

Tweepy Documentation

Contents:

	Getting started
	Introduction

	Hello Tweepy

	API

	Models

	Authentication Tutorial
	Introduction

	OAuth Authentication

	Code Snippets
	Introduction

	OAuth

	Pagination

	FollowAll

	Handling the rate limit using cursors

	Cursor Tutorial
	Introduction

	API Reference

	tweepy.api — Twitter API wrapper
	Timeline methods

	Status methods

	User methods

	Direct Message Methods

	Friendship Methods

	Account Methods

	Favorite Methods

	Block Methods

	Spam Reporting Methods

	Saved Searches Methods

	Help Methods

	List Methods

	Trends Methods

	Geo Methods

	tweepy.error — Exceptions

	Streaming With Tweepy
	Summary

	Step 1: Creating a StreamListener

	Step 2: Creating a Stream

	Step 3: Starting a Stream

	A Few More Pointers

Indices and tables

	Index

	Search Page

Getting started

Introduction

If you are new to Tweepy, this is the place to begin. The goal of this
tutorial is to get you set-up and rolling with Tweepy. We won’t go
into too much detail here, just some important basics.

Hello Tweepy

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

public_tweets = api.home_timeline()
for tweet in public_tweets:
 print tweet.text

This example will download your home timeline tweets and print each
one of their texts to the console. Twitter requires all requests to
use OAuth for authentication.
The Authentication Tutorial goes into more details about authentication.

API

The API class provides access to the entire twitter RESTful API
methods. Each method can accept various parameters and return
responses. For more information about these methods please refer to
API Reference.

Models

When we invoke an API method most of the time returned back to us will
be a Tweepy model class instance. This will contain the data returned
from Twitter which we can then use inside our application. For example
the following code returns to us an User model:

Get the User object for twitter...
user = api.get_user('twitter')

Models contain the data and some helper methods which we can then
use:

print user.screen_name
print user.followers_count
for friend in user.friends():
 print friend.screen_name

For more information about models please see ModelsReference.

Authentication Tutorial

Introduction

Tweepy supports oauth authentication. Authentication is
handled by the tweepy.AuthHandler class.

OAuth Authentication

Tweepy tries to make OAuth as painless as possible for you. To begin
the process we need to register our client application with
Twitter. Create a new application and once you
are done you should have your consumer token and secret. Keep these
two handy, you’ll need them.

The next step is creating an OAuthHandler instance. Into this we pass
our consumer token and secret which was given to us in the previous
paragraph:

auth = tweepy.OAuthHandler(consumer_token, consumer_secret)

If you have a web application and are using a callback URL that needs
to be supplied dynamically you would pass it in like so:

auth = tweepy.OAuthHandler(consumer_token, consumer_secret,
callback_url)

If the callback URL will not be changing, it is best to just configure
it statically on twitter.com when setting up your application’s
profile.

Unlike basic auth, we must do the OAuth “dance” before we can start
using the API. We must complete the following steps:

	Get a request token from twitter

	Redirect user to twitter.com to authorize our application

	If using a callback, twitter will redirect the user to
us. Otherwise the user must manually supply us with the verifier
code.

	Exchange the authorized request token for an access token.

So let’s fetch our request token to begin the dance:

try:
 redirect_url = auth.get_authorization_url()
except tweepy.TweepError:
 print 'Error! Failed to get request token.'

This call requests the token from twitter and returns to us the
authorization URL where the user must be redirect to authorize us. Now
if this is a desktop application we can just hang onto our
OAuthHandler instance until the user returns back. In a web
application we will be using a callback request. So we must store the
request token in the session since we will need it inside the callback
URL request. Here is a pseudo example of storing the request token in
a session:

session.set('request_token', auth.request_token)

So now we can redirect the user to the URL returned to us earlier from
the get_authorization_url() method.

If this is a desktop application (or any application not using
callbacks) we must query the user for the “verifier code” that twitter
will supply them after they authorize us. Inside a web application
this verifier value will be supplied in the callback request from
twitter as a GET query parameter in the URL.

Example using callback (web app)
verifier = request.GET.get('oauth_verifier')

Example w/o callback (desktop)
verifier = raw_input('Verifier:')

The final step is exchanging the request token for an access
token. The access token is the “key” for opening the Twitter API
treasure box. To fetch this token we do the following:

Let's say this is a web app, so we need to re-build the auth handler
first...
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
token = session.get('request_token')
session.delete('request_token')
auth.request_token = token

try:
 auth.get_access_token(verifier)
except tweepy.TweepError:
 print 'Error! Failed to get access token.'

