

ToscaWidgets2 Documentation

ToscaWidgets is a HTML Widgets generation and management library.

It allows to create reusable widgets to show in web pages and
manages the dependencies of the widgets like Javascript and CSS
that those widgets might need to properly display and behave

class HelloWidget(twc.Widget):
 inline_engine_name = "kajiki"
 template = """
 <i>Hello ${w.name}</i>
 """

 name = twc.Param(description="Name of the greeted entity")

Widgets can then be displayed within your web pages
to create reusable components or forms:

>>> HelloWidget(name="World").display()
<i>Hello World</i>

Widgets have support for:

	Templating based on Kajiki, Mako, Genshi and Jinja2

	Resources, to bring in Javascript and CSS dependencies they need.

	Parameters, to configure their behaviour.

	Validation, to ensure proper data was provided and show validation errors to users.

	Hooks, to drive their behaviour at runtime.

ToscaWidgets2 also provides a tw2.forms package with ready to use
widgets to display Forms with input validation.

Content

	Getting Started
	Enabling ToscaWidgets

	Configuration Options

	Widgets
	Using Widgets
	Widget value

	Parameters

	Deferred Parameters

	Builtin Widgets

	Resources
	Builtin Resource Types

	Forms
	Form
	Form Buttons

	Dynamic Forms

	Validating Forms

	Form Layout
	Custom Layouts

	Complex Layouts

	Bultin Form Fields

	Validation
	Validators

	Custom Validators

	Internationalization

	Builtin Validators

	Javascript Integration
	Javascript on Display

	Javascript Callbacks

	Builtin Javascript Helpers

	Design
	Widget Overview
	Parameters

	Code Hooks

	Widget Hierarchy

	Template

	Non-template Output

	Resources

	Declarative Instantiation

	Widgets as Controllers

	Validation
	Using Validators

	Implementation

	General Considerations

	Changelog
	2.3.0

	2.2.9

	2.2.7

	2.2.6

	2.2.5

	2.2.4

	2.2.3

	2.2.2

	2.2.1

	2.2.0.8

	2.2.0.7

	2.2.0.6

	2.2.0.5

	2.2.0.4

	2.2.0.3

	2.2.0.2

	2.2.0.1

	2.2.0

	2.1.6

	2.1.5

	2.1.4

	2.1.3

Online Resources

ToscaWidgets, as it was originall born from TurboGears Widgets,
shares many online resources with TurboGears. If you have questions
on how to use TW2 feel free to ask them in TurboGears channel or Mailing List.

	Bug tracker: GitHub [https://github.com/toscawidgets/tw2.core/issues].

	Gitter Channel: TurboGears Channel [https://gitter.im/turbogears/Lobby]

	Mailing List: TurboGears Users [http://groups.google.com/group/turbogears]

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Enabling ToscaWidgets

ToscaWidgets is designed to work within a web request life cycle,
so some of its features rely on the a current request object
to be able to work a keep track of the state of widgets or
resources for the whole duration of the request.

For this reason, to start using ToscaWidgets you need to
wrap your WSGI application in the tw2.core.middleware.TwMiddleware,
which is also used to configure ToscaWidgets itself:

def application(environ, start_response):
 response_headers = [('Content-type', 'text/plain')]
 start_response("200 OK", response_headers)
 return [b"Hello World!"]

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application)

from wsgiref.simple_server import make_server
httpd = make_server('', 8000, application)
print("Serving on port 8000...")
httpd.serve_forever()

You can also provide all options available
to configure ToscaWidgets
(those listed in tw2.core.middleware.Config)
to TwMiddleware as keyword arguments to
change ToscaWidgets configuration:

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application, debug=False)

Note

Debug mode is enabled by default in ToscaWidgets,
so make sure you provide debug=False on production
to leverage templates caching and other speedups.

Now that the middleare is in place, you can easily
display any widget you want into your application:

from tw2.forms import SingleSelectField

def application(environ, start_response):
 widget = SingleSelectField(options=[1, 2, 3])
 output = widget.display()

 response_headers = [('Content-type', 'text/html')]
 start_response("200 OK", response_headers)
 return [b"<h1>Hello World!</h1>",
 b"<p>Pick one of the options</p>",
 output.encode('ascii')]

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application)

from wsgiref.simple_server import make_server
httpd = make_server('', 8000, application)
print("Serving on port 8000...")
httpd.serve_forever()

See Widgets and Forms to get started
creating widgets and forms.

	
class tw2.core.middleware.TwMiddleware(app, controllers=None, **config)

	ToscaWidgets middleware

	This performs three tasks:

	
	Clear request-local storage before and after each request. At the start
of a request, a reference to the middleware instance is stored in
request-local storage.

	Proxy resource requests to ResourcesApp

	Inject resources

Configuration Options

	
class tw2.core.middleware.Config(**kw)

	ToscaWidgets Configuration Set

	translator

	The translator function to use. (default: no-op)

	default_engine

	The main template engine in use by the application. Widgets with no
parent will display correctly inside this template engine. Other
engines may require passing displays_on to Widget.display().
(default:string)

	inject_resoures

	Whether to inject resource links in output pages. (default: True)

	inject_resources_location

	A location where the resources should be injected. (default: head)

	serve_resources

	Whether to serve static resources. (default: True)

	res_prefix

	The prefix under which static resources are served. This must start
and end with a slash. (default: /resources/)

	res_max_age

	The maximum time a cache can hold the resource. This is used to
generate a Cache-control header. (default: 3600)

	serve_controllers

	Whether to serve controller methods on widgets. (default: True)

	controller_prefix

	The prefix under which controllers are served. This must start
and end with a slash. (default: /controllers/)

	bufsize

	Buffer size used by static resource server. (default: 4096)

	params_as_vars

	Whether to present parameters as variables in widget templates. This
is the behaviour from ToscaWidgets 0.9. (default: False)

	debug

	Whether the app is running in development or production mode.
(default: True)

	validator_msgs

	A dictionary that maps validation message names to messages. This lets
you override validation messages on a global basis. (default: {})

	encoding

	The encoding to decode when performing validation (default: utf-8)

	auto_reload_templates

	Whether to automatically reload changed templates. Set this to False in
production for efficiency. If this is None, it takes the same value as
debug. (default: None)

	preferred_rendering_engines

	List of rendering engines in order of preference.
(default: [‘mako’,’genshi’,’jinja’,’kajiki’])

	strict_engine_selection

	If set to true, TW2 will only select rendering engines from within your
preferred_rendering_engines, otherwise, it will try the default list if
it does not find a template within your preferred list. (default: True)

	rendering_engine_lookup

	A dictionary of file extensions you expect to use for each type of
template engine. Default:

{
 'mako':['mak', 'mako'],
 'genshi':['genshi', 'html'],
 'jinja':['jinja', 'html'],
 'kajiki':['kajiki', 'html'],
}

	script_name

	A name to prepend to the url for all resource links (different from
res_prefix, as it may be shared across and entire wsgi app.
(default: ‘’)

Widgets

Widgets are small self-contained components that can be reused
across the same web page or across multiple pages.

A widget typically has a state (its value) a configuration (its params)
a template that describes what should be displayed, one ore more
resources (javascript or CSS) needed during display and might have
some logic that has to be executed every time the widget is displayed.

Using Widgets

A typical widget will look like:

class MyWidget(tw2.core.Widget):
 template = "mypackage.widgets.templates.mywidget"

Which will look for a template named mywidget.html
into the templates python package within the widgets
package of the mypackage application. The extension
expected for the file depends on the template engine used:

	mako: .mako

	kajiki: .kajiki

	jinja: .jinja

	genshi: .genshi

The template engine used to render the provided template
depends on the default_engine option provided when
configuring tw2.core.middleware.TwMiddleware.

In case you don’t want to save the template into a separate
file you can also set the inline_engine_name option
to one of the template engines and provide the template
as a string:

class HelloWidgetTemplate(tw2.core.Widget):
 inline_engine_name = "kajiki"
 template = """
 <i>Hello ${i}, </i>
 """

Displaying a widget is as simple as calling the Widget.display():

HelloWidgetTemplate.display()

Widget value

Each Widget has a special paramter, which is value. This parameter
contains the current state of the widget. Value will usually be
a single value or a dictionary containing multiple values
(in case of tw2.core.widgets.CompoundWidget).

You can use the value to drive what the widget should show once
displayed:

class HelloWidgetValue(tw2.core.Widget):
 inline_engine_name = "kajiki"
 template = """
 <i>Hello ${w.value}</i>
 """

>>> HelloWidgetValue.display(value='World')
Markup('<i>Hello World</i>')

tw2.core.CompoundWidget can contain multiple subwidgets
(children) and their value is typically a dict with values
for each one of the children:

class CompoundHello(tw2.core.CompoundWidget):
 inline_engine_name = "kajiki"
 template = """
 <div py:for="c in w.children">
 ${c.display()}
 </div>
 """

 name = HelloWidgetValue()
 greeter = tw2.core.Widget(inline_engine_name="kajiki",
 template="From ${w.value}")

>>> CompoundHello(value=dict(name="Mario", greeter="Luigi")).display()
Markup('<div>Hello Mario</div><div>From Luigi</div>')

Children of a compound widget (like Forms) can be accessed
both as a list iterating over w.children or by name using
w.children.childname.

Parameters

Widgets might require more information than just their value to display,
or might allow more complex kind of configurations. The options required
to configure the widget are provided through tw2.core.Param objects
that define which options each widget supports.

If you want your widget to be configurable, you can make available one or more
options to your Widget and allow any user to set them as they wish:

class HelloWidgetParam(tw2.core.Widget):
 inline_engine_name = "kajiki"
 template = """
 <i>Hello ${w.name}</i>
 """

 name = tw2.core.Param(description="Name of the greeted entity")

The parameters can be provided any time by changing configuration of
a widget:

>>> w = HelloWidgetParam(name="Peach")
>>> w.display()
Markup('<i>Hello Peach</i>')
>>> w2 = w(name="Toad")
>>> w2.display()
Markup('<i>Hello Toad</i>')

Or can be provided at display time itself:

>>> HelloWidgetParam.display(name="Peach")
Markup('<i>Hello Peach</i>')

Deferred Parameters

When a widget requires a parameter that is not available before
display time. That parameter can be set to a tw2.core.Deferred
object.

Deferred objects will accept any callable and before the widget is displayed
the callable will be executed to fetch the actual value for the widget:

>>> singleselect = SingleSelectField(options=tw2.core.Deferred(lambda: [1,2,3]))
>>> singleselect.options
<Deferred: <Deferred>>
>>> singleselect.display()
Markup('<select ><option value=""></option>\n <option value="1">1</option>\n <option value="2">2</option>\n <option value="3">3</option>\n</select>')

Deferred is typically used when loading data from the content of a database
to ensure that the content is the one available at the time the widget is
displayed and not the one that was available when the application started:

>>> userpicker = twf.SingleSelectField(
... options=twc.Deferred(lambda: [(u.user_id, u.display_name) for u in model.DBSession.query(model.User)])
...)
>>> userpicker.display()
Markup('<select ><option value=""></option>\n <option value="1">Example manager</option>\n <option value="2">Example editor</option>\n</select>')

Builtin Widgets

The tw2.core packages comes with the basic buildin blocks needed
to create your own custom widgets.

	
class tw2.core.widgets.Widget(**kw)

	Base class for all widgets.

	
classmethod req(**kw)

	Generate an instance of the widget.

Return the validated widget for this request if one exists.

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
classmethod get_link()

	Get the URL to the controller . This is called at run time, not startup
time, so we know the middleware if configured with the controller path.
Note: this function is a temporary measure, a cleaner API for this is
planned.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
iteritems()

	An iterator which will provide the params of the widget in
key, value pairs.

	
controller_path = <functools.partial object>

	

	
add_call = <functools.partial object>

	

	
display = <functools.partial object>

	

	
generate_output(displays_on)

	Generate the actual output text for this widget.

By default this renders the widget’s template. Subclasses can override
this method for purely programmatic output.

	displays_on

	The name of the template engine this widget is being displayed
inside.

Use it like this:

class MyWidget(LeafWidget):
 def generate_output(self, displays_on):
 return "{1}".format(self.attrs, self.text)

	
classmethod validate(params, state=None)

	Validate form input. This should always be called on a class. It
either returns the validated data, or raises a
ValidationError exception.

	
class tw2.core.widgets.LeafWidget(**kw)

	A widget that has no children; this is the most common kind, e.g. form
fields.

	
class tw2.core.widgets.CompoundWidget(**kw)

	A widget that has an arbitrary number of children, this is common for
layout components, such as tw2.forms.TableLayout.

	
classmethod post_define()

	Check children are valid; update them to have a link to the parent.

	
prepare()

	Propagate the value for this widget to the children, based on their id.

	
class tw2.core.widgets.RepeatingWidget(**kw)

	A widget that has a single child, which is repeated an arbitrary number
of times, such as tw2.forms.GridLayout.

	
classmethod post_define()

	Check child is valid; update with link to parent.

	
prepare()

	Propagate the value for this widget to the children, based on their
index.

	
class tw2.core.widgets.DisplayOnlyWidget(**kw)

	A widget that has a single child. The parent widget is only used for
display purposes; it does not affect value propagation or validation.
This is used by widgets like tw2.forms.FieldSet.

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.core.widgets.Page(**kw)

	An HTML page. This widget includes a request() method that serves
the page.

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
class tw2.core.Param(description=Default, default=Default, request_local=Default, attribute=Default, view_name=Default)

	A parameter for a widget.

	description

	A string to describe the parameter. When overriding a parameter
description, the string can include $$ to insert the previous
description.

	default

	The default value for the parameter. If no defalt is specified,
the parameter is a required parameter. This can also be specified
explicitly using tw.Required.

	request_local

	Can the parameter be overriden on a per-request basis? (default:
True)

	attribute

	Should the parameter be automatically included as an attribute?
(default: False)

	view_name

	The name used for the attribute. This is useful for attributes like
class which are reserved names in Python. If this is None, the name
is used. (default: None)

The class takes care to record which arguments have been explictly
specifed, even if to their default value. If a parameter from a base
class is updated in a subclass, arguments that have been explicitly
specified will override the base class.

	
class tw2.core.Deferred(fn)

	This class is used as a wrapper around a parameter value. It takes a
callable, which will be called every time the widget is displayed, with
the returned value giving the parameter value.

Resources

ToscaWidgets comes with resources management for widgets too.

Some widgets might be complex enough that they need external
resources to work properly. Typically those are CSS stylesheets
or Javascript functions.

The need for those can be specified in the Widget.resources
param, which is a list of resources the widget needs to work properly

The tw2.core.middleware.TwMiddleware takes care of serving
all the resources needed by a widget through a tw2.core.resources.ResourcesApp.
There is not need to setup such application manually, having a TwMiddleware
in place will provide support for resources too.

When a widget is being prepared for display, all resources that it requires
(as specified by tw2.core.Widget.resources)
are registered into the current request and while the response page output
goes through the middleware it will be edited to add the links (or content)
of those resources as specified by their location.

Note

If a resource was already injected into the page during current request
and another widget requires it, it won’t be injected twice. ToscaWidgets
is able to detect that it’s the same resource (thanks to the resource id)
and only inject that once.

To add resources to a widget simply specify them in tw2.core.Widget.resources:

class HelloWidgetClass(twc.Widget):
 inline_engine_name = "kajiki"
 template = """
 <i class="${w.css_class}">Hello ${w.name}</i>
 """

 name = twc.Param(description="Name of the greeted entity")
 css_class = twc.Param(description="Class used to display content", default="red")

 resources = [
 twc.CSSSource(src="""
 .red { color: red; }
 .green { color: green; }
 .blue { color: blue; }
 """)
]

Once the page where the widget is displayed is rendered, you will
see that it begins with:

<!DOCTYPE html>
<html>
<head><style type="text/css">
 .red { color: red; }
 .green { color: green; }
 .blue { color: blue; }
 </style>
<meta content="width=device-width, initial-scale=1.0" name="viewport">
<meta charset="utf-8">

Which contains the CSS resource you specified as a dependency of your widget.

In case you are using a solution to package your resources into bundles like
WebPack, WebAssets or similar, you might want to disable resources injection
using inject_resoures=False option provided to tw2.core.middleware.TwMiddleware
to avoid injecting resources that were already packed into your bundle.

Builtin Resource Types

	
class tw2.core.resources.ResourceBundle(**kw)

	Just a list of resources.

Use it as follows:

>>> jquery_ui = ResourceBundle(resources=[jquery_js, jquery_css])
>>> jquery_ui.inject()

	
class tw2.core.resources.Resource(**kw)

	A resource required by a widget being displayed.

location states where the resource should be injected
into the page. Can be any of head, headbottom,
bodytop or bodybottom or None.

	
class tw2.core.resources.Link(**kw)

	A link to a file.

The link parameter can be used to specify the explicit
link to a URL.

If omitted, the link will be built to serve filename
from modname as a resource coming from a python
distribution.

	
classmethod guess_modname()

	Try to guess my modname.

If I wasn’t supplied any modname, take a guess by stepping back up the
frame stack until I find something not in tw2.core

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
class tw2.core.resources.DirLink(**kw)

	A whole directory as a resource.

Unlike JSLink and CSSLink, this resource doesn’t inject
anything on the page.. but it does register all resources under the
marked directory to be served by the middleware.

This is useful if you have a css file that pulls in a number of other
static resources like icons and images.

	
class tw2.core.resources.JSLink(**kw)

	A JavaScript source file.

By default is injected in whatever default place
is specified by the middleware.

	
class tw2.core.resources.CSSLink(**kw)

	A CSS style sheet.

By default it’s injected at the top of the head node.

	
class tw2.core.resources.JSSource(**kw)

	Inline JavaScript source code.

