

Welcome to Velocity’s documentation!

Velocity is the next-generation Minecraft: Java Edition proxy. Velocity is
built to be highly compatible with server software like Paper, Sponge, and
modding platforms such as Minecraft Forge, while also exposing a rich plugin
API and providing unparalleled scalability.

Note

This website is a work in progress. More documentation is coming soon.

For Server Administrators

	Getting started with Velocity
	Installing Java

	Downloading Velocity

	Configuring Your Servers

	What’s Next?

	Configuring Velocity
	The configuration file

	The default configuration

	Configuring player information forwarding
	Configuring modern forwarding

	Configuring legacy BungeeCord-compatible forwarding

	Frequently asked questions
	What versions of Minecraft does Velocity support?

	What server software is supported by Velocity?

	Is Velocity compatible with my Forge mod(s)?

	What is Velocity’s performance profile?

For Developers

	Creating your first plugin
	Set up your environment

	I know how to do this. Give me what I need!

	Setting up your first project

	The Command API
	Create the command class

	How command arguments work

	Creating a simple tab complete

Getting started with Velocity

Velocity is refreshingly easy to set up.

Warning

Velocity is in an alpha-quality state and is primarily suited for testing and small networks.

Installing Java

Velocity is built on Java, so if you do not already have Java installed, you
will need to install it before you continue. A discussion about installing Java
is out of scope for the Velocity documentation to cover.

Downloading Velocity

You will need to download Velocity first. Visit the download page [https://www.velocitypowered.com/downloads]
and download the latest proxy build from it. Place the downloaded JAR file
into a directory just for your proxy. Afterwards, you can run the JAR using
java -jar velocity-proxy-1.0-SNAPSHOT-all.jar.

Configuring Your Servers

Once Velocity is up and running, we can move on to configuring your servers
for use with Velocity. For now, we’re going to get a basic setup going and
improve upon it later.

Open up velocity.toml and find the [servers] section. This section looks
like this:

[servers]
lobby = "127.0.0.1:30066"
factions = "127.0.0.1:30067"
minigames = "127.0.0.1:30068"

Go ahead and put your servers in this file, and then restart Velocity. Once you’ve
done that, you will need to open the server.properties file for each of your
servers and set the online-mode setting to false. This allows Velocity
to connect to your server. Once you’re done, you should restart your server.
Velocity should now be ready to use.

However, this is a a minimal setup. Notably, since we’re not forwarding IPs and
player information, the Minecraft server will assume you connected from offline
mode. Velocity supports forwarding this information. See Configuring player information forwarding
for more information about that.

What’s Next?

In this section, you downloaded and added your servers to the velocity.toml
file. This file is very important for us, so in the next section we’ll cover it
in great detail.

Configuring Velocity

Velocity has been designed to be simple and unambigous to configure.

The configuration file

Velocity is largely configured from the velocity.toml file. This file is
created in the directory where you started the proxy.

The configuration format

Before we continue, it is useful to take a step back and note that Velocity uses
the TOML [https://github.com/toml-lang/toml] format for its configuration.
TOML was designed to be easy to understand, so you should not have difficulty
understanding Velocity’s configuration file.

Root section

These settings mostly cover the basic, most essential settings of the proxy.

	Setting name

	Type

	Default

	Description

	bind

	Address

	0.0.0.0:25577

	This tells the proxy to accept
connections on a specific IP.
By default, Velocity will listen
for connections on all IP addresses
on the computer on port 25577.

	motd

	Chat

	&3A Velocity Server

	This allows you to change the
message shown to players when they
add your server to their server
list. You can use legacy Minecraft
color codes or JSON chat.

	show-max-players

	Integer

	500

	This allows you to customize the
number of “maximum” players in the
player’s server list. Note that
Velocity doesn’t have a maximum
number of players it supports.

	player-info-forwarding

	Mode

	modern

	This allows you to customize how
player information such as IPs and
UUIDs are forwarded to your server.
See the “Player info forwarding”
section for more information.

	player-info-forwarding-secret

	String

	5up3r53cr3t

	This setting is used as a secret to
ensure that player info forwarded
by Velocity comes from your proxy
and not from someone pretending to
run Velocity. See the “Player info
forwarding” section for more info.

	announce-forge

	Boolean

	false

	This setting determines whether or
Velocity should present itself as a
Forge/FML-compatible server. By
default, this is disabled.

server section

	Setting name

	Type

	Default

	Description

	A server name

	Address

	See the default
configuration below.