It is a good idea to save the access token for later use. You do not
need to re-fetch it each time. Twitter currently does not expire the
tokens, so the only time it would ever go invalid is if the user
revokes our application access. To store the access token depends on
your application. Basically you need to store 2 string values: key and
secret:

auth.access_token
auth.access_token_secret

You can throw these into a database, file, or where ever you store
your data. To re-build an OAuthHandler from this stored access token
you would do this:

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(key, secret)

So now that we have our OAuthHandler equipped with an access token, we
are ready for business:

api = tweepy.API(auth)
api.update_status('tweepy + oauth!')

Code Snippets

Introduction

Here are some code snippets to help you out with using Tweepy. Feel
free to contribute your own snippets or improve the ones here!

OAuth

auth = tweepy.OAuthHandler("consumer_key", "consumer_secret")

Redirect user to Twitter to authorize
redirect_user(auth.get_authorization_url())

Get access token
auth.get_access_token("verifier_value")

Construct the API instance
api = tweepy.API(auth)

Pagination

Iterate through all of the authenticated user's friends
for friend in tweepy.Cursor(api.friends).items():
 # Process the friend here
 process_friend(friend)

Iterate through the first 200 statuses in the friends timeline
for status in tweepy.Cursor(api.friends_timeline).items(200):
 # Process the status here
 process_status(status)

FollowAll

This snippet will follow every follower of the authenticated user.

for follower in tweepy.Cursor(api.followers).items():
 follower.follow()

Handling the rate limit using cursors

Since cursors raise RateLimitErrors in their next() method,
handling them can be done by wrapping the cursor in an iterator.

Running this snippet will print all users you follow that themselves follow
less than 300 people total - to exclude obvious spambots, for example - and
will wait for 15 minutes each time it hits the rate limit.

In this example, the handler is time.sleep(15 * 60),
but you can of course handle it in any way you want.

def limit_handled(cursor):
 while True:
 try:
 yield cursor.next()
 except tweepy.RateLimitError:
 time.sleep(15 * 60)

for follower in limit_handled(tweepy.Cursor(api.followers).items()):
 if follower.friends_count < 300:
 print follower.screen_name

Cursor Tutorial

This tutorial describes details on pagination with Cursor objects.

Introduction

We use pagination a lot in Twitter API development. Iterating through
timelines, user lists, direct messages, etc. In order to perform
pagination we must supply a page/cursor parameter with each of our
requests. The problem here is this requires a lot of boiler plate code
just to manage the pagination loop. To help make pagination easier and
require less code Tweepy has the Cursor object.

Old way vs Cursor way

First let’s demonstrate iterating the statues in the authenticated
user’s timeline. Here is how we would do it the “old way” before
Cursor object was introduced:

page = 1
while True:
 statuses = api.user_timeline(page=page)
 if statuses:
 for status in statuses:
 # process status here
 process_status(status)
 else:
 # All done
 break
 page += 1 # next page

As you can see we must manage the “page” parameter manually in our
pagination loop. Now here is the version of the code using Cursor
object:

for status in tweepy.Cursor(api.user_timeline).items():
 # process status here
 process_status(status)

Now that looks much better! Cursor handles all the pagination work for
us behind the scene so our code can now focus entirely on processing
the results.

Passing parameters into the API method

What if you need to pass in parameters to the API method?

api.user_timeline(id="twitter")

Since we pass Cursor the callable, we can not pass the parameters
directly into the method. Instead we pass the parameters into the
Cursor constructor method:

tweepy.Cursor(api.user_timeline, id="twitter")

Now Cursor will pass the parameter into the method for us when ever it
makes a request.

Items or Pages

So far we have just demonstrated pagination iterating per an
item. What if instead you want to process per a page of results? You
would use the pages() method:

for page in tweepy.Cursor(api.user_timeline).pages():
 # page is a list of statuses
 process_page(page)

Limits

What if you only want n items or pages returned? You pass into the items() or pages() methods the limit you want to impose.

Only iterate through the first 200 statuses
for status in tweepy.Cursor(api.user_timeline).items(200):
 process_status(status)

Only iterate through the first 3 pages
for page in tweepy.Cursor(api.user_timeline).pages(3):
 process_page(page)

API Reference

This page contains some basic documentation for the Tweepy module.

tweepy.api — Twitter API wrapper

	
class API([auth_handler=None][, host='api.twitter.com'][, search_host='search.twitter.com'][, cache=None][, api_root='/1'][, search_root=''][, retry_count=0][, retry_delay=0][, retry_errors=None][, timeout=60][, parser=ModelParser][, compression=False][, wait_on_rate_limit=False][, wait_on_rate_limit_notify=False][, proxy=None])

	This class provides a wrapper for the API as provided by
Twitter. The functions provided in this class are listed below.

