

 Navigation

 	
 index

 	
 next |

 	UpCloo Framework 0.0.11 documentation

Welcome to UpCloo Framework’s documentation!

Contents:

	Introduction
	Renderers

	Events

	Services

	Configuration

	Getting Started with UpCloo Framework
	Your entry point

	Your base configuration

	Now the ActionController

	Test you business logic

	Integration testing

	Configuration
	Services

	Listeners

	Overload your configuration

	Controllers and Actions
	Interact with the event data

	Interact with the Request object

	Interact with the Response object

	Redirections

	ServiceManager

	EventManager

	Test your controllers

	The ServiceManager

	Listeners

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

Introduction

UpCloo framework is based on ZF2 components and in particular:

	TreeRouteStack (Router)

	EventManager

	ServiceManager

Renderers

You have to define “renderers” (who render your data). The framework
provides two default renderers that are:

	UpCloo\Renderer\Json

	UpCloo\Renderer\Jsonp

Events

The framework flow is event driven and the execution depends in
your actions. In a valid request you reach this events list

	begin

	route

	pre.fetch

	execute

	renderer

	finish

The default flow can change on errors, redirections and exceptions,
for example if a route is missing the “404” event is thrown and the
flow is like this:

	begin

	route

	404

	finish

You have to attach a listener on the “404” event in order to handle this error
situation.

Services

The ServiceManager is responsible to provide objects to your application and
is widly used into the App framework in order to select the right controller
and renderer.

Configuration

The framework uses your configuration in order to bootstrap and run.

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

Getting Started with UpCloo Framework

The base folder structure is: whatever you want...

We suggest something like this:

- configs
- src
 - Your
 - Project
 - Namespace
- tests
 - Your
 - Project
 - Namespace
- web
 - js
 - css
 - img

That is similar to a standard ZF2 module.

Your entry point

Into web direction you have to place your single entry point for your application
the index.php file.

<?php
// web/index.php

$loader = require __DIR__ . "/../../vendor/autoload.php";
$loader->add("My", __DIR__ . '/../src');

$conf = include __DIR__ . "/../configs/app.php";

$config = new UpCloo\App\Config\ArrayProcessor();
$config->appendConfig($conf);

$boot = new UpCloo\App\Boot($config);
$engine = new UpCloo\App\Engine();

$app = new UpCloo\App($engine, $boot);
$app->run();

As you can see the first to line uses the composer autoloader in order to
satisfy all your dependencies.

The configuration is loaded through the inclusion. Subsequently we create
the application and after that we run it.

Your base configuration

We want to create a json response at the / address. So, we need
the router and at least one controller.

<?php
// configs/app.php

return array(
 "router" => array(
 "routes" => array(
 "home" => array(
 "type" => "Literal",
 "options" => array(
 "route" => "/"
 'defaults' => array(
 'controller' => 'My\\NM\\Index',
 'action' => 'aMethod'
)
),
 'may_terminate' => true,
)
)
),
 "services" => array(
 "invokables" => array(
 "My\\NM\\Index" => "My\\NM\\Index",
)
)
)

Now the ActionController

The controller class is simply a POPO definition with just the action
declared.

<?php
// src/My/NM/Index.php

namespace My\\NM;

class Index
{
 public function aMethod()
 {
 return array(
 "hello" => "world"
);
 }
}

As you can see the method should return the value that the renderer will
serialize into the response.

Test you business logic

The goal of this structure is oriented to testing. For that reason the test
section is not optional!

// tests/My/NM/IndexTest.php

namespace My\\NM;

class IndexTest extends \PHPUnit_Framework_TestCase
{
 private $object;

 public function setUp()
 {
 $this->object = new Index();
 }

 public function testSimpleIndexMethod()
 {
 $oracleData = array(
 "hello" => "world"
);

 $this->assertEquals($oracleData, $this->object->aMethod());
 }
}

Obviously this is just a simple action! Before run tests correctly we need
to load classes and framework, for that use a bootstrap file.

<?php
// tests/bootstrap.php

$loader = require __DIR__ . '/../vendor/autoload.php'; //composer load the framework

$loader->add("My", __DIR__ . '/../src'); //Your source
$loader->add("My", __DIR__); // tests folder

Now run your tests:

phpunit --bootstrap tests/bootstrap.php tests/

The output should be something similar to this:

PHPUnit 3.7.22 by Sebastian Bergmann.

