

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Tsune 0.1a documentation

Welcome to Tsune’s documentation!

This project is a web application for managing and learning flash cards.

Contents:

	1. Introduction
	1.1. Getting ready to develope

	1.2. What does Tsune mean?

	2. Setting up a development environment
	2.1. Requirements

	2.2. Setting up Vagrant

	2.3. Setting up the remote python interpreter

	2.4. Configure Django integration

	3. Deploying Tsune...
	3.1. ...to Heroku

	3.2. ...on Ubuntu Server

	4. Tsune Requirements and Dependencies
	4.1. Python Packages

	4.2. Django Apps

	5. User FAQ
	5.1. How do I add a deck?

	5.2. How do I add cards to a deck?

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tsune 0.1a documentation

1. Introduction

The goal of this project is to create a platform for people (especially students) to learn, create and share
flashcards. There will be achievments, badges, duels and random pop-culture references.

1.1. Getting ready to develope

Our development setup includes VirtualBox, Vagrant and PyCharm and we use Heroku for deployment. See Setting up a development environment for a detailed guide.

1.2. What does Tsune mean?

“Tsune is usually used in a more mundane context, such as brushing one’s teeth
regularly. But in the martial arts it refers to a state of such complete assimilation and
involvement that training becomes a natural and automatic part of one’s daily life.
Before tsune is achieved, the student often must struggle to make the practice schedule fit
into his everyday lifestyle; an endless number of factors will seem to hinder and obstruct
one’s practice routine. Some people are never able to accommodate regular training, and
thus never pass this stage.

For those who persevere, however, tsune gradually takes over. A state is reached in
which it is no longer necessary to think about disciplining one’s self to practice. The
training becomes as automatic and as accepted as getting up in the morning, getting
dressed and having breakfast. Now the feeling of awkwardness, the feeling that
something is not right, comes only when a practice session is missed. At this point the
martial artist has achieved a comfortable level of oneness with his art, and has fully
integrated it into his life and his personality. This is also the happy situation which yields
the greatest personal rewards. “

Wendell E. Wilsion (2010) (Source [http://www.minrec.org/wilson/pdfs/Training%20-%20Tsune.pdf])

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tsune 0.1a documentation

2. Setting up a development environment

This guide will help you set up a working development environment for
Tsune

2.1. Requirements

	A working and configured [https://help.github.com/articles/set-up-git] Git (download [http://git-scm.com/download/win])

	VirtualBox compatible [http://docs.vagrantup.com/v2/virtualbox/index.html] with Vagrant
(download [https://www.virtualbox.org/wiki/Download_Old_Builds_4_2])

	Vagrant (download [http://downloads.vagrantup.com/])

	PyCharm Professional
(download [http://www.jetbrains.com/pycharm/download/index.html])

	VirtualBox installation folder in PATH environment variable

2.2. Setting up Vagrant

	Open PyCharm

	Select Open from Version Control

	Select either Github or Git and input the repository information

	When asked whether PyCharm should open the project for you, select
Yes

	Select Tools > Vagrant > Up and wait for Vagrant to finish.
This will take a long time (~30min), so grab a coffee or get some
sleep. When it’s finished, you will see Process finished with exit
code 0

2.3. Setting up the remote python interpreter

	Select File > Settings and click on Project Interpreter >
Configure Interpreters

	Click the + button on the right and select Remote...

	Click Fill from vagrant config and Ok

	Click Test Connection. Answer the authenticity warning with Yes
and click Ok

	Click Ok to close the interpreter setup and wait for the process to
finish. This may take a few moments

	When asked whether you want to set the interpreter as Project
Interpreter, select Yes

	Click Ok to close the settings window

2.4. Configure Django integration

	Select File > Settings and click on Django Support. Make sure
that Enable Django Support is ticked

	Click the ... button next to Settings. Select
tsune/settings.py. Click Ok

	Close the Settings window with Ok

	Click Run > Edit Configurations

	If Django server has an entry named tsune, select the entry and
continue with step 7

	Click the + button. Select Django server

	
	Configure everything exactly as follows:

	Name: tsune
Host: 0.0.0.0
Port: 8000
Run Browser: http://127.0.0.1:8080

	Close the Run configurations dialog by clicking Ok

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tsune 0.1a documentation

3. Deploying Tsune...

3.1. ...to Heroku

To deploy Tsune on Heroku, just push the repository to it:

$ git push heroku master

After that, you should set the SECRET_KEY environment variable.
To generate a new key, run the following from a python prompt:

from django.utils.crypto import get_random_string

chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)'
print get_random_string(50, chars)

Now set the SECRET_KEY environment variable for your app.
Run the following in your repository root:

heroku config:set SECRET_KEY="paste the generated key here"

3.2. ...on Ubuntu Server

	$ sudo apt-get update

	$ sudo apt-get install chef

	Do not input anything when prompted to select a chef-server. Just press Enter.

	wget https://dl.dropboxusercontent.com/s/pcnysdzaie6wr58/postgres.json

	chef-solo -j postgres.json -r https://dl.dropboxusercontent.com/s/fh3dxy0tbjuoulm/dependencies.tar.gz

	sudo apt-get -y install libpq-dev python-dev firefox xvfb graphviz git-core

	``git clone https://github.com/DummyDivision/Tsune ``

	cd Tsune && python manage.py syncdb && python manage.py migrate && python manage.py runserver

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tsune 0.1a documentation

4. Tsune Requirements and Dependencies

This document lists all requirements and dependencies necessary to deploy Tsune. At the time of writing, all of them
get downloaded automatically when you deploy out of the development environment.

4.1. Python Packages

1. Django [https://www.djangoproject.com/] is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design.

	Gunicorn [http://www.gunicorn.org/] is a Python WSGI HTTP Server for UNIX.

4.2. Django Apps

1. Django Guardian [https://github.com/lukaszb/django-guardian] is an implementation of per object permissions
as authorization backend.

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Tsune 0.1a documentation

5. User FAQ

5.1. How do I add a deck?

Click on the “+”-symbol in the “Deine Decks” overview.

5.2. How do I add cards to a deck?

Click on “Karten anzeigen” in the “Deine Decks” overview. All cards in the selected deck will be displayed. At the
end of the last row of cards is a “+” Symbol. Click it to add a card.

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	Tsune 0.1a documentation

 Python Module Index

 a |
 c |
 m |
 t

 			

 		
 a	

 	[image: -]
 	
 authentication	

 	
 	
 authentication.models	

 	
 	
 authentication.tests	

 	
 	
 authentication.urls	

 	
 	
 authentication.views	

 			

 		
 c	

 	[image: -]
 	
 cardbox	

 	
 	
 cardbox.views	

 			

 		
 m	

 	
 	
 manage	

 	[image: -]
 	
 memorize	

 	
 	
 memorize.admin	

 	
 	
 memorize.algorithm	

 	
 	
 memorize.models	

 	
 	
 memorize.views	

 			

 		
 t	

 	[image: -]
 	
 tsune	

 	
 	
 tsune.settings	

 	
 	
 tsune.wsgi	

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	Tsune 0.1a documentation

Index

 A
 | C
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | U

A

 	

 	authentication.models (module)

 	authentication.tests (module)

 	

 	authentication.urls (module)

 	authentication.views (module)

C

 	

 	calculateEasyFactor() (in module memorize.algorithm)

 	calculateInterval() (in module memorize.algorithm)

 	

 	cardbox.views (module)

 	content_type (memorize.models.Practice attribute), [1]

E

 	

 	easy_factor (memorize.models.Practice attribute)

 	

 	ended_last_viewing (memorize.models.Practice attribute)

G

 	

 	get_next_by_next_practice() (memorize.models.Practice method)

 	

 	get_previous_by_next_practice() (memorize.models.Practice method)

I

 	

 	interval() (in module memorize.algorithm)

 	

 	item (memorize.models.Practice attribute), [1]

L

 	

 	login() (in module authentication.views)

M

 	

 	manage (module)

 	memorize.admin (module)

 	memorize.algorithm (module)

 	

 	memorize.models (module)

 	memorize.views (module)

N

 	

 	next_practice (memorize.models.Practice attribute)

O

 	

 	object_id (memorize.models.Practice attribute)

 	

 	objects (memorize.models.Practice attribute)

P

 	

 	Practice (class in memorize.models)

 	Practice.DoesNotExist

 	

 	Practice.MultipleObjectsReturned

 	PracticeAdmin (class in memorize.admin)

S

 	

 	SimpleTest (class in authentication.tests)

 	

 	started_last_viewing (memorize.models.Practice attribute)

T

 	

 	test_basic_addition() (authentication.tests.SimpleTest method)

 	times_practice (memorize.models.Practice attribute)

 	

 	tsune.settings (module)

 	tsune.wsgi (module)

U

 	

 	user (memorize.models.Practice attribute), [1]

 Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

 deckglue.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

deckglue Package

cardurls Module

deckurls Module

learningurls Module

models Module

tests Module

views Module

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

tsune.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

tsune Package

local_settings Module

settings Module

urls Module

wsgi Module

WSGI config for tsune project.

