

    
      
          
            
  
Welcome to TraX library documentation

Welcome to TraX reference library documentation. TraX stands for visual Tracking eXchange, the protocol was designed to make development and testing of visual tracking algorithms simpler and faster. This documentation describes the protocol specification but also documents the reference library that implements the protocol and can be used to add support to visual tracking programs quickly and without the need to understand the low-level details.

The source code for the reference library is availabe on GitHub [https://github.com/votchallenge/trax/] under Lesser GPL v3.0 [https://www.gnu.org/licenses/lgpl-3.0.en.html] license.


Citing

If you are using TraX protocol in your research, please cite the following publication [http://dx.doi.org/10.1016/j.neucom.2017.02.036] that describes the protocol and the library.

@article{cehovin2017trax,
        author = {{\v{C}}ehovin, Luka},
        doi = {http://dx.doi.org/10.1016/j.neucom.2017.02.036},
        issn = {0925-2312},
        journal = {Neurocomputing},
        title = {{TraX: The visual Tracking eXchange Protocol and Library}},
        year = {2017}
}








Index



	TraX protocol specification
	Definitions

	Message format

	Protocol messages and states

	Region formats

	Image formats





	API documentation
	Reference C library

	Library C++ wrapper

	Python implementation

	Matlab/Octave wrappers

	Client library

	OpenCV conversions library





	Support utilities
	CLI interface

	Protocol testing

	OpenCV player





	Tutorials
	General remarks and guidelines

	Compiling TraX library

	Using TraX on Linux

	Using TraX on Windows

	TraX in Matlab and Octave

	Creating a TraX client





	Contributions and development

	Protocol adoption
	Trackers

	Applications















          

      

      

    

  

    
      
          
            
  
TraX protocol specification

The TraX protocol is designed with simplicity of integration in mind, but is also flexible enough to allow extensions and custom use-cases. The protocol is primarily based on the a mechanism that all modern operating systems provide and requires no additional dependencies - standard input and output streams of a process. However, other media, such as TCP streams can also be used, the main idea is that the protocol communication is embedded the communication between the tracker process and the control process in these streams. The communication is divided into line-based messages. Each message can be identified by a prefix that allows us to filter out tracker custom output from the protocol communication.


Definitions

We adopt the standard client-server terminology when describing the interaction, although the definition is a bit counterintuitive in some aspects. We define the basic terms of the protocol as:



	Server:  A server is a tracker process that is providing tracking information to the client that is supplying the server with requests – a sequence of images. Unlike traditional servers that are persistent processes that communicate with multiple clients, the server in our case is started by a single client and is only communicating with it.


	Client: A client is a process that is initiating tracking requests as well as controlling the process. In most cases this would be an evaluation software that would aggregate tracking data for performance analysis, however, additional use-cases can be accommodated in this scheme.


	Message: Server and client communicate with each other using messages. Each message begins in new line, is prefixed by an unique string and ends with the end of the line. Generic message structure is defined in Message format and types of messages are defined in Protocol messages and states.










Message format

Individual message in the protocol is a line, which means that it is separated from the past and future stream content by the new line (EOL) character. The format of all client or server messages is the same. To distinguish between arbitrary program outputs and embedded TraX messages a prefix @@TRAX: is used. The prefix is followed immediately (without white space character) by the name of the message, which is then followed by space-separated arguments. The format is illustrated in figure below. The message header is followed by a number of mandatory message arguments. This number depends on the type of the message and on the runtime configuration. The mandatory arguments are then followed by a variable number of optional named arguments which consist of a key and a value part and can be used to communicate additional data.


[image: An illustration of a typical protocol message (green box) embedded within the process output stream (gray boxes).]



Escape sequences

All the arguments can contain spaces, however, they have to be enclosed by double-quote (") symbols. If you want to use to use the same symbol inside the argument, it has to be prefixed by back-slash (\) symbol, i.e. you have to use an escape sequence. Similarly escape sequence is also used to denote a bach-slash character itself (written as \\) and a newline symbol, which has to be replaced by the \n character sequence.




Named arguments

Named arguments consist of a key, followed by character (=) and an arbitrary value character sequence. The key sequence may only include alphanumerical characters, dot (.) and underscore (_) and has to be at most 64 characters long. If a key is not valid the remote party may reject the argument or terminate the connection because of an illegal message format.






Protocol messages and states

Below we list the valid messages of the protocol as well as the states of the client and server. Despite the apparent simplicity of the protocol its execution should be strict. An inappropriate or indecipherable message should result in immediate termination of connection in case of both parties.



	hello (server): The message is sent by the server to introduce itself and list its capabilities. This message specifies no mandatory arguments, however, the server can report the capabilities using the optional named arguments. The official arguments, recognized by the first version of the protocol are:






	trax.version (integer): Specifies the supported version of the protocol. If not present, version 1 is assumed.


	trax.name (string): Specifies the name of the tracker. The name can be used by the client to verify that the correct algorithm is executed.


	trax.identifier (string): Specifies the identifier of the current implementation. The identifier can be used to determine the version of the tracker.


	trax.image (string): Specifies the supported image format. See Section Image formats for the list of supported formats. By default it is assumed that the tracker can accept file paths as image source.


	trax.region (string): Specifies the supported region format. See Section Region formats for the list of supported formats. By default it is assumed that the tracker can accept rectangles as region specification.








	initialize (client): This message is sent by the client to initialize the tracker. The message contains the image data and the region of the object. The actual format of the required arguments is determined by the image and region formats specified by the server.


	frame (client): This message is sent by the client to request processing of a new image. The message contains the image data. The actual format of the required argument is determined by the image format specified by the server.


	state (server): This message is used by the server to send the new region to the client. The message contains region data in arbitrary supported format (most commonly the same format that the server proposed in the introduction message).


	quit (client, server): This message can be sent by both parties to terminate the session. The server process should exit after the message is sent or received. This message specifies no mandatory arguments.







The state diagram of server and client is defined by a simple automata, shown in figure below. The state changes upon receiving appropriate messages from the opposite party. The client state automata consists of the following states:



	Introduction: The client waits for hello message from the server. In this message the server describes its capabilities that the client can accept and continue the conversation by moving to initialization state, or reject it and terminate the session by sending the quit message.


	Initialization: The client sends a initialize message with the image and the object region data. Then the client moves to observing state.


	Observing: The client waits for a message from the server. If the received message is state then the client processes the incoming state data and either moves to initialization, termination or stays in observing state. If the received message is quit then the client moves to termination state.


	Termination: If initiated internally, the client sends the quit message. If the server does not terminate in a certain amount of time, the client can terminate the server process.







The server state automata consists of the following states:



	Introduction: The server sends an introductory hello message where it optionally specifies its capabilities.


	Initialization: The server waits for the initialize or quit message. In case of initialize message a tracker is initialized with the given data and the server moves to {em reporting} state. The new state is reported back to the client with a state message. In case of the quit message the server moves to termination state.


	Reporting: The server waits for the frame, initialize, or quit message. In case of {tt frame} message the tracker is updated with the new image information and the new state is reported back to the client with a state message. In case of initialize message a tracker is initialized with the given data and the new state is reported back to the client with a state message. In case of the quit message the server moves to termination state.


	Termination: If initiated internally, the server sends the quit message and then exits.








[image: A graphical representation of client and server automata together with protocol states.]





Region formats

The region can be encoded in two point-based formats. All two formats are comma-separated and illustrated graphically in figure below.



	Rectangle (rectangle): The simplest form of region format is the axis-aligned bounding box. It is described using four values, left, top, width, and height that are separated by commas.


	Polygon (polygon): A more complex and flexible region description that is specified by even number of at least six values, separated by commas that define points in the polygon (x and y coordinates).








[image: An illustration of rectangle and polygon region encoding.]





Image formats

The image can be encoded in a form of Uniform Resource Identifiers. Currently the protocol specifies support for four types of resources.



	File path (path): Image is specified by an URL to an absolute path on a local file-system that points to a JPEG or PNG file. The server should take care of the loading of the image to the memory in this case. Some examples of image paths are file:///home/user/sequence/00001.jpg for Unix systems or file://c:/user/sequence/00001.jpg.


	Memory (memory): Raw image data encoded in an URI with scheme identifier {tt image:}. The encoding header contains information about width, height, and the pixel format. The protocol specifies support for the following formats: single channel 8 or 16 bit intensity image (gray8 and gray16) and 3 channel 8-bit RGB image (rgb). Note that the intensity format can also be used to encode infra-red or depth information. The header is followed by the raw image data row after row using Base64 encoding. An example first part of the data for a 320 x 240 RGB image is therefore image:320;240;rgb;....


	Data (data): The image is encoded as a data URI using JPEG or PNG format and encoded using Base64 encoding. The server has to support decoding the image from the memory buffer directly. An example of the first part of such data is data:image/jpeg;base64;...


	URL (url): Image is specified by a general URL for the image resource which does not fall into any of the above categories. Tipically HTTP remote resources, such as http://example.com/sequence/0001.jpg.













          

      

      

    

  

    
      
          
            
  
API documentation

The TraX API documentation describes technical details of TraX library and bindings to other languages.



	Reference C library
	Requirements and building

	Documentation

	Integration example





	Library C++ wrapper
	Requirements and building

	Documentation

	Integration example





	Python implementation
	Requirements and support

	Documentation

	Integration example





	Matlab/Octave wrappers
	Requirements and building

	Documentation

	Integration example





	Client library

	OpenCV conversions library
	Requirements and building

	Documentation













          

      

      

    

  

    
      
          
            
  
Reference C library

The TraX protocol can be implemented using the protocol specification, the protocol is quite easy to implement in many high-level languages. However, a reference C implementation is provided to serve as a practical model of implementation and to make the adoption of the protocol easier.


Requirements and building

The library is built using CMake [https://cmake.org/] build tool which generates build instructions for a given platform. The code is written in C89 for maximum portability and the library has no external dependencies apart from the standard C library. For more details on building check out the tutorial on compiling the project.




Documentation

All the public functionality of the library is described in the trax.h header file, below is a summary of individual functions that are available in the library.


Communication


	
TRAX_ERROR

	Value that indicates protocol error






	
TRAX_OK

	Value that indicates success of a function call






	
TRAX_HELLO

	Value that indicates introduction message






	
TRAX_INITIALIZE

	Value that indicates initialization message






	
TRAX_FRAME

	Value that indicates frame message






	
TRAX_QUIT

	Value that indicates quit message






	
TRAX_STATE

	Value that indicates status message






	
trax_logging

	Structure that describes logging handle.






	
trax_bounds

	Structure that describes region bounds.






	
trax_handle

	Structure that describes a protocol state for either client or server.






	
trax_image

	Structure that describes an image.






	
trax_region

	Structure that describes a region.






	
trax_properties

	Structure that contains an key-value dictionary.






	
trax_logging trax_no_log

	A constant to indicate that no logging will be done.






	
trax_bounds trax_no_bounds

	A constant to indicate that here are no bounds.






	
const char* trax_version()

	Returns a string version of the library for debugging purposes. If possible, this version is defined during compilation time and corresponds to Git hash for the current revision.


	Returns

	Version string as a constant character array










	
trax_metadata* trax_metadata_create(int region_formats, int image_formats, const char* tracker_name, const char* tracker_description, const char* tracker_family)

	Create a tracker metadata structure returning its pointer


	Returns

	A pointer to a metadata structure that can be released using trax_metadata_release().










	
void trax_metadata_release(trax_metadata** metadata)

	Releases a given metadata structure, clearing its memory.


	Parameters

	
	metadata – Pointer of a pointer of tracker metadata structure.













	
trax_logging trax_logger_setup(trax_logger callback, void* data, int flags)

	A function that can be used to initialize a logging configuration structure.


	Parameters

	
	callback – Callback function used to process a chunk of log data


	data – Additional data passed to the callback function as an argument


	flags – Optional flags for logger






	Returns

	A logging structure for the given data










	
trax_logging trax_logger_setup_file(FILE* file)

	A handy function to initialize a logging configuration structure for file logging. Internally the function calls trax_logger_setup().


	Parameters

	
	file – File object, opened for writing, can also be stdout or stderr






	Returns

	A logging structure for the given file










	
trax_handle* trax_client_setup_file(int input, int output, trax_logging log)

	Setups the protocol state object for the client. It is assumed that the tracker process is already running (how this is done is not specified by the protocol). This function tries to parse tracker’s introduction message and fails if it is unable to do so or if the handshake fails (e.g. unsupported format version).