	This makes the proxy aware of a server
that it can connect to.

	try

	Array

	["lobby"]

	This specifies what servers (in order
Velocity should try to connect to upon
player login and when a player is
kicked from a server.

advanced section

	Setting name

	Type

	Default

	Description

	compression-threshold

	Integer

	1024

	This is the minimum size (in bytes)
that a packet has to be before the
proxy compresses it. Minecraft uses
256 bytes by default. Velocity uses a
higher value for efficiency.

	compression-level

	Integer

	-1

	This setting indicates what zlib
compression level the proxy should use
to compress packets. The default value
uses the default zlib level, which is
dependent on the zlib version. This
number goes from 0 to 9, where
0 means no compression and 9
indicates maximum compression.

	login-ratelimit

	Integer

	3000

	This setting determines the minimum
amount of time (in milliseconds) that
must pass before a connection from the
same IP address will be accepted by
the proxy. A value of 0 disables
the rate limit.

query section

	Setting name

	Type

	Default

	Description

	enabled

	Boolean

	false

	Whether or not Velocity should reply to
GameSpy 4 (Minecraft query protocol)
requests. You can usually leave this
false.

	port

	Number

	25577

	Specifies which port that Velocity should
listen on for GameSpy 4 (Minecraft query
protocol) requests.

The default configuration

Below is the default configuration file for Velocity, velocity.toml.

velocity.toml

What port should the proxy be bound to? By default, we'll bind to all addresses on port 25577.
bind = "0.0.0.0:25577"

What should be the MOTD? Legacy color codes and JSON are accepted.
motd = "&3A Velocity Server"

What should we display for the maximum number of players? (Velocity does not support a cap
on the number of players online.)
show-max-players = 500

Should we authenticate players with Mojang? By default, this is on.
online-mode = true

Should we forward IP addresses and other data to backend servers?
Available options:
- "none": No forwarding will be done. All players will appear to be connecting from the proxy
and will have offline-mode UUIDs.
- "legacy": Forward player IPs and UUIDs in BungeeCord-compatible fashion. Use this if you run
servers using Minecraft 1.12 or lower.
- "modern": Forward player IPs and UUIDs as part of the login process using Velocity's native
forwarding. Only applicable for Minecraft 1.13 or higher.
player-info-forwarding = "modern"

If you are using modern IP forwarding, configure an unique secret here.
player-info-forwarding-secret = "5up3r53cr3t"

Announce whether or not your server supports Forge/FML. If you run a modded server, we suggest turning this on.
announce-forge = false

[servers]
Configure your servers here.
lobby = "127.0.0.1:30066"
factions = "127.0.0.1:30067"
minigames = "127.0.0.1:30068"

In what order we should try servers when a player logs in or is kicked from a server.
try = [
 "lobby"
]

[advanced]
How large a Minecraft packet has to be before we compress it. Setting this to zero will compress all packets, and
setting it to -1 will disable compression entirely.
compression-threshold = 1024

How much compression should be done (from 0-9). The default is -1, which uses zlib's default level of 6.
compression-level = -1

How fast (in miliseconds) are clients allowed to connect after the last connection? Default: 3000
Disable by setting to 0
login-ratelimit = 3000

[query]
Whether to enable responding to GameSpy 4 query responses or not
enabled = false

If query responding is enabled, on what port should query response listener listen on?
port = 25577

Configuring player information forwarding

Velocity supports forwarding information about your players to your servers, such
as IP addresses, UUIDs, and skins. Velocity supports two different methods for
forwarding player information to your servers:

	modern forwarding is a Velocity-native format. It forwards all player information
in an efficient binary format and ensures that nobody tries to trick the server into
impersonating your Velocity proxy. However, it is only available for Minecraft 1.13
or higher.

	legacy forwarding is the player information forwarding protocol used by BungeeCord.
This is extremely compatible across all Minecraft versions that Velocity supports, but
requires proper configuration to ensure that nobody pretends to be your proxy by using
a firewall or a plugin like IPWhitelist.