This module contains the WSGI application used by Django’s development server
and any production WSGI deployments. It should expose a module-level variable
named application. Django’s runserver and runfcgi commands discover
this application via the WSGI_APPLICATION setting.

Usually you will have the standard Django WSGI application here, but it also
might make sense to replace the whole Django WSGI application with a custom one
that later delegates to the Django one. For example, you could introduce WSGI
middleware here, or combine a Django application with an application of another
framework.

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/minus.png

_static/comment-bright.png

memorize.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

memorize Package

admin Module

		
class memorize.admin.PracticeAdmin(model, admin_site)[source]

		Bases: django.contrib.admin.options.ModelAdmin

Makes all fields of Practice visible on admin site.

algorithm Module

Implemements the spacing algorithm.

		
memorize.algorithm.calculateEasyFactor(oldEF, rating, repetition)[source]

		Calculate new easy factor from old factor and rating.

EF’ := f(EF,q)
where,

EF’ = new value of the easiness factor
EF = old value of the easiness factor
q = user difficulty rating (1-4)
f(EF,q) = EF-0.8+0.28*q-0.02*q*q

		Parameters :		
		oldEF (float) –
An factor for calculating the next repetition interval.

		rating (int) –
Difficulty rating for the item in question. From 0 (impossible) to 5 (easiest).

		repetition (int) –
Number of repetitions until now.

		Returns:		int –
minutes until next practice
float: new easiness factor

		
memorize.algorithm.calculateInterval(repetition, rating, easy_factor)[source]

		Calculate the inter-repetition interval

I(1):= r/2
I(2):= r
for n>2 I(n):=I(n-1)*EF

		where:

		I(n) - inter-repetition interval after the n-th repetition (in days)
EF - easiness factor reflecting the easiness of memorizing and retaining a given item in memory.
r - Rating, given by the user.

		The calculation is done recursively. Details at:

		http://www.supermemo.com/english/ol/sm2.htm

		The deviation from SM-2 consists in the following details:

		
		The default interval for the first and second repetition is not fixed to 1 and 6, but relative to
the user rating.

		Parameters :		
		repetition (int) –
Number of repetitions until now.

		easy_factor (float) –
easiness factor

		Returns:		int –
days until next practice

		
memorize.algorithm.interval(repetition, rating, easy_factor=2.5)[source]

		Simplified SM-2 spacing algorithm.

		It is loosely based on the SuperMemo 2 algorithm. Details at:

		http://www.supermemo.com/english/ol/sm2.htm

		Parameters :		
		repetition (int) –
Number of repetitions until now.

		rating (int) –
Difficulty rating for the item in question. From 0 (hardest) to 4 (easiest).

		easy_factor (float) –
An factor for calculating the next

		Returns:		int –
minutes until next practice
float: new easiness factor

models Module

Defines the Practice Model for keeping track of practice sessions.

		
class memorize.models.Practice(*args, **kwargs)[source]

		Bases: django.db.models.base.Model

This model saves the learning stats of a user linked to a specific item.

The Practice model uses the django.contrib.contenttypes.models.ContentType [http://django.readthedocs.org/en/1.5.x/ref/contrib/contenttypes.html#django.contrib.contenttypes.models.ContentType]
framework to link it to a generic other object. This way, it can be used to keep track of
learning progress of any other kind of model.

		
content_type ForeignKey

		PK of the learnable object

		
object_id int

		ID of the learnable object

		
item GenericForeignKey

		Combines the above.

		
started_last_viewing DateTimeField

		Starting time of the most recent learning.

		
ended_last_viewing DateTimeField

		Ending time of the most recent learning.

		
user User

		The user who is practicing.

		
next_practice DateTimeField

		Calculated next time of practice.

		
times_practice int

		Number of times the item has been practice by the user.

		
easy_factor float

		An arbitrary number roughly representing the difficulty of the item for
the user.

		
exception DoesNotExist

		Bases: django.core.exceptions.ObjectDoesNotExist

		
exception Practice.MultipleObjectsReturned

		Bases: django.core.exceptions.MultipleObjectsReturned

		
Practice.content_type

		

		
Practice.get_next_by_next_practice(*moreargs, **morekwargs)

		

		
Practice.get_previous_by_next_practice(*moreargs, **morekwargs)

		

		
Practice.item

		Provides a generic relation to any object through content-type/object-id
fields.