By default is injected before the </body> is closed

	
class tw2.core.resources.CSSSource(**kw)

	Inline Cascading Style-Sheet code.

By default it’s injected at the top of the head node.

Forms

ToscaWidgets provides all the widgets related to
building HTML Forms in the tw2.forms package.

While tw2.core implements the foundation for
declaring any kind of widget, the tw2.forms
is specialised in widgets that are needed to
create HTML forms.

Form

A form is usually created by declaring a subclass
of a tw2.forms.Form. Within the
form a child attribute that specifies the Form Layout
(how the fields shoulb be arranged graphically)
through a subclass of tw2.forms.Layout and then
within child all the fields of the form can be declared:

import tw2.core as twc
import tw2.forms as twf

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField()
 director = twf.TextField(value='Default Director')
 genres = twf.SingleSelectField(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'

The form must also provide an action attribute
to specify where the form should be submitted.

Note

If you are going to use ToscaWidgets with TurboGears
you probably want the action to be a tg.lurl to
ensure that prefix of your application is retained.

Form Buttons

By default, each form comes with a submit button.

The submit button can be replaced by setting the
form submit attribute:

class NameForm(twf.Form):
 class child(twf.TableLayout):
 name = twf.TextField()

 action = '/save_name'
 submit = twf.SubmitButton(value="Save Name")

Multiple buttons can also be provided for the form
by setting the buttons attribute:

class NameForm(twf.Form):
 class child(twf.TableLayout):
 name = twf.TextField()

 action = '/save_name'
 buttons = [
 twf.SubmitButton(value="Save Name"),
 twf.ResetButton(),
 twf.Button(value="Say Hi", attrs=dict(onclick="alert('hi')"))
]

Dynamic Forms

Children can be added and removed dynamically from forms
using the Widget.post_define() and Widget.prepare()
methods.

For example to change children of a form based on an option,
Widget.post_define() can be used:

class GrowingMovieForm(twf.Form):
 class child(twf.TableLayout):
 @classmethod
 def post_define(cls):
 if not cls.parent:
 return

 children = []

 for count in range(cls.parent.num_contacts):
 class person_fieldset(twf.TableFieldSet):
 id = "person_%s" % count
 label = "Person #%s" % count
 name = twf.TextField(validator=twc.Validator(required=True))
 surname = twf.TextField()

 children.append(person_fieldset(parent=cls))

 cls.children = children

 action = '/save_contacts'
 num_contacts = twc.Param(default=1)

fivefieldsform = GrowingMovieForm(num_contacts=5)

Note

Use the same fivefieldsform object for both display and
validation. Trying to make a new GrowingMovieForm might not work
even though num_contacts is always set to 5.

This will not work btw if you need to take action at display time.
In such case Widget.prepare() is needed, for example to have
a text field that suggests the placeholder based on its original value:

class DynamicText(twf.Form):
 class child(twf.TableLayout):
 text = twf.TextField(placeholder="Put text here")

 action = "/save_movie"

 def prepare(self):
 super(DynamicText, self).prepare()

 if self.child.children.text.value:
 self.child.children.text.attrs = dict(
 self.child.children.text.attrs,
 placeholder="Put text here (was %s)" % self.child.children.text.value
)

Note

Widget.prepare() is usually involved when setting a state that
depends on the current request. For example current value of a field,
or something else that is known only in current request. The resulting
state of the widget is also only valid in current request, a different
request might have nothing in common. Keep this in mind when using
validation, as validation usually happens in a different request from
the one that displayed the widget.

	
class tw2.forms.widgets.Form(**kw)

	A form, with a submit button. It’s common to pass a
TableLayout or ListLayout widget as the child.

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
submit

	alias of tw2.core.params.SubmitButton_s_s

Validating Forms

When you submit a form, it will send its data to the endpoint
you specified through the action parameter.

Before using it, you probably want to make sure that the
data that was sent is correct and display back to the user
error messages when it is not.

This can be done through Validation and thanks to the
fact that Forms remember which form was just validated
in the current request.

For each field in the form it is possible to specify
a validator= parameter, which will be in charge of
validation for that field:

class ValidatedForm(twf.Form):
 class child(twf.TableLayout):
 number = twf.TextField(placeholder="a number (1, 2, 3, 4)",
 validator=twc.validation.IntValidator())
 required = twf.TextField(validator=twc.Required)

To validate the data submitted through this form you can use
the tw2.forms.widgets.Form.validate() method.

If the validation passes, the method will return the validated data:

>>> ValidatedForm.validate({'numer': 5, 'required': 'hello'})
{'numer': 5, 'required': 'hello'}

If the validation fails, it will raise a tw2.core.validation.ValidationError
exception:

Traceback (most recent call last):
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 106, in wrapper
 d = fn(self, *args, **kw)
 File "/home/amol/wrk/tw2.core/tw2/core/widgets.py", line 718, in _validate
 raise vd.ValidationError('childerror', exception_validator)
tw2.core.validation.ValidationError

Such error can be trapped to get back the validated widget,
the value that was being validated and the error message for
each of its children:

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget.child.value)
... for c in e.widget.child.children:
... print(c.compound_key, ':', c.error_msg)

{'numer': 'Hello', 'required': ''}
numer : Must be an integer
required : Enter a value

Also, trying to display back the form that was just validated, will
print out the error message for each field:

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget.display())

<form enctype="multipart/form-data" method="post">

 <table>
 <tr class="odd error" id="numer:container">
 <th><label for="numer">Numer</label></th>
 <td>
 <input id="numer" name="numer" placeholder="a number (1, 2, 3, 4)" type="text" value="Hello"/>
 Must be an integer
 </td>
 </tr><tr class="even required error" id="required:container">
 <th><label for="required">Required</label></th>
 <td>
 <input id="required" name="required" type="text" value=""/>
 Enter a value
 </td>
 </tr>
 </table>
 <input type="submit" value="Save"/>
</form>

For convenience, you can also recover the currently validated instance
of the form anywhere in the code. Even far away from the exception
that reported the validation error.

This can be helpful when you are isolating validation into a separate
Aspect of your application and then you need to recover the form instance
that includes the errors to display into your views.

To retrieve the currently validated widget, you can just use tw2.core.widget.Widget.req():

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget)
... print(ValidatedForm.req())

<__main__.ValidatedForm object at 0x7f9432e5e080>
<__main__.ValidatedForm object at 0x7f9432e5e080>

As you can see ValidatedForm.req() returns the same exact instance
that e.widget was. That’s because when Widget.req() is used
and there is a validated instance of that same exact widget in the current
request, ToscaWidgets will assume you are trying to access the widget
you just validated and will return that one instace of building a
new instance.

If you want a new instance, you can still do ValidatedForm().req()
instead of ValidatedForm.req():

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget)
... print(ValidatedForm().req())

<__main__.ValidatedForm object at 0x7f9432e5e080>
<tw2.core.params.ValidatedForm_d object at 0x7f9432420940>

Keep in mind that this only keeps memory of the last widget
that failed validation. So in case multiple widgets failed validation
in the same request, you must used tw2.core.validation.ValidationError.widget
to access each one of them.

Form Layout

A layout specifies how the fields of the form
should be arranged.

This can be specified by having Form.child
inherit from a specific layout class:

class NameForm(twf.Form):
 class child(twf.TableLayout):
 name = twf.TextField()

or:

class NameForm(twf.Form):
 class child(twf.ListLayout):
 name = twf.TextField()

Custom Layouts

A custom layout class can also be made to
show the children however you want:

class Bootstrap3Layout(twf.BaseLayout):
 inline_engine_name = "kajiki"
 template = """
<div py:attrs="w.attrs">
 <div class="form-group" py:for="c in w.children_non_hidden" title="${w.hover_help and c.help_text or None}" py:attrs="c.container_attrs" id="${c.compound_id}:container">
 <label for="${c.id}" py:if="c.label">$c.label</label>
 ${c.display(attrs={"class": "form-control"})}

 </div>
 <py:for each="c in w.children_hidden">${c.display()}</py:for>
 <div id="${w.compound_id}:error" py:content="w.error_msg"></div>
</div>"""

class BootstrapNameForm(twf.Form):
 class child(Bootstrap3Layout):
 name = twf.TextField()

 submit = twf.SubmitButton(css_class="btn btn-default")

Complex Layouts

In case of complex custom layouts, you can even
specify the layout case by case in the form itself
with each children in a specific position accessing
the children using w.children.child_name:

class OddNameForm(twf.Form):
 class child(twf.BaseLayout):
 inline_engine_name = "kajiki"
 template = """
 <div py:attrs="w.attrs">
 <div py:with="c=w.children.name">
 ${c.display()}

 </div>
 <div py:with="c=w.children.surname">
 ${c.display()}

 </div>

 <py:for each="ch in w.children_hidden">${ch.display()}</py:for>
 <div id="${w.compound_id}:error" py:content="w.error_msg"></div>
 </div>
 """

 name = twf.TextField()
 surname = twf.TextField()

	
class tw2.forms.widgets.BaseLayout(**kw)

	The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
prepare()

	Propagate the value for this widget to the children, based on their id.

	
class tw2.forms.widgets.ListLayout(**kw)

	Arrange widgets and labels in a list.

The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
class tw2.forms.widgets.TableLayout(**kw)

	Arrange widgets and labels in a table.

The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
class tw2.forms.widgets.GridLayout(**kw)

	Arrange labels and multiple rows of widgets in a grid.

	
child

	alias of tw2.core.params.RowLayout_s

	
class tw2.forms.widgets.RowLayout(**kw)

	Arrange widgets in a table row. This is normally only useful as a child to
GridLayout.

	
prepare()

	Propagate the value for this widget to the children, based on their id.

Bultin Form Fields

tw2.forms package comes with a bunch of builtin
widgets that can help you build the most common kind
of forms.

	
class tw2.forms.widgets.FormField(**kw)

	Basic Form Widget from which each other field will inherit

	
name

	Name of the field

	
required

	If the field is required according to its validator (read-only)

	
class tw2.forms.widgets.TextFieldMixin(**kw)

	Misc mixin class with attributes for textual input fields

	
maxlength = None

	Maximum length of the field

	
placeholder = None

	Placeholder text, until user writes something.

	
class tw2.forms.widgets.InputField(**kw)

	A generic <input> field.

Generally you won’t use this one, but will rely
on one of its specialised subclasses like TextField
or Checkbox.

	
type = None

	Input type

	
value = None

	Current value of the input

	
required = None

	Add required attributed to the input.

	
autofocus = None

	Add autofocus attributed to the input.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.PostlabeledInputField(**kw)

	Inherits InputField, but with a text
label that follows the input field

	
text = None

	Text to display in the label after the field.

	
text_attrs = {}

	Attributes of the label displayed after to the field.

	
class tw2.forms.widgets.TextField(**kw)

	A simple text field where to input a single line of text

	
size = None

	Add size attribute to the HTML field.

	
class tw2.forms.widgets.TextArea(**kw)

	A multiline text area

	
rows = None

	Add a rows= attribute to the HTML textarea

	
cols = None

	Add a cols= attribute to the HTML textarea

	
class tw2.forms.widgets.CheckBox(**kw)

	A single checkbox.

Its value will be True or Folse if selected or not.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.RadioButton(**kw)

	A single radio button

	
checked = False

	If the radio button is checked or not.

	
class tw2.forms.widgets.PasswordField(**kw)

	A password field. This never displays a value passed into the widget,
although it does redisplay entered values on validation failure. If no
password is entered, this validates as EmptyField.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.FileValidator(**kw)

	Validate a file upload field

	extension

	Allowed extension for the file

	
class tw2.forms.widgets.FileField(**kw)

	A field for uploading files. The returned object has (at least) two
properties of note:

	
	filename:

	the name of the uploaded file

	
	value:

	a bytestring of the contents of the uploaded file, suitable for being
written to disk

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.HiddenField(**kw)

	A hidden field.

Typically this is used to bring around in the form
values that the user should not be able to modify
or see. Like the ID of the entity edited by the form.

	
class tw2.forms.widgets.IgnoredField(**kw)

	A hidden field. The value is never included in validated data.

	
class tw2.forms.widgets.LabelField(**kw)

	A read-only label showing the value of a field. The value is stored in a
hidden field, so it remains through validation failures. However, the
value is never included in validated data.

	
class tw2.forms.widgets.LinkField(**kw)

	A dynamic link based on the value of a field. If either link or text
contain a $, it is replaced with the field value. If the value is None,
and there is no default, the entire link is hidden.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.Button(**kw)

	Generic button. You can override the text using value and define a
JavaScript action using attrs[‘onclick’].

	
class tw2.forms.widgets.SubmitButton(**kw)

	Button to submit a form.

	
class tw2.forms.widgets.ResetButton(**kw)

	Button to clear the values in a form.

	
class tw2.forms.widgets.ImageButton(**kw)

	
	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.HTML5PatternMixin(**kw)

	HTML5 mixin for input field regex pattern matching

See http://html5pattern.com/ for common patterns.

TODO: Configure server-side validator

	
class tw2.forms.widgets.HTML5MinMaxMixin(**kw)

	HTML5 mixin for input field value limits

TODO: Configure server-side validator

	
class tw2.forms.widgets.HTML5StepMixin(**kw)

	HTML5 mixin for input field step size

	
class tw2.forms.widgets.HTML5NumberMixin(**kw)

	HTML5 mixin for number input fields

	
class tw2.forms.widgets.EmailField(**kw)

	An email input field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.UrlField(**kw)

	An url input field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.NumberField(**kw)

	A number spinbox (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.RangeField(**kw)

	A number slider (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.SearchField(**kw)

	A search box (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.ColorField(**kw)

	A color picker field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

	
class tw2.forms.widgets.SelectionField(**kw)

	Base class for single and multiple selection fields.

The options parameter must be a list; it can take several formats:

	A list of values, e.g.
['', 'Red', 'Blue']

	A list of (code, value) tuples, e.g.
[(0, ''), (1, 'Red'), (2, 'Blue')]

	A mixed list of values and tuples. If the code is not specified, it
defaults to the value. e.g.
['', (1, 'Red'), (2, 'Blue')]

	Attributes can be specified for individual items, e.g.
[(1, 'Red', {'style':'background-color:red'})]

	A list of groups, e.g.
[('group1', [(1, 'Red')]), ('group2', ['Pink', 'Yellow'])]

Setting value before rendering will set the default displayed value on
the page. In ToscaWidgets1, this was accomplished by setting default.
That is no longer the case.

	
options = None

	List of options to pick from in the form [(id, text), (id, text), ...]

	
prompt_text = None

	Prompt to display when no option is selected. Set to None to disable this.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.MultipleSelectionField(**kw)

	
	
item_validator = None

	Validator that has to be applied to each item.

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.SingleSelectField(**kw)

	Specialised SelectionField to pick one element from a list of options.

	
class tw2.forms.widgets.MultipleSelectField(**kw)

	Specialised SelectionField to pick multiple elements from a list of options.

	
size = None

	Number of options to show

	
class tw2.forms.widgets.SelectionList(**kw)

	

	
class tw2.forms.widgets.SeparatedSelectionTable(**kw)

	

	
class tw2.forms.widgets.RadioButtonList(**kw)

	

	
class tw2.forms.widgets.CheckBoxList(**kw)

	

	
class tw2.forms.widgets.SelectionTable(**kw)

	
	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.VerticalSelectionTable(**kw)

	
	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.RadioButtonTable(**kw)

	

	
class tw2.forms.widgets.SeparatedRadioButtonTable(**kw)

	

	
class tw2.forms.widgets.VerticalRadioButtonTable(**kw)

	

	
class tw2.forms.widgets.CheckBoxTable(**kw)

	

	
class tw2.forms.widgets.SeparatedCheckBoxTable(**kw)

	

	
class tw2.forms.widgets.VerticalCheckBoxTable(**kw)

	

	
class tw2.forms.widgets.BaseLayout(**kw)

	The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
prepare()

	Propagate the value for this widget to the children, based on their id.

	
class tw2.forms.widgets.TableLayout(**kw)

	Arrange widgets and labels in a table.

The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
class tw2.forms.widgets.ListLayout(**kw)

	Arrange widgets and labels in a list.

The following CSS classes are used, on the element containing
both a child widget and its label.

	odd / even

	On alternating rows. The first row is odd.

	required

	If the field is a required field.

	error

	If the field contains a validation error.

	
class tw2.forms.widgets.RowLayout(**kw)

	Arrange widgets in a table row. This is normally only useful as a child to
GridLayout.

	
prepare()

	Propagate the value for this widget to the children, based on their id.

	
class tw2.forms.widgets.StripBlanks(**kw)

	
	
to_python(value, state=None)

	Convert an external value to Python and validate it.

	
class tw2.forms.widgets.GridLayout(**kw)

	Arrange labels and multiple rows of widgets in a grid.

	
child

	alias of tw2.core.params.RowLayout_s

	
class tw2.forms.widgets.Spacer(**kw)

	A blank widget, used to insert a blank row in a layout.

	
class tw2.forms.widgets.Label(**kw)

	A textual label. This disables any label that would be displayed by
a parent layout.

	
class tw2.forms.widgets.Form(**kw)

	A form, with a submit button. It’s common to pass a
TableLayout or ListLayout widget as the child.

	
classmethod post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
submit

	alias of tw2.core.params.SubmitButton_s_s

	
prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
class tw2.forms.widgets.FieldSet(**kw)

	A field set. It’s common to pass a TableLayout or ListLayout
widget as the child.

	
class tw2.forms.widgets.TableForm(**kw)

	Equivalent to a Form containing a TableLayout.

	
child

	alias of tw2.core.params.TableLayout_s

	
submit

	alias of tw2.core.params.SubmitButton_s_s_s

	
class tw2.forms.widgets.ListForm(**kw)

	Equivalent to a Form containing a ListLayout.

	
child

	alias of tw2.core.params.ListLayout_s

	
submit

	alias of tw2.core.params.SubmitButton_s_s_s

	
class tw2.forms.widgets.TableFieldSet(**kw)

	Equivalent to a FieldSet containing a TableLayout.

	
child

	alias of tw2.core.params.TableLayout_s

	
class tw2.forms.widgets.ListFieldSet(**kw)

	Equivalent to a FieldSet containing a ListLayout.

	
child

	alias of tw2.core.params.ListLayout_s

	
class tw2.forms.widgets.FormPage(**kw)

	A page that contains a form. The request method performs
validation, redisplaying the form on errors.
On success, it calls validated_request.

