

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	txpostgres 1.6.0 documentation

txpostgres - an asynchronous Python driver for PostgreSQL

	Module usage
	Using transactions

	Customising the connection and cursor factories

	Listening for database notifications

	Automatic reconnection

	Choosing a Psycopg implementation

	API documentation
	txpostgres.txpostgres

	txpostgres.reconnection

	txpostgres.retrying

Indices and tables

	Index

	Search Page

[image: https://secure.travis-ci.org/wulczer/txpostgres.png?branch=master]

 Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	txpostgres 1.6.0 documentation

Module usage

Basic usage of the module is not very different from using Twisted’s adbapi:

from txpostgres import txpostgres

from twisted.internet import reactor
from twisted.python import log, util

connect to the database
conn = txpostgres.Connection()
d = conn.connect('dbname=postgres')

run the query and print the result
d.addCallback(lambda _: conn.runQuery('select tablename from pg_tables'))
d.addCallback(lambda result: util.println('All tables:', result))

close the connection, log any errors and stop the reactor
d.addCallback(lambda _: conn.close())
d.addErrback(log.err)
d.addBoth(lambda _: reactor.stop())

start the reactor to kick off connection estabilishing
reactor.run()

If you want you can use the Cursor class directly, with a
interface closer to Psycopg. Note that using this method you have to make sure
never to execute a query before the previous one finishes, as that would
violate the PostgreSQL asynchronous protocol.

from txpostgres import txpostgres

from twisted.internet import reactor
from twisted.python import log, util

define the libpq connection string and the query to use
connstr = 'dbname=postgres'
query = 'select tablename from pg_tables order by tablename'

connect to the database
conn = txpostgres.Connection()
d = conn.connect('dbname=postgres')

def useCursor(cur):
 # execute a query
 d = cur.execute(query)
 # fetch the first row from the result
 d.addCallback(lambda _: cur.fetchone())
 # output it
 d.addCallback(lambda result: util.println('First table name:', result[0]))
 # and close the cursor
 return d.addCallback(lambda _: cur.close())

create a cursor and use it
d.addCallback(lambda _: conn.cursor())
d.addCallback(useCursor)

log any errors and stop the reactor
d.addErrback(log.err)
d.addBoth(lambda _: reactor.stop())

start the reactor to kick off connection estabilishing
reactor.run()

Using transactions

Every query executed by txpostgres is committed immediately. If you need to
execute a series of queries in a transaction, use the
runInteraction() method:

from txpostgres import txpostgres

from twisted.internet import reactor
from twisted.python import log

connect to the database
conn = txpostgres.Connection()
d = conn.connect('dbname=postgres')

def interaction(cur):
 """
 A callable that will execute inside a transaction.
 """
 # the parameter is a txpostgres Cursor
 d = cur.execute('create table test(x integer)')
 d.addCallback(lambda _: cur.execute('insert into test values (%s)', (1,)))
 return d

run the interaction, making sure that if the insert fails, the table won't be
left behind created but empty
d.addCallback(lambda _: conn.runInteraction(interaction))

close the connection, log any errors and stop the reactor
d.addCallback(lambda _: conn.close())
d.addErrback(log.err)
d.addBoth(lambda _: reactor.stop())

start the reactor to kick off connection estabilishing
reactor.run()

Customising the connection and cursor factories

You might want to customise the way txpostgres creates connections and cursors
to take advantage of Psycopg features like dictionary cursors [http://initd.org/psycopg/docs/extras.html#dictionary-like-cursor]. To do that, define a subclass of
Connection and override
connectionFactory or cursorFactory class attributes to use your
custom code. Here’s an example of how to use dict cursors:

import psycopg2
import psycopg2.extras
from txpostgres import txpostgres

from twisted.internet import reactor
from twisted.python import log, util

def dict_connect(*args, **kwargs):
 kwargs['connection_factory'] = psycopg2.extras.DictConnection
 return psycopg2.connect(*args, **kwargs)

class DictConnection(txpostgres.Connection):
 connectionFactory = staticmethod(dict_connect)

connect using the custom connection class
conn = DictConnection()
d = conn.connect('dbname=postgres')

run a query and print the result
d.addCallback(lambda _: conn.runQuery('select * from pg_tablespace'))
access the column by its name
d.addCallback(lambda result: util.println('All tablespace names:',
 [row['spcname'] for row in result]))

close the connection, log any errors and stop the reactor
d.addCallback(lambda _: conn.close())
d.addErrback(log.err)
d.addBoth(lambda _: reactor.stop())

start the reactor to kick off connection estabilishing
reactor.run()

Listening for database notifications

Being an asynchronous driver, txpostgres supports the PostgreSQL NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html]
feature for sending asynchronous notifications to connections. Here is an
example script that connects to the database and listens for notifications on
the list channel. Every time a notification is received, it interprets the
payload as part of the name of a table and outputs a list of tables with names
containing that payload.

from txpostgres import txpostgres

from twisted.internet import reactor
from twisted.python import util

def outputResults(results, payload):
 print "Tables with `%s' in their name:" % payload
 for result in results:
 print result[0]

def observer(notify):
 if not notify.payload:
 print "No payload"
 return

 query = ("select tablename from pg_tables "
 "where tablename like '%%' || %s || '%%'")
 d = conn.runQuery(query, (notify.payload,))
 d.addCallback(outputResults, notify.payload)

connect to the database
conn = txpostgres.Connection()
d = conn.connect('dbname=postgres')

add a NOTIFY observer
conn.addNotifyObserver(observer)
start listening for NOTIFY events on the 'list' channel
d.addCallback(lambda _: conn.runOperation("listen list"))
d.addCallback(lambda _: util.println("Listening on the `list' channel"))

process events until killed
reactor.run()

To try it execute the example code and then open another session using psql [http://www.postgresql.org/docs/current/static/app-psql.html]
and try sending some NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events:

$ psql postgres
psql (9.1.2)
Type "help" for help.

postgres=> notify list, 'user';
NOTIFY
postgres=> notify list, 'auth';
NOTIFY

You should see the example program outputting lists of table names containing
the payload:

$ python notify_example.py
Listening on the `list' channel
Tables with `user' in their name:
pg_user_mapping
Tables with `auth' in their name:
pg_authid
pg_auth_members

Automatic reconnection

The module includes provision for automatically reconnecting to the database in
case the connection gets broken. To use it, pass a
DeadConnectionDetector instance to
Connection. You can customise the detector
instance or subclass it to add custom logic. See the documentation for
DeadConnectionDetector for details.

When a Connection is configured with a
detector, it will automatically start the reconnection process whenever it
encounters a certain class of errors indicative of a disconnect. See
defaultDeathChecker() for more.

While the connection is down, all attempts to use it will result in immediate
failures with ConnectionDead. This is to
prevent sending additional queries down a link that’s known to be down.

Here’s an example of using automatic reconnection in txpostgres:

from txpostgres import txpostgres, reconnection

from twisted.internet import reactor, task

class LoggingDetector(reconnection.DeadConnectionDetector):

 def startReconnecting(self, f):
 print '[*] database connection is down (error: %r)' % f.value
 return reconnection.DeadConnectionDetector.startReconnecting(self, f)

 def reconnect(self):
 print '[*] reconnecting...'
 return reconnection.DeadConnectionDetector.reconnect(self)

 def connectionRecovered(self):
 print '[*] connection recovered'
 return reconnection.DeadConnectionDetector.connectionRecovered(self)

def result(res):
 print '-> query returned result: %s' % res

def error(f):
 print '-> query failed with %r' % f.value

def connectionError(f):
 print '-> connecting failed with %r' % f.value

def runLoopingQuery(conn):
 d = conn.runQuery('select 1')
 d.addCallbacks(result, error)

def connected(_, conn):
 print '-> connected, running a query periodically'
 lc = task.LoopingCall(runLoopingQuery, conn)
 return lc.start(2)

connect to the database using reconnection
conn = txpostgres.Connection(detector=LoggingDetector())
d = conn.connect('dbname=postgres')

if the connection failed, log the error and start reconnecting
d.addErrback(conn.detector.checkForDeadConnection)
d.addErrback(connectionError)
d.addCallback(connected, conn)

process events until killed
reactor.run()

You can run this snippet and then try restarting the database. Logging lines
should appear, as the connection gets automatically recovered.

Choosing a Psycopg implementation

To use txpostgres, you will need a recent enough version of Psycopg [http://initd.org/psycopg/], namely
2.2.0 or later. Since parts of Psycopg are written in C, it is not available
on some Python implementations, like PyPy. When first imported, txpostgres
will try to detect if an API-compatible implementation of Psycopg is available.

You can force a certain implementation to be used by exporing an environment
variable TXPOSTGRES_PSYCOPG_IMPL. Recognized values are:

	psycopg2

	Force using Psycopg [http://initd.org/psycopg/], do not try any fallbacks.

	psycopg2cffi

	Use psycopg2cffi [https://github.com/chtd/psycopg2cffi], a psycopg2 implementation based on cffi, known to work on
PyPy.

	psycopg2ct

	Use psycopg2ct [https://github.com/mvantellingen/psycopg2-ctypes], an older psycopg2 implementation using ctypes, also
compatible with PyPy.

 Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	txpostgres 1.6.0 documentation

API documentation

All txpostgres APIs are documented here.

txpostgres.txpostgres

	
class txpostgres.txpostgres.Connection(reactor=None, cooperator=None, detector=None)[source]

	Bases: txpostgres.txpostgres._PollingMixin

A wrapper for a psycopg2 asynchronous connection.

The wrapper forwards almost everything to the wrapped connection, but
provides additional methods for compatibility with adbapi.Connection [http://twistedmatrix.com/documents/current/api/twisted.enterprise.adbapi.Connection.html].

	Parameters:	
	reactor – A Twisted reactor or None, which means the current
reactor

	cooperator – A Twisted Cooperator [http://twistedmatrix.com/documents/current/api/twisted.internet.task.Cooperator.html] to
process NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events or None, which means
using task.cooperate [http://twistedmatrix.com/documents/current/api/twisted.internet.task.cooperate.html]

	Variables:	
	connectionFactory (any callable) – The factory used to produce connections, defaults
to psycopg2.connect [http://initd.org/psycopg/docs/module.html#psycopg2.connect]

	cursorFactory (a callable accepting two positional arguments, a
psycopg2.cursor [http://initd.org/psycopg/docs/cursor.html#cursor] and a
Connection) – The factory used to produce cursors, defaults to
Cursor

	
connect(*args, **kwargs)[source]

	Connect to the database.

Any arguments will be passed to connectionFactory. Use them to
pass database names, usernames, passwords, etc.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire when the connection is open.

	Raise:	AlreadyConnected when the
connection has already been opened.

	
close()[source]

	Close the connection and disconnect from the database.

	Returns:	None

	
cursor()[source]

	Create an asynchronous cursor using cursorFactory.

	
runQuery(*args, **kwargs)[source]

	Execute an SQL query and return the result.

An asynchronous cursor will be created and its
execute() method will be invoked
with the provided arguments. After the query completes the results will
be fetched and the returned Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will fire with the result.

The connection is always in autocommit mode, so the query will be run
in a one-off transaction. In case of errors a Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] will be returned.

It is safe to call this method multiple times without waiting for the
first query to complete.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with the return value of the
cursor’s fetchall() method.

	
runOperation(*args, **kwargs)[source]

	Execute an SQL query and discard the result.

Identical to runQuery(), but
the result won’t be fetched and instead None will be
returned. It is intended for statements that do not normally return
values, like INSERT or DELETE.

It is safe to call this method multiple times without waiting for the
first query to complete.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire None.

	
runInteraction(interaction, *args, **kwargs)[source]

	Run commands in a transaction and return the result.

interaction should be a callable that will be passed a
Cursor object. Before calling
interaction a new transaction will be started, so the callable
can assume to be running all its commands in a transaction. If
interaction returns a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] processing will wait for it
to fire before proceeding. You should not close the provided
Cursor.

After interaction finishes work the transaction will be
automatically committed. If it raises an exception or returns a
Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] the connection will be rolled
back instead.

If committing the transaction fails it will be rolled back instead and
the failure obtained trying to commit will be returned.

If rolling back the transaction fails the failure obtained from the
rollback attempt will be logged and a
RollbackFailed failure will be
returned. The returned failure will contain references to the original
failure that caused the transaction to be rolled back and to the
Connection in which that happened, so
the user can take a decision whether she still wants to be using it or
just close it, because an open transaction might have been left open in
the database.

It is safe to call this method multiple times without waiting for the
first query to complete.

	Parameters:	interaction (any callable) – A callable whose first argument is a
Cursor.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with the return value of
interaction.

	
cancel(d)[source]

	Cancel the current operation. The cancellation does not happen
immediately, because the PostgreSQL protocol requires that the
application waits for confirmation after the query has been cancelled.
Be careful when cancelling an interaction, because if the interaction
includes sending multiple queries to the database server, you can’t
really be sure which one are you cancelling.

	Parameters:	d – a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] returned by one of
Connection methods.

	
cursorRunning(cursor)[source]

	Called automatically when a Cursor
created by this Connection starts
polling after executing a query. User code should never have to call
this method.

	
cursorFinished(cursor)[source]

	Called automatically when a Cursor
created by this Connection is done with
polling after executing a query. User code should never have to call
this method.

	
checkForNotifies()[source]

	Check if NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events have been received and if so,
dispatch them to the registered observers, using the Cooperator [http://twistedmatrix.com/documents/current/api/twisted.internet.task.Cooperator.html] provided in the constructor. This is done
automatically, user code should never need to call this method.

	
addNotifyObserver(observer)[source]

	Add an observer function that will get called whenever a NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] event is delivered to this connection. Any number of
observers can be added to a connection. Adding an observer that’s
already been added is ignored.

Observer functions are processed using the Cooperator [http://twistedmatrix.com/documents/current/api/twisted.internet.task.Cooperator.html] provided in the constructor to avoid
blocking the reactor thread when processing large numbers of events. If
an observer returns a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html], processing waits until it fires or
errbacks.

There are no guarantees as to the order in which observer functions are
called when NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events are delivered. Exceptions in
observers are logged and discarded.

	Parameters:	observer (any callable) – A callable whose first argument is a
psycopg2.extensions.Notify [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.Notify].

	
removeNotifyObserver(observer)[source]

	Remove a previously added observer function. Removing an observer
that’s never been added will be ignored.

	Parameters:	observer (any callable) – A callable that should no longer be called on
NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events.

	
getNotifyObservers()[source]

	Get the currently registered notify observers.

	Returns:	A set of callables that will get called on NOTIFY [http://www.postgresql.org/docs/current/static/sql-notify.html] events.

	Return type:	set

	
class txpostgres.txpostgres.Cursor(cursor, connection)[source]

	Bases: txpostgres.txpostgres._PollingMixin

A wrapper for a psycopg2 asynchronous cursor.

The wrapper will forward almost everything to the wrapped cursor, so the
usual DB-API interface can be used, but it will return Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]
objects that will fire with the DB-API results.

Remember that the PostgreSQL protocol does not support concurrent
asynchronous queries execution, so you need to take care not to execute a
query while another is still being processed.

In most cases you should just use the
Connection methods that will handle the
locking necessary to prevent concurrent query execution.

	
execute(query, params=None)[source]

	A regular DB-API execute, but returns a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

The caller must be careful not to call this method twice on cursors
from the same connection without waiting for the previous execution to
complete.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with the results of the
DB-API execute.

	
callproc(procname, params=None)[source]

	A regular DB-API callproc, but returns a Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

The caller must be careful not to call this method twice on cursors
from the same connection without waiting for the previous execution to
complete.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with the results of the
DB-API callproc.

	
close()[source]

	Close the cursor.

Once closed, the cursor cannot be used again.

	Returns:	None

	
class txpostgres.txpostgres.ConnectionPool(_ignored, *connargs, **connkw)[source]

	Bases: object

A poor man’s pool of Connection instances.

	Variables:	
	min (int) – The amount of connections that will be open when
start() is called. The pool never opens or closes
connections on its own after starting. Defaults to 3.

	connectionFactory (any callable) – The factory used to produce connections, defaults
to Connection.

	reactor – The reactor passed to connectionFactory.

	cooperator – The cooperator passed to connectionFactory.

	
__init__(_ignored, *connargs, **connkw)[source]

	Create a new connection pool.

Any positional or keyword arguments other than the first one and a
min keyword argument are passed to connectionFactory
when connecting. Use these arguments to pass database names, usernames,
passwords, etc.

	Parameters:	_ignored (any object) – Ignored, for adbapi.ConnectionPool [http://twistedmatrix.com/documents/current/api/twisted.enterprise.adbapi.ConnectionPool.html] compatibility.

	
start()[source]

	Start the connection pool.

This will create as many connections as the pool’s min variable
says.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that fires when all connection have succeeded.

	
close()[source]

	Stop the pool.

Disconnects all connections.

	Returns:	None

	
remove(connection)[source]

	Remove a connection from the pool.

Provided to be able to remove broken connections from the pool. The
caller should make sure the removed connection does not have queries
pending.

	Parameters:	connection (an object produced by the pool’s
connectionFactory) – The connection to be removed.

	
add(connection)[source]

	Add a connection to the pool.

Provided to be able to extend the pool with new connections.

	Parameters:	connection (an object compatible with those produced
by the pool’s connectionFactory) – The connection to be added.

	
runQuery(*args, **kwargs)[source]

	Execute an SQL query using a pooled connection and return the result.

One of the pooled connections will be chosen, its
runQuery() method will be
called and the resulting Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will be returned.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] obtained by a pooled connection’s
runQuery()

	
runOperation(*args, **kwargs)[source]

	Execute an SQL query using a pooled connection and discard the result.

One of the pooled connections will be chosen, its
runOperation() method will be
called and the resulting Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will be returned.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] obtained by a pooled connection’s
runOperation()

	
runInteraction(interaction, *args, **kwargs)[source]

	Run commands in a transaction using a pooled connection and return the
result.

One of the pooled connections will be chosen, its
runInteraction() method will be
called and the resulting Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will be returned.

