

 Navigation

 	
 index

 	
 modules |

 	Trollcast v0.2.0 documentation

Welcome to Trollcast’s documentation!

To the source code page [http://github.com/mraspaud/trollcast].

Trollcast is a tool to exchange polar weather satellite data. It aims at
providing near real time data transfer between peers, and should be adaptable
to any type of data that is scan-based. At the moments it works on hrpt minor
frame data (both big and little endian).

The protocol it uses is loosely based on bittorrent.

Warning

This is experimental software, use it at your own risk!

Installing trollcast

Download trollcast from the source code page [http://github.com/mraspaud/trollcast] and run:

python setup.py install

Setting up trollcast

A trollcast config file describes the different parameters one needs for
running both the client and the server.

[local_reception]
localhost=nimbus
remotehosts=safe
data=hrpt
data_dir=/data/hrpt
file_pattern=*.temp
max_connections=2
station=norrköping
coordinates=16.148649 58.581844 0.02
tle_files=/var/opt/2met/data/polar/orbitalelements/*.tle

[safe]
hostname=172.29.0.236
pubport=9333
reqport=9332

[nimbus]
hostname=172.22.8.16
pubport=9333
reqport=9332

The local_reception section

	localhost defines the name of the host the process is going to run on
locally. This name will be user further down in the configuration file as a
section which will hold information about the host. More on this later.

	remotehosts is the list of remote hosts to communicate with.

	data give the type of data to be exchange. Only hrpt is available at the
moment.

	data_dir is the place where streaming data from the reception station is
written.

	file_pattern is the fnmatch pattern to use to detect the file that the
reception station writes to. Trollcast will watch this file to stream the
data to the network in real time.

	max_connections tells how many times the data can be sent. This is usefull
for avoiding too many clients retrieving the data from the same server,
putting unnecessary load on it. Instead, clients will spread the data among
each other, creating a more distributed load.

	station: name of the station

	coordinates: coordinates of the station. Used for the computation of
satellite elevation. Lon/lats in degrees, altitude in kilometers.

	tle_dir: directory holding the latest TLE data. Used for the computation
of satellite elevation.

The host sections

	hostname is the hostname or the ip address of the host.

	pubport on which publishing of messages will occur.

	reqport on which request and transfer of data will occur.

Modes of operation

Server mode, giving out data to the world

The server mode is used to serve data to remote hosts.

	It is started with::

	trollcast_server my_config_file.cfg

This will start a server that watches a given file, as specified in the
configuration file. Add a -v if you want debugging info.

Note

In the eventuality that you want to start a sever in gateway mode, that is
acting as a gateway to another server, add
mirror=name_of_the_primary_server in your configuration file.

Client mode, retrieving data

The client mode retrieves data.

Here is the usage of the client:

usage: client.py [-h] [-t TIMES TIMES] [-o OUTPUT] -f CONFIG_FILE
 satellite [satellite ...]

positional arguments:
 satellite eg. noaa_18

optional arguments:
 -h, --help show this help message and exit
 -t TIMES TIMES, --times TIMES TIMES
 Start and end times, <YYYYMMDDHHMMSS>
 -o OUTPUT, --output OUTPUT
 Output file (used only in conjuction with -t)
 -f CONFIG_FILE, --config_file CONFIG_FILE
 eg. sattorrent_local.cfg
 -v, --verbose

	There are two ways of running the client:

	
	The first way is to retrieve a given time interval of data. For example, to
retrieve data from NOAA 18 for the 14th of November 2012, between 14:02:23
and 14:15:00, the client has to be called with:

trollcast_client -t 20121114140223 20121114141500 -o noaa18_20121114140223.hmf -f config_file.cfg noaa_18

	The second way is to retrieve all the data possible data and dump it to
files:

trollcast_client -f config_file.cfg noaa_15 noaa_16 noaa_18 noaa_19

In this case, only new data will be retrieved though, contrarily to the time
interval retrieval where old data will be retrieved too if necessary.

