

Programming with Unicode

	1. About this book
	1.1. License

	1.2. Thanks to

	1.3. Notations

	2. Unicode nightmare

	3. Definitions
	3.1. Character

	3.2. Glyph

	3.3. Code point

	3.4. Character set (charset)

	3.5. Character string

	3.6. Byte string

	3.7. UTF-8 encoded strings and UTF-16 character strings

	3.8. Encoding

	3.9. Encode a character string

	3.10. Decode a byte string

	3.11. Mojibake

	3.12. Unicode: an Universal Character Set (UCS)

	4. Unicode
	4.1. Unicode Character Set

	4.2. Categories

	4.3. Statistics

	4.4. Normalization

	5. Charsets and encodings
	5.1. Encodings

	5.2. Popularity

	5.3. Encodings performances

	5.4. Examples

	5.5. Handle undecodable bytes and unencodable characters
	5.5.1. Undecodable byte sequences

	5.5.2. Unencodable characters

	5.5.3. Error handlers

	5.5.4. Replace unencodable characters by a similar glyph

	5.5.5. Escape the character

	5.6. Other charsets and encodings

	6. Historical charsets and encodings
	6.1. ASCII

	6.2. ISO 8859 family
	6.2.1. ISO 8859-1

	6.2.2. cp1252

	6.2.3. ISO 8859-15

	6.3. CJK: asian encodings
	6.3.1. Chinese encodings

	6.3.2. Japanese encodings

	6.3.3. ISO 2022

	6.3.4. Extended Unix Code (EUC)

	6.4. Cyrillic

	7. Unicode encodings
	7.1. UTF-8

	7.2. UCS-2, UCS-4, UTF-16 and UTF-32

	7.3. UTF-7

	7.4. Byte order marks (BOM)

	7.5. UTF-16 surrogate pairs

	8. How to guess the encoding of a document?
	8.1. Is ASCII?

	8.2. Check for BOM markers

	8.3. Is UTF-8?

	8.4. Libraries

	9. Good practices
	9.1. Rules

	9.2. Unicode support levels

	9.3. Test the Unicode support of a program

	9.4. Get the encoding of your inputs

	9.5. Switch from byte strings to character strings

	10. Operating systems
	10.1. Windows
	10.1.1. Code pages

	10.1.2. Encode and decode functions

	10.1.3. Windows API: ANSI and wide versions

	10.1.4. Windows string types

	10.1.5. Filenames

	10.1.6. Windows console

	10.1.7. File mode

	10.2. Mac OS X

	10.3. Locales
	10.3.1. Locale categories

	10.3.2. The C locale

	10.3.3. Locale encoding

	10.3.4. Locale functions

	10.4. Filesystems (filenames)
	10.4.1. CD-ROM and DVD

	10.4.2. Microsoft: FAT and NTFS filesystems

	10.4.3. Apple: HFS and HFS+ filesystems

	10.4.4. Others

	11. Programming languages
	11.1. C language
	11.1.1. Byte API (char)

	11.1.2. Byte string API (char*)

	11.1.3. Character API (wchar_t)

	11.1.4. Character string API (wchar_t*)

	11.1.5. printf functions family

	11.2. C++

	11.3. Python
	11.3.1. Python 2

	11.3.2. Python 3

	11.3.3. Differences between Python 2 and Python 3

	11.3.4. Codecs

	11.3.5. String methods

	11.3.6. Filesystem

	11.3.7. Windows

	11.3.8. Modules

	11.4. PHP

	11.5. Perl

	11.6. Java

	11.7. Go and D

	12. Database systems
	12.1. MySQL

	12.2. PostgreSQL

	12.3. SQLite

	13. Libraries
	13.1. Qt library
	13.1.1. Character and string classes

	13.1.2. Codec

	13.1.3. Filesystem

	13.2. The glib library
	13.2.1. Character strings

	13.2.2. Codec functions

	13.2.3. Filename functions

	13.3. iconv library

	13.4. ICU libraries

	13.5. libunistring

	14. Unicode issues
	14.1. Security vulnerabilities
	14.1.1. Special characters

	14.1.2. Non-strict UTF-8 decoder: overlong byte sequences and surrogates

	14.1.3. Check byte strings before decoding them to character strings

	15. See also

1. About this book

The book is written in reStructuredText [http://sphinx.pocoo.org/rest.html]
(reST) syntax and compiled by Sphinx [http://sphinx.pocoo.org/].

I started to write in the 25th September 2010.

1.1. License

This book is distributed under the CC BY-SA 3.0 license [http://creativecommons.org/licenses/by-sa/3.0/].

1.2. Thanks to

Reviewers: Alexander Belopolsky, Antoine Pitrou, Feth Arezki and Nelle
Varoquaux, Natal Ngétal.

1.3. Notations

	0bBBBBBBBB: 8 bit unsigned number written in binary, first digit is the most
significant. For example, 0b10000000 is 128.

	0xHHHH: number written in hexadecimal, e.g. 0xFFFF is 65535.

	0xHH 0xHH ...: byte sequence with bytes written in hexadecimal, e.g.
0xC3 0xA9 (2 bytes) is the character é (U+00E9) encoded to UTF-8.

	U+HHHH: Unicode character with its code point written in hexadecimal. For example, U+20AC is
the “euro sign” character, code point 8,364. Big code point are written with more than 4
hexadecimal digits, e.g. U+10FFFF is the biggest (unallocated) code point of
Unicode Character Set 6.0: 1,114,111.

	A—B: range including start and end. Examples:

	0x00—0x7F is the range 0 through 127 (128 bytes)

	U+0000—U+00FF is the range 0 through 255 (256 characters)

	{U+HHHH, U+HHHH, …}: a character string. For example,
{U+0041, U+0042, U+0043} is the string “abc” (3 characters).

2. Unicode nightmare

Unicode is the nightmare of many developers (and users) for
different, and sometimes good reasons.

In the 1980s, only few people read documents in languages other than their mother
tongue and English. A computer supported only a small number of
languages, the user configured his region to support languages of close
countries. Memories and disks were expensive, all applications were written to
use byte strings using 8 bits encodings: one byte per character
was a good compromise.

Today with the Internet and the globalization, we all read and exchange
documents from everywhere around the world (even if we don’t understand
everything). The problem is that documents rarely indicate their language
(encoding), and displaying a document with the wrong encoding leads to a well
known problem: mojibake.

It is difficult to get, or worse, guess the encoding of a document. Except for
encodings of the UTF family (coming from the Unicode standard), there
is no reliable algorithm for that. We have to rely on statistics to guess the most
probable encoding, which is done by most Internet browsers.

Unicode support by operating systems,
programming languages and libraries varies a lot.
In general, the support is basic or non-existent. Each operating system manages
Unicode differently. For example, Windows stores filenames as Unicode,
whereas UNIX and BSD operating systems use bytes.

Mixing documents stored as bytes is possible, even if they use different
encodings, but leads to mojibake. Because libraries and programs do also ignore
encode and decode warnings or errors, writing a single character with a diacritic
(any non-ASCII character) is sometimes enough to get an error.

Full Unicode support is complex because the Unicode charset is bigger than any
other charset. For example, ISO 8859-1 contains 256 code points including 191
characters, whereas Unicode version 6.0 contains 248,966
assigned code points. The Unicode standard is larger than just a
charset: it also explains how to display characters (e.g. left-to-right for
English and right-to-left for persian), how to normalize a character string
(e.g. precomposed characters versus the decomposed form), etc.

This book explains how to sympathize with Unicode, and how you should modify
your program to avoid most, or all, issues related to encodings and Unicode.

3. Definitions

3.1. Character

Generic term for a semantic symbol. Many possible interpretations exist in the context of encoding.

In computing, the most important aspect is that characters can be letters, spaces or control characters which represent the end of a file or can be used to trigger a sound.

3.2. Glyph

One or more shapes that may be combined into a grapheme.

In Latin, a glyph often has 2 variants like ‘A’ and ‘a’ and Arabic often has four. This term is context dependent and different styles or formats can be considered different glyphs.

Most relevant in programming is that diacritic marks (e.g. accents like ` and ^) are also glyphs, which are sometimes represented with another at one point, like the à in ISO 8859-1 or as two separate glyphs, so an a and the combining ` (U+0300 and U+0061 combined as U+00E0).

3.3. Code point

A code point is an unsigned integer. The smallest code point is zero. Code
points are usually written as hexadecimal, e.g. “0x20AC” (8,364 in decimal).

3.4. Character set (charset)

A character set, abbreviated charset, is a mapping between code
points and characters. The mapping has a fixed
size. For example, most 7 bits encodings have 128 entries, and most 8 bits
encodings have 256 entries. The biggest charset is the Unicode Character
Set 6.0 with 1,114,112 entries.

In some charsets, code points are not all contiguous. For example, the
cp1252 charset maps code points from 0 though 255, but it has
only 251 entries: 0x81, 0x8D, 0x8F, 0x90 and 0x9D code points are not assigned.

Examples of the ASCII charset: the digit five (“5”, U+0035) is
assigned to the code point 0x35 (53 in decimal), and the uppercase letter “A”
(U+0041) to the code point 0x41 (65).

The biggest code point depends on the size of the charset. For example, the
biggest code point of the ASCII charset is 127 ([image: 2^7-1])

Charset examples:

	Charset

	Code point

	Character

	ASCII

	0x35

	5 (U+0035)

	ASCII

	0x41

	A (U+0041)

	ISO-8859-15

	0xA4

	€ (U+20AC)

	Unicode Character Set

	0x20AC

	€ (U+20AC)

3.5. Character string

A character string, or “Unicode string”, is a string where each unit is a
character. Depending on the implementation, each character
can be any Unicode character, or only characters in the range U+0000—U+FFFF,
range called the Basic Multilingual Plane (BMP). There are 3
different implementations of character strings:

	array of 32 bits unsigned integers (the UCS-4 encoding): full
Unicode range

	array of 16 bits unsigned integers (UCS-2): BMP only

	array of 16 bits unsigned integers with surrogate pairs (UTF-16): full Unicode range

UCS-4 uses twice as much memory than UCS-2, but it supports all Unicode
characters. UTF-16 is a compromise between UCS-2 and UCS-4: characters in the
BMP range use one UTF-16 unit (16 bits), characters outside this range use two
UTF-16 units (a surrogate pair, 32 bits). This advantage is
also the main disadvantage of this kind of character string.

The length of a character string implemented using UTF-16 is the number of
UTF-16 units, and not the number of characters, which is confusing. For
example, the U+10FFFF character is encoded as two UTF-16 units: {U+DBFF,
U+DFFF}. If the character string only contains characters of the BMP range, the
length is the number of characters. Getting the nth character or the
length in characters using UTF-16 has a complexity of [image: O(n)], whereas
it has a complexity of [image: O(1)] for UCS-2 and UCS-4 strings.

The Java language, the Qt library and Windows 2000 implement character strings with UTF-16. The C and Python languages use UTF-16 or UCS-4 depending on: the size of the
wchar_t type (16 or 32 bits) for C, and the compilation mode (narrow
or wide) for Python. Windows 95 uses UCS-2 strings.

See also

UCS-2, UCS-4 and UTF-16 encodings,
and surrogate pairs.

3.6. Byte string

A byte string is a character string encoded to an
encoding. It is implemented as an array of 8 bits unsigned
integers. It can be called by its encoding. For example, a byte string encoded
to ASCII is called an “ASCII encoded string”, or simply an
“ASCII string”.

The character range supported by a byte string depends on its
encoding, because an encoding is associated with a charset. For
example, an ASCII string can only store characters in the range U+0000—U+007F.

The encoding is not stored explicitly in a byte string. If the encoding is not
documented or attached to the byte string, the encoding has to be
guessed, which is a difficult task. If a byte string is decoded from
the wrong encoding, it will not be displayed correctly, leading to a well known
issue: mojibake.

The same problem occurs if two byte strings encoded to different encodings are
concatenated. Never concatenate byte strings encoded to different
encodings! Use character strings, instead of byte strings, to avoid mojibake
issues.

PHP5 only supports byte strings. In the C language,
“strings” are usually byte strings which are implemented as the char*
type (or const char*).

See also

The char* type of the C language and the mojibake issue.

3.7. UTF-8 encoded strings and UTF-16 character strings

A UTF-8 string is a particular case, because UTF-8 is able to
encode all Unicode characters 1 . But a UTF-8 string is not a Unicode string
because the string unit is byte and not character: you can get an individual
byte of a multibyte character.

Another difference between UTF-8 strings and Unicode strings is the complexity
of getting the nth character: [image: O(n)] for the byte string and [image: O(1)]
for the Unicode string. There is one exception: if the Unicode string is
implemented using UTF-16: it has also a complexity of [image: O(n)].

	1

	A UTF-8 encoder should not encode surrogate characters (U+D800—U+DFFF).

3.8. Encoding

An encoding describes how to encode code points to bytes and how to decode bytes to code
points.

An encoding is always associated with a charset. For example,
the UTF-8 encoding is associated with the Unicode charset. So we can say that an
encoding encodes characters to bytes and decode bytes to characters, or more
generally, it encodes a character string to a byte string and decodes a byte string to a character string.

The 7 and 8 bits charsets have the simplest encoding: store a code point as a
single byte. Since these charsets are also called encodings, it is easy to confuse
them. The best example is the ISO-8859-1 encoding: all of
the 256 possible bytes are considered as 8 bit code points (0 through 255) and
are mapped to characters. For example, the character A (U+0041) has the
code point 65 (0x41 in hexadecimal) and is stored as the byte 0x41.

Charsets with more than 256 entries cannot encode all code points into a single
byte. The encoding encodes all code points into byte sequences of the same
length or of variable length. For example, UTF-8 is a variable length
encoding: code points lower than 128 use a single byte, whereas higher code
points take 2, 3 or 4 bytes. The UCS-2 encoding encodes all
code points into sequences of two bytes (16 bits).