	Parameters:	interaction (any callable) – A callable that will be passed to
Connection.runInteraction

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] obtained by a pooled connection’s
Connection.runInteraction

	
class txpostgres.txpostgres._PollingMixin[source]

	Bases: object

An object that wraps something pollable. It can take care of waiting for
the wrapped pollable to reach the OK state and adapts the pollable’s
interface to interfaces.IReadWriteDescriptor [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IReadWriteDescriptor.html]. It will forward all attribute
access that is has not been wrapped to the underlying pollable. Useful as a
mixin for classes that wrap a psycopg2 pollable object.

	Variables:	
	reactor (an IReactorFDSet [http://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IReactorFDSet.html] provider) – The reactor that the class will use to wait for the wrapped
pollable to reach the OK state.

	prefix (str) – Prefix used during log formatting to indicate context.

	
pollable()[source]

	Return the pollable object. Subclasses should override this.

	Returns:	A psycopg2 pollable.

	
poll()[source]

	Start polling the wrapped pollable.

	Returns:	A Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that will fire with an instance of this class
when the pollable reaches the OK state.

	
continuePolling(swallowErrors=False)[source]

	Move forward in the poll cycle. This will call psycopg2’s
poll() [http://initd.org/psycopg/docs/connection.html#connection.poll] on the wrapped
pollable and either wait for more I/O or callback or errback the
Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] returned earlier if the polling cycle has been completed.

	Parameters:	swallowErrors (bool) – Should errors with no one to report them to be
ignored.

	Raise:	UnexpectedPollResult when
poll() returns a result from outside of the
expected list [http://initd.org/psycopg/docs/extensions.html#poll-constants].

	
exception txpostgres.txpostgres.AlreadyConnected[source]

	Bases: exceptions.Exception

The database connection is already open.

	
exception txpostgres.txpostgres.RollbackFailed(connection, originalFailure)[source]

	Bases: exceptions.Exception

Rolling back the transaction failed, the connection might be in an unusable
state.

	Variables:	
	connection (Connection) – The connection that failed to roll back its transaction.

	originalFailure (a Twisted Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html]) – The failure that caused the connection to try to
roll back the transaction.

	
exception txpostgres.txpostgres.UnexpectedPollResult[source]

	Bases: exceptions.Exception

Polling returned an unexpected result.

	
exception txpostgres.txpostgres.AlreadyPolling[source]

	Bases: exceptions.Exception

The previous poll cycle has not been finished yet.

This probably indicates an issue in txpostgres, rather than in user code.

txpostgres.reconnection

	
class txpostgres.reconnection.DeadConnectionDetector(deathChecker=None, reconnectionIterator=None, reactor=None)[source]

	Bases: object

A class implementing reconnection strategy. When the connection is
discovered to be dead, it will start the reconnection process.

The object being reconnected should proxy all operations through the
detector’s callChecking() which will automatically fail them if the
connection is currently dead. This is done to prevent sending requests to a
resource that’s not currently available.

When an instance of Connection is passed a
DeadConnectionDetector it automatically starts using it to
provide reconnection.

Another way of using this class is manually calling
checkForDeadConnection() passing it a Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance to trigger reconnection. This is useful
to handle initial connection errors, for example:

conn = txpostgres.Connection(detector=DeadConnectionDetector())
d = conn.connect('dbname=test')
d.addErrback(conn.detector.checkForDeadConnection)

	Variables:	
	reconnectable (object) – An object to be reconnected. It should provide a
connect and a close method.

	connectionIsDead (bool) – If the connection is currently believed to be dead.

	
setReconnectable(reconnectable, *connargs, **connkw)[source]

	Register a reconnectable with the detector. Needs to be called before
the detector will be used. The remaining arguments will be passed to
the reconnectable’s connect method on each reconnection.

	Parameters:	reconnectable (object) – An object to be reconnected. It should provide a
connect and a close method.

	
callChecking(method, *args, **kwargs)[source]

	Call a method if the connection is still alive.

	
checkForDeadConnection(f)[source]

	Get passed a Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance and
determine if it means that the connection is dead. If so, start
reconnecting.

	
startReconnecting(f)[source]

	Called when the connection is detected to be dead.

	
reconnect()[source]

	Called on each attempt of reconnection.

	
connectionRecovered()[source]

	Called when the connection has recovered.

	
addRecoveryHandler(handler)[source]

	Add a handler function that will get called whenever the connection is
recovered. Any number of handlers can be added. Adding a handler that’s
already been added is ignored.

Recovery handlers are ran in parallel. If any of them return a
Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html], recovery will wait until it fires.

There are no guarantees as to the order in which handler functions are
called. Exceptions in handlers are logged and discarded.

	Parameters:	handler – A zero-argument callable.

	
removeRecoveryHandler(handler)[source]

	Remove a previously added recovery handler. Removing a handler that’s
never been added will be ignored.

	Parameters:	handler – A callable that should no longer be called when the
connection recovers.

	
getRecoveryHandlers()[source]

	Get the currently registered recovery handlers.

	Returns:	A set of callables that will get called on recovery.

	Return type:	set

	
txpostgres.reconnection.defaultDeathChecker(f)[source]

	Checker function suitable for use with
DeadConnectionDetector.

	
txpostgres.reconnection.defaultReconnectionIterator()[source]

	A function returning sane defaults for a reconnection iterator, for use
with DeadConnectionDetector.

The defaults have maximum reconnection delay capped at 10 seconds and no
limit on the number of retries.

	
exception txpostgres.reconnection.ConnectionDead[source]

	Bases: exceptions.Exception

The connection is dead.

txpostgres.retrying

	
class txpostgres.retrying.RetryingCall(f, *args, **kw)[source]

	Bases: object

Calls a function repeatedly, passing it args and keyword args. Failures are
passed to a user-supplied failure testing function. If the failure is
ignored, the function is called again after a delay whose duration is
obtained from a user-supplied iterator. The start method (below) returns a
Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] that fires with the eventual non-error result of calling the
supplied function, or fires its errback if no successful result can be
obtained before the delay backoff iterator raises StopIteration.

It is important to note the behaviour when the delay of any of the steps is
zero. The function is the called synchronously, ie. control does not go
back to the reactor between obtaining the delay from the iterator and
calling the function if the iterator returns zero.

The resetBackoff() method replaces the backoff iterator with another
one and is useful to reset the delay if some phase of the process has
succeeded and that makes the desirable initial delay different again.

	
start(backoffIterator=None, failureTester=None)[source]

	Start the call and retry it until it succeeds and fails.

	Parameters:	
	backoffIterator (callable) – A zero-argument callable that should
return a iterator yielding reconnection delay periods. If
None then simpleBackoffIterator() will be
used.

	failureTester (callable) – A one-argument callable that will be called with
a Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance each time the
function being retried fails. It should return
None if the call should be retried or a
Failure [http://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] if the retrying process
should be stopped. If None is used for this parameter,
retrying will never stop until the backoff iterator is exhausted.

	
resetBackoff(backoffIterator=None)[source]

	Replace the current backoff iterator with a new one.

	
txpostgres.retrying.simpleBackoffIterator(initialDelay=1.0, maxDelay=3600, factor=2.718281828459045, jitter=0.11962656472, maxRetries=10, now=True)[source]

	Yields increasing timeout values between retries of a call. The default
factor and jitter are taken from Twisted’s ReconnectingClientFactory [http://twistedmatrix.com/documents/current/api/twisted.internet.protocol.ReconnectingClientFactory.html].

	Variables:	
	initialDelay (float) – Initial delay, in seconds.

	maxDelay (float) – Maximum cap for the delay, if zero then no maximum is
applied.

	factor (float) – Multiplicative factor for increasing the delay.

	jitter (float) – Randomness factor to include when increasing the delay, to
prevent stampeding.

	maxRetries (int) – If non-zero, only yield so many values after exhausting
the iterator.

	now (bool) – If the very first delay yielded should always be zero.

 Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	txpostgres 1.6.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 txpostgres	

 Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	txpostgres 1.6.0 documentation

Index

 _
 | A
 | C
 | D
 | E
 | G
 | P
 | R
 | S
 | T
 | U

_

 	

 	__init__() (txpostgres.txpostgres.ConnectionPool method)

 	

 	_PollingMixin (class in txpostgres.txpostgres)

A

 	

 	add() (txpostgres.txpostgres.ConnectionPool method)

 	addNotifyObserver() (txpostgres.txpostgres.Connection method)

 	addRecoveryHandler() (txpostgres.reconnection.DeadConnectionDetector method)

 	

 	AlreadyConnected

 	AlreadyPolling

C

 	

 	callChecking() (txpostgres.reconnection.DeadConnectionDetector method)

 	callproc() (txpostgres.txpostgres.Cursor method)

 	cancel() (txpostgres.txpostgres.Connection method)

 	checkForDeadConnection() (txpostgres.reconnection.DeadConnectionDetector method)

 	checkForNotifies() (txpostgres.txpostgres.Connection method)

 	close() (txpostgres.txpostgres.Connection method)

 	

 	(txpostgres.txpostgres.ConnectionPool method)

 	(txpostgres.txpostgres.Cursor method)

 	connect() (txpostgres.txpostgres.Connection method)

 	Connection (class in txpostgres.txpostgres)

 	

