

Official Documentation

[image: _images/viper.png]

What is Viper?

Viper [http://www.viper.li] is a binary analysis and management framework. Its fundamental objective is to provide a solution to easily organize your collection of malware and exploit samples as well as your collection of scripts you created or found over the time to facilitate your daily research. Think of it as a Metasploit for malware researchers: it provides a terminal interface that you can use to store, search and analyze arbitraty files with and a framework to easily create plugins of any sort.

Viper is released under BSD 3-Clause [http://opensource.org/licenses/BSD-3-Clause] license and is copyrighted by Claudio Guarnieri [https://twitter.com/botherder]. The source code is available on GitHub [https://github.com/viper-framework/viper], where also all development efforts and contributions are coordinated. For questions and inquiries, you can find the author’s contact details here [https://nex.sx].

Table of Content

	Installation
	First launch

	Uninstall

	Module Dependencies

	Usage
	Concepts
	Projects

	Sessions

	Commands & Modules

	Database

	Binaries

	Commands
	about

	analysis

	clear

	close

	copy

	delete

	exit, quit

	export

	find

	help

	info

	new

	notes

	open

	parent

	projects

	rename

	sessions

	stats

	store

	tags

	HTTP Interfaces
	Security Considerations

	Web Interface
	Configuration

	Launching the web interface

	API
	User management

	Using Viper in a (web) production environment

	FAQ

	Create new modules
	First steps

	Arguments

	Using the Config File

	Using common config settings for outbound http connections

	Accessing the session

	Accessing the database

	Printing results

	Known issues
	Various errors when using unicode characters

	Error storing file names containing unicode characters in database

	Problem importing certain modules

	The API interface isn’t fully aware of projects

	update.py from 1.1 to 1.2 IOError ‘data/web/’

	PreprocessError: data/yara/index.yara:0:Invalid file extension ‘.yara’.Can only include .yar

	Error Messages in log: ssl.SSLEOFError: EOF occurred in violation of protocol

	Final Remarks
	Developers

	Join Us

Installation

Viper is written in Python requires Python >= 3.4. As of Viper 2.0, Python 2.x is no longer supported. In this documentation we will use Debian GNU/Linux based distributions, such as Ubuntu, as a reference platform. The following installation instructions should apply similarly to other distributions and possibly to Mac OS X as well, although it has not been properly tested.

Before proceeding, you should make sure you have the basic tools installed to be able to compile additional Python extensions:

$ sudo apt-get install git gcc python3-dev python3-pip

In order to have support for the most basic modules, you will need to install the following dependencies too before proceeding:

$ sudo apt-get install libssl-dev swig libffi-dev ssdeep libfuzzy-dev unrar p7zip-full

To install Viper:

$ git clone https://github.com/viper-framework/viper
$ cd viper
$ git submodule init
$ git submodule update
$ sudo pip3 install setuptools wheel --upgrade
$ sudo pip3 install .

First launch

If everything worked out fine, you should be able to launch Viper’s shell without raising any exceptions, like following:

nex@nex:~/$ viper-cli
 _
 (_)
 _ _ _ ____ _____ ____
 | | | | | _ \| ___ |/ ___)
 \ V /| | |_| | ____| |
 / || __/|_____)_| v2.0
 |_|

You have 0 files in your default repository
shell >

Uninstall

To uninstall Viper:

$ cd viper
$ pip3 uninstall -y viper
$ pip3 uninstall -y -r requirements.txt

Module Dependencies

The following dependencies are requried to use specific modules.

Exif:

$ sudo apt-get intall exiftool

ClamAV:

$ sudo apt-get install clamav-daemon

Tor:

$ sudo apt-get install tor

Scraper:

$ sudo apt-get install libdpkg-perl

Usage

	Concepts
	Projects

	Sessions

	Commands & Modules

	Database

	Binaries

	Commands
	about

	analysis

	clear

	close

	copy

	delete

	exit, quit

	export

	find

	help

	info

	new

	notes

	open

	parent

	projects

	rename

	sessions

	stats

	store

	tags

	HTTP Interfaces
	Security Considerations

	Web Interface
	Configuration

	Launching the web interface

	API
	User management

	Using Viper in a (web) production environment

	FAQ

Concepts

Before proceeding in learning the functioning of each available command and module, you need to understand some fundamental design concept that represent the foundation of Viper itself.

Projects

Viper allows you to create and operate on a collection of files. One collection represent one project.

You can create as many projects as you want and you can easily switch from one to another. Each project will have its own local repositories of binary files, a SQLite database containing metadata and an history file which contains all the commands you provided through Viper’s shell exclusively in the context of the opened project.

In this way you can for example create different workbenches for each malware campaign, malware family or threat actor you’re investigating. You can also easily pack up and share the whole project folder with your friends and colleagues.

As you can see from Viper’s help message, you can specify a project name at startup:

nex@nex:~/$ viper-cli -h
usage: viper-cli [-h] [-p PROJECT]

optional arguments:
 -h, --help show this help message and exit
 -p PROJECT, --project PROJECT
 Specify a new or existing project name

When doing so, Viper will try to open an existing project with the given name and if it doesn’t exist it will initialize it under the projects/ folder.

If you opened a project, it will appear both in a startup message as well as in Viper’s terminal:

nex@nex:~/$ viper-cli -p test
 _
 (_)
 _ _ _ ____ _____ ____
 | | | | | _ \| ___ |/ ___)
 \ V /| | |_| | ____| |
 / || __/|_____)_| v2.0
 |_|

You have 0 files in your test repository
test shell >

From within the terminal, you can see which projects exist and eventually you can switch from one to another:

test1 shell > projects --list
[*] Projects Available:
+--------------+--------------------------+---------+
| Project Name | Creation Time | Current |
+--------------+--------------------------+---------+
| test2 | Fri Jul 11 02:05:55 2014 | |
| test1 | Fri Jul 11 02:05:51 2014 | Yes |
+--------------+--------------------------+---------+
test1 shell > projects --switch test2
[*] Switched to project test2
test2 shell >

More details on the projects command are available in the Commands chapter.

Sessions

Most of commands and especially modules provided by Viper, are designed to operate on a single file, being a Windows executable or a PDF or whatever else.

In order to do so, you’ll have to open the file of your choice and every time you do so a new session will be created. You’ll be able to see the name of the file you opened in the terminal:

shell > open 9f2520a3056543d49bb0f822d85ce5dd
[*] Session opened on ~/viper/binaries/2/d/7/9/2d79fcc6b02a2e183a0cb30e0e25d103f42badda9fbf86bbee06f93aa3855aff
shell darkcomet.exe >

From then on, every command and module you launch will execute against the file you just opened (if the module requires to do so obviously).