Configuring modern forwarding

Currently, only build 377 and above of Paper 1.13.1+ support Velocity’s modern forwarding.

To use modern forwarding with any supported server implementation, set the player-info-forwarding
setting in velocity.toml to modern. You must also change the forwarding-secret
setting to a unique secret. You then need to ensure your server is properly configured to
use modern Velocity forwarding.

Paper

To allow Paper to understand the forwarded player data, in your paper.yml, set
settings.velocity-support.enabled to true and settings.velocity-support.secret
to match the secret in your velocity.toml. You must also set settings.velocity-support.online-mode
to the online-mode setting in your velocity.toml. Once you’re done editing
paper.yml, reboot your server.

Configuring legacy BungeeCord-compatible forwarding

If you need to use legacy BungeeCord-compatible forwarding, simply set your player-info-forwarding
setting in velocity.toml to legacy. You will also need to make sure your server
is properly configured to understand the data.

Caution

Legacy BungeeCord-compatible forwarding allows anyone to pretend they are your proxy
and allow them to log in under any username or IP address! You must make sure that
you have a firewall set up on your servers or use a plugin such as IPWhitelist [https://www.spigotmc.org/resources/ipwhitelist.61/]
to make sure your servers are protected.

Spigot / Paper

To make Spigot or Paper understand the data forwarded from Velocity, set settings.bungeecord to
true in your spigot.yml and then reboot your server.

Sponge

To configure Sponge to understand the data forwarded from Velocity, set modules.bungeecord to true
and bungeecord.ip-forwarding to true in your config/sponge/global.conf file, and then restart
your Sponge server.

Frequently asked questions

What versions of Minecraft does Velocity support?

Velocity supports Minecraft 1.8-1.13.1. It is important to note, however, that
Velocity does not translate between protocol versions - most packets from
the client and server are passed through the proxy unchanged. If you need
a multi-protocol solution for your Minecraft server, please consider installing
ProtocolSupport [https://www.spigotmc.org/resources/protocolsupport.7201/]
or ViaVersion [https://www.spigotmc.org/resources/viaversion.19254/]
on your backend servers.

What server software is supported by Velocity?

Velocity aims to support Paper, Sponge, and Minecraft Forge. As of September 7,
2018, Forge support is available and the proxy has been most extensively tested
against Paper, although Sponge also runs well.

Is Velocity compatible with my Forge mod(s)?

Velocity is compatible with Minecraft Forge (1.8-1.12.2) and supports legacy IP
forwarding for SpongeForge. Most mods should work without issue and with less
trouble than with BungeeCord or Waterfall.

However, there are certain mods that are incompatible with the server-switching
behavior Velocity employs. These are issues that only the author of the mod can
fix, and are not issues with Velocity.

What is Velocity’s performance profile?

On a Velocity server without plugins, most CPU time is spent processing packets
(especially decompressing and recompressing) and waiting on network events.
Velocity has been tuned for throughput: given enough resources, a single proxy
should be able to handle a large number of Minecraft players online.

There are several ways to increase the throughput of the proxy.

Keep an eye on your plugins

The most important performance killer by far are your plugins! Velocity implements
several measures to attempt to reduce issues caused by misbehaving plugins, but
these measures are imperfect. It is important you monitor your plugins to ensure
they are not hurting your proxy throughput.

Disable compression between the proxy and your backend server

If your backend server has compression enabled (by default, Minecraft servers
compress packets larger than 256 bytes), then Velocity is forced to do additional
decompression to process packets going through the proxy. The best solution is to
disable compression on your backend server, so that only Velocity is responsible for
compressing packets.