 	ConnectionDead

 	ConnectionPool (class in txpostgres.txpostgres)

 	connectionRecovered() (txpostgres.reconnection.DeadConnectionDetector method)

 	continuePolling() (txpostgres.txpostgres._PollingMixin method)

 	Cursor (class in txpostgres.txpostgres)

 	cursor() (txpostgres.txpostgres.Connection method)

 	cursorFinished() (txpostgres.txpostgres.Connection method)

 	cursorRunning() (txpostgres.txpostgres.Connection method)

D

 	

 	DeadConnectionDetector (class in txpostgres.reconnection)

 	defaultDeathChecker() (in module txpostgres.reconnection)

 	

 	defaultReconnectionIterator() (in module txpostgres.reconnection)

E

 	

 	execute() (txpostgres.txpostgres.Cursor method)

G

 	

 	getNotifyObservers() (txpostgres.txpostgres.Connection method)

 	

 	getRecoveryHandlers() (txpostgres.reconnection.DeadConnectionDetector method)

P

 	

 	poll() (txpostgres.txpostgres._PollingMixin method)

 	

 	pollable() (txpostgres.txpostgres._PollingMixin method)

R

 	

 	reconnect() (txpostgres.reconnection.DeadConnectionDetector method)

 	remove() (txpostgres.txpostgres.ConnectionPool method)

 	removeNotifyObserver() (txpostgres.txpostgres.Connection method)

 	removeRecoveryHandler() (txpostgres.reconnection.DeadConnectionDetector method)

 	resetBackoff() (txpostgres.retrying.RetryingCall method)

 	

 	RetryingCall (class in txpostgres.retrying)

 	RollbackFailed

 	runInteraction() (txpostgres.txpostgres.Connection method)

 	

 	(txpostgres.txpostgres.ConnectionPool method)

 	runOperation() (txpostgres.txpostgres.Connection method)

 	

 	(txpostgres.txpostgres.ConnectionPool method)

 	runQuery() (txpostgres.txpostgres.Connection method)

 	

 	(txpostgres.txpostgres.ConnectionPool method)

S

 	

 	setReconnectable() (txpostgres.reconnection.DeadConnectionDetector method)

 	simpleBackoffIterator() (in module txpostgres.retrying)

 	

 	start() (txpostgres.retrying.RetryingCall method)

 	

 	(txpostgres.txpostgres.ConnectionPool method)

 	startReconnecting() (txpostgres.reconnection.DeadConnectionDetector method)

T

 	

 	txpostgres (module)

U

 	

 	UnexpectedPollResult

 Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		txpostgres 1.6.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		txpostgres 1.6.0 documentation »

 All modules for which code is available

		txpostgres.reconnection

		txpostgres.retrying

		txpostgres.txpostgres

 © Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

_modules/txpostgres/retrying.html

 Navigation

 		
 index

 		
 modules |

 		txpostgres 1.6.0 documentation »

 		Module code »

 Source code for txpostgres.retrying

"""
Simple implementation of a retrying call.

This code is based on a snippet send to the twisted-python mailing list:

http://twistedmatrix.com/pipermail/twisted-python/2009-November/020818.html

as well as published as txretry:

https://github.com/fluidinfo/txretry

It has been modified to allow resetting the backoff iterator and not store a
list of past failures.
"""

import random

from twisted.internet import reactor, defer, task
from twisted.python import failure

[docs]def simpleBackoffIterator(initialDelay=1.0, maxDelay=3600,
 factor=2.7182818284590451, jitter=0.11962656472,
 maxRetries=10, now=True):
 """
 Yields increasing timeout values between retries of a call. The default
 factor and jitter are taken from Twisted's :tm:`ReconnectingClientFactory
 <internet.protocol.ReconnectingClientFactory>`.

 :var initialDelay: Initial delay, in seconds.
 :vartype initialDelay: :class:`float`

 :var maxDelay: Maximum cap for the delay, if zero then no maximum is
 applied.
 :vartype maxDelay: :class:`float`

 :var factor: Multiplicative factor for increasing the delay.
 :vartype factor: :class:`float`

 :var jitter: Randomness factor to include when increasing the delay, to
 prevent stampeding.
 :vartype jitter: :class:`float`

 :var maxRetries: If non-zero, only yield so many values after exhausting
 the iterator.
 :vartype maxRetries: :class:`int`

 :var now: If the very first delay yielded should always be zero.
 :vartype now: :class:`bool`
 """
 retries = 0
 delay = initialDelay

 if now:
 retries += 1
 yield 0.0

 while not maxRetries or retries < maxRetries:
 retries += 1

 delay = delay * factor
 if jitter:
 delay = random.normalvariate(delay, delay * jitter)

 if maxDelay:
 delay = min(delay, maxDelay)
 yield delay

[docs]class RetryingCall(object):
 """
 Calls a function repeatedly, passing it args and keyword args. Failures are
 passed to a user-supplied failure testing function. If the failure is
 ignored, the function is called again after a delay whose duration is
 obtained from a user-supplied iterator. The start method (below) returns a
 :d:`Deferred` that fires with the eventual non-error result of calling the
 supplied function, or fires its errback if no successful result can be
 obtained before the delay backoff iterator raises :class:`StopIteration`.

 It is important to note the behaviour when the delay of any of the steps is
 zero. The function is the called synchronously, ie. control does not go
 back to the reactor between obtaining the delay from the iterator and
 calling the function if the iterator returns zero.

 The :meth:`.resetBackoff` method replaces the backoff iterator with another
 one and is useful to reset the delay if some phase of the process has
 succeeded and that makes the desirable initial delay different again.
 """
 reactor = None

 def __init__(self, f, *args, **kw):
 if self.reactor is None:
 self.reactor = reactor
 self._f = f
 self._args = args
 self._kw = kw

 def _err(self, fail):
 if self.failure is None:
 self.failure = fail
 try:
 if not self.cancelled:
 fail = self._failureTester(fail)
 except:
 self._deferred.errback()
 else:
 if isinstance(fail, failure.Failure):
 self._deferred.errback(fail)
 else:
 self._call()

 def _call(self):
 try:
 delay = next(self._backoffIterator)
 except StopIteration:
 self._deferred.errback(self.failure)
 else:
 self._callWithDelay(delay)

 def _callWithDelay(self, delay):
 # if the delay is 0, call the function synchronously
 if not delay:
 self._inProgress = defer.maybeDeferred(
 self._f, *self._args, **self._kw)
 else:
 self._inProgress = task.deferLater(
 self.reactor, delay, self._f, *self._args, **self._kw)
 self._inProgress.addCallbacks(self._deferred.callback, self._err)

 def _cancel(self, d):
 self.cancelled = True
 self._inProgress.cancel()

[docs] def start(self, backoffIterator=None, failureTester=None):
 """
 Start the call and retry it until it succeeds and fails.

 :param backoffIterator: A zero-argument callable that should
 return a iterator yielding reconnection delay periods. If
 :class:`None` then :func:`.simpleBackoffIterator` will be
 used.
 :type backoffIterator: callable

 :param failureTester: A one-argument callable that will be called with
 a :tm:`Failure <python.failure.Failure>` instance each time the
 function being retried fails. It should return
 :class:`None` if the call should be retried or a
 :tm:`Failure <python.failure.Failure>` if the retrying process
 should be stopped. If :class:`None` is used for this parameter,
 retrying will never stop until the backoff iterator is exhausted.
 :type failureTester: callable
 """
 self.resetBackoff(backoffIterator)

 if failureTester is None:
 failureTester = lambda _: None
 self._failureTester = failureTester

 self._deferred = defer.Deferred(self._cancel)
 self._inProgress = None
 self.failure = None
 self.cancelled = False

 self._call()
 return self._deferred

[docs] def resetBackoff(self, backoffIterator=None):
 """
 Replace the current backoff iterator with a new one.
 """
 if backoffIterator is None:
 backoffIterator = simpleBackoffIterator()
 self._backoffIterator = iter(backoffIterator)

 © Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

_modules/txpostgres/txpostgres.html

 Navigation

 		
 index

 		
 modules |

 		txpostgres 1.6.0 documentation »

 		Module code »

 Source code for txpostgres.txpostgres

-*- coding: utf-8 -*-
Copyright (c) 2010-2012, Jan Urbanski.
See LICENSE for details.
"""
txpostgres is a library for accessing a PostgreSQL_ database from the Twisted_
framework. It builds upon asynchronous features of the Psycopg_ database
library, which in turn exposes the asynchronous features of libpq_, the
PostgreSQL C library.

It requires a version of Psycopg that includes support for `asynchronous
connections`_ (versions 2.2.0 and later) and a reasonably recent Twisted (it
has been tested with Twisted 10.2 onward). Alternatively, psycopg2cffi_ or
psycopg2-ctypes_ can be used in lieu of Psycopg.

txpostgres tries to present an interface that will be familiar to users of both
Twisted and Psycopg. It features a :class:`~txpostgres.txpostgres.Cursor`
wrapper class that mimics the interface of a Psycopg :psycopg:`cursor
<cursor.html#cursor>` but returns :d:`Deferred` objects. It also provides a
:class:`~txpostgres.txpostgres.Connection` class that is meant to be a drop-in
replacement for Twisted's :tm:`adbapi.Connection
<enterprise.adbapi.Connection>` with some small differences regarding
connection establishing.