	Parameters:	
	auth_handler – authentication handler to be used

	host – general API host

	search_host – search API host

	cache – cache backend to use

	api_root – general API path root

	search_root – search API path root

	retry_count – default number of retries to attempt when error occurs

	retry_delay – number of seconds to wait between retries

	retry_errors – which HTTP status codes to retry

	timeout – The maximum amount of time to wait for a response from Twitter

	parser – The object to use for parsing the response from Twitter

	compression – Whether or not to use GZIP compression for requests

	wait_on_rate_limit – Whether or not to automatically wait for rate limits to replenish

	wait_on_rate_limit_notify – Whether or not to print a notification when Tweepy is waiting for rate limits to replenish

	proxy – The full url to an HTTPS proxy to use for connecting to Twitter.

Timeline methods

	
API.home_timeline([since_id][, max_id][, count][, page])

	Returns the 20 most recent statuses, including retweets, posted by the
authenticating user and that user’s friends. This is the equivalent of
/timeline/home on the Web.

	Parameters:	
	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	count – Specifies the number of statuses to retrieve.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of Status objects

	
API.statuses_lookup(id[, include_entities][, trim_user][, map])

	Returns full Tweet objects for up to 100 tweets per request, specified by the
id parameter.

	Parameters:	
	id – A list of Tweet IDs to lookup, up to 100

	include_entities – A boolean indicating whether or not to include [entities](https://dev.twitter.com/docs/entities) in the returned tweets. Defaults to False.

	trim_user – A boolean indicating if user IDs should be provided, instead of full user information. Defaults to False.

	map – A boolean indicating whether or not to include tweets that cannot be shown, but with a value of None. Defaults to False.

	Return type:	list of Status objects

	
API.user_timeline([id/user_id/screen_name][, since_id][, max_id][, count][, page])

	Returns the 20 most recent statuses posted from the authenticating
user or the user specified. It’s also possible to request another user’s timeline via the id
parameter.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	count – Specifies the number of statuses to retrieve.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of Status objects

	
API.retweets_of_me([since_id][, max_id][, count][, page])

	Returns the 20 most recent tweets of the authenticated user that have
been retweeted by others.

	Parameters:	
	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	count – Specifies the number of statuses to retrieve.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of Status objects

Status methods

	
API.get_status(id)

	Returns a single status specified by the ID parameter.

	Parameters:	id – The numerical ID of the status.

	Return type:	Status object

	
API.update_status(status[, in_reply_to_status_id][, lat][, long][, source][, place_id])

	Update the authenticated user’s status. Statuses that are duplicates
or too long will be silently ignored.

	Parameters:	
	status – The text of your status update.

	in_reply_to_status_id – The ID of an existing status that the update is in reply to.

	lat – The location’s latitude that this tweet refers to.

	long – The location’s longitude that this tweet refers to.

	source – Source of the update. Only supported by Identi.ca. Twitter ignores this parameter.

	place_id – Twitter ID of location which is listed in the Tweet if geolocation is enabled for the user.

	Return type:	Status object

	
API.update_with_media(filename[, status][, in_reply_to_status_id][, lat][, long][, source][, place_id][, file])

	Update the authenticated user’s status. Statuses that are duplicates
or too long will be silently ignored.

	Parameters:	
	filename – The filename of the image to upload. This will automatically be opened unless file is specified

	status – The text of your status update.

	in_reply_to_status_id – The ID of an existing status that the update is in reply to.

	lat – The location’s latitude that this tweet refers to.

	long – The location’s longitude that this tweet refers to.

	source – Source of the update. Only supported by Identi.ca. Twitter ignores this parameter.

	place_id – Twitter ID of location which is listed in the Tweet if geolocation is enabled for the user.

	file – A file object, which will be used instead of opening filename. filename is still required, for MIME type detection and to use as a form field in the POST data

	Return type:	Status object

	
API.destroy_status(id)

	Destroy the status specified by the id parameter. The authenticated
user must be the author of the status to destroy.

	Parameters:	id – The numerical ID of the status.

	Return type:	Status object

	
API.retweet(id)

	Retweets a tweet. Requires the id of the tweet you are retweeting.

	Parameters:	id – The numerical ID of the status.

	Return type:	Status object

	
API.retweets(id[, count])

	Returns up to 100 of the first retweets of the given tweet.

	Parameters:	
	id – The numerical ID of the status.

	count – Specifies the number of retweets to retrieve.

	Return type:	list of Status objects

User methods

	
API.get_user(id/user_id/screen_name)

	Returns information about the specified user.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	Return type:	User object

	
API.me()

	Returns the authenticated user’s information.

