’s friends. In this case we do not need to use a variable. We can use the simpler query() method. This method optionally takes a subject, predicate and/or object and, using the provided data, returns all objects that “match” the given pieces.

So to find Charlie’s friends, we would write:

query = graph.query(s='charlie', p='friends')
for result in query:
 print result['o'] # Print the object for the corresponding S/P.

Rate Limit

Walrus provides a simple RateLimit implementation that makes use of Redis’ List object to store a series of event timestamps.

As the rate-limiter logs events, it maintains a fixed-size list of timestamps. When the list of timestamps is at max capacity, Walrus will look at the difference between the oldest timestamp and the present time to determine if a new event can be logged.

Example with a rate limiter that allows 2 events every 10 seconds.

	Log event from IP 192.168.1.2

	List for key 192.168.1.2 now contains ['14:42:27.04521'] (these are actually unix timestamps, but are shown as times for readability).

	Five seconds later log another event from the same IP.

	List for 192.168.1.2 now contains ['14:42:32.08293', '14:42:27.04521']

	Two seconds later attempt another event from the same IP. Since the list is “at capacity”, and the time difference between the oldest event and the newest is less than 10 seconds, the event will not be logged and the event will be rate-limited.

Basic usage

You can limit() to log an event and check whether it should be rate-limited:

>>> from walrus import *
>>> db = Database()
>>> rate_limit = db.rate_limit('mylimit', limit=2, per=60) # 2 events per minute.

>>> rate_limit.limit('user-1')
False
>>> rate_limit.limit('user-1')
False
>>> rate_limit.limit('user-1') # Slow down, user-1!
True

>>> rate_limit.limit('user-2') # User 2 has not performed any events yet.
False

Decorator

The RateLimit.rate_limited() decorator can be used to restrict calls to a function or method. The decorator accepts a key_function parameter which instructs it how to uniquely identify the source of the function call. For example, on a web-site, you might want the key function to be derived from the requesting user’s IP address.

rate_limit = walrus.rate_limit('login-limiter', limit=3, per=60)

@app.route('/login/', methods=['GET', 'POST'])
@rate_limit.rate_limited(lambda: request.remote_addr)
def login():
 # Accept user login, etc.
 pass

Note

The rate_limited() decorator will raise a RateLimitException when an attempt to call the decorated function would exceed the allowed number of events. In your application you can catch these and perform the appropriate action.

If no key function is supplied, then Walrus will simply take the hash of all the arguments the function was called with and treat that as the key. Except for very simple functions, this is probably not waht you want, so take care to ensure your key_function works as you expect.

Streams

Redis streams [https://redis.io/topics/streams-intro] is a new data-type
available in Redis 5.0 which provides a persistent, append-only log. Redis
streams are a complex topic, so I strongly recommend reading the streams
introduction [https://redis.io/topics/streams-intro].

I like to think of streams as having two modes of operation:

	standalone-mode: streams act much like every other data-structure

	consumer-groups: streams become stateful, with state such as “which messages
were read?”, “who read what?”, etc are tracked within Redis.

Stream objects in walrus can be used standalone or within the
context of a ConsumerGroup.

Standalone streams

In standalone mode, streams behave much like every other data-structure in
Redis. By this, I mean that they act as a dumb container: you append items, you
read them, you delete them – everything happens explicitly. Streams support
the following operations:

	Add a new item (XADD) - Stream.add()

	Read a range of items (XRANGE) - Stream.range()

	Read new messages, optionally blocking (XREAD) - Stream.read()

	Delete one or more items (XDEL) - Stream.delete()

	Get the length of the stream (XLEN) - Stream.length()

	Trim the length to a given size (XTRIM) - Stream.trim()

	Set the maximum allowable ID (XSETID) - Stream.set_id()

To get started with streams, we’ll create a Database instance and
use it to instantiate a Stream:

from walrus import Database # A subclass of the redis-py Redis client.

db = Database()
stream = db.Stream('stream-a') # Create a new stream instance.

When adding data to a stream, Redis can automatically provide you with a unique
timestamp-based identifier, which is almost always what you want. When a new
message is added, the message id is returned:

msgid = stream.add({'message': 'hello streams'})
print(msgid)

Prints something like:
b'1539008591844-0'

Message ids generated by Redis consist of a millisecond timestamp along with a
sequence number (for ordering messages that arrived on the same millisecond).
Let’s add() a couple more items:

msgid2 = stream.add({'message': 'message 2'})
msgid3 = stream.add({'message': 'message 3'})

Ranges of records can be read using either the range() method,
or using Python’s slice notation. The message ids provided as the range
endpoints are inclusive when using the range API:

Get messages 2 and newer:
messages = stream[msgid2:]

messages contains:
[(b'1539008914283-0', {b'message': b'message 2'}),
 (b'1539008918230-0', {b'message': b'message 3'})]

We can use the "step" parameter to limit the number of records returned.
messages = stream[msgid::2]

messages contains the first two messages:
[(b'1539008903588-0', {b'message': b'hello, stream'}),
 (b'1539008914283-0', {b'message': b'message 2'})]

Get all messages in stream:
messages = list(stream)
[(b'1539008903588-0', {b'message': b'hello, stream'}),
 (b'1539008914283-0', {b'message': b'message 2'}),
 (b'1539008918230-0', {b'message': b'message 3'})]

The size of streams can be managed by deleting messages by id, or by “trimming”
the stream, which removes the oldest messages. The desired size is specified
when issuing a trim() operation, though, due to the internal
implementation of the stream data-structures, the size is considered
approximate by default.

Adding and deleting a message:
msgid4 = stream.xadd({'message': 'delete me'})
del stream[msgid4]

How many items are in the stream?
print(len(stream)) # Prints 3.

To see how trimming works, let’s create another stream and fill it with 1000
items, then request it to be trimmed to 10 items:

Add 1000 items to "stream-2".
stream2 = db.Stream('stream-2')
for i in range(1000):
 stream2.add({'data': 'message-%s' % i})

Trim stream-2 to (approximately) 10 most-recent messages.
nremoved = stream2.trim(10)
print(nremoved)
909
print(len(stream2))
91

To trim to an exact number, specify `approximate=False`:
stream2.trim(10, approximate=False) # Returns 81.
print(len(stream2))
10

The previous examples show how to add(), read a
range() of messages, delete() messages, and
manage the size using the trim() method. When processing a
continuous stream of events, though, it may be desirable to block until
messages are added. For this we can use the read() API, which
supports blocking until messages become available.

By default, calling `stream.read()` returns all messages in the stream:
stream.read()

Returns:
[(b'1539008903588-0', {b'message': b'hello, stream'}),
 (b'1539008914283-0', {b'message': b'message 2'}),
 (b'1539008918230-0', {b'message': b'message 3'})]

We can pass a message id to read(), and unlike the slicing
operations, this id is considered the “last-read message” and acts as an
exclusive lower-bound:

Read any messages newer than msgid2.
stream.read(last_id=msgid2)

Returns:
[(b'1539008918230-0', {b'message': b'message 3'})]

This returns None since there are no messages newer than msgid3.
stream.read(last_id=msgid3)

We can make read() blocking by specifying a special id,
"$", and a timeout in milliseconds. To block forever, you can use
timeout=0.

This will block for 2 seconds, after which an empty list is returned
(provided no messages are added while waiting).
stream.read(timeout=2000, last_id='$')

While its possible to build consumers using these APIs, the client is still
responsible for keeping track of the last-read message ID and coming up with
semantics for retrying failed messages, etc. In the next section, we’ll see how
consumer groups can greatly simplify building a stream processing pipeline.

Consumer groups

In consumer-group mode, streams retain the behaviors of standalone mode, adding
functionality which makes them stateful. What state is tracked?

	Read any unseen messages (XREAD) - ConsumerGroupStream.read()

	List messages that were read, but not acknowledged (XPENDING) - ConsumerGroupStream.pending()

	Acknowledge one or more pending messages (XACK) - ConsumerGroupStream.ack()

	Claim one or more pending messages for re-processing (XCLAIM) - ConsumerGroupStream.claim()

ConsumerGroup objects provide the building-blocks for robust
message processing pipelines or task queues. Ordinarily this type of stuff
would be implemented by the client – having it in Redis means that we have a
single, unified interface (rather than implementation-specific, with all the
bugs that likely entails). Furthermore, consumer group state is tracked by the
RDB and replicated.

Consumer groups require that a stream exist before the group can be
created, so we have to add an empty message.
stream_keys = ['stream-a', 'stream-b', 'stream-c']
for stream in stream_keys:
 db.xadd(stream, {'data': ''})

Create a consumer-group for streams a, b, and c. We will mark all
messages as having been processed, so only messages added after the
creation of the consumer-group will be read.
cg = db.consumer_group('cg-abc', stream_keys)
cg.create() # Create the consumer group.
cg.set_id('$')

To read from all the streams in a consumer group, we can use the
ConsumerGroupStream.read() method. Since we marked all messages as
read and have not added anything new since creating the consumer group, the
return value is an empty list:

resp = cg.read()

Returns an empty list:
[]

For convenience, walrus exposes the individual streams within a consumer group
as attributes on the ConsumerGroup instance. Let’s add some
messages to streams a, b, and c:

cg.stream_a.add({'message': 'new a'})
cg.stream_b.add({'message': 'new for b'})
for i in range(10):
 cg.stream_c.add({'message': 'c-%s' % i})

Now let’s try reading from the consumer group again. We’ll pass count=1 so
that we read no more than one message from each stream in the group:

Read up to one message from each stream in the group.
cg.read(count=1)

Returns:
[('stream-a', [(b'1539023088125-0', {b'message': b'new a'})]),
 ('stream-b', [(b'1539023088125-0', {b'message': b'new for b'})]),
 ('stream-c', [(b'1539023088126-0', {b'message': b'c-0'})])]

We’ve now read all the unread messages from streams a and b, but stream c
still has messages. Calling read() again will give us the next unread
message from stream c:

Read up to 1 message from each stream in the group. Since
we already read everything in streams a and b, we will only
get the next unread message in stream c.
cg.read(count=1)

Returns:
[('stream-c', [(b'1539023088126-1', {b'message': b'c-1'})])]

When using consumer groups, messages that are read need to be acknowledged.
Let’s look at the pending (read but unacknowledged) messages from
stream a using the pending() method, which
returns a list of metadata about each unacknowledged message:

We read one message from stream a, so we should see one pending message.
cg.stream_a.pending()

Returns a list of:
[message id, consumer name, message age, delivery count]
[[b'1539023088125-0', b'cg-abc.c1', 22238, 1]]

To acknowledge receipt of a message and remove it from the pending list, use
the ack() method on the consumer group stream:

View the pending message list for stream a.
pending_list = cg.stream_a.pending()
msg_id = pending_list[0]['message_id']

Acknowledge the message.
cg.stream_a.ack(msg_id)

Returns number of pending messages successfully acknowledged:
1

Consumer groups have the concept of individual consumers. These might be
workers in a process pool, for example. Note that the
pending() method returned the consumer name as
"cg-abc.c1". Walrus uses the consumer group name + ".c1" as the name
for the default consumer name. To create another consumer within a given group,
we can use the consumer() method:

Create a second consumer within the consumer group.
cg2 = cg.consumer('cg-abc.c2')

Creating a new consumer within a consumer group does not affect the state of
the group itself. Calling read() using our new
consumer will pick up from the last-read message, as you would expect:

Read from our consumer group using the new consumer. Recall
that we read all the messages from streams a and b, and the
first two messages in stream c.
cg2.read(count=1)

Returns:
[('stream-c', [(b'1539023088126-2', {b'message': b'c-2'})])]

If we look at the pending message status for stream c, we will see that the
first and second messages were read by the consumer “cg-abc.c1” and the third
message was read by our new consumer, “cg-abc.c2”:

What messages have been read, but were not acknowledged, from stream c?
cg.stream_c.pending()

Returns list of [message id, consumer, message age, delivery count]:
[{'message_id': b'1539023088126-0', 'consumer': b'cg-abc.c1',
 'time_since_delivered': 51329, 'times_delivered': 1}],
 {'message_id': b'1539023088126-1', 'consumer': b'cg-abc.c1',
 'time_since_delivered': 43772, 'times_delivered': 1},
 {'message_id': b'1539023088126-2', 'consumer': b'cg-abc.c2',
 'time_since_delivered': 5966, 'times_delivered': 1}]