.

Time: 1 seconds, Memory: 1.25Mb

OK (1 tests, 1 assertions)

Now you can continue with more interesting things!

Integration testing

You can test your controller in isolation (see Controllers and Actions) or you can
run the whole application. If you are interested in this last thing, you have
to inherits from UpClooTestWebTestCase during testing.

<?php
namespace Your\NM;

use UpCloo\Test\WebTestCase;

class MyControllerTest extends WebTestCase
{
 public function setUp()
 {
 $this->appendConfig([
 "router" => [
 ... // Routes
],
 "services" => [
 ... // A conf
],
 ...
]);
 }

 public function testMyAction()
 {
 $response = $this->dispatch("/my-action"); //get method

 $this->assertEquals(200, $response->getStatusCode());
 //... more assert

 $content = $response->getContent();
 //...
 }
}

The dispatch method signature is:

public function dispatch($url, $method = "GET", array $params = array())

Possibile methods are:

	GET

	POST

	PUT

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

Configuration

Basically only the router section is a must.

<?php
return array(
 "router" => array(
 "routes" => array(
 "home" => array(
 "type" => "literal",
 "options" => array(
 "route" => "/"
 "defaults" => array(
 "controller" => "Your\\NS\\Controller",
 "action" => "myAction"
)
),
 "may_terminate" => true
)
)
)
);

The configuration is practically identical to ZF2 standard router configuration

Services

In addition you can configure services:

"services" => array(
 "invokables" => array(
 "My\\Controller\\Example" => "My\\Controller\\Example",
 "UpCloo\\Renderer\\Jsonp" => "UpCloo\\Renderer\\Jsonp",
),
 "factories" => array(
 "example" => function(\Zend\ServiceManager\ServiceLocatorInterface $sl) {
 return "that-service";
 }
),
 "aliases" => array(
 "exampleController" => "My\\Controller\\Example",
 "renderer" = "UpCloo\\Renderer\\Jsonp"
)
),

The configuration is the same for ZF2 services

Listeners

When you need to hook your code on events you can specify through the
listeners section:

"listeners" => array(
 "404" => array(
 array("My\\Controller\\Error", "error")
)
)

Any callable hook is valid

 "listeners" => array(
 "404" => array(
 function() {
 // handle 404
 }
)
)

Overload your configuration

You can pass to your Boot different configurations. The framework merge those
together in order to obtain a single configuration.

This thing could be useful in order to obtain the right configuration for the
current environment.

For example see something like this:

$config = new \UpCloo\App\Config\ArrayProcessor();

$config->appendConfig(include __DIR__ . "/../configs/app.php");
$config->appendConfig(include __DIR__ . "/../configs/app.{$env}.php");

$boot = new \UpCloo\App\Boot($config);

...

In this way the conf loaded from app.php is overwritten by the second configuration
and so on. You can load how many conf you need.

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

Controllers and Actions

Controllers are simply POPO object, like this:

class Me
{
 public function hello()
 {
 return "hello!";
 }
}

Controllers and actions are mapped thanks to the TreeRouteStack as you can
see in the Getting Started with UpCloo Framework section.

Interact with the event data

When your action is called, the event is passed as method argument and you can
interact with the RouteMatch in this way:

class Me
{
 public function hello($event)
 {
 //Play with $event
 }
}

The $event object is a Zend\EventManager\Event object, in few words something
like this:

object(Zend\EventManager\Event)[31]
 protected 'name' => string 'execute' (length=7)
 protected 'target' =>
 object(Zend\Mvc\Router\Http\RouteMatch)[35]
 protected 'length' => int 7
 protected 'params' =>
 array (size=3)
 'renderer' => string 'UpCloo\Renderer\Jsonp' (length=21)
 'controller' => string 'exampleController' (length=17)
 'action' => string 'method' (length=6)
 protected 'matchedRouteName' => string 'home' (length=4)
 protected 'params' =>
 array (size=0)
 empty
 protected 'stopPropagation' => boolean false

The “param” contains the “RouteMatch” structure.