	Return type:	User object

	
API.followers([id/screen_name/user_id][, cursor])

	Returns an user’s followers ordered in which they were added 100 at a
time. If no user is specified by id/screen name, it defaults to the
authenticated user.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of User objects

	
API.search_users(q[, per_page][, page])

	Run a search for users similar to Find People button on Twitter.com;
the same results returned by people search on Twitter.com will be
returned by using this API (about being listed in the People
Search). It is only possible to retrieve the first 1000 matches from
this API.

	Parameters:	
	q – The query to run against people search.

	per_page – Specifies the number of statuses to retrieve. May not be greater than 20.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of User objects

Direct Message Methods

	
API.direct_messages([since_id][, max_id][, count][, page][, full_text])

	Returns direct messages sent to the authenticating user.

	Parameters:	
	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	count – Specifies the number of statuses to retrieve.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	full_text – A boolean indicating whether or not the full text of a message should be returned. If False the message text returned will be truncated to 140 chars. Defaults to False.

	Return type:	list of DirectMessage objects

	
API.get_direct_message([id][, full_text])

	Returns a specific direct message.

	Parameters:	
	id – |id|

	full_text – A boolean indicating whether or not the full text of a message should be returned. If False the message text returned will be truncated to 140 chars. Defaults to False.

	Return type:	DirectMessage object

	
API.sent_direct_messages([since_id][, max_id][, count][, page][, full_text])

	Returns direct messages sent by the authenticating user.

	Parameters:	
	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	count – Specifies the number of statuses to retrieve.

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	full_text – A boolean indicating whether or not the full text of a message should be returned. If False the message text returned will be truncated to 140 chars. Defaults to False.

	Return type:	list of DirectMessage objects

	
API.send_direct_message(user/screen_name/user_id, text)

	Sends a new direct message to the specified user from the
authenticating user.

	Parameters:	
	user – The ID or screen name of the recipient user.

	screen_name – screen name of the recipient user

	user_id – user id of the recipient user

	Return type:	DirectMessage object

	
API.destroy_direct_message(id)

	Destroy a direct message. Authenticating user must be the recipient of
the direct message.

	Parameters:	id – The ID of the direct message to destroy.

	Return type:	DirectMessage object

Friendship Methods

	
API.create_friendship(id/screen_name/user_id[, follow])

	Create a new friendship with the specified user (aka follow).

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	follow – Enable notifications for the target user in addition to becoming friends.

	Return type:	User object

	
API.destroy_friendship(id/screen_name/user_id)

	Destroy a friendship with the specified user (aka unfollow).

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	Return type:	User object

	
API.exists_friendship(user_a, user_b)

	Checks if a friendship exists between two users. Will return True if
user_a follows user_b, otherwise False.

	Parameters:	
	user_a – The ID or screen_name of the subject user.

	user_b – The ID or screen_name of the user to test for following.

	Return type:	True/False

	
API.show_friendship(source_id/source_screen_name, target_id/target_screen_name)

	Returns detailed information about the relationship between two users.

	Parameters:	
	source_id – The user_id of the subject user.

	source_screen_name – The screen_name of the subject user.

	target_id – The user_id of the target user.

	target_screen_name – The screen_name of the target user.

	Return type:	Friendship object

	
API.friends_ids(id/screen_name/user_id[, cursor])

	Returns an array containing the IDs of users being followed by the
specified user.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of Integers

	
API.followers_ids(id/screen_name/user_id)

	Returns an array containing the IDs of users following the specified
user.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of Integers

Account Methods

	
API.verify_credentials()

	Verify the supplied user credentials are valid.

	Return type:	User object if credentials are valid, otherwise False

	
API.rate_limit_status()

	Returns the remaining number of API requests available to the
requesting user before the API limit is reached for the current
hour. Calls to rate_limit_status do not count against the rate
limit. If authentication credentials are provided, the rate limit
status for the authenticating user is returned. Otherwise, the rate
limit status for the requester’s IP address is returned.

	Return type:	JSON object

	
API.set_delivery_device(device)

	Sets which device Twitter delivers updates to for the authenticating
user. Sending “none” as the device parameter will disable SMS updates.

	Parameters:	device – Must be one of: sms, none

	Return type:	User object

	
API.update_profile_colors([profile_background_color][, profile_text_color][, profile_link_color][, profile_sidebar_fill_color][, profile_sidebar_border_color])

	Sets one or more hex values that control the color scheme of the
authenticating user’s profile page on twitter.com.

	Parameters:	
	profile_background_color –

	profile_text_color –

	profile_link_color –

	profile_sidebar_fill_color –

	profile_sidebar_border_color –

	Return type:	User object

	
API.update_profile_image(filename)

	Update the authenticating user’s profile image. Valid formats: GIF,
JPG, or PNG

	Parameters:	filename – local path to image file to upload. Not a remote URL!