Consumers can claim() pending messages, which
transfers ownership of the message and returns a list of (message id, data)
tuples to the caller:

Unpack the pending messages into a couple variables.
mc1, mc2, mc3 = cg.stream_c.pending()

Claim the first message for consumer 2:
cg2.stream_c.claim(mc1['message_id'])

Returns a list of (message id, data) tuples for the claimed messages:
[(b'1539023088126-0', {b'message': b'c-0'})]

Re-inspecting the pending messages for stream c, we can see that the consumer
for the first message has changed and the message age has been reset:

What messages are pending in stream c?
cg.stream_c.pending()

Returns:
[{'message_id': b'1539023088126-0', 'consumer': b'cg-abc.c2',
 'time_since_delivered': 2168, 'times_delivered': 1},
 {'message_id': b'1539023088126-1', 'consumer': b'cg-abc.c1',
 'time_since_delivered': 47141, 'times_delivered': 1},
 {'message_id': b'1539023088126-2', 'consumer': b'cg-abc.c2',
 'time_since_delivered': 9335, 'times_delivered': 1}]

The individual streams within the consumer group support a number of
useful APIs:

	consumer_group.stream.ack(*id_list) - acknowledge one or more messages
read from the given stream.

	consumer_group.stream.add(data, id='*', maxlen=None, approximate=True) -
add a new message to the stream. The maxlen parameter can be used to keep
the stream from growing without bounds. If given, the approximate flag
indicates whether the stream maxlen should be approximate or exact.

	consumer_group.stream.claim(*id_list) - claim one or more
pending messages.

	consumer_group.stream.delete(*id_list) - delete one or more messages
by ID.

	consumer_group.stream.pending(start='-', stop='+', count=1000) - get the
list of unacknowledged messages in the stream. The start and stop
parameters can be message ids, while the count parameter can be used to
limit the number of results returned.

	consumer_group.stream.read(count=None, timeout=None) - monitor the
stream for new messages within the context of the consumer group. This
method can be made to block by specifying a timeout (or 0 to block
forever).

	consumer_group.stream.set_id(id='$') - set the id of the last-read
message for the consumer group. Use the special id "$" to indicate all
messages have been read, or "0-0" to mark all messages as unread.

	consumer_group.stream.trim(count, approximate=True) - trim the stream to
the given size.

TimeSeries

Redis automatically uses the millisecond timestamp plus a sequence number to
uniquely identify messages added to a stream. This makes streams a natural fit
for time-series data. To simplify working with streams as time-series in
Python, you can use the special TimeSeries helper class, which acts
just like the ConsumerGroup from the previous section with the
exception that it can translate between Python datetime objects and message
ids automatically.

To get started, we’ll create a TimeSeries instance, specifying the
stream keys, just like we did with ConsumerGroup:

Create a time-series consumer group named "demo-ts" for the
streams s1 and s2.
ts = db.time_series('demo-ts', ['s1', 's2'])

Add dummy data and create the consumer group.
db.xadd('s1', {'': ''}, id='0-1')
db.xadd('s2', {'': ''}, id='0-1')
ts.create()
ts.set_id('$') # Do not read the dummy items.

Let’s add some messages to the time-series, one for each day between January
1st and 10th, 2018:

from datetime import datetime, timedelta

date = datetime(2018, 1, 1)
for i in range(10):
 ts.s1.add({'message': 's1-%s' % date}, id=date)
 date += timedelta(days=1)

We can read messages from the stream using the familiar slicing API. For
example, to read 3 messages starting at January 2nd, 2018:

ts.s1[datetime(2018, 1, 2)::3]

Returns messages for Jan 2nd - 4th:
[<Message s1 1514872800000-0: {'message': 's1-2018-01-02 00:00:00'}>,
 <Message s1 1514959200000-0: {'message': 's1-2018-01-03 00:00:00'}>,
 <Message s1 1515045600000-0: {'message': 's1-2018-01-04 00:00:00'}>]

Note that the values returned are Message objects. Message objects
provide some convenience functions, such as extracting timestamp and sequence
values from stream message ids:

for message in ts.s1[datetime(2018, 1, 1)::3]:
 print(message.stream, message.timestamp, message.sequence, message.data)

Prints:
s1 2018-01-01 00:00:00 0 {'message': 's1-2018-01-01 00:00:00'}
s1 2018-01-02 00:00:00 0 {'message': 's1-2018-01-02 00:00:00'}
s1 2018-01-03 00:00:00 0 {'message': 's1-2018-01-03 00:00:00'}

Let’s add some messages to stream “s2” as well:

date = datetime(2018, 1, 1)
for i in range(5):
 ts.s2.add({'message': 's2-%s' % date}, id=date)
 date += timedelta(days=1)

One difference between TimeSeries and ConsumerGroup is
what happens when reading from multiple streams. ConsumerGroup returns a
dictionary keyed by stream, along with a corresponding list of messages read
from each stream. TimeSeries, however, returns a flat list of Message objects:

Read up to 2 messages from each stream (s1 and s2):
messages = ts.read(count=2)

"messages" is a list of messages from both streams:
[<Message s1 1514786400000-0: {'message': 's1-2018-01-01 00:00:00'}>,
 <Message s2 1514786400000-0: {'message': 's2-2018-01-01 00:00:00'}>,
 <Message s1 1514872800000-0: {'message': 's1-2018-01-02 00:00:00'}>,
 <Message s2 1514872800000-0: {'message': 's2-2018-01-02 00:00:00'}>]

When inspecting pending messages within a TimeSeries the message
ids are unpacked into (datetime, seq) 2-tuples:

ts.s1.pending()

Returns:
[((datetime.datetime(2018, 1, 1, 0, 0), 0), 'events-ts.c', 1578, 1),
 ((datetime.datetime(2018, 1, 2, 0, 0), 0), 'events-ts.c', 1578, 1)]

Acknowledge the pending messages:
for msgts_seq, _, _, _ in ts.s1.pending():
 ts.s1.ack(msgts_seq)

We can set the last-read message id using a datetime:

ts.s1.set_id(datetime(2018, 1, 1))

Next read will be 2018-01-02, ...
ts.s1.read(count=2)

Returns:
[<Message s1 1514872800000-0: {'message': 's1-2018-01-02 00:00:00'}>,
 <Message s1 1514959200000-0: {'message': 's1-2018-01-03 00:00:00'}>]

As with ConsumerGroup, the TimeSeries helper provides
stream-specific APIs for claiming unacknowledged messages, creating additional
consumers, etc.

Learning more

For more information, the following links may be helpful:

	Redis streams introduction [https://redis.io/topics/streams-intro].

	Example multi-process task queue using walrus and streams [http://charlesleifer.com/blog/multi-process-task-queue-using-redis-streams/].

	API docs for Stream, ConsumerGroup,
ConsumerGroupStream and TimeSeries.

Models

Walrus provides a lightweight Model class for storing structured data and executing queries using secondary indexes.

>>> from walrus import *
>>> db = Database()

Let’s create a simple data model to store some users.

>>> class User(Model):
... __database__ = db
... name = TextField(primary_key=True)
... dob = DateField(index=True)

Note

As of 0.4.0, the Model.database attribute has been renamed to
Model.__database__. Similarly, Model.namespace is now
Model.__namespace__.

Creating, Updating and Deleting

To add objects to a collection, you can use Model.create():

>>> User.create(name='Charlie', dob=datetime.date(1983, 1, 1))
<User: Charlie>

>>> names_dobs = [
... ('Huey', datetime.date(2011, 6, 1)),
... ('Zaizee', datetime.date(2012, 5, 1)),
... ('Mickey', datetime.date(2007, 8, 1)),

>>> for name, dob in names_dobs:
... User.create(name=name, dob=dob)

We can retrieve objects by primary key (name in this case). Objects can be modified or deleted after they have been created.

>>> zaizee = User.load('Zaizee') # Get object by primary key.
>>> zaizee.name
'Zaizee'
>>> zaizee.dob
datetime.date(2012, 5, 1)

>>> zaizee.dob = datetime.date(2012, 4, 1)
>>> zaizee.save()

>>> nobody = User.create(name='nobody', dob=datetime.date(1990, 1, 1))
>>> nobody.delete()

Retrieving all records in a collection

We can retrieve all objects in the collection by calling Model.all(), which returns an iterator that successively yields model instances:

>>> for user in User.all():
... print user.name
Huey
Zaizee
Charlie
Mickey

Note

The objects from all() are returned in an undefined order. This is because the index containing all primary keys is implemented as an unordered Set.

Sorting records

To get the objects in order, we can use Model.query():

>>> for user in User.query(order_by=User.name):
... print user.name
Charlie
Huey
Mickey
Zaizee

>>> for user in User.query(order_by=User.dob.desc()):
... print user.dob
2012-04-01
2011-06-01
2007-08-01
1983-01-01

Filtering records

Walrus supports basic filtering. The filtering options available vary by field type, so that TextField, UUIDField and similar non-scalar types support only equality and inequality tests. Scalar values, on the other hand, like integers, floats or dates, support range operations.

Warning

You must specify index=True to be able to use a field for filtering.

Let’s see how this works by filtering on name and dob. The query() method returns zero or more objects, while the get() method requires that there be exactly one result:

>>> for user in User.query(User.dob <= datetime.date(2009, 1, 1)):
... print user.dob
2007-08-01
1983-01-01

>>> charlie = User.get(User.name == 'Charlie')
>>> User.get(User.name = 'missing')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/charles/pypath/walrus.py", line 1662, in get
 raise ValueError('Got %s results, expected 1.' % len(result))
ValueError: Got 0 results, expected 1.

We can combine multiple filters using bitwise and and or:

>>> low = datetime.date(2006, 1, 1)
>>> high = datetime.date(2012, 1, 1)
>>> query = User.query(
... (User.dob >= low) &
... (User.dob <= high))

>>> for user in query:
... print user.dob

2011-06-01
2007-08-01

>>> query = User.query(User.dob.between(low, high)) # Equivalent to above.
>>> for user in query:
... print user.dob

2011-06-01
2007-08-01

>>> query = User.query(
... (User.dob <= low) |
... (User.dob >= high))

>>> for user in query:
... print user.dob
2012-04-01
1983-01-01

You can combine filters with ordering:

>>> expr = (User.name == 'Charlie') | (User.name == 'Zaizee')
>>> for user in User.query(expr, order_by=User.name):
... print user.name
Charlie
Zaizee

>>> for user in User.query(User.name != 'Charlie', order_by=User.name.desc()):
... print user.name
Zaizee
Mickey
Huey

Container Fields

Up until now the fields we’ve used have been simple key/value pairs that are stored directly in the hash of model data. In this section we’ll look at a group of special fields that correspond to Redis container types.

Let’s create a model for storing personal notes. The notes will have a text field for the content and a timestamp, and as an interesting flourish we’ll add a SetField to store a collection of tags.

class Note(Model):
 __database__ = db
 text = TextField()
 timestamp = DateTimeField(
 default=datetime.datetime.now,
 index=True)
 tags = SetField()

Note

Container fields cannot be used as a secondary index, nor can they be used as the primary key for a model. Finally, they do not accept a default value.

Warning

Due to the implementation, it is necessary that the model instance have a primary key value before you can access the container field. This is because the key identifying the container field needs to be associated with the instance, and the way we do that is with the primary key.

Here is how we might use the new note model:

>>> note = Note.create(content='my first note')
>>> note.tags
<Set "note:container.tags.note:id.3": 0 items>
>>> note.tags.add('testing', 'walrus')

>>> Note.load(note._id).tags
<Set "note:container.tags.note:id.3": 0 items>

In addition to SetField, there is also HashField, ListField, ZSetField.

Full-text search

I’ve added a really (really) simple full-text search index type. Here is how to use it:

>>> class Note(Model):
... __database__ = db
... content = TextField(fts=True) # Note the "fts=True".

When a field contains an full-text index, then the index will be populated when new objects are added to the database:

>>> Note.create(content='this is a test of walrus FTS.')
>>> Note.create(content='favorite food is walrus-mix.')
>>> Note.create(content='do not forget to take the walrus for a walk.')

Use TextField.search() to create a search expression, which is then passed to the Model.query() method:

>>> for note in Note.query(Note.content.search('walrus')):
... print note.content
do not forget to take the walrus for a walk.
this is a test of walrus FTS.
favorite food is walrus-mix.