To disable compression, simply set network-compression-threshold=-1 in your
server.properties, and then reboot your server.

Keep up to date

The Velocity team constantly seeks to improve the throughput of the proxy, and
you can only benefit from our efforts if you keep the proxy regularly up-to-date.

Creating your first plugin

So you’ve decided to take the plunge and create your first Velocity plugin?
That’s awesome! This page will help you get you going.

Set up your environment

You’re going to need the JDK [http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html]
and an IDE (we like IntelliJ IDEA [https://www.jetbrains.com/idea/], but any
IDE will work).

I know how to do this. Give me what I need!

Maven repository

	Name

	velocity

	URL

	https://repo.velocitypowered.com/snapshots/

Dependency

	Group ID

	com.velocitypowered

	Artifact ID

	velocity-api

	Version

	1.0-SNAPSHOT

Setting up your first project

If you need help setting up your project, don’t worry!

Set up your build system

You will need to set up a build system before you continue. Discussing how to
set up a build system for your project is out of scope for this page, but you
can look at the Gradle [https://docs.gradle.org/current/userguide/userguide.html]
or Maven [https://maven.apache.org/guides/getting-started/index.html] documentation
for assistance.

Setting up the dependency with Gradle

Add the following to your build.gradle:

repositories {
 maven {
 name 'velocity'
 url 'https://repo.velocitypowered.com/snapshots/'
 }
}

dependencies {
 compile 'com.velocitypowered:velocity-api:1.0-SNAPSHOT'
}

Note

As of Gradle 5, you must also specify the API dependency as an annotation
processor, otherwise plugin annotations won’t be processed into the
velocity-info.json file.

dependencies {
 compile 'com.velocitypowered:velocity-api:1.0-SNAPSHOT'
 annotationProcessor 'com.velocitypowered:velocity-api:1.0-SNAPSHOT'
}

Setting up the dependency with Maven

Add the following to your pom.xml:

<repositories>
 <repository>
 <id>velocity</id>
 <url>https://repo.velocitypowered.com/snapshots/</url>
 </repository>
</repositories>

<dependencies>
 <dependency>
 <groupId>com.velocitypowered</groupId>
 <artifactId>velocity-api</artifactId>
 <version>1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Create the plugin class

Create a new class (let’s say com.example.velocityplugin.VelocityTest and paste
this in:

package com.example.velocityplugin;

import com.google.inject.Inject;
import com.velocitypowered.api.plugin.Plugin;
import com.velocitypowered.api.proxy.ProxyServer;
import org.slf4j.Logger;

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
 description = "I did it!", authors = {"Me"})
public class VelocityTest {
 private final ProxyServer server;
 private final Logger logger;

 @Inject
 public VelocityTest(ProxyServer server, Logger logger) {
 this.server = server;
 this.logger = logger;

 logger.info("Hello there, it's a test plugin I made!");
 }
}

What did you just do there? There’s quite a bit to unpack, so let’s focus on the
Velocity-specific bits:

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
 description = "I did it!", authors = {"Me"})
public class VelocityTest {

This tells Velocity that this class contains your plugin (myfirstplugin) so that
it can be loaded once the proxy starts up. Velocity will detect where the plugin
will reside when you compile your plugin.

@Inject
public VelocityTest(ProxyServer server, Logger logger) {
 this.server = server;
 this.logger = logger;

 logger.info("Hello there, it's a test plugin I made!");
}

This looks like magic! How is Velocity doing this? The answer lies in the @Inject,
which indicates that Velocity should inject a ProxyServer and the Logger
when constructing your plugin. These two interfaces will help you out as you begin
working with Velocity. We won’t talk too much about dependency injection: all you
need to know is that Velocity will do this.

All you need to do is build your plugin, put it in your plugins/ directory, and
try it! Isn’t that nice? In the next section you’ll learn about how to use the API.