	Return type:	User object

	
API.update_profile_background_image(filename)

	Update authenticating user’s background image. Valid formats: GIF,
JPG, or PNG

	Parameters:	filename – local path to image file to upload. Not a remote URL!

	Return type:	User object

	
API.update_profile([name][, url][, location][, description])

	Sets values that users are able to set under the “Account” tab of
their settings page.

	Parameters:	
	name – Maximum of 20 characters

	url – Maximum of 100 characters. Will be prepended with “http://” if not present

	location – Maximum of 30 characters

	description – Maximum of 160 characters

	Return type:	User object

Favorite Methods

	
API.favorites([id][, page])

	Returns the favorite statuses for the authenticating user or user
specified by the ID parameter.

	Parameters:	
	id – The ID or screen name of the user to request favorites

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of Status objects

	
API.create_favorite(id)

	Favorites the status specified in the ID parameter as the
authenticating user.

	Parameters:	id – The numerical ID of the status.

	Return type:	Status object

	
API.destroy_favorite(id)

	Un-favorites the status specified in the ID parameter as the
authenticating user.

	Parameters:	id – The numerical ID of the status.

	Return type:	Status object

Block Methods

	
API.create_block(id/screen_name/user_id)

	Blocks the user specified in the ID parameter as the authenticating
user. Destroys a friendship to the blocked user if it exists.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	Return type:	User object

	
API.destroy_block(id/screen_name/user_id)

	Un-blocks the user specified in the ID parameter for the
authenticating user.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	Return type:	User object

	
API.blocks([page])

	Returns an array of user objects that the authenticating user is
blocking.

	Parameters:	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of User objects

	
API.blocks_ids()

	Returns an array of numeric user ids the authenticating user is
blocking.

	Return type:	list of Integers

Spam Reporting Methods

	
API.report_spam([id/user_id/screen_name])

	The user specified in the id is blocked by the authenticated user and
reported as a spammer.

	Parameters:	
	id – Specifies the ID or screen name of the user.

	screen_name – Specifies the screen name of the user. Helpful for disambiguating when a valid screen name is also a user ID.

	user_id – Specifies the ID of the user. Helpful for disambiguating when a valid user ID is also a valid screen name.

	Return type:	User object

Saved Searches Methods

	
API.saved_searches()

	Returns the authenticated user’s saved search queries.

	Return type:	list of SavedSearch objects

	
API.get_saved_search(id)

	Retrieve the data for a saved search owned by the authenticating user
specified by the given id.

	Parameters:	id – The id of the saved search to be retrieved.

	Return type:	SavedSearch object

	
API.create_saved_search(query)

	Creates a saved search for the authenticated user.

	Parameters:	query – The query of the search the user would like to save.

	Return type:	SavedSearch object

	
API.destroy_saved_search(id)

	Destroys a saved search for the authenticated user. The search
specified by id must be owned by the authenticating user.

	Parameters:	id – The id of the saved search to be deleted.

	Return type:	SavedSearch object

Help Methods

	
API.search(q[, lang][, locale][, rpp][, page][, since_id][, geocode][, show_user])

	Returns tweets that match a specified query.

	Parameters:	
	q – the search query string

	lang – Restricts tweets to the given language, given by an ISO 639-1 code.

	locale – Specify the language of the query you are sending. This is intended for language-specific clients and the default should work in the majority of cases.

	rpp – The number of tweets to return per page, up to a max of 100.

	page – The page number (starting at 1) to return, up to a max of roughly 1500 results (based on rpp * page.

	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	geocode – Returns tweets by users located within a given radius of the given latitude/longitude. The location is preferentially taking from the Geotagging API, but will fall back to their Twitter profile. The parameter value is specified by “latitide,longitude,radius”, where radius units must be specified as either “mi” (miles) or “km” (kilometers). Note that you cannot use the near operator via the API to geocode arbitrary locations; however you can use this geocode parameter to search near geocodes directly.

	show_user – When true, prepends “<user>:” to the beginning of the tweet. This is useful for readers that do not display Atom’s author field. The default is false.

	Return type:	list of SearchResult objects

List Methods

	
API.create_list(name[, mode][, description])

	Creates a new list for the authenticated user. Accounts are limited to
20 lists.

	Parameters:	
	name – The name of the new list.

	mode – Whether your list is public or private. Values can be public or private. Lists are public by default if no mode is specified.

	description – The description of the list you are creating.

	Return type:	List object

	
API.destroy_list(slug)

	Deletes the specified list. Must be owned by the authenticated user.

	Parameters:	slug – the slug name or numerical ID of the list

	Return type:	List object

	
API.update_list(slug[, name][, mode][, description])

	Updates the specified list. Note: this current throws a 500. Twitter
is looking into the issue.