Validation

ToscaWidgets provides validation support for all the data
that needs to be displayed into widgets or that has to
come from submitted forms.

Setting a validator for a widget (or a form field) can
be done through the tw2.core.Widget.validator param.

Validators are typically used in the context of forms
and can be used both to tell ToscaWidgets how
a python object should be displayed in HTML result:

>>> import tw2.core as twc
>>> import tw2.forms as twf
>>>
>>> w = twf.TextField(validator=twc.validation.DateValidator(format="%Y/%m/%d"))
>>> w.display(datetime.datetime.utcnow())
Markup('<input value="2019/04/04" type="text"/>')

Or to tell ToscaWidgets how the data coming from a
submitted form should be converted into Python:

>>> class MyDateForm(twf.Form):
... class child(twf.TableLayout):
... date = twf.TextField(validator=twc.validation.DateValidator(format="%Y/%m/%d"))
...
>>> MyDateForm.validate({'date': '2019/5/3'})
{'date': datetime.date(2019, 5, 3)}

Validators

A validator is a class in charge of two major concerns:

	Converting data from the web to python and back to the web

	Validating that the data is what you expected.

Both those step are performed through two methods:

tw2.core.validation.Validator.to_python() which is
in charge of converting data from the web to Python:

>>> validator = twc.validation.DateValidator(required=True, format="%Y/%m/%d")
>>> validator.to_python('2019/10/3')
datetime.date(2019, 10, 3)

and tw2.core.validation.Validator.from_python() which
is in charge of converting data from Python to be displahyed
on a web page:

>>> validator.from_python(datetime.datetime.utcnow())
"2019/04/04"

When converting data to python (so for data submitted
from the web to your web application) the validator does three
steps:

	Ensures that the data is not empty through tw2.core.validation.Validator._is_empty() if required=True was provided

	Converts data to Python through tw2.core.validation.Validator._convert_to_python()

	Validates that the converted data matches what you expected through tw2.core.validation.Validator._validate_python()

All those three methods (is_empty, _convert_to_python and _validate_python)
can be specialised in subclasses to implement your own validators.

For example the tw2.core.validation.IntValidator takes care
of converting the incoming text to intergers:

>>> twc.validation.IntValidator().to_python("5")
5

but also takes care of validating that it’s within an expected range:

>>> twc.validation.IntValidator(min=1).to_python("0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 236, in to_python
 self._validate_python(value, state)
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 376, in _validate_python
 raise ValidationError('toosmall', self)
tw2.core.validation.ValidationError: Must be at least 1

Custom Validators

You can write your own validators by subclassing tw2.core.validation.Validator.

Those should at least implement the custom conversion part, to tell
toscawidgets how to convert the incoming data to the type you expect:

class TwoNumbersValidator(twc.validation.Validator):
 def _convert_to_python(self, value, state=None):
 try:
 return [int(v) for v in value.split(',')]
 except ValueError:
 raise twc.validation.ValidationError("Must be integers", self)
 except Exception:
 raise twc.validation.ValidationError("corrupt", self)

This is already enough to be able to convert the incoming
data to a list of numbers:

>>> TwoNumbersValidator().to_python("5,3")
[5, 3]

and to detect that numbers were actually submitted:

>>> TwoNumbersValidator().to_python("5, allo")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python
 value = self._convert_to_python(value, state)
 File "<stdin>", line 6, in _convert_to_python
tw2.core.validation.ValidationError: Must be integers

and to detect malformed inputs:

>>> TwoNumbersValidator().to_python(datetime.datetime.utcnow())
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python
 value = self._convert_to_python(value, state)
 File "<stdin>", line 8, in _convert_to_python
tw2.core.validation.ValidationError: Form submission received corrupted; please try again

But it doesn’t perform validation on the converted data.
It doesn’t ensure that what was provided are really two numbers:

>>> TwoNumbersValidator().to_python("5")
[5]

To do so we need to implement the validation part of the validator,
which is done through _validate_python:

class TwoNumbersValidator(twc.validation.Validator):
 def _convert_to_python(self, value, state=None):
 try:
 return [int(v) for v in value.split(',')]
 except ValueError:
 raise twc.validation.ValidationError("Must be integers", self)
 except Exception:
 raise twc.validation.ValidationError("corrupt", self)

 def _validate_python(self, value, state=None):
 if len(value) != 2:
 raise twc.validation.ValidationError("Must be two numbers", self)

To finally provide coverage for the case where a single number
(or more than two numbers) were provided:

>>> TwoNumbersValidator().to_python("5")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 236, in to_python
 self._validate_python(value, state)
 File "<stdin>", line 11, in _validate_python
tw2.core.validation.ValidationError: Must be two numbers

You will notice by the way, that empty values won’t cause validation errors:

>>> v = TwoNumbersValidator().to_python("")

Those will be converted to None:

>>> print(v)
None

Because by default validators have required=False which means that
missing values are perfectly fine.

If you want to prevent that behaviour you can provide required=True
to the validator:

>>> TwoNumbersValidator(required=True).to_python("")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 231, in to_python
 raise ValidationError('required', self)
tw2.core.validation.ValidationError: Enter a value

Internationalization

Validator error messages can be translated through the usage of
the msgs lookup dictionary.

The msgs dictionary is a map from keywords to translated
strings and it’s used by ToscaWidgets to know which message
to show to users:

from tw2.core.i18n import tw2_translation_string

class FloatValidator(twc.Validator):
 msgs = {
 "notfloat": tw2_translation_string("Not a floating point number")
 }

 def _convert_to_python(self, value, state):
 try:
 return float(value)
 except ValueError:
 raise twc.validation.ValidationError("notfloat", self)

You will see that when validation fails, the "notfloat" key is
looked up into msgs to find the proper message:

>>> FloatValidator().to_python("Hello")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python
 value = self._convert_to_python(value, state)
 File "<stdin>", line 9, in _convert_to_python
tw2.core.validation.ValidationError: Not a floating point number

The entry in msgs is then wrapped in a tw2.core.i18n.tw2_translation_string()
call to ensure it gets translated using the translated that was configured
in tw2.core.middleware.TwMiddleware options.

Note

tw2.core.i18n.tw2_translation_string() is also available as
tw2.core.i18n._ so that frameworks that automate translatable
strings collection like Babel can more easily find strings that
need translation in ToscaWidgets validators.

The other purpose of msgs is to allow users of your validator
to customise their error messages:

>>> FloatValidator(msgs={"notfloat": "Ahah! Gotcha!"}).to_python("Hello")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python
 value = self._convert_to_python(value, state)
 File "<stdin>", line 9, in _convert_to_python
tw2.core.validation.ValidationError: Ahah! Gotcha!

In such case (when msgs are customised) translation of the messages
is up to the user customising them. Who might want to ensure the new provided
messages are still wrapped in tw2.core.i18n.tw2_translation_string().

Builtin Validators

	
exception tw2.core.validation.ValidationError(msg, validator=None, widget=None)

	Invalid data was encountered during validation.

The constructor can be passed a short message name, which is looked up in
a validator’s msgs dictionary. Any values in this, like
$val` are substituted with that attribute from the validator. An
explicit validator instance can be passed to the constructor, or this
defaults to Validator otherwise.

	
message

	Added for backwards compatibility. Synonymous with msg.

	
tw2.core.validation.catch

	alias of tw2.core.validation.ValidationError

	
tw2.core.validation.unflatten_params(params)

	This performs the first stage of validation. It takes a dictionary where
some keys will be compound names, such as “form:subform:field” and converts
this into a nested dict/list structure. It also performs unicode decoding,
with the encoding specified in the middleware config.

	
class tw2.core.validation.Validator(**kw)

	Base class for validators

	required

	Whether empty values are forbidden in this field. (default: False)

	strip

	Whether to strip leading and trailing space from the input, before
any other validation. (default: True)

To convert and validate a value to Python, use the to_python()
method, to convert back from Python, use from_python().

To create your own validators, sublass this class, and override any of
_validate_python(), _convert_to_python(),
or _convert_from_python(). Note that these methods are not
meant to be used externally. All of them may raise ValidationErrors.

	
to_python(value, state=None)

	Convert an external value to Python and validate it.

	
from_python(value, state=None)

	Convert from a Python object to an external value.

	
validate_python(value, state=None)

	“Deprecated, use _validate_python() instead.

This method has been renamed in FormEncode 1.3 and ToscaWidgets 2.2
in order to clarify that is an internal method that is meant to be
overridden only; you must call meth:to_python to validate values.

	
class tw2.core.validation.BlankValidator(**kw)

	Always returns EmptyField. This is the default for hidden fields,
so their values are not included in validated data.

	
to_python(value, state=None)

	Convert an external value to Python and validate it.

	
class tw2.core.validation.LengthValidator(**kw)

	Confirm a value is of a suitable length. Usually you’ll use
StringLengthValidator or ListLengthValidator instead.

	min

	Minimum length (default: None)

	max

	Maximum length (default: None)

	
class tw2.core.validation.StringLengthValidator(**kw)

	Check a string is a suitable length. The only difference to LengthValidator
is that the messages are worded differently.

	
class tw2.core.validation.ListLengthValidator(**kw)

	Check a list is a suitable length. The only difference to LengthValidator
is that the messages are worded differently.

	
class tw2.core.validation.RangeValidator(**kw)

	Confirm a value is within an appropriate range. This is not usually used
directly, but other validators are derived from this.

	min

	Minimum value (default: None)

	max

	Maximum value (default: None)

	
class tw2.core.validation.IntValidator(**kw)

	Confirm the value is an integer. This is derived from
RangeValidator so min and max can be specified.

	
class tw2.core.validation.BoolValidator(**kw)

	Convert a value to a boolean. This is particularly intended to handle
check boxes.

	
class tw2.core.validation.OneOfValidator(**kw)

	Confirm the value is one of a list of acceptable values. This is useful for
confirming that select fields have not been tampered with by a user.

	values

	Acceptable values

	
class tw2.core.validation.DateTimeValidator(**kw)

	Confirm the value is a valid date and time. This is derived from
RangeValidator so min and max can be specified.

	format

	The expected date/time format. The format must be specified using
the same syntax as the Python strftime function.

	
class tw2.core.validation.DateValidator(**kw)

	Confirm the value is a valid date.

Just like DateTimeValidator, but without the time component.

	
class tw2.core.validation.RegexValidator(**kw)

	Confirm the value matches a regular expression.

	regex

	A Python regular expression object, generated like
re.compile('^\w+$')

	
class tw2.core.validation.EmailValidator(**kw)

	Confirm the value is a valid email address.

	
class tw2.core.validation.UrlValidator(**kw)

	Confirm the value is a valid URL.

	
class tw2.core.validation.IpAddressValidator(**kw)

	Confirm the value is a valid IP4 address, or network block.

	allow_netblock

	Allow the IP address to include a network block (default: False)

	require_netblock

	Require the IP address to include a network block (default: False)

	
class tw2.core.validation.UUIDValidator(**kw)

	Confirm the value is a valid uuid and convert to uuid.UUID.

	
class tw2.core.validation.MatchValidator(other_field, pass_on_invalid=False, **kw)

	Confirm a field matches another field

	other_field

	Name of the sibling field this must match

	pass_on_invalid

	Pass validation if sibling field is Invalid

	
class tw2.core.validation.CompoundValidator(*args, **kw)

	Base class for compound validators.

Child classes Any and All take validators as arguments
and use them to validate “value”. In case the validation fails, they
raise a ValidationError with a compound message.

>>> v = All(StringLengthValidator(max=50), EmailValidator, required=True)

	
class tw2.core.validation.All(*args, **kw)

	Confirm all validators passed as arguments are valid.

	
class tw2.core.validation.Any(*args, **kw)

	Confirm at least one of the validators passed as arguments is valid.

Javascript Integration

ToscaWidget2 was designed to work with any Javascript framework
and integrate Python and Javascript as well as possible,
leading to a seamless development experience when you have
to provide Javascript callbacks or functions to your Python
declared widgets and forms.

Javascript on Display

Frequently, when a widget is displayed, you might have to
run some form of initialization in JavaScript to attach
dynamic behaviours to it.

This can be done by using tw2.core.Widget.add_call()
to register a tw2.core.js.js_function that should be
called.

A simple example might be to display a widget that shows
an “Hello World” alert every time it renders:

import tw2.core as twc

class HelloJSWidget(twc.Widget):
 message = twc.Param(description="Message to display")
 template = "<div></div>"
 inline_engine_name = "kajiki"

 def prepare(self):
 super(HelloJSWidget, self).prepare()

 alert = twc.js.js_function("alert")
 if self.message:
 self.add_call(alert(self.message))

As you can see we define a new tw2.core.js.js_function named
“alert” and we assign it to the python “alert” variable.
If a message is provided, tw2.core.Widget.add_call()
is used to register alert(self.message) as what should
be called every time the widget is rendered.

Displaying the widget in a web page:

HelloJSWidget(message="Hello World").display()

will in fact open an alert box with the “Hello World” text.

But you are not constrained to use pre-existing Javascript
functions (like alert), you can in fact declare your
own function (or use one that was imported from a tw2.core.resources.JSLink).

For example we can change the previous widget to accept
only the name of the person to greet instead of the whole
message and display "Hello SOMEONE" always:

class HelloJSWidget(twc.Widget):
 greeted = twc.Param(description="Who to greet")
 template = "<div></div>"
 inline_engine_name = "kajiki"

 def prepare(self):
 super(HelloJSWidget, self).prepare()
 sayhello = twc.js.js_function('(function(target){ alert("Hello " + target); })')

 if self.greeted:
 self.add_call(sayhello(self.greeted))

As you could see, instead of having out tw2.core.js.js_function point
to an already existing one, we declared a new one that accepts
a target argument and displays an alert to greet the target.

The target of the greet message is then set in HelloJSWidget.prepare
through the greeted param.

Displaying such widget will lead as expected to show an alert box
with “Hello” plus the name of the greeted person:

HelloJSWidget(greeted="Mario").display()

It’s also for example possible to run javascript that will target
the widget itself by using the Widget.id and Widget.compound_id
properties to know the unique identifier of the widget in the dom.

Using such tactic we could rewrite the previous widget to always read
the greeted person from the content of the div instead of passing
it as an argument:

class HelloJSWidget(twc.Widget):
 greeted = twc.Param(description="Who to greet")
 template = """<div id="$w.id">${w.greeted}</div>"""
 inline_engine_name = "kajiki"

 def prepare(self):
 super(HelloJSWidget, self).prepare()
 sayhello = twc.js.js_function('(function(widget_id){ var target = document.getElementById(widget_id).innerText; alert("Hello " + target); })')
 self.add_call(sayhello(self.id))

Note

compound_id is safer to use, as it avoids collions
when widgets with the same id are used within different
parents. But is mostly only available in form fields.
On plain widgets you might need to use id itself.

Javascript Callbacks

While being able to call javascript every time the widget is displayed
is essential to be able to attach advanced javascript behaviours to widgets,
sometimes you will need to trigger Javascript callbacks when something
happens on the widgets.

This can usually be done with tw2.core.js.js_callback to declare the
javascript callback you care about.

A possible example is to run some javascript when the selected
option is changed in a single select field:

alertpicker = twf.SingleSelectField(
 attrs={'onchange': twc.js.js_callback('alert("changed!")')},
 options=[(1, 'First'), (2, 'Second')]
)

Builtin Javascript Helpers

Python-JS interface to dynamically create JS function calls from your widgets.

This moudle doesn’t aim to serve as a Python-JS “translator”. You should code
your client-side code in JavaScript and make it available in static files which
you include as JSLinks or inline using JSSources. This module is only intended
as a “bridge” or interface between Python and JavaScript so JS function
calls can be generated programatically.

	
class tw2.core.js.js_callback(cb, *args)

	A js function that can be passed as a callback to be called
by another JS function

Examples:

>>> str(js_callback("update_div"))
'update_div'

>>> str(js_callback("function (event) { }"))
'function (event) { }'

Can also create callbacks for deferred js calls

>>> str(js_callback(js_function('foo')(1,2,3)))
'function(){foo(1, 2, 3)}'

Or equivalently

>>> str(js_callback(js_function('foo'), 1,2,3))
'function(){foo(1, 2, 3)}'

A more realistic example

>>> jQuery = js_function('jQuery')
>>> my_cb = js_callback('function() { alert(this.text)}')
>>> on_doc_load = jQuery('#foo').bind('click', my_cb)
>>> call = jQuery(js_callback(on_doc_load))
>>> print call
jQuery(function(){jQuery(\"#foo\").bind(
 \"click\", function() { alert(this.text)})})

	
class tw2.core.js.js_function(name)

	A JS function that can be “called” from python and added to
a widget by widget.add_call() so it get’s called every time the widget
is rendered.

Used to create a callable object that can be called from your widgets to
trigger actions in the browser. It’s used primarily to initialize JS code
programatically. Calls can be chained and parameters are automatically
json-encoded into something JavaScript undersrtands. Example:

>>> jQuery = js_function('jQuery')
>>> call = jQuery('#foo').datePicker({'option1': 'value1'})
>>> str(call)
'jQuery("#foo").datePicker({"option1": "value1"})'

Calls are added to the widget call stack with the add_call method.