>>> for note in Note.query(Note.content.search('walk walrus')):
... print note.content
do not forget to take the walrus for a walk.

>>> for note in Note.query(Note.content.search('walrus mix')):
... print note.content
favorite food is walrus-mix.

We can also specify complex queries using AND and OR conjunctions:

>>> for note in Note.query(Note.content.search('walrus AND (mix OR fts)')):
... print note.content
this is a test of walrus FTS.
favorite food is walrus-mix.

>>> query = '(test OR food OR walk) AND walrus AND (favorite OR forget)'
>>> for note in Note.query(Note.content.search(query)):
... print note.content
do not forget to take the walrus for a walk.
favorite food is walrus-mix.

Features

	Automatic removal of stop-words

	Porter stemmer on by default

	Optional double-metaphone implementation

	Default conjunction is AND, but there is also support for OR.

Limitations

	Partial strings are not matched.

	Very naive scoring function.

	Quoted multi-word matches do not work.

Need more power?

walrus’ querying capabilities are extremely basic. If you want more sophisticated querying, check out StdNet [https://github.com/lsbardel/python-stdnet]. StdNet makes extensive use of Lua scripts to provide some really neat querying/filtering options.

API Documentation

	
class walrus.Database(Redis)

	Redis-py client with some extras.

	
Array(key)

	Create a Array instance wrapping the given key.

	
Hash(key)

	Create a Hash instance wrapping the given key.

	
HyperLogLog(key)

	Create a HyperLogLog instance wrapping the given
key.

	
Index(name, **options)

	Create a Index full-text search index with the given
name and options.

	
List(key)

	Create a List instance wrapping the given key.

	
Set(key)

	Create a Set instance wrapping the given key.

	
Stream(key)

	Create a Stream instance wrapping the given key.

	
ZSet(key)

	Create a ZSet instance wrapping the given key.

	
__init__(*args, **kwargs)

	
	Parameters

	
	args – Arbitrary positional arguments to pass to the
base Redis instance.

	kwargs – Arbitrary keyword arguments to pass to the
base Redis instance.

	script_dir (str) – Path to directory containing walrus
scripts.

	
__iter__()

	Iterate over the keys of the selected database.

	
bit_field(key)

	Container for working with the Redis BITFIELD command.

	Returns

	a BitField instance.

	
bloom_filter(key, size=65536)

	Create a BloomFilter container type.

Bloom-filters are probabilistic data-structures that are used to answer
the question: “is X a member of set S?” It is possible to receive a
false positive, but impossible to receive a false negative (in other
words, if the bloom filter contains a value, it will never erroneously
report that it does not contain such a value). The accuracy of the
bloom-filter and the likelihood of a false positive can be reduced by
increasing the size of the bloomfilter. The default size is 64KB (or
524,288 bits).

	
cache(name='cache', default_timeout=3600)

	Create a Cache instance.

	Parameters

	
	name (str) – The name used to prefix keys used to
store cached data.

	default_timeout (int) – The default key expiry.

	Returns

	A Cache instance.

	
cas(key, value, new_value)

	Perform an atomic compare-and-set on the value in “key”, using a prefix
match on the provided value.

	
consumer_group(group, keys, consumer=None)

	Create a named ConsumerGroup instance for the given key(s).

	Parameters

	
	group – name of consumer group

	keys – stream identifier(s) to monitor. May be a single stream
key, a list of stream keys, or a key-to-minimum id mapping. The
minimum id for each stream should be considered an exclusive
lower-bound. The ‘$’ value can also be used to only read values
added after our command started blocking.

	consumer – name for consumer within group

	Returns

	a ConsumerGroup instance

	
counter(name)

	Create a Counter instance.

	Parameters

	name (str) – The name used to store the counter’s value.

	Returns

	A Counter instance.

	
get_key(key)

	Return a rich object for the given key. For instance, if
a hash key is requested, then a Hash will be
returned.

	Parameters

	key (str) – Key to retrieve.

	Returns

	A hash, set, list, zset or array.

	
get_temp_key()

	Generate a temporary random key using UUID4.

	
graph(name, *args, **kwargs)

	Creates a Graph instance.

	Parameters

	name (str) – The namespace for the graph metadata.

	Returns

	a Graph instance.

	
listener(channels=None, patterns=None, is_async=False)

	Decorator for wrapping functions used to listen for Redis
pub-sub messages.

The listener will listen until the decorated function
raises a StopIteration exception.

	Parameters

	
	channels (list) – Channels to listen on.

	patterns (list) – Patterns to match.

	is_async (bool) – Whether to start the listener in a
separate thread.

	
lock(name, ttl=None, lock_id=None)

	Create a named Lock instance. The lock implements
an API similar to the standard library’s threading.Lock,
and can also be used as a context manager or decorator.

	Parameters

	
	name (str) – The name of the lock.

	ttl (int) – The time-to-live for the lock in milliseconds
(optional). If the ttl is None then the lock will not
expire.

	lock_id (str) – Optional identifier for the lock instance.

	
rate_limit(name, limit=5, per=60, debug=False)

	Rate limit implementation. Allows up to limit of events every per
seconds.

See rate-limit for more information.

	
run_script(script_name, keys=None, args=None)

	Execute a walrus script with the given arguments.

	Parameters

	
	script_name – The base name of the script to execute.

	keys (list) – Keys referenced by the script.

	args (list) – Arguments passed in to the script.

	Returns

	Return value of script.

Note

Redis scripts require two parameters, keys
and args, which are referenced in lua as KEYS
and ARGV.

	
search(pattern)

	Search the keyspace of the selected database using the
given search pattern.

	Parameters

	pattern (str) – Search pattern using wildcards.

	Returns

	Iterator that yields matching keys.

	
stream_log(callback, connection_id='monitor')

	Stream Redis activity one line at a time to the given
callback.

	Parameters

	callback – A function that accepts a single argument,
the Redis command.

	
time_series(group, keys, consumer=None)

	Create a named TimeSeries consumer-group for the
given key(s). TimeSeries objects are almost identical to
ConsumerGroup except they offer a higher level of
abstraction and read/write message ids as datetimes.

	Parameters

	
	group – name of consumer group

	keys – stream identifier(s) to monitor. May be a single stream
key, a list of stream keys, or a key-to-minimum id mapping. The
minimum id for each stream should be considered an exclusive
lower-bound. The ‘$’ value can also be used to only read values
added after our command started blocking.

	consumer – name for consumer within group

	Returns

	a TimeSeries instance

	
xsetid(name, id)

	Set the last ID of the given stream.

	Parameters

	
	name – stream identifier

	id – new value for last ID

Container types

	
class walrus.Container(database, key)

	Base-class for rich Redis object wrappers.

	
clear(*args, **kwargs)

	Clear the contents of the container by deleting the key.

	
dump()

	Dump the contents of the given key using Redis’ native
serialization format.

	
expire(ttl=None)

	Expire the given key in the given number of seconds.
If ttl is None, then any expiry will be cleared
and key will be persisted.

	
pexpire(ttl=None)

	Expire the given key in the given number of milliseconds.
If ttl is None, then any expiry will be cleared
and key will be persisted.

	
class walrus.Hash(Container)

	Redis Hash object wrapper. Supports a dictionary-like interface
with some modifications.

See Hash commands [http://redis.io/commands#hash] for more info.

	
__contains__(key)

	Return a boolean valud indicating whether the given key
exists.

	
__delitem__(key)

	Delete the key from the hash.

	
__getitem__(item)

	Retrieve the value at the given key. To retrieve multiple
values at once, you can specify multiple keys as a tuple or
list:

hsh = db.Hash('my-hash')
first, last = hsh['first_name', 'last_name']

	
__iter__()

	Iterate over the items in the hash.

	
__len__()

	Return the number of keys in the hash.

	
__setitem__(key, value)

	Set the value of the given key.

	
as_dict(decode=False)

	Return a dictionary containing all the key/value pairs in the
hash.

	
incr(key, incr_by=1)

	Increment the key by the given amount.

	
items(lazy=False)

	Like Python’s dict.items() but supports an optional
parameter lazy which will return a generator rather than
a list.

	
keys()

	Return the keys of the hash.

	
search(pattern, count=None)

	Search the keys of the given hash using the specified pattern.

	Parameters

	
	pattern (str) – Pattern used to match keys.

	count (int) – Limit number of results returned.

	Returns

	An iterator yielding matching key/value pairs.

	
update(*args, **kwargs)

	Update the hash using the given dictionary or key/value pairs.

	
values()

	Return the values stored in the hash.

	
class walrus.List(Container)

	Redis List object wrapper. Supports a list-like interface.

See List commands [http://redis.io/commands#list] for more info.

	
__delitem__(item)

	By default Redis treats deletes as delete by value, as
opposed to delete by index. If an integer is passed into the
function, it will be treated as an index, otherwise it will
be treated as a value.

If a slice is passed, then the list will be trimmed so that it ONLY
contains the range specified by the slice start and stop. Note that
this differs from the default behavior of Python’s list type.

	
__getitem__(item)

	Retrieve an item from the list by index. In addition to
integer indexes, you can also pass a slice.

	
__iter__()

	Iterate over the items in the list.

	
__len__()

	Return the length of the list.

	
__setitem__(idx, value)

	Set the value of the given index.

	
append(value)

	Add the given value to the end of the list.

	
as_list(decode=False)

	Return a list containing all the items in the list.

	
extend(value)

	Extend the list by the given value.

	
insert_after(value, key)

	Insert the given value into the list after the index
containing key.

	
insert_before(value, key)

	Insert the given value into the list before the index
containing key.

	
popleft()

	Remove the first item from the list.

	
popright()

	Remove the last item from the list.

	
prepend(value)

	Add the given value to the beginning of the list.

	
class walrus.Set(Container)

	Redis Set object wrapper. Supports a set-like interface.

See Set commands [http://redis.io/commands#set] for more info.

	
__and__(other)

	Return the set intersection of the current set and the left-
hand Set object.

	
__contains__(item)

	Return a boolean value indicating whether the given item is
a member of the set.

	
__delitem__(item)

	Remove the given item from the set.

	
__iter__()

	Return an iterable that yields the items of the set.

	
__len__()

	Return the number of items in the set.

	
__or__(other)

	Return the set union of the current set and the left-hand
Set object.

	
__sub__(other)

	Return the set difference of the current set and the left-
hand Set object.

	
add(*items)

	Add the given items to the set.

	
as_set(decode=False)

	Return a Python set containing all the items in the collection.

	
diffstore(dest, *others)

	Store the set difference of the current set and one or more
others in a new key.

	Parameters

	
	dest – the name of the key to store set difference

	others – One or more Set instances

	Returns

	A Set referencing dest.

	
interstore(dest, *others)

	Store the intersection of the current set and one or more
others in a new key.

	Parameters

	
	dest – the name of the key to store intersection

	others – One or more Set instances

	Returns

	A Set referencing dest.

	
members()

	Return a set() containing the members of the set.

	
pop()

	Remove an element from the set.

	
random(n=None)

	Return a random member of the given set.

	
remove(*items)

	Remove the given item(s) from the set.

	
search(pattern, count=None)

	Search the values of the given set using the specified pattern.

	Parameters

	
	pattern (str) – Pattern used to match keys.

	count (int) – Limit number of results returned.

	Returns

	An iterator yielding matching values.

	
unionstore(dest, *others)

	Store the union of the current set and one or more
others in a new key.

	Parameters

	
	dest – the name of the key to store union

	others – One or more Set instances

	Returns

	A Set referencing dest.

	
class walrus.ZSet(Container)

	Redis ZSet object wrapper. Acts like a set and a dictionary.

See Sorted set commands [http://redis.io/commands#sorted_set]
for more info.

	
__contains__(item)

	Return a boolean indicating whether the given item is in the
sorted set.

	
__delitem__(item)

	Delete the given item(s) from the set. Like
__getitem__(), this method supports a wide
variety of indexing and slicing options.

	
__getitem__(item)

	Retrieve the given values from the sorted set. Accepts a
variety of parameters for the input:

zs = db.ZSet('my-zset')

Return the first 10 elements with their scores.
zs[:10, True]

Return the first 10 elements without scores.
zs[:10]
zs[:10, False]

Return the range of values between 'k1' and 'k10' along
with their scores.
zs['k1':'k10', True]

Return the range of items preceding and including 'k5'
without scores.
zs[:'k5', False]

	
__iter__()

	Return an iterator that will yield (item, score) tuples.