	Parameters:	
	slug – the slug name or numerical ID of the list

	name – What you’d like to change the lists name to.

	mode – Whether your list is public or private. Values can be public or private. Lists are public by default if no mode is specified.

	description – What you’d like to change the list description to.

	Return type:	List object

	
API.lists([cursor])

	List the lists of the specified user. Private lists will be included
if the authenticated users is the same as the user who’s lists are
being returned.

	Parameters:	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of List objects

	
API.lists_memberships([cursor])

	List the lists the specified user has been added to.

	Parameters:	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of List objects

	
API.lists_subscriptions([cursor])

	List the lists the specified user follows.

	Parameters:	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of List objects

	
API.list_timeline(owner, slug[, since_id][, max_id][, per_page][, page])

	Show tweet timeline for members of the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	since_id – Returns only statuses with an ID greater than (that is, more recent than) the specified ID.

	max_id – Returns only statuses with an ID less than (that is, older than) or equal to the specified ID.

	per_page – Number of results per a page

	page – Specifies the page of results to retrieve. Note: there are pagination limits.

	Return type:	list of Status objects

	
API.get_list(owner, slug)

	Show the specified list. Private lists will only be shown if the
authenticated user owns the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	Return type:	List object

	
API.add_list_member(slug, id)

	Add a member to a list. The authenticated user must own the list to be
able to add members to it. Lists are limited to having 500 members.

	Parameters:	
	slug – the slug name or numerical ID of the list

	id – the ID of the user to add as a member

	Return type:	List object

	
API.remove_list_member(slug, id)

	Removes the specified member from the list. The authenticated user
must be the list’s owner to remove members from the list.

	Parameters:	
	slug – the slug name or numerical ID of the list

	id – the ID of the user to remove as a member

	Return type:	List object

	
API.list_members(owner, slug, cursor)

	Returns the members of the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of User objects

	
API.is_list_member(owner, slug, id)

	Check if a user is a member of the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	id – the ID of the user to check

	Return type:	User object if user is a member of list, otherwise False.

	
API.subscribe_list(owner, slug)

	Make the authenticated user follow the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	Return type:	List object

	
API.unsubscribe_list(owner, slug)

	Unsubscribes the authenticated user form the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	Return type:	List object

	
API.list_subscribers(owner, slug[, cursor])

	Returns the subscribers of the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	cursor – Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.

	Return type:	list of User objects

	
API.is_subscribed_list(owner, slug, id)

	Check if the specified user is a subscriber of the specified list.

	Parameters:	
	owner – the screen name of the owner of the list

	slug – the slug name or numerical ID of the list

	id – the ID of the user to check

	Return type:	User object if user is subscribed to the list, otherwise False.

Trends Methods

	
API.trends_available()

	Returns the locations that Twitter has trending topic information for. The response is an array of “locations” that encode the location’s WOEID (a Yahoo! Where On Earth ID) and some other human-readable information such as a canonical name and country the location belongs in.

	Return type:	JSON object

	
API.trends_place(id[, exclude])

	Returns the top 10 trending topics for a specific WOEID, if trending information is available for it.

The response is an array of “trend” objects that encode the name of the trending topic, the query parameter that can be used to search for the topic on Twitter Search, and the Twitter Search URL.

This information is cached for 5 minutes. Requesting more frequently than that will not return any more data, and will count against your rate limit usage.

	Parameters:	
	id – The Yahoo! Where On Earth ID of the location to return trending information for. Global information is available by using 1 as the WOEID.

	exclude – Setting this equal to hashtags will remove all hashtags from the trends list.

	Return type:	JSON object

	
API.trends_closest(lat, long)

	Returns the locations that Twitter has trending topic information for, closest to a specified location.

The response is an array of “locations” that encode the location’s WOEID and some other human-readable information such as a canonical name and country the location belongs in.

A WOEID is a Yahoo! Where On Earth ID.

	Parameters:	
	lat – If provided with a long parameter the available trend locations will be sorted by distance, nearest to furthest, to the co-ordinate pair. The valid ranges for longitude is -180.0 to +180.0 (West is negative, East is positive) inclusive.

	long – If provided with a lat parameter the available trend locations will be sorted by distance, nearest to furthest, to the co-ordinate pair. The valid ranges for longitude is -180.0 to +180.0 (West is negative, East is positive) inclusive.

	Return type:	JSON object

Geo Methods

	
API.reverse_geocode([lat][, long][, accuracy][, granularity][, max_results])

	Given a latitude and longitude, looks for places (cities and
neighbourhoods) whose IDs can be specified in a call to
update_status() to appear as the name of the location. This
call provides a detailed response about the location in question;
the nearby_places() function should be preferred for getting
a list of places nearby without great detail.