Contents:

API

Client

Trollcast client. Leeches all it can :)

	
class trollcast.client.Client(cfgfile='sattorrent.cfg')

	The client class.

	
get_all(satellites)

	Retrieve all the available scanlines from the stream, and save them.

	
get_lines(satellite, scanline_dict)

	Retrieve the best (highest elevation) lines of scanline_dict.

	
order(time_slice, satellite, filename)

	Get all the scanlines for a satellite within a time_slice and
save them in filename. The scanlines will be saved in a contiguous
manner.

	
send_lineinfo_to_server(*args, **kwargs)

	Send information to our own server.

	
stop()

	

	
class trollcast.client.HaveBuffer(cfgfile='sattorrent.cfg')

	Listen to incomming have messages.

	
add_queue(queue)

	Adds a queue to dispatch have messages to

	
del_queue(queue)

	Deletes a dispatch queue.

	
run()

	

	
send_to_queues(sat, utctime)

	Send scanline at utctime to queues.

	
stop()

	Stop buffering.

	
class trollcast.client.RTimer(tries, warning_message, function, *args, **kwargs)

	
	
alert()

	

	
reset()

	

	
run()

	

	
stop()

	

	
class trollcast.client.Requester(host, port, station, pubport=None)

	Make a request connection, waiting to get scanlines .

	
get_line(satellite, utctime)

	Get the scanline of satellite at utctime.

	
get_slice(satellite, start_time, end_time)

	Get a slice of scanlines.

	
ping()

	Send a ping.

	
recv(timeout=None)

	Receive a message. timeout in ms.

	
send(msg)

	Send a message.

	
send_lineinfo(sat, utctime, elevation, filename, pos)

	Send information to our own server.

	
stop()

	Close the socket.

	
trollcast.client.compute_line_times(utctime, start_time, end_time)

	Compute the times of lines if a swath order depending on a reference
utctime.

	
trollcast.client.create_requesters(cfgfile)

	Create requesters to all the configure remote hosts.

	
trollcast.client.create_subscriber(cfgfile)

	Create a new subscriber for all the remote hosts in cfgfile.

	
trollcast.client.create_timers(cfgfile, subscriber)

	

	
trollcast.client.reset_subscriber(subscriber, addr)

	

Server

Trollcast, server side.

Trollcasting is loosely based on the bittorrent concepts, and adapted to
satellite data.

	Limitations:

	
	HRPT specific at the moment

	TODO:

	
	Include files from a library, not only the currently written file to the
list of scanlines

	Implement choking

	de-hardcode filename

	
class trollcast.server.FileStreamer(holder, configfile, *args, **kwargs)

	Get the updates from files.

TODO: separate holder from file handling.

	
on_created(event)

	Callback when file is created.

	
on_modified(event)

	

	
on_opened(event)

	Callback when file is opened

	
update_satellite(satellite)

	Update satellite and renew the orbital instance.

	
class trollcast.server.Heart(holder, *args, **kwargs)

	
	
run()

	

	
stop()

	

	
class trollcast.server.Holder(configfile)

	
	
add_scanline(satellite, utctime, elevation, line_start, filename, line=None)

	Adds the scanline to the server. Typically used by the client to
signal newly received lines.

	
get(*args, **kwargs)

	

	
get_scanline(satellite, utctime)

	

	
send_have(satellite, utctime, elevation)

	Sends ‘have’ message for satellite, utctime, elevation.

	
send_heartbeat(next_pass_time='unknown')

	

	
class trollcast.server.Looper

	
	
stop()

	

	
class trollcast.server.MirrorStreamer(holder, configfile)

	Act as a relay...

	
run()

	

	
stop()

	Stop streaming.

	
class trollcast.server.Responder(holder, configfile, *args, **kwargs)

	
	
forward_request(address, message)

	Forward a request to another server.

	
run()

	

	
stop()