Similarly to the projects, you can just as easily see which sessions you have currently opened:

shell darkcomet.exe > sessions --list
[*] Opened Sessions:
+---+-----------------+----------------------------------+---------------------+---------+
| # | Name | MD5 | Created At | Current |
+---+-----------------+----------------------------------+---------------------+---------+
1	blackshades.exe	0d1bd081974a4dcdeee55f025423a72b	2014-07-11 02:28:45	
2	poisonivy.exe	22f77c113cc6d43d8c12ed3c9fb39825	2014-07-11 02:28:49	
3	darkcomet.exe	9f2520a3056543d49bb0f822d85ce5dd	2014-07-11 02:29:29	Yes
+---+-----------------+----------------------------------+---------------------+---------+

You can eventually decide to switch to a different one:

shell darkcomet.exe > sessions --switch 1
[*] Switched to session #1 on ~/viper/binaries/1/5/c/3/15c34d2b0e834727949dbacea897db33c785a32ac606c0935e3758c8dc975535
shell blackshades.exe >

You can also abandon the current session with the close command (the session will remain available if you wish to re-open it later):

shell blackshades.exe > close
shell >

A session will also keep track of the results of the last find command so that you’ll be able to easily open new sessions without having to perform repeated searches on your repository. You can find more details about this in the Commands chapter.

Please note that if you switch to a whole different project, you’ll lose the opened sessions.

Commands & Modules

The operations you can execute within Viper are fundamentally distinguished between commands and modules. Commands are functions that are provided by Viper’s core and enable you to interact with the file repository (by adding, searching, tagging and removing files), with projects and with sessions. They are static and they should not be modified.

Modules are plugins that are dynamically loaded by Viper at startup and are contained under the modules/ folder. Modules implement additional analytical functions that can be executed on an opened file or on the whole repository, for example: analyzing PE32 executables, parsing PDF documents, analyzing Office documents, clustering files by fuzzy hashing or imphash, etc.

Modules are the most actively developed portion of Viper and they represent the most important avenue for contributions from the community: if you have an idea or you want to re-implement a script that you have lying around, make sure you submit it [https://github.com/viper-framework/viper] to Viper.

Database

The database that stores all meta inforation is per default in an sqlite database stored at:

$HOME/.viper/viper.db

Binaries

The files are stored in a folder structure within:

$HOME/.viper/binaries

Commands

Viper provides a set of core commands used to interact repositories of files you want to collect. In order to see which commands are available, type help:

shell > help
Commands:
+------------+---+
| Command | Description |
+------------+---+
about	Show information about this Viper instance
analysis	View the stored analysis
clear	Clear the console
close	Close the current session
copy	Copy opened file(s) into another project
delete	Delete the opened file
exit, quit	Exit Viper
export	Export the current session to file or zip
find	Find a file
help	Show this help message
info	Show information on the opened file
new	Create new file
notes	View, add and edit notes on the opened file
open	Open a file
parent	Add or remove a parent file
projects	List or switch existing projects
rename	Rename the file in the database
sessions	List or switch sessions
stats	Viper Collection Statistics
store	Store the opened file to the local repository
tags	Modify tags of the opened file
+----------+---+

Following are details for all the currently available commands.

about

The about command can be used to display some useful information regarding the Viper instance you are currently running. This includes the versions of both Viper itself and of your Python installation. Additionally the path of the active configuration file is shown:

viper > about
+----------------+---+
| About | |
+----------------+---+
Viper Version	2.0-dev
Python Version	3.6.5
Homepage	https://viper.li
Issue Tracker	https://github.com/viper-framework/viper/issues
+----------------+---+	
+--------------------------+--+	
Configuration	
+--------------------------+--+	
Configuration File	/home/user/.viper/viper.conf
Active Project	demo
Storage Path	/home/user/.viper
Current Project Database	Engine(sqlite:////home/user/.viper/viper.db)
+--------------------------+--+

analysis

The analysis command can be used to display stored analysis.:

viper foo.txt > analysis -h
usage: analysis [-h] [-l | -v ANALYSIS ID | -d ANALYSIS ID]

View the stored analysis

optional arguments:
 -h, --help show this help message and exit
 -l, --list List all module results available for the current file
 -v ANALYSIS ID, --view ANALYSIS ID
 View the specified analysis
 -d ANALYSIS ID, --delete ANALYSIS ID
 Delete an existing analysis

This stores the modules run with the file in question, so after you did some scans and run analysis -l to see all stored analysis:

viper aasf.jpg > analysis -l
+----+--------------+----------------------------+
| ID | Cmd Line | Saved On (UTC) |
+----+--------------+----------------------------+
1	yara scan -t	2018-09-04 13:23:09.250948
2	triage	2018-09-04 13:23:09.285285
3	yara	2018-09-04 13:26:21.377030
4	yara scan	2018-09-04 13:26:24.212498
+----+--------------+----------------------------+

To view the output of a previously ran analysis use analysis -v this has the advantage that it is much faster than run modules again:

viper aasf.jpg > analysis -v 6
[*] Cmd Line: xor
[*] Searching for the following strings:
- This Program
- GetSystemDirectory
- CreateFile
- IsBadReadPtr
- IsBadWritePtrGetProcAddress
- LoadLibrary
- WinExec
- CreateFileShellExecute
- CloseHandle
- UrlDownloadToFile
- GetTempPath
- ReadFile
- WriteFile
- SetFilePointer
- GetProcAddr
- VirtualAlloc
- http
[*] Hold on, this might take a while...
[*] Searching XOR

To safe space it might be useful to delete a stored analysis using analysis -d

clear

Clear the console

close

This command simply abandon a session that was previously opened. Note that the session will actually remain available in case you want to re-open it later.

copy

The copy command let’s you copy the opened file into another project. By default the stored analysis results,
notes and tags will also be copied. If the file has children related to it then these will not be copied by default.
Also copying all children (recursively) can be enabled by passing the --children or -c flag.