If made at Widget initialization those calls will be placed in
the template for every request that renders the widget:

>>> import tw2.core as twc
>>> class SomeWidget(twc.Widget): ...
pickerOptions = twc.Param(default={})
>>> SomeWidget.add_call(...
 jQuery('#%s' % SomeWidget.id).datePicker(SomeWidget.pickerOptions)
 ...)

More likely, we will want to dynamically make calls on every
request. Here we will call add_calls inside the prepare method:

>>> class SomeWidget(Widget):
... pickerOptions = twc.Param(default={})
... def prepare(self):
... super(SomeWidget, self).prepare()
... self.add_call(
... jQuery('#%s' % d.id).datePicker(d.pickerOptions)
...)

This would allow to pass different options to the datePicker on every
display.

JS calls are rendered by the same mechanisms that render required css and
js for a widget and places those calls at bodybottom so DOM elements which
we might target are available.

Examples:

>>> call = js_function('jQuery')("a .async")
>>> str(call)
'jQuery("a .async")'

js_function calls can be chained:

>>> call = js_function('jQuery')("a .async").foo().bar()
>>> str(call)
'jQuery("a .async").foo().bar()'

	
class tw2.core.js.js_symbol(name=None, src=None)

	An unquoted js symbol like document or window

Design

Widget Overview

The main purpose of a widget is to display a functional control within an HTML page. A widget has a template to generate its own HTML, and a set of parameters that control how it will be displayed. It can also reference resources - JavaScript or CSS files that support the widget.

When defining Widgets, some parameters with be static - they will stay constant for the whole lifetime of the application. Some parameters are dynamic - they may change for every request. To ensure thread-safety, a separate widget instance is created for every request, and dynamic parameters are only set on an instance. Static parameters are set by subclassing a widget. For example:

Initialisation
class MyWidget(Widget):
 id = 'myid'

In a request
my_widget = MyWidget.req()
my_widget.value = 'my value'

To make initialisation more concise, the __new__ method on Widget is overriden, so it creates subclasses, rather than instances. The following code is equivalent to that above:

Initialisation
MyWidget = Widget(id='myid')

In practice, you will rarely need to explictly create an instance, using req(). If the display or validate methods are called on a Widget class, they automatically create an instance. For example, the following are equivalent:

Explicit creation
my_widget = MyWidget.req()
my_widget.value = 'my value'
my_widget.display()

Implicit creation
MyWidget.display(value='my value')

Parameters

The parameters are how the user of the widget controls its display and behaviour. Parameters exist primarily for documentation purposes, although they do have some run-time effects. When creating widgets, it’s important to decide on a convenient set of parameters for the user of the widget, and to document these.

A parameter definition looks like this:

import tw2.core as twc
class MyTextField(twc.Widget):
 size = twc.Param('The size of the field', default=30)
 validator = twc.LengthValidator(max=30)
 highlight = twc.Variable('Region to highlight')

In this case, TextField gets all the parameters of its base class, tw2.core.widget and defines a new parameter - size. A widget can also override parameter in its base class, either with another tw2.core.Param instance, or a new default value.

	
class tw2.core.Param(description=Default, default=Default, request_local=Default, attribute=Default, view_name=Default)

	A parameter for a widget.

	description

	A string to describe the parameter. When overriding a parameter
description, the string can include $$ to insert the previous
description.

	default

	The default value for the parameter. If no defalt is specified,
the parameter is a required parameter. This can also be specified
explicitly using tw.Required.

	request_local

	Can the parameter be overriden on a per-request basis? (default:
True)

	attribute

	Should the parameter be automatically included as an attribute?
(default: False)

	view_name

	The name used for the attribute. This is useful for attributes like
class which are reserved names in Python. If this is None, the name
is used. (default: None)

The class takes care to record which arguments have been explictly
specifed, even if to their default value. If a parameter from a base
class is updated in a subclass, arguments that have been explicitly
specified will override the base class.

	
class tw2.core.Variable(description=Default, **kw)

	A variable - a parameter that is passed from the widget to the template,
but cannot be controlled by the user. These do not appear in the concise
documentation for the widget.

	
class tw2.core.ChildParam(description=Default, default=Default, request_local=Default, attribute=Default, view_name=Default)

	A parameter that applies to children of this widget

This is useful for situations such as a layout widget, which adds a
label parameter to each of its children. When a Widget subclass is
defined with a parent, the widget picks up the defaults for any child
parameters from the parent.

	
class tw2.core.ChildVariable(description=Default, **kw)

	A variable that applies to children of this widget

Code Hooks

Subclasses of Widget can override the following methods. It is not recommended to override any other methods, e.g. display, validate, __init__.

	
classmethod Widget.post_define()

	This is a class method, that is called when a subclass of this Widget
is created. Process static configuration here. Use it like this:

class MyWidget(LeafWidget):
 @classmethod
 def post_define(cls):
 id = getattr(cls, 'id', None)
 if id and not id.startswith('my'):
 raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an
abstract class. There is no need to call super(), the metaclass will do
this automatically.

	
Widget.prepare()

	This is an instance method, that is called just before the Widget is
displayed. Process request-local configuration here. For
efficiency, widgets should do as little work as possible here.
Use it like this:

class MyWidget(Widget):
 def prepare(self):
 super(MyWidget, self).prepare()
 self.value = 'My: ' + str(self.value)

	
Widget.generate_output(displays_on)

	Generate the actual output text for this widget.

By default this renders the widget’s template. Subclasses can override
this method for purely programmatic output.

	displays_on

	The name of the template engine this widget is being displayed
inside.

Use it like this:

class MyWidget(LeafWidget):
 def generate_output(self, displays_on):
 return "{1}".format(self.attrs, self.text)

Mutable Members

If a widget’s prepare() method modifies a mutable member on the widget, it must take care not to modify a class member, as this is not thread safe. In general, the code should call self.safe_modify(member_name), which detects class members and creates a copy on the instance. Users of widgets should be aware that if a mutable is set on an instance, the widget may modify this. The most common case of a mutable member is attrs. While this arrangement is thread-safe and reasonably simple, copying may be bad for performance. In some cases, widgets may deliberately decide not to call safe_modify(), if the implications of this are understood.

Widget Hierarchy

Widgets can be arranged in a hierarchy. This is useful for applications like layouts, where the layout will be a parent widget and fields will be children of this. There are four roles a widget can take in the hierarchy, depending on the base class used:

	
class tw2.core.Widget(**kw)

	Base class for all widgets.

	
class tw2.core.CompoundWidget(**kw)

	A widget that has an arbitrary number of children, this is common for
layout components, such as tw2.forms.TableLayout.

	
class tw2.core.RepeatingWidget(**kw)

	A widget that has a single child, which is repeated an arbitrary number
of times, such as tw2.forms.GridLayout.

	
class tw2.core.DisplayOnlyWidget(**kw)

	A widget that has a single child. The parent widget is only used for
display purposes; it does not affect value propagation or validation.
This is used by widgets like tw2.forms.FieldSet.

Value Propagation

An important feature of the hierarchy is value propagation. When the value is set for a compound or repeating widget, this causes the value to be set for the child widgets. In general, a leaf widget takes a scalar type as a value, a compound widget takes a dict or an object, and a repeating widget takes a list.

The hierarchy also affects the generation of compound ids, and validation.

Identifier

In general, a widget needs to have an identifier. Without an id, it cannot participate in value propagation or validation, and it does not get an HTML id attribute. There are some exceptions to this:

	Some widgets do not need an id (e.g. Label, Spacer) and provide a default id of None.

	The child of a RepeatingWidget must not have an id.

	An id can be specified either on a DisplayOnlyWidget, or it’s child, but not both. The widget that does not have the id specified automatically picks it up from the other.

Compound IDs are formed by joining the widget’s id with those of its ancestors. These are used in two situations:

	For the HTML id attribute, and also the name attribute for form fields

	For the URL path a controller widget is registered at

The separator is a colon (:), resulting in compound ids like “form:sub_form:field”. Note this causes issues with CSS and will be changed shortly, and made configurable.

In generel, the id on a DisplayOnlyWidget is not included in the compound id. However, when generating the compound id for a DisplayOnlyWidget, the id is included. In addition id_suffix is appended, to avoid generating duplicate IDs. The id_suffix is not appended for URL paths, to keep the paths short. There is a risk of duplicate IDs, but this is not expected to be a problem in practice.

For children of a RepeatingWidget, the repetition is used instead of the id, for generating the compound HTML id. For the URL path, the element is skipped entirely.

Deep Children

This is a feature that helps have a form layout that doesn’t exactly match the database layout. For example, we might have a sinlge database table, with fields like title, customer, start_date, end_date. We want to display this in a Form that’s broken up into two FieldSets. Without deep children, the FieldSets would have to have ids, and field makes would be dotted, like info.title. The deep children feature lets us set the id to None:

class MyForm(twf.Form):
 class child(twc.CompoundWidget):
 class info(twf.TableFieldSet):
 id = None
 title = twf.TextField()
 customer = twf.TextField()
 class dates(twf.TableFieldSet):
 id = None
 start_date = twf.TextField()
 end_date = twf.TextField()

When a value like {'title': 'my title'} is passed to MyForm, this will propagate correctly.

Template

Every widget can have a template. Toscawidgets has some template-language hooks which currently support Genshi, Mako, Jinja2, Kajiki, and Chameleon.

At one point, ToscaWidgets2 aimed to support any templating engine that supported the buffet interface, (an initiative by the TurboGears project to create a standard interface for template libraries). In practice though, there are more differences between template engines than the buffet interface standardises so this approach has been dropped.

The template parameter takes the form engine_name:template_path. The engine_name is the name that the template engine defines in the python.templating.engines entry point, e.g. genshi, mako, or jinja. The template_path is a string the engine can use to locate the template; usually this is dot-notation that mimics the semantics of Python’s import statement, e.g. myapp.templates.mytemplate. Templates also allow specifications like ./template.html which is beneficial for simple applications.

It is also possible to allow your widget to utilize multiple templates, or to have TW2 support any template language you provide a template for. To do this, simply leave the name of the template engine off of the template parameter, and TW2 will select the appropriate template, based on specifications in the TW2 middleware.

For instance, you might have a form.mak and a form.html template (mako and genshi). TW2 will render the mako template if mako is listed ahead of genshi in the middleware config’s preferred_rendering_engines. See the documentation regarding Enabling ToscaWidgets for more information on how to set up your middleware for desired output.

Non-template Output

Instead of using a template, a widget can also override the generate_output method. This function generates the HTML output for a widget; by default, it renders the widget’s template as described in the previous section, but can be overridden by any function that returns a string of HTML.

Resources

Widgets often need to access resources, such as JavaScript or CSS files. A key feature of widgets is the ability to automatically serve such resources, and insert links into appropriate sections of the page, e.g. <HEAD>. There are several parts to this:

	Widgets can define resources they use, using the resources parameter.

	When a resource is defined, it is registered with the resource server.

	When a Widget is displayed, it registers resources in request-local storage.

	The resource injection middleware detects resources in request-local storage, and rewrites the generated page to include appropriate links.

	The resource server middleware serves static files used by widgets

	Widgets can also access resources at display time, e.g. to get links

	Resources can themselves declare dependency on other resources, e.g.
jquery-ui.js depends on jquery.js and must be included on the page
subsequently.

Defining Resources

To define a resource, just add a tw2.core.Resource subclass to the widget’s resources parameter. It is also possible to append to resources from within the prepare() method. The following resource types are available:

See Resources

Resources are widgets, but follow a slightly different lifecycle. Resource subclasses are passed into the resources parameter. An instance is created for each request, but this is only done at the time of the parent Widget’s display() method. This gives widgets a chance to add dynamic resources in their prepare() method.

Using Your Own Resources

Resources that are defined by pre-existing tw2 packages can be altered globally.
For instance, say that you want to use your own patched version of jquery and
you want all tw2 packages that require jquery to use your version, and not the
one already packaged up in tw2.jquery. The following code will alter
jquery_js in not just the local scope, but also in all other modules that
use it (including tw2.jqplugins.ui):

import tw2.jquery
tw2.jquery.jquery_js.link = "/path/to/my/patched/jquery.js"

Deploying Resources

If running behind mod_wsgi, tw2 resource provisioning will typically fail.
Resources are only served when they are registered with the request-local
thread, and resources are only registered when their dependant widget is
displayed in a request. An initial page request may make available resource
A, but the subsequent request to actually retrieve resource A will not
have that resource registered.

To solve this problem (and to introduce a speed-up for production deployment),
Toscawidgets2 provides an archive_tw2_resources distutils command:

$ python setup.py archive_tw2_resources \
 --distributions=myapplication \
 --output=/var/www/myapplication

Declarative Instantiation

Instantiating compound widgets can result in less-than-beautiful code. To help alleviate this, widgets can be defined declaratively, and this is the recommended approach. A definition looks like this:

class MovieForm(twf.TableForm):
 id = twf.HiddenField()
 year = twf.TextField()
 desc = twf.TextArea(rows=5)

Any class members that are subclasses of Widget become children. All the children get their id from the name of the member variable. Note: it is important that all children are defined like id = twf.HiddenField() and not id = twf.HiddenField. Otherwise, the order of the children will not be preserved.

It is possible to define children that have the same name as parameters, using this syntax. However, doing so does prevent a widget overriding a parameter, and defining a child with the same name. If you need to do this, you must use a throwaway name for the member variable, and specify the id explicitly, e.g.:

class MovieForm(twf.TableForm):
 resources = [my_resource]
 id = twf.HiddenField()
 noname = twf.TextArea(id='resources')

Nesting and Inheritence

Nested declarative definitions can be used, like this:

class MyForm(twf.Form):
 class child(twf.TableLayout):
 b = twf.TextArea()
 x = twf.Label(text='this is a test')
 c = twf.TextField()

Inheritence is supported - a subclass gets the children from the base class, plus any defined on the subclass. If there’s a name clash, the subclass takes priority. Multiple inheritence resolves name clashes in a similar way. For example:

class MyFields(twc.CompoundWidget):
 b = twf.TextArea()
 x = twf.Label(text='this is a test')
 c = twf.TextField()

class TableFields(MyFields, twf.TableLayout):
 pass

class ListFields(MyFields, twf.ListLayout):
 b = twf.TextField()

Proxying children

Without this feature, double nesting of classes is often necessary, e.g.:

class MyForm(twf.Form):
 class child(twf.TableLayout):
 b = twf.TextArea()

Proxying children means that if RepeatingWidget or DisplayOnlyWidget have children set, this is passed to their child. The following is equivalent to the definition above:

class MyForm(twf.Form):
 child = twf.TableLayout()
 b = twf.TextArea()

And this is used by classes like TableForm and TableFieldSet to allow the user more concise widget definitions:

class MyForm(twf.TableForm):
 b = twf.TextArea()

Automatic ID

Sub classes of Page that do not have an id, will have the id automatically set to the name of the class. This can be disabled by setting _no_autoid on the class. This only affects that specific class, not any subclasses.

Widgets as Controllers

Sometimes widgets will want to define controller methods. This is particularly useful for Ajax widgets. Any widget can have a request() method, which is called with a WebOb Request object, and must return a WebOb Response object, like this:

class MyWidget(twc.Widget):
 id = 'my_widget'
 @classmethod
 def request(cls, req):
 resp = webob.Response(request=req, content_type="text/html; charset=UTF8")
 # ...
 return resp

For the request() method to be called, the widget must be registered with the ControllersApp in the middleware. By default, the path is constructed from /controllers/, and the widget’s id. A request to /controllers/ refers to a widget with id index. You can specify controllers_prefix in the configuration.

For convenience, widgets that have a request() method, and an id will be registered automatically. By default, this uses a global ControllersApp instance, which is also the default controllers for make_middleware(). If you want to use multiple controller applications in a single python instance, you will need to override this.

You can also manually register widgets:

twc.core.register_controller(MyWidget, 'mywidget')

Sometimes it is useful to dynamically acquire what URL path a Widget’s
controller is mounted on. For this you can use:

MyWidget.controller_path()

Methods to override

	view_request

	Instance method - get self and req. load from db

	validated_request

	Class method - get cls and validated data

	ajax_request

	Return python data that is automatically converted to an ajax response

Validation

One of the main features of any forms library is the validation of form input, e.g checking that an email address is valid, or that a user name is not already taken. If there are validation errors, these must be displayed to the user in a helpful way. Many validation tasks are common, so these should be easy for the developer, while less-common tasks are still possible.

We can configure validation on form fields like this:

class child(twf.TableForm):
 name = twf.TextField(validator=twc.Required)
 group = twf.SingleSelectField(options=['', 'Red', 'Green', 'Blue'])
 notes = twf.TextArea(validator=twc.StringLengthValidator(min=10))

To enable validation we also need to modify the application to handle POST requests:

def app(environ, start_response):
 req = wo.Request(environ)
 resp = wo.Response(request=req, content_type="text/html; charset=UTF8")
 if req.method == 'GET':
 resp.body = MyForm.display().encode('utf-8')
 elif req.method == 'POST':
 try:
 data = MyForm.validate(req.POST)
 resp.body = 'Posted successfully ' + wo.html_escape(repr(data))
 except twc.ValidationError, e:
 resp.body = e.widget.display().encode('utf-8')
 return resp(environ, start_response)

If you submit the form with some invalid fields, you should see error messages sidle up to each relevant field.

Whole Form Message

If you want to display a message at the top of the form, when there are any errors, define the following validator:

class MyFormValidator(twc.Validator):
 msgs = {
 'childerror': ('form_childerror', 'There were problems with the details you entered. Review the messages below to correct your submission.'),
 }

And in your form:

validator = MyFormValidator()

Conversion

Validation is also responsible for conversion to and from python types. For example, the DateValidator takes a string from the form and produces a python date object. If it is unable to do this, that is a validation failure.