The main advantage of txpostgres over Twisted's built-in database support is
non-blocking connection building and complete lack of thread usage.

The library is distributed under the MIT License, see the LICENSE file for
details. You can contact the author, Jan Urbański, at wulczer@wulczer.org. Feel
free to download the source_, file bugs in the `issue tracker`_ and consult the
documentation_

.. _PostgreSQL: http://www.postgresql.org/
.. _Twisted: http://twistedmatrix.com/
.. _Psycopg: http://initd.org/psycopg/
.. _Python: http://www.python.org/
.. _libpq: http://www.postgresql.org/docs/current/static/libpq-async.html
.. _`asynchronous connections`:
 http://initd.org/psycopg/docs/advanced.html#async-support
.. _psycopg2cffi: https://github.com/chtd/psycopg2cffi
.. _psycopg2-ctypes: http://pypi.python.org/pypi/psycopg2ct
.. _source: https://github.com/wulczer/txpostgres
.. _issue tracker: https://github.com/wulczer/txpostgres/issues
.. _documentation: http://txpostgres.readthedocs.org/
"""
from __future__ import absolute_import

from zope.interface.declarations import implementer

from twisted.internet import interfaces, main, defer, task
from twisted.python import failure, log

from txpostgres.psycopg2_impl import psycopg2

try:
 psycopg2.extensions.POLL_OK
except AttributeError:
 import warnings
 warnings.warn(RuntimeWarning(
 "psycopg2 does not have async support. "
 "You need at least version 2.2.0 of psycopg2 "
 "to use txpostgres."))

__all__ = ['Connection', 'Cursor', 'ConnectionPool', '_PollingMixin',
 'AlreadyConnected', 'RollbackFailed',
 'UnexpectedPollResult', 'AlreadyPolling']

[docs]class UnexpectedPollResult(Exception):
 """
 Polling returned an unexpected result.
 """

[docs]class AlreadyPolling(Exception):
 """
 The previous poll cycle has not been finished yet.

 This probably indicates an issue in txpostgres, rather than in user code.
 """

class _CancelInProgress(Exception):
 """
 A query cancellation is in progress.
 """

@implementer(interfaces.IReadWriteDescriptor)
[docs]class _PollingMixin(object):
 """
 An object that wraps something pollable. It can take care of waiting for
 the wrapped pollable to reach the OK state and adapts the pollable's
 interface to :tm:`interfaces.IReadWriteDescriptor
 <internet.interfaces.IReadWriteDescriptor>`. It will forward all attribute
 access that is has not been wrapped to the underlying pollable. Useful as a
 mixin for classes that wrap a psycopg2 pollable object.

 :var reactor: The reactor that the class will use to wait for the wrapped
 pollable to reach the OK state.
 :vartype reactor: an :tm:`IReactorFDSet
 <internet.interfaces.IReactorFDSet>` provider

 :var prefix: Prefix used during log formatting to indicate context.
 :vartype prefix: :class:`str`
 """
 reactor = None
 prefix = "pollable"
 _pollingD = None

[docs] def pollable(self):
 """
 Return the pollable object. Subclasses should override this.

 :return: A psycopg2 pollable.
 """
 raise NotImplementedError()

[docs] def poll(self):
 """
 Start polling the wrapped pollable.

 :return: A :d:`Deferred` that will fire with an instance of this class
 when the pollable reaches the OK state.
 """
 # this should never be called while the previous Deferred is still
 # active, as it would clobber its reference
 if self._pollingD:
 return defer.fail(AlreadyPolling())

 ret = self._pollingD = defer.Deferred(self._cancel)
 # transform a psycopg2 QueryCanceledError into CancelledError
 self._pollingD.addErrback(self._handleCancellation)

 self.continuePolling()

 return ret

[docs] def continuePolling(self, swallowErrors=False):
 """
 Move forward in the poll cycle. This will call psycopg2's
 :psycopg:`poll() <connection.html#connection.poll>` on the wrapped
 pollable and either wait for more I/O or callback or errback the
 :d:`Deferred` returned earlier if the polling cycle has been completed.

 :param swallowErrors: Should errors with no one to report them to be
 ignored.
 :type swallowErrors: bool

 :raise: :exc:`~txpostgres.txpostgres.UnexpectedPollResult` when
 :meth:`poll` returns a result from outside of the
 :psycopg:`expected list <extensions.html#poll-constants>`.
 """
 # This method often gets called from the reactor's doRead/doWrite
 # handlers. Don't callback or errback the polling Deferred here, as
 # arbitrary user code can be run by that and we don't want to deal with
 # reentrancy issues if this user code tries running queries. The
 # polling Deferred might also be simply not present, if we got called
 # from a doRead after receiving a NOTIFY event.

 try:
 state = self.pollable().poll()
 except:
 if self._pollingD:
 d, self._pollingD = self._pollingD, None
 self.reactor.callLater(0, d.errback, failure.Failure())
 elif not swallowErrors:
 # no one to report the error to
 raise
 else:
 if state == psycopg2.extensions.POLL_OK:
 if self._pollingD:
 d, self._pollingD = self._pollingD, None
 self.reactor.callLater(0, d.callback, self)
 elif state == psycopg2.extensions.POLL_WRITE:
 self.reactor.addWriter(self)
 elif state == psycopg2.extensions.POLL_READ:
 self.reactor.addReader(self)
 else:
 if self._pollingD:
 d, self._pollingD = self._pollingD, None
 self.reactor.callLater(
 0, d.errback, UnexpectedPollResult())
 elif not swallowErrors:
 # no one to report the error to
 raise UnexpectedPollResult()

 def doRead(self):
 self.reactor.removeReader(self)
 if not self.pollable().closed:
 self.continuePolling()

 def doWrite(self):
 self.reactor.removeWriter(self)
 if not self.pollable().closed:
 self.continuePolling()

 def logPrefix(self):
 return self.prefix

 def fileno(self):
 # this should never get called after the pollable has been
 # disconnected, but Twisted versions affected by bug #4539 might cause
 # it to happen, in which case we should return -1
 if self.pollable().closed:
 return -1

 return self.pollable().fileno()

 def connectionLost(self, reason):
 # Do not errback self._pollingD here if the connection is still open!
 # We need to keep on polling until it reports an error, which will
 # errback self._pollingD with the correct failure. If we errback here,
 # we won't finish the polling cycle, which would leave psycopg2 in a
 # state where it thinks there's still an async query underway.
 #
 # If the connection got lost right after the first poll(), the Deferred
 # returned from it will never fire, leaving the caller hanging forever,
 # unless we push the connection state forward here. OTOH, if the
 # connection is already closed, there's no pollable to poll, so if
 # self._pollingD is still present, the only option is to errback it to
 # prevent its waiters from hanging (you can't poll() a closed psycopg2
 # connection)
 if not self.pollable().closed:
 # we're pushing the polling cycle to report pending failures, so if
 # there's no one to report them to, swallow them
 self.continuePolling(swallowErrors=True)
 elif self._pollingD:
 d, self._pollingD = self._pollingD, None
 d.errback(reason)

 def _cancel(self, d):
 try:
 self.pollable().cancel()
 except AttributeError:
 # the pollable has no cancellation support, ignore
 pass
 # prevent Twisted from errbacking the deferred being cancelled, because
 # the PostgreSQL protocol requires finishing the entire polling process
 # before reusing the connection
 raise _CancelInProgress()

 def _handleCancellation(self, f):
 f.trap(psycopg2.extensions.QueryCanceledError)
 return failure.Failure(defer.CancelledError())

 # Hack required to work with the Gtk2 reactor in Twisted <=11.0, which
 # tries to access the "disconnected" property on the IReadWriteDescriptor
 # it polls. To avoid attribute errors, forward that access to the "closed"
 # property of the underlying connection.
 def disconnected(self):
 return self.pollable().closed
 disconnected = property(disconnected)

 # forward all other access to the underlying connection
 def __getattr__(self, name):
 return getattr(self.pollable(), name)

[docs]class Cursor(_PollingMixin):
 """
 A wrapper for a psycopg2 asynchronous cursor.

 The wrapper will forward almost everything to the wrapped cursor, so the
 usual DB-API interface can be used, but it will return :d:`Deferred`
 objects that will fire with the DB-API results.

 Remember that the PostgreSQL protocol does not support concurrent
 asynchronous queries execution, so you need to take care not to execute a
 query while another is still being processed.

 In most cases you should just use the
 :class:`~txpostgres.txpostgres.Connection` methods that will handle the
 locking necessary to prevent concurrent query execution.
 """

 def __init__(self, cursor, connection):
 self.reactor = connection.reactor
 self.prefix = "cursor"

 self._connection = connection
 self._cursor = cursor

 def pollable(self):
 return self._connection.pollable()

[docs] def execute(self, query, params=None):
 """
 A regular DB-API execute, but returns a :d:`Deferred`.

 The caller must be careful not to call this method twice on cursors
 from the same connection without waiting for the previous execution to
 complete.

 :return: A :d:`Deferred` that will fire with the results of the
 DB-API execute.
 """
 return self._doit('execute', query, params)

[docs] def callproc(self, procname, params=None):
 """
 A regular DB-API callproc, but returns a :d:`Deferred`.