3.9. Encode a character string

Encode a character string to a byte string, to an
encoding. For example, encode “Hé” to UTF-8 gives 0x48 0xC3
0xA9.

By default, most libraries are strict: raise an error at the
first unencodable character. Some libraries allow to
choose how to handle them.

Most encodings are stateless, but some encoding requires a stateful encoder.
For example, the UTF-16 encoding starts by generating a
BOM, 0xFF 0xFE or 0xFE 0xFF depending on the endian.

3.10. Decode a byte string

Decode a byte string from an encoding to a character
string. For example, decode 0x48 0xC3 0xA9 from UTF-8
gives “Hé”.

By default, most libraries raise an error if a byte sequence cannot be
decoded. Some libraries allow to choose how to handle them.

Most encodings are stateless, but some encoding requires a stateful decoder.
For example, the UTF-16 encoding decodes the two first bytes as
a BOM to read the endian (use UTF-16-LE or UTF-16-BE).

3.11. Mojibake

When a byte strings is decoded from the wrong
encoding, or when two byte strings encoded to different encodings are
concatenated, a program will display mojibake.

The classical example is a latin string (with diacritics) encoded to UTF-8 but
decoded from ISO-8859-1. It displays Ã© {U+00C3, U+00A9} for the é (U+00E9)
letter, because é is encoded to 0xC3 0xA9 in UTF-8.

Other examples:

	Text

	Encoded to

	Decoded from

	Result

	Noël

	UTF-8

	ISO-8859-1

	NoÃ«l

	Русский

	KOI-8

	ISO-8859-1

	òÕÓÓËÉÊ

Note

“Mojibake” is japanese word meaning literally “unintelligible sequence of
characters”. This issue is called “Кракозябры” (krakozyabry) in Russian.

[image: Letter to Russia with krakozyabry]
2004. An image of a post envelope with address written in krakozyabry
(кракозя́бры) AKA Mojibake. The envelope contained a Harry Potter book. This
letter was sent to a Russian student by her French friend, who manually wrote
the address that she received by e-mail. Her e-mail client, unfortunately, was
not set up correctly to display Cyrillic characters, so they were substituted
with diacritic symbols from the Western charset (ISO-8859-1) The original
message was in KOI8-R.

The address was deciphered by the postal employees and delivered successfully.
Some of the correct characters (red) were written above the wrong ones (black).

See also

How to guess the encoding of a document?

3.12. Unicode: an Universal Character Set (UCS)

See also

UCS-2, UCS-4, UTF-8, UTF-16, and UTF-32 encodings.

4. Unicode

Unicode is a character set. It is a superset of all the other character sets.
In the version 6.0, Unicode has 1,114,112 code points (the last code point is
U+10FFFF). Unicode 1.0 was limited to 65,536 code points (the last code point
was U+FFFF), the range U+0000—U+FFFF called BMP (Basic Multilingual
Plane). I call the range U+10000—U+10FFFF as non-BMP characters.

4.1. Unicode Character Set

The Unicode Character Set (UCS) contains 1,114,112 code points:
U+0000—U+10FFFF. Characters and code point ranges are grouped by
categories. Only encodings of the UTF family are
able to encode the UCS.

4.2. Categories

Unicode 6.0 has 7 character categories, and each category has subcategories:

	Letter (L): lowercase (Ll), modifier (Lm), titlecase (Lt), uppercase (Lu),
other (Lo)

	Mark (M): spacing combining (Mc), enclosing (Me), non-spacing (Mn)

	Number (N): decimal digit (Nd), letter (Nl), other (No)

	Punctuation (P): connector (Pc), dash (Pd), initial quote (Pi), final quote
(Pf), open (Ps), close (Pe), other (Po)

	Symbol (S): currency (Sc), modifier (Sk), math (Sm), other (So)

	Separator (Z): line (Zl), paragraph (Zp), space (Zs)

	Other (C): control (Cc), format (Cf), not assigned (Cn), private use (Co),
surrogate (Cs)

There are 3 ranges reserved for private use (Co subcategory): U+E000—U+F8FF (6,400 code
points), U+F0000—U+FFFFD (65,534) and U+100000—U+10FFFD (65,534). Surrogates (Cs subcategory)
use the range U+D800—U+DFFF (2,048 code points).

4.3. Statistics

On a total of 1,114,112 possible code points, only 248,966 code points are
assigned: 77.6% are not assigned. Statistics excluding not assigned (Cn),
private use (Co) and surrogate (Cs) subcategories:

	Letter: 100,520 (91.8%)

	Symbol: 5,508 (5.0%)

	Mark: 1,498 (1.4%)

	Number: 1,100 (1.0%)

	Punctuation: 598 (0.5%)

	Other: 205 (0.2%)

	Separator: 20 (0.0%)

On a total of 106,028 letters and symbols, 101,482 are in “other”
subcategories (Lo and So): only 4.3% have well defined subcategories:

	Letter, lowercase (Ll): 1,759

	Letter, uppercase (Lu): 1,436

	Symbol, math (Sm): 948

	Letter, modifier (Lm): 210

	Symbol, modifier (Sk): 115

	Letter, titlecase (Lt): 31

	Symbol, currency (Sc): 47

4.4. Normalization

Unicode standard explains how to decompose a character. For example, the precomposed
character ç (U+00C7, Latin capital letter C with cedilla) can be written as
the sequence of two characters: {¸ (U+0327, Combining cedilla), c (U+0043, Latin capital letter C)}.
This decomposition can be useful when searching for a substring in a
text, e.g. removing the diacritic is pratical for the user. The decomposed form is
called Normal Form D (NFD) and the precomposed form is called Normal Form
C (NFC).

	Form

	String

	Unicode

	NFC

	ç

	U+00C7

	NFD

	¸c

	{U+0327, U+0043}

Unicode database also contains a compatibility layer: if a character cannot be
rendered (no font contain the requested character) or encoded to a specific
encoding, Unicode proposes a replacment character sequence which looks
like the character, but may have a different meaning.

For example, ĳ (U+0133, Latin small ligature ij) is replaced by the two
characters {i (U+0069, Latin small letter I), j (U+006A, Latin small letter
J)}. ĳ character cannot be encoded to ISO 8859-1,
whereas ij characters can.

Two extra normal forms use this compatibility layer: NFKD
(decomposed) and NFKC (precomposed).

Note

The precomposed forms (NFC and NFKC) begin by a canonical decomposition
before recomposing pre-combined characters again.

5. Charsets and encodings

5.1. Encodings

There are many encodings around the world. Before Unicode, each manufacturer
invented its own encoding to fit its client market and its usage. Most
encodings are incompatible on at least one code, with some exceptions.
A document stored in ASCII can be read using ISO 8859-1 or
UTF-8, because ISO-8859-1 and UTF-8 are supersets of ASCII. Each encoding can
have multiple aliases, examples:

	ASCII: US-ASCII, ISO 646, ANSI_X3.4-1968, …

	ISO-8859-1: Latin-1, iso88591, …

	UTF-8: utf8, UTF_8, …

Unicode is a charset and it requires a encoding. Only
encodings of the UTF family are able to encode and decode all Unicode code
points. Other encodings only support a subset of Unicode codespace. For
example, ISO-8859-1 are the first 256 Unicode code points (U+0000—U+00FF).

This book presents the following encodings: ASCII, cp1252,
GBK, ISO 8859-1, ISO 8859-15, JIS,
UCS-2, UCS-4, UTF-8, UTF-16
and UTF-32.

5.2. Popularity

The three most common encodings are, in chronological order of their creation:
ASCII (1968), ISO 8859-1 (1987) and UTF-8 (1996).

Google posted an interesting graph of the usage of different encodings on the
web: Unicode nearing 50% of the web [http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html]
(Mark Davis, january 2010). Because Google crawls a huge part of the web,
these numbers should be reliable. In 2001, the most used encodings were:

	1st (56%): ASCII

	2nd (23%): Western Europe encodings (ISO 8859-1, ISO 8859-15
and cp1252)

	3rd (8%): Chinese encodings (GB2312, …)

	and then come Korean (EUC-KR), Cyrillic (cp1251, KOI8-R, …), East Europe
(cp1250, ISO-8859-2), Arabic (cp1256, ISO-8859-6), etc.

	(UTF-8 was not used on the web in 2001)

In december 2007, for the first time: UTF-8 becomes the most used encoding
(near 25%). In january 2010, UTF-8 was close to 50%, and ASCII and Western
Europe encodings were near 20%. The usage of other encodings doesn’t change.

5.3. Encodings performances

Complexity of getting the n th character in a string, and of
getting the length in character of a string:

	[image: O(1)] for 7 and 8 bit encodings (ASCII, ISO 8859
family, …), UCS-2 and UCS-4

	[image: O(n)] for variable length encodings (e.g. the UTF family)

5.4. Examples

	Encoding

	A (U+0041)

	é (U+00E9)

	€ (U+20AC)

	U+10FFFF

	ASCII

	0x41

	—

	—

	—

	ISO-8859-1

	0x41

	0xE9

	—

	—

	UTF-8

	0x41

	0xC3 0xA9

	0xE2 0x82 0xAC

	0xF4 0x8F 0xBF 0xBF

	UTF-16-LE

	0x41 0x00

	0xE9 0x00

	0xAC 0x20

	0xFF 0xDB 0xFF 0xDF

	UTF-32-BE

	0x00 0x00 0x00 0x41

	0x00 0x00 0x00 0xE9

	0x00 0x00 0x20 0xAC

	0x00 0x10 0xFF 0xFF

— indicates that the character cannot be encoded.

5.5. Handle undecodable bytes and unencodable characters

5.5.1. Undecodable byte sequences

When a byte string is decoded, the decoder may
fail to decode a specific byte sequence. For example, 0x61 0x62 0x63 0xE9
is not decodable from ASCII nor UTF-8, but it is decodable from
ISO 8859-1.

Some encodings are able to decode any byte sequences. All encodings of the
ISO-8859 family have this property, because all of the 256
code points of these 8 bits encodings are assigned.

5.5.2. Unencodable characters

When a character string is encoded to a
character set smaller than the Unicode character set
(UCS), a character may not be encodable. For example, € (U+20AC) is not
encodable to ISO 8859-1, but it is encodable to ISO 8859-15 and
UTF-8.

5.5.3. Error handlers

There are different choices to handle undecodable byte sequences and unencodable characters:

	strict: raise an error

	ignore

	replace by ? (U+003F) or � (U+FFFD)

	replace by a similar glyph

	escape: format its code point

	etc.

Example of the “abcdé” string encoded to ASCII, é (U+00E9) is not encodable to
ASCII:

	Error handler

	Output

	strict

	raise an error

	ignore

	"abcd"

	replace by ?

	"abcd?"

	replace by a similar glyph

	"abcde"

	escape as hexadecimal

	"abcd\xe9"

	escape as XML entities

	"abcdé"

5.5.4. Replace unencodable characters by a similar glyph

By default, WideCharToMultiByte() replaces unencodable characters by
similarly looking characters. The normalization to NFKC
and NFKD does also such operation. Examples:

	Character

	Replaced by

	U+0141, latin capital letter l with stroke

	Ł

	L

	U+004C, latin capital letter l

	U+00B5, micro sign

	µ

	μ

	U+03BC, greek small letter mu

	U+221E, infinity

	∞

	8

	U+0038, digit eight

	U+0133, latin small ligature ij

	ĳ

	ij

	{U+0069, U+006A}

	U+20AC, euro sign

	€

	EUR

	{U+0045, U+0055, U+0052}

∞ (U+221E) replaced by 8 (U+0038) is the worst example of the method: these two
characters have completely different meanings.

5.5.5. Escape the character

Python “backslashreplace” error handler uses \xHH, \uHHHH or
\UHHHHHHHH where HHH…H is the code point formatted in hexadecimal. PHP
“long” error handler uses U+HH, U+HHHH or encoding+HHHH (e.g.
JIS+7E7E).

PHP “entity” and Python “xmlcharrefreplace” error handlers escape
the code point as an HTML/XML entity. For example, when U+00E9 is encoded to
ASCII: it is replaced by é in PHP and é in Python.

5.6. Other charsets and encodings

There are much more charsets and encodings, but it is not useful to know them.
The knowledge of a good conversion library, like iconv, is
enough.

6. Historical charsets and encodings

Between 1950 and 2000, each manufacturer and each operating system created its
own 8 bits encoding. The problem was that 8 bits (256 code points) are not
enough to store any character, and so the encoding tries to fit the user’s
language. Most 8 bits encodings are able to encode multiple languages, usually
geographically close (e.g. ISO-8859-1 is intented for Western Europe).

It was difficult to exchange documents with different languages, because using an
invalid encoding while loading the document leads to mojibake.

6.1. ASCII

ASCII encoding is supported by all applications. A document encoded in ASCII
can be read decoded by any other encoding. This is explained by the fact that
all 7 and 8 bits encodings are superset of ASCII, to be compatible with ASCII.
Except JIS X 0201 encoding: 0x5C is decoded to the yen sign
(U+00A5, ¥) instead of a backslash (U+005C, \).

ASCII is the smallest encoding, it only contains 128 codes including 95
printable characters (letters, digits, punctuation signs and some other various
characters) and 33 control codes. Control codes are used to control the
terminal. For example, the “line feed” (code point 10, usually written
"\n") marks the end of a line. There are some special control code. For
example, the “bell” (code point 7, written "\b") sent to ring a bell.

	
	-0

	-1

	-2

	-3

	-4

	-5

	-6

	-7

	-8

	-9

	-a

	-b

	-c

	-d

	-e

	-f

	0-

	NUL

	�

	�

	�

	�

	�

	�

	BEL

	�

	TAB

	LF

	�

	�

	CR

	�

	�

	1-

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	ESC

	�

	�

	�

	�

	2-

	
	!

	“

	#

	$

	%

	&

	‘

	(

)

	*

	+

	,

	-

	.

	/

	3-

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	:

	;

	<

	=

	>

	?