If the --delete or -d is passed then the files will be copied to the specified project and then deleted from the
local project:

viper foo.txt > copy -h
usage: copy [-h] [-d] [--no-analysis] [--no-notes] [--no-tags] [-c] project

Copy opened file into another project

positional arguments:
 project Project to copy file(s) to

optional arguments:
 -h, --help show this help message and exit
 -d, --delete delete original file(s) after copy ('move')
 --no-analysis do not copy analysis details
 --no-notes do not copy notes
 --no-tags do not copy tags
 -c, --children also copy all children - if --delete was selected also the
 children will be deleted from current project after copy

viper foo.txt > copy -d foobar
[+] Copied: e2c94230decedbf4174ac3e35c6160a4c9324862c37cf45124920e63627624c1 (foo.txt)
[*] Deleted: e2c94230decedbf4174ac3e35c6160a4c9324862c37cf45124920e63627624c1
[+] Successfully copied sample(s)

delete

The delete command you simply remove the currently opened file from the local repository:

shell poisonivy.exe > delete
Are you sure you want to delete this binary? Can't be reverted! [y/n] y
[+] File deleted
shell >

exit, quit

Exit Viper

export

The export command is used to export the currently opened file to the target path or archive name. You can zip up the file in a new archive too:

usage: export [-h] [-z] [-7] [-p] value

Export the current session to file or zip

positional arguments:
 value path or archive name

optional arguments:
 -h, --help show this help message and exit
 -z, --zip Export session in a zip archive (PW support: No)
 -7, --sevenzip Export session in a 7z archive (PW support: Yes)
 -p, --password Protect archive with a password (PW) if supported

find

In order to quickly recover files you previously stored in the local repository, you can use the find command. Following is its help message:

usage: find [-h] [-t]
 [{all,latest,name,type,mime,md5,sha1,sha256,tag,note,any,ssdeep}]
 [value]

Find a file

positional arguments:
 {all,latest,name,type,mime,md5,sha1,sha256,tag,note,any,ssdeep}
 Where to search.
 value String to search.

optional arguments:
 -h, --help show this help message and exit
 -t, --tags List available tags and quit

This command expects a key and eventually a value. As shown by the help message, these are the available keys:

	all: this will simply return all available files.

	latest (optional limit value): this will return the latest 5 (or whichever limit you specified) files added to the local repository.

	name (required value): this will find files matching the given name pattern (you can use wildcards).

	md5 (required value): search by md5 hash.

	sha256 (required value): search by sha256 hash.

	tag (required value): search by tag name.

	note (required value): find files that possess notes matching the given pattern.

	any (required value): find files that possess any matching the given pattern.

	ssdeep (required value): find files that possess any matching the given sseep value.

For example:

shell > find tag rat
+---+---------------+-----------------------+----------------------------------+
| # | Name | Mime | MD5 |
+---+---------------+-----------------------+----------------------------------+
| 1 | poisonivy.exe | application/x-dosexec | 22f77c113cc6d43d8c12ed3c9fb39825 |
+---+---------------+-----------------------+----------------------------------+

help

Show help message

info

The info command will return you some basic information on the file you currently have opened, for example:

shell poisonivy.exe > info
+--------+--+
| Key | Value |
+--------+--+
Name	poisonivy.exe
Tags	rat, poisonivy
Path	~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
Size	133007
Type	PE32 executable (GUI) Intel 80386, for MS Windows
Mime	application/x-dosexec
MD5	22f77c113cc6d43d8c12ed3c9fb39825
SHA1	dd639a7f682e985406256468d6df8a717e77b7f3
SHA256	50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
SHA512	6743b06e8b243d513457949ad407d80992254c99b9835eb1ed03fbc0e88a062f0bb09bfd4dd9c0d43093b2a5419ecdb689574c2d2b0d72720080acf9af1b0a84
SSdeep	3072:I4lRkAehGfzmuqTPryFm8le+ZNX2TpF3Vb:I4lRkAehaKuqT+FDl7NXs7B
CRC32	4090D32C
Parent	
Children	
+--------+--+

new

To create new file within viper the new command will then open the default text editor to write input for the file. After exiting the editor a session with the not stored file is opened in viper. This might save time without the need to exit viper to touch a new textfile in the viper session:

viper > new
Enter a title for the new file: viper_docu_demo.txt
[*] Session opened on /tmp/tmpjo86tcr1
[*] New file with title "viper_docu_demo.txt" added to the current session

notes

During an analysis you might want to keep track of your discoveries and results. Instead of having unorganized text files lying around, Viper allows you to create notes directly linked to the relevant files and even search across them.
When you have a file opened, you can add any number of text notes associated to it through the notes command. This is the help message:

usage: notes [-h] [-l] [-a] [-e <note id>] [-d <note id>]

Options:
 --help (-h) Show this help message
 --list (-h) List all notes available for the current file
 --add (-a) Add a new note to the current file
 --view (-v) View the specified note
 --edit (-e) Edit an existing note
 --delete (-d) Delete an existing note

As shown in the help message, you can list add a note:

shell poisonivy.exe > notes --add
Enter a title for the new note:

Now you should enter a title, when you proceed Viper will open your default editor to edit the body of the note. Once done and the editor is closed, the new note will be stored:

[*] New note with title "Domains" added to the current file

Now you can see the new note in the list and view its content:

shell poisonivy.exe > notes --list
+----+---------+
| ID | Title |
+----+---------+
| 1 | Domains |
+----+---------+
shell poisonivy.exe > notes --view 1
[*] Title: Domains
[*] Body:
- poisonivy.malicious.tld
- poisonivy2.malicious.tld

open

As explained in the Concepts chapter, Viper supports the concept of session, which is an execution context created when a specific file is opened and closed only when requested by the user. In order to create a session, you need to issue an open command. Following is the help message:

usage: open [-h] [-f] [-u] [-l] [-t] <target|md5|sha256>

Options:
 --help (-h) Show this help message
 --file (-f) The target is a file
 --url (-u) The target is a URL
 --last (-l) Open file from the results of the last find command
 --tor (-t) Download the file through Tor

You can also specify a MD5 or SHA256 hash to a previously stored
file in order to open a session on it.

You can fundamentally open:

	A file available in the local repository

	Any file available on the local filesystem

	Any URL

If you don’t specify any option, Viper will interpret the value you provided as an hash it has to look up in the local database, for example:

shell > open 22f77c113cc6d43d8c12ed3c9fb39825
[*] Session opened on ~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
shell poisonivy.exe >

If you want to open a file elsewhere on the filesystem, you need to specify the --file (or -f) flag:

shell > open -f /tmp/poisonivy.exe
[*] Session opened on /tmp/poisonivy.exe

If you want to open an URL you can use the --url flag:

shell > open --url http://malicious.tld/path/to/file.exe
[*] Session opened on /tmp/tmpcuIOIj
shell tmpcuIOIj >

If you have Tor running, you can fetch the file through it by additionally specifying --tor.