	
__len__()

	Return the number of items in the sorted set.

	
__setitem__(item, score)

	Add item to the set with the given score.

	
add(_mapping=None, **kwargs)

	Add the given item/score pairs to the ZSet. Arguments are
specified as item1, score1, item2, score2....

	
as_items(decode=False)

	Return a list of 2-tuples consisting of key/score.

	
bpopmax(timeout=0)

	Atomically remove the highest-scoring item from the set, blocking until
an item becomes available or timeout is reached (0 for no timeout,
default).

Returns a 2-tuple of (item, score).

	
bpopmin(timeout=0)

	Atomically remove the lowest-scoring item from the set, blocking until
an item becomes available or timeout is reached (0 for no timeout,
default).

Returns a 2-tuple of (item, score).

	
count(low, high=None)

	Return the number of items between the given bounds.

	
incr(key, incr_by=1.0)

	Increment the score of an item in the ZSet.

	Parameters

	
	key – Item to increment.

	incr_by – Amount to increment item’s score.

	
interstore(dest, *others, **kwargs)

	Store the intersection of the current zset and one or more
others in a new key.

	Parameters

	
	dest – the name of the key to store intersection

	others – One or more ZSet instances

	Returns

	A ZSet referencing dest.

	
lex_count(low, high)

	Count the number of members in a sorted set between a given
lexicographical range.

	
popmax(count=1)

	Atomically remove the highest-scoring item(s) in the set.

	Returns

	a list of item, score tuples or None if the set is empty.

	
popmax_compat(count=1)

	Atomically remove the highest-scoring item(s) in the set. Compatible
with Redis versions < 5.0.

	Returns

	a list of item, score tuples or None if the set is empty.

	
popmin(count=1)

	Atomically remove the lowest-scoring item(s) in the set.

	Returns

	a list of item, score tuples or None if the set is empty.

	
popmin_compat(count=1)

	Atomically remove the lowest-scoring item(s) in the set. Compatible
with Redis versions < 5.0.

	Returns

	a list of item, score tuples or None if the set is empty.

	
range(low, high, with_scores=False, desc=False, reverse=False)

	Return a range of items between low and high. By
default scores will not be included, but this can be controlled
via the with_scores parameter.

	Parameters

	
	low – Lower bound.

	high – Upper bound.

	with_scores (bool) – Whether the range should include the
scores along with the items.

	desc (bool) – Whether to sort the results descendingly.

	reverse (bool) – Whether to select the range in reverse.

	
range_by_lex(low, high, start=None, num=None, reverse=False)

	Return a range of members in a sorted set, by lexicographical range.

	
rank(item, reverse=False)

	Return the rank of the given item.

	
remove(*items)

	Remove the given items from the ZSet.

	
remove_by_rank(low, high=None)

	Remove elements from the ZSet by their rank (relative position).

	Parameters

	
	low – Lower bound.

	high – Upper bound.

	
remove_by_score(low, high=None)

	Remove elements from the ZSet by their score.

	Parameters

	
	low – Lower bound.

	high – Upper bound.

	
score(item)

	Return the score of the given item.

	
search(pattern, count=None)

	Search the set, returning items that match the given search
pattern.

	Parameters

	
	pattern (str) – Search pattern using wildcards.

	count (int) – Limit result set size.

	Returns

	Iterator that yields matching item/score tuples.

	
unionstore(dest, *others, **kwargs)

	Store the union of the current set and one or more
others in a new key.

	Parameters

	
	dest – the name of the key to store union

	others – One or more ZSet instances

	Returns

	A ZSet referencing dest.

	
class walrus.HyperLogLog(Container)

	Redis HyperLogLog object wrapper.

See HyperLogLog commands [http://redis.io/commands#hyperloglog]
for more info.

	
add(*items)

	Add the given items to the HyperLogLog.

	
merge(dest, *others)

	Merge one or more HyperLogLog instances.

	Parameters

	
	dest – Key to store merged result.

	others – One or more HyperLogLog instances.

	
class walrus.Array(Container)

	Custom container that emulates an array (as opposed to the
linked-list implementation of List). This gives:

	O(1) append, get, len, pop last, set

	O(n) remove from middle

Array is built on top of the hash data type and
is implemented using lua scripts.

	
__contains__(item)

	Return a boolean indicating whether the given item is stored
in the array. O(n).

	
__delitem__(idx)

	Delete the given index.

	
__getitem__(idx)

	Get the value stored in the given index.

	
__iter__()

	Return an iterable that yields array items.

	
__len__()

	Return the number of items in the array.

	
__setitem__(idx, value)

	Set the value at the given index.

	
append(value)

	Append a new value to the end of the array.

	
as_list(decode=False)

	Return a list of items in the array.

	
extend(values)

	Extend the array, appending the given values.

	
pop(idx=None)

	Remove an item from the array. By default this will be the
last item by index, but any index can be specified.

	
class walrus.Stream(Container)

	Redis stream container.

	
__delitem__(item)

	Delete one or more messages by id. The index can be either a single
message id or a list/tuple of multiple ids.

	
__getitem__(item)

	Read a range of values from a stream.

The index must be a message id or a slice. An empty slice will result
in reading all values from the stream. Message ids provided as lower or
upper bounds are inclusive.

To specify a maximum number of messages, use the “step” parameter of
the slice.

	
__len__()

	Return the length of a stream.

	
add(data, id='*', maxlen=None, approximate=True)

	Add data to a stream.

	Parameters

	
	data (dict) – data to add to stream

	id – identifier for message (‘*’ to automatically append)

	maxlen – maximum length for stream

	approximate – allow stream max length to be approximate

	Returns

	the added message id.

	
consumers_info(group)

	Retrieve information about consumers within the given consumer group
operating on the stream. Calls xinfo_consumers().

	Parameters

	group – consumer group name

	Returns

	a dictionary containing consumer metadata

	
delete(*id_list)

	Delete one or more message by id. The index can be either a single
message id or a list/tuple of multiple ids.

	
get(docid)

	Get a message by id.

	Parameters

	docid – the message id to retrieve.

	Returns

	a 2-tuple of (message id, data) or None if not found.

	
groups_info()

	Retrieve information about consumer groups for the stream. Wraps call
to xinfo_groups().

	Returns

	a dictionary containing consumer group metadata

	
info()

	Retrieve information about the stream. Wraps call to
xinfo_stream().

	Returns

	a dictionary containing stream metadata

	
range(start='-', stop='+', count=None)

	Read a range of values from a stream.

	Parameters

	
	start – start key of range (inclusive) or ‘-‘ for oldest message

	stop – stop key of range (inclusive) or ‘+’ for newest message

	count – limit number of messages returned

	
read(count=None, block=None, last_id=None)

	Monitor stream for new data.

	Parameters

	
	count (int) – limit number of messages returned

	block (int) – milliseconds to block, 0 for indefinitely

	last_id – Last id read (an exclusive lower-bound). If the ‘$’
value is given, we will only read values added after our command
started blocking.

	Returns

	a list of (message id, data) 2-tuples.

	
set_id(id)

	Set the maximum message id for the stream.

	Parameters

	id – id of last-read message

	
trim(count, approximate=True)

	Trim the stream to the given “count” of messages, discarding the oldest
messages first.

	Parameters

	
	count – maximum size of stream

	approximate – allow size to be approximate

	
class walrus.ConsumerGroup(database, name, keys, consumer=None)

	Helper for working with Redis Streams consumer groups functionality. Each
stream associated with the consumer group is exposed as a special attribute
of the ConsumerGroup object, exposing stream-specific functionality
within the context of the group.

Rather than creating this class directly, use the
Database.consumer_group() method.

Each registered stream within the group is exposed as a special attribute
that provides stream-specific APIs within the context of the group. For
more information see ConsumerGroupStream.

The streams managed by a consumer group must exist before the consumer
group can be created. By default, calling ConsumerGroup.create()
will automatically create stream keys for any that do not exist.

Example:

cg = db.consumer_group('groupname', ['stream-1', 'stream-2'])
cg.create() # Create consumer group.
cg.stream_1 # ConsumerGroupStream for "stream-1"
cg.stream_2 # ConsumerGroupStream for "stream-2"

	Parameters

	
	database (Database) – Redis client

	name – consumer group name

	keys – stream identifier(s) to monitor. May be a single stream
key, a list of stream keys, or a key-to-minimum id mapping. The
minimum id for each stream should be considered an exclusive
lower-bound. The ‘$’ value can also be used to only read values
added after our command started blocking.

	consumer – name for consumer

	
consumer(name)

	Create a new consumer for the ConsumerGroup.

	Parameters

	name – name of consumer

	Returns

	a ConsumerGroup using the given consumer name.

	
create(ensure_keys_exist=True, mkstream=False)

	Create the consumer group and register it with the group’s stream keys.

	Parameters

	
	ensure_keys_exist – Ensure that the streams exist before creating
the consumer group. Streams that do not exist will be created.

	mkstream – Use the “MKSTREAM” option to ensure stream exists (may
require unstable version of Redis).

	
destroy()

	Destroy the consumer group.

	
read(count=None, block=None, consumer=None)

	Read unseen messages from all streams in the consumer group. Wrapper
for Database.xreadgroup method.

	Parameters

	
	count (int) – limit number of messages returned

	block (int) – milliseconds to block, 0 for indefinitely.

	consumer – consumer name

	Returns

	a list of (stream key, messages) tuples, where messages is
a list of (message id, data) 2-tuples.

	
reset()

	Reset the consumer group, clearing the last-read status for each
stream so it will read from the beginning of each stream.

	
set_id(id='$')

	Set the last-read message id for each stream in the consumer group. By
default, this will be the special “$” identifier, meaning all messages
are marked as having been read.

	Parameters

	id – id of last-read message (or “$”).

	
stream_info()

	Retrieve information for each stream managed by the consumer group.
Calls xinfo_stream() for each stream.

	Returns

	a dictionary mapping stream key to a dictionary of metadata

	
class walrus.containers.ConsumerGroupStream(Stream)

	Helper for working with an individual stream within the context of a
consumer group. This object is exposed as an attribute on a
ConsumerGroup object using the stream key for the attribute
name.

This class should not be created directly. It will automatically be added
to the ConsumerGroup object.

For example:

cg = db.consumer_group('groupname', ['stream-1', 'stream-2'])
cg.stream_1 # ConsumerGroupStream for "stream-1"
cg.stream_2 # ConsumerGroupStream for "stream-2"

	
ack(*id_list)

	Acknowledge that the message(s) were been processed by the consumer
associated with the parent ConsumerGroup.

	Parameters

	id_list – one or more message ids to acknowledge

	Returns

	number of messages marked acknowledged

	
claim(*id_list, **kwargs)

	Claim pending - but unacknowledged - messages for this stream within
the context of the parent ConsumerGroup.

	Parameters

	
	id_list – one or more message ids to acknowledge

	min_idle_time – minimum idle time in milliseconds (keyword-arg).

	Returns

	list of (message id, data) 2-tuples of messages that were
successfully claimed

	
consumers_info()

	Retrieve information about consumers within the given consumer group
operating on the stream. Calls xinfo_consumers().

	Returns

	a list of dictionaries containing consumer metadata

	
pending(start='-', stop='+', count=1000, consumer=None)

	List pending messages within the consumer group for this stream.

	Parameters

	
	start – start id (or ‘-‘ for oldest pending)

	stop – stop id (or ‘+’ for newest pending)

	count – limit number of messages returned

	consumer – restrict message list to the given consumer

	Returns

	A list containing status for each pending message. Each
pending message returns [id, consumer, idle time, deliveries].

	
read(count=None, block=None, last_id=None)

	Monitor the stream for new messages within the context of the parent
ConsumerGroup.

	Parameters

	
	count (int) – limit number of messages returned

	block (int) – milliseconds to block, 0 for indefinitely.

	last_id (str) – optional last ID, by default uses the special
token “>”, which reads the oldest unread message.

	Returns

	a list of (message id, data) 2-tuples.

	
set_id(id='$')

	Set the last-read message id for the stream within the context of the
parent ConsumerGroup. By default this will be the special
“$” identifier, meaning all messages are marked as having been read.