	4-

	@

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	5-

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

	Z

	[

	\

]

	^

	_

	6-

	`

	a

	b

	c

	d

	e

	f

	g

	h

	i

	j

	k

	l

	m

	n

	o

	7-

	p

	q

	r

	s

	t

	u

	v

	w

	x

	y

	z

	{

	|

	}

	~

	DEL

0x00—0x1F and 0x7F are control codes:

	NUL (0x00): nul character (U+0000, "\0")

	BEL (0x07): sent to ring a bell (U+0007, "\b")

	TAB (0x09): horizontal tabulation (U+0009, "\t")

	LF (0x0A): line feed (U+000A, "\n")

	CR (0x0D): carriage return (U+000D, "\r")

	ESC (0x1B): escape (U+001B)

	DEL (0x7F): delete (U+007F)

	other control codes are displayed as � in this table

0x20 is a space.

Note

The first 128 code points of the Unicode charset (U+0000—U+007F) are the
ASCII charset: Unicode is a superset of ASCII.

6.2. ISO 8859 family

	Year

	Norm

	Description

	Variant

	1987

	ISO 8859-1

	Western European: German, French, Italian, …

	cp1252

	1987

	ISO 8859-2

	Central European: Croatian, Polish, Czech, …

	cp1250

	1988

	ISO 8859-3

	South European: Turkish and Esperanto

	
	

	1988

	ISO 8859-4

	North European -

	

	1988

	ISO 8859-5

	Latin/Cyrillic: Macedonian, Russian, …

	KOI family

	1987

	ISO 8859-6

	Latin/Arabic: Arabic language characters

	cp1256

	1987

	ISO 8859-7

	Latin/Greek: modern Greek language

	cp1253

	1988

	ISO 8859-8

	Latin/Hebrew: modern Hebrew alphabet

	cp1255

	1989

	ISO 8859-9

	Turkish: Largely the same as ISO 8859-1

	cp1254

	1992

	ISO 8859-10

	Nordic: a rearrangement of Latin-4

	
	

	2001

	ISO 8859-11

	Latin/Thai: Thai language

	TIS 620, cp874

	1998

	ISO 8859-13

	Baltic Rim: Baltic languages

	cp1257

	1998

	ISO 8859-14

	Celtic: Gaelic, Breton

	
	

	1999

	ISO 8859-15

	Revision of 8859-1: euro sign

	cp1252

	2001

	ISO 8859-16

	South-Eastern European

	
	

Note

ISO 8859-12 doesn’t exist.

6.2.1. ISO 8859-1

ISO/CEI 8859-1, also known as “Latin-1” or “ISO-8859-1”, is a superset of
ASCII: it adds 128 code points, mostly latin letters with diacritics and
32 control codes. It is used in the USA and in Western Europe.

	
	-0

	-1

	-2

	-3

	-4

	-5

	-6

	-7

	-8

	-9

	-a

	-b

	-c

	-d

	-e

	-f

	0-

	NUL

	�

	�

	�

	�

	�

	�

	BEL

	�

	TAB

	LF

	�

	�

	CR

	�

	�

	1-

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	ESC

	�

	�

	�

	�

	2-

	
	!

	“

	#

	$

	%

	&

	‘

	(

)

	*

	+

	,

	-

	.

	/

	3-

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	:

	;

	<

	=

	>

	?

	4-

	@

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	5-

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

	Z

	[

	\

]

	^

	_

	6-

	`

	a

	b

	c

	d

	e

	f

	g

	h

	i

	j

	k

	l

	m

	n

	o

	7-

	p

	q

	r

	s

	t

	u

	v

	w

	x

	y

	z

	{

	

	}

	~

	DEL

	8-

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	9-

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	�

	a-

	NBSP

	¡

	¢

	£

	¤

	¥

	¦

	§

	¨

	©

	ª

	«

	¬

	SHY

	®

	¯

	b-

	°

	±

	²

	³

	´

	µ

	¶

	·

	¸

	¹

	º

	»

	¼

	½

	¾

	¿

	c-

	À

	Á

	Â

	Ã

	Ä

	Å

	Æ

	Ç

	È

	É

	Ê

	Ë

	Ì

	Í

	Î

	Ï

	d-

	Ð

	Ñ

	Ò

	Ó

	Ô

	Õ

	Ö

	×

	Ø

	Ù

	Ú

	Û

	Ü

	Ý

	Þ

	ß

	e-

	à

	á

	â

	ã

	ä

	å

	æ

	ç

	è

	é

	ê

	ë

	ì

	í

	î

	ï

	f-

	ð

	ñ

	ò

	ó

	ô

	õ

	ö

	÷

	ø

	ù

	ú

	û

	ü

	ý

	þ

	ÿ

U+0000—U+001F, U+007F and U+0080—U+009F are control codes (displayed as � in
this table). See the ASCII table for U+0000—U+001F and U+007F control codes.

“NBSP” (U+00A0) is a non breaking space and “SHY” (U+00AD) is a soft hyphen.

Note

The 256 first code points of the Unicode charset (U+0000—U+00FF) are the
ISO-8859-1 charset: Unicode is a superset of ISO-8859-1.

6.2.2. cp1252

Windows code page 1252, best known as cp1252, is a variant
of ISO 8859-1. It is the default encoding of all English and Western
Europe Windows setups. It is used as a fallback by web browsers if the webpage
doesn’t provide any encoding information (not in HTML, nor in HTTP).

cp1252 shares 224 code points with ISO-8859-1, the range 0x80—0x9F (32
characters, including 5 not assigned codes) are different. In ISO-8859-1, this
range are 32 control codes (not printable).

	Code point

	ISO-8859-1

	cp1252

	Code point

	ISO-8859-1

	cp1252

	0x80

	U+0080

	€ (U+20AC)

	0x90

	U+0090

	not assigned

	0x81

	U+0081

	not assigned

	0x91

	U+0091

	‘ (U+2018)

	0x82

	U+0082

	‚ (U+201A)

	0x92

	U+0092

	’ (U+2019)

	0x83

	U+0083

	ƒ (U+0192)

	0x93

	U+0093

	“ (U+201C)

	0x84

	U+0084

	„ (U+201E)

	0x94

	U+0094

	” (U+201D)

	0x85

	U+0085

	… (U+2026)

	0x95

	U+0095

	• (U+2022)

	0x86

	U+0086

	† (U+2020)

	0x96

	U+0096

	– (U+2013)

	0x87

	U+0087

	‡ (U+2021)

	0x97

	U+0097

	— (U+2014)

	0x88

	U+0088

	ˆ (U+02C6)

	0x98

	U+0098

	˜ (U+02DC)

	0x89

	U+0089

	‰ (U+2030)

	0x99

	U+0099

	™ (U+2122)

	0x8A

	U+008A

	Š (U+0160)

	0x9A

	U+009A

	š (U+0161)

	0x8B

	U+008B

	‹ (U+2039)

	0x9B

	U+009B

	› (U+203A)

	0x8C

	U+008C

	Œ (U+0152)

	0x9C

	U+009C

	œ (U+0153)

	0x8D

	U+008D

	not assigned

	0x9D

	U+009D

	not assigned

	0x8E

	U+008E

	Ž (U+017D)

	0x9E

	U+009E

	ž (U+017U)

	0x8F

	U+008F

	not assigned

	0x9F

	U+009F

	Ÿ (U+0178)

6.2.3. ISO 8859-15

ISO/CEI 8859-15, also known as Latin-9 or ISO-8859-15, is a variant of
ISO 8859-1. 248 code points are identicals, 8 are different:

	Code point

	ISO-8859-1

	ISO-8859-15

	Code point

	ISO-8859-1

	ISO-8859-15

	0xA4

	¤ (U+00A4)

	€ (U+20AC)

	0xB8

	¸ (U+00B8)

	ž (U+017E)

	0xA6

	¦ (U+00A6)

	Š (U+0160)

	0xBC

	¼ (U+00BC)

	Œ (U+0152)

	0xA8

	¨ (U+00A8)

	š (U+0161)

	0xBD

	½ (U+00BD)

	œ (U+0152)

	0xB4

	´ (U+00B4)

	Ž (U+017D)

	0xBE

	¾ (U+00BE)

	Ÿ (U+0178)

6.3. CJK: asian encodings

6.3.1. Chinese encodings

GBK is a family of Chinese charsets using multibyte encodings:

	GB 2312 (1980): includes 6,763 Chinese characters

	GBK (1993) (code page 936)

	GB 18030 (2005, last revision in 2006)

	HZ (1989) (HG-GZ-2312)

Other encodings: Big5 (大五碼, Big Five Encoding, 1984), cp950.

6.3.2. Japanese encodings

JIS is a family of Japanese encodings:

	JIS X 0201 (1969): all code points are encoded to 1 byte

	16 bits:

	JIS X 0208 (first version in 1978: “JIS C 6226”, last revision in 1997):
code points are encoded to 1 or 2 bytes

	JIS X 0212 (1990), extends JIS X 0208 charset: it is only a charset. Use
EUC-JP or ISO 2022 to encode it.

	JIS X 0213 (first version in 2000, last revision in 2004: EUC JIS X 2004),
EUC JIS X 0213: it is only a charset, use EUC-JP, ISO 2022 or ShiftJIS 2004
to encode it.

	JIS X 0211 (1994), based on ISO/IEC 6429

Microsoft encodings:

	Shift JIS

	Windows code page 932 (cp932): extension of Shift JIS

In strict mode (flags=MB_ERR_INVALID_CHARS), cp932 cannot decode bytes in
0x81—0xA0 and 0xE0—0xFF ranges. By default (flags=0),
0x81—0x9F and 0xE0—0xFC are decoded as U+30FB (Katakana
middle dot), 0xA0 as U+F8F0, 0xFD as U+F8F1, 0xFE as U+F8F2 and
0xFF as U+F8F3 (U+E000—U+F8FF is for private usage).

The JIS family causes mojibake on MS-DOS and Microsoft
Windows because the yen sign (U+00A5, ¥) is encoded to 0x5C which is a
backslash (U+005C, \) in ASCII. For example, “C:\Windows\win.ini” is
displayed “C:¥Windows¥win.ini”. The backslash is encoded to 0x81 0x5F.

To encode Japanese, there is also the ISO/IEC 2022 encoding family.

6.3.3. ISO 2022

ISO/IEC 2022 is an encoding family:

	ISO-2022-JP: JIS X 0201-1976, JIS X 0208-1978, JIS X 0208-1983

	ISO-2022-JP-1: JIS X 0212-1990

	ISO-2022-JP-2: GB 2312-1980, KS X 1001-1992, ISO/IEC 8859-1, ISO/IEC 8859-7

	ISO-2022-JP-3: JIS X 0201-1976, JIS X 0213-2000, JIS X 0213-2000

	ISO-2022-JP-2004: JIS X 0213-2004

	ISO-2022-KR: KS X 1001-1992

	ISO-2022-CN: GB 2312-1980, CNS 11643-1992 (planes 1 and 2)

	ISO-2022-CN-EXT: ISO-IR-165, CNS 11643-1992 (planes 3 though 7)

6.3.4. Extended Unix Code (EUC)

	EUC-CN: GB2312

	EUC-JP: JIS X 0208, JIS X 0212, JIS X 0201

	EUC-KR: KS X 1001, KS X 1003

	EUC-TW: CNS 11643 (16 planes)

6.4. Cyrillic

KOI family, “Код Обмена Информацией”:

	KOI-7: oldest KOI encoding (ASCII + some characters)

	KOI8-R: Russian

	KOI8-U: Ukrainian

Variants: ECMA-Cyrillic, KOI8-Unified, cp1251, MacUkrainian, Bulgarian MIK, …

7. Unicode encodings

7.1. UTF-8

UTF-8 is a multibyte encoding able to encode the whole Unicode charset. An
encoded character takes between 1 and 4 bytes. UTF-8 encoding supports longer
byte sequences, up to 6 bytes, but the biggest code point of Unicode 6.0
(U+10FFFF) only takes 4 bytes.

It is possible to be sure that a byte string is encoded to
UTF-8, because UTF-8 adds markers to each byte. For the first byte of a
multibyte character, bit 7 and bit 6 are set (0b11xxxxxx); the next bytes
have bit 7 set and bit 6 unset (0b10xxxxxx).

Another cool feature of UTF-8 is that it has no
endianness (it can be read in big or little endian order, it does not matter).
Another advantage of UTF-8 is that most C bytes
functions are compatible with UTF-8 encoded strings (e.g. strcat() or
printf()), whereas they fail with UTF-16 and UTF-32 encoded strings
because these encodings encode small codes with nul bytes.

The problem with UTF-8, if you compare it to ASCII or ISO 8859-1, is that it is
a multibyte encoding: you cannot access a character by its character index
directly, you have to iterate on each character because each character may have
a different length in bytes. If getting a character by its index is a common
operation in your program, use a character string instead of a
UTF-8 encoded string.

See also

Non-strict UTF-8 decoder and Is UTF-8?.

7.2. UCS-2, UCS-4, UTF-16 and UTF-32

UCS-2 and UCS-4 encodings encode each code point to exactly one unit
of, respectivelly, 16 and 32 bits. UCS-4 is able to encode all Unicode 6.0
code points, whereas UCS-2 is limited to BMP characters. These
encodings are practical because the length in units is the number of
characters.

UTF-16 and UTF-32 encodings use, respectively, 16 and 32 bits units.
UTF-16 encodes code points bigger than U+FFFF using two units: a
surrogate pair. UCS-2 can be decoded from UTF-16. UTF-32
is also supposed to use more than one unit for big code points, but in
practice, it only requires one unit to store all code points of Unicode 6.0.
That’s why UTF-32 and UCS-4 are the same encoding.

	Encoding

	Word size

	Unicode support

	UCS-2

	16 bits

	BMP only

	UTF-16

	16 bits

	Full

	UCS-4

	32 bits

	Full

	UTF-32

	32 bits

	Full

Windows 95 uses UCS-2, whereas Windows 2000 uses UTF-16.