	Parameters

	
	input – Stream identifier, opened for reading, used to read server output


	output – Stream identifier, opened for writing, used to write messages


	log – Logging structure






	Returns

	A handle object used for further communication or NULL if initialization was unsuccessful










	
trax_handle* trax_client_setup_socket(int server, int timeout, trax_logging log)

	Setups the protocol state object for the client using a bi-directional socket. It is assumed that the connection was already established (how this is done is not specified by the protocol). This function tries to parse tracker’s introduction message and fails if it is unable to do so or if the handshake fails (e.g. unsupported format version).


	Parameters

	
	server – Socket identifier, used to read communcate with tracker


	log – Logging structure






	Returns

	A handle object used for further communication or NULL if initialization was unsuccessful










	
int trax_client_wait(trax_handle* client, trax_region** region, trax_properties* properties)

	Waits for a valid protocol message from the server.


	Parameters

	
	client – Client state object


	region – Pointer to current region for an object, set if the response is TRAX_STATE, otherwise NULL


	properties – Additional properties






	Returns

	Integer value indicating status, can be either TRAX_STATE, TRAX_QUIT, or TRAX_ERROR










	
int trax_client_initialize(trax_handle* client, trax_image* image, trax_region* region, trax_properties* properties)

	
Sends an initialize message to server.





	Parameters

	
	client – Client state object


	image – Image frame data


	region – Initialization region


	properties – Additional properties object






	Returns

	Integer value indicating status, can be either TRAX_OK or TRAX_ERROR










	
int trax_client_frame(trax_handle* client, trax_image* image, trax_properties* properties)

	
Sends a frame message to server.





	Parameters

	
	client – Client state object


	image – Image frame data


	properties – Additional properties






	Returns

	Integer value indicating status, can be either TRAX_OK or TRAX_ERROR










	
trax_handle* trax_server_setup(trax_metadata* metadata, trax_logging log)

	Setups the protocol for the server side and returns a handle object.


	Parameters

	
	metadata – Tracker metadata


	log – Logging structure






	Returns

	A handle object used for further communication or NULL if initialization was unsuccessful










	
trax_handle* trax_server_setup_file(trax_metadata* metadata, int input, int output, trax_logging log)

	Setups the protocol for the server side based on input and output stream and returns a handle object.


	Parameters

	
	metadata – Tracker metadata


	input – Stream identifier, opened for reading, used to read client output


	output – Stream identifier, opened for writing, used to write messages


	log – Logging structure






	Returns

	A handle object used for further communication or NULL if initialization was unsuccessful










	
int trax_server_wait(trax_handle* server, trax_image** image, trax_region** region, trax_properties* properties)

	
Waits for a valid protocol message from the client.





	Parameters

	
	server – Server state object


	image – Pointer to image frame data, set if the response is not TRAX_QUIT or TRAX_ERROR, otherwise NULL


	region – Pointer to initialization region, set if the response is TRAX_INITIALIZE, otherwise NULL


	properties – Additional properties






	Returns

	Integer value indicating status, can be either TRAX_INITIALIZE, TRAX_FRAME, TRAX_QUIT, or TRAX_ERROR










	
int trax_server_reply(trax_handle* server, trax_region* region, trax_properties* properties)

	
Sends a status reply to the client.





	Parameters

	
	server – Server state object


	region – Current region of an object


	properties – Additional properties






	Returns

	Integer value indicating status, can be either TRAX_OK or TRAX_ERROR










	
int trax_terminate(trax_handle* handle)

	Used in client and server. Closes communication, sends quit message if needed. This function is implicitly
called in trax_cleanup().


	Parameters

	
	handle – Server or client state object






	Returns

	Integer value indicating status, can be either TRAX_OK or TRAX_ERROR










	
int trax_cleanup(trax_handle** handle)

	Used in client and server. Closes communication, sends quit message if needed. Releases the handle structure.


	Parameters

	
	handle – Pointer to state object pointer






	Returns

	Integer value indicating status, can be either TRAX_OK or TRAX_ERROR










	
int trax_set_parameter(trax_handle* handle, int id, int value)

	Sets the parameter of the client or server instance.






	
int trax_get_parameter(trax_handle* handle, int id, int* value)

	Gets the parameter of the client or server instance.








Image


	
TRAX_IMAGE_EMPTY

	Empty image type, not usable in any way but to signify that there is no data.






	
TRAX_IMAGE_PATH

	Image data is provided in a file on a file system. Only a path is provided.






	
TRAX_IMAGE_URL

	Image data is provided in a local or remote resource. Only a URL is provided.






	
TRAX_IMAGE_MEMORY

	Image data is provided in a memory buffer and can be accessed directly.






	
TRAX_IMAGE_BUFFER

	Image data is provided in a memory buffer but has to be decoded first.






	
TRAX_IMAGE_BUFFER_ILLEGAL

	Image buffer is of an unknown data type.






	
TRAX_IMAGE_BUFFER_PNG

	Image data is encoded as PNG image.






	
TRAX_IMAGE_BUFFER_JPEG

	Image data is encoded as JPEG image.






	
TRAX_IMAGE_MEMORY_ILLEGAL

	Image data is available in an unknown format.






	
TRAX_IMAGE_MEMORY_GRAY8

	Image data is available in 8 bit per pixel format.






	
TRAX_IMAGE_MEMORY_GRAY16

	Image data is available in 16 bit per pixel format.






	
TRAX_IMAGE_MEMORY_RGB

	Image data is available in RGB format with three bytes per pixel.






	
void trax_image_release(trax_image** image)

	Releases image structure, frees allocated memory.


	Parameters

	
	image – Pointer to image structure pointer (the pointer is set to NULL if the structure is destroyed successfuly)













	
trax_image* trax_image_create_path(const char* path)

	Creates a file-system path image description.


	Parameters

	
	url – File path string, it is copied internally






	Returns

	Image structure pointer










	
trax_image* trax_image_create_url(const char* url)

	Creates a URL path image description.


	Parameters

	
	url – URL string, it is copied internally






	Returns

	Image structure pointer










	
trax_image* trax_image_create_memory(int width, int height, int format)

	Creates a raw in-memory buffer image description. The memory is not initialized, you have do this manually.


	Parameters

	
	width – Image width


	height – Image height


	format – Image format, see format type constants for options






	Returns

	Image structure pointer










	
trax_image* trax_image_create_buffer(int length, const char* data)

	Creates a file buffer image description.


	Parameters

	
	length – Length of the buffer


	data – Character array with data, the buffer is copied






	Returns

	Image structure pointer










	
int trax_image_get_type(const trax_image* image)

	Returns a type of the image handle.


	Parameters

	
	image – Image structure pointer






	Returns

	Image type code, see image type constants for more details










	
const char* trax_image_get_path(const trax_image* image)

	Returns a file path from a file-system path image description. This function returns a pointer to the internal data which should not be modified.


	Parameters

	
	image – Image structure pointer






	Returns

	Pointer to null-terminated character array










	
const char* trax_image_get_url(const trax_image* image)

	Returns a file path from a URL path image description. This function returns a pointer to the internal data which should not be modified.


	Parameters

	
	image – Image structure pointer






	Returns

	Pointer to null-terminated character array










	
void trax_image_get_memory_header(const trax_image* image, int* width, int* height, int* format)

	Returns the header data of a memory image.


	Parameters

	
	image – Image structure pointer


	width – Pointer to variable that is populated with width of the image


	height – Pointer to variable that is populated with height of the image


	format – Pointer to variable that is populated with format of the image, see format constants for options













	
char* trax_image_write_memory_row(trax_image* image, int row)

	Returns a pointer for a writeable row in a data array of an image.


	Parameters

	
	image – Image structure pointer


	row – Number of row






	Returns

	Pointer to character array of the line










	
const char* trax_image_get_memory_row(const trax_image* image, int row)

	Returns a read-only pointer for a row in a data array of an image.


	Parameters

	
	image – Image structure pointer


	row – Number of row






	Returns

	Pointer to character array of the line










	
const char* trax_image_get_buffer(const trax_image* image, int* length, int* format)

	Returns a file buffer and its length. This function returns a pointer to the internal data which should not be modified.


	Parameters

	
	image – Image structure pointer


	length – Pointer to variable that is populated with buffer length


	format – Pointer to variable that is populated with buffer format code






	Returns

	Pointer to character array












Region


	
TRAX_REGION_EMPTY

	Empty region type, not usable in any way but to signify that there is no data.






	
TRAX_REGION_SPECIAL

	Special code region type, only one value avalable that can have a defined meaning.






	
TRAX_REGION_RECTANGLE

	Rectangle region type. Left, top, width and height values available.






	
TRAX_REGION_POLYGON

	Polygon region type. Three or more points available with x and y coordinates.





… c:macro::  TRAX_REGION_MASK


	
TRAX_REGION_ANY

	Any region type, a shortcut to specify that any supported region type can be used.






	
void trax_region_release(trax_region** region)

	Releases region structure, frees allocated memory.


	Parameters

	
	region – Pointer to region structure pointer (the pointer is set to NULL if the structure is destroyed successfuly)













	
int trax_region_get_type(const trax_region* region)

	Returns type identifier of the region object.


	Parameters

	
	region – Region structure pointer






	Returns

	One of the region type constants










	
trax_region* trax_region_create_special(int code)

	Creates a special region object.


	Parameters

	
	code – A numerical value that is contained in the region type






	Returns

	A pointer to the region object










	
void trax_region_set_special(trax_region* region, int code)

	Sets the code of a special region.


	Parameters

	
	region – Region structure pointer


	code – The new numerical value













	
int trax_region_get_special(const trax_region* region)

	Returns a code of a special region object if the region is of special type.


	Parameters

	
	region – Region structure pointer






	Returns

	The numerical value










	
trax_region* trax_region_create_rectangle(float x, float y, float width, float height)

	Creates a rectangle region.


	Parameters

	
	x – Left offset


	y – Top offset


	width – Width of rectangle


	height – Height of rectangle






	Returns

	A pointer to the region object










	
void trax_region_set_rectangle(trax_region* region, float x, float y, float width, float height)

	Sets the coordinates for a rectangle region.


	Parameters

	
	region – A pointer to the region object


	x – Left offset


	y – Top offset


	width – Width of rectangle


	height – Height of rectangle













	
void trax_region_get_rectangle(const trax_region* region, float* x, float* y, float* width, float* height)

	Retreives coordinate from a rectangle region object.


	Parameters

	
	region – A pointer to the region object


	x – Pointer to left offset value variable


	y – Pointer to top offset value variable


	width – Pointer to width value variable


	height – Pointer to height value variable













	
trax_region* trax_region_create_polygon(int count)

	Creates a polygon region object for a given amout of points. Note that the coordinates of the points are arbitrary and have to be set after allocation.


	Parameters

	
	code – The number of points in the polygon






	Returns

	A pointer to the region object










	
void trax_region_set_polygon_point(trax_region* region, int index, float x, float y)

	Sets coordinates of a given point in the polygon.


	Parameters

	
	region – A pointer to the region object


	index – Index of point


	x – Horizontal coordinate


	y – Vertical coordinate













	
void trax_region_get_polygon_point(const trax_region* region, int index, float* x, float* y)

	Retrieves the coordinates of a specific point in the polygon.


	Parameters

	
	region – A pointer to the region object


	index – Index of point


	x – Pointer to horizontal coordinate value variable


	y – Pointer to vertical coordinate value variable













	
int trax_region_get_polygon_count(const trax_region* region)

	Returns the number of points in the polygon.


	Parameters

	
	region – A pointer to the region object






	Returns

	Number of points










	
trax_bounds trax_region_bounds(const trax_region* region)

	Calculates a bounding box region that bounds the input region.


	Parameters

	
	region – A pointer to the region object






	Returns

	A bounding box structure that contains values for left, top, right, and bottom










	
trax_region* trax_region_clone(const trax_region* region)

	Clones a region object.


	Parameters

	
	region – A pointer to the region object






	Returns

	A cloned region object pointer










	
trax_region* trax_region_convert(const trax_region* region, int format)

	Converts region between different formats (if possible).


	Parameters

	
	region – A pointer to the region object


	format – One of the format type constants






	Returns

	A converted region object pointer










	
float trax_region_contains(const trax_region* region, float x, float y)

	Calculates if the region contains a given point.


	Parameters

	
	region – A pointer to the region object


	x – X coordinate of the point


	y – Y coordinate of the point






	Returns

	Returns zero if the point is not in the region or one if it is










	
float trax_region_overlap(const trax_region* a, const trax_region* b, const trax_bounds bounds)

	Calculates the spatial Jaccard index for two regions (overlap).