To keep related functionality together, validators also support coversion from python to string, for display. This should be complete, in that there are no python values that cause it to fail. It should also be precise, in that converting from python to string, and back again, should always give a value equal to the original python value. The converse is not always true, e.g. the string “1/2/2004” may be converted to a python date object, then back to “01/02/2004”.

Validation Errors

When there is an error, all fields should still be validated and multiple errors displayed, rather than stopping after the first error.

When validation fails, the user should see the invalid values they entered. This is helpful in the case that a field is entered only slightly wrong, e.g. a number entered as “2,000” when commas are not allowed. In such cases, conversion to and from python may not be possible, so the value is kept as a string. Some widgets will not be able to display an invalid value (e.g. selection fields); this is fine, they just have to do the best they can.

When there is an error is some fields, other valid fields can potentially normalise their value, by converting to python and back again (e.g. 01234 -> 1234). However, it was decided to use the original value in this case.

In some cases, validation may encounter a major error, as if the web user has tampered with the HTML source. However, we can never be completely sure this is the case, perhaps they have a buggy browser, or caught the site in the middle of an upgrade. In these cases, validation will produce the most helpful error messages it can, but not attempt to identify which field is at fault, nor redisplay invalid values.

Required Fields

If a field has no value, if defaults to None. It is down to that field’s validator to raise an error if the field is required. By default, fields are not required. It was considered to have a dedicated Missing class, but this was decided against, as None is already intended to convey the absence of data.

Security Consideration

When a widget is redisplayed after a validation failure, it’s value is derived from unvalidated user input. This means widgets must be “safe” for all input values. In practice, this is almost always the case without great care, so widgets are assumed to be safe.

Warning

If a particular widget is not safe in this way, it must override _validate() and set value to None in case of error.

Validation Messages

When validation fails, the validator raises ValidationError. This must be passed the short message name, e.g. “required”. Each validator has a dictionary mapping short names to messages that are presented to the user, e.g.:

msgs = {
 'tooshort': 'Value is too short',
 'toolong': 'Value is too long',
}

Messages can be overridden on a global basis, using validator_msgs on the middleware configuration. For example, the user may prefer “Value is required” instead of the default “Enter a value” for a missing field.

A Validator can also rename mesages, by specifying a tuple in the msgs dict. For example, ListLengthValidator is a subclass of LengthValidator which raises either tooshort or toolong. However, it’s desired to have different message names, so that any global override would be applied separately. The following msgs dict is used:

msgs = {
 'tooshort': ('list_tooshort', 'Select at least $min'),
 'toolong': ('list_toolong', 'Select no more than $max'),
}

Within the messages, tags like $min are substituted with the corresponding attribute from the validator. It is not possible to specify the value in this way; this is to discourage using values within messages.

FormEncode

Earlier versions of ToscaWidgets used FormEncode for validation and there are good reasons for this. Some aspects of the design work very well, and FormEncode has a lot of clever validators, e.g. the ability to check that a post code is in the correct format for a number of different countries.

However, there are challenges making FormEncode and ToscaWidgets work together. For example, both libraries store the widget hierarchy internally. This makes implementing some features (e.g. strip_name and tw2.dynforms.HidingSingleSelectField) difficult. There are different needs for the handling of unicode, leading ToscaWidgets to override some behaviour. Also, FormEncode just does not support client-side validation, a planned feature of ToscaWidgets 2.

ToscaWidgets 2 does not rely on FormEncode. However, developers can use FormEncode validators for individual fields. The API is compatible in that to_python() and from_python() are called for conversion and validation, and formencode.Invalid is caught. Also, if FormEncode is installed, the ValidationError class is a subclass of formencode.Invalid.

Using Validators

There’s two parts to using validators. First, specify validators in the widget definition, like this:

class RegisterUser(twf.TableForm):
 validator = twc.MatchValidator('email', 'confirm_email')
 name = twf.TextField()
 email = twf.TextField(validator=twc.EmailValidator)
 confirm_email = twf.PasswordField()

You can specify a validator on any widget, either a class or an instance. Using an instance lets you pass parameters to the validator. You can code your own validator by subclassing tw2.core.Validator. All validators have at least these parameters:

	
class tw2.core.Validator(**kw)

	Base class for validators

	required

	Whether empty values are forbidden in this field. (default: False)

	strip

	Whether to strip leading and trailing space from the input, before
any other validation. (default: True)

To convert and validate a value to Python, use the to_python()
method, to convert back from Python, use from_python().

To create your own validators, sublass this class, and override any of
_validate_python(), _convert_to_python(),
or _convert_from_python(). Note that these methods are not
meant to be used externally. All of them may raise ValidationErrors.

Second, when the form values are submitted, call validate() on the outermost widget. Pass this a dictionary of the request parameters. It will call the same method on all contained widgets, and either return the validated data, with all conversions applied, or raise tw2.core.ValidationError. In the case of a validation failure, it stores the invalid value and an error message on the affected widget.

Chaining Validators

In some cases you may want validation to succeed if any one of a number of
checks pass. In other cases you may want validation to succeed only if the
input passes all of a number of checks. For this, tw2.core provides
the Any and All validators which are subclasses of the
extendable CompoundValidator.

Implementation

A two-pass approach is used internally, although this is generally hidden from the developer. When Widget.validate() is called it first calls:

	
tw2.core.validation.unflatten_params(params)

	This performs the first stage of validation. It takes a dictionary where
some keys will be compound names, such as “form:subform:field” and converts
this into a nested dict/list structure. It also performs unicode decoding,
with the encoding specified in the middleware config.

If this fails, there is no attempt to determine which parameter failed; the whole submission is considered corrupt. If the root widget has an id, this is stripped from the dictionary, e.g. {'myid': {'param':'value', ...}} is converted to {'param':'value', ...}. A widget instance is created, and stored in request local storage. This allows compatibility with existing frameworks, e.g. the @validate decorator in TurboGears. There is a hook in display() that detects the request local instance. After creating the instance, validate works recursively, using the _validate().

	
Widget._validate(*args, **kw)

	Inner validation method; this is called by validate and should not be
called directly. Overriding this method in widgets is discouraged; a
custom validator should be coded instead. However, in some
circumstances overriding is necessary.

	
RepeatingWidget._validate(*args, **kw)

	The value must either be a list or None. Each item in the list is
passed to the corresponding child widget for validation. The resulting
list is passed to this widget’s validator. If any of the child widgets
produces a validation error, this widget generates a “childerror”
failure.

	
CompoundWidget._validate(*args, **kw)

	The value must be a dict, or None. Each item in the dict is passed to
the corresponding child widget for validation, with special
consideration for _sub_compound widgets. If a child returns
vd.EmptyField, that value is not included in the resulting dict at all,
which is different to including None. Child widgets with a key are
passed the validated value from the field the key references. The
resulting dict is validated by this widget’s validator. If any child
widgets produce an errors, this results in a “childerror” failure.

Both _validate() and to_python() take an optional state argument. CompoundWidget and RepeatingWidget pass the partially built dict/list to their child widgets as state. This is useful for creating validators like MatchValidator that reference sibling values. If one of the child widgets fails validation, the slot is filled with an Invalid instance.

General Considerations

Request-Local Storage

ToscaWidgets needs access to request-local storage. In particular, it’s important that the middleware sees the request-local information that was set when a widget is instatiated, so that resources are collected correctly.

The function tw2.core.request_local returns a dictionary that is local to the current request. Multiple calls in the same request always return the same dictionary. The default implementation of request_local is a thread-local system, which the middleware clears before and after each request.

In some situations thread-local is not appropriate, e.g. twisted. In this case the application will need to monkey patch request_local to use appropriate request_local storage.

pkg_resources

tw2.core aims to take advantage of pkg_resources where it is available, but not to depend on it. This allows tw2.core to be used on Google App Engine. pkg_resources is used in two places:

	In ResourcesApp, to serve resources from modules, which may be zipped eggs. If pkg_resources is not available, this uses a simpler system that does not support zipped eggs.

	In EngingeManager, to load a templating engine from a text string, e.g. “genshi”. If pkg_resources is not available, this uses a simple, built-in mapping that covers the most common template engines.

Framework Interface

ToscaWidgets is designed to be standalone WSGI middeware and not have any framework interactions. However, when using ToscaWidgets with a framework, there are some configuration settings that need to be consistent with the framework, for correct interaction. Future vesions of ToscaWidgets may include framework-specific hooks to automatically gather this configuration. The settings are:

	default_view - the template engine used by the framework. When root widgets are rendered, they will return a type suitable for including in this template engine. This setting is not needed if only Page widgets are used as root widgets, as there is no containing template in that case.

	translator - needed for ToscaWidget to use the same i18n function as the framework.

Unit Tests

To run the tests, in tw2.devtools/tests issue:

nosetests --with-doctest --doctest-extension=.txt

Changelog

2.3.0

	Support overriding fields in subclasses of a Form

	Support for formencode validators in CompoundValidator

2.2.9

	Fix loading of templates on some systems where system encoding is not UTF8 (templates are always loaded as utf8)

2.2.7

	Fix support for Python3.8 removing cgi.escape

	Fix deprecated support for absolute paths in resource_filename

2.2.6

	New Documentation

2.2.5

	Added english transation, so that the gettext translator finds it and prefers english when multiple languages are involved and english is the favourite one.

	Fixed an issue with i18n translator on Python3

2.2.4

	Templating now uses render_unicode to render mako templates and avoid unicode dance ecc33fc [https://github.com/toscawidgets/tw2.core/commit/ecc33fc211b904c5aa0c88647245d37fe8cd7338]

	Avoid modifying validation messages dict while iterating on it 66c7e3d [https://github.com/toscawidgets/tw2.core/commit/66c7e3d8d0bcae6fe6d55bd5144c7991e02fe654]

	Fix Genshi relative imports when running test suite on top directory

2.2.3

	Kajiki Template Engine Support

	Disallow DisplayOnlyWidget as child of RepeatingWidget as it doesn’t work anyways 4c15c5a [https://github.com/toscawidgets/tw2.core/commit/4c15c5ae02db1956d51685b3f444cfc76fdf1e55]

	Flush memozation cache when auto_reload_templates in the middleware is enabled

	Fix safe_validate with FormEncode validators 3fa88ac [https://github.com/toscawidgets/tw2.core/commit/3fa88ace7d2028612d37b854a52d40ff9a654b17]

2.2.2

	Fix CompoundWidget and MatchValidator

	Fix archive_tw2_resources 8956e83 [https://github.com/toscawidgets/tw2.core/commit/8956e832ea3944f9f6ebd0f28d1f514644c68bcd]

	Fix DateValidator and DateTimeValidator to be in sync with tw2.forms 06da5b9 [https://github.com/toscawidgets/tw2.core/commit/06da5b9023c576b4efb73187d53d6c9a9f691f4d]

2.2.1

	Merge branch ‘hotfix/2.1.6’ a699822e5 [https://github.com/toscawidgets/tw2.core/commit/a699822e56031a1a0aa351f7bae19ff58401af18]

	compound_key was ignoring key for RepeatingWidget ed0946146 [https://github.com/toscawidgets/tw2.core/commit/ed09461460775b9d8034ecfcb8cb8680a43c9fee]

	Fix for DisplayOnlyWidget in compound_id regression 11570e42e [https://github.com/toscawidgets/tw2.core/commit/11570e42e4dde2b03145bec36b949ad282cce845]

	All and Any validators didn’t work with unicode error messages 3c177ad8d [https://github.com/toscawidgets/tw2.core/commit/3c177ad8d5a04d2913b8f62418b9a2b0e2dbfc7b]

	Merge branch ‘master’ of @amol-/tw2.core into develop 5254065c0 [https://github.com/toscawidgets/tw2.core/commit/5254065c01a362617956ce0adb08851884ee0596]

2.2.0.8

	Fix duplicate class name 1c133c907 [https://github.com/toscawidgets/tw2.core/commit/1c133c9074aaded7823d99e3f31aaf4eab8f26d8]

	Be able to put an HTML separator between the children of a RepeatingWidget. We also need to support it for the CompoundWidget since it uses the same template db717642d [https://github.com/toscawidgets/tw2.core/commit/db717642dff0b5b3cb69e7e3929a0ceaf08a2a54]

	Merge pull request #96 from LeResKP/develop 41229bf01 [https://github.com/toscawidgets/tw2.core/commit/41229bf01b079f49d4ba8747d2f530f4d0eddf99]

	Re-enable archive_tw2_resources on Python 2 56215397a [https://github.com/toscawidgets/tw2.core/commit/56215397a2e5e373ca5dd44c28fedc4fc66c5d19]

2.2.0.7

	
	Clean up cache * Hack to fix the tests with empty value attributes for genshi cd5febe2b [https://github.com/toscawidgets/tw2.core/commit/cd5febe2bc6c675fa8c7320731d4fe98c603c42d]

	Merge pull request #95 from LeResKP/develop 9f54d72be [https://github.com/toscawidgets/tw2.core/commit/9f54d72be754c6087a0a780c6d89e4761924af23]

	Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop 9142fe165 [https://github.com/toscawidgets/tw2.core/commit/9142fe165139db87c761ca4ed17f673244e5a9b7]

2.2.0.6

2.2.0.5

	Add a setUp method back to another base test thats missing it. 55b6061ed [https://github.com/toscawidgets/tw2.core/commit/55b6061edf0264426910d1a19f5641ff0c3cf7a0]

2.2.0.4

	Restore an old setUp method for tw2.core.testbase.WidgetTest da2d9bab2 [https://github.com/toscawidgets/tw2.core/commit/da2d9bab2db86f2378525ad0930af3b1e48e3622]

2.2.0.3

	Added a new validator UUIDValidator (+test) for UUID/GUIDs ebea7f30b [https://github.com/toscawidgets/tw2.core/commit/ebea7f30b892eb426ca788b26112b5db6d845260]

	Merge pull request #92 from RobertSudwarts/amol 481926de6 [https://github.com/toscawidgets/tw2.core/commit/481926de62e14d37e1b102b7d8734a8cc576f9c2]

	Call me picky, but I think license belongs up there de9d87587 [https://github.com/toscawidgets/tw2.core/commit/de9d8758795fb94662ff79b075cf125e6c7f6fb5]

	Merge branch ‘amol’ into develop 46d68b792 [https://github.com/toscawidgets/tw2.core/commit/46d68b792f2076e5862730abf464dbf3ec93362b]

	pep8 5896d4db0 [https://github.com/toscawidgets/tw2.core/commit/5896d4db0d71d47641732423e7363a19cb8cd72f]

	Fix tests for UUIDValidator bfc4531ec [https://github.com/toscawidgets/tw2.core/commit/bfc4531ecfb55a18a13827ad893469623f1b2aa1]

	Handle case where response.charset is None. e1fe13460 [https://github.com/toscawidgets/tw2.core/commit/e1fe134605767385c3554d58066776596e8d9fba]

	Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop 4fec80d22 [https://github.com/toscawidgets/tw2.core/commit/4fec80d221fe423c89485d3871073994bd3850ed]

2.2.0.2

	Update one test now that the error message has changed. c31f52732 [https://github.com/toscawidgets/tw2.core/commit/c31f52732ed6cd7cbe8dce6fd0671253721c5062]

	Catch if a template is None. a159b6cf1 [https://github.com/toscawidgets/tw2.core/commit/a159b6cf1bf28f29063dcd00bd7db9af4d082985]

	Remove direct dependence on unittest so we can get test-generators working again. Relates to #88. f561ef33d [https://github.com/toscawidgets/tw2.core/commit/f561ef33d277401e661413e47d0a14249389fcb2]

	Turn the css/js escaping tests into generators per engine too. c43bd4d7f [https://github.com/toscawidgets/tw2.core/commit/c43bd4d7f9b8855f2db417f4a5051a1bdb685b6f]

	Kajiki expects unicode these days. 16f6508c2 [https://github.com/toscawidgets/tw2.core/commit/16f6508c2928972be2a9f9001ea4ad9cf36bf8b0]

	Mark this test really as skipping. b59d1ff05 [https://github.com/toscawidgets/tw2.core/commit/b59d1ff05c944257a8ab1a5cc27e40bb8435b07e]

	Skip tests on weird kajiki behavior…. 11285aa68 [https://github.com/toscawidgets/tw2.core/commit/11285aa680124438b4bd11617c34c0ee779f1eb2]

	Drop python-3.2 support since our deps dont support it. 0f777ea68 [https://github.com/toscawidgets/tw2.core/commit/0f777ea68079b3cec51e0f64b0b5fa8c8c6a06f0]

	Kill kajiki. ea14b79f1 [https://github.com/toscawidgets/tw2.core/commit/ea14b79f199f527904ee87a8f0227039b04e0f7a]

	Merge pull request #94 from toscawidgets/feature/yielding-again 30e4c4b3d [https://github.com/toscawidgets/tw2.core/commit/30e4c4b3d1bdda1a04c72b857cf24dbc1d6297cc]

	Metadata fixups, #90 38e306f88 [https://github.com/toscawidgets/tw2.core/commit/38e306f88f6528216d6437b0f905a82f0060b8a5]

	Imported doc fragments from tw2.forms 894b28540 [https://github.com/toscawidgets/tw2.core/commit/894b285407f7548d3a145b999aed40a4ce7283e5]

2.2.0.1

	Provide more info in this traceback. 77efa240f [https://github.com/toscawidgets/tw2.core/commit/77efa240f601d0859a19ee6f9796c1e0d69acb0b]

	Variable, not Param. 03991510e [https://github.com/toscawidgets/tw2.core/commit/03991510ed7c3b5bbfdf188c70d093cdfd7ffefc]

	Update TG2 tutorial to current state of affairs cb481999a [https://github.com/toscawidgets/tw2.core/commit/cb481999a9a696369fd33115b29a7114d3086d72]

	Make some things non-required that were newly required. 14507319d [https://github.com/toscawidgets/tw2.core/commit/14507319dabd84ec6175232c15551709623f7f48]

	Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop f5a00e83d [https://github.com/toscawidgets/tw2.core/commit/f5a00e83d6c02aa22f27cb177bd47cd2b6b82110]

2.2.0

	Support more webob versions. Fixes #77 e071e9d33 [https://github.com/toscawidgets/tw2.core/commit/e071e9d3386c7d73ce6037ba7fac7ff0527b1f5b]

	Constrain webtest version for py2.5. 1214057c1 [https://github.com/toscawidgets/tw2.core/commit/1214057c1e00f896fc7d2c2f48b662325199a127]

	Port to python2/python3 codebase. c1d2b7721 [https://github.com/toscawidgets/tw2.core/commit/c1d2b772163d13b310ffaccc6a9453290e3e447e]

	Travis-CI config update. 21a35d470 [https://github.com/toscawidgets/tw2.core/commit/21a35d4706f4f101aee22283489a6216a017fe54]

	Some py3 fixes for tw2.forms. c82fb090f [https://github.com/toscawidgets/tw2.core/commit/c82fb090fde1ced3b9ad0e8befb5ae1516f1230c]

	@moschlar on the ball. 8b5cdcb81 [https://github.com/toscawidgets/tw2.core/commit/8b5cdcb813a99789ce560ef71fae4e68de35d314]

	Some setup for a port of tw2.devtools to gearbox. 08fd64a11 [https://github.com/toscawidgets/tw2.core/commit/08fd64a110449f87dab83c09e091fa5c04c95186]

	Merge branch ‘feature/2.2’ into develop 4aef579c7 [https://github.com/toscawidgets/tw2.core/commit/4aef579c77c62229d9f23c0018cfdeec73311514]

	Mention tw2.core.DirLink in the docs. Fixes #69. dce1db697 [https://github.com/toscawidgets/tw2.core/commit/dce1db6979d3c3abfae5ca10f05ad536b5a3347d]

	Reference gearbox tw2.browser in the docs. 2562933ee [https://github.com/toscawidgets/tw2.core/commit/2562933ee6868451fe7de8d65f8ad6f6b01034be]

	Include translations in distribution. 2791169fa [https://github.com/toscawidgets/tw2.core/commit/2791169fa7a5d69e7c46ca2cdbf545e24d0752fb]

	Merge pull request #82 from Cito/develop f6d1f0502 [https://github.com/toscawidgets/tw2.core/commit/f6d1f0502b2463ada4bf43c34b2671bc3fa7ce22]

	Fix #84 in archive_tw2_resources 02eec525f [https://github.com/toscawidgets/tw2.core/commit/02eec525f83077d4bb1541e67c9ca5e40a971f1b]

	Merge pull request #85 from toscawidgets/feature/archive_tw2_resources 8791c3236 [https://github.com/toscawidgets/tw2.core/commit/8791c323653f177eff95c9abcb00cd37e9b76a56]

	Add a failing test for #25. 5d7b43a9f [https://github.com/toscawidgets/tw2.core/commit/5d7b43a9f41f7ae2b4f9a7d54792734ddbccdf49]

	Automatically assign widgets an ID. ca81db016 [https://github.com/toscawidgets/tw2.core/commit/ca81db016c06583e37f573c8bec815e7c084dc1a]

	Enforce twc.Required (for #25). 94e61ec52 [https://github.com/toscawidgets/tw2.core/commit/94e61ec529a6ca04581435c1d579e05f5bf8b058]

	Deal with faulout from the twc.Required enforcement. b5063a3c7 [https://github.com/toscawidgets/tw2.core/commit/b5063a3c72b01f4ffd06bd4eec2f11e162ec4c35]

	Merge pull request #87 from toscawidgets/feature/twc.Required 5add35cb9 [https://github.com/toscawidgets/tw2.core/commit/5add35cb9fb1a9e10dab0f5fe37faf4fbf42eca9]

	Method generators are not supported in unittest.TestCase subclasses. 30cb85826 [https://github.com/toscawidgets/tw2.core/commit/30cb8582692b64f75a22bfe62c89e58db49b9dae]

	Support if_empty and let BoolValidator validate None to False. a9d48944a [https://github.com/toscawidgets/tw2.core/commit/a9d48944a8aa70e2d162b85a154b314fe33c3c8e]

	Merge pull request #88 from Cito/develop 2416cefb8 [https://github.com/toscawidgets/tw2.core/commit/2416cefb82ee7805308c61af2bcb4d179a3d0c7c]

	Merge branch ‘hotfix/2.1.6’ a699822e5 [https://github.com/toscawidgets/tw2.core/commit/a699822e56031a1a0aa351f7bae19ff58401af18]

	Merge branch ‘hotfix/2.1.6’ into develop dc99409b9 [https://github.com/toscawidgets/tw2.core/commit/dc99409b970a477a3b2c75096bbf536600a61448]

	Remove the spec file. Fedora has it now. 004c3eda6 [https://github.com/toscawidgets/tw2.core/commit/004c3eda654a100925bab18df09985fdcf7406bc]

2.1.6

	Fix #84 in archive_tw2_resources 65493f6ab [https://github.com/toscawidgets/tw2.core/commit/65493f6ab07b20dc05f1559f6744ac05b688c851]

	Support if_empty and let BoolValidator validate None to False. 4008ee77d [https://github.com/toscawidgets/tw2.core/commit/4008ee77de53a797fcb336c8643dc9a4b6c4a017]

	2.1.6 146d17261 [https://github.com/toscawidgets/tw2.core/commit/146d17261fd03c898f53b13300e30b37f642ac16]

2.1.5

	Make sure future-queued resources make it into the middleware. adb4aec79 [https://github.com/toscawidgets/tw2.core/commit/adb4aec7922f68a11c726629bc916d6968b3cecc]

2.1.4

	Simplify the validator API and make it compatible with FormEncode. 5e5f91afa [https://github.com/toscawidgets/tw2.core/commit/5e5f91afabdef0e54d585acaec2c10f40773f765]

	Merge pull request #75 from Cito/develop eb74470c6 [https://github.com/toscawidgets/tw2.core/commit/eb74470c69546eb5e4ae9576cbb60e340b520a8e]

2.1.3

	Validation docs. 4132ff5f6 [https://github.com/toscawidgets/tw2.core/commit/4132ff5f631794579590499512b14eb0412a6c39]

	Typo fix. Thanks Daniel Lepage. 0fbed935c [https://github.com/toscawidgets/tw2.core/commit/0fbed935c39a38da5046ea4f37f1861bca1c88c1]

	Fixes to tests busted by the introduction of CSSSource. b795f3f2b [https://github.com/toscawidgets/tw2.core/commit/b795f3f2b68964d5d40908fc3004e4443274213d]

	More descriptive ParameterError for invalid ids. 6c06384ff [https://github.com/toscawidgets/tw2.core/commit/6c06384ff72e306029bcef3f8cdde00e7b833690]

	Windows support for resource serving. 0b939179a [https://github.com/toscawidgets/tw2.core/commit/0b939179abbd18eca7987ae6b31ad21e39c9a3d0]

	Added a half-done test of the chained js feature. fe6924f89 [https://github.com/toscawidgets/tw2.core/commit/fe6924f896e64c6244551b47728a91c512dc16ee]

	We won’t actually deprecate tw1-style calling. f63a37c51 [https://github.com/toscawidgets/tw2.core/commit/f63a37c51a27ef1324125d02559a0680f89af9d5]

	Merge branch ‘develop’ into feature/chained-js-calls c5e3f6a1f [https://github.com/toscawidgets/tw2.core/commit/c5e3f6a1fb781e85648ba78f6ef09d7a81fa01da]

	Added class_or_instance properties fb9211eb0 [https://github.com/toscawidgets/tw2.core/commit/fb9211eb09f055b336d1a6d3f32c590043a20536]

	Revert “Added class_or_instance properties” 25df3bd3a [https://github.com/toscawidgets/tw2.core/commit/25df3bd3a06dafb6d42ebed4cde0b7c3733932dc]

	Chaining js calls are back in action. eb7ef5056 [https://github.com/toscawidgets/tw2.core/commit/eb7ef5056f00b6f143e36d57a75d1269271f5737]

	Merge branch ‘feature/chained-js-calls’ into develop 612d52a88 [https://github.com/toscawidgets/tw2.core/commit/612d52a88e1c8128615b70a43afe90d370a4d3d6]

	Version for 2.0.0. 03f6d1280 [https://github.com/toscawidgets/tw2.core/commit/03f6d1280a17dae3ac2c0f7a33856d65fa0954b2]

	Forgot the damn classifier. a780af954 [https://github.com/toscawidgets/tw2.core/commit/a780af954ff1279a840c204ea3212d14567d50cb]

	Merge branch ‘hotfix/classifier’ df2556fec [https://github.com/toscawidgets/tw2.core/commit/df2556fec9f3ab0ec324ce2184e3f65c067ffc0b]

	Merge branch ‘hotfix/classifier’ into develop 22b667946 [https://github.com/toscawidgets/tw2.core/commit/22b667946d6a7fa3ca71d243cffaee4c18463fb0]

	Add coverage to the standard test process. 99400078e [https://github.com/toscawidgets/tw2.core/commit/99400078e7d13888951c3d9ca51a343a927ed991]

	When widgets have key they should be validated by key and not be id edc575014 [https://github.com/toscawidgets/tw2.core/commit/edc5750145fe1e939208daaf4eef6c834d100c92]

	Re-added ancient/missing js_function __str__ behavior discovered in the bowels of moksha. 1d45fe424 [https://github.com/toscawidgets/tw2.core/commit/1d45fe4242d9db17cce8773676f2b77675e8e1d5]

	Demoted queued registration messages from “info” to “debug”. be23347d1 [https://github.com/toscawidgets/tw2.core/commit/be23347d104623355b3664296e11fb0d5c72bd5d]

	Clutch simplejson hacking. fb7c06b66 [https://github.com/toscawidgets/tw2.core/commit/fb7c06b661fa57cb0fe24a0f9d6f82dc987e1a5d]

	Encoding widgets works again. 07fb3c94b [https://github.com/toscawidgets/tw2.core/commit/07fb3c94b2eb9b52066bb47c883e57041df6847a]

	More PEP8. b387fa470 [https://github.com/toscawidgets/tw2.core/commit/b387fa47025c4d09ba8c28bce7895215ac5b417d]

	Found the killer test. d81926c5a [https://github.com/toscawidgets/tw2.core/commit/d81926c5a1108079e5a2525e456ad6a077c776d9]

	Update to that test. 152650597 [https://github.com/toscawidgets/tw2.core/commit/152650597568ce0040fef9442cdb69cda38a899b]

	A stab at handling function composition. Tests pass. 7ae78e03b [https://github.com/toscawidgets/tw2.core/commit/7ae78e03bd791f85d447fc0e3f6b7a6f4f392f74]

	This is clearly unsustainable. c96fb2898 [https://github.com/toscawidgets/tw2.core/commit/c96fb28988f596da3253c25ed8f17527cb9141ca]

	Solve the function composition problem. ff432f26a [https://github.com/toscawidgets/tw2.core/commit/ff432f26a5c0656c17b85a5d4ef57a8050e93ede]

	Merge branch ‘feature/function-composition’ into develop 5f46d5069 [https://github.com/toscawidgets/tw2.core/commit/5f46d506935c1ca9f97923d25b22ae89a9098fcb]

	Some comments in the encoder initialization. a479c7aa5 [https://github.com/toscawidgets/tw2.core/commit/a479c7aa54bddac443922d05e0cd3c9699e6b1de]

	The output of this test changes depending on what other libs are installed. 1b4306160 [https://github.com/toscawidgets/tw2.core/commit/1b4306160dd68898aab617cc2f5c373f1116bea1]

	Abstracted ResourceBundle out of Resource for tw2.jqplugins.ui. 56a6ba35a [https://github.com/toscawidgets/tw2.core/commit/56a6ba35abdc51b9f48f17385fc5e55c4463260b]

	When widget has key and so gets data by key validation was still returning data by id. Now validation returns data by key when available. Also simplify CompoundWidget validation fa197ba30 [https://github.com/toscawidgets/tw2.core/commit/fa197ba30ace8540786f0ea79502074e5c66c15b]

	Cover only the tw2.core package 75001ec74 [https://github.com/toscawidgets/tw2.core/commit/75001ec74fafd35dee012ca3f5b7603b6288768a]

	Fix regression in tw2.sqla. f6089fd7f [https://github.com/toscawidgets/tw2.core/commit/f6089fd7f0caff96063ffb72a67556ca8f7d333a]

	Revert CompoundValidation tweak. Works with tw2.sqla now. Fixes #9. 032994731 [https://github.com/toscawidgets/tw2.core/commit/0329947311d9538ac0f299fcfbe87cb1f20dc477]

	Added a test case for amol’s validation situation. 06ac1b3fb [https://github.com/toscawidgets/tw2.core/commit/06ac1b3fb78a5c2c7187e8556adc6a42836f5eba]

	Supress top-level validator messages if they also apply messages to compound widget children. c144b01f3 [https://github.com/toscawidgets/tw2.core/commit/c144b01f3dd6d4b3e9a61da5e647fd9946c2e11c]

	Correctly supress top-level validator messages. 8b15822e1 [https://github.com/toscawidgets/tw2.core/commit/8b15822e1ad6c29ff6f1d4ca31c4bd1db3da2aae]

	Write test to better test CompoundWidget error reporting 74dd87075 [https://github.com/toscawidgets/tw2.core/commit/74dd87075b5e3f82ce9c9fb4768326bdf4484d8d]

	Handle unspecified childerror case uncovered by latest test. e94c80341 [https://github.com/toscawidgets/tw2.core/commit/e94c8034173c461074f4d2364d32f8f3dc3ee871]

	Differentiated test names. 5a7ef40cc [https://github.com/toscawidgets/tw2.core/commit/5a7ef40cc09934b95d0d2e31cc5ab751774f7b22]

	Compatibility with dreadpiratebob and percious’s tree. af7a2e6b8 [https://github.com/toscawidgets/tw2.core/commit/af7a2e6b867bca63b09b5be90f2ca01bfb506f4b]

	Avoid receiving None instead of the object itself when object evaluates to False e8c513c3a [https://github.com/toscawidgets/tw2.core/commit/e8c513c3a7b9b3a753937b69cae80b790dde90f1]

	2.0.1 release. c056c88f6 [https://github.com/toscawidgets/tw2.core/commit/c056c88f6b2627c2ed0bdd07026508580da0ea2e]

	Initial RPM spec. 12cec0ed8 [https://github.com/toscawidgets/tw2.core/commit/12cec0ed8f656b3da5167953cffe4fffe2191596]

	Rename. 5ebc78d87 [https://github.com/toscawidgets/tw2.core/commit/5ebc78d87b08f6a3f855b35aa4ff3ef02b162b1b]

	Removed changelog. It’s from the way back tw1 days. eb5fdcc65 [https://github.com/toscawidgets/tw2.core/commit/eb5fdcc6565726a119187571114c8b89dba9b058]

	Skipping tests that rely on tw2.forms and yuicompressor. c7ae7984a [https://github.com/toscawidgets/tw2.core/commit/c7ae7984abfb3c6f503ebd98e72463a81d286d2c]

	We don’t actually require weberror. 7b269e77e [https://github.com/toscawidgets/tw2.core/commit/7b269e77e3fffb39d571106a0c787e133a813a9a]

	Include test data for koji builds. 3f61860d3 [https://github.com/toscawidgets/tw2.core/commit/3f61860d34abeff824d98bb4395a26c50545d9b6]

	First iteration of the new rpm. It actually built in koji. 6b924cdda [https://github.com/toscawidgets/tw2.core/commit/6b924cdda03d134f728721a9424ade88bd853336]

	exception value wasn’t required and breaks compatibility with Python2.5 de857ce6e [https://github.com/toscawidgets/tw2.core/commit/de857ce6ed4b15eeadb0433cc6ede63464dd0bcf]

	Merge pull request #16 from amol-/develop 0e9faf439 [https://github.com/toscawidgets/tw2.core/commit/0e9faf4393b29a4b3c8f34b3f1fd041a02f7c129]

	More Py2.5 compat. 057ac45bb [https://github.com/toscawidgets/tw2.core/commit/057ac45bbba01ebd1e38144108445cd36efe11d2]

	2.0.2 release with py2.5 bugfixes for TG. bd8304957 [https://github.com/toscawidgets/tw2.core/commit/bd830495770f95f4d0bfdfb21a98662d15f7ab30]

	Specfile update for 2.0.2. d9aeb76b3 [https://github.com/toscawidgets/tw2.core/commit/d9aeb76b31687b516a2f4871a52bc70bb8500e27]

	Changed executable bit for files that should/shouldn’t have it. 4d77e3043 [https://github.com/toscawidgets/tw2.core/commit/4d77e30437be3d66aa5af9f1671d802b51e85654]

	Exclude .pyc files from template directories. 4d281c684 [https://github.com/toscawidgets/tw2.core/commit/4d281c6840edee64a58bfd4b3d17ba3f8ab92a7d]

	Version bump for rpm fixes. a76db4c94 [https://github.com/toscawidgets/tw2.core/commit/a76db4c942c7eeb353d02086f3b0489f64ade1bb]

	Remove pyc files from the sdist package. Weird. da3ddaea1 [https://github.com/toscawidgets/tw2.core/commit/da3ddaea1a0049168a673739a87711e0c3e4fceb]

	Switched links in the doc from old blog to new blog. 8f7332fd1 [https://github.com/toscawidgets/tw2.core/commit/8f7332fd150d330ef9040fe7bf1309560ebfe23f]

	Be more careful with the multiprocessing,logging import hack. a8857267e [https://github.com/toscawidgets/tw2.core/commit/a8857267e6c682fdb770b8a9d72f2de47c6fab92]