	Parameters

	id – id of last-read message (or “$”).

	
class walrus.BitField(Container)

	Wrapper that provides a convenient API for constructing and executing Redis
BITFIELD commands. The BITFIELD command can pack multiple operations into a
single logical command, so the BitField supports a method-
chaining API that allows multiple operations to be performed atomically.

Rather than instantiating this class directly, you should use the
Database.bit_field() method to obtain a BitField.

	
__delitem__(item)

	Clear a range of bits in a bitfield. Note that the item must be a
slice specifying the start and end of the range of bits to clear.

	
__getitem__(item)

	Short-hand for getting a range of bits in a bitfield. Note that the
item must be a slice specifying the start and end of the range of
bits to read.

	
__setitem__(item, value)

	Short-hand for setting a range of bits in a bitfield. Note that the
item must be a slice specifying the start and end of the range of
bits to read. If the value representation exceeds the number of bits
implied by the slice range, a ValueError is raised.

	
bit_count(start=None, end=None)

	Count the set bits in a string. Note that the start and end
parameters are offsets in bytes.

	
get(fmt, offset)

	Get the value of a given bitfield.

	Parameters

	
	fmt – format-string for the bitfield being read, e.g. u8 for an
unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	Returns

	a BitFieldOperation instance.

	
get_bit(offset)

	Get the bit value at the given offset (in bits).

	Parameters

	offset (int) – bit offset

	Returns

	value at bit offset, 1 or 0

	
get_raw()

	Return the raw bytestring that comprises the bitfield. Equivalent to a
normal GET command.

	
incrby(fmt, offset, increment, overflow=None)

	Increment a bitfield by a given amount.

	Parameters

	
	fmt – format-string for the bitfield being updated, e.g. u8 for
an unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	increment (int) – value to increment the bitfield by.

	overflow (str) – overflow algorithm. Defaults to WRAP, but other
acceptable values are SAT and FAIL. See the Redis docs for
descriptions of these algorithms.

	Returns

	a BitFieldOperation instance.

	
set(fmt, offset, value)

	Set the value of a given bitfield.

	Parameters

	
	fmt – format-string for the bitfield being read, e.g. u8 for an
unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	value (int) – value to set at the given position.

	Returns

	a BitFieldOperation instance.

	
set_bit(offset, value)

	Set the bit value at the given offset (in bits).

	Parameters

	
	offset (int) – bit offset

	value (int) – new value for bit, 1 or 0

	Returns

	previous value at bit offset, 1 or 0

	
set_raw(value)

	Set the raw bytestring that comprises the bitfield. Equivalent to a
normal SET command.

	
class walrus.containers.BitFieldOperation(database, key)

	Command builder for BITFIELD commands.

	
__iter__()

	Implicit execution and iteration of the return values for a sequence of
operations.

	
execute()

	Execute the operation(s) in a single BITFIELD command. The return value
is a list of values corresponding to each operation.

	
get(fmt, offset)

	Get the value of a given bitfield.

	Parameters

	
	fmt – format-string for the bitfield being read, e.g. u8 for an
unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	Returns

	a BitFieldOperation instance.

	
incrby(fmt, offset, increment, overflow=None)

	Increment a bitfield by a given amount.

	Parameters

	
	fmt – format-string for the bitfield being updated, e.g. u8 for
an unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	increment (int) – value to increment the bitfield by.

	overflow (str) – overflow algorithm. Defaults to WRAP, but other
acceptable values are SAT and FAIL. See the Redis docs for
descriptions of these algorithms.

	Returns

	a BitFieldOperation instance.

	
set(fmt, offset, value)

	Set the value of a given bitfield.

	Parameters

	
	fmt – format-string for the bitfield being read, e.g. u8 for an
unsigned 8-bit integer.

	offset (int) – offset (in number of bits).

	value (int) – value to set at the given position.

	Returns

	a BitFieldOperation instance.

	
class walrus.BloomFilter(Container)

	Bloom-filters are probabilistic data-structures that are used to answer the
question: “is X a member of set S?” It is possible to receive a false
positive, but impossible to receive a false negative (in other words, if
the bloom filter contains a value, it will never erroneously report that it
does not contain such a value). The accuracy of the bloom-filter and the
likelihood of a false positive can be reduced by increasing the size of the
bloomfilter. The default size is 64KB (or 524,288 bits).

Rather than instantiate this class directly, use
Database.bloom_filter().

	
__contains__(data)

	Check if an item has been added to the bloomfilter.

	Parameters

	data (bytes) – a bytestring representing the item to check.

	Returns

	a boolean indicating whether or not the item is present in
the bloomfilter. False-positives are possible, but a negative
return value is definitive.

	
add(data)

	Add an item to the bloomfilter.

	Parameters

	data (bytes) – a bytestring representing the item to add.

	
contains(data)

	Check if an item has been added to the bloomfilter.

	Parameters

	data (bytes) – a bytestring representing the item to check.

	Returns

	a boolean indicating whether or not the item is present in
the bloomfilter. False-positives are possible, but a negative
return value is definitive.

High-level APIs

	
class walrus.Autocomplete(database, namespace='walrus', cache_timeout=600, stopwords_file='stopwords.txt', use_json=True)

	Autocompletion for ascii-encoded string data. Titles are stored,
along with any corollary data in Redis. Substrings of the title
are stored in sorted sets using a unique scoring algorithm. The
scoring algorithm aims to return results in a sensible order,
by looking at the entire title and the position of the matched
substring within the title.

Additionally, the autocomplete object supports boosting search
results by object ID or object type.

	
__init__(database, namespace='walrus', cache_timeout=600, stopwords_file='stopwords.txt', use_json=True)

	
	Parameters

	
	database – A Database instance.

	namespace – Namespace to prefix keys used to store
metadata.

	cache_timeout – Complex searches using boosts will be
cached. Specify the amount of time these results are
cached for.

	stopwords_file – Filename containing newline-separated
stopwords.

	use_json (bool) – Whether object data should be
serialized as JSON.

	
boost_object(obj_id=None, obj_type=None, multiplier=1.1, relative=True)

	Boost search results for the given object or type by the
amount specified. When the multiplier is greater than
1, the results will percolate to the top. Values between
0 and 1 will percolate results to the bottom.

Either an obj_id or obj_type (or both) must be
specified.

	Parameters

	
	obj_id – An object’s unique identifier (optional).

	obj_type – The object’s type (optional).

	multiplier – A positive floating-point number.

	relative – If True, then any pre-existing saved
boost will be updated using the given multiplier.

Examples:

Make all objects of type=photos percolate to top.
ac.boost_object(obj_type='photo', multiplier=2.0)

Boost a particularly popular blog entry.
ac.boost_object(
 popular_entry.id,
 'entry',
 multipler=5.0,
 relative=False)

	
exists(obj_id, obj_type=None)

	Return whether the given object exists in the search index.

	Parameters

	
	obj_id – The object’s unique identifier.

	obj_type – The object’s type.

	
flush(batch_size=1000)

	Delete all autocomplete indexes and metadata.

	
list_data()

	Return all the data stored in the autocomplete index. If the data was
stored as serialized JSON, then it will be de-serialized before being
returned.

	Return type

	list

	
list_titles()

	Return the titles of all objects stored in the autocomplete index.

	Return type

	list

	
remove(obj_id, obj_type=None)

	Remove an object identified by the given obj_id (and
optionally obj_type) from the search index.

	Parameters

	
	obj_id – The object’s unique identifier.

	obj_type – The object’s type.

	
search(phrase, limit=None, boosts=None, chunk_size=1000)

	Perform a search for the given phrase. Objects whose title
matches the search will be returned. The values returned
will be whatever you specified as the data parameter
when you called store().

	Parameters

	
	phrase – One or more words or substrings.

	limit (int) – Limit size of the result set.

	boosts (dict) – A mapping of object id/object type to
floating point multipliers.

	Returns

	A list containing the object data for objects
matching the search phrase.

	
store(obj_id, title=None, data=None, obj_type=None)

	Store data in the autocomplete index.

	Parameters

	
	obj_id – Either a unique identifier for the object
being indexed or the word/phrase to be indexed.

	title – The word or phrase to be indexed. If not
provided, the obj_id will be used as the title.

	data – Arbitrary data to index, which will be
returned when searching for results. If not provided,
this value will default to the title being indexed.

	obj_type – Optional object type. Since results can be
boosted by type, you might find it useful to specify this
when storing multiple types of objects.

You have the option of storing several types of data as
defined by the parameters. At the minimum, you can specify
an obj_id, which will be the word or phrase you wish to
index. Alternatively, if for instance you were indexing blog
posts, you might specify all parameters.

	
class walrus.Cache(database, name='cache', default_timeout=None, debug=False)

	Cache implementation with simple get/set operations,
and a decorator.

	
__init__(database, name='cache', default_timeout=None, debug=False)

	
	Parameters

	
	database – Database instance.

	name – Namespace for this cache.

	default_timeout (int) – Default cache timeout.

	debug – Disable cache for debugging purposes. Cache will no-op.

	
cache_async(key_fn=<function _key_fn>, timeout=3600)

	Decorator that will execute the cached function in a separate
thread. The function will immediately return, returning a
callable to the user. This callable can be used to check for
a return value.

For details, see the Cache Asynchronously section of the docs.

	Parameters

	
	key_fn – Function used to generate cache key.

	timeout (int) – Cache timeout in seconds.

	Returns

	A new function which can be called to retrieve the
return value of the decorated function.

	
cached(key_fn=<function _key_fn>, timeout=None, metrics=False)

	Decorator that will transparently cache calls to the
wrapped function. By default, the cache key will be made
up of the arguments passed in (like memoize), but you can
override this by specifying a custom key_fn.

	Parameters

	
	key_fn – Function used to generate a key from the
given args and kwargs.

	timeout – Time to cache return values.

	metrics – Keep stats on cache utilization and timing.

	Returns

	Return the result of the decorated function
call with the given args and kwargs.

Usage:

cache = Cache(my_database)

@cache.cached(timeout=60)
def add_numbers(a, b):
 return a + b

print add_numbers(3, 4) # Function is called.
print add_numbers(3, 4) # Not called, value is cached.

add_numbers.bust(3, 4) # Clear cache for (3, 4).
print add_numbers(3, 4) # Function is called.

The decorated function also gains a new attribute named
bust which will clear the cache for the given args.

	
cached_property(key_fn=<function _key_fn>, timeout=None)

	Decorator that will transparently cache calls to the wrapped
method. The method will be exposed as a property.

Usage:

cache = Cache(my_database)

class Clock(object):
 @cache.cached_property()
 def now(self):
 return datetime.datetime.now()

clock = Clock()
print clock.now

	
delete(key)

	Remove the given key from the cache.

	
flush()

	Remove all cached objects from the database.

	
get(key, default=None)

	Retreive a value from the cache. In the event the value
does not exist, return the default.

	
keys()

	Return all keys for cached values.

	
set(key, value, timeout=None)

	Cache the given value in the specified key. If no
timeout is specified, the default timeout will be used.

	
class walrus.Counter(database, name)

	Simple counter.

	
__init__(database, name)

	
	Parameters

	
	database – A walrus Database instance.

	name (str) – The name for the counter.

	
class walrus.Index(db, name, **tokenizer_settings)

	Full-text search index.

Store documents, along with arbitrary metadata, and perform full-text
search on the document content. Supports porter-stemming, stopword
filtering, basic result ranking, and (optionally) double-metaphone for
phonetic search.

	
__init__(db, name, **tokenizer_settings)

	
	Parameters

	
	db (Database) – a walrus database object.

	name (str) – name for the search index.

	stemmer (bool) – use porter stemmer (default True).

	metaphone (bool) – use double metaphone (default False).

	stopwords_file (str) – defaults to walrus stopwords.txt.

	min_word_length (int) – specify minimum word length.

Create a search index for storing and searching documents.

	
add(key, content, **metadata)

	
	Parameters

	
	key – Document unique identifier.

	content (str) – Content to store and index for search.

	metadata – Arbitrary key/value pairs to store for document.

Add a document to the search index.

	
get_document(document_id)

	
	Parameters

	document_id – Document unique identifier.

	Returns

	a dictionary containing the document content and
any associated metadata.

	
remove(key, preserve_data=False)

	
	Parameters

	key – Document unique identifier.