	Parameters

	
	a – A pointer to the region object


	b – A pointer to the region object






	Returns

	A bounds structure to contain only overlap within bounds or trax_no_bounds if no bounds are specified










	
char* trax_region_encode(const trax_region* region)

	Encodes a region object to a string representation.


	Parameters

	
	region – A pointer to the region object






	Returns

	A character array with textual representation of the region data










	
trax_region* trax_region_decode(const char* data)

	Decodes string representation of a region to an object.


	Parameters

	
	region – A character array with textual representation of the region data






	Returns

	A pointer to the region object or NULL if string does not contain valid region data












Properties


	
trax_properties* trax_properties_create()

	Create an empty properties dictionary.


	Returns

	A pointer to a properties object










	
void trax_properties_release(trax_properties** properties)

	Destroy a properties object and clean up the memory.


	Parameters

	
	properties – A pointer to a properties object pointer













	
void trax_properties_clear(trax_properties* properties)

	Clears a properties dictionary making it empty.


	Parameters

	
	properties – A pointer to a properties object













	
void trax_properties_set(trax_properties* properties, const char* key, const char* value)

	Set a string property for a given key. The value string is cloned.


	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property, only keys valid according to the protocol are accepted


	value – The value for the property, the string is cloned internally













	
void trax_properties_set_int(trax_properties* properties, const char* key, int value)

	Set an integer property. The value will be encoded as a string.


	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property, only keys valid according to the protocol are accepted


	value – The value for the property













	
void trax_properties_set_float(trax_properties* properties, const char* key, float value)

	Set an floating point value property. The value will be encoded as a string.


	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property, only keys valid according to the protocol are accepted


	value – The value for the property













	
char* trax_properties_get(const trax_properties* properties, const char* key)

	Get a string property. The resulting string is a clone of the one stored so it should be released when not needed anymore.


	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property






	Returns

	The value for the property or NULL if there is no value associated with the key










	
int trax_properties_get_int(const trax_properties* properties, const char* key, int def)

	
Get an integer property. A stored string value is converted to an integer. If this is not possible or the property does not exist a given default value is returned.





	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property


	def – Default value for the property






	Returns

	The value for the property or default value if there is no value associated with the key or conversion from string is impossible










	
float trax_properties_get_float(const trax_properties* properties, const char* key, float def)

	Get an floating point value property. A stored string value is converted to an integer. If this is not possible or the property does not exist a given default value is returned.


	Parameters

	
	properties – A pointer to a properties object


	key – A key for the property


	def – Default value for the property






	Returns

	The value for the property or default value if there is no value associated with the key or conversion from string is impossible










	
int trax_properties_count(const trax_properties* properties)

	Get a number of all pairs in the properties object.


	Parameters

	
	properties – A pointer to a properties object






	Returns

	Number of key-value pairs in the properties object










	
void trax_properties_enumerate(trax_properties* properties, trax_enumerator enumerator, const void* object)

	Iterate over the property set using a callback function. An optional pointer can be given and is forwarded to the callback.


	Parameters

	
	properties – A pointer to a properties object


	enumerator – A pointer to the enumerator function that is called for every key-value pair


	object – A pointer to additional data for the enumerator function

















Integration example

The library can be easily integrated into C and C++ code (although a C++ wrapper also exists) and can be also linked into other programming languages that enable linking of C libraries. Below is an sripped-down example of a C tracker skeleton with a typical tracking loop. Note that this is not a complete example and servers only as a demonstration of a typical tracker on a tracking-loop level.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#include <stdio.h>

int main( int argc, char** argv)
{
    int i;
    FILE* out;
    rectangle_type region;
    image_type image;

    out = fopen("trajectory.txt", "w");

    region = read_bounding_box();
    image = read_image(1);
    region = initialize_tracker(region, image);

    write_frame(out, region);

    for (i = 2; ; i++)
    {
      image = read_image(i);
      region = update_tracker(image);
      write_frame(out, region);
    }

    fclose(out);
    return 0;
}







The code above can be modified to use the TraX protocol by including the C library header and changing the tracking loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires linking the protocol library (libtrax) when building the tracker executable.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	#include <stdio.h>

// Include TraX library header
#include "trax.h"

int main( int argc, char** argv)
{
    int run = 1;
    trax_image* img = NULL;
    trax_region* reg = NULL;

    // Call trax_server_setup at the beginning
    trax_handle* handle;
    trax_metadata* meta = trax_metadata_create(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH, "Name", NULL, NULL);

    handle = trax_server_setup(meta, trax_no_log);

    trax_metadata_release(&meta);

    while(run)
    {
        int tr = trax_server_wait(handle, &img, &reg, NULL);

        // There are two important commands. The first one is
        // TRAX_INITIALIZE that tells the tracker how to initialize.
        if (tr == TRAX_INITIALIZE) {

            rectangle_type region = initialize_tracker(
                region_to_rectangle(reg), load_image(img));
            trax_server_reply(handle, rectangle_to_region(region), NULL);

        } else
        // The second one is TRAX_FRAME that tells the tracker what to process next.
        if (tr == TRAX_FRAME) {

            rectangle_type region = update_tracker(load_image(img));
            trax_server_reply(handle, rectangle_to_region(region), NULL);

        }
        // Any other command is either TRAX_QUIT or illegal, so we exit.
        else {
            run = 0;
        }

        if (img) trax_image_release(&img);
        if (reg) trax_region_release(&reg);

    }

    // TraX: Call trax_cleanup at the end
    trax_cleanup(&handle);

    return 0;
}













          

      

      

    

  

    
      
          
            
  
Library C++ wrapper

The main functionality of the reference library is written in pure C, however, it also offers a C++ wrapper if used with a C++ compiler. This wrapper uses classes and objects as well as reference counting for memory management, making is more suitable choice when using the reference library in a C++ algorithm.


Requirements and building

No additional requirements are necessary for building the wrapper but a C++ compiler.




Documentation

The wrapper is composed of several classes, mostly following the underlying C functions. All the classes are contained in trax namespace.


	
class Metadata


	A wrapper class for tracker metadata structure


	
Metadata(int region_formats, int image_formats, std::string tracker_name, std::string tracker_description, std::string tracker_family)


	Creates a new metadata object.






	
~Metadata()


	




	
int image_formats()


	Returns supported image formats as a bit field.






	
int region_formats()


	Returns supported region formats as a bit field.






	
std::string tracker_name()


	Returns tracker name string or empty string.






	
std::string tracker_description()


	Returns tracker description string or empty string.






	
std::string tracker_family()


	Returns tracker family string or empty string.










	
class Logging


	A wrapper class for logging configuration structure


	
Logging(trax_logging logging)


	




	
Logging(trax_logger callback = NULL, void *data = NULL, int flags = 0)


	




	
~Logging()


	








	
class Bounds


	
	
Bounds()


	




	
Bounds(trax_bounds bounds)


	




	
Bounds(float left, float top, float right, float bottom)


	




	
~Bounds()


	








	
class Client


	
	
Client(int input, int output, Logging logger)


	Sets up the protocol for the client side and returns a handle object.






	
Client(int server, Logging logger, int timeout = -1)


	Sets up the protocol for the client side and returns a handle object.






	
~Client()


	




	
int wait(Region &region, Properties &properties)


	Waits for a valid protocol message from the server.






	
int initialize(const Image &image, const Region &region, const Properties &properties)


	Sends an initialize message.






	
int frame(const Image &image, const Properties &properties)


	Sends a frame message.






	
const Metadata metadata()


	




	
const bool terminate()


	Terminate session by sending quit message. Implicitly called when object is destroyed.










	
class Server


	
	
Server(Configuration configuration, Logging log)


	Sets up the protocol for the server side and returns a handle object.






	
~Server()


	




	
int wait(Image &image, Region &region, Properties &properties)


	Waits for a valid protocol message from the client.






	
int reply(const Region &region, const Properties &properties)


	Sends a status reply to the client.






	
const Metadata metadata()


	




	
const bool terminate()


	Terminate session by sending quit message. Implicitly called when object is destroyed.










	
class Image


	
	
Image()


	




	
Image(const Image &original)


	




	
static Image create_path(const std::string &path)


	Creates a file-system path image description. See trax_image_create_path().






	
static Image create_url(const std::string &url)


	Creates a URL path image description.  See trax_image_create_url().






	
static Image create_memory(int width, int height, int format)


	Creates a raw buffer image description.See trax_image_create_memory().






	
static Image create_buffer(int length, const char *data)


	Creates a file buffer image description. See trax_image_create_buffer().






	
~Image()


	Releases image structure, frees allocated memory.






	
int type() const


	Returns a type of the image handle. See trax_image_get_type().






	
bool empty() const


	Checks if image container is empty.






	
const std::string get_path() const


	Returns a file path from a file-system path image description. This function returns a pointer to the internal data which should not be modified.






	
const std::string get_url() const


	Returns a file path from a URL path image description. This function returns a pointer to the internal data which should not be modified.






	
void get_memory_header(int *width, int *height, int *format) const


	Returns the header data of a memory image.






	
char *write_memory_row(int row)


	Returns a pointer for a writeable row in a data array of an image.






	
const char *get_memory_row(int row) const


	Returns a read-only pointer for a row in a data array of an image.






	
const char *get_buffer(int *length, int *format) const


	Returns a file buffer and its length. This function returns a pointer to the internal data which should not be modified.










	
class Region


	
	
Region()


	Creates a new empty region.






	
Region(const Region &original)


	Creates a clone of region.






	
static Region create_special(int code)


	Creates a special region object. Only one paramter (region code) required.






	
static Region create_rectangle(float x, float y, float width, float height)


	Creates a rectangle region.






	
static Region create_polygon(int count)


	Creates a polygon region object for a given amout of points. Note that the coordinates of the points are arbitrary and have to be set after allocation.






	
~Region()


	Releases region, frees allocated memory.






	
int type() const


	Returns type identifier of the region object.






	
bool empty() const


	Checks if region container is empty.






	
void set(int code)


	Sets the code of a special region.






	
int get() const


	Returns a code of a special region object.






	
void set(float x, float y, float width, float height)


	Sets the coordinates for a rectangle region.






	
void get(float *x, float *y, float *width, float *height) const


	Retreives coordinate from a rectangle region object.






	
void set_polygon_point(int index, float x, float y)


	Sets coordinates of a given point in the polygon.






	
void get_polygon_point(int index, float *x, float *y) const


	Retrieves the coordinates of a specific point in the polygon.






	
int get_polygon_count() const


	Returns the number of points in the polygon.






	
Bounds bounds() const


	Computes bounds of a region.






	
Region convert(int type) const


	Convert region to one of the other types if possible.






	
float overlap(const Region &region, const Bounds &bounds = Bounds()) const


	Calculates the Jaccard index overlap measure for the given regions with optional bounds that limit the calculation area.










	
class Properties


	
	
Properties()


	Create a property object.






	
Properties(const Properties &original)


	A copy constructor.






	
~Properties()


	Destroy a properties object and clean up the memory.






	
int size()


	Return the number of elements.






	
void clear()


	Clear a properties object.






	
void set(const std::string key, const std::string value)


	Set a string property (the value string is cloned).






	
void set(const std::string key, int value)


	Set an integer property. The value will be encoded as a string.






	
void set(const std::string key, float value)


	Set an floating point value property. The value will be encoded as a string.






	
std::string get(const std::string key, const std::string &def)


	Get a string property.






	
int get(const std::string key, int def)


	Get an integer property. A stored string value is converted to an integer. If this is not possible or the property does not exist a given default value is returned.






	
float get(const std::string key, float def)


	Get an floating point value property. A stored string value is converted to an float. If this is not possible or the property does not exist a given default value is returned.






	
bool get(const std::string key, bool def)


	Get an boolean point value property. A stored string value is converted to an integer and checked if it is zero. If this is not possible or the property does not exist a given default value is returned.






	
void enumerate(Enumerator enumerator, void *object)


	Iterate over the property set using a callback function. An optional pointer can be given and is forwarded to the callback.






	
void from_map(const std::map<std::string, std::string> &m)


	Adds values from a dictionary to the properties object.






	
void to_map(std::map<std::string, std::string> &m)


	Copies key-value pairs in the properties object into the given dictionary.






	
void to_vector(std::vector<std::string> &v)


	Copies keys from the properties object into the given vector.