 The caller must be careful not to call this method twice on cursors
 from the same connection without waiting for the previous execution to
 complete.

 :return: A :d:`Deferred` that will fire with the results of the
 DB-API callproc.
 """
 return self._doit('callproc', procname, params)

 def _doit(self, name, *args, **kwargs):
 try:
 getattr(self._cursor, name)(*args, **kwargs)
 except:
 return defer.fail()

 # tell the connection that a cursor is starting its poll cycle
 self._connection.cursorRunning(self)

 def finishedAndPassthrough(ret):
 # tell the connection that the poll cycle has finished
 self._connection.cursorFinished(self)
 return ret

 d = self.poll()
 return d.addBoth(finishedAndPassthrough)

[docs] def close(self):
 """
 Close the cursor.

 Once closed, the cursor cannot be used again.

 :returns: :class:`None`
 """
 return self._cursor.close()

 def __getattr__(self, name):
 # the pollable is the connection, but the wrapped object is the cursor
 return getattr(self._cursor, name)

[docs]class AlreadyConnected(Exception):
 """
 The database connection is already open.
 """

[docs]class RollbackFailed(Exception):
 """
 Rolling back the transaction failed, the connection might be in an unusable
 state.

 :var connection: The connection that failed to roll back its transaction.
 :vartype connection: :class:`~txpostgres.txpostgres.Connection`

 :var originalFailure: The failure that caused the connection to try to
 roll back the transaction.
 :vartype originalFailure: a Twisted :tm:`Failure <python.failure.Failure>`
 """

 def __init__(self, connection, originalFailure):
 self.connection = connection
 self.originalFailure = originalFailure

 def __str__(self):
 return "<RollbackFailed, original error: %s>" % self.originalFailure

[docs]class Connection(_PollingMixin):
 """
 A wrapper for a psycopg2 asynchronous connection.

 The wrapper forwards almost everything to the wrapped connection, but
 provides additional methods for compatibility with :tm:`adbapi.Connection
 <enterprise.adbapi.Connection>`.

 :param reactor: A Twisted reactor or :class:`None`, which means the current
 reactor

 :param cooperator: A Twisted :tm:`Cooperator <internet.task.Cooperator>` to
 process :pg:`NOTIFY <notify>` events or :class:`None`, which means
 using :tm:`task.cooperate <internet.task.cooperate>`

 :var connectionFactory: The factory used to produce connections, defaults
 to :psycopg:`psycopg2.connect <module.html#psycopg2.connect>`
 :vartype connectionFactory: any callable

 :var cursorFactory: The factory used to produce cursors, defaults to
 :class:`~txpostgres.txpostgres.Cursor`
 :vartype cursorFactory: a callable accepting two positional arguments, a
 :psycopg:`psycopg2.cursor <cursor.html#cursor>` and a
 :class:`~txpostgres.txpostgres.Connection`
 """

 connectionFactory = staticmethod(psycopg2.connect)
 cursorFactory = Cursor

 def __init__(self, reactor=None, cooperator=None, detector=None):
 if not reactor:
 from twisted.internet import reactor
 if not cooperator:
 # the task module provides cooperate()
 cooperator = task

 self.reactor = reactor
 self.cooperator = cooperator
 self.detector = detector
 self.prefix = "connection"

 # this lock will be used to prevent concurrent query execution
 self.lock = defer.DeferredLock()
 self._connection = None
 # a set of cursors that should be notified about a disconnection
 self._cursors = set()
 # observers for NOTIFY events
 self._notifyObservers = set()

 def pollable(self):
 return self._connection

[docs] def connect(self, *args, **kwargs):
 """
 Connect to the database.

 Any arguments will be passed to :attr:`connectionFactory`. Use them to
 pass database names, usernames, passwords, etc.

 :return: A :d:`Deferred` that will fire when the connection is open.

 :raise: :exc:`~txpostgres.txpostgres.AlreadyConnected` when the
 connection has already been opened.
 """
 if self.detector:
 self.detector.setReconnectable(self, *args, **kwargs)

 if self._connection and not self._connection.closed:
 return defer.fail(AlreadyConnected())

 kwargs['async'] = True
 try:
 self._connection = self.connectionFactory(*args, **kwargs)
 except:
 return defer.fail()

 def startReadingAndPassthrough(ret):
 self.reactor.addReader(self)
 return ret

 # The connection is always a reader in the reactor, to receive NOTIFY
 # events immediately when they're available.
 d = self.poll()
 return d.addCallback(startReadingAndPassthrough)

[docs] def close(self):
 """
 Close the connection and disconnect from the database.

 :return: :class:`None`
 """
 # We'll be closing the underlying socket so stop watching it.
 self.reactor.removeReader(self)
 self.reactor.removeWriter(self)

 # make it safe to call Connection.close() multiple times, psycopg2
 # treats this as an error but we don't
 if not self._connection.closed:
 self._connection.close()

 # The above closed the connection socket from C code. Normally we would
 # get connectionLost called on all readers and writers of that socket,
 # but not if we're using the epoll reactor. According to the epoll(2)
 # man page, closing a file descriptor causes it to be removed from all
 # epoll sets automatically. In that case, the reactor might not have
 # the chance to notice that the connection has been closed. To cover
 # that, call connectionLost explicitly on the Connection and all
 # outstanding Cursors. It's OK if connectionLost ends up being called
 # twice, as the second call will not have any effects.

 for cursor in set(self._cursors):
 cursor.connectionLost(failure.Failure(main.CONNECTION_DONE))

 self.connectionLost(failure.Failure(main.CONNECTION_DONE))

[docs] def cursor(self):
 """
 Create an asynchronous cursor using :attr:`cursorFactory`.
 """
 return self.cursorFactory(self._connection.cursor(), self)

[docs] def runQuery(self, *args, **kwargs):
 """
 Execute an SQL query and return the result.

 An asynchronous cursor will be created and its
 :meth:`~txpostgres.txpostgres.Cursor.execute` method will be invoked
 with the provided arguments. After the query completes the results will
 be fetched and the returned :d:`Deferred` will fire with the result.

 The connection is always in autocommit mode, so the query will be run
 in a one-off transaction. In case of errors a :tm:`Failure
 <python.failure.Failure>` will be returned.

 It is safe to call this method multiple times without waiting for the
 first query to complete.

 :return: A :d:`Deferred` that will fire with the return value of the
 cursor's :meth:`fetchall` method.
 """
 return self._doit(self._runQuery, *args, **kwargs)

 def _runQuery(self, *args, **kwargs):
 c = self.cursor()
 d = c.execute(*args, **kwargs)
 return d.addCallback(lambda c: c.fetchall())

[docs] def runOperation(self, *args, **kwargs):
 """
 Execute an SQL query and discard the result.

 Identical to :meth:`~txpostgres.txpostgres.Connection.runQuery`, but
 the result won't be fetched and instead :class:`None` will be
 returned. It is intended for statements that do not normally return
 values, like INSERT or DELETE.

 It is safe to call this method multiple times without waiting for the
 first query to complete.

 :return: A :d:`Deferred` that will fire :class:`None`.
 """
 return self._doit(self._runOperation, *args, **kwargs)

 def _runOperation(self, *args, **kwargs):
 c = self.cursor()
 d = c.execute(*args, **kwargs)
 return d.addCallback(lambda _: None)

[docs] def runInteraction(self, interaction, *args, **kwargs):
 """
 Run commands in a transaction and return the result.

 :obj:`interaction` should be a callable that will be passed a
 :class:`~txpostgres.txpostgres.Cursor` object. Before calling
 :obj:`interaction` a new transaction will be started, so the callable
 can assume to be running all its commands in a transaction. If
 :obj:`interaction` returns a :d:`Deferred` processing will wait for it
 to fire before proceeding. You should not close the provided
 :class:`~txpostgres.txpostgres.Cursor`.

 After :obj:`interaction` finishes work the transaction will be
 automatically committed. If it raises an exception or returns a
 :tm:`Failure <python.failure.Failure>` the connection will be rolled
 back instead.

 If committing the transaction fails it will be rolled back instead and
 the failure obtained trying to commit will be returned.

 If rolling back the transaction fails the failure obtained from the
 rollback attempt will be logged and a
 :exc:`~txpostgres.txpostgres.RollbackFailed` failure will be
 returned. The returned failure will contain references to the original
 failure that caused the transaction to be rolled back and to the
 :class:`~txpostgres.txpostgres.Connection` in which that happened, so
 the user can take a decision whether she still wants to be using it or
 just close it, because an open transaction might have been left open in
 the database.

 It is safe to call this method multiple times without waiting for the
 first query to complete.