Remove the document from the search index.

	
replace(key, content, **metadata)

	
	Parameters

	
	key – Document unique identifier.

	content (str) – Content to store and index for search.

	metadata – Arbitrary key/value pairs to store for document.

Update the given document. Existing metadata will not be removed and
replaced with the provided metadata.

	
search(query)

	
	Parameters

	query (str) – Search query. May contain boolean/set operations
and parentheses.

	Returns

	a list of document hashes corresponding to matching
documents.

Search the index. The return value is a list of dictionaries
corresponding to the documents that matched. These dictionaries contain
a content key with the original indexed content, along with any
additional metadata that was specified.

	
update(key, content, **metadata)

	
	Parameters

	
	key – Document unique identifier.

	content (str) – Content to store and index for search.

	metadata – Arbitrary key/value pairs to store for document.

Update the given document. Existing metadata will be preserved and,
optionally, updated with the provided metadata.

	
class walrus.Graph(walrus, namespace)

	Simple hexastore built using Redis ZSets. The basic idea is that we have
a collection of relationships of the form subject-predicate-object. For
example:

	charlie – friends – huey

	charlie – lives – Kansas

	huey – lives – Kansas

We might wish to ask questions of our data-store like “which of charlie’s
friends live in Kansas?” To do this we will store every permutation of
the S-P-O triples, then we can do efficient queries using the parts of
the relationship we know:

	query the “object” portion of the “charlie – friends” subject
and predicate.

	for each object returned, turn it into the subject of a second query
whose predicate is “lives” and whose object is “Kansas”

So we would return the subjects that satisfy the following expression:

("charlie -- friends") -- lives -- Kansas.

To accomplish this in Python we could write:

db = Database()
graph = db.graph('people')

Store my friends.
graph.store_many(
 ('charlie', 'friends', 'huey'),
 ('charlie', 'friends', 'zaizee'),
 ('charlie', 'friends', 'nuggie'))

Store where people live.
graph.store_many(
 ('huey', 'lives', 'Kansas'),
 ('zaizee', 'lives', 'Missouri'),
 ('nuggie', 'lives', 'Kansas'),
 ('mickey', 'lives', 'Kansas'))

Perform our search. We will use a variable (X) to indicate the
value we're interested in.
X = graph.v.X # Create a variable placeholder.

In the first clause we indicate we are searching for my friends.
In the second clause, we only want those friends who also live in
Kansas.
results = graph.search(
 {'s': 'charlie', 'p': 'friends', 'o': X},
 {'s': X, 'p': 'lives', 'o': 'Kansas'})
print results

Prints: {'X': {'huey', 'nuggie'}}

See: http://redis.io/topics/indexes#representing-and-querying-graphs-using-an-hexastore

	
__init__(walrus, namespace)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
delete(s, p, o)

	Remove the given subj-pred-obj triple from the database.

	
query(s=None, p=None, o=None)

	Return all triples that satisfy the given expression. You may specify
all or none of the fields (s, p, and o). For instance, if I wanted
to query for all the people who live in Kansas, I might write:

for triple in graph.query(p='lives', o='Kansas'):
 print triple['s'], 'lives in Kansas!'

	
search(*conditions)

	Given a set of conditions, return all values that satisfy the
conditions for a given set of variables.

For example, suppose I wanted to find all of my friends who live in
Kansas:

X = graph.v.X
results = graph.search(
 {'s': 'charlie', 'p': 'friends', 'o': X},
 {'s': X, 'p': 'lives', 'o': 'Kansas'})

The return value consists of a dictionary keyed by variable, whose
values are set objects containing the values that satisfy the
query clauses, e.g.:

print results

Result has one key, for our "X" variable. The value is the set
of my friends that live in Kansas.
{'X': {'huey', 'nuggie'}}

We can assume the following triples exist:
('charlie', 'friends', 'huey')
('charlie', 'friends', 'nuggie')
('huey', 'lives', 'Kansas')
('nuggie', 'lives', 'Kansas')

	
store(s, p, o)

	Store a subject-predicate-object triple in the database.

	
store_many(items)

	Store multiple subject-predicate-object triples in the database.

	Parameters

	items – A list of (subj, pred, obj) 3-tuples.

	
v(name)

	Create a named variable, used to construct multi-clause queries with
the Graph.search() method.

	
class walrus.Lock(database, name, ttl=None, lock_id=None)

	Lock implementation. Can also be used as a context-manager or
decorator.

Unlike the redis-py lock implementation, this Lock does not
use a spin-loop when blocking to acquire the lock. Instead,
it performs a blocking pop on a list. When a lock is released,
a value is pushed into this list, signalling that the lock is
available.

The lock uses Lua scripts to ensure the atomicity of its
operations.

You can set a TTL on a lock to reduce the potential for deadlocks
in the event of a crash. If a lock is not released before it
exceeds its TTL, and threads that are blocked waiting for the
lock could potentially re-acquire it.

Note

TTL is specified in milliseconds.

Locks can be used as context managers or as decorators:

lock = db.lock('my-lock')

with lock:
 perform_some_calculations()

@lock
def another_function():
 # The lock will be acquired when this function is
 # called, and released when the function returns.
 do_some_more_calculations()

	
__init__(database, name, ttl=None, lock_id=None)

	
	Parameters

	
	database – A walrus Database instance.

	name (str) – The name for the lock.

	ttl (int) – The time-to-live for the lock in milliseconds.

	lock_id (str) – Unique identifier for the lock instance.

	
acquire(block=True)

	Acquire the lock. The lock will be held until it is released
by calling Lock.release(). If the lock was
initialized with a ttl, then the lock will be released
automatically after the given number of milliseconds.

By default this method will block until the lock becomes
free (either by being released or expiring). The blocking is
accomplished by performing a blocking left-pop on a list, as
opposed to a spin-loop.

If you specify block=False, then the method will return
False if the lock could not be acquired.

	Parameters

	block (bool) – Whether to block while waiting to acquire
the lock.

	Returns

	Returns True if the lock was acquired.

	
clear()

	Clear the lock, allowing it to be acquired. Do not use this
method except to recover from a deadlock. Otherwise you should
use Lock.release().

	
release()

	Release the lock.

	Returns

	Returns True if the lock was released.

	
class walrus.Model(*args, **kwargs)

	A collection of fields to be stored in the database. Walrus
stores model instance data in hashes keyed by a combination of
model name and primary key value. Instance attributes are
automatically converted to values suitable for storage in Redis
(i.e., datetime becomes timestamp), and vice-versa.

Additionally, model fields can be indexed, which allows
filtering. There are three types of indexes:

	Absolute

	Scalar

	Full-text search

Absolute indexes are used for values like strings or UUIDs and
support only equality and inequality checks.

Scalar indexes are for numeric values as well as datetimes,
and support equality, inequality, and greater or less-than.

The final type of index, FullText, can only be used with the
TextField. FullText indexes allow search using
the match() method. For more info, see Full-text search.

	
__database__ = None

	Required: the Database instance to use to
persist model data.

	
__init__(*args, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__namespace__ = None

	Optional: namespace to use for model data.

	
classmethod all()

	Return an iterator that successively yields saved model
instances. Models are saved in an unordered Set,
so the iterator will return them in arbitrary order.

Example:

for note in Note.all():
 print note.content

To return models in sorted order, see Model.query().
Example returning all records, sorted newest to oldest:

for note in Note.query(order_by=Note.timestamp.desc()):
 print note.timestamp, note.content

	
classmethod count()

	Return the number of objects in the given collection.

	
classmethod create(**kwargs)

	Create a new model instance and save it to the database.
Values are passed in as keyword arguments.

Example:

user = User.create(first_name='Charlie', last_name='Leifer')

	
delete(for_update=False)

	Delete the given model instance.

	
classmethod get(expression)

	Retrieve the model instance matching the given expression.
If the number of matching results is not equal to one, then
a ValueError will be raised.

	Parameters

	expression – A boolean expression to filter by.

	Returns

	The matching Model instance.

	Raises

	ValueError if result set size is not 1.

	
incr(field, incr_by=1)

	Increment the value stored in the given field by the specified
amount. Any indexes will be updated at the time incr() is
called.

	Parameters

	
	field (Field) – A field instance.

	incr_by – An int or float.

Example:

Retrieve a page counter object for the given URL.
page_count = PageCounter.get(PageCounter.url == url)

Update the hit count, persisting to the database and
updating secondary indexes in one go.
page_count.incr(PageCounter.hits)

	
index_separator = '.'

	Required: character to use as a delimiter for indexes, default “.”

	
classmethod load(primary_key, convert_key=True)

	Retrieve a model instance by primary key.

	Parameters

	primary_key – The primary key of the model instance.

	Returns

	Corresponding Model instance.

	Raises

	KeyError if object with given primary key does
not exist.

	
classmethod query(expression=None, order_by=None)

	Return model instances matching the given expression (if
specified). Additionally, matching instances can be returned
sorted by field value.

Example:

Get administrators sorted by username.
admin_users = User.query(
 (User.admin == True),
 order_by=User.username)

List blog entries newest to oldest.
entries = Entry.query(order_by=Entry.timestamp.desc())

Perform a complex filter.
values = StatData.query(
 (StatData.timestamp < datetime.date.today()) &
 ((StatData.type == 'pv') | (StatData.type == 'cv')))

	Parameters

	
	expression – A boolean expression to filter by.

	order_by – A field whose value should be used to
sort returned instances.

	
classmethod query_delete(expression=None)

	Delete model instances matching the given expression (if
specified). If no expression is provided, then all model instances
will be deleted.

	Parameters

	expression – A boolean expression to filter by.

	
save()

	Save the given model instance. If the model does not have
a primary key value, Walrus will call the primary key field’s
generate_key() method to attempt to generate a suitable
value.

	
to_hash()

	Return a Hash instance corresponding to the
raw model data.

	
class walrus.RateLimit(database, name, limit=5, per=60, debug=False)

	Rate limit implementation. Allows up to “limit” number of events every per
the given number of seconds.

	
__init__(database, name, limit=5, per=60, debug=False)

	
	Parameters

	
	database – Database instance.

	name – Namespace for this cache.

	limit (int) – Number of events allowed during a given time period.

	per (int) – Time period the limit applies to, in seconds.

	debug – Disable rate-limit for debugging purposes. All events
will appear to be allowed and valid.

	
limit(key)

	Function to log an event with the given key. If the key has not
exceeded their alotted events, then the function returns False to
indicate that no limit is being imposed.

If the key has exceeded the number of events, then the function
returns True indicating rate-limiting should occur.

	Parameters

	key (str) – A key identifying the source of the event.

	Returns

	Boolean indicating whether the event should be rate-limited
or not.

	
rate_limited(key_function=None)

	Function or method decorator that will prevent calls to the decorated
function when the number of events has been exceeded for the given
time period.

It is probably important that you take care to choose an appropiate
key function. For instance, if rate-limiting a web-page you might use
the requesting user’s IP as the key.

If the number of allowed events has been exceedd, a
RateLimitException will be raised.

	Parameters

	key_function – Function that accepts the params of the decorated
function and returns a string key. If not provided, a hash of the
args and kwargs will be used.

	Returns

	If the call is not rate-limited, then the return value will
be that of the decorated function.

	Raises

	RateLimitException.

	
class walrus.TimeSeries(ConsumerGroup)

	TimeSeries is a consumer-group that provides a higher level of
abstraction, reading and writing message ids as datetimes, and returning
messages using a convenient, lightweight Message class.

Rather than creating this class directly, use the
Database.time_series() method.

Each registered stream within the group is exposed as a special attribute
that provides stream-specific APIs within the context of the group. For
more information see TimeSeriesStream.

Example:

ts = db.time_series('groupname', ['stream-1', 'stream-2'])
ts.stream_1 # TimeSeriesStream for "stream-1"
ts.stream_2 # TimeSeriesStream for "stream-2"

	Parameters

	
	database (Database) – Redis client

	group – name of consumer group

	keys – stream identifier(s) to monitor. May be a single stream
key, a list of stream keys, or a key-to-minimum id mapping. The
minimum id for each stream should be considered an exclusive
lower-bound. The ‘$’ value can also be used to only read values
added after our command started blocking.

	consumer – name for consumer within group

	Returns

	a TimeSeries instance

	
consumer(name)

	Create a new consumer for the ConsumerGroup.