Integration example

In C++ tracker implementations you can use either the C++ wrapper or basic C protocol implementation. The wrapper is more conveninent as it is object-oriented and provides automatic deallocation of resources via reference counting. Below is an sripped-down example of a C++ tracker skeleton with a typical tracking loop. Note that this is not a complete example and servers only as a demonstration of a typical tracker on a tracking-loop level.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	#include <iostream>
#include <fstream>

using namescpace std;

int main( int argc, char** argv)
{
    int i;
    FILE* out;
    Rectangle region;
    Image image;
    Tracker tracker;

    ofstream out;
    output.open("trajectory.txt", ofstream::out);

    region = read_bounding_box();
    image = read_image(1);
    region = tracker.initialize(region, image);

    out << region << endl;

    for (i = 2; ; i++)
    {
      image = read_image(i);
      region = tracker.update(image);
      out << region << endl;
    }

    out.close();
    return 0;
}







The code above can be modified to use the TraX protocol by including the C/C++ library header and changing the tracking loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires linking the protocol library (libtrax) when building the tracker executable.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	#include <stdio.h>

// Include TraX library header
#include "trax.h"

using namespace std;

int main( int argc, char** argv)
{
    int run = 1;

    // Initialize protocol
    trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE,
                                TRAX_IMAGE_PATH), trax_no_log);

    while(run)
    {
       trax::Image image;
       trax::Region region;
       trax::Properties properties;

       int tr = handle.wait(image, region, properties);

       // There are two important commands. The first one is
       // TRAX_INITIALIZE that tells the tracker how to initialize.
       if (tr == TRAX_INITIALIZE) {

          cv::Rect result = tracker.initialize(
               trax::region_to_rect(region), trax::image_to_mat(image));

          handle.reply(trax::rect_to_region(result), trax::Properties());

       } else
       // The second one is TRAX_FRAME that tells the tracker what to process next.
       if (tr == TRAX_FRAME) {

          cv::Rect result = tracker.update(image_to_mat(image));
          handle.reply(trax::rect_to_region(result), trax::Properties());

       }
       // Any other command is either TRAX_QUIT or illegal, so we exit.
       else {
            run = 0;
       }

    }

    return 0;
}













          

      

      

    

  

    
      
          
            
  
Python implementation


Requirements and support




Documentation


Main module

Implementation of the TraX protocol. The current implementation is written in pure Python and is therefore a bit slow.


	
class trax.MessageType

	The message type container class






	
exception trax.TraXError

	A protocol error class








Server-side communication

Implementation of the TraX sever. This module provides implementation
of the server side of the protocol and is therefore meant to be used in the
tracker.


	
class trax.server.Request

	A container class for client requests. Contains fileds type, image, region and parameters.






	
class trax.server.Server(options, verbose=False)

	TraX server implementation class.


	
quit()

	Sends quit message and end terminates communication.






	
status(region, properties=None)

	Reply to client with a status region and optional properties.


	Parameters

	
	region (trax.region.Region) – Resulting region object.


	properties (dict) – Optional arguments as a dictionary.













	
wait()

	Wait for client message request. Recognize it and parse them when received .


	Returns

	A request structure



	Return type

	trax.server.Request














	
class trax.server.ServerOptions(region, image, name=None, identifier=None)

	TraX server options








Image module

Image description classes.


	
trax.image.BUFFER = 'buffer'

	Constant for encoded memory buffer image






	
class trax.image.BufferImage(data=None, format='unknown')

	Image encoded in a memory buffer stored in JPEG or PNG file format






	
class trax.image.FileImage(path=None)

	Image saved in a local file


	Variables

	path – Path to the image file










	
class trax.image.Image(type)

	Base class for all image containers


	Variables

	type – Type constant for the image










	
trax.image.MEMORY = 'memory'

	Constant for raw memory image






	
class trax.image.MemoryImage(image)

	Image saved in memory as a numpy array






	
trax.image.PATH = 'path'

	Constant for file path image






	
trax.image.URL = 'url'

	Constant for remote or local URL image






	
class trax.image.URLImage(url=None)

	Image saved in a local or remote resource


	Variables

	url – URL of the image










	
trax.image.parse(string)

	Parses string image representation to one of the containers








Region module

Region description classes.


	
trax.region.POLYGON = 'polygon'

	Constant for polygon region type






	
class trax.region.Polygon(points)

	Polygon region


	Variables

	
	points (list) – List of points as tuples [(x1,y1), (x2,y2),…,(xN,yN)]


	count (int) – number of points













	
trax.region.RECTANGLE = 'rectangle'

	Constant for rectangle region type






	
class trax.region.Rectangle(x=0, y=0, width=0, height=0)

	Rectangle region


	Variables

	
	x – top left x coord of the rectangle region


	y (float) – top left y coord of the rectangle region


	w (float) – width of the rectangle region


	h (float) – height of the rectangle region













	
class trax.region.Region(type)

	Base class for all region containers


	Variables

	type – type of the region










	
trax.region.SPECIAL = 'special'

	Constant for special region type






	
class trax.region.Special(code)

	Special region


	Variables

	code – Code value










	
trax.region.convert(region, to)

	Perform conversion from one region type to another (if possible).


	Parameters

	
	region (Region) – original region


	to (str) – type of desired result






	Result

	converter region or None if conversion is not possible














Integration example

Below is a simple example of a Python code skeleton for a tracker, exposing its tracking loop but hidding all tracker-specific details to keep things clear.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	tracker = Tracker()
trajectory = [];
i = 1

rectangle = read_bounding_box()
image = read_image(i)
rectangle = tracker.initialize(rectangle, image)

trajectory.append(rectangle)

while True:
  i = i + 1
  image = read_image(i)
  rectangle = tracker.update(image)
  trajectory.append(rectangle)

write_trajectory(trajectory)







To make the tracker work with the TraX protocol you have to modify the above code in the following way and also make sure that the trax module will be available at runtime.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import trax.server
import trax.region
import trax.image
import time

tracker = Tracker()

options = trax.server.ServerOptions(trax.region.RECTANGLE, trax.image.PATH)

with trax.server.Server(options) as server:
  while True:
    request = server.wait()
    if request.type in ["quit", "error"]:
      break
    if request.type == "initialize":
      rectangle = tracker.initialize(get_rectangle(request.region),
            load_image(request.image))
    else:
      rectangle = tracker.update(load_image(request.image))

    server.status(get_region(rectangle))













          

      

      

    

  

    
      
          
            
  
Matlab/Octave wrappers

Matlab is a multi-paradigm numerical computing environment and a programming language, very popular among computer vision researchers. Octave is its open-source counterpart that is sometimes used as a free alternative. Both environments are by themselves quite limiting in terms of low-lever operating system access required for the TraX protocol to work, but offer integration of C/C++ code in the scripting language, tipically via MEX mechanism (dynamic libraries with a predefined entry point). Using this mechanism a reference C implementation can be wrapped and used in a Matlab/Octave tracker.


Requirements and building

To compile traxserver MEX function manually you need a MEX compiled configured correctly on your computer.

Since the MEX function is only a wrapper for the C library, you first have to ensure that the C library is compiled and available in a subdirectory of the project. Then go to Matlab/Octave console, move to the support/matlab/ subdirectory and execute compile_trax script. If the script finishes correctly you will have a MEX script (extension varies from platform to platform) available in the directory. If the location of the TraX library is not found automatically, you have to verify that it exists and possibly enter the path to its location manually.




Documentation

The traxserver MEX function is essentially used to send or receive a protocol message and parse it. It accepts several parameters, the first one is a string of a command that you want execute.

[response] = traxserver('setup', region_formats, image_formats, ...);





The call setups the protocol and has to be called only once at the beginning of your tracking algorithm. The two mandatory input arguments are:



	region_formats: A string that specifies region format that is supported by the algorithm. Any other formats should be either converted by the client or the client should terminate if it is unable to provide data in correct format. Possible values are: rectangle or polygon, see protocol specification for more details.


	image_formats: A string or specifies the image format that are supported by the algorithm. Any other formats should be either converted by the client or the client should terminate if it is unable to provide data in correct format. Possible values are: path, url, memory or data, see protocol specification for more details.







Additionally, you can also specify tracker name, description and family taxonomy as strings using named arguments technique. A single output argument is a boolean value that is true if the initialization was successful.

[image, region, parameters] = traxserver('wait');





A call blocks until a protocol message is received from the client, parses it and returns the data. Based on the type of message, some output arguments will be initialized as empty which also helps determining the type of the message.



	image: Image data in requested format. If the variable is empty then the termination request was received and the tracker can exit.


	region: Region data in requested format. If the variable is set then an initialization request was received and the tracker should be (re)initialized with the specified region. If the variable is empty (but the image variable is not) then a new frame is received and should be processed.







[response] = traxserver('state', region, parameters);





A call sends a status message back to the client specifying the region for the current frame as well as the optional parameters. The two input arguments are:



	region: Region data in requested format.


	parameters (optional): Arbitrary output parameters used for debugging or any other purposes. The parameters are provided either in a single-level structure (no nested structures, just numbers or strings for values) or a N x 2 cell matrix with string keys in the first column and values in the second. Note that the protocol restricts the characters used for parameter names and limits their length.







[response] = traxserver('quit', parameters);





Sends a quit message to the client specifying that the algorithm wants to terminate the tracking session. Additional parameters can be specified using an input argument.



	parameters (optional): Arbitrary output parameters used for debugging or any other purposes, formats same as above.








Image data

Image data is stored in a matrix. For file path and URL types this is a one-dimensional char sequence, for in-memory image this is a 3-dimensional matrix of type uint8 with raw image data, ready for processing and for data type it is in a structure with fields format and data that contain encoding format (JPEG or PNG) and raw file data.




Region data

Region data for rectangle and polygon types is stored in a one-dimensional floating-point matrix. For rectangle the number of elements is 4, for polygon it is an even number, greater or equal than 6 (three points). In all cases the first coordinate is in the horizontal dimension (columns) and not the way Matlab/Octave usually addresses matrices.




Internals

Additionally the function also looks for the TRAX_SOCKET environmental variable that is used to determine that the server has to be set up using TCP sockets and that a TCP server is opened (the port or IP address and port are provide as the value of the variable) and waiting for connections from the tracker. This mechanism is important for Matlab on Microsoft Windows because the standard streams are closed at startup and cannot be used.






Integration example

As with all tracker implementations it is important to identify a tracking loop. Below is a very simple example of how a typical tracking loop looks in Matlab/Octave with all the tracker specific code removed and placed in self-explanatory functions.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	    % Initialize the tracker
    region = read_bounding_box('init.txt');
    image = imread('0001.jpg');
    region = initialize_tracker(region, image);

    result = {region};
    i = 2;

    while true
            % End-of-sequence criteria
            if ~exist(sprintf('%04d.jpg', i), 'file')
                    break;
            end;
            i = i + 1;

            % Read the next image.
            image = imread(sprintf('%04d.jpg', i));

            % Run the update step
            region = update_tracker(image);

            % Save the region
            result{end+1} = region;
    end

    % Save the result
    save_trajectory(result);







To enable tracker to receive the images over the protocol you have to change a few lines. First, you have to initialize the protocol at the begining of the script and tell what kind of image and region formats the tracker supports. Then the initialization of a tracker has to be placed into a loop because the protocol

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	% Initialize the protocol
traxserver('setup', 'rectangle', 'path', 'Name', 'Example');

    while true
    % Wait for data
    [image, region] = traxserver('wait');

    % Stopping criteria
    if isempty(image)
            break;
    end;

    % We are reading a given path
    mat_image = imread(image);

    if ~isempty(region)
            % Initialize tracker
        region = initialize_tracker(region, mat_image);
    else
            region = update_tracker(mat_image);
    end

            % Report back result to advance to next frame
    traxserver('status', region);

end

% Quit session if that was not done already
traxserver('quit');













          

      

      

    

  

    
      
          
            
  
Client library

The client support library provides a C++ client class that uses C++ protocol API to communicate with the tracker process, besides communication the class also takes care of launching tracker process, handling timeouts, logging, and other things. The class also supports setting up communication over streams as well as over TCP sockets. A detailed tutorial on how to use the client library is available here. To compile the module you have to enable BUILD_CLIENT flag in CMake build system (check out the tutorial on compiling the project for more details).


	
CONNECTION_DEFAULT

	Default connection mode, standard input and output streams.






	
CONNECTION_EXPLICIT

	Non-standard input and output streams are created, passed to tracker via environment variables TRAX_IN and TRAX_OUT.