 :param interaction: A callable whose first argument is a
 :class:`~txpostgres.txpostgres.Cursor`.
 :type interaction: any callable

 :return: A :d:`Deferred` that will fire with the return value of
 :obj:`interaction`.
 """
 return self._doit(self._runInteraction, interaction, *args, **kwargs)

 def _runInteraction(self, interaction, *args, **kwargs):
 c = self.cursor()
 d = c.execute("begin")
 d.addCallback(interaction, *args, **kwargs)

 def commitAndPassthrough(ret, cursor):
 e = cursor.execute("commit")
 return e.addCallback(lambda _: ret)

 def rollbackAndPassthrough(f, cursor):
 # maybeDeferred in case cursor.execute raises a synchronous
 # exception
 e = defer.maybeDeferred(cursor.execute, "rollback")

 def justPanic(rf):
 log.err(rf)
 return defer.fail(RollbackFailed(self, f))

 # if rollback failed panic
 e.addErrback(justPanic)
 # otherwise reraise the original failure
 return e.addCallback(lambda _: f)

 d.addCallback(commitAndPassthrough, c)
 d.addErrback(rollbackAndPassthrough, c)

 return d

 def _doit(self, method, *args, **kwargs):
 if self.detector:
 args = (method,) + args
 method = self.detector.callChecking

 return self.lock.run(method, *args, **kwargs)

[docs] def cancel(self, d):
 """
 Cancel the current operation. The cancellation does not happen
 immediately, because the PostgreSQL protocol requires that the
 application waits for confirmation after the query has been cancelled.
 Be careful when cancelling an interaction, because if the interaction
 includes sending multiple queries to the database server, you can't
 really be sure which one are you cancelling.

 :param d: a :d:`Deferred` returned by one of
 :class:`~txpostgres.txpostgres.Connection` methods.
 """
 try:
 d.cancel()
 except _CancelInProgress:
 pass

[docs] def cursorRunning(self, cursor):
 """
 Called automatically when a :class:`~txpostgres.txpostgres.Cursor`
 created by this :class:`~txpostgres.txpostgres.Connection` starts
 polling after executing a query. User code should never have to call
 this method.
 """
 # The cursor will now proceed to poll the psycopg2 connection, so stop
 # polling it ourselves until it's done. Failure to do so would result
 # in the connection "stealing" the POLL_OK result that appears after
 # the query is completed and the Deferred returned from the cursor's
 # poll() will never fire.
 self.reactor.removeReader(self)
 self._cursors.add(cursor)

[docs] def cursorFinished(self, cursor):
 """
 Called automatically when a :class:`~txpostgres.txpostgres.Cursor`
 created by this :class:`~txpostgres.txpostgres.Connection` is done with
 polling after executing a query. User code should never have to call
 this method.
 """
 self._cursors.remove(cursor)
 # The cursor is done polling, resume watching the connection for NOTIFY
 # events. Be careful to check the connection state, because it might
 # have been closed while the cursor was polling and adding ourselves as
 # a reader to a closed connection would be an error.
 if not self._connection.closed:
 self.reactor.addReader(self)
 # While cursor was running, some notifies could have been
 # delivered, so check for them.
 self.checkForNotifies()

 def doRead(self):
 # call superclass to handle the pending read event on the socket
 _PollingMixin.doRead(self)

 # check for NOTIFY events
 self.checkForNotifies()

 # continue watching for NOTIFY events, but be careful to check the
 # connection state in case one of the notify handler function caused a
 # disconnection
 if not self._connection.closed:
 self.reactor.addReader(self)

 def connectionLost(self, reason):
 _PollingMixin.connectionLost(self, reason)

 if self.detector:
 self.detector.checkForDeadConnection(reason)

[docs] def checkForNotifies(self):
 """
 Check if :pg:`NOTIFY <notify>` events have been received and if so,
 dispatch them to the registered observers, using the :tm:`Cooperator
 <internet.task.Cooperator>` provided in the constructor. This is done
 automatically, user code should never need to call this method.
 """
 # avoid creating a CooperativeTask in the common case of no notifies
 if self._connection.notifies:
 self.cooperator.cooperate(self._checkForNotifies())

 def _checkForNotifies(self):
 notifies = self._connection.notifies[:]
 del self._connection.notifies[:]
 for notify in notifies:
 # don't iterate over self._notifyObservers directly because the
 # observer function might call removeNotifyObserver, thus modifying
 # the set while it's being iterated
 for observer in self.getNotifyObservers():
 # this method is run from inside the global Cooperator, so
 # there's no one to report errors to -- just log them; use
 # maybeDeferred in case the observer returns a failing Deferred
 # that would stop the cooperator from processing remaining
 # observers
 yield defer.maybeDeferred(observer, notify).addErrback(log.err)

[docs] def addNotifyObserver(self, observer):
 """
 Add an observer function that will get called whenever a :pg:`NOTIFY
 <notify>` event is delivered to this connection. Any number of
 observers can be added to a connection. Adding an observer that's
 already been added is ignored.

 Observer functions are processed using the :tm:`Cooperator
 <internet.task.Cooperator>` provided in the constructor to avoid
 blocking the reactor thread when processing large numbers of events. If
 an observer returns a :d:`Deferred`, processing waits until it fires or
 errbacks.

 There are no guarantees as to the order in which observer functions are
 called when :pg:`NOTIFY <notify>` events are delivered. Exceptions in
 observers are logged and discarded.

 :param observer: A callable whose first argument is a
 :psycopg:`psycopg2.extensions.Notify
 <extensions.html#psycopg2.extensions.Notify>`.
 :type observer: any callable
 """
 self._notifyObservers.add(observer)

[docs] def removeNotifyObserver(self, observer):
 """
 Remove a previously added observer function. Removing an observer
 that's never been added will be ignored.

 :param observer: A callable that should no longer be called on
 :pg:`NOTIFY <notify>` events.
 :type observer: any callable
 """
 self._notifyObservers.discard(observer)

[docs] def getNotifyObservers(self):
 """
 Get the currently registered notify observers.

 :return: A set of callables that will get called on :pg:`NOTIFY
 <notify>` events.
 :rtype: :class:`set`
 """
 return set(self._notifyObservers)

[docs]class ConnectionPool(object):
 """
 A poor man's pool of :class:`~txpostgres.txpostgres.Connection` instances.

 :var min: The amount of connections that will be open when
 :meth:`~ConnectionPool.start` is called. The pool never opens or closes
 connections on its own after starting. Defaults to 3.
 :vartype min: int

 :var connectionFactory: The factory used to produce connections, defaults
 to :class:`~txpostgres.txpostgres.Connection`.
 :vartype connectionFactory: any callable

 :var reactor: The reactor passed to :attr:`.connectionFactory`.
 :var cooperator: The cooperator passed to :attr:`.connectionFactory`.
 """

 min = 3
 connectionFactory = Connection
 reactor = None
 cooperator = None

[docs] def __init__(self, _ignored, *connargs, **connkw):
 """
 Create a new connection pool.

 Any positional or keyword arguments other than the first one and a
 :obj:`min` keyword argument are passed to :attr:`connectionFactory`
 when connecting. Use these arguments to pass database names, usernames,
 passwords, etc.

 :param _ignored: Ignored, for :tm:`adbapi.ConnectionPool
 <enterprise.adbapi.ConnectionPool>` compatibility.
 :type _ignored: any object
 """
 if not self.reactor:
 from twisted.internet import reactor
 self.reactor = reactor
 # for adbapi compatibility, min can be passed in kwargs
 if 'min' in connkw:
 self.min = connkw.pop('min')
 self.connargs = connargs
 self.connkw = connkw
 self.connections = set(
 [self.connectionFactory(self.reactor, self.cooperator)
 for _ in range(self.min)])

 # to avoid checking out more connections than there are pooled in total
 self._semaphore = defer.DeferredSemaphore(self.min)

[docs] def start(self):
 """
 Start the connection pool.

 This will create as many connections as the pool's :attr:`min` variable
 says.

 :return: A :d:`Deferred` that fires when all connection have succeeded.
 """
 # use DeferredList here, as gatherResults only got a consumeErrors
 # keyword argument in Twisted 11.1.0
 d = defer.DeferredList([c.connect(*self.connargs, **self.connkw)
 for c in self.connections],
 fireOnOneErrback=True, consumeErrors=True)
 return d.addCallback(lambda _: self)

[docs] def close(self):
 """
 Stop the pool.

 Disconnects all connections.

 :returns: :class:`None`
 """
 for c in self.connections:
 c.close()

[docs] def remove(self, connection):
 """
 Remove a connection from the pool.

 Provided to be able to remove broken connections from the pool. The
 caller should make sure the removed connection does not have queries
 pending.

 :param connection: The connection to be removed.
 :type connection: an object produced by the pool's
 :attr:`connectionFactory`
 """
 if not self.connections:
 raise ValueError("Connection still in use")
 self.connections.remove(connection)
 self._semaphore.limit -= 1
 self._semaphore.acquire() # bleargh...

[docs] def add(self, connection):
 """
 Add a connection to the pool.

 Provided to be able to extend the pool with new connections.

 :param connection: The connection to be added.
 :type connection: an object compatible with those produced
 by the pool's :attr:`connectionFactory`
 """
 self.connections.add(connection)
 self._semaphore.limit += 1
 self._semaphore.release() # uuuugh...

 def _putBackAndPassthrough(self, result, connection):
 self.connections.add(connection)
 return result

[docs] def runQuery(self, *args, **kwargs):
 """
 Execute an SQL query using a pooled connection and return the result.

 One of the pooled connections will be chosen, its
 :meth:`~txpostgres.txpostgres.Connection.runQuery` method will be
 called and the resulting :d:`Deferred` will be returned.