Through the open command you can also directly open one of the entries from the results of the last executed find command, for example:

shell > find all
+---+---------------+-----------------------+----------------------------------+
| # | Name | Mime | MD5 |
+---+---------------+-----------------------+----------------------------------+
| 1 | poisonivy.exe | application/x-dosexec | 22f77c113cc6d43d8c12ed3c9fb39825 |
+---+---------------+-----------------------+----------------------------------+
shell > open --last 1
[*] Session opened on ~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
shell poisonivy.exe >

parent

Add or remove a parent file.:

viper viper_docu_demo.txt > parent --h
usage: parent [-h] [-a SHA256] [-d] [-o]

Add or remove a parent file

optional arguments:
 -h, --help show this help message and exit
 -a SHA256, --add SHA256
 Add parent file by sha256
 -d, --delete Delete Parent
 -o, --open Open The Parent

To add a parent file for an file parent -a is used:

viper viper_docu_demo.txt > parent -a 749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
[*] parent added to the currently opened file
[*] Refreshing session to update attributes...
[*] Session opened on /home/viper/.viper/projects/demo/binaries/1/c/d/6/1cd63c1dc1004f9d43321be71fa05a4331083e85c500c7b8dade894d82358061
 viper viper_docu_demo.txt > info
+----------+-- --------------------------+
| Key | Value |
+----------+--+
Name	viper_docu_demo.txt
Tags	
Path	/home/viper/.viper/projects/demo/binaries/1/c/d/6/1cd63c1dc1004f9d43321be71fa05a4331083e85c500c7b8dade894d82358061
Size	11
Type	UTF-8 Unicode text
Mime	text/plain
MD5	b6d4a40a6bb103123288f8baeef2069e
SHA1	1a32142a4136c14f251d180353f7e24d2feafcf5
SHA256	1cd63c1dc1004f9d43321be71fa05a4331083e85c500c7b8dade894d82358061
SHA512	eac1f26077f774bfa179bb3bc3640657f844d1d37ba10f5ec95f1b5955a6f8a38d671306a112a73564c91b73ecf3aa790879df570b6cac452f8221f62571e66a
SSdeep	3:oEg:oEg
CRC32	49A098FC
Parent	aasf.jpg - 749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
Children	
+----------+--+

To open a session for the parent file parrent -o is used (note the children section):

viper viper_docu_demo.txt > parent -o
[*] Session opened on /home/viper/.viper/projects/demo/binaries/7/4/9/b/749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
demo viper aasf.jpg > info
+----------+--+
| Key | Value |
+----------+--+
Name	aasf.jpg
Tags	
Path	/home/viper/.viper/projects/demo/binaries/7/4/9/b/749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
Size	1120
Type	data
Mime	application/octet-stream
MD5	6296ff1a94c30a68d18748e7948c3ffa
SHA1	bae357a94bffb3f33cae6f2610822f4008fa29e2
SHA256	749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
SHA512	e1408441b83346bb23a8929d86610cc7ac164a3d9b1e963e14b1b6588779766b60fb13c3b10f801052b669a244c659012c4250fca8c221fed906c56cce67aec7
SSdeep	24:k3McZOX52TnV7/d1QLykkmjoOGBfBKWDZ2hy3tkRCoNplXNkye13N0B0rLO:k3McE8V7jQnjVG9wYcs3tVOXNky6N0KG
CRC32	220A0DE7
Parent	
Children	1cd63c1dc1004f9d43321be71fa05a4331083e85c500c7b8dade894d82358061,
+----------+--+

projects

As anticipated in the Concepts section, Viper provides a way to create multiple projects which represent isolated collections of files.
You can create a project by simply specifying a value to the --project argument at launch of viper-cli.

From within the Viper shell, you can list the existing projects and switch from one to another by simply using the projects command. Following is the help message:

usage: projects [-h] [-l] [-s=project]

Options:
 --help (-h) Show this help message
 --list (-l) List all existing projects
 --switch (-s) Switch to the specified project

Each project will have its own local file repository, its own viper.db SQLite database and its own .viperhistory file, which is used to record the history of commands you entered in the terminal.

For example, this is how to launch Viper with a specific project:

nex@nex:$ viper-cli --project test1
 _
 (_)
 _ _ _ ____ _____ ____
 | | | | | _ \| ___ |/ ___)
 \ V /| | |_| | ____| |
 / || __/|_____)_| v2.0-dev
 |_|

You have 0 files in your test1 repository
test1 shell >

From within the terminal, you can see which projects exist:

test1 shell > projects -l
[*] Projects Available:
+--------------+--------------------------+---------+
| Project Name | Creation Time | Current |
+--------------+--------------------------+---------+
| test1 | Sat Jul 12 00:53:06 2014 | Yes |
+--------------+--------------------------+---------+

You can eventually switch to a different one:

test1 shell > projects --switch test2
[*] Switched to project test2
test2 shell >

Note that if you specify a name of a project that doesn’t exist to the --switch parameter, Viper will create that project and open it nevertheless.

rename

Rename the file in the database with a prompt for the new filename (note: this will not rename the file on disk):

viper aasf.jpg > rename
[*] Current name is: aasf.jpg
New name: helloworld.jpg
[*] Refreshing session to update attributes...
[*] Session opened on /home/viper/.viper/projects/demo/binaries/7/4/9/b/749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
demo viper helloworld.jpg > info
+----------+--+
| Key | Value |
+----------+--+
Name	helloworld.jpg
Tags	
Path	/home/viper/.viper/projects/demo/binaries/7/4/9/b/749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
Size	1120
Type	data
Mime	application/octet-stream
MD5	6296ff1a94c30a68d18748e7948c3ffa
SHA1	bae357a94bffb3f33cae6f2610822f4008fa29e2
SHA256	749bb1bccfae3bc1996ad093312c4dc1c475a3488a2ea9f269482ce9d90b9af8
SHA512	e1408441b83346bb23a8929d86610cc7ac164a3d9b1e963e14b1b6588779766b60fb13c3b10f801052b669a244c659012c4250fca8c221fed906c56cce67aec7
SSdeep	24:k3McZOX52TnV7/d1QLykkmjoOGBfBKWDZ2hy3tkRCoNplXNkye13N0B0rLO:k3McE8V7jQnjVG9wYcs3tVOXNky6N0KG
CRC32	220A0DE7
Parent	
Children	1cd63c1dc1004f9d43321be71fa05a4331083e85c500c7b8dade894d82358061,
+----------+--+

sessions

You can see which sessions are currently active and eventually switch from one to another through the sessions command. Following is the help message:

usage: sessions [-h] [-l] [-s SWITCH]

Options:
 --help (-h) Show this help message
 --list (-l) List all existing sessions
 -s SWITCH, --switch SWITCH
 Switch to the specified session