	Compatibility with older versions of simplejson. 64d16f234 [https://github.com/toscawidgets/tw2.core/commit/64d16f234f8aec46a23d4a92e9da53e5e8c77a87]

	Test suite fixes on py2.6. e37b7e1c6 [https://github.com/toscawidgets/tw2.core/commit/e37b7e1c6dc20bd155d59060a170a90e7d8eb204]

	2.0.4 with improved py2.6 support. 7b6784e1d [https://github.com/toscawidgets/tw2.core/commit/7b6784e1df26079ca4e154d7bf5160f87d09f9b3]

	A little more succint in the middleware. 5cc582cd9 [https://github.com/toscawidgets/tw2.core/commit/5cc582cd9e53cf0536ea992eec85a7c208ae068c]

	Allow streaming html responses to pass through the middleware untouched. 3f4a5a4b9 [https://github.com/toscawidgets/tw2.core/commit/3f4a5a4b91bbea9534760d7ea3497fea0513e157]

	Simple formatting in the spec. d7020a9fa [https://github.com/toscawidgets/tw2.core/commit/d7020a9fae23cdd0c7bdf7edd8cbaa7b3fb779d2]

	Version bump. 48768720b [https://github.com/toscawidgets/tw2.core/commit/48768720bd5488b70116a96cbe02fad2f9eefaf4]

	Stripped out explicit references to kid and cheetah. 595ba7c6c [https://github.com/toscawidgets/tw2.core/commit/595ba7c6c84e5f8201760dc96eb71b5fc8bb4058]

	Removed unused reference to reset_engine_name_cache. 0e4c40e64 [https://github.com/toscawidgets/tw2.core/commit/0e4c40e6491783149beb7d82e0cbd092b7248dae]

	Removed unnecessary “reset_engine_name_cache” 2b3ed27a7 [https://github.com/toscawidgets/tw2.core/commit/2b3ed27a7b629e997b0c48c5d7354aed181fb0b8]

	Removed a few leftover references to kid. 1755fd14a [https://github.com/toscawidgets/tw2.core/commit/1755fd14aac5691d1688a89ad97e56b2ac7f081e]

	More appropriate variable name. 1c27c620a [https://github.com/toscawidgets/tw2.core/commit/1c27c620a55c2db67abaf351716c1cf1fe30cc6f]

	First rewrite of templating system. 283367bb8 [https://github.com/toscawidgets/tw2.core/commit/283367bb8d0ffb54b723351862069092085b6345]

	Template caching. 4d16358e0 [https://github.com/toscawidgets/tw2.core/commit/4d16358e0a58b9d83e8e0abd8a4f364fda8ca2fe]

	First stab at jinja2 support. 17d17234a [https://github.com/toscawidgets/tw2.core/commit/17d17234ac00d12aad6e4c4de1e5a3a9f1e06469]

	Update to the docs. e9658290b [https://github.com/toscawidgets/tw2.core/commit/e9658290beebe5792cf52f3b00c4adaf24eb6920]

	Massive dos2unix pass. For good health. e74bbc42b [https://github.com/toscawidgets/tw2.core/commit/e74bbc42bec3378e79d279b2d1a2d1c9682ee8fa]

	PEP8. 62d256c4d [https://github.com/toscawidgets/tw2.core/commit/62d256c4d3b44f0f8dc206f8dada86762dc1e477]

	Reference email thread regarding “displays_on” 25ffcd339 [https://github.com/toscawidgets/tw2.core/commit/25ffcd33943d132308ffaa6dfea1a24ea7e7bf12]

	Added support for kajiki. f809d1a5d [https://github.com/toscawidgets/tw2.core/commit/f809d1a5dbee8b45e624b5c954356df1b9116df9]

	Default templates for kajiki and jinja. 9a170d3cb [https://github.com/toscawidgets/tw2.core/commit/9a170d3cb51e071fc3fcb1de4aeec86aa9f18d97]

	More robust testing of new templates. 55f1fbe0a [https://github.com/toscawidgets/tw2.core/commit/55f1fbe0a6a49bff25514cf40c7149fae43eb513]

	Pass filename to mako templates for easier debugging. 5e63adcbe [https://github.com/toscawidgets/tw2.core/commit/5e63adcbed071464ef0b10096a3338600561886b]

	More correct dotted template loading. 07b67c84d [https://github.com/toscawidgets/tw2.core/commit/07b67c84dae7d181f4e0fe24a5fe8a3423c1b6ae]

	Added support for chameleon. fa8c160d4 [https://github.com/toscawidgets/tw2.core/commit/fa8c160d4e8d8c3ab33d8433446197774730a8e2]

	Default chameleon templates. 69de63cf6 [https://github.com/toscawidgets/tw2.core/commit/69de63cf6f9d29a8431936879b7b3b60cb46dc1b]

	Updated docs with kajiki and chameleon. ef291ce4a [https://github.com/toscawidgets/tw2.core/commit/ef291ce4a7cd353ea1be85faed0340c06d8423e2]

	Added three tests for http://bit.ly/KNYAxq 0e775ab1e [https://github.com/toscawidgets/tw2.core/commit/0e775ab1ea81d09417e502585f452392e4646a3c]

	Resurrecting the smarter logic of the “other” tw encoder. Hurray for git history. 1379196d3 [https://github.com/toscawidgets/tw2.core/commit/1379196d338e801c04080a63843ab138077683b6]

	Added test for #12. Passes. b6bbf92a4 [https://github.com/toscawidgets/tw2.core/commit/b6bbf92a4ff87135dcc2a4af23b0bef7e677a125]

	Use __name__ in tests. fbe2b6979 [https://github.com/toscawidgets/tw2.core/commit/fbe2b697930e6a8ff9a124a4aab27ba34e7c3def]

	Added failing test for Issue #18. e962a03fb [https://github.com/toscawidgets/tw2.core/commit/e962a03fbe15f830bd10e276b7ad3d5c4bac9ee3]

	Merge pull request #21 from toscawidgets/feature/multiline-js c9e0ada6f [https://github.com/toscawidgets/tw2.core/commit/c9e0ada6f2bb8955c2320dc873abb0adae35f186]

	Merge branch ‘develop’ into feature/template-sys b32a024c3 [https://github.com/toscawidgets/tw2.core/commit/b32a024c3d023237fade1b78e0553ee7960bfc33]

	Merge branch ‘develop’ into feature/issue-18 5b1c1dadf [https://github.com/toscawidgets/tw2.core/commit/5b1c1dadf66ea298a08b6c1072c7e2ff3eb7e8eb]

	Guess modname in post_define. Fixes #18. d3d2aeb35 [https://github.com/toscawidgets/tw2.core/commit/d3d2aeb35a973e75c947ff9ecae9d9350b51ea60]

	Merge branch ‘feature/issue-18’ into develop 4f0d496fc [https://github.com/toscawidgets/tw2.core/commit/4f0d496fc671d06bc0b0aceab2625e2e8360eb88]

	Version bump - 2.0.6. ea7637a20 [https://github.com/toscawidgets/tw2.core/commit/ea7637a20c422c91e0454040d48af1e6182aad4b]

	Don’t check for ‘not value’ in base to_python. Messes up on cgi.FieldStorage. 204e20fbd [https://github.com/toscawidgets/tw2.core/commit/204e20fbdec27672547f26b19f0fc3eccbee3df0]

	Added a note to the docs about altering JSLink links. Fixes #15. 28e458fe4 [https://github.com/toscawidgets/tw2.core/commit/28e458fe448466631848fcacba35be467dab7e27]

	dos2unix pass on the docs/ folder. ce4f813e7 [https://github.com/toscawidgets/tw2.core/commit/ce4f813e72449abca9b205b21143fae452c52cd1]

	Typo fix. 34fee8fa9 [https://github.com/toscawidgets/tw2.core/commit/34fee8fa9095b00614a94e21b99e5cf46484ae25]

	Trying out travis-ci. 8e9414ae0 [https://github.com/toscawidgets/tw2.core/commit/8e9414ae081e62ee191ad9e2783c149f5583fa97]

	Trying out travis-ci. abc5b4161 [https://github.com/toscawidgets/tw2.core/commit/abc5b41611756e64b7661a4b2df6fe1d93bc19e2]

	Updates for testing on py2.5 and py2.6. 56ce437ef [https://github.com/toscawidgets/tw2.core/commit/56ce437ef3ffac6aa33a92b4c56c3186ebc10b84]

	Merge branch ‘develop’ 0f4b81113 [https://github.com/toscawidgets/tw2.core/commit/0f4b81113b7d24cd795888ee01d67ba973bf9e8a]

	Added build table to the README. 4da336497 [https://github.com/toscawidgets/tw2.core/commit/4da3364971f0c76604c595ae4e840f474633d06f]

	Merge branch ‘develop’ into feature/template-sys 832435945 [https://github.com/toscawidgets/tw2.core/commit/832435945ffcdcb5608225d38e7262d09c16ce01]

	Python2.5 support. 66e93b66d [https://github.com/toscawidgets/tw2.core/commit/66e93b66d89a8670d4763560eb34ade94e15195c]

	JS and CSSSource require a .src attr. ca02d9713 [https://github.com/toscawidgets/tw2.core/commit/ca02d9713caeb773179b4163eedc07f8fe6775d3]

	Use mirrors for travis. b504714da [https://github.com/toscawidgets/tw2.core/commit/b504714da536dc7e1603349b7c987989485a1a77]

	Revert “Use mirrors for travis.” 9fc882050 [https://github.com/toscawidgets/tw2.core/commit/9fc8820509518b6af112c69dea3a9c5e70a13c15]

	Fixed mako and genshi problems in new templating system found by testing against tw2.devtools. 41b8e5264 [https://github.com/toscawidgets/tw2.core/commit/41b8e52649683333857dbf36bef583c9ae57b736]

	Version bump – 2.1.0a ft. templating system rewrite. c89009332 [https://github.com/toscawidgets/tw2.core/commit/c890093324aef0df7b5ffc47f1c74cab2063dd05]

	Ship new templates with the source dist. 2fb6cf8da [https://github.com/toscawidgets/tw2.core/commit/2fb6cf8dadef8ca890fabf9b3b5445c6d1c9e51c]

	Attribute filename for jinja and kajiki. d130c3c9f [https://github.com/toscawidgets/tw2.core/commit/d130c3c9f17e13984bc9d28d3601dcfdfa5f6ca6]

	Provide an option for WidgetTest to exclude engines. c822b2a66 [https://github.com/toscawidgets/tw2.core/commit/c822b2a6699c98a87bf7dbe9510d7709c023b5d0]

	2.1.0a4 - Fix bug in automatic resource registration. efcd51724 [https://github.com/toscawidgets/tw2.core/commit/efcd51724cb4bd7360ece576d9cc195c442c8944]

	Support template inheritance at Rene van Paassen’s request. fc58e929a [https://github.com/toscawidgets/tw2.core/commit/fc58e929ac6cd04eb3bb698eff9249f97b85d31c]

	Version bump for template inheritance. 6b6658870 [https://github.com/toscawidgets/tw2.core/commit/6b6658870485299cde517788b59e3917cf25666e]

	Fix required Keyword for Date*Validators 14196d9ce [https://github.com/toscawidgets/tw2.core/commit/14196d9ce4a3e427c9d5e07073f695acf2d074c4]

	Bridge the tw2/formencode API divide. 547357c7f [https://github.com/toscawidgets/tw2.core/commit/547357c7fa9bc51dc7e8d47d44bbc4d56f1372af]

	Make rendering_extension_lookup propagate up to templating layer 8d89dabd8 [https://github.com/toscawidgets/tw2.core/commit/8d89dabd8a675c6d6e7d677588f436dab38048ee]

	Added test for #30. Oddly, it passes 7d1d83852 [https://github.com/toscawidgets/tw2.core/commit/7d1d83852d4790c1b2c17ee03941e7dbb1faeb9a]

	Trying even harder to test #30. b66b59ff5 [https://github.com/toscawidgets/tw2.core/commit/b66b59ff512b70e0bb4237bf14c85898d0626bb1]

	Version bump to 2.1.0b1. 3483107a6 [https://github.com/toscawidgets/tw2.core/commit/3483107a6320fca2595c76ecff60be9762318649]

	Puny py2.5 has no context managers. cb1e821c8 [https://github.com/toscawidgets/tw2.core/commit/cb1e821c87e8b44d9da7c52c9e0812d8b391d048]

	PEP8. Cosmetic. 50d88cc93 [https://github.com/toscawidgets/tw2.core/commit/50d88cc9326b470326d04b7983f81e3982338662]

	Future-proofing. @amol- is a rockstar. bb006dfeb [https://github.com/toscawidgets/tw2.core/commit/bb006dfeb5107fb3fb1e43eb5128c205d1b3867b]

	Conform with formencode. Fixes #28. f3bf2a821 [https://github.com/toscawidgets/tw2.core/commit/f3bf2a821e1f9f7730e8ea8441918d063d1a5025]

	Improve handling of template path names under Windows. e2bbeb29c [https://github.com/toscawidgets/tw2.core/commit/e2bbeb29ce6c193bb319a129a83616585484adb1]

	Borrowed backport of os.path.relpath for py2.5. Related to #30. f29337629 [https://github.com/toscawidgets/tw2.core/commit/f293376292ad703d9860c242d965535c28a76ac4]

	Whoops. Forgot to use the new relpath. #30. f308bef92 [https://github.com/toscawidgets/tw2.core/commit/f308bef9232817c1edf072c8370ef823e5a481da]

	Use util.relpath instead of os.path.relpath. 3c302eaac [https://github.com/toscawidgets/tw2.core/commit/3c302eaac3c4eac565138be652d5be3e60c64421]

	.req() returns the validated widget is one exists. be8f39404 [https://github.com/toscawidgets/tw2.core/commit/be8f39404c585f44ffb9333e1aa0f2e82ee951e5]

	Use **kw even when pulling in the validated widget. f78492be9 [https://github.com/toscawidgets/tw2.core/commit/f78492be9406335cead45da79e429ffbf48efdce]

	Trying to duplicate an issue with Deferred. cefbbfd73 [https://github.com/toscawidgets/tw2.core/commit/cefbbfd739c1b803039a9dded72098db8fc540b3]

	Tests for #41. 7c61047b9 [https://github.com/toscawidgets/tw2.core/commit/7c61047b9585e0f4a584a4c7389d213f2f3a24d4]

	Handle arguments to display() called as instance method. 86894492d [https://github.com/toscawidgets/tw2.core/commit/86894492d5c1565c7d49747bde8f5c848dbc9b61]

	Cosmetic. b94180f25 [https://github.com/toscawidgets/tw2.core/commit/b94180f25b41f4f6c73a115bc6456c4f23b4ce6c]

	Found the failing test for @amol-‘s case. 284c66a38 [https://github.com/toscawidgets/tw2.core/commit/284c66a386a4cb76c351ec6b6dd21fcf229080e3]

	Allow Deferred as kwarg to .display(). d4c6dcfc6 [https://github.com/toscawidgets/tw2.core/commit/d4c6dcfc68d46e7dc6c384ee0524d1fdce951aa2]

	Second beta 2.1.0b2 to verify some bugfixes. b6ff67ab7 [https://github.com/toscawidgets/tw2.core/commit/b6ff67ab72fd3ac8dd7544af98b66ee83bd27413]

	Failing test for Deferred. d26389d13 [https://github.com/toscawidgets/tw2.core/commit/d26389d13e498a90ba625189c41e79e932244b48]

	@amol-‘s fix for the Deferred subclassing problem. c08c0508b [https://github.com/toscawidgets/tw2.core/commit/c08c0508b07643fc0e1bbf99f5a7a9866e05edc3]

	2.1.0. 725fd6aba [https://github.com/toscawidgets/tw2.core/commit/725fd6aba59553222d7e7ca1be34ba27ae5f4f43]

	Fixup copyright date bc509ca66 [https://github.com/toscawidgets/tw2.core/commit/bc509ca66c861c16702efa4990067d93e63c1dd3]

	avoid issues with unicode error messages b5a314de7 [https://github.com/toscawidgets/tw2.core/commit/b5a314de760e3e4809cc0056ab4af2422e71a775]

	Link to rtfd from README. 1269dff73 [https://github.com/toscawidgets/tw2.core/commit/1269dff73c670150d5498b8707e1d2fa5233ffe4]

	Added jinja filter to take care of special case html bolean attributes such as radio checked} da25dbfaf [https://github.com/toscawidgets/tw2.core/commit/da25dbfafda1a593aa01bc01a31ef1c1c7bfd89f]

	Added htmlbools filter to jinja templates fb00eac66 [https://github.com/toscawidgets/tw2.core/commit/fb00eac669c5fca1fe177e054e503faabbd14a0a]

	Fixed corner case which produced harmless but incorrect output if the special case attribute value is False 38a4505b8 [https://github.com/toscawidgets/tw2.core/commit/38a4505b89b232b8283e675c514d040750b2e516]

	Merge pull request #48 from clsdaniel/develop 270784d5a [https://github.com/toscawidgets/tw2.core/commit/270784d5a339e2402a0cf5234e668028ed3a3a3f]

	Removed commented-out lines. 55af65d6c [https://github.com/toscawidgets/tw2.core/commit/55af65d6c95107450187be0df4e5c0bc65a9d0bd]

	2.1.1 for jinja updates and misc bugfixes. 0ff5ffcd2 [https://github.com/toscawidgets/tw2.core/commit/0ff5ffcd26b731e511b6b51b250190f6de962cec]

	Since 2.0 autoescaping in widgets got lost due to new templates management 59f478fb5 [https://github.com/toscawidgets/tw2.core/commit/59f478fb5471e11bdc34903df69e924060616c5f]

	Mark attrs as Markup to avoid double escaping 5e138ace2 [https://github.com/toscawidgets/tw2.core/commit/5e138ace2c90cb07f09fb577f3f70e251a1deba2]