		
Practice.objects = <django.db.models.manager.Manager object at 0x7f7d6f155490>

		

		
Practice.user

		

views Module

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_modules/memorize/admin.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 		Module code »

 Source code for memorize.admin

from django.contrib import admin
from models import Practice

[docs]class PracticeAdmin(admin.ModelAdmin):
 """Makes all fields of Practice visible on admin site.

 """
 list_display = Practice._meta.get_all_field_names()

admin.site.register(Practice, PracticeAdmin)

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

authentication.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

authentication Package

models Module

tests Module

This file demonstrates writing tests using the unittest module. These will pass
when you run “manage.py test”.

Replace this with more appropriate tests for your application.

		
class authentication.tests.SimpleTest(methodName='runTest')[source]

		Bases: django.test.testcases.TestCase

		
test_basic_addition()[source]

		Tests that 1 + 1 always equals 2.

urls Module

views Module

		
authentication.views.login(request, **kwargs)[source]

		

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 All modules for which code is available

		authentication.tests

		authentication.views

		memorize.admin

		memorize.algorithm

		memorize.models

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_modules/authentication/views.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 		Module code »

 Source code for authentication.views

Create your views here.
from django.contrib.auth import views
from django.conf import settings

[docs]def login(request,**kwargs):
 response = views.login(request,kwargs.get('template_name'))
 if not hasattr(response, 'context_data'):
 response.context_data = {}
 response.context_data['secrets_present'] = settings.SECRETS_PRESENT
 return response

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/comment.png

_static/ajax-loader.gif

cardbox.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

cardbox Package

admin Module

card_forms Module

card_model Module

card_urls Module

card_views Module

deck_forms Module

deck_model Module

deck_urls Module

deck_views Module

models Module

tests Module

views Module

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/file.png

_modules/authentication/tests.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 		Module code »

 Source code for authentication.tests

"""
This file demonstrates writing tests using the unittest module. These will pass
when you run "manage.py test".

Replace this with more appropriate tests for your application.
"""

from django.test import TestCase

[docs]class SimpleTest(TestCase):
[docs] def test_basic_addition(self):
 """
 Tests that 1 + 1 always equals 2.
 """
 self.assertEqual(1 + 1, 2)

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

manage.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

manage Module

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

modules.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

.

		authentication Package
		models Module

		tests Module

		urls Module

		views Module

		cardbox Package
		admin Module

		card_forms Module

		card_model Module

		card_urls Module

		card_views Module

		deck_forms Module

		deck_model Module

		deck_urls Module

		deck_views Module

		models Module

		tests Module

		views Module

		deckglue Package
		cardurls Module

		deckurls Module

		learningurls Module

		models Module

		tests Module

		views Module

		manage Module

		memorize Package
		admin Module

		algorithm Module

		models Module

		views Module

		tsune Package
		local_settings Module

		settings Module

		urls Module

		wsgi Module

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_modules/memorize/algorithm.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 		Module code »

 Source code for memorize.algorithm

"""Implemements the spacing algorithm.

"""

[docs]def interval(repetition, rating, easy_factor=2.5):
 """Simplified SM-2 spacing algorithm.