Note

UCS stands for Universal Character Set, and UTF stands for UCS
Transformation format.

7.3. UTF-7

The UTF-7 encoding is similar to the UTF-8 encoding, except that
it uses 7 bits units instead of 8 bits units. It is used for example in emails
with server which are not “8 bits clean”.

7.4. Byte order marks (BOM)

UTF-16 and UTF-32 use units bigger than 8 bits,
and so are sensitive to endianness. A single unit can be stored as big endian (most
significant bits first) or little endian (less significant bits first). BOM
is a short byte sequence to indicate the encoding and the endian. It’s the
U+FEFF code point encoded with the given UTF encoding.

Unicode defines 6 different BOM:

	BOM

	Encoding

	Endian

	0x2B 0x2F 0x76 0x38 0x2D (5 bytes)

	UTF-7

	endianless

	0xEF 0xBB 0xBF (3)

	UTF-8

	endianless

	0xFF 0xFE (2)

	UTF-16-LE

	little endian

	0xFE 0xFF (2)

	UTF-16-BE

	big endian

	0xFF 0xFE 0x00 0x00 (4)

	UTF-32-LE

	little endian

	0x00 0x00 0xFE 0xFF (4)

	UTF-32-BE

	big endian

UTF-32-LE BOMs starts with UTF-16-LE BOM.

“UTF-16” and “UTF-32” encoding names are imprecise: depending of the context,
format or protocol, it means UTF-16 and UTF-32 with BOM markers, or UTF-16 and
UTF-32 in the host endian without BOM. On Windows, “UTF-16” usually means
UTF-16-LE.

Some Windows applications, like notepad.exe, use UTF-8 BOM, whereas many
applications are unable to detect the BOM, and so the BOM causes trouble.
UTF-8 BOM should not be used for better interoperability.

7.5. UTF-16 surrogate pairs

Surrogates are characters in the Unicode range U+D800—U+DFFF (2,048 code
points): it is also the Unicode category
“surrogate” (Cs). The range is composed of two parts:

	U+D800—U+DBFF (1,024 code points): high surrogates

	U+DC00—U+DFFF (1,024 code points): low surrogates

In UTF-16, characters in ranges U+0000—U+D7FF and U+E000—U+FFFD
are stored as a single 16 bits unit. Non-BMP characters (range
U+10000—U+10FFFF) are stored as “surrogate pairs”, two 16 bits units: an
high surrogate (in range U+D800—U+DBFF) followed by a low surrogate (in range
U+DC00—U+DFFF). A lone surrogate character is invalid in UTF-16, surrogate
characters are always written as pairs (high followed by low).

Examples of surrogate pairs:

	Character

	Surrogate pair

	U+10000

	{U+D800, U+DC00}

	U+10E6D

	{U+D803, U+DE6D}

	U+1D11E

	{U+D834, U+DD1E}

	U+10FFFF

	{U+DBFF, U+DFFF}

Note

U+10FFFF is the highest code point encodable to UTF-16 and the highest code
point of the Unicode Character Set 6.0. The {U+DBFF, U+DFFF}
surrogate pair is the last available pair.

An UTF-8 or UTF-32 encoder should not encode
surrogate characters (U+D800—U+DFFF), see Non-strict UTF-8 decoder.

C functions to create a surrogate pair (encode to
UTF-16) and to join a surrogate pair (decode from UTF-16):

#include <stdint.h>

void
encode_utf16_pair(uint32_t character, uint16_t *units)
{
 unsigned int code;
 assert(0x10000 <= character && character <= 0x10FFFF);
 code = (character - 0x10000);
 units[0] = 0xD800 | (code >> 10);
 units[1] = 0xDC00 | (code & 0x3FF);
}

uint32_t
decode_utf16_pair(uint16_t *units)
{
 uint32_t code;
 assert(0xD800 <= units[0] && units[0] <= 0xDBFF);
 assert(0xDC00 <= units[1] && units[1] <= 0xDFFF);
 code = 0x10000;
 code += (units[0] & 0x03FF) << 10;
 code += (units[1] & 0x03FF);
 return code;
}

8. How to guess the encoding of a document?

Only ASCII, UTF-8 and encodings using a BOM (UTF-7
with BOM, UTF-8 with BOM, UTF-16, and UTF-32)
have reliable algorithms to get the encoding of a document. For all other
encodings, you have to trust heuristics based on statistics.

8.1. Is ASCII?

Check if a document is encoded to ASCII is simple: test if the bit 7 of
all bytes is unset (0b0xxxxxxx).

Example in C:

int isASCII(const char *data, size_t size)
{
 const unsigned char *str = (const unsigned char*)data;
 const unsigned char *end = str + size;
 for (; str != end; str++) {
 if (*str & 0x80)
 return 0;
 }
 return 1;
}

In Python, the ASCII decoder can be used:

def isASCII(data):
 try:
 data.decode('ASCII')
 except UnicodeDecodeError:
 return False
 else:
 return True

Note

Only use the Python function on short strings because it decodes the whole
string into memory. For long strings, it is better to use the algorithm of
the C function because it doesn’t allocate any memory.

8.2. Check for BOM markers

If the string begins with a BOM, the encoding can be extracted
from the BOM. But there is a problem with UTF-16-BE and
UTF-32-LE: UTF-32-LE BOM starts with the UTF-16-LE BOM.

Example of a function written in C to check if a BOM is present:

#include <string.h> /* memcmp() */

const char *UTF_16_BE_BOM = "\xFE\xFF";
const char *UTF_16_LE_BOM = "\xFF\xFE";
const char *UTF_8_BOM = "\xEF\xBB\xBF";
const char *UTF_32_BE_BOM = "\x00\x00\xFE\xFF";
const char *UTF_32_LE_BOM = "\xFF\xFE\x00\x00";

char* check_bom(const char *data, size_t size)
{
 if (size >= 3) {
 if (memcmp(data, UTF_8_BOM, 3) == 0)
 return "UTF-8";
 }
 if (size >= 4) {
 if (memcmp(data, UTF_32_LE_BOM, 4) == 0)
 return "UTF-32-LE";
 if (memcmp(data, UTF_32_BE_BOM, 4) == 0)
 return "UTF-32-BE";
 }
 if (size >= 2) {
 if (memcmp(data, UTF_16_LE_BOM, 2) == 0)
 return "UTF-16-LE";
 if (memcmp(data, UTF_16_BE_BOM, 2) == 0)
 return "UTF-16-BE";
 }
 return NULL;
}

For the UTF-16-LE/UTF-32-LE BOM conflict: this function returns "UTF-32-LE"
if the string begins with "\xFF\xFE\x00\x00", even if this string can be
decoded from UTF-16-LE.

Example in Python getting the BOMs from the codecs library:

from codecs import BOM_UTF8, BOM_UTF16_BE, BOM_UTF16_LE, BOM_UTF32_BE, BOM_UTF32_LE

BOMS = (
 (BOM_UTF8, "UTF-8"),
 (BOM_UTF32_BE, "UTF-32-BE"),
 (BOM_UTF32_LE, "UTF-32-LE"),
 (BOM_UTF16_BE, "UTF-16-BE"),
 (BOM_UTF16_LE, "UTF-16-LE"),
)

def check_bom(data):
 return [encoding for bom, encoding in BOMS if data.startswith(bom)]

This function is different from the C function: it returns a list. It returns
['UTF-32-LE', 'UTF-16-LE'] if the string begins with
b"\xFF\xFE\x00\x00".

8.3. Is UTF-8?

UTF-8 encoding adds markers to each bytes and so it’s possible to write
a reliable algorithm to check if a byte string is encoded to
UTF-8.

Example of a strict C function to check if a string is encoded with
UTF-8. It rejects overlong sequences (e.g. 0xC0
0x80) and surrogate characters (e.g. 0xED 0xB2 0x80,
U+DC80).

#include <stdint.h>

int isUTF8(const char *data, size_t size)
{
 const unsigned char *str = (unsigned char*)data;
 const unsigned char *end = str + size;
 unsigned char byte;
 unsigned int code_length, i;
 uint32_t ch;
 while (str != end) {
 byte = *str;
 if (byte <= 0x7F) {
 /* 1 byte sequence: U+0000..U+007F */
 str += 1;
 continue;
 }

 if (0xC2 <= byte && byte <= 0xDF)
 /* 0b110xxxxx: 2 bytes sequence */
 code_length = 2;
 else if (0xE0 <= byte && byte <= 0xEF)
 /* 0b1110xxxx: 3 bytes sequence */
 code_length = 3;
 else if (0xF0 <= byte && byte <= 0xF4)
 /* 0b11110xxx: 4 bytes sequence */
 code_length = 4;
 else {
 /* invalid first byte of a multibyte character */
 return 0;
 }

 if (str + (code_length - 1) >= end) {
 /* truncated string or invalid byte sequence */
 return 0;
 }

 /* Check continuation bytes: bit 7 should be set, bit 6 should be
 * unset (b10xxxxxx). */
 for (i=1; i < code_length; i++) {
 if ((str[i] & 0xC0) != 0x80)
 return 0;
 }

 if (code_length == 2) {
 /* 2 bytes sequence: U+0080..U+07FF */
 ch = ((str[0] & 0x1f) << 6) + (str[1] & 0x3f);
 /* str[0] >= 0xC2, so ch >= 0x0080.
 str[0] <= 0xDF, (str[1] & 0x3f) <= 0x3f, so ch <= 0x07ff */
 } else if (code_length == 3) {
 /* 3 bytes sequence: U+0800..U+FFFF */
 ch = ((str[0] & 0x0f) << 12) + ((str[1] & 0x3f) << 6) +
 (str[2] & 0x3f);
 /* (0xff & 0x0f) << 12 | (0xff & 0x3f) << 6 | (0xff & 0x3f) = 0xffff,
 so ch <= 0xffff */
 if (ch < 0x0800)
 return 0;

 /* surrogates (U+D800-U+DFFF) are invalid in UTF-8:
 test if (0xD800 <= ch && ch <= 0xDFFF) */
 if ((ch >> 11) == 0x1b)
 return 0;
 } else if (code_length == 4) {
 /* 4 bytes sequence: U+10000..U+10FFFF */
 ch = ((str[0] & 0x07) << 18) + ((str[1] & 0x3f) << 12) +
 ((str[2] & 0x3f) << 6) + (str[3] & 0x3f);
 if ((ch < 0x10000) || (0x10FFFF < ch))
 return 0;
 }
 str += code_length;
 }
 return 1;
}

In Python, the UTF-8 decoder can be used:

def isUTF8(data):
 try:
 data.decode('UTF-8')
 except UnicodeDecodeError:
 return False
 else:
 return True

In Python 2, this function is more tolerant than the C
function, because the UTF-8 decoder of Python 2 accepts surrogate characters
(U+D800—U+DFFF). For example, isUTF8(b'\xED\xB2\x80') returns True.
With Python 3, the Python function is equivalent to the C
function. If you would like to reject surrogate characters in Python 2, use
the following strict function:

def isUTF8Strict(data):
 try:
 decoded = data.decode('UTF-8')
 except UnicodeDecodeError:
 return False
 else:
 for ch in decoded:
 if 0xD800 <= ord(ch) <= 0xDFFF:
 return False
 return True

8.4. Libraries

PHP has a builtin function to detect the encoding of a byte
string: mb_detect_encoding().

	chardet [http://chardet.feedparser.org/]: Python version of the “chardet” algorithm implemented in Mozilla

	UTRAC [http://utrac.sourceforge.net/]: command line program (written in C) to recognize the encoding of
an input file and its end-of-line type

	charguess [http://raa.ruby-lang.org/project/charguess/]: Ruby library to guess the charset of a document

9. Good practices

9.1. Rules

To limit or avoid issues with Unicode, try to follow these rules:

	decode all bytes data as early as possible: keyboard
strokes, files, data received from the network, …

	encode back Unicode to bytes as late as possible: write text
to a file, log a message, send data to the network, …

	always store and manipulate text as character strings

	if you have to encode text and you can choose the encoding: prefer the UTF-8 encoding.
It is able to encode all Unicode 6.0 characters (including non-BMP
characters), does not depend on endianness, is well supported by most
programs, and its size is a good compromise.

9.2. Unicode support levels

There are different levels of Unicode support:

	don’t support Unicode: only work correctly if all inputs and outputs are
encoded to the same encoding, usually the locale encoding, use byte strings.

	basic Unicode support: decode inputs and encode outputs using the
correct encodings, usually only support BMP
characters. Use Unicode strings, or byte strings
with the locale encoding or, better, an encoding of the UTF family (e.g.
UTF-8).

	full Unicode support: have access to the Unicode database,
normalize text, render correctly bidirectional texts
and characters with diacritics.

These levels should help you to estimate the status of the Unicode support of
your project. Basic support is enough if all of your users speak the same language or
live in close countries. Basic Unicode support usually means excellent support of Western
Europe languages. Full Unicode support is required to support Asian languages.

By default, the C, C++ and PHP5 languages
have basic Unicode support. For the C and C++ languages, you can have basic or full Unicode support using
a third-party library like glib, Qt or ICU. With PHP5, you can have basic Unicode support using “mb_” functions.

By default, the Python 2 language doesn’t support Unicode. You can have
basic Unicode support if you store text into the unicode type and take care of input and
output encodings. For Python 3, the situation is different: it
has direct basic Unicode support by using the wide character API on Windows and by
taking care of input and output encodings for you (e.g. decode command line
arguments and environment variables). The unicodedata module is a first
step for a full Unicode support.

Most UNIX and Windows programs don’t support Unicode. Firefox web browser and
OpenOffice.org office suite have full Unicode support. Slowly, more and more programs
have basic Unicode support.

Don’t expect to have full Unicode support directly: it requires a lot of work. Your
project may be fully Unicode compliant for a specific task (e.g. filenames), but
only have basic Unicode support for the other parts of the project.