	
CONNECTION_SOCKETS

	Using TCP socket for communication, connection parameters passed to tracker via environment variable TRAX_SOCKET.






	
class TrackerProcess


	
	
TrackerProcess(const std::string &command, const std::map<string, string> environment, int timeout = 10, trax::ConnectionMode connection = trax::CONNECTION_DEFAULT, VerbosityMode verbosity = trax::VERBOSITY_DEFAULT)


	
	Parameters

	
	command – The name of tracker program followed by its input arguments


	environment – A map of environmental variables that have to be set for the tracker process


	timeout – Number of seconds to wait for tracker’s response before terminating the session


	connection – Type of connection, supported are either CONNECTION_DEFAULT, CONNECTION_EXPLICIT, or CONNECTION_SOCKETS.


	verbosity – How verbose should the output be













	
~TrackerProcess()


	Destroys the process and cleans up data.






	
int image_formats()


	
	Returns

	A bitset of image formats supported by the tracker.










	
int region_formats()


	
	Returns

	A bitset of region formats supported by the tracker.










	
bool ready()


	
	Returns

	True if the tracker process is alive.










	
bool tracking()


	
	Returns

	True if the tracker process is tracking an object (was initalized).










	
bool initialize(const trax::Image &image, const trax::Region &region, const trax::Properties &properties = trax::Properties())


	Request tracker initialization with a given image and region.


	Parameters

	
	image – Input image object


	region – Input region object


	properties – Optional properties passed to the tracker






	Returns

	True on success, if the function returns false check trax::TrackerProcess::ready() if the process has crashed or simply requested termination










	
bool frame(const trax::Image &image, const trax::Properties &properties = trax::Properties())


	Request tracker update with a given image.


	Parameters

	
	image – Input image object


	properties – Optional properties passed to the tracker






	Returns

	True on success, if the function returns false check trax::TrackerProcess::ready() if the process has crashed or simply requested termination










	
bool wait(trax::Region &region, trax::Properties &properties)


	Waits for tracker’s response to the previous request (either initialization or update).


	Parameters

	
	region – Output region object, on success populated with output region


	properties – Optional output properties object, populated by returned optional values, if any






	Returns

	True on success, if the function returns false check trax::TrackerProcess::ready() if the process has crashed or simply requested termination










	
bool reset()


	Restarts the tracker process. The function terminates the tracker process and starts a new one.










	
int load_trajectory(const std::string &file, std::vector<Region> &trajectory)


	Utility function to load a trajectory (a sequence of object states) form a text file.


	Parameters

	
	file – Filename string


	trajectory – Empty vector that will be populated with region states






	Returns

	Number of read states










	
void save_trajectory(const std::string &file, std::vector<Region> &trajectory)


	Utility function to save a trajectory (a sequence of object states) to a text file.


	Parameters

	
	file – Filename string


	trajectory – Vector that contains the trajectory
















          

      

      

    

  

    
      
          
            
  
OpenCV conversions library

OpenCV [http://opencv.org/] is one of most frequently used C++ libraries in computer vision. This support library provides conversion functions so that protocol image and region objects can be quickly converted to corresponding OpenCV objects and vice-versa.


Requirements and building

To compile the module you have to enable the BUILD_OPENCV flag in CMake build system (check out the tutorial on compiling the project for more details). You will of course need OpenCV library available on the system, version 2.4 or higher is supported.




Documentation


	
cv::Mat image_to_mat(const Image &image)


	Converts a protocol image object to an OpenCV matrix that represents the image.


	Parameters

	image – Protocol image object



	Returns

	OpenCV matrix object










	
cv::Rect region_to_rect(const Region &region)


	Converts a protocol region object to an OpenCV rectangle structure.


	Parameters

	image – Protocol region object



	Returns

	OpenCV rectangle structure










	
std::vector<cv::Point2f> region_to_points(const Region &region)


	Converts a protocol region object to a list of OpenCV points.


	Parameters

	image – Protocol region object



	Returns

	List of points










	
Image mat_to_image(const cv::Mat &mat)


	Converts an OpenCV matrix to a new protocol image object.


	Parameters

	mat – OpenCV image



	Returns

	Protocol image object










	
Region rect_to_region(const cv::Rect rect)


	Converts an OpenCV rectangle structure to a protocol region object of type rectangle.


	Parameters

	rect – Rectangle structure



	Returns

	Protocol region object










	
Region points_to_region(const std::vector<cv::Point2f> points)


	Converts a list of OpenCV points to a protocol region object of type polygon.


	Parameters

	rect – List of points



	Returns

	Protocol region object










	
void draw_region(cv::Mat &canvas, const Region &region, cv::Scalar color, int width = 1)


	Draws a given region to an OpenCV image with a given color and line width.


	Parameters

	
	canvas – Target OpenCV image to which the region is drawn


	region – Protocol region object


	color – Color of the line as a an OpenCV scalar structure


	width – Width of the line


















          

      

      

    

  

    
      
          
            
  
Support utilities

Besides protocol implementation and utility libraries the repository also contains several tools that can be used for testing and performing simple experiments these tools are part of the client support module as they utilize the client library.


CLI interface

Client support module also provides a traxclient, a simple CLI (command line interface) to the client that can be used for simple tracker execution. If the OpenCV support module is also compiled then the CLI interface uses it for some extra conversions that are otherwise not supported (e.g. loading images and sending them in their raw form over the communication channel if the server requests it).

The traxclient utility is in fact quite powerful and can be used to perform many batch experiments if run multiple times with different parameters. It is internally used by the VOT toolkit [https://github.com/votchallenge/vot-toolkit] and can be used to perform other batch experiments as well. If we assume that image sequence is stored in images.txt file (one absolute image path per line) and that groundtruth are stored in groundtruth.txt file (one region per line, corresponding to the images), we can run a tracker on this sequence by calling:

traxclient -g groundtruth.txt -I images.txt -o result.txt -- <tracker command>





This command will load the groundtruth and use it to initialize the tracker, then it will monitor the tracker until the end of the sequence and storing the resulting trajectory to result.txt. More complex behavior can be achieved by adding other command-line flags (run traxclient -h to get their list).




Protocol testing

The traxtest utility can be used for protocol support testing even if no sequence is available. The tool can produce a static image stream to test if the tracker is responding properly.




OpenCV player

If the OpenCV support module is also compiled then a traxplayer utility is available. This utility can be used to interactively test trackers with the data from video or camera stream.







          

      

      

    

  

    
      
          
            
  
Tutorials

This is a list of official tutorials on TraX, covering a wide set of topics form compiling the library to its integration on various platforms and in various languages and even creating a specialized TraX client. The list does not cover all the possible use cases so contributions (as well as corrections) are welcome and will could be included in the documentation.



	General remarks and guidelines

	Compiling TraX library

	Using TraX on Linux

	Using TraX on Windows

	TraX in Matlab and Octave

	Creating a TraX client









          

      

      

    

  

    
      
          
            
  
General remarks and guidelines

Before starting implementing a new tracker or trying to adapt existing implementation to support TraX protocol, please read the following guidelines on the structure of the code. A lot of these remarks are very common and are not important only for easy integration of the protocol but for general code readability which is an important aspect of reproducibility of results.


Tracking loop

From the implementation point of view, all on-line trackers should implement the tracking loop pattern in some way, however, the loop is much harder to identify in some project than in the other. The tracking loop describes the general state of the tracker. A tracker is initialized (is given and image and the state of the object to initialize its internal state), is updated in a loop for a given amount of frames for which it produces a predicted state of the tracked object, and is eventually terminated.

A clear separation of the tracking loop means that it is clear where these three stages are located in the source code. This kind of organization makes integration of the TraX protocol much easier.




Algorithm abstraction

Clear abstraction of the tracking algorithm is related to the tracking loop pattern. It means that the boilerplate code that handles input data retrieval, manages tracking loop, and eventually takes care of result storage is clearly separated from the main algorithm. How this separation is achieved depends greatly on the programming language used, the most common approach is to use object-oriented structure and present the algorithm as a class with functions to initialize and update the state.







          

      

      

    

  

    
      
          
            
  
Compiling TraX library

The TraX library and supporting modules are built using CMake [https://cmake.org/] build tool. If you have not used CMake before the best way to familiarize with it is by going through the official tutorial [https://cmake.org/cmake-tutorial/]. CMake does not build the code by itself but generates build instructions for a given platform, e.g. Make on Unix systems, Visual Studio on Windows, and Xcode on OSX.


Note

In addition to CMake you will also have to install Python distutil if you want to build a Python package (although you do not have to do this to use the Python implementation) and Octave development packages if you want to build Octave-compatible MEX file (this can also be done from within the Octave or Matlab console).



If you want to build optional OpenCV support, you will have to install OpenCV library (together with development header files). Depending on your OpenCV installation location you may have to tell the CMake where to find the library.


Compiling using Make (Unix)

Building the project using Make tool is the typical for Unix systems (e.g. Linux and Max OSX). After installing all the dependencies and obtaining TraX source code you can open the terminal, go to the library source root directory and type the following commands:

$ mkdir build
$ cd build
$ cmake ..
$ make





With this you will create a subdirectory named build that will contain all the build artifacts, move to the directory, use CMake to generate build instructions and run Make to build the code.


Note

On Unix systems it is also possible to install the library and all public files directly from the build using make install command. The result of the command is system-depended but it will very likely install the library and other files in the /usr/local directory where they will be available to all users. While this kind of installation is not recommended it is a fast way of getting library available without having to manually configure search paths.



By default only the C library is built, if you want to enable additional modules you have to tell this to CMake by adding flags:

$ cmake -DBUILD_OPENCV=ON -DBUILD_CLIENT=ON ..





This way both OpenCV module and client module will be built when running the Make command.




Compiling using Visual Studio (Windows)

On Windows CMake provides a GUI interface that can be used to generate a Visual Studio solution. Open the interface and set the source and build paths. According to the CMake best practices we perform build in a separate sub-directory to separate the generated binaries that can be safely removed and the source code. An example is shown in the screenshot of the interface below.


[image: CMake GUI interface before configuration step.]


When configuring the project, first select the appropriate generator for you version of Visual Studio. After first generation stage, the variables table will be populated with default variable values. Optional modules, such as client support library or OpenCV extensions can be turned on using variables (OpenCV extensions will also require OpenCV 2.4 or higher to be available on the computer, you may have to tell CMake where to find it).


[image: CMake GUI interface after configuration step, shown optional features flag variables.]


After the configuration stage is successful, you can generate Visual Studio solution, open it can compile the project by compiling the target ALL_BUILD. The compiled files will be available in either Debug or Release subdirectory of your build directory. Alternatively you can also compile target INSTALL to install the libraries to the folder, specified by variable CMAKE_INSTALL_PREFIX or targer PACKAGE to generate a ZIP archive of compiled artifacts.







          

      

      

    

  

    
      
          
            
  
Using TraX on Linux

This tutorial will show you how to compile C and C++ trackers on Linux systems using CMake build system. It is assumed that you have read the general remarks on tracker structure.

There are many Linux distributions, this tutorial will focus on the most popular one, Ubuntu, and its derivatives (e.g. Linux Mint). For these systems a PPA repository [https://launchpad.net/~lukacu/+archive/ubuntu/trax] is available so that you do not have to compile the TraX library yourself. For other distributions you have to compile and install the library before continuing with the second step of this tutorial.


Step 1: Installing library from PPA

To install the library from PPA you have to add the PPA to your package repository list:

sudo add-apt-repository ppa:lukacu/trax
sudo apt-get update





Then install the required packages:

sudo apt-get install libtrax0 libtrax-dev






Note

The project is separated in multiple packages in the PPA, if you want to install OpenCV support you will have to install additional packages

sudo apt-get install libtrax-opencv0 libtrax-opencv-dev










Step 2: Preparing your project

For the purposes of this tutorial we will use a simple NCC tracker that uses OpenCV library (because of this we will also use OpenCV support library to make integration easier and more general). The original source code for the tracker is available in the project repository in directory docs/tutorials/tracker. All the source code of the tracker is contained in a single file called ncc.cpp.