 It is loosely based on the SuperMemo 2 algorithm. Details at:
 http://www.supermemo.com/english/ol/sm2.htm

 Args:
 repetition (int): Number of repetitions until now.
 rating (int): Difficulty rating for the item in question. From 0 (hardest) to 4 (easiest).
 easy_factor (float): An factor for calculating the next

 Returns:
 int: minutes until next practice
 float: new easiness factor

 """
 if rating < 3:
 return 10, easy_factor
 elif rating == 3:
 return 30, easy_factor
 else:
 repetition, easy_factor = calculateEasyFactor(easy_factor, rating, repetition)
 repetition_interval = calculateInterval(repetition, rating, easy_factor)
 repetition_interval *= 1440 # delay() expects the interval in minutes, but calculateInterval() returns days.
 return repetition_interval, easy_factor

[docs]def calculateInterval(repetition, rating, easy_factor):
 """ Calculate the inter-repetition interval

 I(1):= r/2
 I(2):= r
 for n>2 I(n):=I(n-1)*EF

 where:
 I(n) - inter-repetition interval after the n-th repetition (in days)
 EF - easiness factor reflecting the easiness of memorizing and retaining a given item in memory.
 r - Rating, given by the user.

 The calculation is done recursively. Details at:
 http://www.supermemo.com/english/ol/sm2.htm

 The deviation from SM-2 consists in the following details:
 - The default interval for the first and second repetition is not fixed to 1 and 6, but relative to
 the user rating.

 Args:
 repetition (int): Number of repetitions until now.
 easy_factor (float): easiness factor

 Returns:
 int: days until next practice

 """
 if repetition < 0:
 raise ValueError, 'Repetition must be 0 at least!'

 if easy_factor < 1.3:
 raise ValueError, 'Easy factor must not be less than 1.3!'

 if repetition < 3:
 return rating/2
 elif repetition==3:
 return rating
 else:
 return calculateInterval(repetition-1, rating, easy_factor)*easy_factor

[docs]def calculateEasyFactor(oldEF, rating, repetition):
 """ Calculate new easy factor from old factor and rating.

 EF' := f(EF,q)
 where,
 EF' = new value of the easiness factor
 EF = old value of the easiness factor
 q = user difficulty rating (1-4)
 f(EF,q) = EF-0.8+0.28*q-0.02*q*q

 Args:
 oldEF (float): An factor for calculating the next repetition interval.
 rating (int): Difficulty rating for the item in question. From 0 (impossible) to 5 (easiest).
 repetition (int): Number of repetitions until now.

 Returns:
 int: minutes until next practice
 float: new easiness factor

 """
 if oldEF < 1.3:
 raise ValueError, 'Easy factor must not be less than 1.3!'

 if rating not in xrange(0,6):
 raise ValueError, 'Rating must be positive and less than 6!'

 # If the card is rated < 2, the number of repetitions is reset.
 if rating < 2:
 repetition = 1

 # Calculate new easy facor using the SM-2 formula.
 newEF = oldEF - 0.8 + 0.28 * rating - 0.02 * rating * rating
 if newEF < 1.3:
 newEF=1.3

 return repetition, newEF

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_modules/memorize/models.html

 Navigation

 		
 index

 		
 modules |

 		Tsune 0.1a documentation »

 		Module code »

 Source code for memorize.models

"""Defines the Practice Model for keeping track of practice sessions.

"""

from django.db import models
from django.contrib.auth.models import User
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes import generic

[docs]class Practice(models.Model):
 """This model saves the learning stats of a user linked to a specific item.

 The Practice model uses the :class:`django.contrib.contenttypes.models.ContentType`
 framework to link it to a generic other object. This way, it can be used to keep track of
 learning progress of any other kind of model.

 Attributes:
 content_type (ForeignKey): PK of the learnable object
 object_id (int): ID of the learnable object
 item (GenericForeignKey): Combines the above.
 started_last_viewing (DateTimeField): Starting time of the most recent learning.
 ended_last_viewing (DateTimeField): Ending time of the most recent learning.
 user (User): The user who is practicing.
 next_practice (DateTimeField): Calculated next time of practice.
 times_practice (int): Number of times the item has been practice by the user.
 easy_factor (float): An arbitrary number roughly representing the difficulty of the item for
 the user.

 """
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 item = generic.GenericForeignKey('content_type', 'object_id')
 started_last_viewing = models.DateTimeField(null=True,blank=True, auto_now_add=True)
 ended_last_viewing = models.DateTimeField(null=True,blank=True, auto_now_add=True)
 user = models.ForeignKey(User)
 next_practice = models.DateTimeField(auto_now_add=True)
 times_practiced = models.PositiveIntegerField(default=0)
 easy_factor = models.FloatField(default=2.5)

 class Meta:
 ordering = ['next_practice']

 © Copyright 2013, dummydivision.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