9.3. Test the Unicode support of a program

Tests to evaluate the Unicode support of a program:

	Write non-ASCII characters (e.g. é, U+00E9) in all input fields: if the
program fails with an error, it has no Unicode support.

	Write characters not encodable to the locale encoding (e.g. Ł, U+0141) in all input fields: if the program fails with an
error, it probably has basic Unicode support.

	To test if a program is fully Unicode compliant, write text mixing different
languages in different directions and characters with diacritics, especially
in Persian characters. Try also decomposed characters, for example: {e, U+0301} (decomposed form of é, U+00E9).

See also

Wikipedia article to test the Unicode support of your web browser [http://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Unicode/Test]. UTF-8 encoded
sample plain-text file [http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-demo.txt]
(Markus Kuhn, 2002).

9.4. Get the encoding of your inputs

Console:

	Windows: GetConsoleCP() for stdin and GetConsoleOutputCP() for
stdout and stderr

	Other OSes: use the locale encoding

File formats:

	XML: the encoding can be specified in the <?xml ...?> header, use
UTF-8 if the encoding is not specified. For example, <?xml
version="1.0" encoding="iso-8859-1"?>.

	HTML: the encoding can be specified in a “Content type” HTTP header, e.g.
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">.
If it is not, you have to guess the encoding.

Filesystem (filenames):

	Windows stores filenames as Unicode. It provides a bytes compatibily layer
using the ANSI code page for applications using byte strings.

	Mac OS X encodes filenames to UTF-8 and normalize see to a variant of the Normal Form D.

	Other OSes: use the locale encoding

See also

How to guess the encoding of a document?

9.5. Switch from byte strings to character strings

Use character strings, instead of byte strings, to avoid mojibake issues.

10. Operating systems

10.1. Windows

Since Windows 2000, Windows offers a nice Unicode API and supports
non-BMP characters. It uses Unicode strings
implemented as wchar_t* strings (LPWSTR). wchar_t is 16 bits long
on Windows and so it uses UTF-16: non-BMP
characters are stored as two wchar_t (a surrogate pair), and the length of a string is the number of UTF-16 units and
not the number of characters.

Windows 95, 98 an Me had also Unicode strings, but were limited to BMP
characters: they used UCS-2 instead of UTF-16.

10.1.1. Code pages

A Windows application has two encodings, called code pages (abbreviated “cp”):
ANSI and OEM code pages. The ANSI code page, CP_ACP, is used for the
ANSI version of the Windows API to decode byte strings to
character strings and has a number between 874 and 1258. The OEM
code page or “IBM PC” code page, CP_OEMCP, comes from MS-DOS, is
used for the Windows console, contains glyphs to create
text interfaces (draw boxes) and has a number between 437 and 874. Example of a
French setup: ANSI is cp1252 and OEM is cp850.

There are code page constants:

	CP_ACP: Windows ANSI code page

	CP_MACCP: Macintosh code page

	CP_OEMCP: ANSI code page of the current process

	CP_SYMBOL (42): Symbol code page

	CP_THREAD_ACP: ANSI code page of the current thread

	CP_UTF7 (65000): UTF-7

	CP_UTF8 (65001): UTF-8

Functions.

	
UINT GetACP()

	Get the ANSI code page number.

	
UINT GetOEMCP()

	Get the OEM code page number.

	
BOOL SetThreadLocale(LCID locale)

	Set the locale. It can be used to change the ANSI code page of current
thread (CP_THREAD_ACP).

See also

Wikipedia article:
Windows code page [http://en.wikipedia.org/wiki/Windows_code_page].

10.1.2. Encode and decode functions

Encode and decode functions of <windows.h>.

	
MultiByteToWideChar()

	Decode a byte string from a code page to a
character string. Use MB_ERR_INVALID_CHARS flag to
return an error on an undecodable byte sequence.

The default behaviour (flags=0) depends on the Windows version:

	Windows Vista and later: replace undecodable bytes

	Windows 2000, XP and 2003: ignore undecodable bytes

In strict mode (MB_ERR_INVALID_CHARS), the UTF-8
decoder (CP_UTF8) returns an error on surrogate characters on Windows Vista and later. On Windows XP, the UTF-8
decoder is not strict: surrogates can be decoded in
any mode.

The UTF-7 decoder (CP_UTF7) only supports flags=0.

Examples on any Windows version:

	Flags

	default (0)

	MB_ERR_INVALID_CHARS

	0xE9 0x80, cp1252

	é€ {U+00E9, U+20AC}

	é€ {U+00E9, U+20AC}

	0xC3 0xA9, CP_UTF8

	é {U+00E9}

	é {U+00E9}

	0xFF, cp932

	{U+F8F3}

	decoding error

	0xFF, CP_UTF7

	{U+FF}

	invalid flags

Examples on Windows Vista and later:

	Flags

	default (0)

	MB_ERR_INVALID_CHARS

	0x81 0x00, cp932

	{U+30FB, U+0000}

	decoding error

	0xFF, CP_UTF8

	{U+FFFD}

	decoding error

	0xED 0xB2 0x80, CP_UTF8

	{U+FFFD, U+FFFD, U+FFFD}

	decoding error

Examples on Windows 2000, XP, 2003:

	Flags

	default (0)

	MB_ERR_INVALID_CHARS

	0x81 0x00, cp932

	{U+0000}

	decoding error

	0xFF, CP_UTF8

	decoding error

	decoding error

	0xED 0xB2 0x80, CP_UTF8

	{U+DC80}

	{U+DC80}

Note

The U+30FB character is the Katakana middle dot (・). U+F8F3 code point
is part of a Unicode range reserved for private use (U+E000—U+F8FF).

	
WideCharToMultiByte()

	Encode a character string to a byte
string. The behaviour on unencodable characters depends on the code page, the Windows version and the flags.

	Code page

	Windows version

	Flags

	Behaviour

	CP_UTF8

	2000, XP, 2003

	0

	Encode surrogates

	Vista or later

	0

	Replace surrogates by U+FFFD

	WC_ERR_INVALID_CHARS

	Strict

	CP_UTF7

	all versions

	0

	Encode surrogates

	Others

	all versions

	0

	Replace by similar glyph

	WC_NO_BEST_FIT_CHARS

	Replace by ? (1)

	: Strict if you check for pusedDefaultChar pointer.

pusedDefaultChar is not supported by CP_UTF7 or CP_UTF8.

Use WC_NO_BEST_FIT_CHARS flag (or WC_ERR_INVALID_CHARS
flag for CP_UTF8) to have a strict encoder: return an error on unencodable character. By default, if
a character cannot be encoded, it is replaced by
a character with a similar glyph or by “?” (U+003F). For
example, with cp1252, Ł (U+0141) is replaced by L (U+004C).

On Windows Vista or later with WC_ERR_INVALID_CHARS flag, the
UTF-8 encoder (CP_UTF8) returns an error on
surrogate characters. The default behaviour (flags=0)
depends on the Windows version: surrogates are replaced by U+FFFD on Windows
Vista and later, and are encoded to UTF-8 on older Windows versions. The
WC_NO_BEST_FIT_CHARS flag is not supported by the UTF-8 encoder.

The WC_ERR_INVALID_CHARS flag is only supported by
CP_UTF8 and only on Windows Vista or later.

The UTF-7 encoder (CP_UTF7) only supports flags=0.
It is not strict: it encodes surrogate characters.

Examples (on any Windows version):

	Flags

	default (0)

	WC_NO_BEST_FIT_CHARS

	ÿ (U+00FF), cp932

	0x79 (y)

	0x3F (?)

	Ł (U+0141), cp1252

	0x4C (L)

	0x3F (?)

	€ (U+20AC), cp1252

	0x80

	0x80

	U+DC80, CP_UTF7

	0x2b 0x33 0x49 0x41 0x2d (+3IA-)

	invalid flags

Examples on Windows Vista an later:

	Flags

	default (0)

	WC_ERR_INVALID_CHARS

	WC_NO_BEST_FIT_CHARS

	U+DC80, CP_UTF8

	0xEF 0xBF 0xBD

	encoding error

	invalid flags

Examples on Windows 2000, XP, 2003:

	Flags

	default (0)

	WC_ERR_INVALID_CHARS

	WC_NO_BEST_FIT_CHARS

	U+DC80, CP_UTF8

	0xED 0xB2 0x80

	invalid flags

	invalid flags

Note

MultiByteToWideChar() and WideCharToMultiByte() functions
are similar to mbstowcs() and wcstombs() functions.

10.1.3. Windows API: ANSI and wide versions

Windows has two versions of each function of its API: the ANSI version using
byte strings (A suffix) and the ANSI code page, and the wide version (W suffix) using character strings. There are also functions without suffix using TCHAR* strings:
if the C define _UNICODE is defined, TCHAR is
replaced by wchar_t and the Unicode functions are used; otherwise
TCHAR is replaced by char and the ANSI functions are used.
Example:

	CreateFileA(): bytes version, use byte strings
encoded to the ANSI code page

	CreateFileW(): Unicode version, use wide character strings

	CreateFile(): TCHAR version depending on the
_UNICODE define

Always prefer the Unicode version to avoid encoding/decoding errors, and use
directly the W suffix to avoid compiling issues.

Note

There is a third version of the API: the MBCS API (multibyte character
string). Use the TCHAR functions and define _MBCS to use the MBCS
functions. For example, _tcsrev() is replaced by _mbsrev()
if _MBCS is defined, by _wcsrev() if _UNICODE
is defined, or by _strrev() otherwise.

10.1.4. Windows string types

	LPSTR (LPCSTR): byte string, char* (const char*)

	LPWSTR (LPCWSTR): wide character string, wchar_t*
(const wchar_t*)

	LPTSTR (LPCTSTR): byte or wide character string depending of _UNICODE
define, TCHAR* (const TCHAR*)

10.1.5. Filenames

Windows stores filenames as Unicode in the filesystem. Filesystem wide
character POSIX-like API:

	
int _wfstat(const wchar_t* filename, struct _stat *statbuf)

	Unicode version of stat().

	
FILE *_wfopen(const wchar_t* filename, const wchar_t *mode)

	Unicode version of fopen().

	
int _wopen(const wchar_t *filename, int oflag[, int pmode])

	Unicode version of open().

POSIX functions, like fopen(), use the ANSI code page to encode/decode strings.

10.1.6. Windows console

Console functions.

	
GetConsoleCP()

	Get the code page of the standard input (stdin) of the console.

	
GetConsoleOutputCP()

	Get the code page of the standard output (stdout and stderr) of the console.

	
WriteConsoleW()

	Write a character string into the console.

To improve the Unicode support of the console, set the
console font to a TrueType font (e.g. “Lucida Console”) and use the wide
character API

If the console is unable to render a character, it tries to use a
character with a similar glyph. For example, with OEM
code page 850, Ł (U+0141) is replaced by L (U+0041). If no
replacment character can be found, “?” (U+003F) is displayed instead.

In a console (cmd.exe), chcp command can be used to display or to
change the OEM code page (and console code page). Changing the
console code page is not a good idea because the ANSI API of the console still
expects characters encoded to the previous console code page.

See also

Conventional wisdom is retarded, aka What the @#%&* is _O_U16TEXT? [http://blogs.msdn.com/b/michkap/archive/2008/03/18/8306597.aspx] (Michael
S. Kaplan, 2008) and the Python bug report #1602: windows console doesn’t
print or input Unicode [http://bugs.python.org/issue1602].

Note

Set the console code page to cp65001 (UTF-8)
doesn’t improve Unicode support, it is the opposite: non-ASCII are not
rendered correctly and type non-ASCII characters (e.g. using the keyboard)
doesn’t work correctly, especially using raster fonts.

10.1.7. File mode

_setmode() and _wsopen() are special functions to set the
encoding of a file:

	_O_U8TEXT: UTF-8 without BOM

	_O_U16TEXT: UTF-16 without BOM

	_O_WTEXT: UTF-16 with BOM

fopen() can use these modes using ccs= in the file mode:

	ccs=UNICODE: _O_WTEXT

	ccs=UTF-8: _O_UTF8

	ccs=UTF-16LE: _O_UTF16

10.2. Mac OS X

Mac OS X uses UTF-8 for the filenames. If a filename is an invalid UTF-8
byte string, Mac OS X returns an error. The filenames are
decomposed to an incompatible variant of the Normal Form
D (NFD). Extract of the Technical Q&A QA1173 [http://developer.apple.com/mac/library/qa/qa2001/qa1173.html]: “For example,
HFS Plus uses a variant of Normal Form D in which U+2000 through U+2FFF, U+F900
through U+FAFF, and U+2F800 through U+2FAFF are not decomposed.”

10.3. Locales

To support different languages and encodings, UNIX and BSD operating systems
have “locales”. Locales are process-wide: if a thread or a library change the
locale, the whole process is impacted.

10.3.1. Locale categories

Locale categories:

	LC_COLLATE: compare and sort strings

	LC_CTYPE: decode byte strings and encode
character strings

	LC_MESSAGES: language of messages

	LC_MONETARY: monetary formatting

	LC_NUMERIC: number formatting (e.g. thousands separator)

	LC_TIME: time and date formatting

LC_ALL is a special category: if you set a locale using this
category, it sets the locale for all categories.

Each category has its own environment variable with the same name. For
example, LC_MESSAGES=C displays error messages in English. To get the
value of a locale category, LC_ALL, LC_xxx (e.g. LC_CTYPE) or
LANG environment variables are checked: use the first non empty variable.
If all variables are unset, fallback to the C locale.

Note

The gettext library reads LANGUAGE, LC_ALL and LANG environment
variables (and some others) to get the user language. The LANGUAGE
variable is specific to gettext and is not related to locales.

10.3.2. The C locale

When a program starts, it does not get directly the user locale: it uses the
default locale which is called the “C” locale or the “POSIX” locale. It is also
used if no locale environment variable is set. For LC_CTYPE, the C
locale usually means ASCII, but not always (see the locale
encoding section). For LC_MESSAGES, the C locale means to speak the
original language of the program, which is usually English.