Inspect the source code to see that it is composed of three parts. The first one is the tracker implementation which contains the actual tracking algorithm. The second one contains utility functions that take care of loading the input data and writing the results. The final part contains the main tracking loop. Since this code is properly structured, all the adaptation work has to be done on this final part of the code. The initial tracking loop looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	int main( int argc, char** argv) {

  // Reading
  std::vector<std::string> images = readsequence("images.txt");
  cv::Rect initialization = readrectangle("region.txt");
  std::vector<std::Rect> output;

  NCCTracker tracker;

  // Initializing the tracker with first image
  cv::Mat image = cv::imread(images[0]);
  tracker.init(image, initialization);
  // Adding first output to maintain equal length of outputs and
  // input images.
  output.push_back(initialization);

  // The tracking loop, iterating through the rest of the sequence
  for (size_t i = 1; i < images.size(); i++) {

    cv::Mat image = cv::imread(images[i]);
    cv::Rect rect = tracker.update(image);
    output.push_back(rect);

  }

  // Writing the tracking result and exiting
  writerectangles("output.txt", output);

}







To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and let the protocol take care of this.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	int main( int argc, char** argv) {

  NCCTracker tracker;

  trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH |
                         TRAX_IMAGE_MEMORY | TRAX_IMAGE_BUFFER), trax_no_log);

  while (true) {

    trax::Image image;
    trax::Region region;
    trax::Properties properties;

    int tr = handle.wait(image, region, properties);
    if (tr == TRAX_INITIALIZE) {

      tracker.init(trax::image_to_mat(image), trax::region_to_rect(region));
      handle.reply(region, trax::Properties());

    } else if (tr == TRAX_FRAME) {

      cv::Rect result = tracker.update(image_to_mat(image));
      handle.reply(trax::rect_to_region(result), trax::Properties());

    }
    else break;
  }

}







Lets now look at individual modifications. The creation handle object provides a protocol server handle that initializes the protocol and sends the introductory message. The handle is given protocol configuration structure that specifies what kind of data the server can handle as well as the optional output log that can be used for debugging:

trax::Server handle(trax::Configuration(TRAX_IMAGE_PATH | TRAX_IMAGE_MEMORY |
                   TRAX_IMAGE_BUFFER, TRAX_REGION_RECTANGLE), trax_no_log);





When using OpenCV support library’s function trax::image_to_mat(), the conversion from file path, raw memory and image buffer types happens automatically so supporting them all is really easy. Without this function you have to convert the image yourself.

The tracking loop has been modified to accept commands from the client. This happens with the call to the trax::Server::wait() function. The function populates the provided variables: new image, object state (on initialization), and optional parameters.

Since this kind of client-guided session means that the server does not know in advance how long will the tracking session be, the loop is only broken when a quit message is received from the client. The other two options are the initialization and new frame (which can always only follow successful initialization). The re-initialization can happen at any time throughout the session so the server should be capable of reinitializing the tracker (note that in untrusted setups the client may also terminate the session and start a new one).

Requests for initialization or update must be answered with a state message generated by trax::Server::reply(). This function accepts the object state as predicted by the tracker as well as any additional parameters that can be accumulated by the client for development or debugging purposes.

Because all the results are processed and stored by the client, we can remove the explicit results storage at the end of the loop. All these modifications also make all the utility functions in from the initial tracker implementation (second part of the source code) obsolete, they can be removed as their function is handled by the client.




Step 3: Compiling the project

Finally we will modify the example’s CMake file. Properly installed TraX library supports CMake discovery mechanism, the only line that we have to add is therefore:

FIND_PACKAGE(trax REQUIRED COMPONENTS core opencv)
TARGET_LINK_LIBRARIES(ncc_tracker ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})





This command will locate the TraX core library and the OpenCV support library and configure several variables.

The project is compiled as a standard CMake project. First, we call CMake to generate a Makefile, then we call the make tool to build the project. According to the CMake best practices we perform build in a separate sub-directory to separate the generated binaries that can be safely removed and the source code:

$ mkdir bulild
$ cd build
$ cmake ..
$ make








Step 4: Testing integration

A successful build results in a binary program (in the case of this tutorial the program is called ncc_tracker. To test if the program correctly supports TraX protocol we can use the client traxtest provided by the client support module of the project. This program tries to run the tracker on a sequence of static images to see if the protocol is correctly supported. Note that this test does not discover all the logical problems of the implementation as they may only occur during very specific conditions; it only tests the basic TraX compliance.

To run the test move to the build directory and type:

$ traxtest -d -- ncc_tracker





If the integration is successful this command should output something like:

CLIENT: Starting process  "ncc_tracker"
CLIENT: Setting up TraX with standard streams connection
@@TRAX:hello "trax.image=path;memory;buffer;" "trax.region=rectangle;" "trax.version=1"
CLIENT: Tracker process ID: 13019
CLIENT: Connection with tracker established.
@@TRAX:initialize "data:image/...
Tracker initialized
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
...
...











          

      

      

    

  

    
      
          
            
  
Using TraX on Windows

This tutorial will show you how to compile C and C++ trackers on Windows systems using CMake build system. It is assumed that you have read the general remarks on tracker structure.

This tutorial assumes that you are using Visual Studio 2012 or 2015 for your development and are reasonably familiar with Visual Studio in general. For other build systems and version of Visual Studio you have to compile and install the library before continuing with the second step of this tutorial.


Step 1: Downloading binaries

Prebuilt binaries are available here [http://box.vicos.si/vot/trax/]. They are compiled using the AppVeyor Continious Integration service [https://ci.appveyor.com/project/lukacu/trax]. The binaries are compiled for Visual Studio 2012 (32bit and 64bit versions, linked with OpenCV 2.4) and 2015 (64bit version, linked with OpenCV 3.1).

Download the appropriate archive and unzip it to the desired location. Then add path to the bin subdirectory of the extracted bundle to the system PATH variable [https://en.wikipedia.org/wiki/PATH_(variable)#DOS.2C_OS.2F2.2C_and_Windows] so that you will be able to use client tools and that programs will find the TraX dynamic library.




Step 2: Preparing your project

For the purposes of this tutorial we will use a simple NCC tracker that uses OpenCV library (because of this we will also use OpenCV support library to make integration easier and more general). The original source code for the tracker is available in the project repository in directory docstutorialstracker. All the source code of the tracker is contained in a single file called ncc.cpp.

Inspect the source code to see that it is composed of three parts. The first one is the tracker implementation which contains the actual tracking algorithm. The second one contains utility functions that take care of loading the input data and writing the results. The final part contains the main tracking loop. Since this code is properly structured, all the adaptation work has to be done on this final part of the code. The initial tracking loop looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	int main( int argc, char** argv) {

  // Reading
  std::vector<std::string> images = readsequence("images.txt");
  cv::Rect initialization = readrectangle("region.txt");
  std::vector<std::Rect> output;

  NCCTracker tracker;

  // Initializing the tracker with first image
  cv::Mat image = cv::imread(images[0]);
  tracker.init(image, initialization);
  // Adding first output to maintain equal length of outputs and
  // input images.
  output.push_back(initialization);

  // The tracking loop, iterating through the rest of the sequence
  for (size_t i = 1; i < images.size(); i++) {

    cv::Mat image = cv::imread(images[i]);
    cv::Rect rect = tracker.update(image);
    output.push_back(rect);

  }

  // Writing the tracking result and exiting
  writerectangles("output.txt", output);

}







To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and let the protocol take care of this.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	int main( int argc, char** argv) {

  NCCTracker tracker;

  trax::Server handle(trax::Metadata(TRAX_REGION_RECTANGLE, TRAX_IMAGE_PATH |
                          TRAX_IMAGE_MEMORY | TRAX_IMAGE_BUFFER), trax_no_log);

  while (true) {

    trax::Image image;
    trax::Region region;
    trax::Properties properties;

    int tr = handle.wait(image, region, properties);
    if (tr == TRAX_INITIALIZE) {

      tracker.init(trax::image_to_mat(image), trax::region_to_rect(region));
      handle.reply(region, trax::Properties());

    } else if (tr == TRAX_FRAME) {

      cv::Rect result = tracker.update(image_to_mat(image));
      handle.reply(trax::rect_to_region(result), trax::Properties());

    }
    else break;
  }

}







Lets now look at individual modifications. The creation handle object provides a protocol server handle that initializes the protocol and sends the introductory message. The handle is given protocol configuration structure that specifies what kind of data the server can handle as well as the optional output log that can be used for debugging:

trax::Server handle(trax::Configuration(TRAX_IMAGE_PATH | TRAX_IMAGE_MEMORY |
                   TRAX_IMAGE_BUFFER, TRAX_REGION_RECTANGLE), trax_no_log);





When using OpenCV support library’s function trax::image_to_mat(), the conversion from file path, raw memory and image buffer types happens automatically so supporting them all is really easy. Without this function you have to convert the image yourself.

The tracking loop has been modified to accept commands from the client. This happens with the call to the trax::Server::wait() function. The function populates the provided variables: new image, object state (on initialization), and optional parameters.

Since this kind of client-guided session means that the server does not know in advance how long will the tracking session be, the loop is only broken when a quit message is received from the client. The other two options are the initialization and new frame (which can always only follow successful initialization). The re-initialization can happen at any time throughout the session so the server should be capable of reinitializing the tracker (note that in untrusted setups the client may also terminate the session and start a new one).

Requests for initialization or update must be answered with a state message generated by trax::Server::reply(). This function accepts the object state as predicted by the tracker as well as any additional parameters that can be accumulated by the client for development or debugging purposes.

Because all the results are processed and stored by the client, we can remove the explicit results storage at the end of the loop. All these modifications also make all the utility functions in from the initial tracker implementation (second part of the source code) obsolete, they can be removed as their function is handled by the client.




Step 3: Compiling the project

Finally we will modify the example’s CMake file. Properly installed TraX library supports CMake discovery mechanism, the only line that we have to add is therefore:

FIND_PACKAGE(trax REQUIRED COMPONENTS core opencv)
TARGET_LINK_LIBRARIES(ncc_tracker ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})





The project is compiled as a standard CMake project. First, we open CMake GUI tool, select the source and build directories as shown in the example below.


[image: CMake GUI interface before adding TraX library.]


During the configuration phase we select the appropriate generator. In case CMake is unable to find TraX library automatically we have to set the trax_DIR variable manually (set the variable to the share subdirectory of the local TraX installation root since this is the directory where the CMake configuration files are stored). When there are no more configuration errors we can generate the Visual Studio solution in the build folder open it and compile the project.


[image: CMake GUI interface after adding TraX library.]





Step 4: Testing integration

A successful build results in a binary program (in this tutorial the program is called ncc_tracker.exe and is available in the Debug or Release subdirectory of your build directory). To test if the program correctly supports TraX protocol we can use the client traxtest.exe provided by the client support module of the project. This program tries to run the tracker on a sequence of static images to see if the protocol is correctly supported. Note that this test does not discover all the logical problems of the implementation as they may only occur during very specific conditions; it only tests the basic TraX compliance.

To run the test move to the build directory and type:

$ traxtest.exe -d -- ncc_tracker.exe





If the integration is successful this command should output something like:

CLIENT: Starting process  "ncc_tracker.exe"
CLIENT: Setting up TraX with standard streams connection
@@TRAX:hello "trax.image=path;memory;buffer;" "trax.region=rectangle;" "trax.version=1"
CLIENT: Tracker process ID: 13019
CLIENT: Connection with tracker established.
@@TRAX:initialize "data:image/...
Tracker initialized
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/@@TRAX:frame "data:image/...
Tracker updated
@@TRAX:state "130.0000,80.0000,70.0000,110.0000"
@@TRAX:frame "data:image/...
Tracker updated
...
...











          

      

      

    

  

    
      
          
            
  
TraX in Matlab and Octave

This tutorial will guide you through integration of support for TraX protocol to your Matlab/Octave tracker using the reference library. It is assumed that you already have TraX compiled or installed on your computer and that you have read the general remarks on tracker structure.


Step 1: Enabling TraX support

To enable TraX support you have to compile the traxserver MEX file that provides a bridge between the library and scripting environment.


Note

On Ubuntu systems you can install a pre-compiled Octave package named octave-trax from the PPA repository [https://launchpad.net/~lukacu/+archive/ubuntu/trax]. Then all you have to do is type pkg load trax in Octave console to get access to traxserver function.



The source files for traxserver are located in support/matlab subdirectory of the source code repository. In the same directory there is also an utility script, compile_trax.m, that compiles the source using the available MEX compiler (If you have never compiled MEX files before you will probably have to configure the compiler first [https://www.mathworks.com/help/matlab/matlab_external/changing-default-compiler.html].).