An example of execution is the following:

shell poisonivy.exe > sessions --list
[*] Opened Sessions:
+---+---------------+----------------------------------+---------------------+---------+
| # | Name | MD5 | Created At | Current |
+---+---------------+----------------------------------+---------------------+---------+
1	poisonivy.exe	22f77c113cc6d43d8c12ed3c9fb39825	2014-07-12 01:36:14	Yes
2	zeus.exe	9b2de8b062a5538d2a126ba93835d1e9	2014-07-12 01:36:19	
3	darkcomet.exe	9f2520a3056543d49bb0f822d85ce5dd	2014-07-12 01:36:23	
+---+---------------+----------------------------------+---------------------+---------+
shell poisonivy.exe > sessions --switch 2
[*] Switched to session #2 on ~/viper/binaries/6/7/6/a/676a818365c573e236245e8182db87ba1bc021c5d8ee7443b9f673f26e7fd7d1
shell zeus.exe >

stats

Viper Collection Statistics:

viper abc_report1.doc > stats
[*] Projects
+------+-------+
| Name | Count |
+------+-------+
| Main | 6 |
| Next | 10 |
+------+-------+
[*] Current Project
[*] Extensions
+------+-------+
| Ext | Count |
+------+-------+
jpg	1
txt	1
mp3	1
pdf	1
doc	1
docx	1
+------+-------+	
[*] Mime Types	
+--------------------------+-------+	
Mime	Count
+--------------------------+-------+	
application/octet-stream	5
text/plain	1
+--------------------------+-------+	
[*] Tags	
+--------+-------+	
Tag	Count
+--------+-------+	
tag333	1
tag1	1
+--------+-------+
[*] Size Stats
- Largest 109.44 KiB
- Smallest 11.00 B
- Average 59.97 KiB

store

The store command is used to store the currently opened file to the local repository. There are many options and filters you can apply, as shown in the following help message:

usage: store [-h] [-d] [-f <path>] [-s <size>] [-y <type>] [-n <name>] [-t]

Options:
 --help (-h) Show this help message
 --delete (-d) Delete the original file
 --folder (-f) Specify a folder to import
 --file-size (-s) Specify a maximum file size
 --file-type (-y) Specify a file type pattern
 --file-name (-n) Specify a file name pattern
 --tags (-t) Specify a list of comma-separated tags

If you specify --delete it will instruct Viper to delete the original copy of the file you want to store in the local repository, for example:

shell > open -f /tmp/poisonivy.exe
[*] Session opened on /tmp/poisonivy.exe
shell poisonivy.exe > store --delete
[+] Stored file "poisonivy.exe" to ~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
[*] Session opened on ~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
shell poisonivy.exe >

If you want, you can store the content of an entire folder by specifying its path to the --folder parameter. In case the folder contains a large variety of files, you can filter which ones you’re particularly interested in: with --file-size you can specify a maximum size in bytes, with --file-type you can specify a pattern of magic file type (e.g. PE32) and with --file-name you can specify a wildcard-enabled pattern to be matched with the file names (e.g. apt_*).

If you want, you can already specify a list of comma separated tags to apply to all files stored through the given command.

Following is an example:

shell > store --folder /tmp/malware --file-type PE32 --file-size 10000000 --file-name apt_* --tags apt,trojan

tags

In order to easily group and identify files, Viper allows you to create one or more tags to be associated with them. This is the help message:

usage: tags [-h] [-a TAG] [-d TAG]

optional arguments:
 -h, --help show this help message and exit
 -a TAG, --add TAG Add tags to the opened file (comma separated)
 -d TAG, --delete TAG Delete a tag from the opened file

Once you have a file opened, you can add one ore more tags separated by a comma:

shell poisonivy.exe > tags --add rat,poisonivy
[*] Tags added to the currently opened file
[*] Refreshing session to update attributes...
[*] Session opened on ~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26

Once added, the session will be refreshed so that the new attributes will be visible as you can see from the output of an info command:

shell poisonivy.exe > info
+--------+--+
| Key | Value |
+--------+--+
Name	poisonivy.exe
Tags	rat, poisonivy
Path	~/viper/binaries/5/0/8/5/50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
Size	133007
Type	PE32 executable (GUI) Intel 80386, for MS Windows
Mime	application/x-dosexec
MD5	22f77c113cc6d43d8c12ed3c9fb39825
SHA1	dd639a7f682e985406256468d6df8a717e77b7f3
SHA256	50855f9321de846f6a02b264e25e4c59983badb912c3c51d8c71fcd517205f26
SHA512	6743b06e8b243d513457949ad407d80992254c99b9835eb1ed03fbc0e88a062f0bb09bfd4dd9c0d43093b2a5419ecdb689574c2d2b0d72720080acf9af1b0a84
SSdeep	3072:I4lRkAehGfzmuqTPryFm8le+ZNX2TpF3Vb:I4lRkAehaKuqT+FDl7NXs7B
CRC32	4090D32C
Parent	
Children	
+--------+--+

HTTP Interfaces

Viper has two HTTP interfaces that can optionally be enabled alongside the console access.

	Web interface

	REST based API interface

The first one provides a graphical alternative to the traditional command-line interface,
while the second one can be used to easily integrate Viper with other tools.

Security Considerations

Both the web interface and the REST API are implemented using the open source Python web framework
Django (https://www.djangoproject.com/). Django is very widely used and the developers put a strong
emphasis on web security.

Viper uses built-in features of Django to provide username/password based login to the web interface
and token based authentication for the REST API. Django also provides a built-in web server that can
be used to run a HTTP or a HTTPS web server. This works fine for small setups (e.g. single user with
only a limited number of samples), but it is not recommended for bigger production scenarios.

Although both interfaces are developed with security in mind, users MUST be aware that exposing them
to the Internet could potentially have a severe impact on the security of your system(s).

Malicious users/attackers that are able to gain access to the web interface or the REST API will not
only have full access to your Viper sample database but will also be able to execute commands
on the hosting system. Access could be gained by stealing/phishing the username/password,
brute-forcing credentials or through authentication bypasses caused by implementation mistakes in
Viper or bugs/design flaws in Django.

Web Interface

Viper comes with a basic HTML5 browser interface that can run alongside the command-line interface.

Its main features are:

	Project Switching / Creation

	Multiple File Upload

	File Download

	Extraction of Compressed uploads

	Full Search (including tag, name, mime, note, type)

	Hex Viewer

	Run Modules

	Enter Notes

	Add / Delete / Modify Yara rules

	Add / Delete / Modify Tags

Configuration

For the configuration of the web interface please refer to the [web] section in your viper.conf
file. There you can specify the IP address (e.g. 0.0.0.0 or 127.0.0.1) and port to listen on.
Additionally you can configure HTTPS using TLS. This requires an x509 certificate and private key.
Lastly you can setup the initial admin account and its password:

[web]
host = 0.0.0.0
port = 8080
tls = False
certificate =
key =
admin_username = admin
admin_password = changeme

Launching the web interface

To launch the web application, change into the viper directory and run the viper-web script.
By default it launches a single threaded http Django development web server on localhost:8080
.
Please note that if there is no admin_password set, then a random password will be generated:

user@localhost:~/viper_django/$./viper-web
[!] Yara rule directory not found - copying default rules (/home/user/viper_django/viper/data/yara) to: /home/user/.viper/yara
[!] There are outstanding Django DB migrations
[+] Applied outstanding migrations
[+] Created "admin" with initial password: T8UcpRTPxW
[*] Starting Web Server on 127.0.0.1:8080
Performing system checks...