10.3.3. Locale encoding

For Unicode, the most important locale category is LC_CTYPE: it is used to
set the “locale encoding”.

To get the locale encoding:

	Copy the current locale: setlocale(LC_CTYPE, NULL)

	Set the current locale encoding to the user preference: setlocale(LC_CTYPE, "")

	Use nl_langinfo(CODESET) if available

	or setlocale(LC_CTYPE, NULL)

For the C locale, nl_langinfo(CODESET) returns ASCII, or an alias
to this encoding (e.g. “US-ASCII” or “646”). But on FreeBSD, Solaris and
Mac OS X, codec functions (e.g. mbstowcs()) use
ISO 8859-1 even if nl_langinfo(CODESET) announces ASCII encoding.
AIX uses ISO 8859-1 for the C locale (and nl_langinfo(CODESET)
returns "ISO8859-1").

10.3.4. Locale functions

<locale.h> functions.

	
char* setlocale(category, NULL)

	Get the value of the specified locale category.

	
char* setlocale(category, name)

	Set the value of the specified locale category.

<langinfo.h> functions.

	
char* nl_langinfo(CODESET)

	Get the name of the locale encoding.

<stdlib.h> functions.

	
size_t mbstowcs(wchar_t *dest, const char *src, size_t n)

	Decode a byte string from the locale encoding to a character string. The decoder is strict: it returns an error on undecodable byte sequence. If available, prefer the reentrant version:
mbsrtowcs().

	
size_t wcstombs(char *dest, const wchar_t *src, size_t n)

	Encode a character string to a byte string in
the locale encoding. The encoder is strict : it returns an error if a character cannot by encoded. If available, prefer the reentrant version:
wcsrtombs().

mbstowcs() and wcstombs() are strict and don’t support
error handlers.

Note

“mbs” stands for “multibyte string” (byte string) and “wcs” stands for “wide
character string”.

On Windows, the “locale encoding” are the ANSI and OEM code pages. A Windows program uses the user preferred code pages at startup,
whereas a program starts with the C locale on UNIX.

10.4. Filesystems (filenames)

10.4.1. CD-ROM and DVD

CD-ROM uses the ISO 9660 filesystem which stores filenames as byte
strings. This filesystem is very restrictive: only A-Z, 0-9, _ and
“.” are allowed. Microsoft has developed the Joliet extension: store
filenames as UCS-2, up to 64 characters (BMP only).
It was first supported by Windows 95. Today, all operating systems are able
to read it.

UDF (Universal Disk Format) is the filesystem of DVD: it stores filenames as
character strings.

10.4.2. Microsoft: FAT and NTFS filesystems

MS-DOS uses the FAT filesystems (FAT 12, FAT 16, FAT 32): filenames are stored
as byte strings. Filenames are limited to 8+3 characters (8 for
the name, 3 for the extension) and displayed differently depending on the
code page (mojibake issue).

Microsoft extended its FAT filesystem in Windows 95: the Virtual FAT (VFAT)
supports “long filenames”, filenames are stored as UCS-2, up to
255 characters (BMP only). Starting at Windows 2000, non-BMP characters can be used: UTF-16 replaces UCS-2 and the limit is now
255 UTF-16 units.

The NTFS filesystem stores filenames using UTF-16 encoding.

10.4.3. Apple: HFS and HFS+ filesystems

HFS stores filenames as byte strings.

HFS+ stores filenames as UTF-16: the maximum length is 255
UTF-16 units.

10.4.4. Others

JFS and ZFS also use Unicode.

The ext family (ext2, ext3, ext4) store filenames as byte strings.

11. Programming languages

11.1. C language

The C language is a low level language, close to the hardware. It has a builtin
character string type (wchar_t*), but only few libraries
support this type. It is usually used as the first “layer” between the kernel
(system calls, e.g. open a file) and applications, higher level libraries and
other programming languages. This first layer uses the same type as the
kernel: except Windows, all kernels use byte strings.

There are higher level libraries, like glib or Qt,
offering a Unicode API, even if the underlying kernel uses byte strings. Such
libraries use a codec to encode data to the kernel and to
decode data from the kernel. The codec is usually the current
locale encoding.

Because there is no Unicode standard library, most third-party libraries chose
the simple solution: use byte strings. For example, the OpenSSL library, an
open source cryptography toolkit, expects filenames as byte strings. On
Windows, you have to encode Unicode filenames to the current ANSI code
page, which is a small subset of the Unicode charset.

11.1.1. Byte API (char)

	
char

	For historical reasons, char is the C type for a character (“char” as
“character”). In pratical, it’s only true for 7 and 8 bits encodings like ASCII
or ISO 8859-1. With multibyte encodings, a char is only one byte. For example, the
character “é” (U+00E9) is encoded as two bytes (0xC3 0xA9) in UTF-8.

char is a 8 bits integer, it is signed or not depending on the
operating system and the compiler. On Linux, the GNU compiler (gcc) uses a
signed type for Intel CPU. It defines __CHAR_UNSIGNED__ if
char type is unsigned. Check if the CHAR_MAX constant
from <limits.h> is equal to 255 to check if char is unsigned.

A literal byte is written between apostrophes, e.g. 'a'. Some control
characters can be written with an backslash plus a letter (e.g. '\n' = 10).
It’s also possible to write the value in octal (e.g. '\033' = 27) or
hexadecimal (e.g. '\x20' = 32). An apostrophe can be written '\'' or
'\x27'. A backslash is written '\\'.

<ctype.h> contains functions to manipulate bytes, like
toupper() or isprint().

11.1.2. Byte string API (char*)

	
char*

	char* is a a byte string. This type is used
in many places in the C standard library. For example, fopen() uses
char* for the filename.

<string.h> is the byte string library. Most functions starts with “str”
(string) prefix: strlen(), strcat(), etc. <stdio.h> contains useful string
functions like snprintf() to format a message.

The length of a string is stored directly in the string as a nul byte at the end. This
is a problem with encodings using nul bytes (e.g. UTF-16 and UTF-32): strlen()
cannot be used to get the length of the string, whereas most C functions
suppose that strlen() gives the length of the string. To support such
encodings, the length should be stored differently (e.g. in another variable or
function argument) and str*() functions should be replaced by mem*
functions (e.g. replace strcmp(a, b) == 0 by memcmp(a, b) == 0).

A literal byte strings is written between quotes, e.g. "Hello World!". As byte
literal, it’s possible to add control characters and characters in octal or
hexadecimal, e.g. "Hello World!\n".

11.1.3. Character API (wchar_t)

	
wchar_t

	With ISO C99 comes wchar_t: the character type.
It can be used to store Unicode characters. As char, it has a
library: <wctype.h> contains functions like towupper() or
iswprint() to manipulate characters.

wchar_t is a 16 or 32 bits integer, signed or not. Linux uses 32
bits signed integer. Mac OS X uses 32 bits integer. Windows and AIX use 16 bits
integer (BMP only). Check if the WCHAR_MAX constant
from <wchar.h> is equal to 0xFFFF to check if wchar_t is a 16
bits unsigned integer.

A literal character is written between apostrophes with the L prefix, e.g.
L'a'. As byte literal, it’s possible to write control character with an
backslash and a character with its value in octal or hexadecimal. For codes
bigger than 255, '\uHHHH' syntax can be used. For codes bigger than 65535,
'\UHHHHHHHH' syntax can be used with 32 bits wchar_t.

11.1.4. Character string API (wchar_t*)

	
wchar_t*

	With ISO C99 comes wchar_t*: the character string
type. The standard library <wchar.h> contains character string functions
like wcslen() or wprintf(), and constants like
WCHAR_MAX. If wchar_t is 16 bits long, non-BMP characters are encoded to UTF-16 as surrogate
pairs.

A literal character strings is written between quotes with the L
prefix, e.g. L"Hello World!\n". As character literals, it supports also control
character, codes written in octal, hexadecimal, L"\uHHHH" and L"\UHHHHHHHH".

POSIX.1-2001 has no function ignoring case to compare character strings.
POSIX.1-2008, a recent standard, adds wcscasecmp(): the GNU libc has it
as an extension (if _GNU_SOURCE is defined). Windows has the
_wcsnicmp() function.

Windows uses (UTF-16) wchar_t* strings for its Unicode
API.

11.1.5. printf functions family

	
int printf(const char* format, ...)

	

	
int wprintf(const wchar_t* format, ...)

	

Formats of string arguments for the printf functions:

	"%s": literal byte string (char*)

	"%ls": literal character string (wchar_t*)

printf("%ls") is strict: it stops immediatly if a
character string argument cannot be encoded
to the locale encoding. For example, the following
code prints the truncated string “Latin capital letter L with stroke: [” if
Ł (U+0141) cannot be encoded to the locale encoding.

printf("Latin capital letter L with stroke: [%ls]\n", L"\u0141");

wprintf("%s") and wprintf("%.<length>s") are strict: they stop immediatly if
a byte string argument cannot be decoded
from the locale encoding. For example, the following
code prints the truncated string “Latin capital letter L with stroke: [” if
0xC5 0x81 (U+0141 encoded to UTF-8) cannot be decoded from the
locale encoding.

wprintf(L"Latin capital letter L with stroke): [%s]\n", "\xC5\x81");
wprintf(L"Latin capital letter L with stroke): [%.10s]\n", "\xC5\x81");

wprintf("%ls") replaces unencodable
character string arguments by ? (U+003F). For example, the
following example print “Latin capital letter L with stroke: [?]” if Ł (U+0141)
cannot be encoded to the locale encoding:

wprintf(L"Latin capital letter L with stroke: [%s]\n", L"\u0141");

So to avoid truncated strings, try to use only wprintf() with character
string arguments.

Note

There is also "%S" format which is a deprecated alias to the "%ls"
format, don’t use it.

11.2. C++

	std::wstring: character string using the
wchar_t type, Unicode version of std::string (byte
string)

	std::wcin, std::wcout and std::wcerr: standard input, output
and error output; Unicode version of std::cin, std::cout and
std::cerr

	std::wostringstream: character stream buffer; Unicode version of
std::ostringstream.

To initialize the locales, equivalent to setlocale(LC_ALL,
""), use:

#include <locale>
std::locale::global(std::locale(""));

If you use also C and C++ functions (e.g. printf() and std::cout)
to access the standard streams, you may have issues with non-ASCII characters. To avoid these issues, you can disable the automatic
synchronization between C (std*) and C++ (std::c*) streams using:

#include <iostream>
std::ios_base::sync_with_stdio(false);

Note

Use typedef basic_ostringstream<wchar_t> wostringstream; if
wostringstream is not available.

11.3. Python

Python supports Unicode since its version 2.0 released in October 2000.
Byte and Unicode strings store their length, so
it’s possible to embed nul byte/character.

Python can be compiled in two modes: narrow (UTF-16) and wide (UCS-4).
sys.maxunicode constant is 0xFFFF in narrow build, and 0x10FFFF in wide build.
Python is compiled in narrow mode on Windows, because wchar_t is also 16 bits
on Windows and so it is possible to use Python Unicode strings as wchar_t*
strings without any (expensive) conversion.

See also

Python Unicode HOWTO [http://docs.python.org/howto/unicode.html].

11.3.1. Python 2

str is the byte string type and unicode is the
character string type. Literal byte strings are written b'abc' (syntax
compatible with Python 3) or 'abc' (legacy syntax), \xHH can be used to
write a byte by its hexadecimal value (e.g. b'\x80' for 128). Literal
Unicode strings are written with the prefix u: u'abc'. Code points can
be written as hexadecimal: \xHH (U+0000—U+00FF), \uHHHH
(U+0000—U+FFFF) or \UHHHHHHHH (U+0000—U+10FFFF), e.g. 'euro
sign:\u20AC'.

In Python 2, str + unicode gives unicode: the byte string is
decoded from the default encoding (ASCII). This coercion was a bad design idea
because it was the source of a lot of confusion. At the same time, it was not
possible to switch completely to Unicode in 2000: computers were slower and
there were fewer Python core developers. It took 8 years to switch completely to
Unicode: Python 3 was relased in December 2008.

Narrow build of Python 2 has a partial support of non-BMP
characters. The unichr() function raises an error for code bigger than U+FFFF,
whereas literal strings support non-BMP characters (e.g. '\U0010FFFF').
Non-BMP characters are encoded as surrogate pairs. The
disavantage is that len(u'\U00010000') is 2, and u'\U0010FFFF'[0] is
u'\uDBFF' (lone surrogate character).

Note

DO NOT CHANGE THE DEFAULT ENCODING! Calling sys.setdefaultencoding() is
a very bad idea because it impacts all libraries which suppose that the
default encoding is ASCII.

11.3.2. Python 3

bytes is the byte string type and str is the
character string type. Literal byte strings are written with the b prefix:
b'abc'. \xHH can be used to write a
byte by its hexadecimal value, e.g. b'\x80' for 128. Literal Unicode strings are
written 'abc'. Code points can be used directly in hexadecimal: \xHH
(U+0000—U+00FF), \uHHHH (U+0000—U+FFFF) or \UHHHHHHHH
(U+0000—U+10FFFF), e.g. 'euro sign:\u20AC'. Each item of a byte string is
an integer in range 0—255: b'abc'[0] gives 97, whereas 'abc'[0] gives
'a'.

Python 3 has a full support of non-BMP characters, in narrow and
wide builds. But as Python 2, chr(0x10FFFF) creates a string of 2 characters (a
UTF-16 surrogate pair) in a narrow build. chr() and
ord() supports non-BMP characters in both modes.

Python 3 uses U+DC80—U+DCFF character range to store undecodable bytes with the
surrogateescape error handler, described in the PEP 383 [http://www.python.org/dev/peps/pep-0383/] (Non-decodable
Bytes in System Character Interfaces). It is used for filenames and
environment variables on UNIX and BSD systems. Example:
b'abc\xff'.decode('ASCII', 'surrogateescape') gives 'abc\uDCFF'.