If you have compiled the TraX library yourself then all you have to do is to run the utility script. If you are using a pre-built version then you will have to pass the script the path to the root directory where TraX libraries are located:

compile_trax('< ... path to TraX ... >');








Step 2: Preparing your project

In this tutorial we will use a simple NCC tracker written in Matlab/Octave language. The original source code for the tracker is available in the project repository in directory docs/tutorials/matlab. All the code of the tracker is contained in a single file called ncc_tracker.m. In the main function we can observe a typical tracking loop. The data is loaded from the files, image list from images.txt and initialization region from region.txt. The result is stored to output.txt.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	      % Load initalization data
      fid = fopen('images.txt','r');
      images = textscan(fid, '%s', 'delimiter', '\n');
      fclose(fid); images = images{1};
      region = dlmread('region.txt');

      % Initialize the tracker
      [state, ~] = ncc_initialize(imread(images{1}), region);

      output = zeros(length(images), 4);
      output(1, :) = region;

      % Iterate through images
      for i = 2:length(images)

              % Perform a tracking step, obtain new region
              [state, region] = ncc_update(state, imread(images{i}));
              output(i, :) = region;

      end;

      % Write the result
      csvwrite('output.txt', output);







To modify the source code to use the TraX protocol we have to remove explicit loading of the initialization data and let the protocol take care of this. Then we modify the tracking loop to wait for client requests and respond to them.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	      traxserver('setup', 'rectangle', {'path'});

      while true

              [image, region] = traxserver('wait');

              if isempty(image)
                      break;
              end;

              if ~isempty(region)
                      [state, ~] = ncc_initialize(imread(image), region);
              else
                      [state, region] = ncc_update(state, imread(image));
              end

              traxserver('status', region);
      end

      traxserver('quit');







All interactions with TraX protocol are done using the traxserver function. The function is first called at line 1 to setup the protocol, then at line 5 wait for instructions. The request type is specified by the first two output arguments (image and region). If the first argument is empty this means that the client requested termination of session. If first and second arguments are not empty then tracker initialization is requested, if only the second argument is empty tracker update is requested. The tracker state is reported back to the client at line 17. Outside the tracking loop the function is called again at line 20 to terminate the tracking session.

It is also recommended that the main tracking function contains an onCleanup handle [https://www.mathworks.com/help/matlab/ref/oncleanup.html] which triggers on exit from the method and ensures that the program closes. This is especially needed in Matlab since by default the interpreter returns to interactive mode at the end. This way we guarantee that the program will exit no matter the outcome (even in case of exceptions).

cleanup = onCleanup(@() exit() );








Step 3: Testing integration

To test if the tracker correctly supports TraX protocol we can use the client traxtest provided by the client support module of the project. This program tries to run the tracker on a sequence of static images to see if the protocol is correctly supported and the tracker correctly responds to requests. Note that this test does not discover all the logical problems of the implementation as they may only occur during very specific conditions; it only tests the basic TraX compliance.


Matlab

To run the tracker using Matlab interpreter, Matlab has to be run in command line mode (no GUI). This is easy to achieve on Linux and partially on OSX, but a bit harder on Windows so we will address this operating system separately.

On Linux and OSX Matlab has to be run in headless mode to avoid redirecting input and output to GUI. We achieve this with flags -nodesktop and -nosplash. We tell Matlab what code to evaluate with -r flag. The inline script should call the main tracker file, in our case this is ncc_tracker. Additionally the script can also be used to add directories to search path list using the addpath command. The final call to traxtest therefore looks something like:

$ traxtest -d -- matlab -nodesktop -nosplash -r "ncc_tracker"





On Windows, the process is a bit trickier since Matlab forks a process and prevents communication over system streams. Because of this we have to switch to TCP stream by adding -X flag to traxtest. We also have to add flag -wait to Matlab command to tell Matlab not to quit the original process (otherwise the client will think that the tracker has terminated) as well as flag -minimize to minimize the command window that is opened by Matlab in any case. The final call to traxtest therefore looks something like:

$ traxtest -X -d -- matlab -nodesktop -nosplash -wait -minimize -r "ncc_tracker"








Octave

In contrast to previous versions Octave 4.0 has integrated GUI which has to be disabled to run the process in the background. We achieve this by passing --no-gui flag. Then, we tell Octave where to find tracker code using -p flag which adds path to Octave search path list. Finally we tell Octave what code to evaluate with --eval flag. The inline script should call the main tracker file, in our case this is ncc_tracker. Since packages have to be explicitly loaded in Octave this can also be done inline (unless you add these commands to the tracker script). Finally, we can also disable writing of octave-workspace file with crash_dumps_octave_core command. The final call to traxtest therefore looks something like:

$ traxtest -d -- octave --no-gui --eval "pkg load trax; pkg load image; crash_dumps_octave_core(0); ncc_tracker"













          

      

      

    

  

    
      
          
            
  
Creating a TraX client

According to TraX specification a client is an application that provides tracking task to the tracker, i.e. the server. The client typically has to start the server process, initialize the tracker, provide image sequence data and monitor the tracker’s progress. Examples of fully functional clients in the TraX project are the CLI utility traxclient which can be used to perform simple experiments on a given sequence and traxplayer which can be used to interactively initialize the tracker and run it on the data from a video or even camera.

In this tutorial we will create a client that runs a tracker for 50 frames (the sequence is loaded from a given directory) and automatically reinitializes it after that. We will utilize the TraX client support library that takes care of common and platform specific tasks like managing the tracker process. The complete source code of the example is available in docs/tutorials/client directory of the repository.

To include the client support we first have to include its header file (besides all other header files):

// System utilities
#include <sstream>

// TraX headers
#include <trax.h>
#include <trax/client.hpp>





We will begin by parsing the input arguments, provided by the user. For simplicity sake we will assume that the input sequence is defined by the groundtruth.txt file which defines the annotated groundtruth state and that the image files are also available in the same folder and follow a eight digit zero-padded number, starting with 1: 00000001.jpg, 00000002.jpg, …. The only remaining input is the tracker command which we have to parse from the input arguments and encode it as a string:

int main( int argc, char** argv) {

        // Quit if tracker command not given
        if (argc < 2)
                return -1;

        std::vector<trax::Region> groundtruth;
        trax::load_trajectory("groundtruth.txt", groundtruth);

        int total_frames = groundtruth.size();

        std::stringstream buffer;
        for (int i = 1; i < argc; i++)
                buffer << " \"" << std::string(argv[i]) << "\" ";
        std::string tracker_command = buffer.str();





To obtain tracker handle we create a TrackerProcess object. This object internally starts a new process using the given command parameter. The construction of the object will faill if the tracker will not send an introduction TraX message which will also provide client with the information about tracker’s capabilites (what kind of image formats does it support). We can also check if the process is still alive by calling ready method.

trax::TrackerProcess tracker(tracker_command);





For now we will leave these advanced options and look at the client tracking loop. The client is aware of the length of the sequence so the loop iterates for a known number of steps. At each step we generate a path image descriptor to the new image. The client has complete control over what is going on which we can use to re-initialize the tracker every 50 frames.

for (int i = 0; i < total_frames; i++) {

        char buff[32];
        snprintf(buff, sizeof(buff), "%08d.jpg", i + 1);
        trax::Image image = trax::Image::create_path(string(buff));

        // Initialize every 50 frames
        if (i % 50 == 0) {
                if (!tracker.initialize(image, groundtruth[i]))
                        // Something went wrong, break the loop
                        break;
        } else {
                if (!tracker.frame(image))
                        // Something went wrong, break the loop
                        break;
        }





After issuing the command we wait for the reply. Unless the tracker terminates execution, a valid reply will contain the status of the object as well as optional properties. All of this information can be simply stored or used to adjust tracking session.

                trax::Region status; // Will receive object state predicted by tracker
                trax::Properties properties; // Will receive any optional data

                // Wait for tracker response to the request
                bool success = tracker.wait(status, properties);

                if (success) {
                        // The tracker returns a valid status.
                        // Process the result ...
                } else {
                        if (tracker.ready()) {
                                // The tracker has requested termination.
                                break;
                        } else {
                                // In case of an error ...
                        }
                }

        }


}





And all we have to do now is to compile the code. We will use CMake to find the TraX library and configure the build. Notice that we have to tell CMake to include ´core´ and ´client´ TraX components:

ADD_EXECUTABLE(sample_client client.cpp)
FIND_PACKAGE(trax REQUIRED COMPONENTS core client)
TARGET_LINK_LIBRARIES(sample_client ${TRAX_LIBRARIES})
INCLUDE_DIRECTORIES(AFTER ${TRAX_INCLUDE_DIRS})
LINK_DIRECTORIES(AFTER ${TRAX_LIBRARY_DIRS})









          

      

      

    

  

    
      
          
            
  
Contributions and development

Contributions to the TraX protocol and library are welcome, the preferred way to do it is by submitting issues or pull requests on GitHub [https://github.com/votchallenge/trax].





          

      

      

    

  

    
      
          
            
  
Protocol adoption

On this site we list public projects that have adopted the TraX protocol (either using the reference library or custom implementations). If you want to be on the list please write an email to the developers.


Trackers



	LGT and ANT [https://github.com/lukacu/visual-tracking-matlab]: The repository contains Matlab implementations of LGT (TPAMI 2013), ANT (WACV 2016), IVT (IJCV 2007), MEEM (ECCV 2014), and L1-APG (CVPR 2012) trackers.


	KCF [https://github.com/vojirt/kcf]: A C++ re-implementation of the KCF (TPAMI 2015) tracker.


	ASMS [https://github.com/vojirt/asms]: A C++ implementation of the ASMS (PRL 2014) tracker.


	MIL [https://github.com/lukacu/mil]: An adapted original C++ implementation of the MIL (CVPR 2009) that works with OpenCV 2.


	Struck [https://github.com/lukacu/struck]: A fork of the original Struck (ICCV 2011) implementation with protocol support and support OpenCV 2.


	CMT [https://github.com/lukacu/CMT]: A fork of the original CMT (CVPR 2015) implementation.










Applications



	VOT toolkit [https://github.com/votchallenge/vot-toolkit]: the toolkit uses the TraX protocol as the default integration mechanism.













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   t
   


   
     		 	

     		
       t	

     
       	[image: -]
       	
       trax	
       

     
       	
       	   
       trax.image	
       

     
       	
       	   
       trax.region	
       

     
       	
       	   
       trax.server	
       

   



          

      

      

    

  

    
      
          
            

Index



 B
 | C
 | F
 | I
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


B


  	
      	BUFFER (in module trax.image)


  

  	
      	BufferImage (class in trax.image)


  





C


  	
      	CONNECTION_DEFAULT (C macro)


      	CONNECTION_EXPLICIT (C macro)


  

  	
      	CONNECTION_SOCKETS (C macro)


      	convert() (in module trax.region)


  





F


  	
      	FileImage (class in trax.image)


  





I


  	
      	Image (class in trax.image)


  





M


  	
      	MEMORY (in module trax.image)


  

  	
      	MemoryImage (class in trax.image)


      	MessageType (class in trax)


  





P


  	
      	parse() (in module trax.image)


      	PATH (in module trax.image)


  

  	
      	Polygon (class in trax.region)


      	POLYGON (in module trax.region)


  





Q


  	
      	quit() (trax.server.Server method)


  





R


  	
      	Rectangle (class in trax.region)


      	RECTANGLE (in module trax.region)


  

  	
      	Region (class in trax.region)


      	Request (class in trax.server)


  





S


  	
      	Server (class in trax.server)


      	ServerOptions (class in trax.server)


  

  	
      	Special (class in trax.region)


      	SPECIAL (in module trax.region)


      	status() (trax.server.Server method)


  