System check identified no issues (0 silenced).
February 04, 2018 - 14:27:59
Django version 2.0.2, using settings 'viper.web.settings'
Starting development server at http://127.0.0.1:8080/
Quit the server with CONTROL-C.

You can set the listening IP address and port on the commandline with parameters -H and -p:

user@localhost:~/viper_django$./viper-web -h
usage: viper-web [-h] [-H HOST] [-p PORT] [--tls] [-c CERTIFICATE] [-k KEY]

optional arguments:
 -h, --help show this help message and exit
 -H HOST, --host HOST bind to host (e.g. 127.0.0.1 or 0.0.0.0)
 -p PORT, --port PORT bind to port (e.g. 8080)
 --tls enable TLS
 -c CERTIFICATE, --certificate CERTIFICATE
 path to .crt file
 -k KEY, --key KEY path to .key file

You can also start an HTTPS web server with TLS enabled. This requires a regular x509 SSL/TLS certificate and key:

$: ./viper-web -H 0.0.0.0 -p 443 --tls --certificate viper.pem --key viper.key
[*] Using PEID info from directory: /home/user/.viper/peid
[*] Using Yara rules from directory: /home/user/.viper/yara
[!] There are outstanding Django DB migrations
[+] Applied outstanding migrations
[+] Created "admin" with initial password: nKAmWJluCS
[*] Starting Web Server on 0.0.0.0:8443
Validating models...

System check identified no issues (0 silenced).
February 04, 2018 - 17:49:48
Django version 2.0.1, using settings 'viper.web.settings'
Starting development server at https://0.0.0.0:443/
Using SSL certificate: ssl-cert.pem
Using SSL key: ssl-cert.key
Quit the server with CONTROL-C.

API

Viper provides a REST API through which the samples in all projects can be accessed and almost all
commands that are available in the CLI can be executed. The REST API is a crucial part of the
web interface and is therefore automatically started by the viper-web script.

In the past, the REST API was started separately from the web interface. This is no longer possible
and the viper-api script has been removed.

The REST API is implemented using the [Django REST framework](http://www.django-rest-framework.org/),
short DRF and is reachable after starting viper-web at:

http://127.0.0.1:8080/api/v3/

Additionally Viper makes use of [django-rest-swagger](https://marcgibbons.com/django-rest-swagger/),
which automatically creates an interactive API documentation; all technical details about API
endpoints and how to use them can be found at:

http://127.0.0.1:8080/api/v3/docs/

All requests to the REST API need to be authenticated with the only exception being a test interface
(http://127.0.0.1:8080/api/v3/test/). Authentication can either be done by providing a username/password
or by sending an authorization header containing a token. These credentials can be managed
in the Django admin interface (http://127.0.0.1:8080/admin/).

Using tokens is the recommended way of accessing the REST API.

Example: Uploading a file as a new sample using curl looks like this (note the trailing slash):

curl -X POST -H 'Authorization: Token 4851aa7772e5a2638d7e3dbe9405d3d4a822815a' -S -F "file=@/tmp/file1.txt;type=text/plain;filename=your_file_name.txt" http://127.0.0.1:8080/api/v3/project/default/malware/upload/

Response (HTTP Status Code: 201 Created):

[{
 "url": "http://127.0.0.1:8080/api/v3/project/default/malware/24a05ea7cca0b976dd3dea2b436627bd70a303e91a82daa58d104f98eb5b7937/",
 "links": [
 "http://127.0.0.1:8080/api/v3/project/default/malware/24a05ea7cca0b976dd3dea2b436627bd70a303e91a82daa58d104f98eb5b7937/analysis/",
 "http://127.0.0.1:8080/api/v3/project/default/malware/24a05ea7cca0b976dd3dea2b436627bd70a303e91a82daa58d104f98eb5b7937/note/",
 "http://127.0.0.1:8080/api/v3/project/default/malware/24a05ea7cca0b976dd3dea2b436627bd70a303e91a82daa58d104f98eb5b7937/tag/"
],
 "data": {
 "created_at":"2018-02-04 17:56:53.172641","sha256":"24a05ea7cca0b976dd3dea2b436627bd70a303e91a82daa58d104f98eb5b7937",
 "parent":null,
 "size":192,
 "sha1":"434656fde3f62bef3ed2d1fe2ac88085fbc17150",
 "ssdeep":"3:SQg3D7DQFCDgJMNLm9cFXmdd3WG/zAhlAHnd1FIati+v3sQ9scKJLAH4:SQg3D7DQFC8qK+wdd3WGYqvFIaFv3sQY",
 "crc32":"95AF7564",
 "type":"ASCII text",
 "id":1,
 "mime":"text/plain",
 "sha512":"166a850aa4423b887f14d74eba7a98c8df76bf4584385ce14d7719d5524784f878afae080a1ee2c26a92f98100735a10d06b78ffec9091fb10b21bc9d294c508",
 "parent_id":null,
 "md5":"8c15c2e4a48fe98483c7833bf0044fc4",
 "name":"your_file_name.txt"
 }
}]

User management

The credentials can be managed in the Django admin interface (http://127.0.0.1:8080/admin/).

Using Viper in a (web) production environment

In production use, its often not recommended to use the Django development web server. There are
many generic descriptions of how to run a Django application in e.g. Apache, Nginx or uWSGI.

For Viper there is currently no finished step-by-step guide. Please feel free to send us a Pull
Request on Github.. :-D https://github.com/viper-framework/viper/pulls

FAQ

Q: What is the default username and password for the web interface?
A: The default username is “admin” and the password will be auto generated (or the value of admin_password in your viper.conf will be used)

Q: I didn’t change (or write down) the auto generated password? How can I log in?
A: The easiest way is to delete the Django database ($storage_path/admin.db) and restart viper-web.

Q: Where can I find the API tokens?
A: You can view and edit tokens in the Django admin site: http://127.0.0.1:8080/admin/authtoken/token/

Create new modules

Viper in itself is simply a framework, modules are what give it analytical capabilities. We receive and include new modules all the time from contributors, but there are always new features to add. If you have an idea, you should implement a module for it and contribute it back to the community.

The following paragraphs introduce you to the first steps to create a new module.

First steps

First thing first, you need to create your .py script under the modules/ directory: all modules are dynamically loaded by Viper from that folder exclusively. You can create subfolders and place your modules anywhere, Viper will be able to find them.

Any module needs to have some basic attributes that will make it recognizable. It needs to be a Python class inheriting Module, it needs to have a cmd and description attribute and it needs to have a run() function. For example the following would be a valid, although not very useful, Viper module:

	1
2
3
4
5
6
7
8

	from viper.common.abstracts import Module

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'

 def run(self):
 print("Do something.")