	Parameters:	
	lat – The location’s latitude.

	long – The location’s longitude.

	accuracy – Specify the “region” in which to search, such as a number (then this is a radius in meters, but it can also take a string that is suffixed with ft to specify feet). If this is not passed in, then it is assumed to be 0m

	granularity – Assumed to be `neighborhood’ by default; can also be `city’.

	max_results – A hint as to the maximum number of results to return. This is only a guideline, which may not be adhered to.

	
API.reverse_geocode([lat][, long][, ip][, accuracy][, granularity][, max_results])

	Given a latitude and longitude, looks for nearby places (cities and
neighbourhoods) whose IDs can be specified in a call to
update_status() to appear as the name of the location. This
call provides a detailed response about the location in question;
the nearby_places() function should be preferred for getting
a list of places nearby without great detail.

	Parameters:	
	lat – The location’s latitude.

	long – The location’s longitude.

	ip – The location’s IP address. Twitter will attempt to geolocate using the IP address.

	accuracy – Specify the “region” in which to search, such as a number (then this is a radius in meters, but it can also take a string that is suffixed with ft to specify feet). If this is not passed in, then it is assumed to be 0m

	granularity – Assumed to be `neighborhood’ by default; can also be `city’.

	max_results – A hint as to the maximum number of results to return. This is only a guideline, which may not be adhered to.

	
API.geo_id(id)

	Given id of a place, provide more details about that place.

	Parameters:	id – Valid Twitter ID of a location.

tweepy.error — Exceptions

The exceptions are available in the tweepy module directly,
which means tweepy.error itself does not need to be imported. For
example, tweepy.error.TweepError is available as tweepy.TweepError.

	
exception TweepError

	The main exception Tweepy uses. Is raised for a number of things.

When a TweepError is raised due to an error Twitter responded with,
the error code (as described in the API documentation [https://dev.twitter.com/overview/api/response-codes]) can be accessed
at TweepError.message[0]['code']. Note, however, that TweepErrors
also may be raised with other things as message (for example plain
error reason strings).

	
exception RateLimitError

	Is raised when an API method fails due to hitting Twitter’s rate
limit. Makes for easy handling of the rate limit specifically.

Inherits from TweepError, so except TweepError will
catch a RateLimitError too.

Streaming With Tweepy

Tweepy makes it easier to use the twitter streaming api by handling authentication,
connection, creating and destroying the session, reading incoming messages,
and partially routing messages.

This page aims to help you get started using Twitter streams with Tweepy
by offering a first walk through. Some features of Tweepy streaming are
not covered here. See streaming.py in the Tweepy source code.

API authorization is required to access Twitter streams.
Follow the Authentication Tutorial if you need help with authentication.

Summary

The Twitter streaming API is used to download twitter messages in real
time. It is useful for obtaining a high volume of tweets, or for
creating a live feed using a site stream or user stream.
See the Twitter Streaming API Documentation [https://dev.twitter.com/streaming/overview].

The streaming api is quite different from the REST api because the
REST api is used to pull data from twitter but the streaming api
pushes messages to a persistent session. This allows the streaming
api to download more data in real time than could be done using the
REST API.

In Tweepy, an instance of tweepy.Stream establishes a streaming
session and routes messages to StreamListener instance. The
on_data method of a stream listener receives all messages and
calls functions according to the message type. The default
StreamListener can classify most common twitter messages and
routes them to appropriately named methods, but these methods are
only stubs.

Therefore using the streaming api has three steps.

	Create a class inheriting from StreamListener

	Using that class create a Stream object

	Connect to the Twitter API using the Stream.

Step 1: Creating a StreamListener

This simple stream listener prints status text.
The on_data method of Tweepy’s StreamListener conveniently passes
data from statuses to the on_status method.
Create class MyStreamListener inheriting from StreamListener
and overriding on_status.:

import tweepy
#override tweepy.StreamListener to add logic to on_status
class MyStreamListener(tweepy.StreamListener):

 def on_status(self, status):
 print(status.text)

Step 2: Creating a Stream

We need an api to stream. See Authentication Tutorial to learn how to get an api object.
Once we have an api and a status listener we can create our stream object.:

myStreamListener = MyStreamListener()
myStream = tweepy.Stream(auth = api.auth, listener=myStreamListener())

Step 3: Starting a Stream

A number of twitter streams are available through Tweepy. Most cases
will use filter, the user_stream, or the sitestream.
For more information on the capabilities and limitations of the different
streams see Twitter Streaming API Documentation [https://dev.twitter.com/streaming/overview].