	

	
class trollcast.server.Socket(addr, stype)

	

	
class trollcast.server.SocketLooper(*args, **kwargs)

	

	
class trollcast.server.SocketLooperThread(*args, **kwargs)

	

	
trollcast.server.serve(configfile)

	Serve forever.

	
trollcast.server.timecode(tc_array)

	

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Martin Raspaud.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Trollcast v0.2.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 trollcast	

 	
 	
 trollcast.client	

 	
 	
 trollcast.server	

 Copyright 2012, Martin Raspaud.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Trollcast v0.2.0 documentation

Index

 A
 | C
 | D
 | F
 | G
 | H
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

A

 	

 	add_queue() (trollcast.client.HaveBuffer method)

 	add_scanline() (trollcast.server.Holder method)

 	

 	alert() (trollcast.client.RTimer method)

C

 	

 	Client (class in trollcast.client)

 	compute_line_times() (in module trollcast.client)

 	create_requesters() (in module trollcast.client)

 	

 	create_subscriber() (in module trollcast.client)

 	create_timers() (in module trollcast.client)

D

 	

 	del_queue() (trollcast.client.HaveBuffer method)

F

 	

 	FileStreamer (class in trollcast.server)

 	

 	forward_request() (trollcast.server.Responder method)

G

 	

 	get() (trollcast.server.Holder method)

 	get_all() (trollcast.client.Client method)

 	get_line() (trollcast.client.Requester method)

 	

 	get_lines() (trollcast.client.Client method)

 	get_scanline() (trollcast.server.Holder method)

 	get_slice() (trollcast.client.Requester method)

H

 	

 	HaveBuffer (class in trollcast.client)

 	Heart (class in trollcast.server)

 	

 	Holder (class in trollcast.server)

L

 	

 	Looper (class in trollcast.server)

M

 	

 	MirrorStreamer (class in trollcast.server)

O

 	

 	on_created() (trollcast.server.FileStreamer method)

 	on_modified() (trollcast.server.FileStreamer method)

 	

 	on_opened() (trollcast.server.FileStreamer method)

 	order() (trollcast.client.Client method)

P

 	

 	ping() (trollcast.client.Requester method)

R

 	

 	recv() (trollcast.client.Requester method)

 	Requester (class in trollcast.client)

 	reset() (trollcast.client.RTimer method)

 	reset_subscriber() (in module trollcast.client)

 	

 	Responder (class in trollcast.server)

 	RTimer (class in trollcast.client)

 	run() (trollcast.client.HaveBuffer method)

 	

 	(trollcast.client.RTimer method)

 	(trollcast.server.Heart method)

 	(trollcast.server.MirrorStreamer method)

 	(trollcast.server.Responder method)

S

 	

 	send() (trollcast.client.Requester method)

 	send_have() (trollcast.server.Holder method)

 	send_heartbeat() (trollcast.server.Holder method)

 	send_lineinfo() (trollcast.client.Requester method)

 	send_lineinfo_to_server() (trollcast.client.Client method)

 	send_to_queues() (trollcast.client.HaveBuffer method)

 	

 	serve() (in module trollcast.server)

 	Socket (class in trollcast.server)

 	SocketLooper (class in trollcast.server)

 	SocketLooperThread (class in trollcast.server)

 	stop() (trollcast.client.Client method)

 	

 	(trollcast.client.HaveBuffer method)

 	(trollcast.client.RTimer method)

 	(trollcast.client.Requester method)

 	(trollcast.server.Heart method)

 	(trollcast.server.Looper method)

 	(trollcast.server.MirrorStreamer method)

 	(trollcast.server.Responder method)

T

 	

 	timecode() (in module trollcast.server)

 	trollcast.client (module)

 	

 	trollcast.server (module)

U

 	

 	update_satellite() (trollcast.server.FileStreamer method)

 Copyright 2012, Martin Raspaud.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Trollcast v0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Martin Raspaud.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