Interact with the Request object

Many times you need to interact with Request (Zend\Http\PhpEnvironment\Request) object.
When you need to use the http request you can use “UpCloo\Controller\Request”
trait.

<?php
namespace Your\NM;

use UpCloo\Controller\Request;

class Me
{
 use Request;

 public function hello($event)
 {
 $request = $this->getRequest();
 }
}

The framework hydrate your controller with the Request object only if you
declare that you need it using the trait!

Interact with the Response object

The Response object (Zend\Http\PhpEnvironment\Response) follow the same of
Request.

<?php
namespace Your\NM;

use UpCloo\Controller\Response;

class Me
{
 use Response;

 public function hello($event)
 {
 $response = $this->getResponse();
 }
}

Redirections

As before you have to use traits, the UpCloo\Controller\Action\Redirector
to be clear

<?php
namespace Your\NM;

use UpCloo\Controller\Action\Redirector;

class Me
{
 use Redirector;

 public function hello($event)
 {
 $this->redirect("http://walterdalmut.com", 302);
 }
}

The second argument of “redirect” method is optional (302 by default) and
the first argument is the redirect location.

The Redirector traits uses the “Response trait” by itself, for that reason when you use
the redirector the Response traits is automatically added to your controller.

ServiceManager

You can request anything from the service locator through just using the
ServiceManager trait.

<?php
namespace Your\NM;

use UpCloo\Controller\ServiceManager;

class TheHookContainer
{
 use ServiceManager;

 public function anHook()
 {
 $aService = $this->services()->get("a-service");

 ...
 }
}

EventManager

Inside an event you can attach and fire other events adding the EventManager
trait:

<?php
namespace Your\NM;

use UpCloo\Controller\EventManager;

class TheHookContainer
{
 use EventManager;

 public function anHook()
 {
 // Attach something to an event
 $this->events()->attach("finish", function() {
 //Good bye cruel world!
 });

 // Trigger a custom event...
 $this->events()->trigger("my.hook.event", $this, ["name" => "a name"]);
 }
}

Test your controllers

You can test your controller in isolation from the entire application, you have
just to prepare things that you need and inject into your controller.

See an example:

<?php
namespace Your\NM;

use UpCloo\Controller\EventManager;

class Controller
{
 use EventManager;

 public function myHook($event)
 {
 $this->events()->trigger("my.hook.start", $this);

 ... // do something...

 $this->events()->trigger("my.hook.finish", $this, $data);
 return $data;
 }
}

Your tests could be something like this:

<?php
namespace UpCloo\NM;

use Zend\EventManager\EventManager;
use UpCloo\Test\ControllerTestUtils;

class ControllerTest extends \PHPUnit_Framework_TestCase
{
 use ControllerTestUtils;

 private $object;

 public function setUp()
 {
 // Prepare the controller
 $this->object = new Controller();
 $this->object->setEventManager(new EventManager());
 }

 public function testWorkingAction()
 {
 $event = $this->getEventFromParams([
 "param" => "hello"
]);

 $data = $this->object->myHook($event);

 // asserts on data
 }
}

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

The ServiceManager

As mentioned before, the ZF2 ServiceManger is used. You can configure your
services and require for them in your controller.

In your configuration:

<?php
return array(
 "services" => array(
 "factories" => array(
 "example" => function($sl) {
 return new stdClass();
 }
)
)
)

In your controller you have to require the ServiceManager trait

<?php
namespace My\NM;

use UpCloo\Controller\ServiceManager;

class My
{
 use ServiceManager;

 public function hello($event)
 {
 $service = $this->get("example");

 return $service;
 }
}

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	UpCloo Framework 0.0.11 documentation

Listeners

Listeners are object that are used when an event is fired!

<?php
namespace My\NM;

class Error
{
 public function error()
 {

 }
}

Of course we have to link listeners through the configuration:

// configs/app.php

"services" => arrray(
 "invokables" => array(
 "My\\NM\\Error" => "My\\NM\\Error",
)
),
"listeners" => array(
 "404" => array(
 array("My\\NM\\Error", "error")
)
)

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	UpCloo Framework 0.0.11 documentation

Index

 Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

 _static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		UpCloo Framework 0.0.11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Walter Dal Mut.
 Created using Sphinx 1.2.

_static/down-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