In this example we will use filter to stream all tweets containing
the word python. The track parameter is an array of search terms to stream.

myStream.filter(track=['python'])

A Few More Pointers

Async Streaming

Streams not terminate unless the connection is closed, blocking the thread.
Tweepy offers a convenient async parameter on filter so the stream will run on a new
thread. For example

myStream.filter(track=['python'], async=True)

Handling Errors

When using Twitter’s streaming API one must be careful of the dangers of
rate limiting. If clients exceed a limited number of attempts to connect to the streaming API
in a window of time, they will receive error 420. The amount of time a client has to wait after receiving error 420
will increase exponentially each time they make a failed attempt.

Tweepy’s Stream Listener usefully passes error messages to an on_error stub. We can use on_error to
catch 420 errors and disconnect our stream.

class MyStreamListener(tweepy.StreamListener):

 def on_error(self, status_code):
 if status_code == 420:
 #returning False in on_data disconnects the stream
 return False

For more information on error codes from the twitter api see Twitter Response Codes Documentation [https://dev.twitter.com/overview/api/response-codes].

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_list_member() (API method)

 	
 	API (built-in class)

B

 	
 	blocks() (API method)

 	
 	blocks_ids() (API method)

C

 	
 	create_block() (API method)

 	create_favorite() (API method)

 	
 	create_friendship() (API method)

 	create_list() (API method)

 	create_saved_search() (API method)

D

 	
 	destroy_block() (API method)

 	destroy_direct_message() (API method)

 	destroy_favorite() (API method)

 	destroy_friendship() (API method)

 	
 	destroy_list() (API method)

 	destroy_saved_search() (API method)

 	destroy_status() (API method)

 	direct_messages() (API method)

E

 	
 	exists_friendship() (API method)

F

 	
 	favorites() (API method)

 	followers() (API method)

 	
 	followers_ids() (API method)

 	friends_ids() (API method)

G

 	
 	geo_id() (API method)

 	get_direct_message() (API method)

 	get_list() (API method)

 	
 	get_saved_search() (API method)

 	get_status() (API method)

 	get_user() (API method)

H

 	
 	home_timeline() (API method)

I

 	
 	is_list_member() (API method)

 	
 	is_subscribed_list() (API method)

L

 	
 	list_members() (API method)

 	list_subscribers() (API method)

 	list_timeline() (API method)

 	
 	lists() (API method)

 	lists_memberships() (API method)

 	lists_subscriptions() (API method)

M

 	
 	me() (API method)

R

 	
 	rate_limit_status() (API method)

 	RateLimitError

 	remove_list_member() (API method)

 	report_spam() (API method)

 	
 	retweet() (API method)

 	retweets() (API method)

 	retweets_of_me() (API method)

 	reverse_geocode() (API method), [1]

S

 	
 	saved_searches() (API method)

 	search() (API method)

 	search_users() (API method)

 	send_direct_message() (API method)

 	
 	sent_direct_messages() (API method)

 	set_delivery_device() (API method)

 	show_friendship() (API method)

 	statuses_lookup() (API method)

 	subscribe_list() (API method)

T

 	
 	trends_available() (API method)

 	trends_closest() (API method)

 	
 	trends_place() (API method)

 	TweepError

U

 	
 	unsubscribe_list() (API method)

 	update_list() (API method)

 	update_profile() (API method)

 	update_profile_background_image() (API method)

 	
 	update_profile_colors() (API method)

 	update_profile_image() (API method)

 	update_status() (API method)

 	update_with_media() (API method)

 	user_timeline() (API method)

V

 	
 	verify_credentials() (API method)

Installation

Install from PyPI:

easy_install tweepy

Install from source:

git clone git://github.com/tweepy/tweepy.git
cd tweepy
python setup.py install

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Tweepy Documentation

 		Getting started

 		Introduction

 		Hello Tweepy

 		API

 		Models

 		Authentication Tutorial

 		Introduction

 		OAuth Authentication

 		Code Snippets

 		Introduction

 		OAuth

 		Pagination

 		FollowAll

 		Handling the rate limit using cursors

 		Cursor Tutorial

 		Introduction

 		Old way vs Cursor way

 		Passing parameters into the API method

 		Items or Pages

 		Limits

 		API Reference

 		tweepy.api — Twitter API wrapper

 		Timeline methods

 		Status methods

 		User methods

 		Direct Message Methods

 		Friendship Methods

 		Account Methods

 		Favorite Methods

 		Block Methods

 		Spam Reporting Methods

 		Saved Searches Methods

 		Help Methods

 		List Methods

 		Trends Methods

 		Geo Methods

 		tweepy.error — Exceptions

 		Streaming With Tweepy

 		Summary

 		Step 1: Creating a StreamListener

 		Step 2: Creating a Stream

 		Step 3: Starting a Stream

 		A Few More Pointers

 		Async Streaming

 		Handling Errors

_static/up-pressed.png

_static/down.png

_static/up.png