	Mark as already escape JSFuncCall too and update test to check the result for all the template engines 7c0c60ae2 [https://github.com/toscawidgets/tw2.core/commit/7c0c60ae24006e84f44f788224d08f7b68428759]

	Merge pull request #49 from amol-/develop f6a3dda84 [https://github.com/toscawidgets/tw2.core/commit/f6a3dda8411307c990b2d62c2de040c92532985f]

	Add proper escaping for JS and CSS sources af6d233df [https://github.com/toscawidgets/tw2.core/commit/af6d233dfa71bbf470d5e3e3f266a00978ba69f6]

	Merge pull request #50 from amol-/develop e99f82879 [https://github.com/toscawidgets/tw2.core/commit/e99f82879532f012b43554bd4ad2784ba9702a3e]

	Provide a Widget compound_key make available a compound_key attribute which can be used by tw2.forms as the default value for FormField name argument ee571a215 [https://github.com/toscawidgets/tw2.core/commit/ee571a215267de2da2b663e74417b7cb2509ecf0]

	Version bump, 2.1.2. 1b64e3f83 [https://github.com/toscawidgets/tw2.core/commit/1b64e3f836d6704661e8873f1213df78399c3d87]

	Allow inline templates with no markup. de19fa2b3 [https://github.com/toscawidgets/tw2.core/commit/de19fa2b355c2dec46a520ab4e6e0682177f29cf]

	PEP8. c2da40a1b [https://github.com/toscawidgets/tw2.core/commit/c2da40a1b528e6cc48ff2ae7b90ce67f831d0b9a]

	Test that reveals a bug in tw2.jqplugins. 6a88d0413 [https://github.com/toscawidgets/tw2.core/commit/6a88d0413a0ec4972cb72c0e22f36a23e9a7c3ae]

	Do not translate empty strings, this does not work. e4f29829d [https://github.com/toscawidgets/tw2.core/commit/e4f29829d6362902b297bc841e753d1bd3c4c055]

	Merge pull request #53 from Cito/develop 168f2727f [https://github.com/toscawidgets/tw2.core/commit/168f2727f93a80ee832fe1d8bc0616ec44be0fe0]

	Add translations and passing lang via middleware a10a14e26 [https://github.com/toscawidgets/tw2.core/commit/a10a14e260aa0f459d8586f4066c7c2519a2f58c]

	Merge pull request #59 from Cito/develop cbf603238 [https://github.com/toscawidgets/tw2.core/commit/cbf603238ddc9b0f2b201fe5e5a927c8d65473ba]

	Inject CSS/JSSource only once. ae13c369a [https://github.com/toscawidgets/tw2.core/commit/ae13c369a552cb71c1156a817412582f6454406f]

	Merge pull request #61 from Cito/develop bb5c2a225 [https://github.com/toscawidgets/tw2.core/commit/bb5c2a225a739c7cf7434dcca20623a3bdef2f0b]

	Test blank validator for both None and empty string. 1167286c3 [https://github.com/toscawidgets/tw2.core/commit/1167286c392b6dc7e0a09972006c4b8ae5a36300]

	Add some more translations. 32374168d [https://github.com/toscawidgets/tw2.core/commit/32374168d79f00b15c59ff0696b6b3d238ab0f30]

	Merge pull request #64 from Cito/develop 50fc09a24 [https://github.com/toscawidgets/tw2.core/commit/50fc09a24d888d12e711f4ccda0e39b0bba1a7fe]

	Fix #63. df2920d83 [https://github.com/toscawidgets/tw2.core/commit/df2920d83de2366993334f581744fede2877600b]

	Added a note about the add_call method to the design doc. e901b1243 [https://github.com/toscawidgets/tw2.core/commit/e901b124342b73ad69cf5210fdb9dadd008d4d0a]

	Reference js_* docstrings from design doc. Fixes #58. 55001c742 [https://github.com/toscawidgets/tw2.core/commit/55001c742bb3d3df56ef8d5eef806feac1c66869]

	General docs cleanup. 144d5cfbb [https://github.com/toscawidgets/tw2.core/commit/144d5cfbb63e85b37bb9786cdc6bd71f4a1f0e99]

	Fix broken links to tw2.core-docs-pyramid 14e5223e2 [https://github.com/toscawidgets/tw2.core/commit/14e5223e2b4e8c6a2f75060331b036a0ad34a799]

	Fix broken links to tw2.core-docs-turbogears 55a333b1c [https://github.com/toscawidgets/tw2.core/commit/55a333b1c6b2959e600d5d0ba99edcf582226919]

	Merge pull request #66 from lukasgraf/lg-doc-url-fixes 4d123d0b1 [https://github.com/toscawidgets/tw2.core/commit/4d123d0b1d6636c43d8cf3e6bbe6512f5954a012]

	provide compatibility with formencode validators c382eed46 [https://github.com/toscawidgets/tw2.core/commit/c382eed46d8339ceb75440ed4d998abf1160a150]

	Merge pull request #71 from amol-/develop 65b9550ca [https://github.com/toscawidgets/tw2.core/commit/65b9550ca12c97df850bc7941de87501e5cb2346]

	Link to github bug tracker from docs. Fixes #67. f849b5d03 [https://github.com/toscawidgets/tw2.core/commit/f849b5d035206069399fef978eb3e4c02c63ea45]

	pass on state value in validation. 7c6791d80 [https://github.com/toscawidgets/tw2.core/commit/7c6791d802f854b8b1708e0928e24b889726989f]

	Updated pyramid docs. Fixes #23. 9547108fb [https://github.com/toscawidgets/tw2.core/commit/9547108fbf90cc84983f9a069d0fedea83aa1c07]

	Don’t let add_call pile-up new js resources. f1d698c55 [https://github.com/toscawidgets/tw2.core/commit/f1d698c5500bb14799845c332e4fd81906e21949]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tw2	

 	
 	
 tw2.core.js	

 	
 	
 tw2.core.resources	

 	
 	
 tw2.core.validation	

 	
 	
 tw2.core.widgets	

 	
 	
 tw2.forms.widgets	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_call (tw2.core.widgets.Widget attribute)

 	All (class in tw2.core.validation)

 	
 	Any (class in tw2.core.validation)

 	autofocus (tw2.forms.widgets.InputField attribute)

B

 	
 	BaseLayout (class in tw2.forms.widgets), [1]

 	BlankValidator (class in tw2.core.validation)

 	
 	BoolValidator (class in tw2.core.validation)

 	Button (class in tw2.forms.widgets)

C

 	
 	catch (in module tw2.core.validation)

 	CheckBox (class in tw2.forms.widgets)

 	CheckBoxList (class in tw2.forms.widgets)

 	CheckBoxTable (class in tw2.forms.widgets)

 	checked (tw2.forms.widgets.RadioButton attribute)

 	child (tw2.forms.widgets.GridLayout attribute), [1]

 	(tw2.forms.widgets.ListFieldSet attribute)

 	(tw2.forms.widgets.ListForm attribute)

 	(tw2.forms.widgets.TableFieldSet attribute)

 	(tw2.forms.widgets.TableForm attribute)

 	
 	ColorField (class in tw2.forms.widgets)

 	cols (tw2.forms.widgets.TextArea attribute)

 	CompoundValidator (class in tw2.core.validation)

 	CompoundWidget (class in tw2.core.widgets)

 	Config (class in tw2.core.middleware)

 	controller_path (tw2.core.widgets.Widget attribute)

 	CSSLink (class in tw2.core.resources)

 	CSSSource (class in tw2.core.resources)

D

 	
 	DateTimeValidator (class in tw2.core.validation)

 	DateValidator (class in tw2.core.validation)

 	Deferred (class in tw2.core)

 	
 	DirLink (class in tw2.core.resources)

 	display (tw2.core.widgets.Widget attribute)

 	DisplayOnlyWidget (class in tw2.core.widgets)

E

 	
 	EmailField (class in tw2.forms.widgets)

 	
 	EmailValidator (class in tw2.core.validation)

F

 	
 	FieldSet (class in tw2.forms.widgets)

 	FileField (class in tw2.forms.widgets)

 	FileValidator (class in tw2.forms.widgets)

 	
 	Form (class in tw2.forms.widgets), [1]

 	FormField (class in tw2.forms.widgets)

 	FormPage (class in tw2.forms.widgets)

 	from_python() (tw2.core.validation.Validator method)

G

 	
 	generate_output() (tw2.core.widgets.Widget method)

 	get_link() (tw2.core.widgets.Widget class method)

 	
 	GridLayout (class in tw2.forms.widgets), [1]

 	guess_modname() (tw2.core.resources.Link class method)

H

 	
 	HiddenField (class in tw2.forms.widgets)

 	HTML5MinMaxMixin (class in tw2.forms.widgets)

 	
 	HTML5NumberMixin (class in tw2.forms.widgets)

 	HTML5PatternMixin (class in tw2.forms.widgets)

 	HTML5StepMixin (class in tw2.forms.widgets)

I

 	
 	IgnoredField (class in tw2.forms.widgets)

 	ImageButton (class in tw2.forms.widgets)

 	InputField (class in tw2.forms.widgets)

 	
 	IntValidator (class in tw2.core.validation)

 	IpAddressValidator (class in tw2.core.validation)

 	item_validator (tw2.forms.widgets.MultipleSelectionField attribute)

 	iteritems() (tw2.core.widgets.Widget method)

J

 	
 	js_callback (class in tw2.core.js)

 	js_function (class in tw2.core.js)

 	
 	js_symbol (class in tw2.core.js)

 	JSLink (class in tw2.core.resources)

 	JSSource (class in tw2.core.resources)

L

 	
 	Label (class in tw2.forms.widgets)

 	LabelField (class in tw2.forms.widgets)

 	LeafWidget (class in tw2.core.widgets)

 	LengthValidator (class in tw2.core.validation)

 	Link (class in tw2.core.resources)

 	
 	LinkField (class in tw2.forms.widgets)

 	ListFieldSet (class in tw2.forms.widgets)

 	ListForm (class in tw2.forms.widgets)

 	ListLayout (class in tw2.forms.widgets), [1]

 	ListLengthValidator (class in tw2.core.validation)

M

 	
 	MatchValidator (class in tw2.core.validation)

 	maxlength (tw2.forms.widgets.TextFieldMixin attribute)

 	
 	message (tw2.core.validation.ValidationError attribute)

 	MultipleSelectField (class in tw2.forms.widgets)

 	MultipleSelectionField (class in tw2.forms.widgets)

N

 	
 	name (tw2.forms.widgets.FormField attribute)

 	
 	NumberField (class in tw2.forms.widgets)

O

 	
 	OneOfValidator (class in tw2.core.validation)

 	
 	options (tw2.forms.widgets.SelectionField attribute)

P

 	
 	Page (class in tw2.core.widgets)

 	Param (class in tw2.core)

 	PasswordField (class in tw2.forms.widgets)

 	placeholder (tw2.forms.widgets.TextFieldMixin attribute)

 	post_define() (tw2.core.resources.Link class method)

 	(tw2.core.widgets.CompoundWidget class method)

 	(tw2.core.widgets.DisplayOnlyWidget class method)

 	(tw2.core.widgets.Page class method)

 	(tw2.core.widgets.RepeatingWidget class method)

 	(tw2.core.widgets.Widget class method)

 	(tw2.forms.widgets.Form class method), [1]

 	PostlabeledInputField (class in tw2.forms.widgets)

 	prepare() (tw2.core.widgets.CompoundWidget method)

 	(tw2.core.widgets.DisplayOnlyWidget method)

 	(tw2.core.widgets.RepeatingWidget method)

 	(tw2.core.widgets.Widget method)

 	(tw2.forms.widgets.BaseLayout method), [1]

 	(tw2.forms.widgets.CheckBox method)

 	(tw2.forms.widgets.FileField method)

 	(tw2.forms.widgets.Form method), [1]

 	(tw2.forms.widgets.ImageButton method)

 	(tw2.forms.widgets.InputField method)

 	(tw2.forms.widgets.LinkField method)

 	(tw2.forms.widgets.MultipleSelectionField method)

 	(tw2.forms.widgets.PasswordField method)

 	(tw2.forms.widgets.RowLayout method), [1]

 	(tw2.forms.widgets.SelectionField method)

 	(tw2.forms.widgets.SelectionTable method)

 	(tw2.forms.widgets.VerticalSelectionTable method)

 	
 	prompt_text (tw2.forms.widgets.SelectionField attribute)

R

 	
 	RadioButton (class in tw2.forms.widgets)

 	RadioButtonList (class in tw2.forms.widgets)

 	RadioButtonTable (class in tw2.forms.widgets)

 	RangeField (class in tw2.forms.widgets)

 	RangeValidator (class in tw2.core.validation)

 	RegexValidator (class in tw2.core.validation)

 	RepeatingWidget (class in tw2.core.widgets)

 	
 	req() (tw2.core.widgets.Widget class method)

 	required (tw2.forms.widgets.FormField attribute)

 	(tw2.forms.widgets.InputField attribute)

 	ResetButton (class in tw2.forms.widgets)

 	Resource (class in tw2.core.resources)

 	ResourceBundle (class in tw2.core.resources)

 	RowLayout (class in tw2.forms.widgets), [1]

 	rows (tw2.forms.widgets.TextArea attribute)

S

 	
 	SearchField (class in tw2.forms.widgets)

 	SelectionField (class in tw2.forms.widgets)

 	SelectionList (class in tw2.forms.widgets)

 	SelectionTable (class in tw2.forms.widgets)

 	SeparatedCheckBoxTable (class in tw2.forms.widgets)

 	SeparatedRadioButtonTable (class in tw2.forms.widgets)

 	SeparatedSelectionTable (class in tw2.forms.widgets)

 	SingleSelectField (class in tw2.forms.widgets)

 	
 	size (tw2.forms.widgets.MultipleSelectField attribute)

 	(tw2.forms.widgets.TextField attribute)

 	Spacer (class in tw2.forms.widgets)

 	StringLengthValidator (class in tw2.core.validation)

 	StripBlanks (class in tw2.forms.widgets)

 	submit (tw2.forms.widgets.Form attribute), [1]

 	(tw2.forms.widgets.ListForm attribute)

 	(tw2.forms.widgets.TableForm attribute)

 	SubmitButton (class in tw2.forms.widgets)

T

 	
 	TableFieldSet (class in tw2.forms.widgets)

 	TableForm (class in tw2.forms.widgets)

 	TableLayout (class in tw2.forms.widgets), [1]

 	text (tw2.forms.widgets.PostlabeledInputField attribute)

 	text_attrs (tw2.forms.widgets.PostlabeledInputField attribute)

 	TextArea (class in tw2.forms.widgets)

 	TextField (class in tw2.forms.widgets)

 	TextFieldMixin (class in tw2.forms.widgets)

 	to_python() (tw2.core.validation.BlankValidator method)

 	(tw2.core.validation.Validator method)

 	(tw2.forms.widgets.StripBlanks method)

 	
 	tw2.core.js (module)

 	tw2.core.resources (module)

 	tw2.core.validation (module)

 	tw2.core.widgets (module)

 	tw2.forms.widgets (module)

 	TwMiddleware (class in tw2.core.middleware)

 	type (tw2.forms.widgets.InputField attribute)

U

 	
 	unflatten_params() (in module tw2.core.validation)

 	UrlField (class in tw2.forms.widgets)

 	
 	UrlValidator (class in tw2.core.validation)

 	UUIDValidator (class in tw2.core.validation)

V

 	
 	validate() (tw2.core.widgets.Widget class method)

 	validate_python() (tw2.core.validation.Validator method)

 	ValidationError

 	Validator (class in tw2.core)

 	(class in tw2.core.validation)

 	
 	value (tw2.forms.widgets.InputField attribute)

 	VerticalCheckBoxTable (class in tw2.forms.widgets)

 	VerticalRadioButtonTable (class in tw2.forms.widgets)

 	VerticalSelectionTable (class in tw2.forms.widgets)

W

 	
 	Widget (class in tw2.core.widgets)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 ToscaWidgets2 Documentation

 		
 Getting Started

 		
 Enabling ToscaWidgets

 		
 Configuration Options

 		
 Widgets

 		
 Using Widgets

 		
 Widget value

 		
 Parameters

 		
 Deferred Parameters

 		
 Builtin Widgets

 		
 Resources

 		
 Builtin Resource Types

 		
 Forms

 		
 Form

 		
 Form Buttons

 		
 Dynamic Forms

 		
 Validating Forms

 		
 Form Layout

 		
 Custom Layouts

 		
 Complex Layouts

 		
 Bultin Form Fields

 		
 Validation

 		
 Validators

 		
 Custom Validators

 		
 Internationalization

 		
 Builtin Validators

 		
 Javascript Integration

 		
 Javascript on Display

 		
 Javascript Callbacks

 		
 Builtin Javascript Helpers

 		
 Design

 		
 Widget Overview

 		
 Parameters

 		
 Code Hooks

 		
 Widget Hierarchy

 		
 Template

 		
 Non-template Output

 		
 Resources

 		
 Declarative Instantiation

 		
 Widgets as Controllers

 		
 Validation

 		
 Using Validators

 		
 Implementation

 		
 General Considerations

 		
 Changelog

 		
 2.3.0

 		
 2.2.9

 		
 2.2.7

 		
 2.2.6

 		
 2.2.5

 		
 2.2.4

 		
 2.2.3

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0.8

 		
 2.2.0.7

 		
 2.2.0.6

 		
 2.2.0.5

 		
 2.2.0.4

 		
 2.2.0.3

 		
 2.2.0.2

 		
 2.2.0.1

 		
 2.2.0

 		
 2.1.6

 		
 2.1.5

 		
 2.1.4

 		
 2.1.3

_static/up.png

_static/up-pressed.png