 :return: A :d:`Deferred` obtained by a pooled connection's
 :meth:`~txpostgres.txpostgres.Connection.runQuery`
 """
 return self._semaphore.run(self._runQuery, *args, **kwargs)

 def _runQuery(self, *args, **kwargs):
 c = self.connections.pop()
 d = c.runQuery(*args, **kwargs)
 return d.addBoth(self._putBackAndPassthrough, c)

[docs] def runOperation(self, *args, **kwargs):
 """
 Execute an SQL query using a pooled connection and discard the result.

 One of the pooled connections will be chosen, its
 :meth:`~txpostgres.txpostgres.Connection.runOperation` method will be
 called and the resulting :d:`Deferred` will be returned.

 :return: A :d:`Deferred` obtained by a pooled connection's
 :meth:`~txpostgres.txpostgres.Connection.runOperation`
 """
 return self._semaphore.run(self._runOperation, *args, **kwargs)

 def _runOperation(self, *args, **kwargs):
 c = self.connections.pop()
 d = c.runOperation(*args, **kwargs)
 return d.addBoth(self._putBackAndPassthrough, c)

[docs] def runInteraction(self, interaction, *args, **kwargs):
 """
 Run commands in a transaction using a pooled connection and return the
 result.

 One of the pooled connections will be chosen, its
 :meth:`~txpostgres.txpostgres.Connection.runInteraction` method will be
 called and the resulting :d:`Deferred` will be returned.

 :param interaction: A callable that will be passed to
 :meth:`Connection.runInteraction
 <txpostgres.Connection.runInteraction>`
 :type interaction: any callable

 :return: A :d:`Deferred` obtained by a pooled connection's
 :meth:`Connection.runInteraction
 <txpostgres.Connection.runInteraction>`
 """
 return self._semaphore.run(
 self._runInteraction, interaction, *args, **kwargs)

 def _runInteraction(self, interaction, *args, **kwargs):
 c = self.connections.pop()
 d = c.runInteraction(interaction, *args, **kwargs)
 return d.addBoth(self._putBackAndPassthrough, c)

 © Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

_modules/txpostgres/reconnection.html

 Navigation

 		
 index

 		
 modules |

 		txpostgres 1.6.0 documentation »

 		Module code »

 Source code for txpostgres.reconnection

"""
Reconnection support for txpostgres.
"""
from __future__ import absolute_import

from twisted.internet import defer
from twisted.python import log

from txpostgres import retrying
from txpostgres.psycopg2_impl import psycopg2
from txpostgres.txpostgres import RollbackFailed

[docs]class ConnectionDead(Exception):
 """
 The connection is dead.
 """

[docs]def defaultDeathChecker(f):
 """
 Checker function suitable for use with
 :class:`.DeadConnectionDetector`.
 """
 return f.check(psycopg2.InterfaceError, psycopg2.OperationalError,
 RollbackFailed)

[docs]def defaultReconnectionIterator():
 """
 A function returning sane defaults for a reconnection iterator, for use
 with :class:`.DeadConnectionDetector`.

 The defaults have maximum reconnection delay capped at 10 seconds and no
 limit on the number of retries.
 """
 return retrying.simpleBackoffIterator(
 initialDelay=1.0, maxDelay=10.0, factor=1.7, maxRetries=0, now=True)

[docs]class DeadConnectionDetector(object):
 """
 A class implementing reconnection strategy. When the connection is
 discovered to be dead, it will start the reconnection process.

 The object being reconnected should proxy all operations through the
 detector's :meth:`.callChecking` which will automatically fail them if the
 connection is currently dead. This is done to prevent sending requests to a
 resource that's not currently available.

 When an instance of :class:`~txpostgres.txpostgres.Connection` is passed a
 :class:`.DeadConnectionDetector` it automatically starts using it to
 provide reconnection.

 Another way of using this class is manually calling
 :meth:`.checkForDeadConnection` passing it a :tm:`Failure
 <python.failure.Failure>` instance to trigger reconnection. This is useful
 to handle initial connection errors, for example::

 conn = txpostgres.Connection(detector=DeadConnectionDetector())
 d = conn.connect('dbname=test')
 d.addErrback(conn.detector.checkForDeadConnection)

 :var reconnectable: An object to be reconnected. It should provide a
 `connect` and a `close` method.
 :vartype reconnectable: :class:`object`

 :var connectionIsDead: If the connection is currently believed to be dead.
 :vartype connectionIsDead: :class:`bool`
 """
 reconnectable = None
 connectionIsDead = None

 def __init__(self, deathChecker=None,
 reconnectionIterator=None, reactor=None):
 """
 Create a new detector.

 :param deathChecker: A one-argument callable that will be called with a
 failure instance and should return True if reconnection should be
 triggered. If :class:`None` then :func:`.defaultDeathChecker` will
 be used.
 :type deathChecker: callable

 :param reconnectionIterator: A zero-argument callable that should
 return a iterator yielding reconnection delay periods. If
 :class:`None` then :func:`.defaultReconnectionIterator` will be
 used.
 :type reconnectionIterator: callable

 :param reactor: A Twisted reactor or :class:`None`, which means
 the current reactor.
 """
 self.deathChecker = deathChecker or defaultDeathChecker
 self.reconnectionIterator = (reconnectionIterator or
 defaultReconnectionIterator)

 if not reactor:
 from twisted.internet import reactor

 self.reactor = reactor
 self.connectionIsDead = False
 self._recoveryHandlers = set()

[docs] def setReconnectable(self, reconnectable, *connargs, **connkw):
 """
 Register a reconnectable with the detector. Needs to be called before
 the detector will be used. The remaining arguments will be passed to
 the reconnectable's `connect` method on each reconnection.

 :param reconnectable: An object to be reconnected. It should provide a
 `connect` and a `close` method.
 :type reconnectable: :class:`object`
 """
 self.reconnectable = reconnectable
 self._connargs = connargs
 self._connkw = connkw

[docs] def callChecking(self, method, *args, **kwargs):
 """
 Call a method if the connection is still alive.
 """
 # the connection is already dead and a reconnect is underway
 if self.connectionIsDead:
 return defer.fail(ConnectionDead())

 # call the method and check if the connection died
 d = defer.maybeDeferred(method, *args, **kwargs)
 return d.addErrback(self.checkForDeadConnection)

[docs] def checkForDeadConnection(self, f):
 """
 Get passed a :tm:`Failure <python.failure.Failure>` instance and
 determine if it means that the connection is dead. If so, start
 reconnecting.
 """
 # if the error does not indicate that the connection is dead, just
 # return the failure
 if not self.deathChecker(f):
 return f

 # if we already know that the connection is dead, we just need to wait
 if self.connectionIsDead:
 return f

 # we detected that the connection died, start the reconnection process
 self.connectionIsDead = True
 self.startReconnecting(f)

 # return the original failure, we never want to swallow errors
 return f

[docs] def startReconnecting(self, f):
 """
 Called when the connection is detected to be dead.
 """
 # set up a retrying reconnecting call and start it
 rc = retrying.RetryingCall(self.reconnect)
 rc.reactor = self.reactor

 d = rc.start(self.reconnectionIterator())
 d.addCallback(lambda _: self.connectionRecovered())
 # the reconnection should never fail (it doesn't with the default
 # iterator), but buggy recovery handlers and custom iterators might
 # cause that, so just log the error and swallow it
 d.addErrback(log.err)

[docs] def reconnect(self):
 """
 Called on each attempt of reconnection.
 """
 # if the connection is down even closing it might cause error, but
 # then they should be safe to ignore (probably it's already closed)
 try:
 self.reconnectable.close()
 except:
 pass
 # reuse the stored connection arguments
 return self.reconnectable.connect(
 *self._connargs, **self._connkw)

[docs] def connectionRecovered(self):
 """
 Called when the connection has recovered.
 """
 self.connectionIsDead = False

 dl = []
 for handler in self.getRecoveryHandlers():
 d = defer.maybeDeferred(handler)
 d.addErrback(log.err)
 dl.append(d)

 return defer.gatherResults(dl)

[docs] def addRecoveryHandler(self, handler):
 """
 Add a handler function that will get called whenever the connection is
 recovered. Any number of handlers can be added. Adding a handler that's
 already been added is ignored.

 Recovery handlers are ran in parallel. If any of them return a
 :d:`Deferred`, recovery will wait until it fires.

 There are no guarantees as to the order in which handler functions are
 called. Exceptions in handlers are logged and discarded.

 :param handler: A zero-argument callable.
 """
 self._recoveryHandlers.add(handler)

[docs] def removeRecoveryHandler(self, handler):
 """
 Remove a previously added recovery handler. Removing a handler that's
 never been added will be ignored.

 :param handler: A callable that should no longer be called when the
 connection recovers.
 """
 self._recoveryHandlers.discard(handler)

[docs] def getRecoveryHandlers(self):
 """
 Get the currently registered recovery handlers.

 :return: A set of callables that will get called on recovery.
 :rtype: :class:`set`
 """
 return set(self._recoveryHandlers)

 © Copyright 2010-2012, Jan Urbański.
 Created using Sphinx 1.3.4.