The Command API

The Command API lets you create commands that can be executed on the console or
via a player connected through the proxy.

Create the command class

Each command class must implement the Command interface [https://github.com/VelocityPowered/Velocity/blob/master/api/src/main/java/com/velocitypowered/api/command/Command.java], which has two methods:
one for when the command is executed and one to provide suggestions for tab completion.
Let’s see an example of a simple command that will tell whoever executes the command
“Hello World” in light blue text.

package com.example.velocityplugin;

import com.velocitypowered.api.command.Command;
import com.velocitypowered.api.command.CommandSource;
import net.kyori.text.TextComponent;
import net.kyori.text.format.TextColor;
import org.checkerframework.checker.nullness.qual.NonNull;

public class CommandTest implements Command {

 @Override
 public void execute(@NonNull CommandSource source, String[] args) {
 source.sendMessage(TextComponent.of("Hello World!").color(TextColor.AQUA));
 }
}

Now that we have created the command, we need to register it in order for it to work.
To register commands, you use the Command Manager [https://github.com/VelocityPowered/Velocity/blob/master/api/src/main/java/com/velocitypowered/api/command/CommandManager.java].
We get the command manager by executing proxyServer.getCommandManager() with
the proxy instance, or by injecting it using the @Inject annotation in our
main class. The register method requires two parameters, the command object and
the command aliases which is a varargs parameter.

commandManager.register(new CommandTest(), "test");

If we assemble it all into our main class created on the first tutorial, it’ll look
something like this

package com.example.velocityplugin;

import com.google.inject.Inject;
import com.velocitypowered.api.command.CommandManager;
import com.velocitypowered.api.plugin.Plugin;
import org.slf4j.Logger;

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
 description = "I did it!", authors = {"Me"})
public class VelocityTest {

 @Inject private VelocityTest(CommandManager commandManager, Logger logger) {
 commandManager.register(new CommandTest(), "test");
 logger.info("Plugin has enabled!");
 }
}

As you can see we’re injecting the commandManager instance but we can also obtain
it by injecting the ProxyServer and getting it from there.

How command arguments work

The execute method has a String[] which represents the arguments of the command.
The arguments don’t include the base command. It is important to note that in the
event that no arguments are specified, an empty array will be passed, rather than
a null array.

If a player or a console executes the following command: /stats Player2 kills,
the first argument will be Player2, which we can access using args[0] and
the second argument will be kills.

Let’s create a command that will return how many kills a player has (which are
stored in a local hashmap for the purposes of this tutorial).

The command will be /stats <player>

package com.example.velocityplugin;

import com.google.common.collect.ImmutableList;
import com.velocitypowered.api.command.Command;
import com.velocitypowered.api.command.CommandSource;
import net.kyori.text.TextComponent;
import net.kyori.text.format.TextColor;
import org.checkerframework.checker.nullness.qual.NonNull;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class TabCompleteTest implements Command {

 private final Map<String, Integer> playerKills = new HashMap<>();

 public TabCompleteTest() {
 playerKills.put("Tux", 58);
 playerKills.put("Player2", 23);
 playerKills.put("Player3", 17);
 }

 @Override
 public void execute(@NonNull CommandSource source, String[] args) {
 if (args.length != 1) {
 source.sendMessage(TextComponent.of("Invalid usage!").color(TextColor.RED));
 source.sendMessage(TextComponent.of("Usage: /stats <player>").color(TextColor.RED));
 return;
 }

 String playerName = args[0];
 if (playerKills.containsKey(playerName)) {
 source.sendMessage(TextComponent
 .of(playerName + " has " + playerKills.get(playerName) + " kills.")
 .color(TextColor.GREEN));
 } else {
 source.sendMessage(TextComponent.of("Player not found").color(TextColor.RED));
 }
 }
}

Let’s break down the command.

private final Map<String, Integer> playerKills = new HashMap<>();

public TabCompleteTest() {
 playerKills.put("Tux", 58);
 playerKills.put("Player2", 23);
 playerKills.put("Player3", 17);
}

We create a simple map where we’ll store dummy players with kills as an example for
this tutorial. If you were to create a stat plugin, these players would be loaded
from the database or from another file.