Arguments

When a module is invoked from the Viper shell it can be provided with a number of arguments and options. These should be parsed with the python argparse module as show in the example below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from viper.common.abstracts import Module

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'
 authors = ['YourName']

 def __init__(self):
 super(MyModule, self).__init__()
 self.parser.add_argument('-t', '--this', action='store_true', help='Do This Thing')
 self.parser.add_argument('-b', '--that', action='store_true', help='Do That')

 def run(self):
 if self.args.this:
 print("This is FOO")
 elif self.args.that:
 print("That is FOO")

Using the Config File

Viper provides a config file that will allow you to store user editable sections in a single file rather than inside the modules.

/usr/share/viper/viper.conf.sample

You can easily access the config file:

	1
2
3

	from viper.core.config import __config__

cfg = __config__

From here you can access any element in the config file by name:

	1
2
3
4
5
6
7
8
9

	from viper.core.config import Config

cfg = Config()

config_item = cfg.modulename.config_item

Example Getting VirusTotal Key

vt_key = cfg.virustotal.virustotal_key

Using common config settings for outbound http connections

A common use case for modules is to implement the API of an external web service (e.g. https://koodous.com/).
The (great!) requests library (https://github.com/requests/requests/) provides an easy interface for making
outbound http connections.
Viper provides a global configuration section [http_client] where certain requests options can be set
for Proxies, TLS Verfication, CA_BUNDLE and TLS Client Certificates.
Please check the current viper.conf.sample for more details.

When implementing a custom module settings from the global [http_client]] can be overridden by specifying
them again in the configuration section of the custom module and then calling the Config.parse_http_client
method for the custom module configuration section. Example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# viper.conf

[http_client]
https_proxy = http://prx1.example.internal:3128
tls_verify = True

[mymodule]
base_url = https://myapi.example.internal
https_proxy = False
tls_verify = False

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import requests
from viper.common.abstracts import Module
from viper.core.config import __config__

cfg = __config__
cfg.parse_http_client(cfg.mymodule)

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'

 def run(self):
 url = cfg.mymodule.base_url
 r = requests.get(url=url, headers=headers, proxies=cfg.mymodule.proxies, verify=cfg.mymodule.verify, cert=cfg.mymodule.cert)

Accessing the session

In most cases, you will probably want to execute some analysis function on the currently opened file and in order to do so you’ll need to access the session. Sessions are internally made available through a global object called __sessions__, which has the following attributes:

	__sessions__.current: a Session object for the currently opened file.

	__sessions__.sessions: the list of all Session objects opened during the current Viper execution.

	__sessions__.find: a list contains all the results from the last executed find command.

A Session object has the following attributes:

	Session.id: an incremental ID for the session.

	Session.created_at: the date and time when the session was opened.

	Session.file: a File object containing common attributes of the currently opened file (generally speaking, the same information returned by the info command).

Following are the information available on the opened file:

	__sessions__.current.file.path

	__sessions__.current.file.name

	__sessions__.current.file.size

	__sessions__.current.file.type

	__sessions__.current.file.mime

	__sessions__.current.file.md5

	__sessions__.current.file.sha1

	__sessions__.current.file.sha256

	__sessions__.current.file.sha512

	__sessions__.current.file.crc32

	__sessions__.current.file.ssdeep

	__sessions__.current.file.tags

Here is an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from viper.common.abstracts import Module
from viper.core.session import __sessions__

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'

 def run(self):
 # Check if there is an open session.
 if not __sessions__.is_set():
 # No open session.
 return

 # Print attributes of the opened file.
 print("MD5: " + __sessions__.current.file.md5)

 # Do something to the file.
 do_something(__sessions__.current.file.path)

Accessing the database

In case you’re interested in automatically retreiving all files stored in the local repository or just a subset, you’ll need to access the local database. Viper provides an interface called Database() to be imported from viper.core.database.

You can then use the find() function, specify a key and an optional value and you will obtain a list of objects you can loop through. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from viper.common.abstracts import Module
from viper.core.database import Database

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'

 def run(self):
 db = Database()
 # Obtain the list of all stored samples.
 samples = db.find(key='all')

 # Obtain the list of all samples matching a tag.
 samples = db.find(key='tag', value='apt')

 # Obtain the list of all samples with notes matching a pattern.
 samples = db.find(key='note', value='maliciousdomain.tld')

 # Loop through results.
 for sample in samples:
 print("Sample " + sample.md5)

Printing results

Viper provides several function to facilitate and standardize the output of your modules. Viper uses a logging function to return the output to the console or web application.
The format is self.log('type', "Your Text") and the following types are made available in Viper.

	info: prints the message with a [*] prefix.

	warning: prints the message with a yellow [!] prefix.

	error: prints the message with a red [!] prefix.

	success: prints the message with a green [+] prefix.

	item: prints an item from a list.

	table: prints a table with headers and rows.

You can also easily print tables, such as in the following example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from viper.common.abstracts import Module

class MyModule(Module):
 cmd = 'mycmd'
 description = 'This module does this and that'

 def run(self):
 self.log('info', "This is Something")
 self.log('warning', "This is the warning Text")

 # This is the header of the table.
 header = ['Column 1', 'Column 2']
 # These are the rows.
 rows = [
 ['Row 1', 'Row 1'],
 ['Row 2', 'Row 2']
]

 self.log('table', dict(header=header, rows=rows))

Known issues

Various errors when using unicode characters

unicode and python is a not easy and using unicode in notes, tags or filenames (or other modules where userinput is allowed) might result in unhandled exceptions.

Error storing file names containing unicode characters in database

If you try to store a file with a filename containing Unicode chars it will not be stored to the database.

Problem importing certain modules

If you experience an issue like:

[!] Something wrong happened while importing the module modules.office: No module named oletools.olevba

You are likely missing dependencies.

To install required python modules run:

pip install -r requirements.txt

The API interface isn’t fully aware of projects

Most of the API commands are not able yet to interact with different projects, so most of the commands will
be executed against the default repository.

update.py from 1.1 to 1.2 IOError ‘data/web/’

If you are running a Viper version 1.1 und using update.py to update to 1.2 you might run into some error like:

python update.py
[!] WARNING: If you proceed you will lose any changes you might have made to Viper.
Are you sure you want to proceed? [y/N] y
Traceback (most recent call last):
File "update.py", line 79, in <module>
 main()
File "update.py", line 66, in main
 new_local = open(local_file_path, 'w')
 IOError: [Errno 2] No such file or directory: 'data/web/'

That issue is known and already adressed in the new version of update.py (you might wanna pull that file manually

PreprocessError: data/yara/index.yara:0:Invalid file extension ‘.yara’.Can only include .yar

If you running yara or RAT module and receiving that issue:

...
PreprocessError: data/yara/index.yara:0:Invalid file extension '.yara'.Can only include .yar
...