11.3.3. Differences between Python 2 and Python 3

str + unicode gives unicode in Python 2 (the byte string is decoded
from the default encoding, ASCII) and it raises a TypeError in Python 3. In
Python 3, comparing bytes and str gives False, emits a BytesWarning warning or
raises a BytesWarning exception depending of the bytes warning flag (-b
or -bb option passed to the Python program). In Python 2, the byte string
is decoded from the default encoding (ASCII) to Unicode before being compared.

UTF-8 decoder of Python 2 accept surrogate characters, even if there are invalid, to keep backward compatibility with
Python 2.0. In Python 3, the UTF-8 decoder is strict:
it rejects surrogate characters.

It is possible to make Python 2 behave more like Python 3 with
from __future__ import unicode_literals.

11.3.4. Codecs

The codecs and encodings modules provide text encodings. They support a lot of
encodings. Some examples: ASCII, ISO-8859-1, UTF-8, UTF-16-LE,
ShiftJIS, Big5, cp037, cp950, EUC_JP, etc.

UTF-8, UTF-16-LE, UTF-16-BE, UTF-32-LE and UTF-32-BE don’t
use BOM, whereas UTF-8-SIG, UTF-16 and UTF-32 use BOM.
mbcs is only available on Windows: it is the ANSI code page.

Python provides also many error handlers used to specify how to handle
undecodable byte sequences and unencodable characters:

	strict (default): raise a UnicodeDecodeError or a UnicodeEncodeError

	replace: replace undecodable bytes by � (U+FFFD) and unencodable
characters by ? (U+003F)

	ignore: ignore undecodable bytes and unencodable characters

	backslashreplace (only encode): replace unencodable bytes by \xHH

Python 3 has three more error handlers:

	surrogateescape: replace undecodable bytes (non-ASCII: 0x80—0xFF) by surrogate characters (in U+DC80—U+DCFF) on
decoding, replace characters in range U+DC80—U+DCFF by bytes in
0x80—0xFF on encoding. Read the PEP 383 [http://www.python.org/dev/peps/pep-0383/] (Non-decodable
Bytes in System Character Interfaces) for the details.

	surrogatepass, specific to UTF-8 codec: allow encoding/decoding
surrogate characters in UTF-8. It is required because UTF-8 decoder of
Python 3 rejects surrogate characters by default.

	backslashreplace (for decode): replace undecodable bytes by \xHH

Decoding examples in Python 3:

	b'abc\xff'.decode('ASCII') uses the strict error handler and raises
an UnicodeDecodeError

	b'abc\xff'.decode('ASCII', 'ignore') gives 'abc'

	b'abc\xff'.decode('ASCII', 'replace') gives 'abc\uFFFD'

	b'abc\xff'.decode('ASCII', 'surrogateescape') gives
'abc\uDCFF'

Encoding examples in Python 3:

	'\u20ac'.encode('UTF-8') gives b'\xe2\x82\xac'

	'abc\xff'.encode('ASCII') uses the strict error handler and raises
an UnicodeEncodeError

	'abc\xff'.encode('ASCII', 'backslashreplace') gives b'abc\\xff'

11.3.5. String methods

Byte string (str in Python 2, bytes in Python 3) methods:

	.decode(encoding, errors='strict'): decode from the specified encoding
and (optional) error handler.

Character string (unicode in Python 2, str in Python 3) methods:

	.encode(encoding, errors='strict'): encode to the
specified encoding with an (optional) error handler

	.isprintable(): False if the character category is other (Cc, Cf, Cn, Co, Cs) or separator (Zl, Zp, Zs),
True otherwise. There is an exception: even if U+0020 is a separator,
' '.isprintable() gives True.

	.toupper(): convert to uppercase

11.3.6. Filesystem

Python decodes bytes filenames and encodes Unicode filenames using the
filesystem encoding, sys.getfilesystemencoding():

	mbcs (ANSI code page) on Windows

	UTF-8 on Mac OS X

	locale encoding otherwise

Python uses the strict error handler in Python 2, and
surrogateescape (PEP 383) in Python 3. In Python 2, if os.listdir(u'.')
cannot decode a filename, it keeps the bytes filename unchanged. Thanks to
surrogateescape, decoding a filename never fails in Python 3. But
encoding a filename can fail in Python 2 and 3 depending on the filesystem
encoding. For example, on Linux with the C locale, the Unicode filename
"h\xe9.py" cannot be encoded because the filesystem encoding is ASCII.

In Python 2, use os.getcwdu() to get the current directory as Unicode.

11.3.7. Windows

Encodings used on Windows:

	locale.getpreferredencoding(): ANSI code page

	'mbcs' codec: ANSI code page

	sys.stdout.encoding, sys.stderr.encoding: encoding of the
Windows console.

	sys.argv, os.environ, subprocess.Popen(args): native Unicode support
(no encoding)

11.3.8. Modules

codecs module:

	BOM_UTF8, BOM_UTF16_BE, BOM_UTF32_LE, …: Byte order
marks (BOM) constants

	lookup(name): get a Python codec. lookup(name).name gets the Python
normalized name of a codec, e.g. codecs.lookup('ANSI_X3.4-1968').name
gives 'ascii'.

	open(filename, mode='rb', encoding=None, errors='strict', ...): legacy
API to open a binary or text file. To open a file in Unicode mode, use
io.open() instead

io module:

	open(name, mode='r', buffering=-1, encoding=None, errors=None, ...):
open a binary or text file in read and/or write mode. For text file,
encoding and errors can be used to specify the encoding and the
error handler. By default, it opens text files with the locale encoding in strict mode.

	TextIOWrapper(): wrapper to read and/or write text files, encode from/decode to
the specified encoding (and error handler) and normalize
newlines (\r\n and \r are replaced by \n). It requires a
buffered file. Don’t use it directly to open a text file: use open()
instead.

locale module (locales):

	LC_ALL, LC_CTYPE, …: locale categories

	getlocale(category): get the value of a locale category as the tuple (language code, encoding name)

	getpreferredencoding(): get the locale encoding

	setlocale(category, value): set the value of a locale category

sys module:

	getdefaultencoding(): get the default encoding, e.g. used by
'abc'.encode(). In Python 3, the default encoding is fixed to
'utf-8', in Python 2, it is 'ascii' by default.

	getfilesystemencoding(): get the filesystem encoding used to decode
and encode filenames

	maxunicode: biggest Unicode code point storable in a single Python
Unicode character, 0xFFFF in narrow build or 0x10FFFF in wide build.

unicodedata module:

	category(char): get the category of a
character

	name(char): get the name of a character

	normalize(string): normalize a string to the NFC,
NFD, NFKC or NFKD form

11.4. PHP

In PHP 5, a literal string (e.g. "abc") is a byte string.
PHP has no character string type, only a “string” type which is a
byte string.

PHP has “multibyte” functions to manipulate byte strings using their encoding.
These functions have an optional encoding argument. If the encoding is not
specified, PHP uses the default encoding (called “internal encoding”). Some
multibyte functions:

	mb_internal_encoding(): get or set the internal encoding

	mb_substitute_character(): change how to handle unencodable
characters:

	"none": ignore unencodable characters

	"long": escape as hexadecimal value, e.g. "U+E9"
or "JIS+7E7E"

	"entity": escape as HTML entities, e.g. "é"

	mb_convert_encoding(): decode from an encoding and
encode to another encoding

	mb_ereg(): search a pattern using a regular expression

	mb_strlen(): get the length in characters

	mb_detect_encoding(): guess the encoding of a byte
string

Perl compatible regular expressions (PCRE) have an u flag (“PCRE8”) to
process byte strings as UTF-8 encoded strings.

PHP also includes a binding for the iconv library.

	iconv(): decode a byte string from an
encoding and encode to another encoding, you can use
//IGNORE or //TRANSLIT suffix to choose the error handler

	iconv_mime_decode(): decode a MIME header field

PHP 6 was a project to improve Unicode support of Unicode. This project died at
the beginning of 2010. Read The Death of PHP 6/The Future of PHP 6 [http://blog.dmcinsights.com/2010/05/25/the-death-of-php-6the-future-of-php-6/] (May 25,
2010 by Larry Ullman) and Future of PHP6 [http://schlueters.de/blog/archives/128-Future-of-PHP-6.html] (March 2010 by Johannes Schlüter)
for more information.

11.5. Perl

Write a character using its code point written in hexadecimal:

	chr(0x1F4A9)

	"\x{2639}"

	"\N{U+A0}"

Using use charnames qw(:full);, you can use a Unicode character in a
string using "\N{name}" syntax. Example:

say "\N{long s} \N{ae} \N{Omega} \N{omega} \N{UPWARDS ARROW}"

Declare that filehandles opened within this lexical scope but not elsewhere are
in UTF-8, until and unless you say otherwise. The :std adds in STDIN,
STDOUT, and STDERR. This critical step implicitly decodes incoming data
and encodes outgoing data as UTF-8:

use open qw(:encoding(UTF-8) :std);

If PERL_UNICODE environment variable is set to AS, the following data
will use UTF-8:

	@ARGV

	STDIN, STDOUT, STDERR

If you have a DATA handle, you must explicitly set its encoding. If you want
this to be UTF-8, then say:

binmode(DATA, ":encoding(UTF-8)");

Misc:

use feature qw< unicode_strings >;
use Unicode::Normalize qw< NFD NFC >;
use Encode qw< encode decode >;
@ARGV = map { decode("UTF-8", $_) } @ARGV;
open(OUTPUT, "> :raw :encoding(UTF-16LE) :crlf", $filename);

Misc:

	Encode

	Unicode::Normalize

	Unicode::Collate

	Unicode::Collate::Locale

	Unicode::UCD

	DBM_Filter::utf8

History:

	Perl 5.6 (2000): initial Unicode support, support character strings

	Perl 5.8 (2002): regex supports Unicode

	use “use utf8;” pragma to specify that your Perl script is encoded to
UTF-8

Read perluniintro, perlunicode and perlunifaq manuals.

See Tom Christiansen’s Materials for OSCON 2011 [http://training.perl.com/OSCON2011/] for more information.

11.6. Java

char is a character able to store Unicode BMP only characters
(U+0000—U+FFFF), whereas Character is a wrapper of the char with static helper functions.
Character methods:

	.getType(ch): get the category of a
character

	.isWhitespace(ch): test if a character is a whitespace
according to Java

	.toUpperCase(ch): convert to uppercase

	.codePointAt(CharSequence, int): return the code point at the given index of the CharSequence

String is a character string implemented using a
char array and UTF-16. String methods:

	String(bytes, encoding): decode a byte string from the specified encoding. The decoder is strict:
throw a CharsetDecoder exception if a byte sequence cannot be
decoded.

	.getBytes(encoding): encode to the specified encoding,
throw a CharsetEncoder exception if a character cannot be encoded.

	.length(): get the length in UTF-16 units.

As Python compiled in narrow mode, non-BMP characters are
stored as UTF-16 surrogate pairs and the length of a string
is the number of UTF-16 units, not the number of Unicode characters.

Java, as the Tcl language, uses a variant of UTF-8 which encodes the nul
character (U+0000) as the overlong byte sequence
0xC0 0x80, instead of 0x00. So it is possible to use C
functions like strlen() on byte string with embeded nul
characters.

11.7. Go and D

The Go and D languages use UTF-8 as internal encoding to store
Unicode strings.

12. Database systems

12.1. MySQL

MySQL supports two UTF-8 variants:
* utf8mb4: This is the full UTF-8 character set supported since MySQL 5.5
* utf8: Also known as utf8mb3. This only supports the Basic Multilingual Plane of
Unicode 3.0 and doesn’t support 4-byte characters.

See also

https://dev.mysql.com/doc/refman/5.7/en/charset-unicode.html

In MySQL a character set is used on a per-column basis. A default characater set
for new columns is set on a table level. And the default for tables is set on
a database level.

12.2. PostgreSQL

Unicode support is set on database level. There is a cluster level default.

To create a database with UTF-8 support:
createdb -E utf8

To convert a non-unicode database to UTF-8 the recommended method is a dump/restore.

See also

http://www.postgresql.org/docs/9.5/static/charset.html

12.3. SQLite

13. Libraries

Programming languages have no or basic support of Unicode. Libraries are
required to get a full support of Unicode on all platforms.

13.1. Qt library

Qt is a big C++ library covering different topics, but it is typically used
to create graphical interfaces. It is distributed under the GNU LGPL license [http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License]
(version 2.1), and is also available under a commercial license.

13.1.1. Character and string classes

QChar is a Unicode character, only able to store BMP characters. It is implemented using a 16 bits unsigned number. Interesting
QChar methods:

	isSpace(): True if the character category is
separator (Zl, Zp or Zs)

	toUpper(): convert to upper case

QString is a character string implemented as an array of
QChar using UTF-16. A Non-BMP character is
stored as two QChar (a surrogate pair). Interesting
QString methods:

	toAscii(), fromAscii(): encode to/decode from ASCII

	toLatin1(), fromLatin1(): encode to/decode from ISO 8859-1

	utf16(), fromUtf16(): encode to/decode to UTF-16 (in
the host endian)

	normalized(): normalize to NFC, NFD, NFKC or NFKD

Qt decodes literal byte strings from ISO 8859-1 using the
QLatin1String class, a thin wrapper to char*. QLatin1String
is a character string storing each character as a single byte. It is possible
because it only supports characters in U+0000—U+00FF range. QLatin1String
cannot be used to manipulate text, it has a smaller API than QString. For
example, it is not possible to concatenate two QLatin1String strings.

13.1.2. Codec

QTextCodec.codecForLocale() gets the locale encoding codec:

	Windows: ANSI code page

	Otherwise: the locale encoding. Try
nl_langinfo(CODESET), or LC_ALL, LC_CTYPE, LANG environment
variables. If no one gives any useful information, fallback to
ISO 8859-1.