@Override
public void execute(@NonNull CommandSource source, String[] args) {
 if (args.length != 1) {
 source.sendMessage(TextComponent.of("Invalid usage!").color(TextColor.RED));
 source.sendMessage(TextComponent.of("Usage: /stats <player>").color(TextColor.RED));
 return;
 }

We first check that the arguments are equal to 1, meaning they specified a player.

String playerName = args[0];

We get the player name that was provided in the command. /stats Player2, the
playerName would be Player2.

if (playerKills.containsKey(playerName)) {
 source.sendMessage(TextComponent
 .of(playerName + " has " + playerKills.get(playerName) + " kills.")
 .color(TextColor.GREEN));
} else {
 source.sendMessage(TextComponent.of("Player not found").color(TextColor.RED));
}

Finally do a simple check to see if the player has kills and display them if they
do have, or otherwise send them a message that the player is not found.

Creating a simple tab complete

Tab completion is when a player or the console presses the tab key while writing
a command, in which the plugin will automatically give suggestions according to the
context of the command. Let’s say you’re typing /kill and then press the tab
key, the plugin would suggest the names of the players who are online.

We’ll base on the last command example, but will add one thing. The player names
who have kills will be able to be completed using the tab key.

@Override
public List<String> suggest(@NonNull CommandSource source, String[] currentArgs) {
 if (currentArgs.length == 0) {
 return new ArrayList<>(playerKills.keySet());
 } else if (currentArgs.length == 1) {
 return playerKills.keySet().stream()
 .filter(name -> name.regionMatches(true, 0, currentArgs[0], 0, currentArgs[0].length()))
 .collect(Collectors.toList());
 } else {
 return ImmutableList.of();
 }
}

Let’s break down the suggest method.

if (currentArgs.length == 0) {
 return new ArrayList<>(playerKills.keySet());

If the player hasn’t entered anything other than the command, we will suggest all
the names in the map.

} else if (currentArgs.length == 1) {
 return playerKills.keySet().stream()
 .filter(name -> name.regionMatches(true, 0, currentArgs[0], 0, currentArgs[0].length()))
 .collect(Collectors.toList());

Now the player has typed something, so we will suggest all the player names that
start with the characters that the player has typed. For instance, if the player
has typed Pla or Player, it will suggest Player2 and Player3. If
the player has typed T, it will suggest Tux.

} else {
 return ImmutableList.of();
}

If the player tries to autocomplete more than one argument, we return an empty
list since our command only has one argument.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Velocity’s documentation!

 		
 Getting started with Velocity

 		
 Installing Java

 		
 Downloading Velocity

 		
 Configuring Your Servers

 		
 What’s Next?

 		
 Configuring Velocity

 		
 The configuration file

 		
 The configuration format

 		
 Root section

 		
 server section

 		
 advanced section

 		
 query section

 		
 The default configuration

 		
 Configuring player information forwarding

 		
 Configuring modern forwarding

 		
 Paper

 		
 Configuring legacy BungeeCord-compatible forwarding

 		
 Spigot / Paper

 		
 Sponge

 		
 Frequently asked questions

 		
 What versions of Minecraft does Velocity support?

 		
 What server software is supported by Velocity?

 		
 Is Velocity compatible with my Forge mod(s)?

 		
 What is Velocity’s performance profile?

 		
 Keep an eye on your plugins

 		
 Disable compression between the proxy and your backend server

 		
 Keep up to date

 		
 Creating your first plugin

 		
 Set up your environment

 		
 I know how to do this. Give me what I need!

 		
 Maven repository

 		
 Dependency

 		
 Setting up your first project

 		
 Set up your build system

 		
 Create the plugin class

 		
 The Command API

 		
 Create the command class

 		
 How command arguments work

 		
 Creating a simple tab complete

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