	Parameters

	name – name of consumer

	Returns

	a ConsumerGroup using the given consumer name.

	
create(ensure_keys_exist=True, mkstream=False)

	Create the consumer group and register it with the group’s stream keys.

	Parameters

	
	ensure_keys_exist – Ensure that the streams exist before creating
the consumer group. Streams that do not exist will be created.

	mkstream – Use the “MKSTREAM” option to ensure stream exists (may
require unstable version of Redis).

	
destroy()

	Destroy the consumer group.

	
read(count=None, block=None)

	Read unseen messages from all streams in the consumer group. Wrapper
for Database.xreadgroup method.

	Parameters

	
	count (int) – limit number of messages returned

	block (int) – milliseconds to block, 0 for indefinitely.

	Returns

	a list of Message objects

	
reset()

	Reset the consumer group, clearing the last-read status for each
stream so it will read from the beginning of each stream.

	
set_id(id='$')

	Set the last-read message id for each stream in the consumer group. By
default, this will be the special “$” identifier, meaning all messages
are marked as having been read.

	Parameters

	id – id of last-read message (or “$”).

Field types

	
class walrus.Field(index=False, primary_key=False, default=None)

	Named attribute on a model that will hold a value of the given
type. Fields are declared as attributes on a model class.

Example:

walrus_db = Database()

class User(Model):
 __database__ = walrus_db
 __namespace__ = 'my-app'

 # Use the user's email address as the primary key.
 # All primary key fields will also get a secondary
 # index, so there's no need to specify index=True.
 email = TextField(primary_key=True)

 # Store the user's interests in a free-form text
 # field. Also create a secondary full-text search
 # index on this field.
 interests = TextField(
 fts=True,
 stemmer=True,
 min_word_length=3)

class Note(Model):
 __database__ = walrus_app
 __namespace__ = 'my-app'

 # A note is associated with a user. We will create a
 # secondary index on this field so we can efficiently
 # retrieve all notes created by a specific user.
 user_email = TextField(index=True)

 # Store the note content in a searchable text field. Use
 # the double-metaphone algorithm to index the content.
 content = TextField(
 fts=True,
 stemmer=True,
 metaphone=True)

 # Store the timestamp the note was created automatically.
 # Note that we do not call `now()`, but rather pass the
 # function itself.
 timestamp = DateTimeField(default=datetime.datetime.now)

	
__init__(index=False, primary_key=False, default=None)

	
	Parameters

	
	index (bool) – Use this field as an index. Indexed
fields will support Model.get() lookups.

	primary_key (bool) – Use this field as the primary key.

	
get_indexes()

	Return a list of secondary indexes to create for the
field. For instance, a TextField might have a full-text
search index, whereas an IntegerField would have a scalar
index that supported range queries.

	
class walrus.TextField(fts=False, stemmer=True, metaphone=False, stopwords_file=None, min_word_length=None, *args, **kwargs)

	Store unicode strings, encoded as UTF-8. TextField
also supports full-text search through the optional fts
parameter.

Note

If full-text search is enabled for the field, then
the index argument is implied.

	Parameters

	
	fts (bool) – Enable simple full-text search.

	stemmer (bool) – Use porter stemmer to process words.

	metaphone (bool) – Use the double metaphone algorithm to
process words.

	stopwords_file (str) – File containing stopwords, one per
line. If not specified, the default stopwords will be used.

	min_word_length (int) – Minimum length (inclusive) of word
to be included in search index.

	
search(query[, default_conjunction='and'])

	
	Parameters

	
	query (str) – Search query.

	default_conjunction (str) – Either 'and' or 'or'.

Create an expression corresponding to the given search query. Search queries can contain conjunctions (AND and OR).

Example:

class Message(Model):
 database = my_db
 content = TextField(fts=True)

expression = Message.content.search('python AND (redis OR walrus)')
messages = Message.query(expression)
for message in messages:
 print message.content

	
get_indexes()

	Return a list of secondary indexes to create for the
field. For instance, a TextField might have a full-text
search index, whereas an IntegerField would have a scalar
index that supported range queries.

	
class walrus.IntegerField(index=False, primary_key=False, default=None)

	Store integer values.

	
class walrus.AutoIncrementField(IntegerField)

	Auto-incrementing primary key field.

	
class walrus.FloatField(index=False, primary_key=False, default=None)

	Store floating point values.

	
class walrus.ByteField(index=False, primary_key=False, default=None)

	Store arbitrary bytes.

	
class walrus.BooleanField(index=False, primary_key=False, default=None)

	Store boolean values.

	
class walrus.UUIDField(**kwargs)

	Store unique IDs. Can be used as primary key.

	
class walrus.DateTimeField(index=False, primary_key=False, default=None)

	Store Python datetime objects.

	
class walrus.DateField(index=False, primary_key=False, default=None)

	Store Python date objects.

	
class walrus.JSONField(index=False, primary_key=False, default=None)

	Store arbitrary JSON data.

Container Field Types

	
class walrus.HashField(*args, **kwargs)

	Store values in a Redis hash.

	
container_class

	alias of walrus.containers.Hash

	
class walrus.ListField(*args, **kwargs)

	Store values in a Redis list.

	
container_class

	alias of walrus.containers.List

	
class walrus.SetField(*args, **kwargs)

	Store values in a Redis set.

	
container_class

	alias of walrus.containers.Set

	
class walrus.ZSetField(*args, **kwargs)

	Store values in a Redis sorted set.

	
container_class

	alias of walrus.containers.ZSet

Alternative Backends (“tusks”)

In addition to Redis [http://redis.io], I’ve been experimenting with adding support for alternative redis-like backends. These alternative backends are referred to as tusks, and currently Walrus supports the following:

	RLite [https://github.com/seppo0010/rlite], a self-contained and serverless Redis-compatible database engine. Use rlite if you want all the features of Redis, without the separate server process..

	Vedis [http://vedis.symisc.net/index.html], an embeddable data-store written in C with over 70 commands similar in concept to Redis. Vedis is built on a fast key/value store and supports writing custom commands in Python. Use vedis if you are OK working with a smaller subset of commands out-of-the-box or are interested in writing your own commands.

	ledisdb [http://ledisdb.com/], Redis-like database written in Golang. Supports almost all the Redis commands. Requires ledis-py [https://github.com/holys/ledis-py].

rlite

rlite [https://github.com/seppo0010/rlite] is an embedded Redis-compatible database.

According to the project’s README,

rlite is to Redis what SQLite is to Postgres.

The project’s features are:

	Supports virtually every Redis command.

	Self-contained embedded data-store.

	Serverless / zero-configuration.

	Transactions.

	Databases can be in-memory or stored in a single file on-disk.

Use-cases for rlite:

	Mobile environments, where it is not practical to run a database server.

	Development or testing environments. Database fixtures can be distributed as a simple binary file.

	Slave of Redis for additional durability.

	Application file format, alternative to a proprietary format or SQLite.

Python bindings

rlite-py [https://github.com/seppo0010/rlite-py] allows rlite to be embedded in your Python apps. To install rlite-py, you can use pip:

$ pip install hirlite

Using with Walrus

To use rlite instead of Redis in your walrus application, simply use the WalrusLite in place of the usual Walrus object:

from walrus.tusks.rlite import WalrusLite

walrus = WalrusLite('/path/to/database.db')

WalrusLite can also be used as an in-memory database by omitting a path to a database file when instantiating, or by passing the special string ':memory:':

from walrus.tusks.rlite import WalrusLite

walrus_mem_db = WalrusLite(':memory:')

Vedis

Vedis [http://vedis.symisc.net/] is an embedded Redis-like database with over 70 commands. Vedis, like rlite, does not have a separate server process. And like rlite, Vedis supports both file-backed databases and transient in-memory databases.

According to the project’s README,

Vedis is a self-contained C library without dependency. It requires very minimal support from external libraries or from the operating system. This makes it well suited for use in embedded devices that lack the support infrastructure of a desktop computer. This also makes Vedis appropriate for use within applications that need to run without modification on a wide variety of computers of varying configurations.

The project’s features are:

	Serverless / zero-configuration.

	Transactional (ACID) datastore.

	Databases can be in-memory or stored in a single file on-disk.

	Over 70 commands covering many Redis features.

	Cross-platform file format.

	Includes fast low-level key/value store.

	Thread-safe and fully re-entrant.

	Support for Terabyte-sized databases.

	Python bindings [https://vedis-python.readthedocs.io/en/latest/] allow you to write your own Vedis commands in Python [https://vedis-python.readthedocs.io/en/latest/custom_commands.html].

Use-cases for Vedis:

	Mobile environments, where it is not practical to run a database server.

	Development or testing environments. Database fixtures can be distributed as a simple binary file.

	Application file format, alternative to a proprietary format or SQLite.

	Extremely large databases that do not fit in RAM.

	Embedded platforms with limited resources.

Note

Unlike rlite, which supports virtually all the Redis commands, Vedis supports a more limited subset. Notably lacking are sorted-set operations and many of the list operations. Hashes, Sets and key/value operations are very well supported, though.

Warning

The authors of Vedis have indicated that they are not actively working on new features for Vedis right now.

Python bindings

vedis-python [https://github.com/coleifer/vedis-python] allows Vedis to be embedded in your Python apps. To install vedis-python, you can use pip:

$ pip install vedis

Using with Walrus

To use Vedis instead of Redis in your walrus application, simply use the WalrusVedis in place of the usual Walrus object:

from walrus.tusks.vedisdb import WalrusVedis

walrus = WalrusVedis('/path/to/database.db')

WalrusVedis can also be used as an in-memory database by omitting a path to a database file when instantiating, or by passing the special string ':memory:':

from walrus.tusks.vedisdb import WalrusVedis

walrus_mem_db = WalrusVedis(':memory:')

Writing a custom command

One of the neat features of Vedis is the ease with which you can write your own commands. Here are a couple examples:

from walrus.tusks.vedisdb import WalrusVedis

db = WalrusVedis() # Create an in-memory database.

@db.command('SUNION') # Vedis supports SDIFF and SINTER, but not SUNION.
def sunion(context, key1, key2):
 return list(db.smembers(key1) | db.smembers(key2))

@db.command('KTITLE') # Access the low-level key/value store via the context.
def ktitle(context, source, dest_key):
 source_val = context[source]
 if source_val:
 context[dest_key] = source_val.title()
 return True
 return False

We can use these commands like so:

>>> s1 = db.Set('s1')
>>> s1.add(*range(3))
3
>>> s2.add(*range(1, 5))
4
>>> db.SUNION('s1', 's2')
['1', '0', '3', '2', '4']

>>> db['user.1.username'] = 'charles'
>>> db.KTITLE('user.1.username', 'user.1.display_name')
1
>>> print db['user.1.display_name']
Charles

Ledis

ledis [http://ledisdb.com/] is a Redis-like database written in Golang.

The project’s features are:

	Supports virtually every Redis command.

	Supports multiple backends, including LevelDB, RocksDB, LMDB, BoltDB and in-memory databases.

	Data storage is not limited by RAM, since the databases are disk-based.

	Transactions.

	Supports the Redis protocol for communication, so most Redis clients work with Ledis.

	Written in golang, easy to deploy.

Use-cases for ledisdb:

	Store data-sets that exceed RAM.

	Use with LevelDB, RocksDB, etc.

Python bindings

ledis-py [https://github.com/holys/ledis-py] allows you to connect to ledisdb. To install ledis-py, you can use pip:

$ pip install ledis

Using with Walrus

To use ledisdb instead of Redis in your walrus application, simply use the WalrusLedis in place of the usual Walrus object:

from walrus.tusks.ledisdb import WalrusLedis

walrus = WalrusLedis()

Contributing

I’d love help making walrus a better, more useful library so if you have any questions, comments or suggestions please feel free to open a GitHub ticket:

https://github.com/coleifer/walrus/issues/new

Found a bug?