It is most likely the versions of yara are not correct, try to run:

viper@viper:/home/viper# yara -version
yara 2.1

And check for the yara-python bindings:

viper@viper:/home/viper# pip freeze | grep yara
yara-python==2.1

If you have installed yara-python using pip it is likely you are running an older version of yara (see yara documentation for compiling howto)

Error Messages in log: ssl.SSLEOFError: EOF occurred in violation of protocol

When running the built-in HTTPS server several error messages are logged, then the favicon is accessed.
This does not represent a problem and the favicon is loaded and display. So this is currently in status wontfix.

Log:

2018-02-05 14:29:33 - django.server - INFO - basehttp.py:124 - "GET /favicon.ico HTTP/1.1" 301 0
Traceback (most recent call last):
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 138, in run
 self.finish_response()
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 180, in finish_response
 self.write(data)
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 279, in write
 self._write(data)
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 453, in _write
 self.stdout.write(data)
 File "/usr/lib/python3.4/socket.py", line 394, in write
 return self._sock.send(b)
 File "/usr/lib/python3.4/ssl.py", line 702, in send
 v = self._sslobj.write(data)
ssl.SSLEOFError: EOF occurred in violation of protocol (_ssl.c:1638)
2018-02-05 14:29:33 - django.server - ERROR - basehttp.py:124 - "GET /favicon.ico HTTP/1.1" 500 59
--
Exception happened during processing of request from ('192.168.92.66', 52014)
Traceback (most recent call last):
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 138, in run
 self.finish_response()
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 180, in finish_response
 self.write(data)
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 279, in write
 self._write(data)
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 453, in _write
 self.stdout.write(data)
 File "/usr/lib/python3.4/socket.py", line 394, in write
 return self._sock.send(b)
 File "/usr/lib/python3.4/ssl.py", line 702, in send
 v = self._sslobj.write(data)
ssl.SSLEOFError: EOF occurred in violation of protocol (_ssl.c:1638)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 141, in run
 self.handle_error()
 File "/home/robbie/work/viper/venv/lib/python3.4/site-packages/django/core/servers/basehttp.py", line 86, in handle_error
 super().handle_error()
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 368, in handle_error
 self.finish_response()
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 180, in finish_response
 self.write(data)
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 274, in write
 self.send_headers()
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 331, in send_headers
 if not self.origin_server or self.client_is_modern():
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 344, in client_is_modern
 return self.environ['SERVER_PROTOCOL'].upper() != 'HTTP/0.9'
TypeError: 'NoneType' object is not subscriptable

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "/usr/lib/python3.4/socketserver.py", line 305, in _handle_request_noblock
 self.process_request(request, client_address)
 File "/usr/lib/python3.4/socketserver.py", line 331, in process_request
 self.finish_request(request, client_address)
 File "/usr/lib/python3.4/socketserver.py", line 344, in finish_request
 self.RequestHandlerClass(request, client_address, self)
 File "/usr/lib/python3.4/socketserver.py", line 673, in __init__
 self.handle()
 File "/home/robbie/work/viper/venv/lib/python3.4/site-packages/django/core/servers/basehttp.py", line 154, in handle
 handler.run(self.server.get_app())
 File "/usr/lib/python3.4/wsgiref/handlers.py", line 144, in run
 self.close()
 File "/usr/lib/python3.4/wsgiref/simple_server.py", line 35, in close
 self.status.split(' ',1)[0], self.bytes_sent
AttributeError: 'NoneType' object has no attribute 'split'
--
2018-02-05 14:29:33 - django.server - INFO - basehttp.py:124 - "GET /static/viperweb/images/favicon.png HTTP/1.1" 200 2041

Final Remarks

Developers

Viper is an open and collaborative development effort. It is built by volunteers from all
over the world. Following are the ones who contributed up to the latest stable release:

$ git shortlog -s -n
 447 Nex
 95 kevthehermit
 51 Raphaël Vinot
 26 Alexander J
 22 emdel
 8 Luke Snyder
 7 Neriberto C.Prado
 6 Sascha Rommelfangen
 5 Beercow
 5 SnakeByte Lab
 4 Seth Hardy
 3 =
 3 Csaba Fitzl
 3 Dionysis Grigoropoulos
 3 Jerome Marty
 3 nidsche
 2 Sam Brown
 2 haellowyyn
 1 Alex Harvey
 1 Ali Ikinci
 1 Boris Ryutin
 1 Nasicus
 1 S0urceC0der
 1 Tobias Jarmuzek
 1 binjo
 1 dewiestr
 1 dukebarman
 1 dukebarman@gmail.com
 1 jekil

Join Us

The best way to start contributing to the project is by start digging through the open
tickets on our GitHub [https://github.com/viper-framework/viper/issues]. Before submitting code make sure you read our Contribution Guidelines [https://github.com/viper-framework/viper/blob/master/CONTRIBUTING.md]
and that you thoroughly tested it.

You can also join our conversions by getting on IRC on FreeNode [http://www.freenode.net]
on channel ###viper.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Official Documentation

 		
 Installation

 		
 First launch

 		
 Uninstall

 		
 Module Dependencies

 		
 Usage

 		
 Concepts

 		
 Projects

 		
 Sessions

 		
 Commands & Modules

 		
 Database

 		
 Binaries

 		
 Commands

 		
 about

 		
 analysis

 		
 clear

 		
 close

 		
 copy

 		
 delete

 		
 exit, quit

 		
 export

 		
 find

 		
 help

 		
 info

 		
 new

 		
 notes

 		
 open

 		
 parent

 		
 projects

 		
 rename

 		
 sessions

 		
 stats

 		
 store

 		
 tags

 		
 HTTP Interfaces

 		
 Security Considerations

 		
 Web Interface

 		
 API

 		
 FAQ

 		
 Create new modules

 		
 First steps

 		
 Arguments

 		
 Using the Config File

 		
 Using common config settings for outbound http connections

 		
 Accessing the session

 		
 Accessing the database

 		
 Printing results

 		
 Known issues

 		
 Various errors when using unicode characters

 		
 Error storing file names containing unicode characters in database

 		
 Problem importing certain modules

 		
 The API interface isn’t fully aware of projects

 		
 update.py from 1.1 to 1.2 IOError ‘data/web/’

 		
 PreprocessError: data/yara/index.yara:0:Invalid file extension ‘.yara’.Can only include .yar

 		
 Error Messages in log: ssl.SSLEOFError: EOF occurred in violation of protocol

 		
 Final Remarks

 		
 Developers

 		
 Join Us

_static/ajax-loader.gif

_images/viper.png
LIPERSS