13.1.3. Filesystem

QFile.encodeName():

	Windows: encode to UTF-16

	Mac OS X: normalize to the D form and
then encode to UTF-8

	Other (UNIX/BSD): encode to the local encoding
(QTextCodec.codecForLocale())

QFile.decodeName() is the reverse operation.

Qt has two implementations of its QFSFileEngine:

	Windows: use Windows native API

	UNIX: use POSIX API. Examples: fopen(), getcwd() or get_current_dir_name(),
mkdir(), etc.

Related classes: QFile, QFileInfo, QAbstractFileEngineHandler,
QFSFileEngine.

13.2. The glib library

The glib library [http://www.gtk.org/] is a great C library
distributed under the GNU LGPL license [http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License] (version 2.1).

13.2.1. Character strings

The gunichar type is a character. It is able to store any Unicode 6.0
character (U+0000—U+10FFFF).

The glib library has no character string type. It uses byte
strings using the gchar* type, but most functions use
UTF-8 encoded strings.

13.2.2. Codec functions

	g_convert(): decode from an encoding and
encode to another encoding with the iconv library. Use g_convert_with_fallback() to choose how to
handle undecodable bytes and
unencodable characters.

	g_locale_from_utf8() / g_locale_to_utf8(): encode to/decode
from the current locale encoding.

	g_get_charset(): get the locale encoding

	Windows: current ANSI code page

	OS/2: current code page (call DosQueryCp())

	other: try nl_langinfo(CODESET), or LC_ALL, LC_CTYPE or
LANG environment variables

	g_utf8_get_char(): get the first character of an UTF-8 string as
gunichar

13.2.3. Filename functions

	g_filename_from_utf8() / g_filename_to_utf8(): encode/decode
a filename to/from UTF-8

	g_filename_display_name(): human readable version of a filename. Try
to decode the filename from each encoding of
g_get_filename_charsets() encoding list. If all decoding failed,
decode the filename from UTF-8 and replace
undecodable bytes by � (U+FFFD).

	g_get_filename_charsets(): get the list of charsets used to decode
and encode filenames. g_filename_display_name() tries each encoding
of this list, other functions just use the first encoding. Use UTF-8
on Windows. On other operating systems, use:

	G_FILENAME_ENCODING environment variable (if set): comma-separated
list of character set names, the special token "@locale" is taken to mean
the locale encoding

	or UTF-8 if G_BROKEN_FILENAMES environment variable is set

	or call g_get_charset() (the locale encoding)

13.3. iconv library

libiconv [http://www.gnu.org/software/libiconv/] is a library to encode and
decode text in different encodings. It is distributed under the GNU LGPL
license [http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License]. It supports a lot of encodings including rare and old encodings.

By default, libiconv is strict: an unencodable character raise an error. You can ignore these characters
by adding the //IGNORE suffix to the encoding name. There is also the //TRANSLIT
suffix to replace unencodable characters by similarly looking
characters.

PHP has a builtin binding of iconv.

13.4. ICU libraries

International Components for Unicode [http://site.icu-project.org/] (ICU) is
a mature, widely used set of C, C++ and Java libraries providing Unicode and Globalization support for software
applications. ICU is an open source project distributed under the MIT
license [http://en.wikipedia.org/wiki/MIT_License].

13.5. libunistring

libunistring [http://www.gnu.org/software/libunistring/] provides functions
for manipulating Unicode strings and for manipulating C strings according to
the Unicode standard. It is distributed under the GNU LGPL license [http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License] version
3.

14. Unicode issues

14.1. Security vulnerabilities

14.1.1. Special characters

Fullwidth (U+FF01—U+FF60) and halfwidth (U+FF61—U+FFEE) characters have been
used in 2007 to bypass security checks. Examples with the Unicode
normalization:

	U+FF0E is normalized to . (U+002E) in NFKC

	U+FF0F is normalized to / (U+002F) in NFKC

Some important characters have also “alternatives” in Unicode:

	Windows directory separator, \ (U+005C): U+20E5, U+FF3C

	UNIX directory separator, / (U+002F): U+2215, U+FF0F

	Parent directory, .. (U+002E, U+002E): U+FF0E

For more information, read GS07-01 Full-Width and Half-Width Unicode Encoding
IDS/IPS/WAF Bypass Vulnerability [http://www.gamasec.net/english/gs07-01.html] (GamaTEAM, april 2007).

14.1.2. Non-strict UTF-8 decoder: overlong byte sequences and surrogates

An UTF-8 decoder has to reject overlong byte sequences, or an attacker can use
them to bypass security checks (e.g. check rejecting string containing nul bytes,
0x00). For example, 0xC0 0x80 byte sequence must raise an error and
not be decoded as U+0000, and “.” (U+002E) can be encoded to 0xC0 0xAE (two
bytes instead of one) to bypass directory traversal checks.

Surrogates characters are also invalid in UTF-8: characters in U+D800—U+DFFF
have to be rejected. See the table 3-7 in the Conformance chapter of the
Unicode standard [http://www.unicode.org/versions/Unicode5.2.0/ch03.pdf]
(december 2009); and the section 3 (UTF-8 definition) of UTF-8, a
transformation format of ISO 10646 [http://www.rfc-editor.org/rfc/rfc3629.txt] (RFC 3629, november 2003).

The libxml2 library had such vulnerability until january 2008: CVE-2007-6284 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6284].

Some PHP functions use a strict UTF-8 decoder (e.g. mb_convert_encoding()),
some other don’t. For example, utf8_decode() and mb_strlen() accept
0xC0 0x80 in PHP 5.3.2. The UTF-8 decoder of Python 3 is strict, whereas
the UTF-8 decoder of Python 2 accepts surrogates (to keep the backward
compatibility). In Python 3, the error handler surrogatepass can be used
to encode and decode surrogates.

Note

The Java and Tcl languages use a variant of UTF-8
which encodes the nul character (U+0000) as the overlong byte sequence
0xC0 0x80, instead of 0x00, for practical reasons.

14.1.3. Check byte strings before decoding them to character strings

Some applications check user inputs as byte strings, but then
process them as character strings. This vulnerability can be used
to bypass security checks.

The WordPress blog tool had such issue with PHP5 and MySQL:
WordPress Charset SQL Injection Vulnerability [http://www.abelcheung.org/advisory/20071210-wordpress-charset.txt] (Abel
Cheung, december 2007). WordPress used the PHP function addslashes() on the
input byte strings. This function adds 0x5C prefix to 0x00, 0x22,
0x27 and 0x5C bytes. If a input string is encoded to ISO 8859-1,
this operation escapes a quote: ' (U+0027) becomes \' ({U+005C,
U+0027}).

The problem is that addslashes() process byte strings, whereas the result
is used by MySQL which process character strings. Example with Big5 encoding: 0xB5 0x27 cannot be decoded from Big5, but escaped it
becomes 0xB5 0x5C 0x27 which is decoded to {U+8A31, U+0027}. The 0x5C
byte is no more a backslash: it is part of the multibyte character U+8A31
encoded to 0xB5 0x5C. The solution is to use mysql_real_escape_string()
function, instead of addslashes(), which process inputs as character
strings using the MySQL connection encoding.

See also

CVE-2006-2314 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2314] (PostgreSQL, may 2006),
CVE-2006-2753 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2753] (MySQL, may 2006) and
CVE-2008-2384 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2384] (libapache2-mod-auth-mysql, january 2009).

15. See also

	UTF-8 and Unicode FAQ for Unix/Linux [http://www.cl.cam.ac.uk/~mgk25/unicode.html]
by Markus Kuhn, first version in june 1999, last edit in may 2009

Index

 _
 | A
 | B
 | C
 | G
 | I
 | J
 | M
 | N
 | P
 | S
 | U
 | W

_

 	
 	_wfopen (C function)

 	
 	_wfstat (C function)

 	_wopen (C function)

A

 	
 	ASCII

B

 	
 	BMP

 	
 	BOM

C

 	
 	char (C type)

 	
 	cp1252

G

 	
 	GBK

 	GetACP (C function)

 	
 	GetConsoleCP (C function)

 	GetConsoleOutputCP (C function)

 	GetOEMCP (C function)

I

 	
 	ISO-8859-1

 	
 	ISO-8859-15

J

 	
 	JIS

M

 	
 	mbstowcs (C function)

 	
 	Mojibake

 	MultiByteToWideChar (C function)

N

 	
 	NFC

 	NFD

 	
 	NFKC

 	NFKD

 	nl_langinfo (C function)

P

 	
 	printf (C function)

S

 	
 	setlocale (C function), [1]

 	
 	SetThreadLocale (C function)

 	Surrogate pair

U

 	
 	UCS-2

 	UCS-4

 	Unicode

 	
 	UTF-16

 	UTF-32

 	UTF-7

 	UTF-8

W

 	
 	wchar_t (C type)

 	wcstombs (C function)

 	
 	WideCharToMultiByte (C function)

 	wprintf (C function)

 	WriteConsoleW (C function)

About

“Programming with Unicode” is a book written by Victor Stinner.

The HTML version is available on read-the-docs:
https://unicodebook.readthedocs.org

Dependencies

	Sphinx 1.0 or more recent: sudo pip install sphinx
http://sphinx.pocoo.org/

	make html:

	sudo apt-get install dvipng (for pngmath)

	make pdf:

	edit conf.py to enable rst2pdf.pdfbuilder extension: edit extensions line

	sudo apt-get install rst2pdf

	sudo apt-get install python-matplotlib

	make pdf

	make latex:

	Debian: sudo apt-get install texlive-latex-base texlive-lang-cyrillic

	Fedora: sudo yum install texlive-latex

	texlive-lang-cyrillic: Cyrillic (mojibake section)

	For make LaTeX ./build_latex.py

LaTeX

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/Letter_to_Russia_with_krakozyabry.jpg
5

g wf

&
iy
(S8

A, 11945

110Ex

_images/math/03e5516c1889957839a83599a7a7c92de1e380f4.png

_images/math/3f49e6b8e01d969e22a94cfbaae42f5b8136dd70.png

nav.xhtml

 Table of Contents

 		
 Programming with Unicode

 		
 About this book

 		
 License

 		
 Thanks to

 		
 Notations

 		
 Unicode nightmare

 		
 Definitions

 		
 Character

 		
 Glyph

 		
 Code point

 		
 Character set (charset)

 		
 Character string

 		
 Byte string

 		
 UTF-8 encoded strings and UTF-16 character strings

 		
 Encoding

 		
 Encode a character string

 		
 Decode a byte string

 		
 Mojibake

 		
 Unicode: an Universal Character Set (UCS)

 		
 Unicode

 		
 Unicode Character Set

 		
 Categories

 		
 Statistics

 		
 Normalization

 		
 Charsets and encodings

 		
 Encodings

 		
 Popularity

 		
 Encodings performances

 		
 Examples

 		
 Handle undecodable bytes and unencodable characters

 		
 Undecodable byte sequences

 		
 Unencodable characters

 		
 Error handlers

 		
 Replace unencodable characters by a similar glyph

 		
 Escape the character

 		
 Other charsets and encodings

 		
 Historical charsets and encodings

 		
 ASCII

 		
 ISO 8859 family

 		
 ISO 8859-1

 		
 cp1252

 		
 ISO 8859-15

 		
 CJK: asian encodings

 		
 Chinese encodings

 		
 Japanese encodings

 		
 ISO 2022

 		
 Extended Unix Code (EUC)

 		
 Cyrillic

 		
 Unicode encodings

 		
 UTF-8

 		
 UCS-2, UCS-4, UTF-16 and UTF-32

 		
 UTF-7

 		
 Byte order marks (BOM)

 		
 UTF-16 surrogate pairs

 		
 How to guess the encoding of a document?

 		
 Is ASCII?

 		
 Check for BOM markers

 		
 Is UTF-8?

 		
 Libraries

 		
 Good practices

 		
 Rules

 		
 Unicode support levels

 		
 Test the Unicode support of a program

 		
 Get the encoding of your inputs

 		
 Switch from byte strings to character strings

 		
 Operating systems

 		
 Windows

 		
 Code pages

 		
 Encode and decode functions

 		
 Windows API: ANSI and wide versions

 		
 Windows string types

 		
 Filenames

 		
 Windows console

 		
 File mode

 		
 Mac OS X

 		
 Locales

 		
 Locale categories

 		
 The C locale

 		
 Locale encoding

 		
 Locale functions

 		
 Filesystems (filenames)

 		
 CD-ROM and DVD

 		
 Microsoft: FAT and NTFS filesystems

 		
 Apple: HFS and HFS+ filesystems

 		
 Others

 		
 Programming languages

 		
 C language

 		
 Byte API (char)

 		
 Byte string API (char*)

 		
 Character API (wchar_t)

 		
 Character string API (wchar_t*)

 		
 printf functions family

 		
 C++

 		
 Python

 		
 Python 2

 		
 Python 3

 		
 Differences between Python 2 and Python 3

 		
 Codecs

 		
 String methods

 		
 Filesystem

 		
 Windows

 		
 Modules

 		
 PHP

 		
 Perl

 		
 Java

 		
 Go and D

 		
 Database systems

 		
 MySQL

 		
 PostgreSQL

 		
 SQLite

 		
 Libraries

 		
 Qt library

 		
 Character and string classes

 		
 Codec

 		
 Filesystem

 		
 The glib library

 		
 Character strings

 		
 Codec functions

 		
 Filename functions

 		
 iconv library

 		
 ICU libraries

 		
 libunistring

 		
 Unicode issues

 		
 Security vulnerabilities

 		
 Special characters

 		
 Non-strict UTF-8 decoder: overlong byte sequences and surrogates

 		
 Check byte strings before decoding them to character strings

 		
 See also

_static/comment-bright.png

_images/math/87179e0d3fbdda1c2b257b186368b665fe0d2b5e.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