[image: _images/p1420743625.21.png]
If you think you’ve found a bug in walrus, please create a GitHub ticket and include any traceback if applicable.

https://github.com/coleifer/walrus/issues/new

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 walrus	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	
 	__and__() (walrus.Set method)

 	__contains__() (walrus.Array method)

 	(walrus.BloomFilter method)

 	(walrus.Hash method)

 	(walrus.Set method)

 	(walrus.ZSet method)

 	__database__ (walrus.Model attribute)

 	__delitem__() (walrus.Array method)

 	(walrus.BitField method)

 	(walrus.Hash method)

 	(walrus.List method)

 	(walrus.Set method)

 	(walrus.Stream method)

 	(walrus.ZSet method)

 	__getitem__() (walrus.Array method)

 	(walrus.BitField method)

 	(walrus.Hash method)

 	(walrus.List method)

 	(walrus.Stream method)

 	(walrus.ZSet method)

 	__init__() (walrus.Autocomplete method)

 	(walrus.Cache method)

 	(walrus.Counter method)

 	(walrus.Database method)

 	(walrus.Field method)

 	(walrus.Graph method)

 	(walrus.Index method)

 	(walrus.Lock method)

 	(walrus.Model method)

 	(walrus.RateLimit method)

 	
 	__iter__() (walrus.Array method)

 	(walrus.Database method)

 	(walrus.Hash method)

 	(walrus.List method)

 	(walrus.Set method)

 	(walrus.ZSet method)

 	(walrus.containers.BitFieldOperation method)

 	__len__() (walrus.Array method)

 	(walrus.Hash method)

 	(walrus.List method)

 	(walrus.Set method)

 	(walrus.Stream method)

 	(walrus.ZSet method)

 	__namespace__ (walrus.Model attribute)

 	__or__() (walrus.Set method)

 	__setitem__() (walrus.Array method)

 	(walrus.BitField method)

 	(walrus.Hash method)

 	(walrus.List method)

 	(walrus.ZSet method)

 	__sub__() (walrus.Set method)

A

 	
 	ack() (walrus.containers.ConsumerGroupStream method)

 	acquire() (walrus.Lock method)

 	add() (walrus.BloomFilter method)

 	(walrus.HyperLogLog method)

 	(walrus.Index method)

 	(walrus.Set method)

 	(walrus.Stream method)

 	(walrus.ZSet method)

 	all() (walrus.Model class method)

 	append() (walrus.Array method)

 	(walrus.List method)

 	
 	Array (class in walrus)

 	Array() (walrus.Database method)

 	as_dict() (walrus.Hash method)

 	as_items() (walrus.ZSet method)

 	as_list() (walrus.Array method)

 	(walrus.List method)

 	as_set() (walrus.Set method)

 	Autocomplete (class in walrus)

 	AutoIncrementField (class in walrus)

B

 	
 	bit_count() (walrus.BitField method)

 	bit_field() (walrus.Database method)

 	BitField (class in walrus)

 	BitFieldOperation (class in walrus.containers)

 	bloom_filter() (walrus.Database method)

 	
 	BloomFilter (class in walrus)

 	BooleanField (class in walrus)

 	boost_object() (walrus.Autocomplete method)

 	bpopmax() (walrus.ZSet method)

 	bpopmin() (walrus.ZSet method)

 	ByteField (class in walrus)

C

 	
 	Cache (class in walrus)

 	cache() (walrus.Database method)

 	cache_async() (walrus.Cache method)

 	cached() (walrus.Cache method)

 	cached_property() (walrus.Cache method)

 	cas() (walrus.Database method)

 	claim() (walrus.containers.ConsumerGroupStream method)

 	clear() (walrus.Container method)

 	(walrus.Lock method)

 	consumer() (walrus.ConsumerGroup method)

 	(walrus.TimeSeries method)

 	consumer_group() (walrus.Database method)

 	ConsumerGroup (class in walrus)

 	ConsumerGroupStream (class in walrus.containers)

 	
 	consumers_info() (walrus.containers.ConsumerGroupStream method)

 	(walrus.Stream method)

 	Container (class in walrus)

 	container_class (walrus.HashField attribute)

 	(walrus.ListField attribute)

 	(walrus.SetField attribute)

 	(walrus.ZSetField attribute)

 	contains() (walrus.BloomFilter method)

 	count() (walrus.Model class method)

 	(walrus.ZSet method)

 	Counter (class in walrus)

 	counter() (walrus.Database method)

 	create() (walrus.ConsumerGroup method)

 	(walrus.Model class method)

 	(walrus.TimeSeries method)

D

 	
 	Database (class in walrus)

 	DateField (class in walrus)

 	DateTimeField (class in walrus)

 	delete() (walrus.Cache method)

 	(walrus.Graph method)

 	(walrus.Model method)

 	(walrus.Stream method)

 	
 	destroy() (walrus.ConsumerGroup method)

 	(walrus.TimeSeries method)

 	diffstore() (walrus.Set method)

 	dump() (walrus.Container method)

E

 	
 	execute() (walrus.containers.BitFieldOperation method)

 	exists() (walrus.Autocomplete method)

 	
 	expire() (walrus.Container method)

 	extend() (walrus.Array method)

 	(walrus.List method)

F

 	
 	Field (class in walrus)

 	FloatField (class in walrus)

 	
 	flush() (walrus.Autocomplete method)

 	(walrus.Cache method)

G

 	
 	get() (walrus.BitField method)

 	(walrus.Cache method)

 	(walrus.Model class method)

 	(walrus.Stream method)

 	(walrus.containers.BitFieldOperation method)

 	get_bit() (walrus.BitField method)

 	get_document() (walrus.Index method)

 	
 	get_indexes() (walrus.Field method)

 	(walrus.TextField method)

 	get_key() (walrus.Database method)

 	get_raw() (walrus.BitField method)

 	get_temp_key() (walrus.Database method)

 	Graph (class in walrus)

 	graph() (walrus.Database method)

 	groups_info() (walrus.Stream method)

H

 	
 	Hash (class in walrus)

 	Hash() (walrus.Database method)

 	
 	HashField (class in walrus)

 	HyperLogLog (class in walrus)

 	HyperLogLog() (walrus.Database method)

I

 	
 	incr() (walrus.Hash method)

 	(walrus.Model method)

 	(walrus.ZSet method)

 	incrby() (walrus.BitField method)

 	(walrus.containers.BitFieldOperation method)

 	Index (class in walrus)

 	Index() (walrus.Database method)

 	
 	index_separator (walrus.Model attribute)

 	info() (walrus.Stream method)

 	insert_after() (walrus.List method)

 	insert_before() (walrus.List method)

 	IntegerField (class in walrus)

 	interstore() (walrus.Set method)

 	(walrus.ZSet method)

 	items() (walrus.Hash method)

J

 	
 	JSONField (class in walrus)

K

 	
 	keys() (walrus.Cache method)

 	(walrus.Hash method)

L

 	
 	lex_count() (walrus.ZSet method)

 	limit() (walrus.RateLimit method)

 	List (class in walrus)

 	List() (walrus.Database method)

 	list_data() (walrus.Autocomplete method)

 	
 	list_titles() (walrus.Autocomplete method)

 	listener() (walrus.Database method)

 	ListField (class in walrus)

 	load() (walrus.Model class method)

 	Lock (class in walrus)

 	lock() (walrus.Database method)

M

 	
 	members() (walrus.Set method)

 	
 	merge() (walrus.HyperLogLog method)

 	Model (class in walrus)

P

 	
 	pending() (walrus.containers.ConsumerGroupStream method)

 	pexpire() (walrus.Container method)

 	pop() (walrus.Array method)

 	(walrus.Set method)

 	popleft() (walrus.List method)

 	
 	popmax() (walrus.ZSet method)

 	popmax_compat() (walrus.ZSet method)

 	popmin() (walrus.ZSet method)

 	popmin_compat() (walrus.ZSet method)

 	popright() (walrus.List method)

 	prepend() (walrus.List method)

Q

 	
 	query() (walrus.Graph method)

 	(walrus.Model class method)

 	
 	query_delete() (walrus.Model class method)

R

 	
 	random() (walrus.Set method)

 	range() (walrus.Stream method)

 	(walrus.ZSet method)

 	range_by_lex() (walrus.ZSet method)

 	rank() (walrus.ZSet method)

 	rate_limit() (walrus.Database method)

 	rate_limited() (walrus.RateLimit method)

 	RateLimit (class in walrus)

 	read() (walrus.ConsumerGroup method)

 	(walrus.Stream method)

 	(walrus.TimeSeries method)

 	(walrus.containers.ConsumerGroupStream method)

 	
 	release() (walrus.Lock method)

 	remove() (walrus.Autocomplete method)

 	(walrus.Index method)

 	(walrus.Set method)

 	(walrus.ZSet method)

 	remove_by_rank() (walrus.ZSet method)

 	remove_by_score() (walrus.ZSet method)

 	replace() (walrus.Index method)

 	reset() (walrus.ConsumerGroup method)

 	(walrus.TimeSeries method)

 	run_script() (walrus.Database method)

S

 	
 	save() (walrus.Model method)

 	score() (walrus.ZSet method)

 	search() (walrus.Autocomplete method)

 	(walrus.Database method)

 	(walrus.Graph method)

 	(walrus.Hash method)

 	(walrus.Index method)

 	(walrus.Set method)

 	(walrus.TextField method)

 	(walrus.ZSet method)

 	Set (class in walrus)

 	set() (walrus.BitField method)

 	(walrus.Cache method)

 	(walrus.containers.BitFieldOperation method)

 	
 	Set() (walrus.Database method)

 	set_bit() (walrus.BitField method)

 	set_id() (walrus.ConsumerGroup method)

 	(walrus.Stream method)

 	(walrus.TimeSeries method)

 	(walrus.containers.ConsumerGroupStream method)

 	set_raw() (walrus.BitField method)

 	SetField (class in walrus)

 	store() (walrus.Autocomplete method)

 	(walrus.Graph method)

 	store_many() (walrus.Graph method)

 	Stream (class in walrus)

 	Stream() (walrus.Database method)

 	stream_info() (walrus.ConsumerGroup method)

 	stream_log() (walrus.Database method)

T

 	
 	TextField (class in walrus)

 	time_series() (walrus.Database method)

 	
 	TimeSeries (class in walrus)

 	to_hash() (walrus.Model method)

 	trim() (walrus.Stream method)

U

 	
 	unionstore() (walrus.Set method)

 	(walrus.ZSet method)

 	
 	update() (walrus.Hash method)

 	(walrus.Index method)

 	UUIDField (class in walrus)

V

 	
 	v() (walrus.Graph method)

 	
 	values() (walrus.Hash method)

W

 	
 	walrus (module), [1], [2], [3], [4], [5], [6], [7], [8], [9]

X

 	
 	xsetid() (walrus.Database method)

Z

 	
 	ZSet (class in walrus)

 	
 	ZSet() (walrus.Database method)

 	ZSetField (class in walrus)

 _static/up-pressed.png

_static/up.png

_images/p1420743625.21.png

_images/walrus-logo-0.png
wiaus

redis toolkit for python

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 walrus

 		
 Installing and Testing

 		
 Installing with git

 		
 Running tests

 		
 Getting Started

 		
 Introducing walrus

 		
 Containers

 		
 Hashes

 		
 Lists

 		
 Sets

 		
 Sorted Sets (ZSet)

 		
 HyperLogLog

 		
 Arrays

 		
 BitField

 		
 BloomFilter

 		
 Autocomplete

 		
 Overview

 		
 Simple example

 		
 Complete example

 		
 Scoring

 		
 Boosting

 		
 Persisting boosts

 		
 ZRANGEBYLEX

 		
 Cache

 		
 Basic usage

 		
 Simple Decorator

 		
 Cached Property

 		
 Cache Asynchronously

 		
 Full-text Search

 		
 Storing data

 		
 Searching

 		
 Graph

 		
 An even simpler example

 		
 Rate Limit

 		
 Basic usage

 		
 Decorator

 		
 Streams

 		
 Standalone streams

 		
 Consumer groups

 		
 TimeSeries

 		
 Learning more

 		
 Models

 		
 Creating, Updating and Deleting

 		
 Retrieving all records in a collection

 		
 Sorting records

 		
 Filtering records

 		
 Container Fields

 		
 Full-text search

 		
 Features

 		
 Limitations

 		
 Need more power?

 		
 API Documentation

 		
 Container types

 		
 High-level APIs

 		
 Field types

 		
 Container Field Types

 		
 Alternative Backends (“tusks”)

 		
 rlite

 		
 Python bindings

 		
 Using with Walrus

 		
 Vedis

 		
 Python bindings

 		
 Using with Walrus

 		
 Writing a custom command

 		
 Ledis

 		
 Python bindings

 		
 Using with Walrus

 		
 Contributing

 		
 Found a bug?

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