T


  	
      	trax (module)


      	trax.image (module)


      	trax.region (module)


      	trax.server (module)


      	trax::Bounds (C++ class)


      	trax::Bounds::Bounds (C++ function), [1], [2]


      	trax::Bounds::~Bounds (C++ function)


      	trax::Client (C++ class)


      	trax::Client::Client (C++ function), [1]


      	trax::Client::frame (C++ function)


      	trax::Client::initialize (C++ function)


      	trax::Client::metadata (C++ function)


      	trax::Client::terminate (C++ function)


      	trax::Client::wait (C++ function)


      	trax::Client::~Client (C++ function)


      	trax::draw_region (C++ function)


      	trax::Image (C++ class)


      	trax::Image::create_buffer (C++ function)


      	trax::Image::create_memory (C++ function)


      	trax::Image::create_path (C++ function)


      	trax::Image::create_url (C++ function)


      	trax::Image::empty (C++ function)


      	trax::Image::get_buffer (C++ function)


      	trax::Image::get_memory_header (C++ function)


      	trax::Image::get_memory_row (C++ function)


      	trax::Image::get_path (C++ function)


      	trax::Image::get_url (C++ function)


      	trax::Image::Image (C++ function), [1]


      	trax::Image::type (C++ function)


      	trax::Image::write_memory_row (C++ function)


      	trax::Image::~Image (C++ function)


      	trax::image_to_mat (C++ function)


      	trax::load_trajectory (C++ function)


      	trax::Logging (C++ class)


      	trax::Logging::Logging (C++ function), [1]


      	trax::Logging::~Logging (C++ function)


      	trax::mat_to_image (C++ function)


      	trax::Metadata (C++ class)


      	trax::Metadata::image_formats (C++ function)


      	trax::Metadata::Metadata (C++ function)


      	trax::Metadata::region_formats (C++ function)


      	trax::Metadata::tracker_description (C++ function)


      	trax::Metadata::tracker_family (C++ function)


      	trax::Metadata::tracker_name (C++ function)


      	trax::Metadata::~Metadata (C++ function)


      	trax::points_to_region (C++ function)


      	trax::Properties (C++ class)


      	trax::Properties::clear (C++ function)


      	trax::Properties::enumerate (C++ function)


      	trax::Properties::from_map (C++ function)


      	trax::Properties::get (C++ function), [1], [2], [3]


      	trax::Properties::Properties (C++ function), [1]


      	trax::Properties::set (C++ function), [1], [2]


      	trax::Properties::size (C++ function)


      	trax::Properties::to_map (C++ function)


      	trax::Properties::to_vector (C++ function)


      	trax::Properties::~Properties (C++ function)


      	trax::rect_to_region (C++ function)


      	trax::Region (C++ class)


      	trax::Region::bounds (C++ function)


      	trax::Region::convert (C++ function)


      	trax::Region::create_polygon (C++ function)


      	trax::Region::create_rectangle (C++ function)


      	trax::Region::create_special (C++ function)


      	trax::Region::empty (C++ function)


      	trax::Region::get (C++ function), [1]


      	trax::Region::get_polygon_count (C++ function)


      	trax::Region::get_polygon_point (C++ function)


      	trax::Region::overlap (C++ function)


      	trax::Region::Region (C++ function), [1]


      	trax::Region::set (C++ function), [1]


      	trax::Region::set_polygon_point (C++ function)


      	trax::Region::type (C++ function)


      	trax::Region::~Region (C++ function)


      	trax::region_to_points (C++ function)


      	trax::region_to_rect (C++ function)


      	trax::save_trajectory (C++ function)


      	trax::Server (C++ class)


      	trax::Server::metadata (C++ function)


      	trax::Server::reply (C++ function)


      	trax::Server::Server (C++ function)


      	trax::Server::terminate (C++ function)


      	trax::Server::wait (C++ function)


      	trax::Server::~Server (C++ function)


      	trax::TrackerProcess (C++ class)


      	trax::TrackerProcess::frame (C++ function)


      	trax::TrackerProcess::image_formats (C++ function)


      	trax::TrackerProcess::initialize (C++ function)


      	trax::TrackerProcess::ready (C++ function)


      	trax::TrackerProcess::region_formats (C++ function)


      	trax::TrackerProcess::reset (C++ function)


      	trax::TrackerProcess::TrackerProcess (C++ function)


      	trax::TrackerProcess::tracking (C++ function)


      	trax::TrackerProcess::wait (C++ function)


  

  	
      	trax::TrackerProcess::~TrackerProcess (C++ function)


      	trax_bounds (C type)


      	trax_cleanup (C function)


      	trax_client_frame (C function)


      	trax_client_initialize (C function)


      	trax_client_setup_file (C function)


      	trax_client_setup_socket (C function)


      	trax_client_wait (C function)


      	TRAX_ERROR (C macro)


      	TRAX_FRAME (C macro)


      	trax_get_parameter (C function)


      	trax_handle (C type)


      	TRAX_HELLO (C macro)


      	trax_image (C type)


      	TRAX_IMAGE_BUFFER (C macro)


      	TRAX_IMAGE_BUFFER_ILLEGAL (C macro)


      	TRAX_IMAGE_BUFFER_JPEG (C macro)


      	TRAX_IMAGE_BUFFER_PNG (C macro)


      	trax_image_create_buffer (C function)


      	trax_image_create_memory (C function)


      	trax_image_create_path (C function)


      	trax_image_create_url (C function)


      	TRAX_IMAGE_EMPTY (C macro)


      	trax_image_get_buffer (C function)


      	trax_image_get_memory_header (C function)


      	trax_image_get_memory_row (C function)


      	trax_image_get_path (C function)


      	trax_image_get_type (C function)


      	trax_image_get_url (C function)


      	TRAX_IMAGE_MEMORY (C macro)


      	TRAX_IMAGE_MEMORY_GRAY16 (C macro)


      	TRAX_IMAGE_MEMORY_GRAY8 (C macro)


      	TRAX_IMAGE_MEMORY_ILLEGAL (C macro)


      	TRAX_IMAGE_MEMORY_RGB (C macro)


      	TRAX_IMAGE_PATH (C macro)


      	trax_image_release (C function)


      	TRAX_IMAGE_URL (C macro)


      	trax_image_write_memory_row (C function)


      	TRAX_INITIALIZE (C macro)


      	trax_logger_setup (C function)


      	trax_logger_setup_file (C function)


      	trax_logging (C type)


      	trax_metadata_create (C function)


      	trax_metadata_release (C function)


      	trax_no_bounds (C variable)


      	trax_no_log (C variable)


      	TRAX_OK (C macro)


      	trax_properties (C type)


      	trax_properties_clear (C function)


      	trax_properties_count (C function)


      	trax_properties_create (C function)


      	trax_properties_enumerate (C function)


      	trax_properties_get (C function)


      	trax_properties_get_float (C function)


      	trax_properties_get_int (C function)


      	trax_properties_release (C function)


      	trax_properties_set (C function)


      	trax_properties_set_float (C function)


      	trax_properties_set_int (C function)


      	TRAX_QUIT (C macro)


      	trax_region (C type)


      	TRAX_REGION_ANY (C macro)


      	trax_region_bounds (C function)


      	trax_region_clone (C function)


      	trax_region_contains (C function)


      	trax_region_convert (C function)


      	trax_region_create_polygon (C function)


      	trax_region_create_rectangle (C function)


      	trax_region_create_special (C function)


      	trax_region_decode (C function)


      	TRAX_REGION_EMPTY (C macro)


      	trax_region_encode (C function)


      	trax_region_get_polygon_count (C function)


      	trax_region_get_polygon_point (C function)


      	trax_region_get_rectangle (C function)


      	trax_region_get_special (C function)


      	trax_region_get_type (C function)


      	trax_region_overlap (C function)


      	TRAX_REGION_POLYGON (C macro)


      	TRAX_REGION_RECTANGLE (C macro)


      	trax_region_release (C function)


      	trax_region_set_polygon_point (C function)


      	trax_region_set_rectangle (C function)


      	trax_region_set_special (C function)


      	TRAX_REGION_SPECIAL (C macro)


      	trax_server_reply (C function)


      	trax_server_setup (C function)


      	trax_server_setup_file (C function)


      	trax_server_wait (C function)


      	trax_set_parameter (C function)


      	TRAX_STATE (C macro)


      	trax_terminate (C function)


      	trax_version (C function)


      	TraXError


  





U


  	
      	URL (in module trax.image)


  

  	
      	URLImage (class in trax.image)


  





W


  	
      	wait() (trax.server.Server method)


  







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to TraX library documentation
        


        		
          TraX protocol specification
          
            		
              Definitions
            


            		
              Message format
              
                		
                  Escape sequences
                


                		
                  Named arguments
                


              


            


            		
              Protocol messages and states
            


            		
              Region formats
            


            		
              Image formats
            


          


        


        		
          API documentation
          
            		
              Reference C library
              
                		
                  Requirements and building
                


                		
                  Documentation
                


                		
                  Integration example
                


              


            


            		
              Library C++ wrapper
              
                		
                  Requirements and building
                


                		
                  Documentation
                


                		
                  Integration example
                


              


            


            		
              Python implementation
              
                		
                  Requirements and support
                


                		
                  Documentation
                


                		
                  Integration example
                


              


            


            		
              Matlab/Octave wrappers
              
                		
                  Requirements and building
                


                		
                  Documentation
                


                		
                  Integration example
                


              


            


            		
              Client library
            


            		
              OpenCV conversions library
              
                		
                  Requirements and building
                


                		
                  Documentation
                


              


            


          


        


        		
          Support utilities
          
            		
              CLI interface
            


            		
              Protocol testing
            


            		
              OpenCV player
            


          


        


        		
          Tutorials
          
            		
              General remarks and guidelines
              
                		
                  Tracking loop
                


                		
                  Algorithm abstraction
                


              


            


            		
              Compiling TraX library
              
                		
                  Compiling using Make (Unix)
                


                		
                  Compiling using Visual Studio (Windows)
                


              


            


            		
              Using TraX on Linux
              
                		
                  Step 1: Installing library from PPA
                


                		
                  Step 2: Preparing your project
                


                		
                  Step 3: Compiling the project
                


                		
                  Step 4: Testing integration
                


              


            


            		
              Using TraX on Windows
              
                		
                  Step 1: Downloading binaries
                


                		
                  Step 2: Preparing your project
                


                		
                  Step 3: Compiling the project
                


                		
                  Step 4: Testing integration
                


              


            


            		
              TraX in Matlab and Octave
              
                		
                  Step 1: Enabling TraX support
                


                		
                  Step 2: Preparing your project
                


                		
                  Step 3: Testing integration
                


              


            


            		
              Creating a TraX client
            


          


        


        		
          Contributions and development
        


        		
          Protocol adoption
          
            		
              Trackers
            


            		
              Applications
            


          


        


      


    
  

_static/up-pressed.png





_images/ncc_cmake_trax.png
File Tools Options Help

Vihere s the source code:  C:/Users/Adminstator/Documents/trax master rackers/tutorial [Browse Source...|
Vhere to buld the binaries:  C:/Users/Administrator/Documentstrax-mastertrackers/utorialouid v | Browse Buid...

— Growed (7] advaced [ remoreznmy)
Nome Vae
+ (Unareuped Enfries 3
PNy FooND
o DR TUses/Administstor/Documentsraxshore
b cvare
 Gpency

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

PR —

Opency AacH: x36
Opency FUNTIME: velz

Opency sTATIC: OFF

Found OpenCV 2.4.13 in C:/opency/build/x86/vel2/1ib

You might need to add C:\opencv\build\x86\vel2\bin to your PATH to be able to run you
Configuring dene

Generacing done

il v






_images/region.png
left, top)

height

(x11,y11)

(x9, y9)

(x10, y10)

width

(x5, y5)





_images/message.png
Processing frame 103

f J
| Message type identifier Optional named arguments
3945 /
i AW
eaTRAX: type| [argi| ["argz”] ««« ["keyi=valuei"| ["keyz-valuez"| «e+
N /

Debug stop 1: 231.%4

19000 U essage arguments
Processing

343.4, 3456






_images/ncc_cmake_notrax.png
File Tools Options Help
Vihere s the source code:  C:/Users/Adminstator/Documents/trax master rackers/tutorial
Vhere to buld the binaries:  C:/Users/Administrator/Documentstrax-masterrackers/twtoial uld

Name Value
CMAKE_CONFIGURATION_TYPES Debug:ReleaseMinSizeRelRelWithDeblnfo
C:/Program Files/ncc_eample

CMAKE INSTALL_PREFIX
OpenCV_DIR C:/opencu/build/@6/vcl1/lib

Search:

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

R —— e

Configuring done






_images/windows_cmake_variables.png
Vihere s the source code:  Cs/Users/Admiistrator/Documents/trax- master [browse Source...|

Where to build the binaries:  C:/Users/Administrator /Documents/trax-master fbuild ~ | Browse Build...
- -
e e

Press Confiure to update and display new values in red, then press Generate to generate selected buld fies.

(oo ) [cenmate ] [ovenPromet] urentGenrtrs voud s 122013
O g T

Detecting CXX compile features - done m
et i =

<[ il »






_static/ajax-loader.gif





_images/states.png
Client

— Vv

Server

Y

){ Introduction *){ Initialization Observing *){ Termination >0
A AA AA
2 [initialize | [ frame | [quit |
4 [helio | [ state | [state | [aquit |
c
£ ¥ YY Y Y
*)\ Introduction *){ Initialization Reporting *){ Termination —>@






_images/windows_cmake_clean.png
File Tools Options Help

Vihere is the source code:  Cs/Users/Admiistrator/Documents/trax master

Where to buld the binaries:  C:/Users/Administrator/Documents/trax-master buid

Value

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

o rreat) Curent et e

[






